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Critical drift estimates for the frog model on trees*

Emma Bailey† Matthew Junge‡ Jiaqi Liu §

Abstract

Place an active particle at the root of a d-ary tree and a single dormant particle at
each non-root site. In discrete time, active particles move towards the root with
probability p and, otherwise, away from the root to a uniformly sampled child vertex.
When an active particle moves to a site containing a dormant particle, the dormant
particle becomes active. The critical drift pd is the infimum over all p for which
infinitely many particles visit the root almost surely. Guo, Tang, and Wei proved
that supd≥3 pd ≤ 1/3. We improve this bound to 5/17 with a shorter argument that
generalizes to give bounds on supd≥m pd. We additionally prove that lim sup pd ≤ 1/6

by finding the limiting critical drift for a non-backtracking variant.
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1 Introduction

Let Td be the infinite, rooted d-ary tree in which each vertex has d ≥ 2 child vertices.
Place an active particle at the root ∅ and a single dormant particle at each non-root
site. Fix p ∈ (0, 1) and have each active particle perform a nearest neighbor p-biased
random walk. At each discrete time step an active particle moves one step towards the
root with probability p and away from the root to a uniformly sampled child vertex with
probability 1− p. When an active particle moves to a site with a dormant particle, the
dormant particle becomes active and begins its own independent p-biased random walk.
Call this process the frog model with drift on Td and denote it by FM(d, p).

Frog model dynamics capture aspects of the spread of infection, a rumor, or energy.
When the underlying graph is infinite, a basic question is whether or not infinitely many
particles visit the root. Many papers have studied this with simple random walks on
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Critical drift estimates for the frog model on trees

integer lattices and trees [21, 1, 20, 9, 10, 18]. There has been recent interest in the
variant in which active particles perform biased random walk [4, 2, 6].

A root visit is counted each time an active particle moves to the root. Let Vt be the
number of root visits up to time t and VFM(d,p) := limt→∞ Vt be the total number of root
visits. We say that FM(d, p) is recurrent if P(VFM(d,p) =∞) = 1. Recurrence satisfies a
0-1 law (see [2, Proof of Proposition 1.4]). Accordingly, call the process transient if it is
not recurrent. Define

pd := inf{p : FM(d, p) is recurrent}

to be the infimum over all drifts for which FM(d, p) is recurrent. Since a single p-biased
walk is recurrent for p ≥ 1/2, we are only interested in p ∈ (0, 1/2).

A natural case FM(2, 1/3) has active particles performing simple random walk on
the binary tree. Hoffman, Johnson, and Junge resolved a longstanding open problem by
proving that FM(2, 1/3) is recurrent [9]. Conversely, FM(2, p) with p < 1/3 is transient
since the dominating process with all particles initially active is transient. Thus, p2 = 1/3.

Increasing p creates a stronger drift towards the root, and increasing d results in
more dormant frogs. Both of these effects should result in more visits to the root. An
intriguing feature of FM(d, p) is that there is no known proof that VFM(d,p) stochastically
increases in p or d. For example, it is not obvious that p2 = 1/3 is a uniform bound for pd.
The main result from [2] proved a weaker bound supd≥3 pd ≤ 0.4155. In [6], Guo, Tang,
and Wei improved this bound to 1/3. Our first result is a slightly better bound.

Theorem 1.1. supd≥3 pd ≤ 5/17 ≈ 0.2941.

Besides the bound improvement, we see several positive consequences of Theorem 1.1.
One is that the proof uses a different technique than what was used in [6], which provides
new perspective. A particular highlight is a simple to check criteria for recurrence of
FM(d, p) in Proposition 2.6. Another nice consequence is that our proof is shorter than
that given in [6] (four versus nineteen pages). The third is that the bound we obtain is
strictly less than p2 = 1/3. This implies that pd < p2 for all d ≥ 3, which supports the
conjecture from [2] and [6] that pd is decreasing. The fourth positive consequence is that
our technique can be generalized to give better bounds on supd≥m pd as m is increased.
See Remark 3.2 and the article [16] that carries out the generalization for more details.
It is unclear if the approach from [6] could be as easily generalized. To illustrate how
the generalization goes, we prove an extension for d = 4.

Theorem 1.2. supd≥4 pd ≤ 27/100.

The authors of [2] further conjectured that

lim
d→∞

pd = q∗ :=
2−
√

2

4
≈ 0.1464. (1.1)

Here q∗ is the critical drift for the branching p-biased random walk in which each particle
does not branch when moving towards the root (which it does with probability p) and
splits into two particles when moving away from the root. Our second result is a limiting
bound on pd that is near q∗.

Theorem 1.3. lim supd→∞ pd ≤ 1/6 ≈ 0.1667.

Intuition suggests that as d becomes larger, most steps away from the root by parti-
cles in FM(d, p) will be to sites containing dormant particles. Thus, FM(d, p) ought to
converge to this branching random walk as d→∞. As mentioned previously, monotonic-
ity of pd has yet to be established. So, both the existence of the limit and convergence to
q∗ remain open.

The only known monotonicity result for FM(d, p) is [2, Proposition 1.2], which states
that VFM(d,p) � VFM(kd,p) for any positive integer k. One difficulty is that the frog model
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has regimes in which the set of sites visited by active particles contains a linearly
expanding ball centered at the root [10]. No activation occurs in this growing region.
This distinguishes the frog model from branching random walk on a macroscopic level,
and casts a shadow of doubt on (1.1).

Theorem 1.3 is proven by exactly computing the limiting critical drift for the non-
backtracking frog model denoted by nbFM(d, p). This is a relevant model since all
arguments that we know of for recurrence of FM(d, p) rely on proving that nbFM(d, p) is
recurrent. In nbFM(d, p), paths of active particles are non-backtracking. Let

p∗ = p∗(p, d) :=
p(d− 1)

d− (d+ 1)p
and p̂ = p̂(p) :=

p

1− p
. (1.2)

Initially, there is one active frog at the root. It moves to a uniformly sampled child vertex
in the first step and activates the dormant frog there. Just activated frogs move towards
the root with probability p∗, and otherwise away from the root to a uniformly sampled
child vertex. For subsequent steps, if the previous step was towards the root, then the
next step will be towards the root with probability p̂, and otherwise away from the root
to a uniformly sampled child vertex excluding the site from which it just jumped. If the
previous step was away from the root, all subsequent steps will be away from the root to
uniformly sampled child vertices. Any particles that visit the root are killed there and no
longer participate in the process. Let VnbFM(d,p) denote the total number of root visits in
nbFM(d, p) and say that the process is recurrent if P(VnbFM(d,p) =∞) = 1. Define

p′d = inf{p : nbFM(d, p) is recurrent}.

We find the exact limiting value of p′d.

Theorem 1.4. limd→∞ p′d = 1/6.

Theorem 1.4 is used to derive Theorem 1.3. Theorem 1.4 is a valuable contribution in
and of itself since it suggests the truth of (1.1). Indeed, the intuitive limit nbFM(∞, p) is a
branching process nbBRW(p) in which particles move towards the root with probability p̂
and do not branch for some geometric distributed number of steps, after which they move
away from the root branching into two particles at each step. It follows from Lemma 4.2

that nbBRW(p) has critical drift 1/6, thus p′d converges to its intuitive limit. Note that
nbFM(p) also exhibits a linearly expanding ball of visited sites when the initial particle
density is high enough [10]. So, the “shadow of doubt” mentioned earlier from this
macroscopic effect does not seem to effect convergence of the critical drift.

