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Abstract

We raise a question of whether there might be deep mathematical connections between
two properties for bijective functions F : X × X → X × X for a set X which are
introduced from very different backgrounds, and study the supporting evidence
that suggests this. One of the property is that F is a Yang-Baxter map, namely it
satisfies the “set-theoretical” Yang-Baxter equation, and the other property is the
independence preserving property, which means that there exist independent (non-
constant) X -valued random variables X,Y such that U, V are also independent with
(U, V ) = F (X,Y ). Recently in the study of invariant measures for a discrete integrable
system, a class of functions having these two properties were found. Motivated by
this, we analyze a relationship between the Yang-Baxter maps and the independence
preserving property, which has never been studied as far as we are aware. We focus
on the case X = R+. Our first main result is that all quadrirational Yang-Baxter maps
F : R+ ×R+ → R+ ×R+ in an important subclass have the independence preserving
property. In particular, we found new classes of bijections having the independence
preserving property. Our second main result is that these newly introduced bijections
are fundamental in the class of (known) bijections with the independence preserving
property, in the sense that many known bijections having the independence preserving
property are derived from these maps by taking special parameters or performing
some limiting procedure. This reveals that the independence preserving property,
which has been investigated for specific functions individually, can be understood in a
more unified manner.
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Yang-Baxter maps and independence preserving property

1 Introduction

1.1 Overview

In this paper, we consider the question of whether there is any connection between
two properties for bijective functions F : X×X → X×X for a set X which are introduced
from very different backgrounds and seemingly unrelated. One of the properties is that
F is a Yang-Baxter map, namely, it satisfies the “set-theoretical” Yang-Baxter equation

F12 ◦ F13 ◦ F23 = F23 ◦ F13 ◦ F12

where Fij acts on the i-th and j-th factors of the product X × X × X . Yang-Baxter
maps are also called set-theoretical solutions to the quantum Yang-Baxter equation. The
other is the independence preserving property (IP property for short), which means that
there is a class of quadruplets of (non-Dirac) probability distributions µ, ν, µ̃, ν̃ satisfying
F (µ × ν) = µ̃ × ν̃. In other words, there exist independent (non-constant) X -valued
random variables X,Y such that U, V are also independent with (U, V ) := F (X,Y ). The
IP property has been mostly studied for explicit functions F with X = R or an open
interval of R and used to characterize special probability distributions such as normal,
gamma, exponential, inverse-Gaussian, beta and so on (more details are discussed
below). Such property is also called Matsumoto-Yor property if F is given in a special
form.

Recently, these characterization results with the IP property were also used to study
stationary solutions of stochastic integrable models [6, 10] and invariant measures of
discrete integrable systems [8]. In this context, it was pointed out that the maps

Fα,βGIG(x, y) =

(
y

1 + βxy

1 + αxy
, x

1 + αxy

1 + βxy

)
on R+ × R+ into itself with parameters α, β ≥ 0, which originate from the discrete
KdV equation, have these two properties, namely, they are (parameter-dependent) Yang-
Baxter maps and also have the IP property for the generalized inverse Gaussian (GIG)
distributions in [8]. This motivates us to study the relationship between the Yang-Baxter
maps and the IP property, which has never been studied as far as we are aware. We
note that later in [4, 31], it is proved that U and V given by (U, V ) = Fα,βGIG(X,Y ) are
independent only when X and Y have GIG distributions with proper parameters, namely
the IP property for this map characterizes the GIG distribution.

Besides this specific example, recent developments on the study of probabilistic
properties of discrete integrable systems lead us to expect a deep relationship between
the IP property of a map and the integrability of dynamical systems associated with the
map. Actually, one important consequence of the IP property is that the dynamics on the
two-dimensional lattice defined by the map F , which typically turns out to be a discrete
integrable system for such map, has a spatially independent and identically/alternately
distributed invariant measure (See Theorem 2.1 of [8]. Note that the IP property is called
the detailed balance condition there). Hence, one may expect that there is a connection
between the IP property and the integrability, while the Yang-Baxter equation is one of
the typical ways to characterize integrability.

As a first study in this direction, we focus on the case X = R+ in this paper, but we
do not lose that much generality as discussed in Subsection 3.1. There are two main
contributions of our paper to connect these two properties. First, we prove that all
quadrirational Yang-Baxter maps F : R+ ×R+ → R+ ×R+ in the subclass [2 : 2] (whose
definition is given in Section 2), which was introduced in [1] and also studied in [41], that
are FGIG = (Fα,βGIG)α,β, H+

I = (H+,α,β
I )α,β , H

+
II = (H+,α,β

II )α,β and HIII,A = (Hα,β
III,A)α,β
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given as

H+,α,β
I (x, y) =

(
y

α

β + αx+ βy + αβxy

1 + x+ y + βxy
,
x

β

α+ αx+ βy + αβxy

1 + x+ y + αxy

)
,

H+,α,β
II (x, y) =

(
y

α

β + αx+ βy

1 + x+ y
,
x

β

α+ αx+ βy

1 + x+ y

)
,

Hα,β
III,A(x, y) =

(
y

α

αx+ βy

x+ y
,
x

β

αx+ βy

x+ y

)
with parameters α, β > 0, have the IP property as stated in the next theorem. In [41],
FGIG is named HIII,B. We give more background of these functions in Section 2. In the
following, for any p, q > 0, Be′(λ, a, b; p, q),K(λ, a, b; p, q) and GIG(λ, a, b; p, q) are some
generalizations of beta prime, Kummer of Type 2 and GIG distributions respectively. The
explicit density function of each probability distribution is given in Subsection 1.3. The
IP property for FGIG = HIII,B was obtained in [8] so we omit it in the theorem.

Theorem 1.1. Let α, β > 0. If X and Y are independent random variables with the
following marginal distributions, then the random variables U, V given by (U, V ) =

F (X,Y ) for each map are independent and have the following marginal distributions.
(i) For F = H+,α,β

I :

X ∼ Be′(λ, a, b ; α, 1), Y ∼ Be′(−λ, a, b ; β, 1),

U ∼ Be′(−λ, a, b ; α, 1), V ∼ Be′(λ, a, b ; β, 1)

where λ ∈ R, a, b > 0, −min{a, b} < λ
2 < min{a, b}.

(ii) For F = H+,α,β
II :

X ∼ K(λ, a, b ; α, 1), Y ∼ K(−λ, a, b ; β, 1),

U ∼ K(−λ, a, b ; α, 1), V ∼ K(λ, a, b ; β, 1)

where λ ∈ R, a, b > 0, −b < λ
2 < b.

(iii) For F = Hα,β
III,A:

X ∼ GIG(λ, a, b ; α, 1), Y ∼ GIG(−λ, a, b ; β, 1),

U ∼ GIG(−λ, a, b ; α, 1), V ∼ GIG(λ, a, b ; β, 1)

where λ ∈ R, a, b > 0.

By change of variables, the IP property for Hα,β
III,A is easily reduced to the property

for Fα,βGIG, but the results for H+,α,β
I and H+,α,β

II are not reduced to any known cases
(except for special parameters), hence we obtain new classes having the IP property. We
note that Koudou and Wesolowski also found the IP property for H+,α,β

II independently
[28]. We conjecture that these maps characterize each probability distribution, which
was actually proved in the literature for some special cases such as Fα,βGIG (and so true for

Hα,β
III,A). The characterization for H+,α,β

II was proved by Koudou and Wesolowski in [28],
which was announced just after the first version of the present paper was announced. As
seen from the explicit expressions, there are beautiful similarities between these maps
and the parameters of distributions, and in fact, we can prove the claims (ii) and (iii)
of Theorem 1.1 by a certain limiting procedure from the result (i), besides the direct
computation. This limiting procedure is studied in Section 4.

