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Lower bounds for variances of Poisson functionals
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Abstract

Lower bounds for variances are often needed to derive central limit theorems. In this
paper, we establish a lower bound for the variance of Poisson functionals that uses the
difference operator of Malliavin calculus. Poisson functionals, i.e. random variables
that depend on a Poisson process, are frequently studied in stochastic geometry. We
apply our lower variance bound to statistics of spatial random graphs, the Lp surface
area of random polytopes and the volume of excursion sets of Poisson shot noise
processes. Thereby we do not only bound variances from below but also show positive
definiteness of asymptotic covariance matrices and provide associated results on the
multivariate normal approximation.
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1 Introduction and main result

As the variance quantifies the fluctuations of a random variable around its mean, up-
per bounds for variances are an important topic of probability theory. A main motivation
to study lower bounds comes from the problem to establish central limit theorems. Here,
after applying quantitative bounds for the normal approximation to standardised random
variables, one has to divide by powers of the variance, whence it is essential to have
lower bounds for the variance. In this paper, we derive such lower bounds for random
variables that only depend on an underlying Poisson process. These so-called Poisson
functionals play a crucial role in stochastic geometry but also appear in other branches
of probability theory.

Let η be a Poisson process on a measurable space (X,X ) with a σ-finite intensity
measure λ. The underlying probability space is denoted by (Ω,F ,P). Let N denote the
set of all σ-finite counting measures equipped with the σ-field generated by the mappings
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ν 7→ ν(B) for B ∈ X . The Poisson process can be seen as a random element in N. A
detailed introduction to Poisson processes can be found in e.g. [22]. A Poisson functional
F is a real-valued measurable function on Ω that can be written as F = f(η), where f
is a real-valued measurable function on N and is called representative. For simplicity
and by a slight abuse of notation, we denote a Poisson functional in the following by
F = F (η). If F is square-integrable, we write F ∈ L2

η.
Throughout this paper we are mostly interested in the asymptotic behaviour of Poisson

functionals in two frameworks, namely increasing intensity or increasing observation
window. More precisely, we study for s → ∞ a family of Poisson functionals Fs, s ≥ 1,
where Fs is either a Poisson functional on a homogeneous Poisson process with intensity
s or a functional of a fixed Poisson process depending on an observation window that
extends to the full space for s→∞.

Central limit theorems for some Poisson functionals were established, for example,
in [2, 4, 5, 10, 16, 17, 18, 20, 25, 27, 28, 30, 33]. Since the proofs require lower
variance bounds as discussed above, these papers also study the asymptotic behaviour
of the variance. Often convergence of the variance to a non-degenerate (i.e. non-zero)
asymptotic variance constant is shown. Investigating the behaviour of the variance
usually requires a lot of effort. This is the reason why we want to treat the problem of
lower variance bounds as a separate issue from establishing central limit theorems in
this paper. To this end, we provide a lower variance bound, which can be seen as the
counterpart to the Poincaré inequality.

As mentioned above, a common problem is to show that the asymptotic variance
constant is positive. But even if one has an explicit representation for the latter, it can be
hard to show positivity because positive and negative terms could cancel out. Therefore,
proving the non-degeneracy of the asymptotic variance can be a different problem than
computing the limiting constant of the variance. In this case, it can be helpful to employ
lower bounds for variances to deduce positivity of the asymptotic variance constant.

Since the covariance matrix Σs ∈ Rm×m of Poisson functionals F (1)
s , . . . , F

(m)
s , s ≥ 1,

satisfies

Var

[ m∑
i=1

αiF
(i)
s

]
= αTΣsα

for all α = (α1, . . . , αm) ∈ Rm, one can use lower bounds for variances to establish
positive definiteness of the asymptotic covariance matrix Σ = lims→∞Σs if it exists.
Knowing the positive definiteness of Σ is of interest since it ensures that none of the
Poisson functionals can be written asymptotically as a linear combination of the others.
Furthermore, some bounds for the quantitative multivariate normal approximation (see
e.g. [33]) require the positive definiteness of the covariance matrix of the limiting normal
distribution.

In order to present our main result, we need some notation and some further back-
ground on Poisson functionals. For x ∈ X the difference operator of a Poisson functional
F = F (η) is defined by

DxF = F (η + δx)− F (η),

where δx denotes the Dirac measure concentrated at x. In general, the n-th iterated
difference operator Dn is recursively defined by

Dn
x1,...,xnF = Dx1

(Dn−1
x2,...,xnF )

for n > 1 and x1, . . . , xn ∈ X. In particular, for x, y ∈ X the iterated, second-order
difference operator equals

D2
x,yF = Dx(DyF ) = F (η + δx + δy)− F (η + δx)− F (η + δy) + F (η).
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For F ∈ L2
η define fn(x1, . . . , xn) = 1

n!E[Dn
x1,...,xnF ] for x1, . . . , xn ∈ X and n ∈ N. Then,

fn is symmetric and square-integrable for all n ∈ N and the Fock space representation
of F is given by

E[F 2] = E[F ]2 +

∞∑
n=1

n!‖fn‖2n, (1.1)

where ‖·‖n denotes the norm on L2(λn) (see, for example, [21, Theorem 1.1] or [22,
Theorem 18.6]). Using this representation, one can directly derive

Var[F ] =

∞∑
n=1

n!‖fn‖2n ≥ ‖f1‖21 =

∫
(E[DxF ])2 dλ(x). (1.2)

The problem with this lower variance bound is that the difference operator can in general
be positive or negative and, thus, can have expectation zero. To overcome this issue, we
provide in this paper a counterpart to the well-known Poincaré inequality

Var[F ] ≤
∫
E[(DxF )2] dλ(x) (1.3)

for F ∈ L2
η (see, for example, [22, Theorem 18.7]). In the following main result we give a

condition under which the variance of F can be bounded from below by a constant times
the right-hand side of the Poincaré inequality, whence we can think of it as a reverse
Poincaré inequality.

Theorem 1.1. Let F ∈ L2
η be a Poisson functional satisfying

E

[∫
(D2

x,yF )2 dλ2(x, y)

]
≤ αE

[∫
(DxF )2 dλ(x)

]
<∞ (1.4)

for some constant α ≥ 0. Then

Var[F ] ≥ 4

(α+ 2)2
E

[∫
(DxF )2 dλ(x)

]
. (1.5)

The inequality (1.5) provides a non-trivial lower bound for the variance as soon as
one can show that the difference operator is non-zero with positive probability. To this
end, one can construct special point configurations that lead to a non-zero difference
operator and occur with positive probability. This is often much easier than to verify that
the expectation of the difference operator is non-zero as required in (1.2).

Let us discuss some alternative approaches to derive lower variance bounds for
Poisson functionals or statistics arising in stochastic geometry. In [20, Theorem 5.2], a
general lower bound for variances of Poisson functionals is established, where, for fixed
k ∈ N and I1, I2 ⊆ {1, . . . , k}, one has to bound∣∣∣∣E[F (η +

∑
i∈I1

δxi
)
− F

(
η +

∑
i∈I2

δxi
)]∣∣∣∣

from below for x1, . . . , xk ∈ X. Since here more than one point can be added, which
allows to enforce particular point configurations, this expression is often easier to control
than the expectation of the first difference operator in (1.2). But one still has the problem
that the difference within the expectation can be both positive and negative.

In [5, 25, 27, 28], lower bounds for variances of so-called stabilising functionals of
Poisson processes and sometimes also binomial point processes were deduced. These
results have all in common that generalised difference or add-one-cost operators are
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required to be non-degenerate. This is similar to our work, but the random variable that
has to be non-degenerate is more involved than the difference operator and, moreover,
the results apply only to stabilising functionals and not to general Poisson functionals.

A further approach is to condition on some σ-field and to bound the variance from
below by the expectation of the conditional variance with respect to this σ-field. In
the context of stochastic geometry this was used, for example, in [2] or [3, 30]. By
conditioning on the σ-field it is sufficient to consider some particular point configurations
similarly as in our Theorem 1.1. In the recent preprint [11], a condition requiring that
some conditional expectations are not degenerate is used to establish lower variance
bounds for stabilising functionals.

In order to demonstrate how Theorem 1.1 can be applied, we derive lower variance
bounds for specific examples from stochastic geometry:

Spatial random graphs. We consider degree and component counts of random
geometric graphs and edge length functionals and degree counts of k-nearest neighbour
graphs. By proving lower bounds for variances of linear combinations of such statistics,
we show the positive definiteness of asymptotic covariance matrices. Combining these
findings with the results from [33, Section 3] provides quantitative multivariate central
limit theorems for the corresponding random vectors.

Random polytopes. By taking the convex hull of the points of a homogeneous
Poisson process in the d-dimensional unit ball, one obtains a random polytope. We study
the Lp surface area, which generalises volume and surface area. For two different Lp

surface areas we show positive definiteness of the asymptotic covariance matrix and, as
a consequence, a result for the multivariate normal approximation. In particular, this
allows to study the joint behaviour of volume and surface area of the random polytope.

Poisson shot noise processes. We provide a lower variance bound for the volume
of excursion sets of a Poisson shot noise process. In comparison to the works [9], [16] or
[17] we modify the assumptions on the kernel function of the Poisson shot noise process.

The considered statistics of spatial random graphs fit into the framework of stabilising
functionals of Poisson processes so that the results for the non-degeneracy of the
asymptotic variance of stabilising functionals discussed above might be applicable. The
Lp surface area is still stabilising, but here the variance does not scale like the intensity
of the underlying Poisson process, whence the previously mentioned results are not
available anymore. Finally, in case of general Poisson shot noise processes we do not
have stabilisation at all. In order to apply Theorem 1.1, one has to bound the left-hand
side of (1.4) from above. In case of the spatial random graphs and the random polytope,
this can be done easily by employing results from [18] due to stabilisation.

This paper is organised as follows. Our main result Theorem 1.1 is proven in Section 2.
The following three sections are devoted to applications, statistics of spatial random
graphs in Section 3, the Lp surface area of random polytopes in Section 4 and the
excursion sets of Poisson shot noise processes in Section 5. Finally, we recall the concept
of stabilising functionals and provide some details on the proof of the lower variance
bound of Section 4 in the appendix.

2 Proof of Theorem 1.1

The proof of Theorem 1.1 relies upon using the Fock space representations of F and
its first two difference operators.

Proof of Theorem 1.1. For n ∈ N let fn denote the kernels of the Fock space representa-
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tion of F . Recall that

Var[F ] =

∞∑
n=1

n!‖fn‖2n.

First we assume α > 0. Then we know by assumption (1.4) that F,DxF,D
2
x,yF ∈ L2

η

for λ-a.e. x, y ∈ X. Fubini’s theorem, applying the Fock space representation (1.1) to
the first- and second-order difference operator and the monotone convergence theorem
provide

E

[∫
(DxF )2 dλ(x)

]
=

∫ ∞∑
n=0

1

n!

∫
E[Dn

x1,...,xn(DxF )]2 dλn(x1, . . . , xn) dλ(x)

=

∞∑
n=0

1

n!

∫
E[Dn+1

x1,...,xn,xn+1
F ]2 dλn+1(x1, . . . , xn, xn+1)

=

∞∑
n=1

n

n!

∫
E[Dn

x1,...,xnF ]2 dλn(x1, . . . , xn)

=

∞∑
n=1

nn!‖fn‖2n

and

E

[∫
(D2

x,yF )2 dλ2(x, y)

]
=

∫ ∞∑
n=0

1

n!

∫
E[Dn

x1,...,xn(Dx,yF )]2 dλn(x1, . . . , xn) dλ2(x, y)

=

∞∑
n=0

1

n!

∫
E[Dn+2

x1,...,xn+2
F ]2 dλn+2(x1, . . . , xn+2)

=

∞∑
n=2

n(n− 1)

n!

∫
E[Dn

x1,...,xnF ]2 dλn(x1, . . . , xn)

=

∞∑
n=1

n(n− 1)n!‖fn‖2n,

where we use the convention D0F = F . Therefore, assumption (1.4) means that∑∞
n=1 n!n‖fn‖2n(α − n + 1) ≥ 0. Additionally,

(
n− (α+2)

2

)2

≥ 0 implies (α+2)2

4 − n ≥
n(α− n+ 1) for any n ∈ N. Thus, it holds

(α+ 2)2

4
Var[F ]− E

[∫
(DxF )2 dλ(x)

]
=

∞∑
n=1

n!‖fn‖2n
(

(α+ 2)2

4
− n

)

≥
∞∑
n=1

n!‖fn‖2nn(α− n+ 1) ≥ 0,

which provides the lower bound for the variance in (1.5) for α > 0.
For α = 0 we have that Dx,yF = 0 almost surely for λ-a.e. x, y ∈ X. Hence, all

difference operators of order greater than or equal to 2 vanish almost surely for λ-a.e.
x, y ∈ X. Therefore, ‖fn‖n = 0 for all n ∈ N with n ≥ 2. It follows from the representation
of the difference operator in terms of the kernels of the Fock space representation (see
e.g. [19, Theorem 3]) that DxF = f1(x) almost surely for λ-a.e. x ∈ X, which provides
the bound in Theorem 1.1 for α = 0.

Remark 2.1. Note that Fock space representations also exist for functionals of isonormal
Gaussian processes and for functionals of Rademacher sequences (i.e. sequences of
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independent random variables with values ±1). For these one can also define operators
D and D2 whose Fock space representations are as in the Poisson case. Since our
proof of Theorem 1.1 only requires the Fock space representations of F , DF and D2F ,
the statement of Theorem 1.1 continues to hold for functionals of isonormal Gaussian
processes and for functionals of Rademacher sequences if we rewrite the integrals with
respect to λ in a proper way. For more details on the Fock space representations and the
operators D and D2 we refer the reader to, for example, [24] for the Gaussian case and
[15] for the Rademacher case.

3 Spatial random graphs

In the following sections we apply our main result to problems from stochastic
geometry. Therefore, we interpret Poisson processes as collections of random points in
X, which is why we write from now on for A ⊆ X under abuse of notation

η ∪A = η +
∑
x∈A

δx.

Analogously, we use η ∩ A and η\A. Throughout this paper, λd is the d-dimensional
Lebesgue measure and κd is the volume of the d-dimensional unit ball for d ≥ 1. The
d-dimensional closed ball with centre x and radius r is denoted by Bd(x, r).

Let W ⊂ Rd be a non-empty compact convex set with λd(W ) > 0. For s ≥ 1 let ηs
be a homogeneous Poisson process on W with intensity s, i.e. a Poisson process on Rd

with intensity measure λ = sλd|W , where λd|W denotes the restriction of the Lebesgue
measure to W . In the following we study the asymptotic behaviour as s→∞.

3.1 Random geometric graph

In this section we consider the vector of degree counts and the vector of component
counts of a random geometric graph. For both examples we know from [33, Section 3.2]
that, after centering and with a scaling of s−1/2, they fulfil a quantitative central limit
theorem in d2- and dconvex- distance if the corresponding asymptotic covariance matrix
is positive definite. In the following we show that the asymptotic covariance matrix is
indeed positive definite.

Let Grs denote the random geometric graph that is generated by ηs and has radius
rs = %s−1/d for a fixed % > 0, i.e. the vertex set of the graph is ηs and two distinct vertices
v1, v2 ∈ ηs are connected by an edge if ‖v1 − v2‖ ≤ rs. For j ∈ N0 let V rsj be the number
of vertices of degree j in Grs , i.e.

V rsj =
∑
y∈ηs

1{deg(y, ηs) = j},

where deg(y, ηs) stands for the degree of y in Grs . Moreover, let Crsj denote the number
of components of size j in Grs , i.e.

Crsj =
1

j

∑
y∈ηs

1{|C(y, ηs)| = j},

where |C(y, ηs)| is the number of vertices of the component C(y, ηs) of y in Grs . By the
component C(y, ηs) we mean the set of all vertices that can be reached from y via edges.

Theorem 3.1. a) For s→∞ the asymptotic covariance matrix of the vector of degree
counts 1√

s
(V rsj1 , . . . , V

rs
jn

) for distinct ji ∈ N0, i ∈ {1, . . . , n}, is positive definite, i.e.

for any α = (α1, . . . , αn) ∈ Rn\{0} there exists a constant c > 0 such that for s

EJP 29 (2024), paper 72.
Page 6/43

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1129
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Lower bounds for variances of Poisson functionals

sufficiently large

Var

[
n∑
i=1

αiV
rs
ji

]
≥ cs.

b) For s → ∞ the asymptotic covariance matrix of the vector of component counts
1√
s
(Crsj1 , . . . , C

rs
jn

) for distinct ji ∈ N0, i ∈ {1, . . . , n}, is positive definite, i.e. for any

α = (α1, . . . , αn) ∈ Rn\{0} there exists a constant c > 0 such that for s sufficiently
large

Var

[
n∑
i=1

αiC
rs
ji

]
≥ cs.