Another benefit of of Theorem 1.4 is that it provides useful guidance on where
not to direct future efforts towards establishing (1.1). All proofs that we know of for
recurrence of a frog model on an infinite tree did so by proving that a non-backtracking
sub-process is recurrent. Since q∗ < 1/6, our result suggests that any argument using a
non-backtracking frog model will fall short of proving that pd → q∗. Some new type of
argument that engages directly with FM(d, p) appears to be needed.

The arguments we employ to upper bound pd and p′d use approximations to the frog
model that are less recurrent. To get a sense of how much precision is lost, we conducted
some numerical simulations to estimate p3, p

′
3, and p′4. We found that

p3 ≈ 0.25; p′3 ≈ 0.2725; p′4 ≈ 0.246. (1.3)

Details are in Section 6. In [9], it was conjectured that FM(3, 1
4 ) i.e., the frog model with

simple random walks, is recurrent. So, under this assumption p3 = 1
4 . Our data gives

more support to this conjecture (see Figure 2). The values of p′3 and p′4 are within about
.02 of the bounds from Theorem 1.1 and Theorem 1.2. This suggests that our proofs do
not sacrifice much accuracy. It is also interesting to see the (simulated) discrepancy
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between p3 and p′3 (about .0225) that results from restricting to non-backtracking random
walk paths.

1.1 Overview of proofs

The proof that supd≥3 pd ≤ 1/3 from [6] followed the blueprint from [9]. The calcu-
lations in [9] were involved, and became much more complex in the generalization in
[6]. We work with a Poisson-distributed number of dormant particles per site. Poisson
thinning makes many intricate dependencies vanish. A comparison result from [12] lets
us convert our findings back to the one particle per site setting of FM(d, p).

Our main tool is a self-similar frog model SFM(d, p) that embeds in the usual frog
model so that it has fewer root visits. We denote by VSFM(d,p) the number of root visits
in SFM(d, p). It was observed in [8] that VSFM(d,p) satisfies a recursive distributional
equation in the simple random walk setting. A similar equation holds for arbitrary p. The
equation relates VSFM(d,p) to 1+U thinned independent copies of VSFM(d,p), where U is the
number of leaves visited in a frog model on a star graph (see Figure 1). In Proposition 2.6,
we reduce proving recurrence to finding a stochastic lower bound for U whose Laplace
transform satisfies a certain inequality.

Theorem 1.2 uses the same approach as Theorem 1.1, and Theorem 1.3 follows
immediately from Theorem 1.4. The proofs of Theorem 1.1 and Theorem 1.4 come down
to constructing the right stochastic lower bound for U . For Theorem 1.1, we modify
what occurs on Td to resemble the setting with d = 3. For Theorem 1.4, we leverage
the fact that when the drift is fixed, we do not need many leaves of the star graph to
be visited in order to satisfy Proposition 2.6. The arguments presented are not simple
rehashes of past techniques. The stochastic lower bounds are novel and tailored to
FM(d, p). See Remark 2.7 for more about the difficulties.

Another ingredient in the proof of Theorem 1.4 is connecting nbFM(d, p) with its
intuitive limiting multitype branching random walk. This substantial endeavor is a
technical contribution. Section 4 defines the multitype branching random walk and then
works out its transience and recurrence properties. The main thrust is extending results
from [15] to our setting. The transience/recurrence criteria in Lemma 4.1 are novel and
may be of future use for the study of multitype branching random walks.

1.2 Organization

In Section 2, we define the self-similar frog model and deduce some of its properties.
This culminates with a sufficient condition for recurrence of SFM(d, p) given at Proposi-
tion 2.6. We use this in Section 3 to prove Theorem 1.1. Section 4 gives transience and
recurrence conditions for a multitype branching random walk and relates them back
to the frog model. In Section 5, we prove Theorem 1.3, which has Theorem 1.4 as an
immediate corollary. Finally, in Section 6, we provide some numerical simulations that
complement our results.

2 The self-similar frog model and associated operator

First a few remarks on notation. We abbreviate the Poisson distribution with mean
λ by Poi(λ). Given two nonnegative random variables X and X ′, we say that X is
stochastically smaller than X ′ if P(X ≥ a) ≤ P(X ′ ≥ a) for all a ≥ 0. We will denote
this by X � X ′. Similarly, given two probability measures π and π′ on [0,∞] we say that
π � π′ if π((a,∞)) ≤ π′((a,∞)) for all a ≥ 0.
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Figure 1: The self-similar frog model operator. Red sites contain particles that are
initially active and blue sites contain initially dormant particles. Aπ is the law for the
number of particle killed at ∅ when the process fixates and U is the number of vertices
among v2, . . . , vd that are ever visited. Empty boxes on the right at v1, . . . , vd represent
sites whose particles were activated.

2.1 The process

The self-similar frog model SFM(d, p) has particles follow the same type of non-
backtracking random walks as in nbFM(d, p) with some key amendments. The first
modification is that we replace the single dormant particle at each site with independent
Poi(1)-distributed numbers of particles. When an active particle visits a site with dormant
particles, all dormant particles there become active. The additional modification is that
particles moving away from the root are killed upon visiting a vertex that has already
been visited. If multiple active particles attempt to move away from the root to the same
unvisited vertex, then one is chosen to continue its path and the others are killed. Let
VSFM(d,p) denote the total number of root visits in SFM(d, p). Notice that SFM(d, p) is
defined with a Poisson distributed initial configuration of dormant particles. We use a
result from [12] to show that this can be compared to prove recurrence of FM(d, p).

Lemma 2.1. If SFM(d, p) is recurrent, then nbFM(d, p) is recurrent. If nbFM(d, p) is
recurrent, then FM(d, p) is recurrent.

Proof. [12, Corollary 5] states that recurrence of a frog model with Poisson initial
conditions implies recurrence of the same model with one particle per site. The result
follows from this and the construction in [6, Section 2]. The construction explains how
SFM(d, p) is a restriction of nbFM(d, p), which is a restriction of FM(d, p).

2.2 The operator

Given a probability measure π on the nonnegative integers, we define Aπ to be the
self-similar frog model operator. It is obtained from the following auxiliary process.

Consider a star graph with root ∅, central vertex ∅′, and leaves v1, . . . , vd (see
Figure 1). There is a Poi(1) number of active particles at ∅′ and a π-distributed number
of active particles at v1. Independent π-distributed numbers of dormant particles are
placed at v2, . . . , vd.

The active particles started at ∅′ move to ∅ independently with probability p∗ and
otherwise each moves to an independently and uniformly sampled vertex from v1, . . . , vd.
Active particles at vi move to ∅′ with probability 1, and then to either ∅ with probability
p̂ or otherwise to a uniformly sampled vertex among {v1, . . . , vd} \ {vi}. Whenever active
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particles encounter dormant particles, the dormant particles become active. When a
particle moves to a leaf or to ∅, it is killed there.

Take Aπ to be the law for the total number of particles killed at ∅ when the process
fixates. Also, let Uπ be law for the total number of v2, . . . , vd that are ever visited by
an active particle. We define U = U(d, p, λ) to be a random variable with distribution
U Poi(λ).

2.3 Properties of A
The following facts state that the law of VSFM(d,p) is a fixed point of A, that A is

monotone, and that APoi(λ) has a particularly nice representation. We also state [19,
Theorem 3.1 (b)] for comparing a Poisson random variable to one with a random parame-
ter. We omit the proofs because they arise almost immediately from the construction and
analogues have been observed in [8, 11, 13]. We will abuse notation and write AVSFM(d,p)

and APoi(λ) to represent the operator A applied to the associated probability measure.

Fact 2.2. AVSFM(d,p)
d
= VSFM(d,p).

Fact 2.3. If π � π′, then Aπ � Aπ′.
Fact 2.4. APoi(λ)

d
= Poi(p∗ + p̂(1 + U)λ).