Our second contribution is that, as Theorem 5.1 in Section 5, we reveal that many
of the known functions F on a product of open intervals of R having the IP property
are derived from the quadrirational Yang-Baxter maps H+

I , H
+
II or HIII,A by taking a
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special parameter or performing a singular limit with an appropriate coordinate-wise
change of variables. These relations are summarized in the following figure, which is
the consequence of Lemma 2.3 and Theorem 5.1.

H+,α,β
I IP

��

H̃α,β
I

α=δ,β=0
// F+,δ

Be
δ=1 // F+

Be

zero−temp.lim.
// FBe,zero

H+,α,β
II IP

IP

��

H̃α,β
II

α=1,β=0
// F+

K−Ga,A
// F+

Ga

zero−temp.lim.
// FExp

Ĥα,β
II

α=1,β=0
// F+

K−Ga,B

::

Fα,βGIG,zero

Hα,β
III,A IP Hα,β

III,B F+,α,β
GIG α=1,β=0

//

zero−temp.lim.
66

F+
GIG−Ga

The dotted lines represent singular scaling limits, the equality with label IP means two
functions are IP-equivalent, whose definition is introduced in Section 3, and the arrows
represent special parameter selections. The explicit expressions of bijections in the
diagram are given in Section 3. This excellently unifies many of the known results for
the IP property, which is summarized in Corollary 5.2.

To summarize these two results in short, for the case X = R+, all quadrirational
Yang-Baxter maps in the subclass [2 : 2] (whose definition is given in Section 2) have the
IP property, and many functions having the IP property are obtained from a Yang-Baxter
map, which was a big surprise for us.

Finally, we discuss possible future developments. First, since H+
I , H

+
II and HIII,A are

all subtraction-free, as already pointed out in several contexts [25, 41, 8, 10], there is a
zero-temperature version (also called a tropical version as well as an ultra-discretized
version) of them where the (+,×)-algebra is replaced by (min,+)-algebra. For Fα,βGIG,
such generalization was already studied in [8, 4]. These zero-temperature versions
also satisfy the Yang-Baxter property as well as the IP property. However, since the
IP property may also hold with some discrete distributions for such zero-temperature
versions, the characterization of distributions may become more complicated. Another
promising generalization is the positive definite matrix versions of H+

I , H
+
II and HIII,A.

Actually, for most of the bijections F having the IP property discussed in Section 3, its
positive definite matrix version has been introduced and shown that they also have the
IP property (cf. [32, 19, 29, 26, 31]). The matrix version of Fα,βGIG was introduced in [31]
and its IP property was already shown there. A very natural and interesting question
is whether these matrix versions are Yang-Baxter maps. Recently, the matrix versions
of stochastic integrable systems, such as random polymers and interacting diffusions
are introduced [39, 2] and the matrix versions of the IP property (for a certain function)
play an essential role. Of course, the most fundamental question is to figure out why
there is a relationship between the Yang-Baxter maps and the IP property. Also, using
the connection between the Yang-Baxter maps and the IP property, it is worth trying
to find a more direct connection between quantum, stochastic and classical integrable
systems and their stationary distributions in general.

1.2 Outline of the remaining part of the paper

In Section 2, we explain a brief background on the Yang-Baxter maps and review
the result on the characterization of the quadrirational Yang-Baxter maps on CP1, the
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one-dimensional complex projective space, as well as the origin of H+
I , H

+
II and HIII,A.

In Section 3, we review known results on the IP property for bijections on a product of
open intervals of R and classify them into some classes. Then, with a few exceptions
of bijections, we introduce normalized versions of them by coordinate-wise change of
variables. Here, the normalized version means that it is a birational map on R+ ×R+

into itself. In Section 4, we prove Theorem 1.1, which is essentially a consequence of
direct computation, and also discuss several relations between the maps H+

I , H
+
II and

HIII,A as well as the probability distributions which appeared in Theorem 1.1. Finally, in
Section 5, we give explicit relations between the functions discussed in Section 3, which
are already known in the literature, and newly introduced maps H+

I , H
+
II and HIII,A to

derive known IP properties from Theorem 1.1.

1.3 Notation and probability distributions

Here, we list frequently used bijections:

• I : R+ → R+, I(x) = 1
x , I−1 = I,

• For α > 0, θα : R+ → R+, θα(x) = αx, (θα)−1 = θα−1 ,

• π : R2
+ → R2

+, π(x, y) = (y, x), π−1 = π.

We also introduce three classes of probability distributions with two positive pa-
rameters p, q > 0. In our parametrization, unnecessary extra parameters have been
introduced for the Kummer distribution of Type 2 and the Generalized inverse Gaussian
distribution, but this is deliberately used to provide a unified notation for how the three
distributions relate concerning scale transformation and weak convergence. These prop-
erties are discussed in detail in Lemmas 4.1 and 4.2. The use of such a parameterization
makes the statement of Theorem 1.1 very unified and is also the key to understanding
the relations between the known results on the IP property summarized in Corollary 5.2.

Generalized beta prime distribution (p, q) For λ, a, b ∈ R, −b < λ
2 < a, the Gen-

eralized beta prime distribution with parameters (λ, a, b; p, q), which we denote
Be′(λ, a, b; p, q), has density

1

Z
xλ−1(1 + px)−a−

λ
2 (1 + qx−1)−b+

λ
2 , x ∈ R+,

where Z is a normalizing constant.

Kummer distribution of Type 2 (p, q) For λ, b ∈ R, a > 0, −b < λ
2 , the Kummer distri-

bution of Type 2 with parameters (λ, a, b; p, q), which we denote K(λ, a, b; p, q), has
density

1

Z
xλ−1e−apx(1 + qx−1)−b+

λ
2 , x ∈ R+,

where Z is a normalizing constant.

Generalized inverse Gaussian distribution (p, q) For λ ∈ R, a, b > 0, the general-
ized inverse Gaussian distribution with parameters (λ, a, b; p, q), which we denote
GIG(λ, a, b; p, q), has density

1

Z
xλ−1e−apx−bqx

−1

, x ∈ R+,

where Z is a normalizing constant.

We also list special classes of them, which are more common in literature. In the
following, Be′(λ, a, b; p, q), K(λ, a, b; p, q) and GIG(λ, a, b; p, q) are extended properly for
p, q ∈ {0,∞} in a natural way.
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Generalized beta prime distribution (δ) For a, b, δ > 0 and c ∈ R, the Generalized
beta prime distribution with parameters (a, b, c; δ), which we denote Be′δ(a, b, c), has
density

1

Z
xa−1(1 + x)−a−b

(
1 + δx

1 + x

)c
, x ∈ R+,

where Z is a normalizing constant. Note that Be′(λ, a, b; δ, 1) = Be′δ(b+ λ
2 , a−

λ
2 ,−a−

λ
2 ).

