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Abstract

We consider slowly time-dependent singular stochastic partial differential equations on
the two-dimensional torus, driven by weak space-time white noise, and renormalised in
the Wick sense. Our main results are concentration results on sample paths near stable
equilibrium branches of the equation without noise, measured in appropriate Besov
and Hölder norms. We also discuss a case involving a pitchfork bifurcation. These
results extend to the two-dimensional torus those obtained in [4] for finite-dimensional
SDEs, and in [9] for SPDEs on the one-dimensional torus.
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1 Introduction

In this work, we are interested in slowly time-dependent singular stochastic partial
differential equations (SPDEs) on the two-dimensional torus, of the form

dφ(t, x) =
[
∆φ(t, x) + :F (εt, φ(t, x)) :

]
dt+ σ dW (t, x) , (1.1)

where :F : denotes Wick renormalisation (see below), and dW (t, x) denotes space-
time white noise. While analogous SPDEs on the one-dimensional torus are well-posed,
without the need for any renormalisation procedure, it is well known that renormalisation
is required in dimension two and higher, because space-time white noise is a distribution-
valued process that is too singular.

*This work is supported by the ANR project PERISTOCH, ANR–19–CE40–0023.
†Institut Denis Poisson, University of Orléans, University of Tours and CNRS, France.
E-mail: nils.berglund@math.cnrs.fr; https://www.idpoisson.fr/berglund/

‡Institut Denis Poisson, University of Orléans, University of Tours and CNRS, France. Current address:
IRMAR, École Normale Supérieure de Rennes.

E-mail: Rita.nader@ens-rennes.fr; https://www.idpoisson.fr/nader/

https://imstat.org/journals-and-publications/electronic-journal-of-probability/
https://doi.org/10.1214/24-EJP1094
https://ams.org/mathscinet/msc/msc2020.html
https://arXiv.org/abs/2209.15357v2
https://hal.archives-ouvertes.fr/hal-03794269
mailto:nils.berglund@math.cnrs.fr
https://www.idpoisson.fr/berglund/
mailto:Rita.nader@ens-rennes.fr
https://www.idpoisson.fr/nader/


Concentration estimates for singular SPDEs on the 2-torus

The well-posedness problem on the two-dimensional torus was first solved by Giuseppe
Da Prato and Arnaud Debussche in the landmark work [15]. The main idea of their ap-
proach is to write an equation for the difference between the solution and the stochastic
convolution, which solves a linear equation. It turns out that unlike the stochastic con-
volution, which is distribution-valued, the difference is an actual function. Solutions to
the equation can then be constructed by a fixed-point argument in an appropriate Besov
space, provided the equation is renormalised in the sense of Wick. While the method has
been spelled out for time-independent systems, extending it to time-dependent equations
of the form (1.1) is straightforward.

The work [15] has later given rise to far-reaching generalisations, that allow to solve
large classes of singular SPDEs. These generalisations include the theory of regularity
structures, introduced by Martin Hairer in the work [22] and further developed with
Ajay Chandra, Yvain Bruned, Ilya Chevyrev and Lorenzo Zambotti in [12, 14, 11], and
the theory of paracontrolled distributions, introduced in [20] by Massimiliano Gubinelli,
Peter Imkeller and Nicolas Perkowski. Most of these more general singular SPDEs
require more refined renormalisation methods than Wick renormalisation.

For time-independent versions of the equation (1.1) on the two-dimensional torus,
many results going beyond well-posedness and existence/uniqueness of solutions have
been obtained. For instance, the fact that their solutions satisfy the Markov property
and are reversible with respect to the Gibbs measure was proved in [34] using Dirichlet
forms, while uniqueness of the Gibbs measure and convergence to it were obtained
in [33]. The fact that solutions satisfy the strong Feller property and are exponentially
mixing was shown in [37] using a dissipative bound, while the strong Feller property
was also proved (for more general equations) in [25], using the theory of regularity
structures. The work [26] provided a large-deviation principle, valid for a class of two-
and three-dimensional singular SPDEs. In the particular case of the Allen–Cahn equation,
sharper asymptotics on transition times between metastable states than those provided
by large-deviation estimates have been obtained in [2] and [38].