Fact 2.5. Suppose that Y ∼ Poi(Θ) and Z ∼ Poi(λ) with Θ a nonnegative random
variable and λ ≥ 0. By [19, Theorem 3.1 (b)], the following are equivalent:

Y � Z ⇐⇒ P(Y = 0) ≤ P(Z = 0) ⇐⇒ E[e−Θ] ≤ e−λ.

We apply these facts to give a sufficient condition for recurrence.

Proposition 2.6. Suppose that VSFM(d,p) � Poi(λ0). Let U ′ = U ′(d, p, λ) be a family of
random variables indexed by λ with U ′(d, p, λ) � U(d, p, λ) for all λ ≥ λ0.

If there exists ε > 0 such that for all λ ≥ λ0

E[e−p
∗−p̂(1+U ′)λ] ≤ e−λ−ε, (2.1)

then SFM(d, p), nbFM(d, p), and FM(d, p) are recurrent.

Proof. Let X = p∗ + p̂(1 + U)λ and X ′ = p∗ + p̂(1 + U ′)λ. If (2.1) holds, then Fact 2.5

implies that Poi(X ′) � Poi(λ + ε). Fact 2.4 and our assumption that U ′ � U then imply
that for all λ ≥ λ0

APoi(λ)
d
= Poi(X) � Poi(X ′) � Poi(λ+ ε).

Starting with VSFM(d,p) � Poi(λ0) and iteratively applying Fact 2.2 and Fact 2.3 gives

VSFM(d,p) = A(n)VSFM(d,p) � A(n) Poi(λ0) � Poi(λ0 + εn)

for all n ≥ 0. It follows that P (VSFM(d,p) =∞) = 1. As SFM(d, p) is recurrent, Lemma 2.1

ensures that so are nbFM(d, p) and FM(d, p).

Remark 2.7. The random variables U ′, Ũ , and U ′′ from Sections 3 and 5 are carefully
balanced to satisfy (2.1). Expanding (2.1), we would like to show that

E[e−p
∗−p̂(1+U ′)λ] =

d−1∑
u=0

e−p
∗−p̂(1+u)λP(U ′ = u) ≤ e−λ−ε.

For 1 + u ≥ 1/p̂, the summands are much smaller than e−λ. However, when 1 + u < 1/p̂,
we need good bounds on the probability coefficients P(U ′ = u) to make up for the
e−p̂(1+u)λ terms being too large on their own. The balancing act is modifying U to obtain
a smaller random variable with a tractable distribution that does not sacrifice too much
precision.
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3 Proof of Theorem 1.1

Fix p = 5/17 so that p∗ = (5d− 5)/(12d− 5) and p̂ = 5/12. Note that p∗ is easily seen
to be increasing in d. By taking d = 3 and d =∞ we have

10/31 ≤ p∗ ≤ 5/12 for all d ≥ 3. (3.1)

By Proposition 2.6, it suffices to find a random variable U ′ � U(d, p, λ) and ε > 0 so
that (2.1) holds for all d ≥ 3. We define U ′ to be the number of activated leaves in the
following modified auxiliary process. First, we reduce to a star graph with only three
leaves v′1, v

′
2, v
′
3. Second, the Poi(1) active particles at ∅′ move to ∅ with probability

10/31 ≤ p∗, away from ∅ to a uniformly sampled leaf with probability 7/12 ≤ 1 − p∗,
and otherwise are killed at ∅′. Besides these changes, the process evolves in the same
manner as the auxiliary process and runs until fixation. Then U ′ ∈ {0, 1, 2} is how many
of {v′2, v′3} are eventually visited by an active particle.

Lemma 3.1. U ′ � U(d, 5/17, λ) for all d ≥ 3 and λ ≥ 0.

Proof. We first consider an intermediate process in which the active particles started at
∅′ independently move away from ∅′ to a uniformly sampled vertex from v1, ..., vd with
probability 7/12 rather than 1− p∗. Let U ′d ∈ {0, 1, . . . , d− 1} be the number of activated
leaves with this modification. Since 7/12 < 1− p∗, less particles are being sent to the
leaves and thus U ′d � U(d, 5/17, λ). Now the probabilities that active particles move
towards the leaves are the same in both processes defining U ′d and U ′. From here, it
is straightforward to couple the two random variables so that U ′ � U ′d for all d ≥ 3. It
basically amounts to showing that a coupon collecting process with d versus 2 coupons
has (stochastically) more unique coupons discovered after sampling the same number of
coupons in each process. Thus, U ′ � U(d, 5/17, λ).

Proof of Theorem 1.1. Fix p = 5/17. We will show that (2.1) holds for all λ ≥ 0.
By Lemma 3.1, and taking λ0 = 0 in Proposition 2.6, we then have FM(d, 5/17) is recurrent
for all d ≥ 3.

Towards (2.1), we use the bound 10/31 ≤ p∗ from (3.1) and that p̂ = 5/12 to write

E[e−p
∗−p̂(1+U ′)λ] =

2∑
u=0

e−p
∗
e−p̂(1+u)λP(U ′ = u)

= e−λ
2∑

u=0

e−p
∗
e(1−p̂(1+u))λP(U ′ = u)

≤ e−λ
2∑

u=0

e−
10
31 e(1− 5

12 (1+u))λP(U ′ = u).

Set

f(λ) :=

2∑
u=0

e−
10
31 e(1− 5

12 (1+u))λP(U ′ = u). (3.2)

Deducing (2.1) comes down to proving that

f(λ) ≤ e−ε for all λ ≥ 0 and some ε > 0. (3.3)

Let U ′ = U ′(p, λ) be the number of leaves from {v′1, v′2, v′3} that are visited by an active
particle in the modified auxiliary process with π = Poi(λ) for λ ≥ 0. Poisson thinning
allows us to explicitly compute the distribution of U ′. Each of the Poi(1) active particles
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initially at ∅′ visits one of the vertices {v′2, v′3} with probability 7
12 ·

2
3 , and each of the

Poi(λ) active particles initially at v′1 move to ∅′ with probability 1, and then visits one of
the vertices {v′2, v′3} with probability 7/12. Therefore, the probability that none of the
vertices {v′2, v′3} is activated is the probability that a Poi( 7

12
2
3 + 7

12λ) distributed random
variable is equal to 0, giving rise to P(U ′ = 0). One can apply the same argument to
compute P(U ′ = 1). The only difference is that if one of the vertices {v′2, v′3} is visited,
particles initially there will be activated and can possibly visit the remaining unvisited
vertex.

As a result of these calculations, we obtain

P(U ′ = 0) = e−
7
12

2
3−

7
12λ = e−

7
18−

7
12λ

P(U ′ = 1) = 2(1− e− 7
12

1
3−

1
2

7
12λ)e−

7
12

1
3−

1
2

7
12λe−

1
2

7
12λ = 2(1− e− 7

36−
7
24λ)e−

7
36−

7
12λ

P(U ′ = 2) = 1−P(U ′ = 0)−P(U ′ = 1).

Using these terms in (3.2) and letting

g(x) :=
2x27

e397/558
− x20

e397/558
− 2x20

e577/1116
− 2x17

e397/558
+

2x10

e577/1116
+

x6

e10/31
+

1

e397/558
,

one can verify that g(e−λ/24) = f(λ). So, (3.3) is equivalent to the statement

g(x) ≤ e−ε for some ε > 0 and all x ∈ [0, 1] (3.4)

To prove (3.4) we first compute the derivative:

g′(x) =
54x26

e397/558
− 20x19

e397/558
− 40x19

e577/1116
− 34x16

e397/558
+

20x9

e577/1116
+

6x5

e10/31
.