Beta prime distribution For a, b > 0, the Beta prime distribution with parameters
(a, b), which we denote Be′(a, b), has density

1

Z
xa−1(1 + x)−a−b, x ∈ R+,

where Z is a normalizing constant. Note that Be′(λ, a, b; 1, 0) = Be′(λ, a − λ
2 ) for

λ > 0, Be′(λ, a, b; 0, 1) = Be′(b+ λ
2 ,−λ) for λ < 0, K(λ, a, b; 0, 1) = Be′(b+ λ

2 ,−λ) for
λ < 0, and Be′1(a, b, c) = Be′(a, b).

Kummer distribution of Type 2 For a, c > 0 and b ∈ R, the Kummer distribution with
parameters (a, b, c), which we denote K(2)(a, b, c), has density

1

Z
xa−1(1 + x)−a−be−cx, x ∈ R+,

where Z is a normalizing constant. Note that K(λ, a, b; p, 1) = K(2)(b+ λ
2 ,−λ, ap).

Gamma distribution For λ, a > 0, the Gamma distribution with parameters (λ, a),
which we denote Ga(λ, a), has density

1

Z
xλ−1e−ax, x ∈ R+,

where Z is a normalizing constant. Note that K(λ, a, b; p, 0) = Ga(λ, ap) for λ > 0,
K(λ, a, b; p,∞) = Ga(b+ λ

2 , ap) and GIG(λ, a, b; p, 0) = Ga(λ, ap) for λ > 0.

Generalized inverse Gaussian distribution For λ ∈ R and a, b > 0, the generalized
inverse Gaussian with parameters (λ, a, b), which we denote GIG(λ, a, b), has den-
sity

1

Z
xλ−1e−ax−bx

−1

, x ∈ R+,

where Z is a normalizing constant. Note that GIG(λ, a, b; p, q) = GIG(λ, ap, bq).

We also note that the class of distributions K(λ, a, b; p, q) is called Whittaker distribu-
tion in [40].

2 Yang-Baxter maps on CP1 and R+

In this section, we briefly review the background on the Yang-Baxter maps and known
results on the classification of Yang-Baxter maps on CP1 × CP1 in a special class of
functions, called quadrirational functions. Then, we discuss when we can restrict these
Yang-Baxter maps to the domain R+ ×R+, which is the case we are interested in.

The Yang-Baxter maps, whose notion was introduced in [12] and the term was
proposed in [46], are bijective maps of a Cartesian product

F : X × X → X ×X
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satisfying the “set-theoretical” Yang-Baxter equation

F12 ◦ F13 ◦ F23 = F23 ◦ F13 ◦ F12.

Here, Fij are maps on the product of three sets X × X × X into itself and act as F on
the i-th and j-th factors and as the identity on the other. For a set of bijective maps
F (α, β) : X × X → X ×X with parameters α, β in a certain set of parameters Θ, we also
say that they are Yang-Baxter maps if

F12(λ1, λ2) ◦ F13(λ1, λ3) ◦ F23(λ2, λ3) = F23(λ2, λ3) ◦ F13(λ1, λ3) ◦ F12(λ1, λ2) (2.1)

holds for any parameters λ1, λ2 and λ3 ∈ Θ. Actually, by replacing X with X × Θ and
considering

F̃ ((x, α), (y, β)) := F (α, β)(x, y),

we obtain a (parameter-independent) Yang-Baxter map F̃ .
Many important examples of the Yang-Baxter maps were found in the literature and

it is not possible to enumerate them all, but some examples are in [21, 13] and some
classification results for the case when X is a finite set were obtained in [33, 14]. For
more background on the Yang-Baxter maps and their transfer dynamics, see the nice
review paper [47].

In [1], a classification of quadrirational maps on CP1 × CP1 is given and it is shown
that any quadrirational map is equivalent, by some Möbius transformations acting
independently on each variable, to some Yang-Baxter map. To state their result more
precisely, recall that a bijection

F : CP1 × CP1 → CP1 × CP1, (x, y) 7→ (u(x, y), v(x, y))

is said to be birational if F and F−1 are both rational functions. The authors of [1]
defined that a map F : CP1 × CP1 → CP1 × CP1 is said to be quadrirational if F and
F̄ , which is called the companion map of F , satisfying F̄ (u, y) = (x, v) for (u, v) = F (x, y)

is a well-defined bijection on CP1 × CP1 and moreover, F and F̄ are both birational
functions. In other words, F is quadrirational if F, F−1, F̄ and F̄−1 are well-defined
rational functions. They proved that quadrirational maps F (x, y) = (u(x, y), v(x, y)) have
the form:

u(x, y) =
a(y)x+ b(y)

c(y)x+ d(y)
, v(x, y) =

A(x)y +B(x)

C(x)y +D(x)

where a(y), . . . , d(y) are polynomials in y and A(x), . . . , D(x) are polynomials in x, whose
degrees are all less than or equal to two. Hence, there exist three subclasses of such
maps, which are denoted by a pair of numbers as [1 : 1], [1 : 2] and [2 : 2] depending on
the highest degrees of the coefficients of the polynomials for x and y. The most rich
subclass is [2 : 2], and so the case is studied in detail in [1] and also in [41].

To classify quadrirational maps, the authors of [1] introduce the equivalence with
respect to Möbius transformations acting independently on each variable x, y, u, v:

Definition 2.1. Quadrirational maps F and F̃ are (Möb)-equivalent if there exist Möbius
transformations g1, g2, h1 and h2 on CP1 such that

F̃ = (h1 × h2) ◦ F ◦ (g1 × g2),

namely

F̃ (x, y) = (h1(u(g1(x), g2(y))), h2(v(g1(x), g2(y))))

where F (x, y) = (u(x, y), v(x, y)).
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Theorem 1 of [1] states that in the subclass [2 : 2] of quadrirational maps, up
to this (Möb)-equivalence, there are only five families of quadrirational maps FI =

(Fα,βI ), FII = (Fα,βII ), . . . , FV = (Fα,βV ) where each of them has two complex parameters
α, β. Remarkably, they found that all of these five canonical representative maps are
Yang-Baxter maps and moreover involutions, and coincide with their companion maps.

However, [41] pointed out that not all quadrirational maps satisfy the Yang–Baxter
relation, since the Möbius transformations on each variable, in general, destroy the Yang-
Baxter property. Hence, the classification result was further refined in [41], considering
the following equivalence.

Definition 2.2. Families of parameter-dependent quadrirational maps F = (Fα,β)α,β and
F̃ = (F̃α,β)α,β are YB-equivalent if there exists a family of bijections φ(α) : CP1 → CP1

such that
F̃α,β = (φ(α)−1 × φ(β)−1) ◦ Fα,β ◦ (φ(α)× φ(β)).