In the present work, we are interested in obtaining more detailed non-equilibrium
properties for time-dependent SPDEs of the form (1.1) on the two-dimensional torus.
The case of the one-dimensional torus has been previously considered in the work [9].
The first main result of that work concerned the motion near so-called stable equilibrium
branches of the equation. These are curves of the form t 7→ φ∗(t, x) on which the
right-hand side of the equation vanishes in the absence of noise. The deterministic
equation admits particular solutions that stay at distance of order ε, in the H1 Sobolev
norm, from φ∗, and it was proved that solutions of the stochastic equation remain with
high probability in a neighborhood of size of order σ, measured in the Hs Sobolev
norm for s < 1

2 . This result provides an extension to the infinite-dimensional setting of
similar results previously obtained in [6, 7] for finite-dimensional stochastic differential
equations.

The other results in [9] concerned certain situations involving bifurcations, or avoided
bifurcations. These occur when the equilibrium branch t 7→ φ∗(t, x) (almost) loses
stability at some time, usually because of the presence of a nearby unstable equilibrium
branch. This can result in interesting phenomena such as stochastic resonance, where
solutions of the equation make fast jumps in a close-to-periodic way. Those results were
an infinite-dimensional generalisation of one-dimensional results obtained in [5].

The aim of the present work is to obtain similar results in the case of the two-
dimensional torus, where Wick renormalisation is needed. The main result, Theorem 2.5,
shows that Wick powers of the stochastic convolution remain concentrated, with high
probability, in a neighborhood of a stable equilibrium branch {φ∗(t, x)}06t6T . The dis-
tance is measured here in the Besov norm ‖·‖Bα2,∞ for any parameter α < 0. Theorem 2.13
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Concentration estimates for singular SPDEs on the 2-torus

shows that this estimate implies concentration properties for the difference between a
solution of (1.1) and the stochastic convolution, in a stronger Hölder norm of positive
index.

Note that we do not provide a comparable result in the Besov norm ‖·‖Bα∞,∞ for
negative α arbitrarily close to 0. The reason is that this norm involves expectations of
absolute values of Fourier modes of the stochastic convolution, which may decay more
slowly than the expectations of Fourier modes squared that appear in the ‖·‖Bα2,∞ norm
– see Remark 2.6. Fortunately, the embedding Bγ2,∞ ↪→ Bγ−1

∞,∞ = Cγ−1 will imply that
controlling the weaker Besov norm is enough for our purposes.

Despite this concentration result, one may be concerned that it is of little practical
use, because it does only concern the difference between a solution and the more
singular stochastic convolution. Theorems 2.15 and 2.17 show that this is not the case,
by discussing the particular situation of a dynamic pitchfork bifurcation, which was
previously considered in [4] for one-dimensional stochastic differential equations.

The remainder of this paper is organized as follows. Section 2 contains a precise
description of the set-up, a short introduction to Besov spaces, and the concentration
results in the stable case, and in a case involving a pitchfork bifurcation. Section 3
contains the proof of Theorem 2.5 on Wick powers of the stochastic convolution. Section 4
contains the proofs of the other concentration results. Three appendices provide further
information on Besov spaces, Wick calculus, and some technical proofs.

2 Set-up and main results

2.1 A family of Wick-renormalised singular SPDEs

We are interested in renormalised versions of the SPDE

dφ(t, x) =
[
∆φ(t, x) + F (εt, φ(t, x))

]
dt+ σ dW (t, x) , (2.1)

where time t belongs to an interval I ⊂ R+, the spatial variable x belongs to the two-
dimensional torus T2 = (R/Z)2, and the solution φ(t, x) is real-valued. In addition, we
assume that

• ε > 0 and σ > 0 are small positive parameters;

• F is polynomial, of the form

F (t, φ) =

n∑
j=0

Aj(t)φ
j (2.2)

for some odd n > 3, where the coefficients Aj : I → R are of class C1, and the
leading coefficient An(t) is strictly negative for all t ∈ I, to avoid blow-up of
solutions;

• dW (t, x) denotes space-time white noise on I ×T2.