The roots of this polynomial can be numerically found, for example using the Polynomial
module in the NumPy library within Python, which is based on solving the eigenvalue
problem for the companion matrix [5, 7]. Upon removing the root of degree 5 at x = 0,
by this technique we find that g′ has exactly one root in (0, 1]. Call it r0. Elementary
calculus shows that g(r0) is the global maximum on [0, 1]. As g is an explicit polynomial,
mathematical software can rigorously estimate both r0 and g(r0) to arbitrary precision.
Doing so gives g(r0) ≤ .9963 < e−.003.

Thus, we may take ε = .003 in (3.4). This gives (3.3) for the same ε which implies (2.1).
As discussed at the onset of the proof, we have satisfied the hypotheses of Proposition 2.6.
So, FM(d, 5/17) is recurrent for all d ≥ 3.

Assuming the reader has familiarity with the proof of Theorem 1.1, we now prove the
generalization in Theorem 1.2.

Proof of Theorem 1.2. Fix p = 27/100 so that p∗ = (27d − 27)/(73d − 27) and p̂ = 27/73.
Suppose that d ≥ 4. Since p∗ is increasing in d, by taking d = 4 and d =∞, we have for
all d ≥ 4,

81

265
≤ p∗ ≤ 27

73
.

As in the proof of Theorem 1.1, we will show that (2.1) holds for all λ ≥ 0.
We define Ũ := Ũ(d, p, λ) to be the number of activated leaves in the following

modified auxiliary process. First, we reduce to a star graph with only four leaves
ṽ1, ṽ2, ṽ3, ṽ4. Second, the Poi(1) active particles at ∅′ move to ∅ with probability p̃ =

81/265 ≤ p∗, away from ∅ to a uniformly sampled leaf with probability ρ = 46/73 ≤ 1−p∗,
and otherwise are immediately killed. Besides these changes, the process evolves in
the same manner as the auxiliary process and runs until fixation. The random variable
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Ũ ∈ {0, 1, 2, 3} is how many of {ṽ2, ṽ3, ṽ4} are ever visited by an active particle. Following
a similar argument as Lemma 3.1, we have Ũ � U(d, 27/100, λ) for all d ≥ 4.

Using Poisson thinning, we can compute the distribution of Ũ :

P(Ũ = 0) = e−ρ
3
4−ρλ

P(Ũ = 1) = 3(1− e−ρ 1
4−ρ

1
3λ)e−ρ

2
4−ρ

2
3λe−ρ

2
3λ

P(Ũ = 2) = 3(1− e−ρ 1
4−ρ

1
3λ)2e−ρ

1
4−ρ

1
3λe−ρ

1
3 2λ

+ 3(1− e−ρ 1
4−ρ

1
3λ)e−ρ

2
4−ρ

2
3λ

× 2(1− e−ρ 1
3λ)e−ρ

1
3λe−ρ

1
3λ

P(Ũ = 3) = 1−P(Ũ ≤ 2)

In words: {Ũ = 0} has no frogs from ṽ1 move to Ṽ := {ṽ2, ṽ3, ṽ4}; {Ũ = 1} has one vertex
from Ṽ become activated (3 choices) and the other two fail to activate; and {Ũ = 2} has
either two vertices from Ṽ initially activate (3 choices) and the third fail to activate, or
one vertex from Ṽ initially activates (3 choices) and that activates exactly one more (2
choices), which then fails to activate the remaining vertex.

As in the proof of Theorem 1.1, we can write

E[e−p
∗−p̂(1+Ũ)λ] ≤ e−λf̃(λ)

with

f̃(λ) =

3∑
u=0

e−p̃e(1−p̂(1+u))λP(Ũ = u). (3.5)

It suffices to prove that f̃(λ) ≤ e−ε for some ε > 0 and all λ ≥ 0. After the change of
variables λ→ −219 log x, this is equivalent to proving that g̃(x) := f̃(−219 log x) ≤ e−ε for
some ε > 0 and all x ∈ [0, 1]. The choice 219 was made from inspecting the expansion of
f̃ (computed with Mathematica) to find the least common denominator of the fractional
exponents involving x. We check that CountRoots[0,1][g̃

′] = 105. Since g̃′ has a root of
multiplicity 104 at x = 0, elementary calculus can be used to show that g̃ has a global
maximum in [0, 1] at x̃0 ≈ 0.993157 of g̃(x0) ≈ 0.9808 < e−.01. These approximations are
within 10−7 of the true values, so we may take ε = 0.02 and complete the argument as in
the proof of Theorem 1.1.

Remark 3.2. We describe how to generalize Theorem 1.2 to obtain a bound on supd≥m pd.
In principle, asm increases, this should give bounds closer and closer to 1/6 in agreement
with Theorem 1.3. We did not try to go beyond m = 4, but this will likely become
computationally infeasible at m ≈ 10. First we replace the d leaves with m leaves and
construct Ũm ∈ {0, 1, . . . ,m − 1} that is stochastically smaller than U(d, p, λ). This is
accomplished by using the drift p̃m = p∗(m, p) ≤ p∗(d, p) towards ∅ in the auxiliary
process and the drift ρm = 1− p̂ ≤ 1− p∗(d, p) away from ∅ to a uniformly sampled child
vertex from v1, ..., vm. We then need to compute the distribution of Ũm exactly. This
is theoretically possible for any m, but becomes more and more complex as m grows.
One then constructs a function f̃m(λ) =

∑m−1
u=0 e

−p̃me(1−ρ(1+u))λ)P(Ũm = u) as at (3.5).
One can plot f̃m using mathematical software to approximate the value of p for which
f̃m(λ) < 1 for all λ ≥ 0, then use our approach that employs CountRoots to show that
the transformation g̃m(x) < 1.

Remark 3.3. The procedure described in the previous remark was implemented in [16]
as part of a Polymath Jr. project. The authors provided rigorous bounds on supd≥m pd up
to m = 13 (0.204) and non-rigorous bounds up to m = 60 (0.1840).
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4 Non-backtracking branching random walk

In this section, we construct and deduce some properties of various spatially homo-
geneous multitype branching random walks that relate back to the frog model.

4.1 Construction

The process starts with a configuration of particles on Z+ at time 0. Each particle
comes with a type i ∈ {1, 2, ..., k}. At discrete time steps, each particle independently
gives birth to a random number of particles according to an offspring distribution that
only depends on its type. The parent particle dies immediately after. Each newborn
particle independently moves according to some displacement distribution that only
depends on the particle’s type. Particles that reach 0 are stopped there instantaneously
and stay there forever without producing any offspring.

For i, j = 1, ..., k, let rij be the expected number of offspring of Type-j produced by one
Type-i particle and R = (rij)i,j=1,...,k be the mean matrix of the offspring distributions.
For a particle of Type-i at site x ∈ Z≥0, we let

pix,y = P(Type i born at x moves to y).

We now give a formal definition of the non-backtracking p-biased branching random
walk on the nonnegative integers which we denote by nbBRW(p). Suppose a given
particle is at x ≥ 1. Particles die immediately after producing offspring in the following
manner:

Type-1 Correspond to active particles that have yet to start moving away from the
root. Each such particle produces either one Type-1 offspring with probability p̂,
or one Type-2 offspring plus a Poi(1)-distributed number of Type-3 offspring with
probability 1− p̂.

Type-2 Correspond to active particles that have began to move away from the root.
Each such particle produces one Type-2 offspring and a Poi(1)-distributed number
of Type-3 offspring with probability 1.

Type-3 Auxiliary Type-1 particle, have the same offspring distribution as Type-1 parti-
cles, but different displacement distribution.

After producing offspring, each newly generated particle, independently of everything
else, displaces from x according to the following transition probabilities:

p1
x,x−1 = 1, p2

x,x+1 = 1, p3
x,x+1 = 1, for x > 0.