Proposition 1 of [41] showed that if F = (Fα,β)α,β and F̃ = (F̃α,β)α,β are YB-
equivalent, then F satisfies the relation (2.1) if and only if F̃ satisfies it. Hence, this is
a natural equivalence among the parameter-dependent Yang-Baxter maps. Theorem 2
of [41] showed that, up to this YB-equivalence, there are ten families of quadrirational
Yang-Baxter maps of subclass [2 : 2]: the five families FI , FII , . . . , FV obtained in [1]
and additional five families named HI , HII , H

A
III , H

B
III and HV , where all of them also

have two complex parameters α, β. For ∗ ∈ {I, II, V }, F∗ and H∗ are (Möb)-equivalent
but not YB-equivalent respectively, and FIII , H

A
III , H

B
III are (Möb)-equivalent but not

YB-equivalent.
A rational function is said to be subtraction-free if it is expressed as a ratio of two

polynomials with positive real coefficients. As noted in [41], HI and HII have convenient
subtraction-free representatives, which are H+

I and H+
II given in Introduction, and

HIII,A, HIII,B are originally subtraction-free when parameters α, β are positive. If a
rational function on CP1 × CP1 is subtraction-free, then the image of R2

+ is a subset of
R2

+. Note that is is not the case for R2. In particular, since the maps H+
I , H+

II , HIII,A and
HIII,B are involutions on CP1 × CP1, they are also involutions on R2

+. Hence, we can
consider them as Yang-Baxter maps on R+ by restricting the domain and the codomain
to R+ ×R+ and parameters α, β to be positive. Namely, these four families are natural
candidates to study the IP property with probability measures supported on R+.

Since HIII,B = FGIG, the IP property for HIII,B was already shown in [8]. Moreover,
the (Möb)-equivalence preserves the IP property which means that HA

III would also have
the IP property. In fact, by a direct computation, we have

HIII,B = ((I ◦ θα)× Id) ◦HIII,A ◦ (Id × (I ◦ θβ))

where Id is the identity map, and by this relation, we can easily conclude the claim of
Theorem 1.1 (iii). Hence, the essential novelty of Theorem 1.1 is in the claims for H+

I

and H+
II .

In [41], it is also mentioned that there is an obvious limiting procedure starting
from H+

I to obtain H+
II and HA

III . This is useful for understanding relations between
probability measures which appeared in Theorem 1.1, so we state this relation more
explicitly as follows:

Lemma 2.3. The following scaling limits hold in the sense of the compact convergence,
namely, the sequence converges uniformly on any compact set K ⊂ R2

+.

(i) lim
ε↓0

H+,εα,εβ
I = H+,α,β

II .

(ii) lim
ε↓0

(θε × θε) ◦H+,α,β
II ◦ (θε × θε)−1 = Hα,β

III,A.
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Remark 2.4. For the quadrirational Yang-Baxter maps FIV , FV and HV , since there
does not seem to be a suitable subtraction-free representative, we should either consider
probability measures on CP1 and see if the IP property holds, or we consider them as
maps from R2 to R2 defined except on a set of Lebesgue measure 0 and see if there is
a class of probability measures on R with the IP property holds. It is not yet known
whether they have the IP property by considering the problem in any of these two ways.

3 Independence preserving property

In this section, we introduce a setting in which we study the independence preserving
property. Then, we list specific functions that are already known to have this property,
in the historical order with a brief background. We have not found any literature that
discusses functions having the IP property in a unified manner, and this section is the
first such attempt.

3.1 The independence preserving property

Let F be the set of measurable bijections between two products of open intervals of
R:

F := {F : I1×I2 → J1×J2 | I1, I2, J1, J2 : open intervals of R, F : measurable bijection}.

For F ∈ F, we are interested in the existence and the characterization of independent
random variables X,Y taking values in I1, I2 respectively such that U, V are also in-
dependent with (U, V ) := F (X,Y ). If there exists such a pair of non-constant random
variables X,Y , we say that F has the independence preserving property. Studying this
property is equivalent to studying the existence and the characterization of quadruplets
of probability measures µ, ν, µ̃, ν̃ with suitable supports, which are not delta measures,
satisfying µ̃× ν̃ = F (µ× ν). In [8], the relation µ̃× ν̃ = F (µ× ν) is called the detailed
balance equation, and the quadruplets of probability measures µ, ν, µ̃, ν̃ are called solu-
tions of the detailed balance equation, so we follow this terminology. Solutions of the
detailed balance equation are also called solutions for short in the following.

To study this question, it is natural to introduce an equivalence relation among such
bijections.

Definition 3.1. For F : I1× I2 → J1×J2 and F̃ : Ĩ1× Ĩ2 → J̃1× J̃2 in F, we denote F ∼ F̃
if one of the following holds:
(a) There exist four measurable bijections g1, g2, h1, h2 such that

gi : Ĩi → Ii, hi : Ji → J̃i, i = 1, 2,

and

F̃ = (h1 × h2) ◦ F ◦ (g1 × g2).

(b) F̃ = F−1.
(c) F̃ = F ◦ π where π(x, y) = (y, x).

Moreover, F and F̃ ∈ F are IP-equivalent if there exists a finite sequence F0 = F , F1,
F2, . . . , Fn = F̃ ∈ F such that Fi ∼ Fi+1 for i = 0, 1, . . . , n− 1.

The condition (a) means that F̃ is obtained from F by a certain coordinate-wise
change of variables, which is similar to the (Möb)-equivalence. It is obvious that if F and
F̃ are IP-equivalent, then F has the IP property if and only if F̃ has the IP property. In
particular, without loss of generality, we can only consider functions F : R2

+ → R2
+ or

F : R2 → R2, or fix any intervals as domains and codomains. However, it should be noted
that by the change of variables, the probability distributions satisfying the IP property,
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namely the solutions of the detailed balance equation, also change. In particular, up to
this IP equivalence, in general (more precisely the case where µ and ν are continuous
distributions with supports I1 and I2 respectively), we can change the solution to be the
product of uniform probability measures on [0, 1] by using the distribution functions of µ
and ν for the coordinate-wise change of variables. Hence, when we apply the IP property
to characterize some probability distributions, the choice of representative F plays
an essential role. As we see in the next subsection, all of examples we consider have
birational representatives or piecewise linear representatives and such representatives
characterize important probability distributions, such as normal, gamma, exponential,
beta and so on.

Remark 3.2. The IP property is also known to hold for F : X ×X → X ×X where X are
discrete sets (cf. [9, 8]) or a set of positive definite matrices with size r (cf. [32, 31]).
There are also examples of the IP property in a more abstract setting where X is an
abstract topological group (cf. [15]). In this paper, we focus on the case where we can
reduce the problem to X = R+.

3.2 History of the study of bijections with the IP property

The IP property was first discovered for the bijection

FN(x, y) = (x+ y, x− y) : R2 → R2.

The solution of the detailed balance equation for this bijection was characterized inde-
pendently by Kac [23] (1939) and Bernstein [5] (1941) as X ∼ N(a, σ), Y ∼ N(b, σ) for
any a, b ∈ R and σ > 0 where N(a, σ) is the normal distribution with the mean a and the
variance σ. The original characterization results were given under some assumption on
random variables, but later the characterization was given in full generality (cf. [24]).

After this impressive discovery, several bijections having the IP property have been
introduced in different contexts. Most classical ones were found in the context of
characterization of important probability distributions. Such examples are

FGa(x, y) =

(
x+ y,

x

y

)
: R2

+ → R2
+, FExp(x, y) = (min{x, y}, x− y) : R2 → R2.

The solutions for FGa were characterized by Lukacs [34] (1955) as X ∼ Ga(a, λ), Y ∼
Ga(b, λ) for any a, b, λ > 0. For FExp, the solutions were characterized by Ferguson
[17, 16] (1964,1965) under some assumptions on random variables and then by Crawford
[7] (1966) in full generality as pairs of (possibly shifted) exponential distributions or
(possibly shifted) geometric distributions with certain parameters. Hence, the IP property
for each bijection characterizes the gamma, exponential and geometric distributions.
Note that FExp can be considered as a zero-temperature limit of FGa, namely, FExp is
obtained from FGa by replacing (+,×)-algebra with (min,+)-algebra. Consistent with
this, exponential distributions can be understood as a zero-temperature limit of gamma
distributions as discussed in [8, 10]. In particular, as discussed in [8, 10], the IP property
is typically inherited to the zero-temperature limit, and the zero-temperature limit
version has both continuous and discrete solutions.