It is well-known (see for instance [15]) that the SPDE (2.1) is not well-posed, and
that a renormalisation procedure is required to define a notion of solution. There exist
several slightly different ways of doing this. For our purposes, it will be convenient to
work with spectral Galerkin approximations. Let{

ek(x) = e2π i k·x}
k∈Z2

denote a complex Fourier basis of L2(T2), and write any φ ∈ L2(T2) as

φ(x) =
∑
k∈Z2

φkek(x) . (2.3)
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Concentration estimates for singular SPDEs on the 2-torus

Note that since φ(x) is assumed to be real, the coefficients φk satisfy the reality condition

φ−k = φk ∀k ∈ Z2 . (2.4)

For any cut-off N ∈ N, we define the spectral Galerkin approximation at order N of φ by

φN (x) = (PNφ)(x) :=
∑

k∈Z2 : |k|6N

φkek(x) ,

where |k| = |k1|+ |k2|. We denote the eigenvalues of the Laplacian on T2 by −µk, where

µk := (2π)2 ‖k‖2 , k ∈ Z2 , (2.5)

where ‖k‖ denotes the Euclidean norm of k, and define the renormalisation constant

CN =
σ2

2
Tr
(

[−PN∆ + 1]−1
)

= σ2
∑

k∈Z2 : |k|6N

1

2(µk + 1)
. (2.6)

One easily checks that CN diverges like σ2 logN as N → ∞. Note that the shift +1 in
the definition (2.6) of CN is only there to avoid problems with the k = 0 mode, and can
be replaced by any other strictly positive constant.

Recall that the Hermite polynomials with variance CN are defined recursively by

H0(x;CN ) := 1 , Hm+1(x;CN ) := xHm(x;CN )− CN
d

dx
Hm(x;CN ) ∀m ∈ N0 .

The mth Wick power of φN is defined by

:φmN : = :φmN :CN := Hm(φN ;CN ) .

For instance, we have

:φN (x)1 : = φN (x) ,

:φN (x)2 : = φN (x)2 − CN ,

:φN (x)3 : = φN (x)3 − 3CNφN (x),

:φN (x)4 : = φN (x)4 − 6CNφN (x)2 + 3C2
N .

The renormalised version of (2.1) we want to study is given by the limit, as N →∞, of

dφN (t, x) =
[
∆φN (t, x) + :F (εt, φN (t, x)) :CN

]
dt+ σ dWN (t, x) , (2.7)

where dWN = PN dW , and

:F (t, φ) :CN :=

n∑
j=0

Aj(t) :φj :CN .

As proved in [15], solutions of the renormalised equation (2.7) do admit a well-defined
limit as N →∞, in appropriate Besov spaces that we define below. The limiting equation
is denoted by

dφ(t, x) =
[
∆φ(t, x) + :F (εt, φ(t, x)) :

]
dt+ σ dW (t, x) .

In what follows, it will be convenient to rescale time by a factor ε, which results in the
SPDE

dφ(t, x) =
1

ε

[
∆φ(t, x) + :F (t, φ(t, x)) :

]
dt+

σ√
ε

dW (t, x) . (2.8)
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Concentration estimates for singular SPDEs on the 2-torus

Remark 2.1 (Other renormalisation methods). An alternative renormalisation method
to a spectral Galerkin cut-off consists in convoluting space-time white noise with a
smooth mollifier. The convolution can be done in both time and space, or only in space.
Space-time convolution is not well suited to the approach we use here, which treats
time and space on a different level. Convolution only in space leads to a smoother
regularization in momentum space than the spectral Galerkin cut-off, in which the
magnitude of Fourier modes decreases beyond size N , cf. (A.1) in Appendix A. This is
similar to the regularization used for instance in [13]. While our methods can probably
be adapted to such a renormalisation procedure, the sharp cut-off we use here yields
somewhat simpler computations.