In words, Type-1 particles always move one step left, and Type-2 and Type-3 particles
move one step right. We stop any particles that reach 0.

Some quick remarks:

• Type-2 particles correspond to non-backtracking active frogs that have turned
away from the root and will continue moving away for all steps. Type-1 and Type-3
particles correspond to non-backtracking active frogs that may still jump towards
the root. We need two different particle types so that the displacements are
independent of the manner in which particles are born.

• There is no dependence on d in the definition of nbBRW(p). Since p∗ → p̂ when
d→∞, one can view nbBRW(p) as the intuitive limiting version of nbFM(d, p).

• The mean displacement matrix R = (rij) is

R =

p̂ 1− p̂ 1− p̂
0 1 1

p̂ 1− p̂ 1− p̂

 .
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Let VnbBRW(p) be the total number of particles that are killed at the origin. We say
that nbBRW(p) is recurrent if P(VnbBRW(p) =∞) = 1 and otherwise transient. We adapt
ideas from [3, 15] to find the criteria of recurrence and transience.

Let us first introduce some additional notation from [15]. For i = 1, 2, 3, we denote
by Ni(t) the number of Type-i particles at time t and {Xi

k(t) : k = 1, ..., Ni(t)} the set of
positions of Type-i particles at time t. Then the configuration at time t is the multiset

ω(t) = {X1
1 (t), ..., X1

N1(t)(t), ..., X
3
1 (t), ..., X3

N3
(t)}.

The configuration of Type-i particles at time t is the multiset

ωi(t) = {Xi
1(t), ..., Xi

Ni(t)
(t)}.

We denote pi = pix,x−1 and qi = pix,x+1. Then we have p1 = q2 = q3 = 1 and p2 = p3 = q1 =

0.

Let M be the collection of initial configurations that consist of a finite number
of particles distributed on Z≥0. Since for any i, j = 1, 2, 3, Type-i particles can be
generated by a Type-j particle in finite steps with positive probability, we have either
E[VnbBRW(p) | ω(0) = ω] < ∞ for all ω ∈ M or E[VnbBRW(p) | ω(0) = ω] = ∞ for all
ω ∈M. We will omit the initial configuration when we only care about the finiteness of
E[VnbBRW(p)] rather than its precise value.

4.2 Transience and recurrence criteria

The following lemma is a combination of [15, Theorem 4 and Theorem 7]. It gives
both necessary and sufficient conditions for nbBRW(p) to have a finite expected number
of particles hitting the origin. The proof is a non trivial application of [15, Theorem 4
and Theorem 7], because (a) nbBRW(p) does not satisfy all of the hypotheses used in
[15], and (b) the definitions of recurrence and transience in [15] are different from our
definitions. However, the proof ideas can be adapted to our case. We also note that
results similar to Lemma 4.1 are present under other settings. A more general form
of (4.1) appeared first in [14] as a classification of one-dimensional branching random
walk, then in [17] as a qualitative characterization of recurrence and transience for
branching Markov chains, and also in [3] under the setting of one-dimensional branching
random walk in a random environment. The proof ideas are in the same vein.

Lemma 4.1. Consider nbBRW(p) started from a finite number of particles. If there exist
µ > 0, α1, α2, α3 > 0 such that for i = 1, 2, 3

3∑
j=1

rijαj

(
pj

1

µ
+ qjµ

)
≤ αi, (4.1)

then E[VnbBRW(p)] < ∞. On the other hand, if E[VnbBRW(p)] < ∞, then there exist
µ > 0, α1, α2, α3 > 0 such that (4.1) holds with equality for i = 1, 2, 3.

Proof. If (4.1) holds, define

Q(t) =

3∑
i=1

Ni(t)∑
j=1

αiµ
Xi

j(t).

The process {Q(t)}∞t=0 is a non-negative supermartingale. Indeed, let Ft be the σ-field
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generated by nbBRW(p) up to time t. By the branching property and (4.1), we have

E[Q(t+ 1) | Ft]

=

3∑
i=1

Ni(t)∑
j=1

(
3∑
k=1

rikαk

(
pkµ

Xi
j(t)−1 + qkµ

Xi
j(t)+1

)
1{Xi

j(t)>0} + αiµ
Xi

j(t)1{Xi
j(t)=0}

)

=

3∑
i=1

Ni(t)∑
j=1

(
µX

i
j(t)

3∑
k=1

rikαk

(
pk

1

µ
+ qkµ

)
1{Xi

j(t)>0} + αiµ
Xi

j(t)1{Xi
j(t)=0}

)
≤ Q(t).

By the supermartingale convergence theorem, there exists a random variable Q∞ such
that Q(t) → Q∞ almost surely as t → ∞ and E[Q∞] ≤ E[Q(0)]. We further note that
Q∞ ≥ α1VnbBRW(p) since only Type-1 particles can hit the origin. As a result,

E[VnbBRW(p)] ≤
E[Q∞]

α1
≤ E[Q(0)]

α1
<∞.

On the other hand, if E[VnbBRW(p)] <∞, we define for x ∈ Z≥0

fi(x) = E[VnbBRW(p) | ω(0) = ωi(0) = {x}] (4.2)

to be the expected total number of visits to 0 conditional on the initial configuration
starting with a single particle of type i at x. Note that fi(1) > 0 for i = 1, 2, 3. By the first
step analysis, we have for i = 1, 2, 3 and x ∈ Z≥1,

fi(x) =

3∑
j=1

rij (pjfj(x− 1) + qjfj(x+ 1)) . (4.3)

For x ≥ 1, consider nbBRW(p) started from a single particle at x+ 1 with Type-i. We
can construct a modified process in which particles that reach the site 1 are stopped.
Let V1 be the number of particles that reach 1 and are stopped. For each lineage, only
Type-1 particles can reach 1 for the first time. Note that V1 has the same distribution as
VnbBRW(p) under the process started from one Type-i particle at x. Therefore, V1 < ∞
almost surely. Furthermore, because each Type-1 particle that reaches 1 behaves
afterwards like another nbBRW(p) started from a single particle at 1 with Type-1, the
number of particles stopped at 0 conditioned on V1 is the same as the distribution of the
sum of V1 independent random variables, each with the same distribution as VnbBRW(p)

under the process started from one Type-1 particle at 1. We therefore have for i = 1, 2, 3

fi(x+ 1) = fi(x)f1(1).

By induction, we get for i = 1, 2, 3 and x ∈ Z+

fi(x) = fi(1)f1(1)x−1. (4.4)

Plugging (4.4) into (4.3), by choosing µ = f1(1) and αi = fi(1) for i = 1, 2, 3, equation (4.1)
holds with equality and the lemma follows.

Lemma 4.2. Suppose the initial configuration is finite and contains at least one Type-2
particle not at 0. Then nbBRW(p) is transient if and only if p ≤ 1/6.

Proof. Lemma 4.1 gives a criteria for proving that nbBRW(p) is transient. Namely, it is
sufficient to prove that, when p ≤ 1/6, there exist θ ∈ R and α1, α2, α3 > 0 such that
equation (4.1) holds with equality for i = 1, 2, 3. Given θ ∈ R, define the weight matrix

Φ(θ) =

[
p̂eθ + (1− p̂)e−θ (1− p̂)e−θ

e−θ e−θ

]
.