Before we prove the theorem, we introduce the following lemma, which is helpful for
verifying condition (1.4). For the right-hand side of (1.4) we will derive lower bounds on
a case by case basis, while the left-hand side of (1.4) is controlled by the lemma below.
It gives an estimate for the expected integral of the squared second-order difference
operator of a stabilising Poisson functional. We call a Poisson functional Fs stabilising if
it can be written as a sum of scores, i.e.

Fs = Fs(ηs) =
∑
x∈ηs

ξs(x, ηs), (3.1)

where the scores ξs are exponentially stabilising, fulfil a moment condition and decay
exponentially fast with distance to a set K. For details on stabilising Poisson functionals
and definitions see Section A.1.

Lemma 3.2. Let F (1)
s , . . . , F

(n)
s be Poisson functionals on ηs, which can be written in the

form of (3.1) and whose corresponding scores ξ(1)
s , . . . , ξ

(n)
s satisfy a (4 + p)-th moment

condition for p > 0 and are exponentially stabilising. Then, for any α = (α1, . . . , αn) ∈
Rn\{0} there exists a constant c > 0 such that for s ≥ 1,

E
[ ∫

W

∫
W

( n∑
i=1

αiD
2
x,yF

(i)
s

)2

dλ(x) dλ(y)
]
≤ cs.

Proof. We can apply [18, Lemma 5.5 and Lemma 5.9], i.e. for i ∈ {1, . . . , n} and constants
ε ∈ (4, 4 + p), β > 0 there exist constants Cε, Cβ > 0 such that

E|DxF
(i)
s (ηs ∪A)|ε ≤ Cε (3.2)

for A ⊂W with |A| ≤ 1, x ∈W and s ≥ 1, where |A| denotes the cardinality of A, and

s

∫
W

P(D2
x,yF

(i)
s 6= 0)β dy ≤ Cβ (3.3)

for s ≥ 1 and x ∈ W . Fix an ε ∈ (4, 4 + p). Using (3.2), Hölder’s inequality for ε
2 and

q = (1− 2
ε )−1 and Jensen’s inequality provides

E|D2
x,yF

(i)
s |2 = E

[
|D2

x,yF
(i)
s |21{D2

x,yF
(i)
s 6= 0}

]
≤ (E|D2

x,yF
(i)
s |ε)2/εP(D2

x,yF
(i)
s 6= 0)1/q

= (E|DxF
(i)
s (ηs ∪ {y})−DxF

(i)
s (ηs)|ε)2/εP(D2

x,yF
(i)
s 6= 0)1/q

≤
(

2ε−1
(
E|DxF

(i)
s (ηs ∪ {y})|ε + E|DxF

(i)
s (ηs)|ε

))2/ε

P(D2
x,yF

(i)
s 6= 0)1/q

≤ 4C2/ε
ε P(D2

x,yF
(i)
s 6= 0)1/q
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for i ∈ {1, . . . , n}. Therefore, using Jensen’s inequality and (3.3), it follows

E
[ ∫

W

∫
W

(
D2
x,y

n∑
i=1

αiF
(i)
s

)2

dλ(x) dλ(y)
]

≤
∫
W

∫
W

E
[
n

n∑
i=1

α2
i (D

2
x,yF

(i)
s )2

]
dλ(x) dλ(y)

= n

n∑
i=1

α2
i

∫
W

∫
W

E|D2
x,yF

(i)
s |2 dλ(x) dλ(y)

≤ n
n∑
i=1

α2
i s

∫
W

s

∫
W

4C2/ε
ε P(D2

x,yF
(i)
s 6= 0)1/q dx dy

≤ n
n∑
i=1

α2
i s

∫
W

4C2/ε
ε C1/q dx ≤ cs

for some constant c > 0, which completes the proof.

Proof of Theorem 3.1. For x ∈W and j ∈ N0 the difference operators are given by

DxV
rs
j = 1{deg(x, ηs ∪ {x}) = j}+

∑
y∈ηs

(1{deg(y, ηs ∪ {x}) = j} − 1{deg(y, ηs) = j})

and

DxC
rs
j =

1

j
1{|C(x, ηs ∪ {x})| = j}+

1

j

∑
y∈ηs

(1{|C(y, ηs ∪ {x})| = j} − 1{|C(y, ηs)| = j}).

Let m = argmaxi∈{1,...,n}:αi 6=0ji and x ∈W . For a) we consider configurations where

ηs

(
Bd
(
x,
rs
2

))
= jm + 1 and ηs

(
Bd
(
x,

3

2
rs

)∖
Bd
(
x,
rs
2

))
= 0.

Then, it follows for any y ∈ ηs with y ∈ Bd(x, rs2 ) that

deg(y, ϑ) =

{
jm, for ϑ = ηs,

jm + 1, for ϑ = ηs ∪ {x}.

The degrees of all the other points are not affected by adding x. Thus, in this situation
only the numbers of points with degree jm and jm + 1 change. Due to the choice of m,
we have∣∣∣∣∣Dx

(
n∑
i=1

αiV
rs
ji

)∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

αiDxV
rs
ji

∣∣∣∣∣ = |αmDxV
rs
jm
| = |αm(−(jm + 1))| ≥ |αm|.

For b) we consider configurations where

ηs

(
Bd
(
x,
rs
2

))
= jm and ηs

(
Bd
(
x,

3

2
rs

)∖
Bd
(
x,
rs
2

))
= 0.

It follows that Crsjm decreases by 1 by adding x and Crsjm+1 increases by 1. The other
component counts are not affected. Because of the choice of m, it holds∣∣∣∣∣Dx

(
n∑
i=1

αiC
rs
ji

)∣∣∣∣∣ =

∣∣∣∣∣
n∑
i=1

αiDxC
rs
ji

∣∣∣∣∣ = |αmDxC
rs
jm
| = |αm| .
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Lower bounds for variances of Poisson functionals

Let As = {x ∈ W : Bd(x, rs2 ) ⊂ W}. Then, for F rsji = V rsji or F rsji = Crsji for i ∈ {1, . . . , n}
and

k =

{
jm + 1, for F rsji = V rsji ,

jm, for F rsji = Crsji ,

it follows for s sufficiently large such that λd(As) ≥ λd(W )
2 that

E

∫
W

( n∑
i=1

αiDxF
rs
ji

)2

dλ(x) ≥ sα2
m

∫
W

P
(∣∣∣ n∑

i=1

αiDxF
rs
ji

∣∣∣ ≥|αm|) dx

≥ sα2
m

∫
As

P
(
ηs

(
Bd
(
x,
rs
2

))
= k, ηs

(
Bd
(
x,

3

2
rs

)∖
Bd
(
x,
rs
2

))
= 0
)

dx

≥ sα2
m

∫
As

(sκdr
d
s )k

2dkk!
e−sκdr

d
s/2

d

e−sκd(3d−1)rds/2
d

dx

≥ sα2
m

λd(W )

2

(κd%
d)k

2dkk!
e−κd3d%d/2d =: c · s,

where c > 0 depends on W,α, %, k and d.
Both functionals can be written as sums of scores as in (3.1). For j ∈ N0, y ∈ ηs and

s ≥ 1 the score for the degree count of degree j is given by

ξs(y, ηs) = 1{deg(y, ηs) = j}

and for j ∈ N, y ∈ ηs and s ≥ 1 the score for the number of components of size j is

ξs(y, ηs) =
1

j
1{|C(y, ηs)| = j}.

These scores clearly fulfil a (4 + p)-th moment condition and are by [33, proofs of
Theorem 3.5 (b) and Theorem 3.6 (b)] exponentially stabilising. Therefore, we can apply
Lemma 3.2, which completes together with Theorem 1.1 the proof.

3.2 k-nearest neighbour graph

Central limit theorems for the total edge length of a k-nearest neighbour graph of
a Poisson process are derived in e.g. [2, 5, 18, 20, 28, 29, 33]. The first quantitative
result can be found in [2]. This convergence rate was further improved in [29] before
in [20] the presumably optimal rate was shown. In [33] this result was transferred to
the multivariate case of a vector of edge length functionals but it was left open to show
in general that its asymptotic covariance matrix is positive definite. For edge length
functionals of nonnegative powers this is proven in the following section.

We consider the k-nearest neighbour graph for k ∈ N that is generated by the Poisson
process ηs, i.e. the undirected graph with vertex set ηs, where each vertex is connected
with its k-nearest neighbours. The set of all k-nearest neighbours of v1 ∈ ηs contains
almost surely all v2 ∈ ηs\{v1} for which ‖v1 − v2‖ ≥‖v1 − x‖ for at most k − 1 vertices
x ∈ ηs\{v1} or ηs(Bd(v1, ‖v1 − v2‖)\{v1}) ≤ k − 1. For q ∈ [0,∞) let Lq denote the edge
length functional of power q of the k-nearest neighbour graph generated by ηs which is
defined by

Lq =
1

2

∑
(y,z)∈η2s, 6=

1{z ∈ N(y, ηs) or y ∈ N(z, ηs)}‖y − z‖q,

where η2
s, 6= denotes the set of all pairs of disjoint points of ηs and N(x, ηs) is the set of all

k-nearest neighbours of x ∈ ηs in the k-nearest neighbour graph generated by ηs. Let
Fq = sq/dLq be its scaled version.
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Theorem 3.3. For s → ∞ the asymptotic covariance matrix of 1√
s
(Fq1 , . . . , Fqn) for

distinct qi ≥ 0, i ∈ {1, . . . , n}, is positive definite, i.e. for any α = (α1, . . . , αn) ∈ Rn\{0}
there exists a constant c > 0 such that for s sufficiently large

Var

[
n∑
i=1

αiFqi

]
≥ cs.

In order to prove this theorem, we need the following lemma, which considers a
slightly more general situation since it will be also employed in a further proof.

Lemma 3.4. Let k, j ∈ N be fixed. Then there exist constants c1, c2 > 0 depending on
k, j, d and W such that for all ε > 0 and x ∈W with Bd(x, 2(j + 1)ε) ⊂W ,

P(∃y ∈ ηs\Bd(x, jε) : ηs(Aj,ε(x, y)) ≤ k − 1) ≤ c1e−sc2ε
d

,

where Aj,ε(x, y) = (Bd(y, ‖x− y‖ − (j − 1)ε) ∩W )\(Bd(x, jε) ∪ {y}).

Proof. Let x ∈W with Bd(x, 2(j+1)ε) ⊂W . Then, for y ∈W with jε < ‖x−y‖ ≤ (j+1)ε

we have that Bd(y, ‖x− y‖) ⊂W . Therefore, since y /∈ Bd(x, jε),

λd(Aj,ε(x, y)) ≥ 1

2
κd(‖x− y‖ − (j − 1)ε)d.

For y ∈ W with ‖x − y‖ > (j + 1)ε it holds that ‖x − y‖ − jε ≥ 1
2 (‖x − y‖ − (j − 1)ε).

Moreover, (Bd(y, ‖x− y‖− jε)∩W )\{y} ⊂ Aj,ε(x, y). Hence, with [20, Lemma 7.4] there
is a constant cW > 0 only depending on W such that

λd(Aj,ε(x, y)) ≥ λd(Bd(y, ‖x− y‖ − jε) ∩W ) ≥ cW (‖x− y‖ − jε)d

≥ cW
(1

2
(‖x− y‖ − (j − 1)ε)

)d
.

Altogether, for y ∈W\Bd(x, jε) it follows

λd(Aj,ε(x, y)) ≥ c(‖x− y‖ − (j − 1)ε)d

for some constant c > 0. For t ∈ N0 there exist constants c̃1, c̃2 > 0 such that zte−z ≤
c̃1e
−c̃2z for all z > 0. Hence, using the Mecke formula and spherical coordinates, we get

P(∃y ∈ ηs\Bd(x, jε) : ηs(Aj,ε(x, y)) ≤ k − 1)

≤ E

[ ∑
y∈ηs\Bd(x,jε)

1{ηs(Aj,ε(x, y)) ≤ k − 1}

]

≤ s
∫
Rd\Bd(x,jε)

P(ηs(Aj,ε(x, y)) ≤ k − 1) dy

= s

∫
Rd\Bd(x,jε)

k−1∑
i=0

λ(Aj,ε(x, y))i

i!
e−λ(Aj,ε(x,y)) dy

≤ s
∫
Rd\Bd(x,jε)

ĉ1e
−ĉ2λ(Aj,ε(x,y)) dy

≤
∫
Rd\Bd(x,jε)

ĉ1se
−ĉ2sc(‖x−y‖−(j−1)ε)d dy

= dκd

∫ ∞
ε

ĉ1s(r + (j − 1)ε)d−1e−ĉ2scr
d

dr ≤ c1e−sc2ε
d

for suitable constants ĉ1, ĉ2, c1, c2 > 0.
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Proof of Theorem 3.3. Let ei denote the d-dimensional standard unit vector in the i-th
direction. For ε > 0, x ∈ W with Bd(x, 4ε) ⊂ W and x̂ = x+ 3

4εe1, we consider configu-
rations where ηs(Bd(x̂, ε/4)) = k + 1, ηs(Bd(x, ε)\Bd(x̂, ε/4)) = 0 and ηs(A1,ε(x, y)) ≥ k

for all y ∈ ηs\Bd(x, ε), where A1,ε(x, y) is defined as in Lemma 3.4. Then, for q ≥ 0 the
difference operator of Fq is given by

DxFq = sq/d
∑

y∈N(x,ηs∪{x})

‖x− y‖q.

Inserting j = 1 in Lemma 3.4 provides

P(∃y ∈ ηs\Bd(x, ε) : ηs(A1,ε(x, y)) ≤ k − 1) ≤ c1e−sc2ε
d

for some constants c1, c2 > 0.

Now, let m = argmaxi∈{1,...,n}:αi 6=0qi and assume without loss of generality αm > 0. If

αi ≥ 0 for all i ∈ {1, . . . , n}, we choose ε = c̄s−1/d with c̄ ≥ 1 large enough such that we
have for the configurations mentioned above

Dx

n∑
i=1

αiFqi ≥ αmsqm/d
∑

y∈N(x,ηs∪{x})

‖x− y‖qm ≥ αmk
(
s1/dε

2

)qm
≥ 1

and c1e−sc2ε
d

< 1
2 . Otherwise, let ` = argmaxi∈{1,...,n}:αi<0qi. Then, qm > q` and it follows

for the configurations mentioned above for s1/dε ≥ 1,

Dx

n∑
i=1

αiFqi =

n∑
i=1

αis
qi/d

∑
y∈N(x,ηs∪{x})

‖x− y‖qi

≥ αmsqm/d
∑

y∈N(x,ηs∪{x})

‖x− y‖qm −
∑

i∈{1,...,n}:
αi<0

(−αi)sqi/d
∑

y∈N(x,ηs∪{x})

‖x− y‖qi

≥ αm
∑

y∈N(x,ηs∪{x})

(
s1/d‖x− y‖

)qm
−

∑
i∈{1,...,n}:
αi<0

(−αi)
∑

y∈N(x,ηs∪{x})

(s1/dε)qi

≥ αmk
(
s1/dε

2

)qm
−

∑
i∈{1,...,n}:
αi<0

(−αi)k(s1/dε)q`

≥ k(s1/dε)q`

(
αm

1

2qm

(
s1/dε

)qm−q`
−

∑
i∈{1,...,n}:
αi<0

(−αi)

)
.

In this case, choose ε = s−1/dc̄ > 0 with c̄ ≥ 1 large enough such that c1e−sc2ε
d

< 1
2 and

Dx

n∑
i=1

αiFqi ≥ αm
1

2qm

(
s1/dε

)qm−q`
−

∑
i∈{1,...,n}:
αi<0

(−αi) ≥ 1.