2.2 Besov spaces and the “Da Prato–Debussche trick”

As mentioned above, the importance of Besov spaces in solving singular SPDEs of the
form (2.8) was realised in the seminal work [15]. We recall one of their definitions here.

Definition 2.2 (Besov spaces). Let φ admit the Fourier series (2.3). For q ∈ N0, define
its projection on the annulus Aq = {k ∈ Z2 : 2q−1 6 |k| < 2q} by

δqφ(x) :=
∑
k∈Aq

φkek(x) .

For α ∈ R and p, r ∈ [1,∞], define the norm

‖φ‖Bαp,r :=
∥∥{2qα ‖δqφ‖Lp

}
q>−1

∥∥
`r

:=



(∑
q>−1

2rqα ‖δqφ‖rLp
)1/r

if 1 6 r <∞ ,

sup
q>−1

2qα ‖δqφ‖Lp if r =∞ .

Then the Besov space Bαp,r = Bαp,r(T2) is defined as the set of all φ such that ‖φ‖Bαp,r <∞.

The Besov space Bαp,r is a Banach space for all α ∈ R and p, r ∈ [1,∞]. In particular,
the spaces

Cα := Bα∞,∞ and Hα := Bα2,2
coïncide with the usual Hölder and (fractional) Sobolev spaces respectively.

We will use the following results, which can be found, for instance, in [15, Proposi-
tion 2.1], in [15, Lemma 3.3] and [29].

Proposition 2.3 (Embeddings and products).

1. If α ∈ R, 1 6 p1 6 p2 6 ∞ and 1 6 q1 6 q2 6 ∞, then Bαp1,q1 is continuously
embedded in Bβp2,q2 , where β = α− 2

(
1
p1
− 1

p2

)
.

2. If α1 > α2 ∈ R and p, q ∈ [1,∞], then Bα1
p,q is compactly embedded in Bα2

p,q.

3. Let p, r > 1 and α+ β > 0, with α, β < 2
p . Then, if φ ∈ Bαp,r and ψ ∈ Bβp,r, one has

φψ ∈ Bγp,r and ‖φψ‖Bγp,r . ‖φ‖Bαp,r ‖ψ‖Bβp,r , (2.9)

where γ = α+ β − 2
p .

4. Let n ∈ N, p, r > 1 and − 2
p(2n+1) < α < 0. Set s = 2

p + 2α. Then, if φ ∈ Bsp,r and
ψ ∈ Bαp,r, one has

φ`ψ ∈ B(2`+1)α
p,r and ‖φ`ψ‖B(2`+1)α

p,r
. ‖φ‖`Bsp,r ‖ψ‖Bαp,r (2.10)

for ` ∈ {0, . . . , n− 1}.
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Concentration estimates for singular SPDEs on the 2-torus

Let ψ denote the stochastic convolution, that is, the solution of the linear equation

dψ(t, x) = ∆ψ(t, x) dt+ σ dW (t, x)

with initial condition ψ(0, x) = 0. It is known (see, for instance, [15, Lemma 3.2]) that
the stochastic convolution belongs to all Besov spaces with negative regularity α, but
not with positive α. This means that ψ is a distribution, but not a function. The central
idea in [15] is that the difference φ1 = φ− ψ enjoys much better regularity properties:

Theorem 2.4 ([15, Theorem 4.2]). For any p > n and r > 1, let α and s satisfy

0 > α > max

{
− 2

p(n+ 1)
,− 1

n− 1

(
1− n

p

)}
, s =

2

p
+ 2α .

Then, for almost any initial condition (with respect to a natural probability measure), the
renormalised SPDE admits for any T > 0 a unique solution φ such that

φ− ψ ∈ C([0, T ],Bαp,r) ∩ Lp([0, T ],Bsp,r) .

Note in particular that s > 0, implying that the difference φ− ψ takes values in the
space of functions Bsp,r, which have some Hölder regularity in space.