EJP 29 (2024), paper 52.
Page 12/21

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1108
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Critical drift estimates for the frog model on trees

Equation (4.1) would hold with equality if we can show that 1 is the eigenvalue of Φ(θ)

and there exists an eigenvector associated to 1 with all of its elements positive.
The eigenvalues of Φ(θ) are

β± =
1

2
e−θ

(
2− p̂+ e2θp̂±

√
−4e2θp̂+ (−2 + p̂− e2θp̂)2

)
,

with associated eigenvectors

v± =
1

2

(
−p̂+ e2θp̂±

√
−4e2θp̂+ (−2 + p̂− e2θp̂)2, 1

)
Solving β± = 1 for θ gives the same solutions for both eigenvalues. In particular,

θ± = log
[
(1 + p̂±

√
1− 6p̂+ 5p̂2)/(2p̂)

]
.

For p̂ ∈ (0, 1/5], the quadratic 1− 6p̂+ 5p̂2 is non-negative and there is a solution. This
implies that for p̂ ∈ (0, 1/5], equivalently p ∈ (0, 1/6], there exists θ0 with 1 the eigenvalue
of Φ(θ0). Furthermore, it can be easily shown that v+ is an eigenvector of β+ = 1 and
every element of v+ is positive. Equation (4.1) follows with equality and thus nbBRW(p)

is transient for any p ≤ 1/6.
On the other hand, if 1/6 < p < 1/2, then p̂ ∈ (1/5, 1). Since the quadratic 1− 6p̂+ 5p̂2

is negative for p̂ ∈ (1/5, 1/2), there are no solutions to (4.1) in which equality holds. We
know from Lemma 4.1 that E[VnbBRW(p)] =∞ for any finite initial configuration with not
all particles at 0. It follows from the proofs of [15, Theorem 9] and [3, Theorem 4.3] that
since nbBRW(p) is homogeneous in the sense that offspring distributions and transition
probabilities do not depend on the location of particles, P(VnbBRW(p) ≥ 1) = 1 if the
process starts from a finite number of particles not all located at 0. Moreover, if the
initial configuration contains at least one Type-2 particle not at 0, then nbBRW(p) has
Type-2 particles survive forever. Together with the Markovian property of nbBRW(p), we
conclude that the origin is visited infinitely often almost surely. Therefore, P(VnbBRW(p) =

∞) = 1 and nbBRW(p) is recurrent.

Lastly, it is necessary for our arguments to deduce transience of a reflected version
of nbBRW(p). Let reflected non-backtracking branching random walk rnbBRW(p) be the
variant in which any particle that moves to 0, instead of being stopped, converts to a
Type-2 particle that continues producing offspring. In rnbBRW(p), particles reflect at
the origin. We further assume that in rnbBRW(p), the particle that starts from the origin,
no matter its type, will on the next step convert to a Type-2 particle. It will then produce
one Type-2 particle and Poi(1) number of Type-3 particles at 1, and die immediately after.
Note that the behavior of the initial particle at 0 is indeed the same as the behavior of
the particle that are reflected at 0.

Lemma 4.3. If p ≤ 1/6, then rnbBRW(p) is transient.

Proof. Let VrnbBRW(p) be the number of times that particles hit the origin. Let Ai,x denote
the event ω(0) = ωi(0) = {x}. It is sufficient to prove that if p ≤ 1/6, then for all x ∈ Z≥0

and i = 1, 2, 3.
E[VrnbBRW(p) | Ai,x] <∞. (4.5)

If x = 0, then we have

E[VrnbBRW(p) | Ai,0] = E[VrnbBRW(p) | A2,1] + E[VrnbBRW(p) | A3,1].

It is sufficient to prove equation (4.5) for x ∈ Z>0. Suppose rnbBRW(p) starts with one
Type-i particle at site x ∈ Z>0. If a particle hits the origin at time t, we can trace its past
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trajectory and count the total number of times this particle has hit the origin until time t.
Call a visit to the origin an nth visit if the visiting particle has visited the origin exactly
n− 1 times in its past trajectory. Let VrnbBRW(p)(n) be the total number of nth visits. We
can decompose the expectation in (4.5) as

E[VrnbBRW(p) | Ai,x] =

∞∑
n=1

E[VrnbBRW(p)(n) | Ai,x]. (4.6)

For each n ≥ 1, we consider a modified process rnbBRWn(p) in which all particles are
killed immediately after an nth visit. Note that for each n ≥ 1, the number of particles
killed at the origin in rnbBRWn(p) is indeed VrnbBRW(p)(n). Furthermore, only Type-1
particles can visit the origin. In the original process rnbBRWn(p), the Type-1 particle is
not killed after the visit. Instead, it will convert to a Type-2 particle and generate one
Type-2 particle and Poi(1) Type-3 particles at site 1 in the next step. When n = 1, the
modified process rnbBRW1(p) is identical to nbBRW(p).

Recall the functions {fi(x)}Z>0 defined in (4.2) under the setting of nbBRW(p) for
i = 1, 2, 3. We have

E[VrnbBRW(p)(1) | Ai,x] = fi(x),

which is finite when p ≤ 1/6. When n = 2, we can couple rnbBRW2(p) with rnbBRW1(p)

such that all particles which hit the origin twice are descendants of particles that are
killed in rnbBRW1(p). Each particle that should have been killed in rnbBRW1(p) will give
birth to on average one Type-2 particle and one Type-3 particle at 1 in the next step. All
of these newly generated particles will initiate independent copies of rnbBRW1(p) (i.e.
nbBRW(p)) from site 1. Thus we obtain

E[VrnbBRW(p)(2) | Ai,x] = fi(x)(f2(1) + f3(1)).

By induction, we have for all n ≥ 1,

E[VrnbBRW(p)(n) | Ai,x] = fi(x)(f2(1) + f3(1))n−1. (4.7)

Therefore, equation (4.5) would follow from (4.6) and (4.7) once we prove that

f2(1) + f3(1) < 1 (4.8)

when p ≤ 1/6.
It remains to compute f2(1) and f3(1). Recall the proofs and notation in Lemma 4.1.

When p ≤ 1/6, fi(x) is finite for all x ∈ Z>0 and i = 1, 2, 3. Since {fi(x)}Z>0
satisfies

equations (4.3) and (4.4), we have f1(1) = µ < 1 and for all n ≥ 1,

f1(n) = f3(n) = µn

f2(n) =

∞∑
k=n+1

f3(k) =

∞∑
k=n+1

µk =
µn+1

1− µ
.

According to the computation in Lemma 4.2, we observe that

f1(1) = µ = e−θ =
2p̂

1 + p̂±
√

1− 6p̂+ 5p̂2
=

1 + p̂∓
√

1− 6p̂+ 5p̂2

2(2− p̂)
.

When p ∈ (0, 1/6], i.e. p̂ ∈ (0, 1/5], one can easily check that

0 < µ ≤ 1 + p̂+
√

1− 6p̂+ 5p̂2

2(2− p̂)
< 1/2,

which implies that

f2(1) + f3(1) =
µ2

1− µ
+ µ < 1.

Consequently, equation (4.8) holds and the lemma follows.
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4.3 Main ingredients in the proof Theorem 1.4

In Lemma 4.4, we show that transience of rnbBRW(p) when p ≤ 1/6 implies transience
of nbFM(d, p). In Lemma 4.5, we show that VSFM(d,p) dominates a Poisson random variable
whose parameter diverges with d.

In regards to Lemma 4.4, intuitively nbBRW(p) ought to have more visits to 0 than
nbFM(d, p) to the root. The reasons are (a) particles in nbBRW(p) have a slightly stronger
drift towards 0 (because p∗ < p̂ for p < 1/2), and (b) particles moving away from the root
in nbBRW(p) always “activate” an additional Poi(1)-number of particles. As discussed in
the introduction, it is generally not known how to couple models with different drifts.
Fortunately, (b) is enough to overcome these complications.