As a slightly different example, the function

FC(x, y) =

(
y,

x+ y

1− xy

)
: R2 \ {(x, y) ∈ R2 | xy = 1} → R2

is known to have the IP property which characterizes the Cauchy distribution. Precisely,
though FC is not well-defined on R2, when X,Y are independent absolutely continuous
random variables, (U, V ) are well-defined almost surely, and under this condition, U and
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V are independent if and only if X has the Cauchy distribution with a specific parameter,
which was shown in [3] (1979). In this case, Y can be any absolutely continuous random
variable. Moreover, by change of variables x→ arctanx and y → arctan y, the IP property
for the equivalent function is also known to characterize the uniform distribution.

After a blank period of around twenty years, another bijection

FBe(x, y) =

(
1− y

1− xy
, 1− xy

)
: (0, 1)2 → (0, 1)2

was found to have the IP property in [48] (2003) and the solutions were completely
characterized in [43] as X ∼ Be(a, b), Y ∼ Be(a+ b, c) for any a, b, c > 0 where Be(a, b) is
the beta distribution with shape parameters a, b.

From a very different context, which was a study of an exponential-version of Pitman’s
transform for geometric Brownian motions, Matsumoto and Yor considered the involution

FGIG−Ga(x, y) =

(
1

x+ y
,

1

x
− 1

x+ y

)
=

(
1

x+ y
,

y

x(x+ y)

)
: R2

+ → R2
+

in [37] (see also [35, 36]) (2001) and found that this function has the IP property with
X ∼ GIG(−λ, a, b) and Y ∼ Ga(λ, a) for λ, a, b > 0. The complete characterization of the
solutions was done in [32] (2000). Then, to generalize this result, Koudou and Vallois
[27] (2012) considered the class of bijections of the form

F (x, y) = (f(x+ y), f(x)− f(x+ y)) : R2
+ → R2

+ (3.1)

given by a decreasing three times differentiable bijection f : R+ → R+. Remarkably,
they completely characterized bijections F in this class having the IP property for some
probability distributions with positive and twice differentiable densities. Up to the
IP-equivalence we introduced, they proved that other than the case f(x) = 1

x which
leads to FGIG−Ga, there are only two cases having the IP property: f(x) = log

(
1+x
x

)
or

f(x) = log
(
ex+δ−1
ex−1

)
with a parameter δ > 0. By introducing a certain coordinate-wise

change of variables, they showed that f(x) = log
(
1+x
x

)
leads to the bijection

FK−Ga,A(x, y) =

(
x+ y,

1 + 1
x+y

1 + 1
x

)
: R2

+ → R+ × (0, 1)

and f(x) = log
(
ex+δ−1
ex−1

)
leads to the involution

F δBe(x, y) =

(
1− xy

1 + (δ − 1)xy
,

1− x
1 + (δ − 1)x

1 + (δ − 1)xy

1− xy

)
: (0, 1)2 → (0, 1)2

with a parameter δ > 0. When δ = 1, F 1
Be is IP-equivalent to FBe since FBe = π ◦ F 1

Be ◦ π.
The solutions for FK−Ga,A are given as X ∼ K(2)(a, b, c) and Y ∼ Ga(b, c) for a, b, c > 0

while those for F δBe are given as X ∼ Beδ(a+ b, λ,−λ− b) and Y ∼ Be(a, b) for a, b, λ > 0

where Beδ is related by the change of variable x→ x
1−x : (0, 1)→ R+ to Be′δ. Note that

FGa is IP-equivalent to a bijection of the form (3.1) with f(x) = log x, but since this f
takes negative values, it was not included in the framework of [27]. The functions of the
form (3.1) having the IP property are also said to have Matsumoto-Yor property.

In [18] (2015), the authors introduced another bijection with the IP property

FK−Ga,B(x, y) =

(
y

1 + x
,
x(1 + x+ y)

1 + x

)
: R2

+ → R2
+

which also involves the Kummer distribution and gamma distribution with a motivation
to give a closed identity satisfied by the Kummer distribution. The characterizations of
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solutions without any assumption on distributions for FK−Ga,A and FK−Ga,B are given in
[42] (2018).

Most recently, in the study of invariant measures for the discrete KdV equation, which
is a well-known discrete integrable system, one of the authors of the present paper
found, with the coauthor of [8], that for the class of involutions Fα,βGIG, the IP property
holds with X ∼ GIG(λ, aα, b) and Y ∼ GIG(λ, bβ, a) for λ ∈ R, a, b > 0. Moreover, the
special case α = 1, β = 0 is IP-equivalent to FGIG−Ga since

FGIG−Ga = (Id × I) ◦ F 1,0
GIG ◦ (Id × I).

The zero-temperature version of Fα,βGIG, which is related to the ultra-discrete KdV equation,
and the zero-temperature version of FBe are also introduced in the study of discrete
integrable systems and stochastic integrable systems, and shown to have the IP property
[8, 10]:

Fα,βGIG,zero(x, y)

= (x+ min{y, α− x} −min{x, β − y}, y −min{y, α− x}+ min{x, β − y}) : R2 → R2

FBe,zero(x, y) = (min{x, 0} − y, min{x, y, 0} − x− y) : R2 → R2.

The characterizations of solutions for them are studied in [8, 4], but not fully solved yet,
even for the special case (α, β) = (0,∞):

F 0,∞
GIG,zero(x, y) = (min{y,−x}, y + x−min{y,−x}) : R2 → R2

which is IP-equivalent to the zero-temperature version of FGIG−Ga.
In the next subsection, we discuss common properties of them and give a classifica-

tion.

Remark 3.3. An anonymous reviewer gave us the following two examples having the IP
property, which we were unaware of. The first example is

F (x, y) =

(
x+ y,

1

x
+

1

y
− 4

x+ y

)
: R2

+ → R+ × [0,∞)

for independent X and Y having inverse Gaussian distributions, which was first shown
in [45] and the characterization of solutions was given in [30]. The second example is

F (x, y) = (x, x+ y − 1x+y>1) : [0, 1]2 → [0, 1]2

for independent X and Y having uniform distributions on [0, 1], which goes back to [44],
see also [11, 20]. We note that the first example is not a bijection since the function is
symmetric for x and y. It remains to be seen if these examples can also be understood in
some unified way.

3.3 Normalized bijections having the IP property in literature and its classifi-
cation

The bijections introduced in the last subsection are simply classified into two classes:
the zero-temperature version of some other bijections and the rest of them. All of the zero-
temperature versions, namely FExp, Fα,βGIG,zero and FBe,zero are piecewise linear functions
and involve the “min” function. Since the IP property of these zero-temperature versions
can be understood from the same property of the original (namely, the corresponding
“positive-temperature”) bijection, from now on, we focus on the rest of them, namely, FN,
FGa, FC, FBe, FGIG−Ga, FK−Ga,A, F δBe, FK−Ga,B, Fα,βGIG and consider the relation between
them.
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Remark 3.4. As mentioned in [41] and already discussed in Introduction, there should
be natural zero-temperature versions of H+

I and H+
II . Applying Theorem 1.1, we will be

able to show that the zero-temperature versions of H+
I and H+

II have the IP property
and their solutions should be the zero-temperature version of generalized beta prime
distributions and Kummer distributions of Type 2. Specifically, we should be able to do it
the way described in Subsection 5.2 of [10]. This is not technically difficult but requires
the introduction of a new family of associated probability distributions. We do not pursue
this topic further here to simplify the paper.