2.3 Main results: Wick powers of the stochastic convolution

Our first main results concern the stochastic convolution and its Wick powers. Let
a : I → R be a continuously differentiable function satisfying

− a+ < a(t) < −a− ∀t ∈ I (2.11)

for some constants a+ > a− > 0. The (time-inhomogeneous) stochastic convolution is
defined as the solution of the linear equation

dψ(t, x) =
1

ε

[
∆ψ(t, x) + a(t)ψ(t, x)

]
dt+

σ√
ε

dW (t, x) (2.12)

with initial condition ψ(0, x) = 0 ∀x ∈ T2. The following estimate is the main result of
this section.

Theorem 2.5 (Tail estimates on Wick powers of the stochastic convolution). For any
α < 0 and for any m ∈ N, there exist constants Cm(T, ε, α) and κm(α), independent of
the cut-off N , such that

P

{
sup

06t6T
‖ :ψ(t, ·)m : ‖Bα2,∞ > hm

}
6 Cm(T, ε, α) e−κm(α)h2/σ2

holds for all h > 0. Furthermore, there are constants c0, c1 > 0, uniform in m, α, T and ε,
such that

κm(α) > c0
α2

m7
, Cm(T, ε, α) 6 c1

T

ε

m3/2 emmm

|α|
.

Remark 2.6 (Other Besov spaces). We do not claim that comparable results hold in any
Besov space Bαp,∞. For instance, we have

E
[
‖ψ(t, ·)‖Bα∞,∞

]
6 sup
q>−1

2qα
∑
k∈Aq

E
[
|ψk(t)|

]
.

Since the random variables ψk(t) follow centred normal distributions of variance of
order ‖k‖−2, the sum over k ∈ Aq of the expectations of |ψk(t)| has order 2q. Therefore,
the expectation of ‖ψ(t, ·)‖Bα∞,∞ could diverge with the cut-off N as Nα+1 if α > −1.

Since in that case, the limiting random variable would not admit a first moment, its tail
probabilities could decay more slowly than 1/h.
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Concentration estimates for singular SPDEs on the 2-torus

Remark 2.7 (Interpretation in terms of testing distributions). The following observation
may provide some intuition on what it means for a distribution to be concentrated in a
ball in the Besov space Bα2,∞. Let η : T2 → R be a compactly supported test function of
class C2, of unit C2-norm, and set

ηρ(x) =
1

ρ
η

(
x

ρ

)
for any ρ ∈ (0, 1]. Note that the scaled test functions ηρ have constant L2-norm, instead
of constant L1-norm, as one would require when working with Bα∞,∞. Then we have∣∣〈 :ψm : , η2−q0 〉

∣∣ . 2|α|q0 ‖ :ψm : ‖Bα2,∞ ,

for all q0 ∈ N0 (cf. Lemma A.1), so that Theorem 2.5 implies

P

{
sup

06t6T
〈 :ψ(t)m : , η2−q0 〉 > hm

}
6 Cm(T, ε) exp

{
−κm(α)2−2|α|q0/m h

2

σ2

}
for any m ∈ N and any q0 ∈ N0. This shows that sample paths of 〈 :ψ(t)m : , η2−q0 〉 are
concentrated in a strip of width σm2|α|q0 |α|−m.

Remark 2.8 (Other boundary conditions). Since Theorem 2.5 is formulated on the torus
T2, we assume periodic boundary conditions to hold. However, the theorem also holds
for other boundary conditions, in particular for Dirichlet and for zero flux Neumann
boundary conditions (zero normal derivative on the boundary of a square). Indeed,
these situations can be modeled by imposing further restrictions on the amplitude of
Fourier modes than (2.4), both for space-time white noise and the stochastic convolution.
For instance, zero flux Neumann boundary conditions amount to adding the condition
φ−k = φk for all k ∈ Z2. Note however that for Dirichlet boundary conditions and
even Wick powers, the value at the boundary will be different from zero, owing to the
CN -dependent constant term in even Hermite polynomials.

2.4 Main results: Concentration around stable equilibrium branches

The main part of our results concern the effect of weak space-time white noise on the
dynamics near a stable equilibrium branch of the unperturbed equation.