Let As = {x ∈ W : Bd(x, 4ε) ⊂ W}. Due to the independence of ηs(Bd(x̂, ε/4)),
ηs(B

d(x, ε)\Bd(x̂, ε/4)) and ηs(A1,ε(x, y)) for y ∈ ηs\Bd(x, ε) and x ∈ As and by Lemma 3.4
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we have for s large enough such that λd(As) ≥ λd(W )
2 ,

E
[ ∫

W

(
Dx

n∑
i=1

αiFqi

)2

dλ(x)
]
≥ s

∫
W

P
(
Dx

n∑
i=1

αiFqi ≥ 1
)

dx

≥ s
∫
W

P
(
ηs(B

d(x̂, ε/4)) = k + 1, ηs(B
d(x, ε)\Bd(x̂, ε/4)) = 0,

ηs(A1,ε(x, y)) ≥ k ∀y ∈ ηs\Bd(x, ε)
)

dx

≥ s
∫
As

(sκdε
d)k+1

4d(k+1)(k + 1)!
e−sκdε

d/4de−sκdε
d(1−1/4d)(1− c1e−sc2ε

d

) dx

≥ sλd(W )

2

(κdc̄
d)k+1

4d(k+1)(k + 1)!
e−κdc̄

d

· 1

2
=: cq,α,k,W,ds.

Our functionals can be written as sums of scores as in (3.1). For y ∈ ηs, q ≥ 0 and s ≥ 1

the corresponding score of Fq is given by

ξs(y, ηs) =
∑

z∈N(y,ηs)

1{y ∈ N(z, ηs)}
‖y − z‖q

2
+ 1{y /∈ N(z, ηs)}‖y − z‖q.

The scores (ξs)s≥1 fulfil a (4 + p)-th moment condition (see the proof of [18, Theorem
3.1]) and are by [33, proof of Theorem 3.1] exponentially stabilising. Therefore, we can
apply Lemma 3.2, which completes together with Theorem 1.1 the proof.

In the following we consider a second statistic of k-nearest neighbour graphs, namely
the number of vertices with a given degree. Similarly to the previous example, it was
shown in [33, Theorem 3.3] that a vector of these degree counts fulfils a quantitative
multivariate central limit theorem in d2- and dconvex-distance if its asymptotic covariance
matrix is positive definite.

For j ∈ N0 let V kj denote the number of vertices of degree j in the k-nearest neighbour
graph generated by ηs, i.e.

V kj =
∑
y∈ηs

1{deg(y, ηs) = j}.

We study the vector (V kj1 , . . . , V
k
jn

) for distinct ji ≥ k, i ∈ {1, . . . , n}. By [34, Lemma
8.4] the vertices of a k-nearest neighbour graph have bounded degree. Therefore, we
consider ji ∈ {k, k + 1, . . . , kmax} for i ∈ {1, . . . , n}, where kmax denotes the maximal
possible degree that occurs with a positive probability.

Theorem 3.5. For d ≥ 2, n ≤ kmax − k + 1 and s→∞ the asymptotic covariance matrix
of 1√

s
(V kj1 , . . . , V

k
jn

) for distinct ji ∈ {k, k + 1, . . . , kmax}, i ∈ {1, . . . , n}, is positive definite,

i.e. for any α = (α1, . . . , αn) ∈ Rn\{0} there exists a constant c > 0 such that for s
sufficiently large

Var

[
n∑
i=1

αiV
k
ji

]
≥ cs.

Proof. First note that the degrees j1, . . . , jn are chosen in such a way that they can
occur in a k-nearest neighbour graph. A vertex can have k neighbours if it is only
connected to its k nearest neighbours and can have up to kmax neighbours by the
definition of kmax. All degrees in between can occur as well as can be seen from the
following construction. Assume we have a configuration where x has kmax neighbours.
Then we delete 1 ≤ t ≤ kmax − k vertices which are connected to x but are not one
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of the k nearest neighbours of x and all other vertices that are not connected to x.
Consequently, we obtain a configuration where x has degree kmax − t. This means
that P(deg(x, βji ∪ {x}) = ji) > 0 for i ∈ {1, . . . , n}, where βji denotes a binomial point
process of ji independent random points uniformly distributed in Bd(0, 1). Obviously,
these probabilities do not change if we take a binomial point process on any other ball.

The difference operator of V kj is given by

DxV
k
j = 1{deg(x, ηs ∪ {x}) = j}+

∑
y∈ηs

(1{deg(y, ηs ∪ {x}) = j} − 1{deg(y, ηs) = j})

for x ∈ W . Denote I = {i ∈ {1, . . . , n} : αi 6= 0} and m = argmini∈Iji. We can assume
αm > 0 without loss of generality. In the following we distinct several cases that are
illustrated in Figure 1.

Case 1: jm > k

Let ε > 0 and x ∈ W with Bd(x, 8ε) ⊂ W . We consider configurations satisfying
ηs(B

d(x, ε)) = jm, ηs(Bd(x, 3ε)\Bd(x, ε)) = 0 and ηs(A3,ε(x, y)) ≥ k for all y ∈ ηs\Bd(x, 3ε)
with A3,ε(x, y) defined as in Lemma 3.4. Then, if x is connected to all z ∈ ηs ∩Bd(x, ε),
we have

Dx

n∑
i=1

αiV
k
ji ≥ αm.

Applying Lemma 3.4 for j = 3 provides

P(∃y ∈ ηs\Bd(x, 3ε) : ηs(A3,ε(x, y)) ≤ k − 1) ≤ c1e−sc2ε
d

.

Now, choose ε = c̄s−1/d > 0 for c̄ > 1 such that c1e−sc2ε
d ≤ 1

2 . Let As = {x ∈ W :

Bd(x, 8ε) ⊂W} and s large enough such that λd(As) >
λd(W )

2 . Then, using independence
properties we have for pm = P (deg(x, βjm ∪ {x}) = jm) > 0,

E
[ ∫

W

(
Dx

n∑
i=1

αiV
k
ji

)2

dλ(x)
]
≥ α2

m

∫
W

P
(
Dx

n∑
i=1

αiV
k
ji ≥ αm

)
dλ(x)

≥ α2
m

∫
As

P
(
ηs(B

d(x, ε)) = jm, ηs(B
d(x, 3ε)\Bd(x, ε)) = 0,deg(x, ηs|Bd(x,ε) ∪ {x}) = jm

)
· P
(
ηs(A3,ε(x, y)) ≥ k ∀y ∈ ηs\Bd(x, 3ε)

)
dλ(x)

≥ sα
2
m

2

∫
As

P
(
ηs(B

d(x, ε)) = jm, ηs(B
d(x, 3ε)\Bd(x, ε)) = 0

)
· P
(
deg(x, ηs|Bd(x,ε) ∪ {x}) = jm|ηs(Bd(x, ε)) = jm

)
dx

= s
α2
m

2

∫
As

(sκdε
d)jm

jm!
e−sκdε

d

e−sκd(3d−1)εdP (deg(x, βjm ∪ {x}) = jm) dx

≥ sα
2
m

2

(sκdε
d)jm

jm!
e−sκd3dεdpm

λd(W )

2
=: cα,k,W,ds.

Case 2: jm = k.
If it exists, we denote by ` ∈ {1, . . . , n} the index with j` = k + 1. Then,

α̂ =

{
α`, if ` exists,

0, if ` does not exist.

Let ε > 0 and let x ∈ W be such that Bd(x, 8ε) ⊂ W . We consider four different
configurations to deal with all possible vectors α = (α1, . . . , αn) ∈ Rn\{0} (see Figure 1).
Let ei denote the d-dimensional standard unit vector in the i-th direction.
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Case 1 Case 2.1 Case 2.2 Case 2.3 Case 2.4

x

ε

jm

x

ε

k + 1
x

ε

k − 3

x

ε

x

ε

Figure 1: Configurations in Bd(x, ε).

1. k ∈ N and αm(1− k) + α̂k 6= 0:

In this case we consider the event S1 that for x̂ = x+ 3ε
4 e1 we have ηs(Bd(x̂, ε/4)) =

k + 1, ηs(Bd(x, 3ε)\Bd(x̂, ε/4)) = 0 and ηs(A3,ε(x, y)) ≥ k for all y ∈ ηs\Bd(x, 3ε).
Then it follows

Dx

n∑
i=1

αiV
k
ji = αmDxV

k
k + α̂DxV

k
k+1 = αm(1− k) + α̂k 6= 0.

2. k ≥ 3 and αm(1− k) + α̂k = 0:

The condition αm(1− k) + α̂k = 0 implies

αm(3− k) + α̂(k − 2) = 2(αm − α̂) = 2
αm
k
6= 0.

We consider the event S2 where ηs(Bd(x̂i, ε/16)) = 1 for i ∈ {1, . . . , 4} with x̂j =

x + (−1)j 3ε
4 e1 for j ∈ {1, 2} and x̂j = x + (−1)j 3ε

4 e2 for j ∈ {3, 4}, ηs(Bd(x, ε/4)) =

k − 3, ηs(Bd(x, 3ε)\(Bd(x, ε/4) ∪
⋃4
i=1B

d(x̂i, ε/16))) = 0 and ηs(A3,ε(x, y)) ≥ k for
all y ∈ ηs\Bd(x, 3ε). Then we have

Dx

n∑
i=1

αiV
k
ji = αmDxV

k
k + α`DxV

k
k+1 = αm(3− k) + α̂(k − 2) 6= 0.

3. k = 2 and αm(1− k) + α̂k = 0:

In this case we use the event S3 where ηs(Bd(x̂i, ε/16)) = 1 for i ∈ {1, 2, 3} with
x̂j = x+ 7ε

16e1 + (−1)j 7ε
16e2 for j ∈ {1, 2} and x̂3 = x+ 7ε

8 e1. Additionally, we assume

ηs(B
d(x, 3ε)\(

⋃3
i=1B

d(x̂i, ε/16))) = 0 and ηs(A3,ε(x, y)) ≥ k for all y ∈ ηs\Bd(x, 3ε).
Hence,

Dx

n∑
i=1

αiV
k
ji = αmDxV

k
k = αm 6= 0.

4. k = 1 and αm(1− k) + α̂k = 0:

We look at the event S4 where ηs(Bd(x̂1, ε/4)) = 1 for x̂1 = x− ε
4e1, ηs(Bd(x̂2, ε/4)) =

2 for x̂2 = x + 3ε
4 e1, ηs(Bd(x, 3ε)\(

⋃2
i=1B

d(x̂i, ε/4))) = 0 and ηs(A3,ε(x, y)) ≥ k for
all y ∈ ηs\Bd(x, 3ε). Since α̂ = 0, it follows

Dx

n∑
i=1

αiV
k
ji = 2αm 6= 0.
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Let ε = c̄s−1/d for c̄ > 1 such that c1esc2ε
d ≤ 1

2 . Then, analogously to Case 1, we get
P(Su) ≥ cα,k,d for a constant cα,k,d > 0 and u ∈ {1, . . . , 4}. Moreover, let

cα =


αm(1− k) + α̂k, for k ∈ N and αm(1− k) + α̂k 6= 0,

αm(3− k) + α̂(k − 2), for k ≥ 3 and αm(1− k) + α̂k = 0,

αm, for k = 2 and αm(1− k) + α̂k = 0,

2αm, for k = 1 and αm(1− k) + α̂k = 0.

Then, for As = {x ∈W : Bd(x, 8ε) ⊂W} and s large enough such that λd(As) >
λd(W )

2 it
follows for u ∈ {1, . . . , 4},

E

∫
W

(
Dx

n∑
i=1

αiV
k
ji

)2

dλ(x)

 ≥ c2α ∫
As

P(Su) dλ(x) ≥ cα,k,W,ds

for a suitable constant cα,k,W,d > 0.
Our functionals can be written as sums of scores as in (3.1). For y ∈ ηs, j ∈

{k, . . . , kmax} and s ≥ 1 the corresponding score is given by

ξs(y, ηs) = 1{deg(y, ηs) = j}.

The scores (ξs)s≥1 clearly fulfil a (4 + p)-th moment condition and are by [33, proof
of Theorem 3.3] exponentially stabilising. Therefore, we can apply Lemma 3.2, which
completes together with Theorem 1.1 the proof.

Remark 3.6. Throughout this section we assume that the underlying Poisson processes
have the intensity measures sλd|W for s ≥ 1. However, we can generalise our results
from these homogeneous Poisson processes to a large class of inhomogeneous Poisson
processes. Let µ be a measure with a density g : W → [0,∞) such that c ≤ g(x) ≤ c

for all x ∈ W and constants c, c > 0. All results of this section continue to hold for
Poisson processes with intensity measures sµ for s ≥ 1. We only have to slightly modify
the proofs by bounding the intensity measure by scλd|W from below or by scλd|W from
above depending on whether a lower or an upper bound is required in our estimates.
Consequently, some of the constants might change.

While we consider an underlying Poisson process on W , an alternative approach is
to study a Poisson process on Rd. In the case that the intensity measure of this Poisson
process has a density g : Rd → [0,∞) such that c ≤ g(x) ≤ c for all x ∈ Rd and constants
c, c > 0, all arguments and, thus, also all results in this section continue to hold.

4 Random polytopes

The study of the convex hull of random points started with the works [31] and [32].
In [30] central limit theorems for the volume and number of k-faces as well as variance
bounds were shown. Variance asymptotics and central limit theorems for all intrinsic
volumes of the convex hull in a ball were derived in [10]. In [18] the rates of convergence
for the central limit theorems were further improved.

The Lp surface area measure for a convex body was introduced in [23], where the
Lp Minkowski problem was described. The Minkowski problem asks for conditions for
a Borel measure on the sphere under which this measure is the Lp surface area of a
convex body. The discrete Lp Minkowski problem is obtained in the special case, where
this convex body is a polytope. This situation can, for example, be found in [14] and
the references therein. In [13] the expected Lp surface area of random polytopes was
considered as a special case of T -functionals of random polytopes.
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In this section the two-dimensional vector of Lp surface areas of a random polytope for
different p1, p2 ∈ [0, 1] is considered and lower variance bounds for linear combinations
as well as a result on the multivariate normal approximation are derived. For s ≥ 1 let ηs
be a homogeneous Poisson process on Bd(0, 1) with intensity s, i.e. a Poisson process
on Rd with intensity measure λ = sλd|Bd(0,1), where λd|Bd(0,1) denotes the restriction of
the Lebesgue measure to Bd(0, 1). We consider the random polytope Q generated by
ηs ∪{0}, i.e. Q is the convex hull Conv(ηs ∪{0}). For p ∈ [0, 1] its Lp surface area is given
by

Ap = Ap(Q) =
∑

F facet of Q

dist(0, F )1−pλd−1(F ), (4.1)

where dist(0, F ) stands for the distance of F to the origin 0 (see for instance [13, Section
1]).

Theorem 4.1. The asymptotic covariance matrix of the vector s(d+3)/(2(d+1))(Ap1 , Ap2)

for p1, p2 ∈ [0, 1] with p1 6= p2 is positive definite, i.e. for any α = (α1, α2) ∈ R2\{0} there
exists a constant c > 0 such that for s sufficiently large

Var[α1Ap1 + α2Ap2 ] ≥ cs−(d+3)/(d+1).

Note that we add the origin as an extra point to the Poisson process mainly for
technical reasons to ensure a useful definition of the Lp surface area. However, since
we are in this section only interested in asymptotic statements for s → ∞, this does
not make a difference. Let Q̃ denote the random polytope that is generated by ηs, i.e.
Q̃ = Conv(ηs), and let Ap(Q̃) be defined by the right-hand side of (4.1), which is also
well-defined if the origin does not belong to the polytope. Since one can choose m

disjoint sets U1, . . . , Um ⊂ Bd(0, 1) for some m ∈ N with λd(Ui) > 0, i ∈ {1, . . . ,m}, such
that 0 ∈ Conv(ξ) for all ξ ∈ N with ξ ∩ Ui 6= ∅ for all i ∈ {1, . . . ,m}, we have

P(Ap(Q) 6= Ap(Q̃)) ≤ P(0 /∈ Conv(ηs)) ≤ 1− P(ηs(Ui) ≥ 1 for i = 1, . . . ,m)

= 1−
m∏
i=1

(1− e−sλd(Ui)) ≤ c1,qe−c2,qs (4.2)

for s ≥ 1 with suitable constants c1,q, c2,q > 0. Therefore, the triangle inequality and the

estimate |Ap(Q)−Ap(Q̃)| ≤ 2dκd provide

|Var[Ap(Q)]1/2 −Var[Ap(Q̃)]1/2|2 ≤ Var[Ap(Q)−Ap(Q̃)] ≤ E[(Ap(Q)−Ap(Q̃))2]

≤ (2dκd)
2c1,qe

−c2,qs. (4.3)

and similarly
|E[Ap(Q)]− E[Ap(Q̃)]| ≤ 2dκdc1,qe

−c2,qs. (4.4)

Thus, we consider Ap(Q̃) instead of Ap(Q) throughout this section and, especially, in the
proof of Theorem 4.1.