From the explicit expressions of these bijections, we can find that they are all
birational and naturally extended to the birational functions on CP1 × CP1. Hence,
we may consider coordinate-wise Möbius transformations to normalize these functions
to compare. Namely, instead of considering the equivalence with respect to (a) of
Definition 3.1, consider the (Möb)-equivalence. Then, any open interval I ( R can be
mapped to R+ by a Möbius transformation, but R cannot. Hence, in this sense, FN

and FC are exceptional, which are not (Möb)-equivalent to a birational function which
can be restricted to the one having domains and codomains R2

+. In other words, FGa,

FBe, FGIG−Ga, FK−Ga,A, F δBe, FK−Ga,B, Fα,βGIG share the common property that they are
(Möb)-equivalent to a subtraction-free birational function with domains and codomains
R2

+. Hence, to study relations between these bijections, we give such representatives
for them, which are denoted by F+

∗ , explicitly by applying the change of variable
x → x

1−x : (0, 1) → R+ for each coordinate in F δBe and the second component of the
output of FK−Ga,A:

• F+
Ga(x, y) = FGa(x, y) =

(
x+ y, xy

)
, (F+

Ga)−1(x, y) =
(
xy
1+y ,

x
1+y

)
,

• F+,δ
Be (x, y) =

(
1+x+y
δxy , 1+x+y+δxy

x(δ+δx)

)
, (F+,δ

Be )−1 = F+,δ
Be ,

• F+
K−Ga,A(x, y) =

(
x+ y, x(x+y+1)

y

)
, (F+

K−Ga,A)−1(x, y) =
(

xy
1+x+y ,

x(1+x)
1+x+y

)
,

• F+
K−Ga,B(x, y) = FK−Ga,B(x, y) =

(
y

1+x ,
x(1+x+y)

1+x

)
, (F+

K−Ga,B)−1 = F+
K−Ga,B,

• F+,α,β
GIG (x, y) = Fα,βGIG(x, y) =

(
y 1+βxy
1+αxy , x

1+αxy
1+βxy

)
, (F+,α,β

GIG )−1 = F+,α,β
GIG .

For FBe and FGIG−Ga, since we know they are (Möb)-equivalent to F 1
Be and F 1,0

GIG respec-
tively, we choose representatives as

• F+
Be(x, y) = F+,1

Be (x, y) =
(

1+x+y
xy , 1+y

x

)
,

• F+
GIG−Ga = F+,1,0

GIG (x, y) =
(

y
1+xy , x(1 + xy)

)
.

Other than these two simple equivalence, any relation between these bijections has not
been discussed in the literature. From these explicit expressions, we can easily see that
some of them are obtained by a singular limit procedure from others by introducing
scaling parameters. Such procedure typically conserves the IP property, and so the
IP property of them are also related. Surprisingly, all of these bijections are obtained
from H+

I , H
+
II and HIII,A by such procedure and/or taking special values of parameters

together with a proper coordinate-wise change of variables, which is our second main
result stated in Theorem 5.1 in Section 5.

4 Proof of Theorem 1.1 and properties of probability distribu-
tions

In this section, we discuss proofs of Theorem 1.1. In the first subsection, we give
a proof by a direct computation for the most complicated case, namely for Claim (i).
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In the second subsection, we study some useful properties of probability distributions
appearing in Theorem 1.1, and explain a way to obtain Theorem 1.1 (ii) and (iii) from
Theorem 1.1 (i).

4.1 Proof of Theorem 1.1

In this subsection, we give a proof of Theorem 1.1. Actually, the result is given by a
direct computation, but for clarity, we give some key formulas.

To prove the claims of Theorem 1.1, we only need to prove that

pX(x)pY (y) = JF (x, y)pU (u(x, y))pV (v(x, y))

holds where F (x, y) = (u(x, y), v(x, y)) and JF (x, y) is the Jacobian of F , namely

JF (x, y) =

∣∣∣∣∂u∂x ∂v∂y − ∂v

∂x

∂u

∂y

∣∣∣∣
and pX , pY , pU , pV are probability density functions for the distributions with parameters
given in each claim.

To check the relation for (i), let u(x, y) = y
α
σ1(x,y)
σ2(x,y)

and v(x, y) = x
β
σ3(x,y)
σ4(x,y)

, namely

σ1(x, y) = β + αx+ βy + αβxy, σ2(x, y) = 1 + x+ y + βxy,

σ3(x, y) = α+ αx+ βy + αβxy, σ4(x, y) = 1 + x+ y + αxy.

Then, by simple calculations, we have

yσ1 + σ2 = σ4(1 + βy), yσ1 + ασ2 = σ3(1 + y),

xσ3 + σ4 = σ2(1 + αx), xσ3 + βσ4 = σ1(1 + x),

JF (x, y) =
σ1σ3
αβσ2σ4

where we simply denote σi(x, y) by σi for i = 1, . . . , 4. Hence, if U ∼ Be′(−λ, a, b;α, 1),
we have

pU (u(x, y)) =
1

Z

(
y

α

σ1
σ2

)−λ−1(
1 + y

σ1
σ2

)−a+λ
2
(

1 +
α

y

σ2
σ1

)−b−λ2
=

1

Z
y−λ−1

σ−λ−11

σ−λ−12

(
σ2 + yσ1

σ2

)−a+λ
2
(
yσ1 + ασ2

yσ1

)−b−λ2
=

1

Z
y−λ−1σ

−λ2−1+b
1 σ

λ
2 +1+a
2 (σ4(1 + βy))−a+

λ
2 (σ3(1 + y))−b−

λ
2

where Z is a normalizing constant which may change line by line. In the same way, if
V ∼ Be′(λ, a, b;β, 1), we have

pV (v(x, y)) =
1

Z

(
x

β

σ3
σ4

)λ−1(
1 + x

σ3
σ4

)−a−λ2 (
1 +

β

x

σ4
σ3

)−b+λ
2

=
1

Z
xλ−1

σλ−13

σλ−14

(
σ4 + xσ3

σ4

)−a−λ2 (xσ3 + βσ4
xσ3

)−b+λ
2

=
1

Z
xλ−1σ

λ
2−1+b
3 σ

−λ2 +1+a
4 (σ2(1 + αx))−a−

λ
2 (σ1(1 + x))−b+

λ
2 .

Hence,

JF (x, y)pU (u(x, y))pV (v(x, y))

=
1

Z
y−λ−1(1 + βy)−a+

λ
2 (1 + y)−b−

λ
2 xλ−1(1 + αx)−a−

λ
2 (1 + x)−b+

λ
2 ,
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which is equal to pX(x)pY (y) if X ∼ Be′(λ, a, b;α, 1) and Y ∼ Be′(−λ, a, b;β, 1). Therefore
we conclude that the claim (i) holds.