Assumption 2.9 (Stable case). There exists a map φ∗ : I → R such that

F (t, φ∗(t)) = 0 ∀t ∈ I .

Furthermore, the linearisation a(t) = ∂φF (t, φ∗(t)) satisfies (2.11).

In the deterministic case σ = 0, the SPDE (2.8) reduces to

dφ(t, x) =
1

ε

[
∆φ(t, x) + F (t, φ(t, x))

]
dt , (2.13)

since the renormalisation counterterm CN vanishes for σ = 0. We then have the following
generalisation of Tihonov’s theorem (cf. [36]).

Proposition 2.10 (Deterministic case). There exist constants ε0, C > 0 such that, when
0 < ε < ε0, (2.13) admits a particular solution φ̄(t) satisfying∥∥φ̄(t, ·)− φ∗(t)e0

∥∥
H1 6 Cε ∀t ∈ I .

The difference φ0 = φ− φ̄ satisfies the SPDE

dφ0(t, x) =
1

ε

[
∆φ0(t, x) + :F0(t, x, φ0(t, x)) :

]
dt+

σ√
ε

dW (t, x) , (2.14)
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where
:F0(t, x, φ0(t, x)) : = :F (t, φ̄(t, x) + φ0(t, x)) : − F (t, φ̄(t, x))

has similar properties as F , and satisfies in addition F0(t, x, 0) = 0 for all t ∈ I and all
x ∈ T2. More precisely, we have the following result.

Lemma 2.11. The renormalised forcing term is given by

:F0(t, x, φ0(t, x)) : = a(t)φ0(t, x) +

n∑
j=1

Âj(t, x) :φ0(t, x)j : , (2.15)

where the Âj(t, ·) belong to H1 (which is embedded in B1
2,∞) for all t ∈ I, and are given

by

Âj(t, x) =



n∑
i=2

iAi(t)
[
φ̄(t, x)i−1 − φ∗(t)i−1e0(x)

]
, j = 1 ,

n∑
i=j

(
i

j

)
Ai(t)φ̄(t, x)i−j , j = 2, . . . , n .

We rewrite (2.14) as

dφ0(t, x) =
1

ε

[
∆φ0(t, x) + a(t)φ0(t, x) + : b(t, x, φ0(t, x)) :

]
dt+

σ√
ε

dW (t, x) ,

where : b : denotes the sum over j in (2.15). Note that : b : contains a term linear in φ0.
However, it has a coefficient of order ε, since φ̄ and φ? are at a distance of order ε.

Remark 2.12 (One-dimensional torus). A similar situation occurs in the proof of [9,
Theorem 2.4]. This proof contains a small mistake, which is, however, easily corrected
by using a similar decomposition as here. In [9, Equation (3.5)], ā(t) should be defined
as ā(t) = ∂φf(t, φ∗(t)e0) instead of ā(t) = ∂φf(t, φ̄(t, x)), in order to obtain a value
independent of x. The only change to be made in the proof is that the nonlinear term b

has order h2 + εh instead of h2. The extra term of order εh plays a similar role as Â1(t, ·)
here.

We now apply the Da Prato–Debussche trick, and consider the difference φ1 = φ0 − ψ.
It satisfies the equation

dφ1(t, x) =
1

ε

[
∆φ1(t, x) + a(t)φ1(t, x) + : b(t, x, ψ(t, x) + φ1(t, x)) :

]
dt , (2.16)

where

: b(t, x, ψ(t, x) + φ1(t, x)) : =

n∑
j=1

Âj(t, x)

j∑
`=0

(
j

`

)
φ1(t, x)j−` :ψ(t, x)` : .

It follows from Proposition 2.3 that if φ1 ∈ Bβ2,∞ and :ψ` : ∈ Bα2,∞ for α < 0 and
` = 0, . . . , n− 1, then

: b(t, x, ψ + φ1) : ∈ Bᾱ2,∞ ∀ᾱ < (2n− 1)α ,

provided β > 1 + 2α. By the Schauder estimate recalled in Proposition A.2, the solution
of (2.16) belongs to Bγ2,∞ for γ < 2 − (2n + 1)|α|, which allows to close the fixed-point
argument, in accordance with Theorem 2.4.