We work in the general framework described in Appendix A.1 with the underlying
space X = Bd(0, 1) and the metric

dmax(x, y) = max {‖x− y‖,
√
|‖x‖ − ‖y‖|}

for x, y ∈ Bd(0, 1). To prove condition (1.4), we start with writing the difference of the
surface area of the ball Bd(0, 1) and the Lp surface area of the random polytope Q̃ as
a sum of scores. The following arguments are mostly analogous to [18, Section 3.4],
where similar representations for intrinsic volumes were derived. Especially, because
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the surface area is twice the (d− 1)-st intrinsic volume, it was shown in [18, Lemma 3.8]
that

s(λd−1(∂Bd(0, 1))− λd−1(∂Q̃)) = 2
∑
x∈ηs

ξd−1,s(x, ηs)

with the scores ξd−1,s as in [18, last display on p. 960] for s ≥ 1 and where ∂A denotes
the boundary of a set A ⊆ Bd(0, 1). We consider analogous scores ξs for the Lp surface
area, i.e.

ξs(x, ηs) = 2ξd−1,s(x, ηs) +
s

d

∑
F∈F :x∈F

(1− dist(0, F )1−p)λd−1(F )

for x ∈ ηs, where F denotes the set of all facets of Q̃. Therefore, we have∑
x∈ηs

ξs(x, ηs) =
∑
x∈ηs

(
2ξd−1,s(x, ηs) +

s

d

∑
F∈F :x∈F

(1− dist(0, F )1−p)λd−1(F )
)

= 2
∑
x∈ηs

ξd−1,s(x, ηs) +
∑
x∈ηs

s

d

∑
F∈F :x∈F

(1− dist(0, F )1−p)λd−1(F )

= sλd−1(∂Bd(0, 1))− sλd−1(∂Q̃) + sλd−1(∂Q̃)− sAp(Q̃)

= s(λd−1(∂Bd(0, 1))−Ap(Q̃)).

Fix ρ0 ∈ (0, 1
4 ) and let B−ρ0 = Bd(0, 1)\Bd(0, 1− ρ0). In the following Lemma 4.2 and the

proof of Theorem 4.1 we consider slightly modified scores, which are defined by

ξ̃s(x, ηs) = 1{x ∈ B−ρ0}ξs(x, (ηs ∩B−ρ0) ∪ {0}) (4.5)

for x ∈ ηs, s ≥ 1, and

Ãp =
∑
x∈ηs

ξ̃s(x, ηs).

We establish that the scores ξ̃s have some crucial properties. For exact definitions we
refer to Appendix A.1.

Lemma 4.2. The scores ξ̃s are exponentially stabilising with αstab = d+ 1, decay expo-
nentially fast with the distance to the boundary ∂Bd(0, 1) with αK = d + 1 and fulfil a
q-th moment condition for q ≥ 1.

Proof. Analogously to [18, Lemma 3.10, Lemma 3.11 and Lemma 3.12] one can show that
the scores are exponentially stabilising and decay exponentially fast with the distance to
the boundary ∂Bd(0, 1).

Let R(x, ηs ∪ {x}) denote the corresponding radius of stabilisation with respect to the
dmax- distance that is derived in [18, p. 963] and let ξ̃d−1,s denote the slightly adjusted
version of the score ξd−1,s, which is defined as ξs in (4.5).

In order to show a q-th moment condition for p ∈ [0, 1] we use that⋃
F∈F :x∈F

F ⊆ Bdmax (x,R(x, ηs ∪ {x})) ⊆ Bd (x,R(x, ηs ∪ {x})) ,

where Bdmax denotes the ball with respect to the dmax-distance. Recall that F stands for
the set of all facets of the random polytope. Hence, due to monotonicity of the surface
area of convex sets we have∑

F∈F :x∈F
λd−1(F ) ≤ dκdR(x, ηs ∪ {x})d−1. (4.6)
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Let H̃ be the hyperplane through ∂Bd
(
x,R(x, ηs ∪ {x})

)
∩ ∂Bd(0, 1). By the definition

of the radius of stabilisation in [18, p. 963], we know that for each vertex x of the
random polytope with R(x, ηs ∪ {x}) ≤ 1, [0, x] intersects H̃, where [0, x] denotes the line
connecting 0 and x. Moreover, we get with [18, p. 963] that for a vertex x the distance
of the origin to a facet that contains x is at least as large as the distance from the origin
to the hyperplane H̃. Hence, for a facet F that contains x we have

dist(0, F ) ≥ dist(0, H̃) ≥
√

1−R(x, ηs ∪ {x})2 ≥ 1−R(x, ηs ∪ {x})2 (4.7)

since the radius of the (d− 1)-dimensional ball H̃ ∩Bd(0, 1) can be bounded from above
by R(x, ηs ∪ {x}). The bound in (4.7) is obviously also true for R(x, ηs ∪ {x}) > 1.

Since dist(0, F ) ≤ 1, it holds that dist(0, F )1−p ≥ dist(0, F ) for p ∈ [0, 1] and thus
with (4.6) and (4.7) we have for x ∈ B−ρ0 ,

|ξ̃s(x, ηs)| =
∣∣∣2ξ̃d−1,s(x, ηs) +

s

d

∑
F∈F :x∈F

(1− dist(0, F )1−p)λd−1(F )
∣∣∣

≤ 2|ξ̃d−1,s(x, ηs)|+
s

d

∑
F∈F :x∈F

|(1− dist(0, F ))|λd−1(F )

≤ 2|ξ̃d−1,s(x, ηs)|+
s

d
R(x, ηs ∪ {x})2

∑
F∈F :x∈F

λd−1(F )

≤ 2|ξ̃d−1,s(x, ηs)|+ κdsR(x, ηs ∪ {x})d+1.

Combining this with the fact from [18, Lemma 3.11] that there are constants Cstab, cstab >
0 such that

P(R(x, ηs ∪ {x}) ≥ r) ≤ Cstab exp[−cstabsrd+1]

for x ∈ Bd(0, 1), r ≥ 0, s ≥ 1 and [18, Lemma 3.13] that says that the scores ξ̃d−1,s fulfil
a q-th moment condition provides the q-th moment condition for ξ̃s.

Combining Lemma 4.2 with the arguments from the proof of [18, Lemma 3.9], we
derive that there exist constants C̄p, c̄p > 0 such that

max
{
P(s(λd−1(∂Bd(0, 1))−Ap(Q̃)) 6= Ãp), |E[s(λd−1(∂Bd(0, 1))−Ap(Q̃))]− E[Ãp]|,

|Var[s(λd−1(∂Bd(0, 1))−Ap(Q̃))]−Var[Ãp]|
}
≤ C̄p exp[−c̄ps]

for s ≥ 1. Together with (4.2), (4.3) and (4.4) we obtain

max
{
P(s(λd−1(∂Bd(0, 1))−Ap) 6= Ãp), |E[s(λd−1(∂Bd(0, 1))−Ap)]− E[Ãp]|,

|Var[s(λd−1(∂Bd(0, 1))−Ap)]−Var[Ãp]|
}
≤ Ĉp exp[−ĉps] (4.8)

for s ≥ 1 with constants Ĉp, ĉp > 0.
Let S(y(1), . . . , y(m)) denote the simplex with vertices y(1), . . . , y(m) for m ∈ {1, . . . , d+

1}. For the proof of Theorem 4.1 we need to know how the Lp surface area of a polytope
changes if we add a simplex on one of its facets. Let this d-dimensional simplex be given
by S(z(1), . . . , z(d+1)) for points z(1), . . . , z(d+1) ∈ Bd(0, 1), where z(d+1) denotes the point
that is added and S(z(1), . . . , z(d)) is the original facet of the polytope. The facets of the
simplex are given by Fi = S(z(1), . . . , z(i−1), z(i+1), . . . , z(d+1)) and the distance of a facet
to the origin is denoted by ρi = dist(Fi, 0) for i ∈ {1, . . . , d+ 1}. We are interested in

∆p =

d∑
i=1

ρ1−p
i λd−1(Fi)− ρ1−p

d+1λd−1(Fd+1), (4.9)
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which is the change of the Lp surface area after adding the simplex.
In the following we also use the notation h̄ = dist(z(d+1), Fd+1) for the height of the

added simplex, Ti = S(z(1), . . . , z(i−1), z(i+1), . . . , z(d)) for the (d − 2)-dimensional faces
of the base of the simplex and hi = dist(z̄d+1, Ti) for i ∈ {1, . . . , d}, where z̄d+1 is the
projection of z(d+1) to Fd+1. The behaviour of ∆p is described in the following geometric
lemma.

Lemma 4.3. Let z(1), . . . , z(d+1) ∈ Bd(0, 1). For a simplex S(z(1), . . . , z(d+1)), whose
vertices are chosen in such a way that arg mini=1,...,d+1 ρi = d+ 1 and z̄d+1 belongs to the
interior of Fd+1, we have

∣∣∣∆p −
1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)∣∣∣ ≤ ρ−pd+1(1− ρd+1)

d+1∑
i=1

λd−1(Fi)

for p ∈ [0, 1] and

∣∣∣∆p1 −∆p2 −
d∑
i=1

(p2 − p1)(ρi − ρd+1)λd−1(Fi)
∣∣∣

≤ 2ρ−p2−1
d+1 (1− ρd+1)2

d∑
i=1

λd−1(Fi) + ρ−p2d+1(1− ρd+1)

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)
for p1, p2 ∈ [0, 1] with p1 < p2.

Proof. For i ∈ {1, . . . , d+ 1} let F (i)
d+1 = S(z(1), . . . , z(i−1), z(i+1), . . . , z(d), z̄d+1). Then, we

have

λd−1(Fd+1) =

d∑
i=1

λd−1(F
(i)
d+1) =

1

d− 1

d∑
i=1

λd−2(Ti)hi

and

d∑
i=1

λd−1(Fi) =

d∑
i=1

1

d− 1
λd−2(Ti)dist(z(d+1), Ti) =

1

d− 1

d∑
i=1

λd−2(Ti)
√
h2
i + h̄2.

Hence,

d∑
i=1

λd−1(Fi)− λd−1(Fd+1) =
1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)
. (4.10)

Note that, due to the mean value theorem and the assumption arg mini=1,...,d+1 ρi = d+ 1,
one has for i ∈ {1, . . . , d+ 1},

0 ≤ 1− ρ1−p
i ≤ (1− p)ρ−pi (1− ρi) ≤ (1− p)ρ−pd+1(1− ρd+1).

Thus,

0 ≤
d+1∑
i=1

λd−1(Fi)(1− ρ1−p
i ) ≤

d+1∑
i=1

λd−1(Fi)(1− p)ρ−pd+1(1− ρd+1).

Therefore, it follows with (4.9) and (4.10) that

∣∣∣∆p −
1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)∣∣∣
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=
∣∣∣ d∑
i=1

(ρ1−p
i − 1)λd−1(Fi)− (ρ1−p

d+1 − 1)λd−1(Fd+1)
∣∣∣

≤
d+1∑
i=1

λd−1(Fi)(1− ρ1−p
i ) ≤

d+1∑
i=1

λd−1(Fi)(1− p)ρ−pd+1(1− ρd+1)

≤ ρ−pd+1(1− ρd+1)

d+1∑
i=1

λd−1(Fi).

For the second inequality we have for p1 < p2,

∆p1 −∆p2 =

d∑
i=1

(ρ1−p1
i − ρ1−p2

i )λd−1(Fi)− (ρ1−p1
d+1 − ρ

1−p2
d+1 )λd−1(Fd+1)

=

d∑
i=1

(ρ1−p1
i − ρ1−p2

i − (ρ1−p1
d+1 − ρ

1−p2
d+1 ))λd−1(Fi)

+ (ρ1−p1
d+1 − ρ

1−p2
d+1 )

( d∑
i=1

λd−1(Fi)− λd−1(Fd+1)
)
.

The mean value theorem leads to

|ρ1−p1
d+1 − ρ

1−p2
d+1 | = ρ1−p1

d+1 |1− ρ
p1−p2
d+1 | ≤ ρ

1−p1
d+1 (p2 − p1)ρp1−p2−1

d+1 (1− ρd+1)

= (p2 − p1)ρ−p2d+1(1− ρd+1).

Together with (4.10) it follows that

∣∣∣∆p1 −∆p2 −
d∑
i=1

(ρ1−p1
i − ρ1−p2

i − (ρ1−p1
d+1 − ρ

1−p2
d+1 ))λd−1(Fi)

∣∣∣
≤ (p2 − p1)ρ−p2d+1(1− ρd+1)

1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)
. (4.11)

For u, v ∈ [0, 1] with u ≥ v and τ ∈ [0, 1] Taylor approximation provides

|uτ − vτ − τ(u− v)| ≤ τ(1− τ)
(uτ−2

2
(1− u)2 +

vτ−2

2
(1− v)2

)
≤ τ(1− τ)vτ−2(1− v)2.

Applying this inequality for τ = 1 − p1 or τ = 1 − p2, u = ρi and v = ρd+1, we derive
together with (4.11) and ρd+1 ≤ 1,

∣∣∣∆p1 −∆p2 −
d∑
i=1

(p2 − p1)(ρi − ρd+1)λd−1(Fi)
∣∣∣

≤
d∑
i=1

((1− p1)p1ρ
−p1−1
d+1 + (1− p2)p2ρ

−p2−1
d+1 )(1− ρd+1)2λd−1(Fi)

+ (p2 − p1)ρ−p2d+1(1− ρd+1)
1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)
≤ 2ρ−p2−1

d+1 (1− ρd+1)2
d∑
i=1

λd−1(Fi) + ρ−p2d+1(1− ρd+1)

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)
,

which completes the proof.
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In order to derive Theorem 4.1 from Theorem 1.1, we consider the situation that
adding an additional point increases the random polytope by exactly one simplex over
an existing facet. Lemma 4.3 allows us to control the corresponding change of the Lp

surface area. The main challenge of the following proof is to show that the described
situation is sufficiently likely. In order to improve the readability of the proof, the details
of some arguments are postponed to Appendix A.2.

Proof of Theorem 4.1. Let a > 0 be fixed. Throughout the proof we choose s ≥ 1

depending on a large enough such that several conditions hold. Recall that ei denotes
the standard unit vector in the i-th direction and define x(d+1) = (1− as−2/(d+1))e1. Let
x(1), . . . , x(d) ∈ Bd(0, 1) be points on the hyperplane

H = {y = (y1, . . . , yd) ∈ Rd : y1 = 1− (a+ a2)s−2/(d+1)}

of pairwise distance 2` = 2
√
as−1/(d+1) that form a regular (d− 1)-dimensional simplex

S such that all points have the same distance to x(d+1). Then, x(1), . . . , x(d+1) are the
vertices of a d-dimensional simplex with height h = a2s−2/(d+1). For a set A ⊂ Bd(0, 1)

and x ∈ Bd(0, 1)\int(A) let

Vis(x,A) = {y ∈ Bd(0, 1) : [y, x] ∩ int(A) = ∅}

denote the visibility region at x, where int(A) stands for the interior of A. Recall that
[y, x] denotes the line connecting x and y. Let εh, ε` ∈ (0, 1/4), which will be chosen
sufficiently small such that some properties are satisfied throughout this proof. Now,
choose d cuboids Cx1 , . . . , C

x
d ⊂ Vis(x(d+1),Conv(x(1), . . . , x(d+1))) containing x(1), . . . , x(d)

each with height εha2s−2/(d+1) and such that its (d − 1)-dimensional base is a cube of
side length ε`

√
as−1/(d+1) which is contained in the hyperplane H.