Overcoming the complications has the cost of a more involved coupling than might
on the surface seem necessary. For example, we need to work with reflected branching
random walk rnbBRW(p). Otherwise, in the killed-at-0 version (nbBRW(p)) the stronger
drift might cause some particles to reach 0 and be killed, which hurts total progeny. We
also introduce a family of (reflected) branching processes whose particle displacements
depend on d. These are nice intermediaries that couple more cleanly with rnbBRW(p)

and nbFM(d, p).

Lemma 4.4. If p ≤ 1/6, then nbFM(d, p) is transient.

Proof. For this proof we will view nbBRW(p) as the process in which newly generated
particles iteratively jump towards 0 with probability p̂, but once they turn away, continue
to jump away from 0 for all subsequent steps. Each jump away from 0 produces an
independent Poi(1)-distributed number of particles at the site jumped to. From this point
of view, particles initially jump towards the root, eventually turn away, and then produce
particles at each site they jump to thereafter.

Let rnbBRW(p), as introduced in Lemma 4.3, be the reflected modification. Any
particle that visits 0, will on the next step jump to 1 and produce an additional Poi(1)-
distributed number of particles there. Lastly, we define rnbBRW(d, p) to be the modifica-
tion of rnbBRW(p) in which newly generated particles jump left on their first step with
probability p∗ rather than p̂. Subsequent steps are to the left with probability p̂, as usual.

These transition probabilities are chosen so that rnbBRW(d, p) stochastically domi-
nates nbFM(d, p). Namely, any active frog in nbFM(d, p) can be coupled with a unique
particle in rnbBRW(d, p) whose position is equal to the active frog’s displacement from
the root of Td. The coupling is intuitive and works because (i) we may view rnbBRW(d, p)

as the variant of nbFM(d, p) in which every jump away from the root activates new
particles, and (ii) the transition probabilities towards and away from the root and 0 are
the same for all steps of a particle’s life in both models. This coupling ensures that
transience of rnbBRW(d, p) implies transience of nbFM(d, p).

Since Lemma 4.3 gives transience of rnbBRW(p) whenever p ≤ 1/6, it suffices to
prove that transience of rnbBRW(p) implies transience of rnbBRW(d, p). To this end, we
may couple the initial particle at 0 in both rnbBRW(d, p) and rnbBRW(p) to introduce the
same number of particles at each step away from the root. Since p∗ < p̂, any subsequently
introduced particle in rnbBRW(d, p) can be coupled with a unique particle in rnbBRW(p),
so that the particle in rnbBRW(p) moves at least as close to 0 before turning away. From
there, we may couple the number of particles the two particles generate on their path
to ∞ to be the same at each jump. This ensures that each particle in rnbBRW(d, p)

corresponds to a unique particle in rnbBRW(p) that starts at least as close to 0 and
moves at least as close to 0 as its counterpart. Thus, there are stochastically fewer total
visits to 0 in rnbBRW(d, p).

Lemma 4.5. Fix λ ≥ 0. If p > 1/6, then VSFM(d,p) � Poi(λ) for all sufficiently large d.
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Proof. Given ε ∈ (0, 1), let nbBRW(p, ε) denote the non-backtracking branching random
walk with the same particle types and transition rules as nbBRW(p), but with the
modification that Poi(1− ε) particles are introduced during branching events that would
normally introduce Poi(1) many particles in nbBRW(p). Take ε small enough so that
nbBRW(p, ε) is recurrent. Such an ε exists since p > 1/6 and the method to prove
recurrence of nbBRW(p) in Lemma 4.2 has a continuous sufficient condition.

We use “sprinkling” to divide the Poi(1) frogs at each site in SFM(d, p) into a (1− ε)-
proportion that are activated using self-similar frog model dynamics. Call this restricted
model SFM(d, p, ε). The remaining ε-proportion at activated sites are active particles
with random walk paths that are independent of any past activation. These particles will
later be used to visit the root. Note that each particle that moves from 2 to 1 have a
positive probability of sending a particle from 1 to 2 on the next step. Using recurrence
of nbBRW(p, ε), let t0 = t0(λ) be large enough so that at least 72ε−1λ particles move from
1 to 2 up to time t0 with probability at least 1− e−λ/4.

Claim 4.6. There exists t1 ≥ t0 such that for all d ≥ 10t1 , SFM(d, p, ε) and nbBRW(p, ε)

can be coupled to have the same number of particles at each distance from the root for
at least t1 steps with probability at least 1− e−λ/4.

Assuming Claim 4.6, when the self-similar frog model and branching random walk
couple, sprinkling leaves at least an additional Poi(72λ)-distributed number of active
particles at distance 2 from the root in the self-similar frog model. Each particle moves to
the root with probability at least (1/6)2. Thus, the root receives at least Poi(2λ) visits with
probability larger than 1−e−λ/2. Worst case, the root receives 0 visits on the complement
event. So, for all large d we have VSFM(d,p) � Poi(2λX) with X ∼ Ber(1− e−λ/2). Since

E[e−2λX ] = e−λ/2 + (1− e−λ/2)e−2λ ≤ e−λ for all λ ≥ 0 ,

it follows from Fact 2.5 that VSFM (d,p) � Poi(λ) for all sufficiently large d as desired.

Proof of Claim 4.6. Consider the following coupling between SFM(d, p, ε) and nbBRW(p, ε)

which holds up to a random stopping time τ . We say that two particles f in SFM(d, p, ε)

and b in nbBRW(p, ε) are coupled if they have the same initial location and take the same
number of steps towards the root and 0 until turning away from the root and 0. Couple
the initial particles at the root and 0 in both models. Each time a Poi(1− ε)-distributed
number of new active particles are introduced due to a particle b moving away from the
root in nbBRW(p), the same number of particles are introduced at the site moved to by
its coupled particle f in SFM(d, p).

For each new particle say f in SFM(d, p) and b in nbBRW(p), we sample an indepen-
dent Uniform(0,1) random variable U . If U ∈ (p∗, p̂), then the coupling ends and we
set τ equal to the previous time step. If U /∈ (p∗, p̂), then f moves towards the root if
U ≤ p∗ and otherwise moves away from the root. If f moves to an already visited site,
the coupling ends and we set τ equal to the previous time step. If not, b moves towards
the root if U ≤ p̂ and otherwise moves away from the root to the same vertex moved to
by f . The transition probabilities for subsequent steps made by f and b are equal, and
we couple their displacements from their roots to be the same. Under this coupling, the
number of visits to the root up to time τ are equal in both processes.

LetXt be the number of active particles in nbBRW(p) at time t. As EXt ≤ 2t, Markov’s
inequality ensures that P(Xt ≥ 3t) ≤ (2/3)t. On the event {Xt < 3t}, a crude upper
bound is that there are at most t3t jumps towards the root by just activated particles. It
is easy to check that p̂ − p∗ ≤ d−1. Thus, the number of jumps by coupled particles in
different directions is dominated by a Bin(t3t, p̂− p∗) � Bin(t3t, d−1). Similarly, a given
vertex has at most t3t jumps by active particles to its children. Each jump goes to an
unvisited site with probability at least (d− t3t)/d. So, the probability that all visits are
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to unique child vertices is at least (1− (t3t/d))t3
t

. Call {Xt ≥ 3t}, that a particle moves
with different displacement in the first t steps, and that a child vertex is revisited in the
first t steps bad events. Taking d ≥ 10t, makes the probability of each bad event tend
to 0 as t→∞. Thus, we take t1 ≥ t0 large enough so that the probability of the union
of these bad events at t = t1 is smaller than e−λ/4. When no bad events occur, we have
τ ≥ t1 with at least the claimed probability 1− e−λ/4.