By the embedding Bγ2,∞ ↪→ Bγ−1
∞,∞ = Cγ−1, we see that the solution of (2.16) is Hölder

continuous, with exponent almost 1. In other words, the solution is almost Lipschitz
continuous. Our main result is then the following.
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Concentration estimates for singular SPDEs on the 2-torus

Theorem 2.13 (Concentration estimate for φ1). For any choice of γ < 2 and ν < 1− γ
2 ,

there exist constants C(T, ε),M, κ, h0, ε0 > 0 such that, whenever ε < ε0 and h < h0ε
ν ,

one has

P

{
sup
t∈[0,T ]

‖φ1(t)‖Bγ2,∞ > Mε−νh(h+ ε)

}
6 C(T, ε) e−κh

2/σ2

,

P

{
sup
t∈[0,T ]

‖φ1(t)‖Cγ−1 > Mε−νh(h+ ε)

}
6 C(T, ε) e−κh

2/σ2

.

This result shows in particular that sample paths of φ1 are concentrated in a ball in
Cγ−1-norm of size

ε−νσ(σ + ε) �

{
ε−νσ2 if σ > ε ,

ε1−νσ if σ 6 ε .

Remark 2.14 (Other boundary conditions). Singular SPDEs with other boundary condi-
tions than periodic are often much harder to analyse. See for instance [18], and [19] for
an analysis of the dynamic Φ4

3 model and the parabolic Anderson model in dimension 3,
where an extra boundary renormalisation is required for Neumann boundary conditions.
However, the present situation is less singular, since the Da Prato-Debussche trick ap-
plies. This is somewhat similar to the situation in [24], where a Cole–Hopf tansformation
can be used. More precisely, [19, Eq. (2.16)] shows how heat kernels satisfying Robin
boundary conditions can be built as linear combinations of reflections of heat kernels for
periodic boundary conditions. For a = 0 and a = ∞, respectively, that equation yields
heat kernels for zero-flux Neumann and Dirichlet boundary conditions. We expect that
applying such a modified kernel to the nonlinear part of (2.16) would indeed provide a
solution for the required boundary conditions, though we don’t make any claim of having
a rigorous proof for this statement. Note however that for Dirichlet boundary conditions,
the approach presented here only works for equilibrium branches given by φ∗(t) = 0

for all t ∈ I. There can be situations with equilibrium branches that are not constant in
space, but investigating these would require an adaptation of the approach used here.

2.5 The case of bifurcations

In this section, we comment on how the results of the last section can be extended to
situations where the nonlinearity F fails to satisfy Assumption 2.9, that is, in the case of
a bifurcation. In the work [9], which concerned SPDEs on the one-dimensional torus, we
considered the case of an avoided transcritical bifurcation, where F is given locally by

F (t, φ) = δ + t2 − φ2 +O
(
(|t|+ |φ|)3

)
with 0 < δ � 1. In that case, there is a stable equilibrium branch φ∗+(t) '

√
δ + t2 ap-

proaching an unstable branch φ∗−(t) ' −
√
δ + t2 at distance 2

√
δ. While the linearization

a(t) = ∂φF (t, φ∗(t)) remains positive, its value becomes small in terms of δ near t = 0. As
a result, while the system still behaves as in the stable case when σ � (δ ∨ ε)3/4, a new
behaviour emerges for σ � (δ ∨ ε)3/4: it becomes likely for sample paths to cross the
unstable equilibrium branch, and travel in a short time to a distant region of space.