For Claims (ii) and (iii), we can prove in a similar way. In the next subsection, we give
another proof by applying a singular limit procedure.

4.2 Some properties of probability distributions under Möbius transforma-
tions and scaling limits

We have introduced probability distributions Be′(λ, a, b; p, q), K(λ, a, b; p, q) and
GIG(λ, a, b; p, q) with two auxiliary parameters p, q > 0 because these classes are closed
under the change of scaling, and also two of them are closed under the map I as follows.

Lemma 4.1. For the maps I and θα for any α > 0, the following relations hold.

(i) Suppose X ∼ Be′(λ, a, b; p, q). Then,

I(X) = X−1 ∼ Be′(−λ, b, a; q, p), θα(X) = αX ∼ Be′(λ, a, b;
p

α
, αq).

(ii) Suppose X ∼ K(λ, a, b; p, q). Then,

θα(X) = αX ∼ K(λ, a, b;
p

α
, αq).

(iii) Suppose X ∼ GIG(λ, a, b; p, q). Then,

I(X) = X−1 ∼ GIG(−λ, b, a; q, p), θα(X) = αX ∼ GIG(λ, a, b;
p

α
, αq).

This lemma is proved by direct computations.

Moreover, these probability measures are connected by the following scaling limits.

Lemma 4.2. The following scaling limits hold as the weak limit of probability measures.

(i) For a > 0 and b, λ ∈ R such that −b < λ
2 ,

lim
ε↓0

Be′(λ,
a

ε
, b; εp, q) = K(λ, a, b; p, q).

(ii) For a, b > 0 and λ ∈ R,

lim
ε↓0

K(λ, a,
b

ε
; p, εq) = GIG(λ, a, b; p, q).

This lemma is also proved by the explicit forms of probability density functions, by
noting

lim
ε↓0

(1 + εpx)−
a
ε−

λ
2 = e−apx.

To obtain a proof of (ii) and (iii) of Theorem 1.1 by the scaling limits given in
Lemmas 2.3 and 4.2, we prove a general result concerning the weak convergence
of push-forward of weakly converging probability measures by compactly converging
functions.

Lemma 4.3. Let (µn)n∈N be a sequence of probability measures on R2
+ and (fn)n∈N be

a sequence of continuous functions from R2
+ to R2

+. Assume that there exist a probability
measure µ on R2

+ and a continuous function f : R2
+ → R2

+ such that

µn → µ weakly, fn → f uniformly on any compact set K ⊂ R2
+

as n goes to∞. Then, we have lim
n→∞

fn ◦ µn = f ◦ µ weakly.
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Proof. We prove that for any bounded continuous function g : R2
+ → R,

lim
n→∞

E[g(fn(Xn))] = E[g(f(X))]

if Xn ∼ µn and X ∼ µ. Since µn → µ weakly, we have

lim
n→∞

E[g(f(Xn))] = E[g(f(X))].

Hence, we only need to prove that

lim
n→∞

|E[g(f(Xn))]− E[g(fn(Xn))]| = 0. (4.1)

Now, we prove that g ◦ fn → g ◦ f uniformly on any compact set K ⊂ R2
+. Fix a compact

set K ⊂ R2
+ and suppose that g ◦ fn|K does not converge uniformly to g ◦ f |K . Then,

there exist ε > 0, a sequence (xk)k∈N ⊂ K and an increasing sequence nk →∞ (k →∞)

such that

|g(fnk(xk))− g(f(xk))| > ε

for any k ∈ N. Since K is compact, we can even assume that xk converges to some
x∞ ∈ K by passing to a subsequence if necessary. Then, since fn converges to f

uniformly on K, lim
k→∞

fnk(xk) = f(x∞) and so

lim
k→∞

(g(fnk(xk))− g(f(xk)) = g(f(x∞))− g(f(x∞)) = 0

gives the contradiction.
Having this uniform convergence g ◦ fn → g ◦ f on compact sets, it is straightforward

to prove (4.1). In fact, assuming ‖g‖∞ 6= 0, for any ε > 0, since µn → µ weakly, there
exists a compact set Kε ⊂ R2

+ such that supn P (Xn /∈ Kε) <
ε

4‖g‖∞ . Also, there exists nε
such that for any n ≥ nε and x ∈ Kε, |g(fn(x))− g(f(x))| < ε

2 . Hence,

|E[g(fn(Xn))]− E[g(f(Xn))]| ≤ E[|g(fn(Xn))− g(f(Xn))|]
≤ E[2‖g‖∞1Xn /∈Kε ] + E[|g(fn(Xn))− g(f(Xn))|1Xn∈Kε ]

<
ε

2
+
ε

2
= ε.

Hence, the lemma follows.

From the claim (i) of Theorem 1.1, for any a > 0 and b, λ ∈ R such that −b < λ
2 , we

have the IP property holds for H+,εα,εβ
I with

X ∼ Be′(λ,
a

ε
, b ; εα, 1), Y ∼ Be′(−λ, a

ε
, b ; εβ, 1),

U ∼ Be′(−λ, a
ε
, b ; εα, 1), V ∼ Be′(λ,

a

ε
, b ; εβ, 1)

with sufficiently small ε > 0. Hence, applying Lemmas 2.3 (i), 4.2 (i) and 4.3, we conclude
the claim (ii) of Theorem 1.1.

By this claim (ii) of Theorem 1.1 and Lemma 4.1 (ii), for (θε× θε) ◦H+,α,β
II ◦ (θε× θε)−1,

the IP property holds with

X ∼ K(λ, a, b ;
α

ε
, ε), Y ∼ K(−λ, a, b ;

α

ε
, ε),

U ∼ K(−λ, a, b ;
α

ε
, ε), V ∼ K(λ, a, b ;

α

ε
, ε).
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By changing parameters as a→ aε and b→ b
ε , the IP property holds for the same function

with

X ∼ K(λ, aε,
b

ε
;
α

ε
, ε) = K(λ, a,

b

ε
; α, ε), Y ∼ K(−λ, aε, b

ε
;
α

ε
, ε) = K(−λ, a, b

ε
; α, ε),

U ∼ K(−λ, aε, b
ε

;
α

ε
, ε) = K(−λ, a, b

ε
; α, ε), V ∼ K(λ, aε,

b

ε
;
α

ε
, ε) = K(λ, a,

b

ε
; β, ε)

for sufficiently small ε > 0. Then, applying Lemmas 2.3 (ii), 4.2 (ii) and 4.3, we conclude
the claim (iii) of Theorem 1.1.

5 Reduction of known IP properties from Theorem 1.1

In this section, we recover the IP property for bijections discussed in Section 3 from
Theorem 1.1. For this, we give our second main result which connects bijections having
a subtraction-free representation to the newly introduced bijections H+

I , H
+
II and HIII,A.

Theorem 5.1. The bijections F+,δ
Be , F+

K−Ga,A, F+
K−Ga,B, F+

Ga and F+,α,β
GIG are obtained

from one of H+,α,β
I , H+,α,β

II and Hα,β
III,A by Möbius transformations and singular limits as

follows.
(i) F+,δ

Be = H̃δ,0
I where

H̃α,β
I = ((I ◦ θα)× (I ◦ θβ)) ◦H+,α,β

I .

(ii) F+
K−Ga,A = H̃1,0

II where

H̃α,β
II = H+,α,β

II ◦
(
θα−1 × θβ−1

)
.