Indeed, εh, ε` ∈ (0, 1/4) can be chosen small enough such that Cx1 , . . . , C
x
d ⊂ Bd(0, 1)

because by e.g. [7, Section 6, p. 367] the height hk of a k-dimensional regular simplex
Sk with edge length 2` is given by

hk(Sk) =
2`√

2

√
k + 1

k
, (4.12)

i.e. for y ∈ Cxi with i ∈ {1, . . . , d} we have

‖y‖2 ≤ (1− (a+ a2 − εha2)s−2/(d+1))2 +

(
d− 1

d
hd−1(Sd−1) + (d− 1)ε`

√
as−1/(d+1)

)2

= (1− (a+ a2 − εha2)s−2/(d+1))2 +
(√2(d− 1)a

d
s−1/(d+1) + (d− 1)ε`

√
as−1/(d+1)

)2

= 1−
[
2
(a
d

+ a2 − εha2
)
− 2(d− 1)

√
2(d− 1)

d
ε`a− (d− 1)2ε2

`a

− (a+ a2 − εha2)2s−2/(d+1)
]
s−2/(d+1) < 1

for εh, ε` ∈ (0, 1/4) small enough and s sufficiently large.
In the sequel, we use the same notation as in the context of Lemma 4.3. We consider

the simplex S(z(1), . . . , z(d+1)), where z(i) ∈ Cxi for i ∈ {1, . . . , d} and z(d+1) = x(d+1) −
ta2s−2/(d+1)e1 for t ∈ [0, 1/2] (see Figure 2). Due to the choice of Cxi we have for s
sufficiently large and t ∈ [0, 1/2],

ρd+1 ≥ 1− (a+ a2)s−2/(d+1) (4.13)
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0

x(2)x(1)

x(d+1)

cas
−2/(d+1)

a2s−2/(d+1)

as−2/(d+1)

√
as−1/(d+1)

Cx1 Cx2

z(2)z(1)

z(d+1)

ta2s−2/(d+1)

Figure 2: Construction in Bd(0, 1) for d = 2.

and

a2

4
s−2/(d+1) ≤

(
a2 − εha2 − a2

2

)
s−2/(d+1) ≤ h̄ ≤ a2s−2/(d+1), (4.14)

where we used εh ∈ (0, 1/4).
Moreover, for i ∈ {1, . . . , d} we can control hi = dist(Ti, z̄d+1), λd−1(Fi) and λd−2(Ti)

with the choice of εh, ε` uniformly for s sufficiently large. One can show that there exist
constants ch,l, ch,u, cT,l, cT,u, cF,l, cF,u > 0 such that for s sufficiently large,

ch,l
√
as−1/(d+1) ≤ hi ≤ ch,u

√
as−1/(d+1), (4.15)

cT,la
(d−2)/2s−(d−2)/(d+1) ≤ λd−2(Ti) ≤ cT,ua(d−2)/2s−(d−2)/(d+1) (4.16)

and

cF,la
(d−1)/2s−(d−1)/(d+1) ≤ λd−1(Fi) ≤ cF,ua(d−1)/2s−(d−1)/(d+1). (4.17)

Here the constants do not depend on a, while the bounds for s such that the inequalities
hold may depend on a. The same applies to the inequalities and constants in the sequel
if not stated otherwise. For the detailed estimates see Appendix A.2.

Due to the fundamental theorem of calculus we have for x > y > 0,

√
x2 + y2 − x =

∫ y2

0

1

2
√
x2 + z

dz ≥ y2 1

2
√
x2 + y2

≥ y2

2
√

2x
(4.18)

and √
x2 + y2 − x ≤ y2

2x
. (4.19)

We can assume without loss of generality that p1 < p2 and that (α1, α2) ∈ R2\{0} satisfies
α1 +α2 ≥ 0. In the following we distinct the cases α1 6= −α2 and α1 = −α2. For α1 6= −α2,
we have by Lemma 4.3, whose assumptions are satisfied by the choice of zd+1 and (4.15),

∣∣∣α1∆p1 + α2∆p2 − (α1 + α2)
1

d− 1

d∑
i=1

λd−2(Ti)
(√

h2
i + h̄2 − hi

)∣∣∣
≤ (|α1|+ |α2|)ρ−p2d+1(1− ρd+1)

d+1∑
i=1

λd−1(Fi).
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Together with (4.13), (4.14), (4.15), (4.16), (4.17) and (4.18) we obtain for α1 + α2 > 0,
t ∈ [0, 1/2] and s sufficiently large,

α1∆p1 + α2∆p2

≥ α1 + α2

d− 1

d∑
i=1

cT,la
(d−2)/2s−(d−2)/(d+1)

a4

16s
−4/(d+1)

2
√

2ch,ua1/2s−1/(d+1)

− (|α1|+ |α2|)2p2(a+ a2)s−2/(d+1)
d+1∑
i=1

cF,ua
(d−1)/2s−(d−1)/(d+1)

≥ c̃da(d+5)/2s−1 − c̃d,p1,p2(a(d+3)/2 + a(d+1)/2)s−1

for suitable constants c̃d, c̃d,p1,p2 > 0, where we used that ρd+1 ≥ 1
2 for s sufficiently large.

Hence, we can fix a > 0 large enough such that this estimate provides for α1 6= −α2 the
existence of a constant c̃1 > 0 such that

|α1∆p1 + α2∆p2 | ≥ c̃1a(d+5)/2s−1 (4.20)

for s sufficiently large and t ∈ [0, 1/2].
For α1 = −α2 we fix a ∈ (0, 1). To use the second part of Lemma 4.3 we show in

Appendix A.2 that

ρi − ρd+1 ≥ cρ,l,as−2/(d+1) (4.21)

for s sufficiently large with a suitable constant cρ,l,a > 0 that depends on a.
Together with Lemma 4.3 and the inequalities (4.13), (4.14), (4.15), (4.16), (4.17),

(4.19), (4.21) this provides for a fixed a ∈ (0, 1), t ∈ [0, 1/2] and s sufficiently large,

∆p1 −∆p2 ≥
d∑
i=1

(p2 − p1)cρ,l,as
−2/(d+1)cF,la

(d−1)/2s−(d−1)/(d+1)

− 2p2+2(a+ a2)2s−4/(d+1)
d∑
i=1

cF,ua
(d−1)/2s−(d−1)/(d+1)

− 2p2(a+ a2)s−2/(d+1)
d∑
i=1

cT,ua
(d−2)/2s−(d−2)/(d+1) a4s−4/(d+1)

2ch,la1/2s−1/(d+1)

=: Ca,1s
−1 − Ca,2s−(d+3)/(d+1) − Ca,3s−(d+3)/(d+1), (4.22)

which can be bounded from below by 1
2Ca,1s

−1 for s sufficiently large.
Altogether, for α1 6= −α2 we fix a > 0 sufficiently large such that (4.20) holds and for

α1 = −α2 we fix a ∈ (0, 1) such that (4.22) holds. Then, for

Cα =

{
1
2Ca,1, for α1 = −α2,

c̃1a
(d+5)/2, else,

it holds that

|α1∆p1 + α2∆p2 | ≥ Cαs−1 (4.23)

for all t ∈ [0, 1/2] and s sufficiently large.
For the application of Theorem 1.1 we consider the situation that z(1), . . . , z(d) are

points of the Poisson process and the point z(d+1) is added. To ensure that the change of
α1Ãp1 + α2Ãp2 is given by s(α1∆p1 + α2∆p2) we require that no further points of ηs are
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present which prevent that z(1), . . . , z(d) form a facet of the random polytope or which
could be connected to z(d+1) by edges. Therefore, we consider the set

Mx
s = {y = (y1, . . . , yd) ∈ Bd(0, 1) : y1 ≥ 1− cas−2/(d+1)} (4.24)

for some constant ca > 0, which might depend on a and can be chosen independently
from s such that (Bd(0, 1)\Mx

s ) ∩Vis(z(d+1),Conv(z(1), . . . , z(d), x(d+1))) = ∅ for all z(1) ∈
Cx1 , . . . , z

(d) ∈ Cxd (for more details see Appendix A.2). From now on let s be sufficiently
large such that 1− cas−2/(d+1) ≥ ρ0.

Due to rotation invariance, the same configuration of sets can be constructed for any
x ∈ Bd(0, 1) with ‖x‖ = 1− (a + ta2)s−2/(d+1) for t ∈ [0, 1/2] by defining Mx

s , C
x
1 , . . . , C

x
d

for each x as the suitable rotated regions. Define

A = {x ∈ Bd(0, 1) : ‖x‖ = 1− (a+ ta2)s−2/(d+1) and t ∈ [0, 1/2]}.

Combining our previous considerations leads to

α1DxÃp1 + α2DxÃp2 = s(α1∆p1 + α2∆p2)

if

ηs(C
x
i ) = 1 for i ∈ {1, . . . , d} and ηs

(
Mx
s \

d⋃
i=1

Cxi

)
= 0.

for s sufficiently large. Together with (4.23) we obtain for s sufficiently large

E

[∫
|α1DxÃp1 + α2DxÃp2 |2 dλ(x)

]
≥ E

[∫
A

|α1DxÃp1 + α2DxÃp2 |2 dλ(x)

]
≥ s

∫
A

P(|α1DxÃp1 + α2DxÃp2 | ≥ Cα)C2
α dx

≥ C2
αs

∫
A

P
(
ηs

(
Mx
s \

d⋃
i=1

Cxi

)
= 0, ηs(C

x
1 ) = 1, . . . , ηs(C

x
d ) = 1

)
dx

= C2
αs

∫
A

P
(
ηs

(
Mx
s \

d⋃
i=1

Cxi

)
= 0
) d∏
i=1

P(ηs(C
x
i ) = 1) dx. (4.25)

Due to the definition of Cxi we know that λd(Cxi ) = εha
2(ε`
√
a)d−1s−1 for i ∈ {1, . . . , d},

i.e. the volume of the sets Cxi is of order s−1.
For λd(Mx

s ) we consider at first the radius r of the (d− 1)-dimensional ball BC = {y =

(y1, . . . , yd) ∈ Bd(0, 1) : y1 = 1− cas−2/(d+1)}. This radius fulfils r2 + (1− cas−2/(d+1))2 = 1.
Hence,

r2 = 2cas
−2/(d+1) − c2as−4/(d+1) ≤ 2cas

−2/(d+1)

and therefore
λd(M

x
s ) ≤ κd−1r

d−1cas
−2/(d+1) ≤ c̃as−1

for c̃a = κd−1ca(
√

2ca)d−1. Thus, λd(Mx
s \

d⋃
i=1

Cxi ) is at most of order s−1. Therefore, since

the Poisson process has intensity s, the order of the whole term in (4.25) can be bounded
from below by a multiple of sλd(A), where

λd(A) = κd

(
(1− as−2/(d+1))d −

(
1−

(
a+

a2

2

)
s−2/(d+1)

)d)
≥ c̃s−2/(d+1)
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for a suitable constant c̃ > 0 and s sufficiently large. Altogether we have

E

[∫
|α1DxÃp1 + α2DxÃp2 |2 dλ(x)

]
≥ C̃s(d−1)/(d+1)

for some constant C̃ > 0 and s sufficiently large.
Next, we check condition (1.4). Due to Lemma 4.2 we can apply the results in [18,

Lemma 5.5 and Lemma 5.9], i.e. there exists a constant C > 0 satisfying

E|DxÃpi(ηs ∪ U)|5 ≤ C (4.26)

for U ⊂ Bd(0, 1) with |U | ≤ 1 and for any β > 0,

s

∫
P(D2

x,yÃpi 6= 0)β dy ≤ Cβ exp[−cβsdmax(x, ∂Bd(0, 1))(d+1)] (4.27)

for some constants Cβ , cβ > 0 and x ∈ Bd(0, 1). Note that the statements of [18, Lemma
5.9] contain typos since the exponent α of ds(x1,K) is missing in the upper bounds.
Using (4.26), the Hölder inequality and Jensen’s inequality provides

E|D2
x,yÃpi |2 = E

[
|D2

x,yÃpi |21{D2
x,yÃpi 6= 0}

]
≤ (E|D2

x,yÃpi |5)2/5P(D2
x,yÃpi 6= 0)3/5

= (E|DxÃpi(ηs ∪ {y})−DxÃpi(ηs)|5)2/5P(D2
x,yÃpi 6= 0)3/5

≤
(

24
(
E|DxÃpi(ηs ∪ {y})|5 + E|DxÃpi(ηs)|5

))2/5

P(D2
x,yÃpi 6= 0)3/5

≤ 4C2/5P(D2
x,yÃpi 6= 0)3/5

for i ∈ {1, 2}. Therefore, using Jensen’s inequality and (4.27), it follows

E

∫
Bd(0,1)

∫
Bd(0,1)

(
D2
x,y

2∑
i=1

αiÃpi

)2

dλ(x) dλ(y)


≤ 2

2∑
i=1

α2
i

∫
Bd(0,1)

∫
Bd(0,1)

E|D2
x,yÃpi |2 dλ(x) dλ(y)

≤ 2

2∑
i=1

α2
i s

∫
Bd(0,1)

s

∫
Bd(0,1)

4C2/5P(D2
x,yÃpi 6= 0)3/5 dx dy

≤ 8

2∑
i=1

α2
iC

2/5s

∫
Bd(0,1)

C3/5 exp[−c3/5sdmax(x, ∂Bd(0, 1))(d+1)] dx

≤ c(1)
α s

∫
Bd(0,1)

exp[−c3/5s(1− ‖x‖)(d+1)/2] dx

≤ c(2)
α s

∫ 1

0

exp[−c3/5s(1− r)(d+1)/2] dr = c(2)
α s

∫ 1

0

exp[−c3/5su(d+1)/2] du

≤ c(3)
α s

∫ (c3/5s)
2/(d+1)

0

e−t
(d+1)/2

s−2/(d+1)dt ≤ c(4)
α ss−2/(d+1) = c(4)

α s(d−1)/(d+1)

for suitable constants c(i)α > 0 for i ∈ {1, 2, 3, 4} and s sufficiently large. This shows
together with Theorem 1.1 that Var[α1Ãp1 +α2Ãp2 ] ≥ cs(d−1)/(d+1) for a suitable constant
c > 0. Now (4.8) yields a lower bound of the same order for α1sAp1 + α2sAp2 , which
completes the proof.
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Remark 4.4. A natural extension of Theorem 4.1 is to consider linear combinations
of more than two Lp surface areas, i.e. to study Var[

∑m
i=1 αiApi ] for (α1, . . . , αm) ∈ Rm,

distinct p1, . . . , pm ∈ [0, 1] and m ∈ N with m > 2. For
∑m
i=1 αi 6= 0 we can use the same

strategy as in the proof of Theorem 4.1 and apply the first part of Lemma 4.3, which
provides a lower variance bound of the desired order. However, for

∑m
i=1 αi = 0 it is not

clear how to generalise the second part of Lemma 4.3 so that we restricted ourselves to
the case of two Lp surface areas.

As a consequence of the lower variance bound in Theorem 4.1, one can derive bounds
for the multivariate normal approximation of two Lp surface areas. Therefore, we define
the dconvex-distance. Let I be the set of indicators of measurable convex sets in R2.
Then, for the two-dimensional random vectors Y and Z the dconvex-distance is defined as

dconvex(Y,Z) = sup
h∈I
|E[h(Y )]− E[h(Z)]|.

Theorem 4.5. Let (Ap1 , Ap2) be the vector of Lp surface areas for p1, p2 ∈ [0, 1] with
p1 6= p2. Denote by Σ(s) the covariance matrix of s(d+3)/(2(d+1))(Ap1 , Ap2). Let NΣ(s) be
a centred Gaussian random vector with covariance matrix Σ(s). Then there exists a
constant c > 0 such that

dconvex(s(d+3)/(2(d+1))(Ap1 − E[Ap1 ], Ap2 − E[Ap2 ]), NΣ(s)) ≤ cs−(d−1)/(2(d+1))

for s ≥ 1.

Proof. For s ≥ 1 we define Z̃s = s−(d−1)/(2(d+1))(Ãp1 , Ãp2). From [33, Theorem 4.1 c)]
with τ = (d− 1)/(2(d+ 1)), whose assumptions are satisfied by Lemma 4.2, it follows that

dconvex(Z̃s − E[Z̃s], NΣ(s)) ≤ c̃s−(d−1)/(2(d+1)) (4.28)

for s ≥ 1 with a constant c̃ > 0 if we can check that

(i) for any constant cI > 0 there exists a constant c̃I > 0 such that

s

∫
Bd(0,1)

exp[−cIsdmax(x, ∂Bd(0, 1))(d+1)] dx ≤ c̃Is(d−1)/(d+1)

for s ≥ 1,

(ii) |(Σ(s))u,v − Cov(Z̃
(u)
s , Z̃

(v)
s )| is at most of order s−(d−1)/(2(d+1)) for all u, v ∈ {1, 2},

(iii) ‖Σ(s)−1‖op is uniformly bounded for s sufficiently large, where ‖·‖op denotes the
operator norm.

Analogously to the calculation at the end of the proof of Theorem 4.1 one can show (i),
while (ii) follows from (4.8).