5 Proof of Theorem 1.4

We use the criteria from Section 3 to prove that the limiting critical drift for nbFM(d, p)

is the same as that in nbBRW(p). The basic idea is to construct a random variable
U ′′ � U from Section 2.2. We make it stochastically smaller by only allowing one leaf to
be activated at a time. By taking d large, we are able to get sufficiently strong bounds
on the probability that U ′′ takes a small value.

Before defining U ′′, we describe an alternate way to sample U via an exploration
process. Let A1 be the set of leaves among v2, ..., vd that are visited by active particles
started from ∅′ and v1, and C1 be the empty set. If A1 is empty, then the process
terminates. If not, then select a leaf v from A1 and allow the activated particles there to
move until reaching ∅ or a leaf. Let B1 be the set of leaves among {v2, ..., vd} − {v} that
are visited for the first time by particles from v. Set A2 = A1∪B1−{v} and C2 = C1∪{v}.
Continue in this fashion to form An+1 by removing a leaf v from An, adding v to Cn+1,
and adding the leaves visited for the first time by particles started from v to An+1. Once
AN is empty (which occurs after at most d − 1 steps), we have CN is the set of leaves
that are activated and so U = |CN |.

We define U ′′ � U by modifying the exploration process. When Bn is non-empty,
instead of adding all of its leaves to An to form An+1, we choose a single leaf from Bn
and add it to An+1. We ignore the visit of any other leaves in Bn. In later rounds, all
the leaves in Bn except the one that was selected act as if the particles there are still
dormant. Let U ′′ be the number of vertices activated in this modified process.

Since we are potentially ignoring visits to dormant particles we have U ′′ � U . More-
over, for any d > 5 and 1 ≤ j ≤ 4 we have

P(U ′′ = j) ≤ e−(1−p̂)λ(d−5)/(d−1). (5.1)

This is because in order to have U ′′ = j, the jth exploration must fail to visit any leaves
with dormant particles. Since we are looking at the first j ≤ 5 explorations, there are
always at least d− 5 dormant leaves. Using Poisson thinning, the number of particles
moving to leaves with dormant particles dominates a Poisson random variable with mean
(1 − p̂)λ(d − 5)/(d − 1). So the probability of failure at the jth step, is bounded by the
probability that this Poisson distribution is 0, which is (5.1).

Lemma 5.1. Let U ′′ be as defined above. Given p > 1/6, there exists λ0 ≥ 0 such that
for all sufficiently large d and λ ≥ λ0

E[e−p
∗−p̂(1+U ′′)λ] ≤ e−λ− 1

8 . (5.2)

Proof. We first note that if p > 1/6, then p∗ ≥ 1/7 for all d ≥ 3. We expand the expectation
at (5.2) to obtain

E[e−p
∗−p̂(1+U ′′)λ] = e−p

∗
d−1∑
u=0

e−p̂(1+u)λP(U ′′ = u)

≤ e− 1
7

d−1∑
u=0

e−p̂(1+u)λP(U ′′ = u).
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Setting the e−
1
7 factor aside for a moment, we decompose the sum into three parts:

e−p̂λP(U ′′ = 0) +

4∑
u=1

e−p̂(1+u)λP(U ′′ = u) +
∑
u≥5

e−p̂(1+u)λP(U ′′ = u).

The first term is bounded by e−p̂λe−(1−p̂)λ = e−λ. Each summand in the second term is
bounded by e−2p̂λe−(1−p̂)λ(d−5)/(d−1). The third term is bounded by e−6p̂λ · 1.

Putting these bounds together, then factoring out λ gives

E[e−p
∗−p̂(1+U ′′)λ] ≤ e− 1

7

[
e−λ + 4e−2p̂λe−(1−p̂)λ(d−5)/(d−1) + e−6p̂λ

]
= e−λe−

1
7

[
1 + 4e(1−2p̂−(1−p̂)(d−5)/(d−1))λ + e(1−6p̂)λ

]
.

Recall that for p > 1/6, p̂ > 1/5 and thus 1 − 6p̂ ≤ −1/5. Also, let δ > 0 be sufficiently
small so that for d large enough

1− 2p̂− (1− p̂)d− 5

d− 1
≤ −δ.

For such d, we then have

E[e−p
∗−p̂(1+U ′′)λ] ≤ e−λe− 1

7

[
1 + 4e−δλ + e−λ/5

]
. (5.3)

By taking λ0 large enough, we get

1 + 4e−δλ0 + e−λ0/5 ≤ e 1
56 . (5.4)

Applying (5.4) to (5.3) gives (5.2) for all λ ≥ λ0 and d large enough.

Now we are ready to prove our second theorem.

Proof of Theorem 1.4. Lemma 4.4 implies that p′d ≥ 1/6. For p > 1/6, Lemma 4.5

ensures that VSFM(d,p) � Poi(λ0) with λ0 from the proof of Lemma 5.1 for all d large
enough. It follows from Proposition 2.6 that SFM(d, p) and nbFM(d, p) are recurrent.
This gives Theorem 1.4.

Proof of Theorem 1.3. The result follows from Theorem 1.4 and Lemma 2.1.

6 Numerical simulations

We describe some numerical simulations to estimate p3, p′3, and p′4. The plots in
Figures 2, 3, 4 were created using SageMath [22], extending the code used in [9]. Our
code and a README file are available via the arXiv ancillary files for this article. The
approach mirrors that of [9] with the appropriate adaptations for working with FM(d, p)

and nbFM(d, p). To keep this section self-contained, we briefly review the method.
An adaptation of FM(d, p) or nbFM(d, p) is to insert stunning fences at each depth `.

The role of these fences is to stun (i.e., temporarily freeze in place) frogs when they first
reach level `. Let Ad,p(`) (resp. A′d,p(`)) be the number of frogs in the FM(d, p) model
(resp. nbFM(d, p)) that reach level ` once all awake frogs have been stunned. As noted
in [9], counting the number of root visits in direct simulations of either model is difficult
to analyze due to rapid growth. Alternatively, we examine summability of∑

`≥1

p̂`E[Ad,p(`)], (6.1)
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Figure 2: Simulated values of s3,p(`) for FM(3, p) for different values of p, for levels
` ≤ 15. The blue points represent simulations of 1000 trials, and orange points represent
simulations of 500 trials.

Figure 3: Simulated values of s′3,p(`) for nbFM(3, p) for different values of p, for levels
` ≤ 15. The blue points represent simulations of 1000 trials, and orange points represent
simulations of 500 trials.

Figure 4: Simulated values of s′4,p(`) for nbFM(4, p) for different values of p, for levels
` ≤ 15. The blue points represent simulations of 1000 trials, and orange points represent
simulations of 500 trials.
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recalling the notation from (1.2), p̂ = p/(1− p). Notice that if

Nk = Nk(d, p) := #{visits to the root between the k and (k + 1)th stunnings},

then E[Nk] � p̂kE[Ad,p(k)]. Hence the expected number of root visits is infinite
when (6.1) diverges. This is strong evidence for the associated model being recur-
rent (for fixed d, p). In particular (6.1) diverges when

sd,p(`) := `p̂`E[Ad,p(`)]

is bounded below (and similarly for s′d,p(`) for non-backtracking).
Figures 2, 3, 4 show simulations of s3,p(`), s′3,p(`), and s′4,p(`) for levels ` ≤ 15, for

three different values of p in each case. The simulations were run with 1000 iterations
up to level 10, and with 500 iterations for levels 11 through 15. Computational running
time increases swiftly with `. The simulations suggest the values at (1.3).

Supplementary Material

Supplementary material to “Critical drift estimates for the frog model on
trees” (DOI: 10.1214/24-EJP1108SUPP; .zip). SageMath code frogs_with_drift.sage (see
also the accompanying guide) was used to create the plots in Figures 2, 3, 4. This was
extended from the code used in [9].
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