(iii) F+
K−Ga,B = Ĥ1,0

II where

Ĥα,β
II =

(
θα−1 × θβ−1

)
◦H+,α−1,β−1

II ◦ (θα × θβ) .

(iv) F+
Ga = F̃ 0

K−Ga,A where

F̃ εK−Ga,A = (θε−1 × Id) ◦ F+
K−Ga,A ◦ (θε × θε)

and F̃ 0
K−Ga,A = lim

ε↓0
F̃ εK−Ga,A. Note that the sequence converges compactly.

(v) F+
Ga = F̃ 0

K−Ga,B where

F̃ εK−Ga,B = π ◦ (I × θε) ◦ F+
K−Ga,B ◦ (θε−1 × θε−1)

and F̃ 0
K−Ga,B = lim

ε↓0
F̃ εK−Ga,B. Note that the sequence converges compactly.

(vi) F+,α,β
GIG = ((I ◦ θα)× Id) ◦Hα,β

III,A ◦ (Id × (I ◦ θβ)).

The theorem is proved by a direct computation.
Applying these explicit relations and Lemmas 4.1 and 4.3 to Theorem 1.1, we have the

solutions of the detailed balance equations for all of the bijections that appeared in the
last theorem in a systematic way. Note that when parameters p, q take singular values 0

or∞, the range of parameters (λ, a, b) may narrow depending on the distribution.

Corollary 5.2. Let α, β > 0. If X and Y are independent random variables with the
following marginal distributions, then the random variables U, V given by (U, V ) =

F (X,Y ) for each map are independent and have the following marginal distributions.
(i) For F = H̃α,β

I ,

X ∼ Be′(λ, a, b;α, 1), Y ∼ Be′(−λ, a, b;β, 1),

U ∼ Be′(λ, b, a;α, 1), V ∼ Be′(−λ, b, a;β, 1)
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and for F = F+,δ
Be ,

X ∼ Be′(λ, a, b; δ, 1) = Be′δ

(
b+

λ

2
, a− λ

2
,−a− λ

2

)
,

Y ∼ Be′ (−λ, a, b; 0, 1) = Be′
(
b− λ

2
, λ

)
U ∼ Be′(λ, b, a; δ, 1) = Be′δ

(
a+

λ

2
, b− λ

2
,−b− λ

2

)
,

V ∼ Be′ (−λ, b, a; 0, 1) = Be′
(
a− λ

2
, λ

)
where λ ∈ R, a, b > 0, −min{a, b} < λ

2 < min{a, b}.
(ii) For F = H̃α,β

II ,

X ∼ K(λ, a, b; 1, α), Y ∼ K(−λ, a, b; 1, β),

U ∼ K(−λ, a, b;α, 1), V ∼ K(λ, a, b;β, 1)

where λ ∈ R, a, b > 0, −b < λ
2 < b and for F = F+

K−Ga,A,

X ∼ K(λ, a, b; 1, 1) = K(2)

(
b+

λ

2
,−λ, a

)
, Y ∼ K(−λ, a, b; 1, 0) = Ga(−λ, a),

U ∼ K(−λ, a, b; 1, 1) = K(2)

(
b− λ

2
, λ, a

)
, V ∼ K(λ, a, b; 0, 1) = Be′

(
b+

λ

2
,−λ

)
where λ < 0, a, b > 0, −b < λ

2 .

(iii) For F = Ĥα,β
II ,

X ∼ K(λ, a, b; 1, α−1), Y ∼ K(−λ, a, b; 1, β−1),

U ∼ K(−λ, a, b; 1, α−1), V ∼ K(λ, a, b; 1, β−1)

and for F = F+
K−Ga,B,

X ∼ K(λ, a, b; 1, 1) = K(2)

(
b+

λ

2
,−λ, a

)
, Y ∼ K(−λ, a, b; 1,∞) = Ga

(
b− λ

2
, a

)
,

U ∼ K(−λ, a, b; 1, 1) = K(2)

(
b− λ

2
, λ, a

)
, V ∼ K(λ, a, b; 1,∞) = Ga

(
b+

λ

2
, a

)
where λ ∈ R, a, b > 0, −b < λ

2 < b.

(iv) For F = F̃ εK−Ga,A,

X ∼ K(λ, a, b; ε, ε−1) = K(λ, aε, b; 1, ε−1), Y ∼ K(−λ, a, b; ε, 0) = K(−λ, aε, b; 1, 0),

U ∼ K(−λ, a, b; ε, ε−1) = K(−λ, aε, b; 1, ε−1), V ∼ K(λ, a, b; 0, 1) = Be′
(
b+

λ

2
,−λ

)
where λ < 0, a, b > 0, −b < λ

2 . By changing the parameter as a→ ε−1a and taking ε ↓ 0,
for F = F+

Ga,

X ∼ K(λ, a, b; 1,∞) = Ga

(
b+

λ

2
, a

)
, Y ∼ K(−λ, a, b; 1, 0) = Ga(−λ, a),

U ∼ K(−λ, a, b; 1,∞) = Ga

(
b− λ

2
, a

)
, V ∼ K(λ, a, b; 0, 1) = Be′

(
b+

λ

2
,−λ

)
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where λ < 0, a, b > 0, −b < λ
2 .

(v) For F = F+,α,β
GIG ,

X ∼ GIG(λ, a, b;α, 1) = GIG(λ, aα, b), Y ∼ GIG(λ, b, a;β, 1) = GIG(λ, bβ, a),

U ∼ GIG(λ, b, a;α, 1) = GIG(λ, bα, b), V ∼ GIG(λ, a, b;β, 1) = GIG(λ, aβ, b)

where λ ∈ R, a, b > 0.

This recovers all results we consider in this paper on the IP property except for FN

and FC and the zero-temperature versions. Though we do not discuss this in detail in
this paper, the zero-temperature limits of the above subtraction-free bijections and their
(continuous) solutions are also systematically obtained. Hence, we can conclude that the
IP property for H+

I is quite fundamental and all other examples considered in this paper
except FN and FC are derived by changing variables, taking special parameters and
performing some limiting procedures from that for H+

I . This explains why the solutions
have (at least) three parameters for all bijections in Corollary 5.2, which was a mystery
until now.

Remark 5.3. In Corollary 5.2, we did not apply the relation (v) of Theorem 5.1 since the
distribution K(λ, a, b; p, q) is not closed for the bijection I(x) = x−1. If we introduce the
inverse Kummer distribution properly, we can also derive the IP property for F+

Ga using
the relation (v) of Theorem 5.1.

Remark 5.4. After finishing the manuscript of this paper, we found that there is another
IP property result for beta distribution obtained in [22]. The bijection studied in the
paper is

F (x, y) =

(
xy

1− y + xy
, 1− y + xy

)
: (0, 1)2 → (0, 1)2

and for independent X and Y having beta distributions, the function has the IP property.
By applying the change of variable x → x

1−x : (0, 1) → R+ for each coordinate of the
input and the output of F , the bijection is IP-equivalent to

F+(x, y) =

(
xy

1 + x
,

1 + x+ xy

y

)
: R2

+ → R2
+.

This function is obtained from H+,α,β
I as

F+(x, y) = lim
α↑∞

H+,α,1
I .

In this way, the IP property obtained in [22] is also recovered from the IP property of
H+,α,β
I . We also note that the matrix variate version of this IP property has been also

studied recently in [38].
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