In order to establish (iii), we assume that there is a subsequence (sn)n∈N such that
‖Σ(sn)−1‖op →∞ and sn →∞ as n→∞. From the Poincaré inequality (see (1.3)), (4.26),
[18, (5.8) in Lemma 5.10] and (i), one deduces that all variances and, thus, all covariances
of the components of Z̃s are uniformly bounded for s ≥ 1. By (ii) the same holds for
the entries of Σ(s). Thus, there exists a subsequence (snk)k∈N and a matrix Σ ∈ R2×2

such that Σ(snk)→ Σ as k →∞. From Theorem 4.1 it follows that Σ is positive definite
as αTΣα = lim

k→∞
αTΣ(snk)α > 0 for any α ∈ R2\{0}. Thus, ‖Σ−1‖op is well-defined and

‖Σ(snk)−1‖op → ‖Σ−1‖op as k →∞. Since this is a contradiction to the assumption, we
have shown that ‖Σ(s)−1‖op is uniformly bounded for s sufficiently large, which is (iii)
and completes the proof of (4.28).
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Moreover, let

Zs = s(d+3)/(2(d+1))(Ap1 , Ap2) = s−(d−1)/(2(d+1))(sAp1 , sAp2)

and

Ẑs = s−(d−1)/(2(d+1))(s(λd−1(∂Bd(0, 1))−Ap1), s(λd−1(∂Bd(0, 1))−Ap2)).

Then, Zs − E[Zs] and −(Ẑs − E[Ẑs]) have the same distribution. Together with the
symmetry of the normal distribution and the triangle inequality it holds that

dconvex(Zs − E[Zs], NΣ(s)) = dconvex(−(Ẑs − E[Ẑs]), NΣ(s)) = dconvex(Ẑs − E[Ẑs], NΣ(s))

≤ dconvex(Ẑs − E[Ẑs], Z̃s − E[Ẑs]) + dconvex(Z̃s − E[Ẑs], NΣ(s))

≤ P(Ẑs 6= Z̃s) + dconvex(Z̃s − E[Z̃s], NΣ(s) + E[Ẑs]− E[Z̃s])

≤ P(Ẑs 6= Z̃s) + dconvex(Z̃s − E[Z̃s], NΣ(s)) + dconvex(NΣ(s), NΣ(s) + E[Ẑs]− E[Z̃s]).

Since the first term on the right-hand side vanishes exponentially fast by (4.8) and the
second one was treated in (4.28), it remains to study the third term. We have that

dconvex(NΣ(s), NΣ(s) + E[Ẑs]− E[Z̃s])

= dconvex(NI , NI + Σ(s)−1/2(E[Ẑs]− E[Z̃s]))

≤ sup
K⊆R2 convex

P(dist(NI , ∂K) ≤ ‖Σ(s)−1/2(E[Ẑs]− E[Z̃s])‖)

≤ sup
K⊆R2 convex

P(dist(NI , ∂K) ≤ ‖Σ(s)−1‖1/2op ‖E[Ẑs]− E[Z̃s]‖),

where NI is distributed according to a two-dimensional standard normal distribution.
From [6, Corollary 3.2] one obtains that the right-hand side is bounded by a constant
times

‖Σ(s)−1‖1/2op ‖E[Ẑs]− E[Z̃s]‖.

Now (iii) from above and (4.8) imply that this expression vanishes exponentially fast for
s→∞, which concludes the proof.

Theorem 4.1 and Theorem 4.5 especially provide a lower variance bound and a result
on the multivariate normal approximation for the vector of surface area and volume of a
random polytope since A0 = dVd and A1 = Sd−1, where Vd and Sd−1 denote the volume
and surface area, respectively.

Lower and upper variance bounds of the same order as in Theorem 4.1 were already
derived for the volume in [30]. For binomial input, analogous variance bounds for
intrinsic volumes were shown in [3]. The case of an underlying Poisson process and, in
particular, variance asymptotics for intrinsic volumes were discussed in [10]. We expect
that variance asymptotics for the Lp surface area and especially the positivity of the
asymptotic variance can be derived using the same method as in [10]. However, the
proof in [10] cannot be directly transferred to the linear combination of two Lp surface
areas because for a linear combinations with scalars of different sign the monotonicity
argument in [10, p. 100] does not work.

In [12] the multivariate normal approximation of the vector of all intrinsic volumes
and all numbers of lower-dimensional faces of the convex hull of Poisson points in a
smooth convex body is considered. As in Theorem 4.5, one compares with a multivariate
normal distribution with the same covariance matrix, but as the so-called d3-distance
is studied no information about the regularity of the asymptotic covariance matrix is
required. In the same work positive linear combinations of intrinsic volumes were
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considered since for coefficients with different signs it could not be ensured that the
corresponding asymptotic variance is positive. For the special case of volume and surface
area and an underlying ball, this problem is resolved by Theorem 4.1. In contrast to
the findings in [12], Theorem 4.5 deals with non-smooth test functions and the obtained
bounds are of a better order since a logarithmic factor could be removed. The rates
of convergence derived in [18, Section 3] for the univariate normal approximation of
intrinsic volumes in Kolmogorov distance are also of the order s−(d−1)/(2(d+1)).

Remark 4.6. The results of this section prevail if we assume that the Poisson processes
have underlying intensity measures sµ for s ≥ 0, where µ is a measure with a density
g : Bd(0, 1) → [0,∞) satisfying c ≤ g(x) ≤ c for all x ∈ Bd(0, 1) and some constants
c, c > 0 (see also Remark 3.6). Moreover, we expect that it is possible to replace the
d-dimensional unit ball by a compact convex non-empty subset of Rd with C2-boundary
and positive Gaussian curvature. Since the boundaries of these sets as the boundary
of the unit ball are locally between two paraboloids, we believe that similar arguments
as in [18, Subsection 3.4] allow to prove our results for this larger class of underlying
bodies. However, we did not pursue this approach in order to not further increase the
length and complexity of the proofs in this section.

5 Excursion sets of Poisson shot noise processes

Excursion sets of random fields are an important topic of probability theory and have
many applications, for example in biology or engineering. For an introduction into this
topic see for instance [1]. The most common underlying random fields are Gaussian
random fields, but a further prominent choice are Poisson shot noise processes as we
consider in this section.

For a stationary Poisson process η on Rd with intensity measure λd and an integrable
function g : Rd → R let

fη(x) =
∑
y∈η

g(x− y) (5.1)

for x ∈ Rd. We call (fη(x))x∈Rd a Poisson shot noise process and note that it is translation
invariant. Its excursion set at level u > 0 consists of all x ∈ Rd such that fη(x) ≥ u. The
corresponding volume of the excursion set in an observation window Bd(0, s) with s ≥ 1

is given by

Fs = λd({x ∈ Bd(0, s) : fη(x) ≥ u}).

Now one is interested in the behaviour of Fs as s → ∞, i.e. if the observation window
is increased. In [9] variance asymptotics and central limit theorems for the volume of
excursion sets of quasi-associated random fields were considered, which include a large
class of Poisson shot noise processes (see [9, Proposition 1]). More recently, asymptotics
for the variance and central limit theorems for the volume, the perimeter and the Euler
characteristic of the excursion sets of Poisson shot-noise processes were shown in [16,
Section 4], while the paper [17] studied the same questions for smoothed versions of
volume and perimeter.

We use the following assumption on the kernel function g.

Assumption 5.1. There exist constants cg, cg, δ, γ > 0 and cg ≥ 1 such that δ + d/2 >

γ ≥ δ > 3d and

cg‖x‖−γ ≤ |g(x)| ≤ cg‖x‖−δ

for all x ∈ Rd with ‖x‖ ≥ cg.

EJP 29 (2024), paper 72.
Page 28/43

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1129
https://imstat.org/journals-and-publications/electronic-journal-of-probability/
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By using our Theorem 1.1, we derive lower bounds for variances, which complement
the findings from [9, 16]; see the discussion below for more details.

Theorem 5.2. Let g : Rd → R be a continuous function with g(0) > 0.

a) If g fulfils Assumption 5.1, there exists a constant c > 0 such that

Var[Fs] ≥ csd

for s ≥ 1.

b) Assume that g has compact support S. Then, there exists a constant c > 0 such that

Var[Fs] ≥ csd

for s ≥ 1.

Replacing g by g(· − z) for any z ∈ Rd leads to a translation of the Poisson shot noise
field and, thus, by translation invariance, to a Poisson shot noise process with the same
distribution. Thus, the assumption g(0) > 0 is no loss of generality because any g that
can take positive values can be modified accordingly, while the case of a non-positive
function g is trivial because then the level set for u > 0 becomes empty.

Since the volume of the excursion set can be written as integral over indicator
functions, one obtains with Fubini’s theorem and translation invariance of the Poisson
shot noise process

Var[Fs] = E

(∫
Bd(0,s)

1{fη(x) ≥ u} dx

)2
− E[∫

Bd(0,s)

1{fη(x) ≥ u} dx

]2

=

∫
Bd(0,s)

∫
Bd(0,s)

P(fη(x1) ≥ u, fη(x2) ≥ u)− P(fη(x1) ≥ u)P(fη(x2) ≥ u) dx1 dx2

=

∫
Rd
λd({y ∈ Rd : y, y + z ∈ Bd(0, s)})

× (P(fη(0) ≥ u, fη(z) ≥ u)− P(fη(0) ≥ u)P(fη(z) ≥ u)) dz.

Note that λd({y ∈ Rd : y, y + z ∈ Bd(0, s)})/λd(Bd(0, s)) ≤ 1 for all z ∈ Rd and that it
converges to one as s → ∞ for all z ∈ Rd. Thus, the dominated convergence theorem
yields

lim
s→∞

Var[Fs]

λd(Bd(0, s))
=

∫
Rd
P(fη(0) ≥ u, fη(z) ≥ u)− P(fη(0) ≥ u)P(fη(z) ≥ u) dz

if the integral on the right-hand side is well-defined. However, this explicit formula for
the asymptotic variance does not imply the statement of Theorem 5.2 since the difference
under the integral could take both negative and positive values in such a way that the
integral becomes zero.

Since statements of the form that the variance is at least of the order of the volume
of the observation window as in Theorem 5.2 were already proven in [9, Proposition 1]
and [16, Theorem 4.1], let us compare the assumptions of Theorem 5.2 a) with those
made before. In [9, Proposition 1], it is required that g is a bounded and uniformly
continuous function on Rd with |g(x)| ≤ c‖x‖α for some constant c > 0 and α > 3d (as
in our Assumption 5.1). A crucial difference is that we allow g to take positive and
negative values, while it has to be non-negative in [9], where this assumption might be
essential since it ensures that the Poisson shot noise process is positively associated.
A lower bound on the decay of |g| as in Assumption 5.1 is not present in [9], but we
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use it only to ensure the boundedness of the density of fη(0), which is assumed in [9],
and to guarantee that g(x) for ‖x‖ sufficiently large is either positive or negative. The
result in [9] deals with marks in the sense that in (5.1) each summand is multiplied
by an i.i.d. copy of a non-negative random variable. It might be possible to generalise
our results in this direction as well. The assumptions in [16, Theorem 4.1] seem to be
more restrictive than in our case. So it is supposed that g depends only on the norm of
its argument and that |g(x)| has an upper bound as in Assumption 1 but with δ = 11d.
Instead a lower bound on |g|, a rather technical assumption (see (4.3) in [16]) is made,
which even requires differentiability of g. We are not aware of any results dealing with
the situation of part b) of Theorem 5.2. The compact support implies that fη(0) does not
possess a density since P(fη(0) = 0) > 0. The latter inequality follows from the fact that
fη(0) = 0 if η(−S) = 0, which has positive probability if S is compact. We prepare the
proof of Theorem 5.2 with the following lemma.

Lemma 5.3. Let g : Rd → R be a continuous, bounded function with g(0) > 0 that fulfils
Assumption 5.1. Then, fη(x) has a bounded density for x ∈ Rd.

Proof. We use the fact that fη(x) has a bounded density if its characteristic function ϕ is
integrable. By [8, Chapter 1, Lemma 3.7] the characteristic function of fη(x) is given by

ϕ(t) = exp

[
−
∫
Rd

1− eitg(x−y) dy

]
,

where i is the imaginary unit. Thus, fη(x) has a bounded density if∫
R

|ϕ(t)| dt =

∫
R

∣∣∣ exp
[
−
∫
Rd

1− eitg(x−y) dy
]∣∣∣ dt <∞.

Choose c > 0 small enough such that 1− cos(x̂) =
∑∞
k=1(−1)k+1 x̂2k

(2k)! ≥
x̂2

4 for x̂ ∈ [−c, c].
Then it holds∫

Rd
1− cos(tg(x− y)) dy ≥

∫
{z∈Rd:t2g(x−z)2≤c2,‖x−z‖≥cg}

(tg(x− y))2

4
dy

≥
∫
{z∈Rd:t2c2g‖x−z‖−2δ≤c2,‖x−z‖≥cg}

t2c2g‖x− y‖−2γ

4
dy

≥
dκdt

2c2g
4

∫ ∞
max{(tcg/c)1/δ,cg}

r−2γrd−1 dr

=
dκdt

2c2g
4(2γ − d)

·max
{

(tcg/c)
1/δ

, cg

}(d−2γ)

and, therefore,∫
R

|ϕ(t)| dt =

∫
R

∣∣∣ exp
[
−
∫
Rd

1− eitg(x−y) dy
]∣∣∣ dt

= 2

∫
R+

exp
[
−
∫
Rd

1− cos(tg(x− y)) dy
]

dt

≤ 2

∫
R+

exp

[
−

dκdt
2c2g

4(2γ − d)
·max

{
(tcg/c)

1/δ
, cg

}(d−2γ)
]

dt

= 2

∫ cδgc/cg

0

exp[−c1,γ,δ,dt2] dt+ 2

∫ ∞
cδgc/cg

exp[−c2,γ,δ,dt(2(δ−γ)+d)/δ] dt

<∞

with suitable constants c1,γ,δ,d, c2,γ,δ,d > 0 since δ − γ + d/2 > 0. This shows that fη(x)

has a bounded density.
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Proof of Theorem 5.2. Let z ∈ Rd be fixed. In the first part of the proof we derive lower
bounds for |DzFs| for particular point configurations. For the proof of a) we distinguish
the cases

g(x) < 0 for all x ∈ Rd with ‖x‖ ≥ cg
and

g(x) > 0 for all x ∈ Rd with ‖x‖ ≥ cg,

which is sufficient since Assumption 5.1 and the continuity of g imply that g(x) has the
same sign for all x ∈ Rd with ‖x‖ ≥ cg. We start with the first case. Let e1 = (1, 0, . . . , 0) ∈
Rd. Then, we can find k1 ∈ N0 such that

g(x) + k1g(x+ 2cge1) ≤ u− 2 (5.2)

for all x ∈ Bd(0, cg). Moreover, by the intermediate value theorem we can choose k2 ∈ N0

and x0 ∈ Rd \Bd(0, 2cg) such that

k1g(5cge1) + k2g(3cge1 − x0) = u− g(3cge1)

2
. (5.3)

By the continuity of g we can choose ε > 0 such that Bd(x0, ε) ⊂ Rd \Bd(0, 2cg) and such
that for all x ∈ Bd(z, cg), ŷ1, . . . , ŷk1 ∈ Bd(z − 2cge1, ε) and ỹ1, . . . , ỹk2 ∈ Bd(z + x0, ε) it

holds that g(x− z) +
∑k1
i=1 g(x− ŷi) ≤ u− 1 due to (5.2), and thus,

g(x− z) +

k1∑
i=1

g(x− ŷi) +

k2∑
i=1

g(x− ỹi) ≤ u− 1 (5.4)

since ‖ỹi−x‖ ≥ cg for i ∈ {1, . . . , k2}. Furthermore, by (5.3) we can choose ε > 0 so small
that for all y ∈ Bd(z+3cge1, ε), ŷ1, . . . , ŷk1 ∈ Bd(z−2cge1, ε) and ỹ1, . . . , ỹk2 ∈ Bd(z+x0, ε),

g(y − z) ≤ 7

8
g(3cge1) (5.5)

and

k1∑
i=1

g(y − ŷi) +

k2∑
i=1

g(y − ỹi) ∈
(
u− g(3cge1)

4
, u− 3g(3cge1)

4

)
. (5.6)

We abbreviate D1 = Bd(z − 2cge1, ε) and D2 = Bd(z + x0, ε) and let A1 be the event that

η(D1) = k1, η(D2) = k2 and
∑

y∈η\(D1∪D2)

|g(x− y)| ≤ min{|g(3cge1)|, 1}
8

(5.7)

for all x ∈ Bd(z+3cge1, ε)∪Bd(z, cg). Assuming that the event A1 is satisfied, adding z to
the underlying point configuration does not increase the excursion set since the Poisson
shot noise process can only increase on Bd(z, cg), where it does not exceed u after adding
z because of (5.4) and (5.7). On the other hand, the ball Bd(z + 3cge1, ε) belongs to the
excursion set before adding z but not thereafter due to (5.5), (5.6) and (5.7). Thus, we
have shown that

1A1
|DzFs| ≥ 1A1

κdε
d (5.8)

if Bd(z + 3cge1, ε) ⊆ Bd(0, s).
We continue with the second case that

g(x) > 0 for all x ∈ Rd with ‖x‖ ≥ cg.
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If g can become negative, we choose k1 ∈ N0 such that

g(x) + k1g(x+ 2cge1) ≥ u+ 2

for all x ∈ Bd(0, cg). In case that g is non-negative we let k1 = 0. For this part of the
proof we assume that g(3cge1) < 2u. Note that this is not a restriction because g(x)→ 0

as ‖x‖ → ∞ and hence, we can set cg large enough such that g(3cge1) < 2u is fulfilled.
Then, we can find k2 ∈ N0 and x0 ∈ Rd \Bd(0, 2cg) such that

k1g(5cge1) + k2g(3cge1 − x0) = u− g(3cge1)

2
.

Similarly to the first case we can choose ε > 0 sufficiently small so that Bd(x0, ε) ⊂
Rd \ Bd(0, 2cg) and such that for all x ∈ Bd(z, cg), ŷ1, . . . , ŷk1 ∈ Bd(z − 2cge1, ε) and
ỹ1, . . . , ỹk2 ∈ Bd(z + x0, ε),

g(x− z) +

k1∑
i=1

g(x− ŷi) +

k2∑
i=1

g(x− ỹi) ≥ u+ 1 (5.9)

if g can become negative. Moreover, we choose ε > 0 such that for all y ∈ Bd(z+3cge1, ε),
ŷ1, . . . , ŷk1 ∈ Bd(z − 2cge1, ε) and ỹ1, . . . , ỹk2 ∈ Bd(z + x0, ε),

g(y − z) ≥ 7

8
g(3cge1) (5.10)

and

k1∑
i=1

g(y − ŷi) +

k2∑
i=1

g(y − ỹi) ∈
(
u− 3g(3cge1)

4
, u− g(3cge1)

4

)
. (5.11)

If the eventA1 occurs, after adding z to the underlying point configuration, Bd(z+3cge1, ε)

is included in the excursion set, whereas no point of Bd(z + 3cge1, ε) was part of the
excursion set before adding z by (5.7), (5.10) and (5.11). If g is non-negative, the
excursion set cannot decrease after adding z. If g is somewhere negative on Bd(0, cg),
the excursion set cannot decrease neither as all points ofBd(z, cg) belong to the excursion
set after adding z by (5.7) and (5.9). Thus, we can conclude that

1A1
|DzFs| ≥ 1A1

κdε
d

if Bd(z + 3cge1, ε) ⊆ Bd(0, s).
For b) we first assume that λd({x ∈ Rd : g(x) ≥ u}) = 0. Then, let k ∈ N be the

largest possible number such that

λk−1
d

({
(y1, . . . , yk−1) ∈ (Rd)k−1 : λd

({
x ∈ Rd : g(x) +

k−1∑
i=1

g(x− yi) ≥ u
})

> 0
})

= 0

(5.12)

with the convention λ0
d(·) = 0. Then, there exists ε > 0 such that the set

V =
{

(y1, . . . , yk) ∈ (Rd)k : λd

({
x ∈ Rd : g(x) +

k∑
i=1

g(x− yi) ≥ u
})

> κdε
d
}

satisfies λkd(V ) > 0. Let

Ṽ =
{

(y1, . . . , yk) ∈ (Rd)k : λd

({
x ∈ Rd :

k∑
i=1

g(x− yi) ≥ u
})

> 0
}
.
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With (5.12) it holds

λkd(Ṽ )

=

∫
Rd
λk−1
d

({
(y1, . . . , yk−1) ∈ (Rd)k−1 : λd

({
x ∈ Rd :

k∑
i=1

g(x− yi) ≥ u
})

> 0
})

dyk

=

∫
Rd
λk−1
d

({
(y1, . . . , yk−1) ∈ (Rd)k−1 :

λd

({
x ∈ Rd : g(x) +

k−1∑
i=1

g(x− yi) ≥ u
})

> 0
})

dyk = 0.

We choose R0 > 0 large enough such that g(x− y) = 0 for all x ∈ S and y ∈ Bd(0, R0)c.
For z ∈ Rd this means that the points of η in Bd(z,R0)c do not influence the excursion
set on S + z. Let A2 be the event that

η(Bd(z,R0)) = k and ηk6= ∩ ((V + z)\Ṽ ) ∩Bd(z,R0)k 6= ∅,

where M + z = {(y1 + z, . . . , yk + z) : (y1, . . . , yk) ∈ M} for M ⊆ (Rd)k. The second
condition guarantees that the k points in Bd(z,R0) are arranged in such a way that the
volume of the excursion set in S+z is 0 before adding z and larger than κdεd after adding
z. This implies

1A2 |DzFs| ≥ 1A2κdε
d (5.13)

for all z ∈ Bd(0, s) with S+ z ⊆ Bd(0, s). For λd({x ∈ Rd : g(x) ≥ u}) > 0 this is obviously
true if A2 is only the event η(Bd(z,R0)) = 0.

To control P(|DzFs| ≥ κdεd) we bound in the following P(A1) and P(A2). We abbrevi-
ate D3 = Bd(z, cg) ∪Bd(z + 3cge1, ε). For a) let R̂0 > 0 be such that D3 ⊆ Bd(z, R̂0) and

define BR = Bd(z,R) for some R ≥ R̂0 + cg. Then, for c > 0 the Markov inequality and
the Mecke equation lead to

P

(
∃x ∈ D3 :

∑
y∈η∩BcR

|g(x− y)| > c

)
≤ P

( ∑
y∈η∩BcR

max
x∈D3

|g(x− y)| > c

)

≤ 1

c
E

[ ∑
y∈η∩BcR

max
x∈D3

|g(x− y)|

]

≤ 1

c

∫
Rd\BR

max
x∈Bd(z,R̂0)

|g(x− y)| dy

≤ 1

c

∫
Rd\BR

cg(‖y‖ − R̂0)−δ dy

=
dκd
c

∫ ∞
R−R̂0

cgr
−δ(r + R̂0)d−1 dr.

Choosing R ≥ R̂0 + cg large enough such that the probability above is at most 1
2 for

c =
min{|g(3cge1)|,1}

8 and D1 ∪D2 ⊆ BR provides for a) with (5.8),

P(|DzFs| ≥ κdεd) ≥ P(A1)

≥ P(η(D1) = k1, η(D2) = k2, η(BR\(D1 ∪D2)) = 0)

· P
( ∑
y∈η∩BcR

|g(x− y)| ≤ min{|g(3cge1)|, 1}
8

for all x ∈ D3

)
≥ 1

2
P(η(D1) = k1, η(D2) = k2, η(BR\(D1 ∪D2)) = 0) =: p1 > 0.
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For b) we get for λd({x ∈ Rd : g(x) ≥ u}) = 0 with the multivariate Mecke formula

P(|DzFs| ≥ κdεd) ≥ P(A2)

= P(ηk6= ∩ ((V + z)\Ṽ ) ∩Bd(z,R0)k 6= ∅, η(Bd(z,R0)) = k)

=
1

k!
E

[ ∑
(y1,...,yk)∈ηk6=∩((V+z)\Ṽ )∩Bd(z,R0)k

1{η(Bd(z,R0)) = k}

]

=
1

k!

∫
((V+z)\Ṽ )∩Bd(z,R0)k

P(η(Bd(z,R0)\ ∪ki=1 {yi}) = 0) d(y1, . . . , yk)

=: p2.

Clearly,
P(η(Bd(z,R0)\ ∪ki=1 {yi}) = 0) = P(η(Bd(z,R0)) = 0) > 0.

From (5.12) it follows that λkd(((V + z)\Ṽ )\Bd(z,R0)k) = 0 since as soon as one of
y1, . . . , yk does not belong to Bd(z,R0), we are in the situation of (5.12). Together with
λkd(Ṽ ) = 0 and λkd(V ) > 0 we see that

λkd(((V + z)\Ṽ ) ∩Bd(z,R0)k) = λkd(V ) > 0.

This implies p2 > 0. The same holds for λd({x ∈ Rd : g(x) ≥ u}) > 0, where A2 is only
η(Bd(z,R0)) = 0.

Altogether, for Ws = {z ∈ Rd : Bd(z + 3cge1, ε) ⊆ Bd(0, s)} and p = p1 in case of a) or
Ws = {z ∈ Rd : S + z ⊂ Bd(0, s)} and p = p2 in case of b) we conclude that

E

[∫
(DzFs)

2 dz

]
≥ κ2

dε
2d

∫
Rd
P(|DzFs| ≥ κdεd) dz

≥ κ2
dε

2d

∫
Ws

p dz ≥ κ2
dε

2dpλd(Ws) ≥ cd,εsd

for some constant cd,ε > 0 and s large enough.
In the following we consider the second-order difference operator to check (1.4). For

z1, z2 ∈ Rd with z1 6= z2 we have

D2
z1,z2Fs =

∫
Bd(0,s)

D2
z1,z21{fη(x) ≥ u} dx

so that
|D2

z1,z2Fs| ≤ 2λd(Bs(z1, z2)) (5.14)

with Bs(z1, z2) = {x ∈ Bd(0, s) : D2
z1,z21{fη(x) ≥ u} 6= 0}, where we used the bound

|D2
z1,z21{fη(x) ≥ u}| ≤ 2. The inequality (5.14) leads to

I := E

[∫
Rd

∫
Rd

(D2
z1,z2Fs)

2 dz1 dz2

]
≤ 4

∫
Rd

∫
Rd
E
[
λd(Bs(z1, z2))2

]
dz1 dz2.

First we study the situation of a). Let x ∈ Bd(0, s) and assume that |g(x − z2)| ≤
|g(x− z1)|. Since

D2
z1,z21{fη(x) ≥ u} = 1{fη(x) + g(x− z1) + g(x− z2) ≥ u} − 1{fη(x) + g(x− z1) ≥ u}

− (1{fη(x) + g(x− z2) ≥ u} − 1{fη(x) ≥ u}),

we obtain that
D2
z1,z21{fη(x) ≥ u} = 0
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if
fη(x) + g(x− z1) /∈ [u− |g(x− z2)|, u+ |g(x− z2)|]

and
fη(x) /∈ [u− |g(x− z2)|, u+ |g(x− z2)|].

Together with the fact that the density of fη(x) is bounded by a constant C1 > 0, which
was shown in Lemma 5.3, we derive

P(x ∈ Bs(z1, z2)) ≤ P(fη(x) + g(x− z1) ∈ [u− |g(x− z2)|, u+ |g(x− z2)|])
+ P(fη(x) ∈ [u− |g(x− z2)|, u+ |g(x− z2)|])
≤ 4C1|g(x− z2)|.

Using the same arguments for |g(x− z2)| ≥ |g(x− z1)|, we deduce

P(x ∈ Bs(z1, z2)) ≤ 4C1 min{|g(x− z1)|, |g(x− z2)|}

so that with Hölder’s inequality and the inequality min{a, b} ≤
√
a
√
b for a, b ≥ 0,

E
[
λd(Bs(z1, z2))2

]
=

∫
Bd(0,s)

∫
Bd(0,s)

P(x1 ∈ Bs(z1, z2), x2 ∈ Bs(z1, z2)) dx1 dx2

≤
∫
Bd(0,s)

∫
Bd(0,s)

P(x1 ∈ Bs(z1, z2))2/3P(x2 ∈ Bs(z1, z2))1/3 dx1 dx2

≤ 4C1

∫
Bd(0,s)

∫
Bd(0,s)

|g(x1 − z1)|1/3|g(x1 − z2)|1/3|g(x2 − z1)|1/3 dx1 dx2.

From Assumption 5.1 and the continuity of g it follows that g is bounded by a constant
C2 > 0. Using the decay of |g| and δ > 3d in Assumption 5.1, we have for x ∈ Bd(0, s)
that ∫

Rd
|g(x− z)|1/3 dz =

∫
Rd\Bd(x,cg)

|g(x− z)|1/3 dz +

∫
Bd(x,cg)

|g(x− z)|1/3 dz

≤
∫
Rd\Bd(x,cg)

c1/3g ‖x− z‖−δ/3 dz + C
1/3
2 κdc

d
g

= dκdc
1/3
g

∫ ∞
cg

rd−1r−δ/3 dr + C
1/3
2 κdc

d
g

= dκdc
1/3
g

c
d−δ/3
g

δ/3− d
+ C

1/3
2 κdc

d
g =: C3.

The same estimate holds for
∫
Bd(0,s)

|g(x− z)|1/3 dx for z ∈ Rd. Hence,

I ≤
∫
Rd

∫
Rd

16C1

∫
Bd(0,s)

∫
Bd(0,s)

|g(x1 − z1)|1/3|g(x1 − z2)|1/3

× |g(x2 − z1)|1/3 dx1 dx2 dz1 dz2

= 16C1

∫
Bd(0,s)

∫
Rd
|g(x1 − z1)|1/3

∫
Bd(0,s)

|g(x2 − z1)|1/3

×
∫
Rd
|g(x1 − z2)|1/3 dz2 dx2 dz1 dx1

≤ 16C1

∫
Bd(0,s)

C3
3 dx1 =: c̃1s

d.
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For b) let R̃ > 0 be such that S ⊆ Bd(0, R̃) and let z1, z2 ∈ Rd. Then, since

Bs(z1, z2) ⊆ {x ∈ Bd(0, s) : ‖x− z1‖ ≤ R̃, ‖x− z2‖ ≤ R̃},

it follows

E
[
λd(Bs(z1, z2))2

]
≤ λd({x ∈ Bd(0, s) : ‖x− z1‖ ≤ R̃, ‖x− z2‖≤ R̃})2.

The triangle inequality implies λd({x ∈ Bd(0, s) : ‖x − z1‖ ≤ R̃, ‖x − z2‖≤ R̃}) = 0 for
‖z1 − z2‖ > 2R̃ or ‖z2‖ > s+ R̃ and therefore

I ≤ 4

∫
Bd(0,s+R̃)

∫
Bd(z2,2R̃)

λd({x ∈ Bd(0, s) : ‖x− z1‖ ≤ R̃, ‖x− z2‖≤ R̃})2 dz1 dz2

≤ 4

∫
Bd(0,s+R̃)

∫
Bd(z2,2R̃)

(κdR̃
d)2 dz1 dz2 ≤ 4(κdR̃

d)2κ2
d(2R̃)d(s+ R̃)d

≤ Csd

for a suitable constant C > 0. Combining for both cases the derived lower and upper
bounds with Theorem 1.1 completes the proof.

Remark 5.4. An alternative approach is to construct the Poisson shot noise process
only with respect to points of the Poisson process within the observation window, i.e. to
consider

fη∩Bd(0,s)(x) =
∑

y∈η∩Bd(0,s)

g(x− y)

for x ∈ Rd and the functional

F̃s = λd({x ∈ Bd(0, s) : fη∩Bd(0,s)(x) ≥ u}),

which is the volume of the excursion set on Bd(0, s). Then, the integrals of the second
moments of the first-order difference operator can be bounded from below as in the
proof of Theorem 5.2. The arguments from this proof can also be used to control the
second-order difference operator in the case, where g has compact support. Under
Assumption 5.1 fη∩Bd(0,s)(x) does not posses a density as it has an atom in 0 so that the
arguments of the proof of Theorem 5.2 for the second-order difference operator do not
carry over. However, if there exists a constant c > 0 such that

P(fη∩Bd(0,s)(x) ∈ [u− a, u+ a]) ≤ ca

for all x ∈ Bd(0, s) and a > 0, our proof works for the alternative setting as well.

A Appendix

A.1 Stabilising functionals

In this appendix we recall the framework of stabilising functionals considered in
[18, 33]. For further works on stabilisation in stochastic geometry we refer the reader
to e.g. [5, 17, 26, 27, 28, 29] and the references therein. Let (X,FX) be a measurable
space with a σ-finite measure λ̂ and a measurable semi-metric d. We denote by B(x, r)

the ball of radius r with respect to d around x ∈ X and assume that there exist constants
κ, γ > 0 such that

lim sup
ε→0

λ̂(B(x, r + ε))− λ̂(B(x, r))

ε
≤ κγrγ−1 (A.1)
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for all r ≥ 0 and x ∈ X. Obviously this assumption is satisfied if X is Rd or a full-
dimensional subset of Rd equipped with the usual Euclidean norm and λ̂ has a bounded
density with respect to the Lebesgue measure.

For s ≥ 1 let ηs be a Poisson process with intensity measure sλ̂. We consider a Poisson
functional Fs, i.e. a random variable that depends on the Poisson process ηs. In many
applications Fs can be written as a sum of scores ξs, i.e.

Fs = Fs(ηs) =
∑
x∈ηs

ξs(x, ηs). (A.2)

One can think of Fs as the sum of contributions associated with the points of ηs. In the
sequel, we assume that the scores are stabilising. Here the idea is that the score of a
point x only depends on the points of ηs in a random neighbourhood of x.

In order to show the condition (1.4) for random variables of the form (A.2), one can
often use properties of the score functions. The following definitions were taken from
[18, 33]. We start with defining the radius of stabilisation. Let s ≥ 1. A measurable map
Rs : X×N→ R is called radius of stabilisation for ξs if

ξs(x, (ν ∪ {x} ∪A) ∩B(x,Rs(x, ν ∪ {x}))) = ξs(x, ν ∪ {x} ∪A)

for all x ∈ X, ν ∈ N and A ⊂ X with |A| ≤ 9. Broadly speaking, this says that the
value of the score only depends on the points of the underlying point configuration with
distance at most Rs(x, ν ∪ {x}) from x. Using this radius of stabilisation, one can define
exponential stabilisation. The scores (ξs)s≥1 are called exponentially stabilising if there
exist radii of stabilisation and constants Cstab, cstab, αstab > 0 such that

P(Rs(x, ηs ∪ {x}) ≥ r) ≤ Cstab exp[−cstab(s1/γr)αstab ]

for x ∈ X, r ≥ 0, s ≥ 1 and γ from (A.1). For q > 0, the scores (ξs)s≥1 fulfil a q-th moment
condition if there exists a constant Cq > 0 satisfying

sup
s≥1

sup
x∈X

E|ξs(x, ηs ∪ {x} ∪A)|q ≤ Cq

for A ⊂ X with |A| ≤ 9. Finally, the scores (ξs)s≥1 decay exponentially fast with distance
to a measurable set K ⊆ X if there are constants CK , cK , αK > 0 such that for x ∈ X,
s ≥ 1 and A ⊂ X with |A| ≤ 9,

P(ξs(x, ηs ∪ {x} ∪A) 6= 0) ≤ CK exp[−cKsαK/γd(x,K)αK ],

where d(x,K) denotes the distance from x to K with respect to the semi-metric d and
γ is from (A.1). In contrast to the definitions in [18], those in [33] and in this appendix
require that one can add up to nine additional points instead of seven, but this difference
is not essential and all results from [18] we refer to throughout this paper are still
valid. The additional points come from considering difference operators and applying
the multivariate Mecke formula since the k-th power of a sum of scores can be rewritten
as sums over up to k different points so that the multivariate Mecke formula leads to
adding up to k − 1 additional points. Thus, the different numbers of points in the works
[18] and [33] are caused by different moment conditions.

For more details on stabilising functionals we refer to [18] or [33] and the references
therein.

A.2 Details of the proof of Theorem 4.1

In this section we derive the inequalities (4.15), (4.16), (4.17) and (4.21), which we
use in the proof of Theorem 4.1, and show that ca from (4.24) can be chosen indepen-
dently from s such that (Bd(0, 1)\Mx

s ) ∩Vis(z(d+1),Conv(z(1), . . . , z(d), x(d+1))) = ∅ for all
z(1) ∈ Cx1 , . . . , z(d) ∈ Cxd .
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Estimates for hi in (4.15)

For i ∈ {1, . . . , d} we show in the following that we can control hi = dist(Ti, z̄d+1) with the
choice of εh, ε` uniformly for s sufficiently large. Define F̃d+1 = S(x(1), . . . , x(d)) and let
z̄d+1 and x̄d+1 denote the projections of z(d+1) to Fd+1 and F̃d+1, respectively. Moreover,
let T̃i = S(x(1), . . . , x(i−1), x(i+1), . . . , x(d)). Then, for each y ∈ Ti there exists a ỹ ∈ T̃i
such that ‖y − ỹ‖ ≤ (d− 1)ε`

√
as−1/(d+1) + εha

2s−2/(d+1). Hence, with (4.12),√
2

d(d− 1)

√
as−1/(d+1) = dist(x̄d+1, T̃i)

≤ dist(x̄d+1, Ti) + (d− 1)ε`
√
as−1/(d+1) + εha

2s−2/(d+1)

≤ ‖x̄d+1 − z̄d+1‖+ hi + (d− 1)ε`
√
as−1/(d+1) + εha

2s−2/(d+1).

For the distance of the projections we have

‖x̄d+1 − z̄d+1‖ ≤ ‖x̄d+1 − z(d+1)‖+ ‖z(d+1) − z̄d+1‖ ≤ 2a2s−2/(d+1). (A.3)

Hence, we derive for hi,

hi ≥

√
2

d(d− 1)

√
as−1/(d+1) − 2a2s−2/(d+1) − (d− 1)ε`

√
as−1/(d+1) − εha2s−2/(d+1).

Note that 2a2s−2/(d+1) ≤ 1
2

√
2

d(d−1)

√
as−1/(d+1) for s sufficiently large. Therefore, we can

choose ε`, εh > 0 small enough such that for all t ∈ [0, 1/2] and s sufficiently large,

hi ≥ ch,l
√
as−1/(d+1) (A.4)

with a constant ch,l > 0. Using again (A.3) as well as εh, ε` ≤ 1/4, we have

hi ≤ ‖x̄d+1 − z̄d+1‖+ dist(x̄d+1, Ti)

≤ ‖x̄d+1 − z̄d+1‖+ dist(x̄d+1, T̃i) + (d− 1)ε`
√
as−1/(d+1) + εha

2s−2/(d+1)

≤ 9

4
a2s−2/(d+1) +

(√
2

d(d− 1)
+
d− 1

4

)
√
as−1/(d+1)

≤ ch,u
√
as−1/(d+1) (A.5)

for a suitable constant ch,u > 0, t ∈ [0, 1/2], and s sufficiently large, which provides (4.15).

Estimates for λd−2(Ti) in (4.16)

By e.g. [7, Section 6, p. 367] the k-dimensional volume λk of a k-dimensional regular
simplex Sk with edge length 2` is

λk(Sk) =
(2`)k

k!

√
k + 1

2k
(A.6)

for k ∈ N. By definition T̃i with i ∈ {1, . . . , d} is a regular (d − 2)-dimensional simplex
of side length 2` = 2

√
as−1/(d+1). We know that the (d − 2)-dimensional volume of a

(d− 2)-dimensional regular simplex of side length 2
√
a in Rd is continuous with regard

to translations of the vertices. Therefore, we can choose a cube around each vertex
small enough such that moving each vertex within the corresponding cube changes
the (d− 2)-dimensional volume of the (d− 2)-dimensional simplex only slightly. Due to
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homogeneity we can transfer this result to a regular simplex of side length 2
√
as−1/(d+1)

for all s ≥ 1, where each side of the cubes is scaled by s−1/(d+1). Hence, we can choose
εh, ε` ∈ (0, 1/4) small enough such that with (A.6) for s sufficiently large,

λd−2(Ti) ≥
1

2
λd−2(S(x(1), . . . , x(i−1), x(i+1), . . . , x(d))) =

2(d−2)/2
√
d− 1

2(d− 2)!
(
√
as−1/(d+1))d−2

=: cT,la
(d−2)/2s−(d−2)/(d+1)

and

λd−2(Ti) ≤ cT,ua(d−2)/2s−(d−2)/(d+1) (A.7)

for a suitable constant cT,u > 0, which finishes the proof of (4.16).

Estimates for λd−1(Fi) in (4.17)

Together with (A.5) and (A.7), it holds

λd−1(Fd+1) =
1

d− 1

d∑
i=1

λd−2(Ti)hi

≤ 1

d− 1

d∑
i=1

cT,ua
(d−2)/2s−(d−2)/(d+1)ch,u

√
as−1/(d+1)

and with (4.14),

λd−1(Fi) =
1

d− 1
λd−2(Ti)

√
h2
i + h̄2

≤ 1

d− 1
cT,ua

(d−2)/2s−(d−2)/(d+1)
√
c2h,uas

−2/(d+1) + a4s−4/(d+1)

for i ∈ {1, . . . , d}. Hence, we have for j ∈ {1, . . . , d+ 1} and s sufficiently large,

λd−1(Fj) ≤ cF,ua(d−1)/2s−(d−1)/(d+1)

for a suitable constant cF,u > 0. Analogously, we have for s sufficiently large,

λd−1(Fj) ≥ cF,la(d−1)/2s−(d−1)/(d+1)

for a suitable constant cF,l > 0 and j ∈ {1, . . . , d+ 1}, which provides (4.17).

Lower bound for ρi − ρd+1 in (4.21)

In the following we show the estimate for ρi − ρd+1 for i ∈ {1, . . . , d}. Let ui be the
projection of 0 to Fi for i ∈ {1, . . . , d + 1} and note that x̄d+1, which we introduced in
the estimate for hi as the projection of z(d+1) to F̃d+1, is also the projection of 0 on F̃d+1.
Then, for every i ∈ {1, . . . , d}, there exist a constant βi ≥ 0 and a vector vi orthogonal to
ud+1 such that

ui = (1 + βih)ud+1 + vi

and, thus,

ρ2
i = ‖ui‖2 = (1 + βih)2‖ud+1‖2 + ‖vi‖2 = (1 + βih)2ρ2

d+1 + ‖vi‖2.

Let ū be the projection of ud+1 to F̃d+1, while z̄0 is the intersection point of Fd+1 with
the line through 0 and z(d+1) (see Figure 3). We show that we can choose εh > 0 small
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enough such that ud+1 is very close to z̄0 to ensure a minimum distance from ud+1 to Ti.
It holds

‖x̄d+1‖2 + ‖x̄d+1 − ū‖2 = ‖ū‖2 ≤ ‖ud+1‖2 ≤ ‖z̄0‖2 ≤ (‖x̄d+1‖+ εha
2s−2/(d+1))2,

which implies

‖x̄d+1 − ū‖2 ≤ 2‖x̄d+1‖εha2s−2/(d+1) + ε2
ha

4s−4/(d+1).

This provides

‖z̄0 − ud+1‖2 ≤ ‖x̄d+1 − ū‖2 + ε2
ha

4s−4/(d+1) ≤ 2εha
2s−2/(d+1) + 2ε2

ha
4s−4/(d+1).

Hence, we can choose εh ∈ (0, 1/4) small enough such that

‖z̄0 − ud+1‖ ≤
1

4

√
2

d(d− 1)
as−1/(d+1) =

√
a

4

√
2

d(d− 1)
` ≤ 1

4

√
2

d(d− 1)
` (A.8)

since a ∈ (0, 1). For ε` > 0 small enough such that for s sufficiently large,

dist(z̄0, Ti) ≥ dist(x̄d+1, T̃i)− 2εha
2s−2/(d+1) − (d− 1)ε`

√
as−1/(d+1) ≥ 1

2

√
2

d(d− 1)
`,

(A.8) implies that dist(ud+1, Ti) ≥ 1
4

√
2

d(d−1)` for i ∈ {1, . . . , d} and s sufficiently large.

Then, for ‖vi‖ ≤ 1
8

√
2

d(d−1)`, dist(ui, Ti) is at least 1
8

√
2

d(d−1)` since dist(ud+1, Ti) ≤
‖vi‖+ dist(ui, Ti) (see Figure 4). Hence, with the intercept theorem we have together
with (4.14) and (A.5),

ρi − ρd+1 ≥ βih‖ud+1‖ = h̄
dist(ui, Ti)

dist(z(d+1), Ti)

≥ 1

8

√
2

d(d− 1)
` · h̄√

h̄2 + h2
i

≥ 1

8

√
2a

d(d− 1)
s−1/(d+1) ·

1
4a

2s−2/(d+1)√
a4s−4/(d+1) + c2h,uas

−2/(d+1)

≥ cρ,la2s−2/(d+1)

for a suitable constant cρ,l > 0. If ‖vi‖ > 1
8

√
2

d(d−1)`, we have

ρ2
i − ρ2

d+1 ≥ ρ2
i − (1 + βih)2ρ2

d+1 = ‖vi‖2 >
1

64

2

d(d− 1)
`2.

Hence,

ρi − ρd+1 ≥
2

64(ρi + ρd+1)d(d− 1)
`2 ≥ 1

64d(d− 1)
`2 =

a

64d(d− 1)
s−2/(d+1),

which completes the proof of (4.21).
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0

F̃d+1

z(d+1)

Fd+1 z̄0

x̄d+1

ud+1

ū

z̄d+1

Figure 3: Point configuration on
Fd+1 and F̃d+1.

0

z(d+1)

Ti

z(i)

Fi

z̄d+1

ρd+1 ρi

βihud+1

vi
ui

ud+1

Figure 4: Decomposition of the projection of 0 to
Fi.

How to choose ca > 0 in (4.24)

In the following we show that the constant ca > 0 from the definition of Mx
s can be chosen

independently from s such that (Bd(0, 1)\Mx
s )∩Vis(z(d+1),Conv(z(1), . . . , z(d), x(d+1))) = ∅

for all z(1) ∈ Cx1 , . . . , z(d) ∈ Cxd , i.e. that ca > 0 can be chosen in such a way that any
line on the boundary of Conv(z(1), . . . , z(d), x(d+1)) through x(d+1) meets the hyperplane
{y = (y1, . . . , yd) ∈ Rd : y1 = 1 − cas−2/(d+1)} outside the ball Bd(0, 1). Note that this
implies that (Bd(0, 1)\Mx

s ) ∩ Vis(z(d+1),Conv(z(1), . . . , z(d+1))) = ∅ for all t ∈ [0, 1/2].
With (A.3) and (A.4) it holds that

dist(x̄d+1, Ti) ≥ hi − ‖x̄d+1 − z̄d+1‖ ≥ ch,l
√
as−1/(d+1) − 2a2s−2/(d+1)

≥ c̃h,l
√
as−1/(d+1) (A.9)

for c̃h,l =
ch,l
2 , i ∈ {1, . . . , d} and s sufficiently large.

Let Bd−1
C = Bd(x̄d+1, c̃h,l

√
as−1/(d+1)) ∩H. Then, because of (A.9),

Vis(x(d+1),Conv(z(1), . . . , z(d), x(d+1)))

is a subset of the visibility region at x(d+1) of the smallest cone K with apex x(d+1) that
contains Bd−1

C . Hence, if we choose ca > 0 such that (Bd(0, 1)\Mx
s ) ∩Vis(x(d+1),K) = ∅,

then also (Bd(0, 1)\Mx
s ) ∩Vis(x(d+1),Conv(z(1), . . . , z(d), x(d+1))) = ∅. Because of symme-

try it suffices to ensure that the line through x(d+1) and

ŷ = (1− (a+ a2)s−2/(d+1))e1 + c̃h,l
√
as−1/(d+1)e2

meets H outside of Bd(0, 1). A point xγ on the line through x(d+1) and ŷ can be described
by

xγ = (1− as−2/(d+1))e1 + γ(−a2s−2/(d+1)e1 + c̃h,l
√
as−1/(d+1)e2) (A.10)

for γ ∈ R. To determine a possible constant ca > 0 we need a γ > 1 such that the point

xγ = (xγ,1, . . . , xγ,d) fulfils ‖xγ‖ > 1. If xγ,1 > 1− 1
2

∑d
i=2 x

2
γ,i ≥

√
1−

∑d
i=2 x

2
γ,i, it holds

that xγ /∈ Bd(0, 1), i.e. xγ /∈ Bd(0, 1) if

1− (a+ γa2)s−2/(d+1) > 1− γ2

2
c̃2h,las

−2/(d+1) ⇐⇒ γ2

2
c̃2h,l − γa− 1 > 0. (A.11)

This inequality is fulfilled for γ > 1 large enough independently of s. Hence, inserting
a possible γ̂ > 1, which fulfils (A.11), in (A.10) provides that ca > 0 can be chosen
independently from s as ca = a+ γ̂a2.
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