Here we will illustrate how these results can be transposed to singular SPDEs on the
two-dimensional torus. However, for a change, we are going to take as an example the
equation

dφ(t, x) =
1

ε

[
∆φ(t, x) + a(t)φ(t, x)− :φ(t, x)3 :

]
dt+

σ√
ε

dW (t, x) , (2.17)

which describes a pitchfork bifurcation when a(t) changes from being negative to being
positive at a time t∗. In the deterministic case σ = 0, there is a phenomenon known
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as bifurcation delay: solutions attracted by the stable equilibrium branch φ∗(t) = 0 for
t < t∗ remain close to 0 for a time of order 1 beyond the bifurcation time t∗, even though
the equilibrium branch has become unstable. This is due to the solution becoming
exponentially close to 0 during the stable phase, and a time of order 1 being required for
the solution to reach again values of order 1.

In the one-dimensional SDE case, the effect of noise on such a system has been
studied in [4]. The main result of that work is that sample paths remain with high
probability at a distance of order σε−1/4 from zero up to a time t∗ + O(ε1/2), but are
unlikely to remain close to 0 after times of order t∗ + O((ε log(σ−1))1/2). The effect of
noise is thus to reduce the bifurcation delay from order 1 to order (ε log(σ−1))1/2.

In order to analyse the SPDE (2.17), we start by carrying out the change of variables

φ(t, x) = ψ⊥(t, x) + φ1(t, x) ,

where the stochastic convolution ψ⊥ solves the SPDE

dψ⊥(t, x) =
1

ε

[
∆⊥ψ⊥(t, x) + a(t)ψ⊥(t, x)

]
dt+

σ√
ε

dW⊥(t, x)

with zero initial condition. Here the noise dW⊥ acts only on non-zero Fourier modes,
implying that the spatial average of ψ⊥(t, x) always remains equal to zero. We use
the notation ∆⊥ to emphasize that the Laplacian only acts on non-zero Fourier modes,
although it has the same effect as the usual Laplacian. The resulting equation for φ1

reads

dφ1(t, x) =
1

ε

[
∆φ1(t, x) + a(t)φ1(t, x) + :F (ψ⊥(t, x), φ1(t, x)) :

]
dt+

σ√
ε

dW0(t, x) ,

where
:F (ψ⊥, φ1) : = − :ψ3

⊥ : − 3φ1 :ψ2
⊥ : − 3φ2

1ψ⊥ − φ3
1 .

The next step is to split φ1 into its mean and oscillating spatial part, writing

φ1(t, x) = φ0
1(t)e0(x) + φ⊥1 (t, x) , φ0

1(t) = 〈e0, φ1(t, ·)〉 .

This results in the coupled SDE–SPDE system

dφ0
1(t) =

1

ε

[
a(t)φ0

1(t)− φ0
1(t)3 + F0(ψ⊥, φ

0
1, φ
⊥
1 )
]

dt+
σ√
ε

dW0(t) , (2.18)

dφ⊥1 (t, x) =
1

ε

[
∆⊥φ

⊥
1 (t, x) + a(t)φ⊥1 (t, x) + :F⊥(ψ⊥, φ

0
1, φ
⊥
1 ) :

]
dt , (2.19)

where F0 and :F⊥ : are nonlocal nonlinearities given by

F0(ψ⊥, φ
0
1, φ
⊥
1 ) = 〈e0, :F (ψ⊥, φ

0
1e0 + φ⊥1 ) : 〉

= δ0( :F (ψ⊥, φ
0
1e0 + φ⊥1 ) : ) ,

F⊥(ψ⊥, φ
0
1, φ
⊥
1 ) = :F (ψ⊥, φ

0
1e0 + φ⊥1 ) : − F0(ψ⊥, φ

0
1, φ
⊥
1 ) .

We start by describing concentration properties of φ⊥1 . For that, given a parameter
H0 > 0, we introduce the stopping time

τ0(H0) = inf
{
t ∈ [0, T ] : |φ0

1(t)| > H0

}
.

Theorem 2.15 (Concentration estimate for φ⊥1 ). Assume there exists a constant a0 > 0

such that a(t) 6 (2π)2 − a0 for all t ∈ [0, T ]. Then for any choice of γ < 2 and ν < 1− γ
2 ,

there exist constants C(T, ε),M, κ, h0 > 0 such that, whenever h+H0 6 h0ε
ν/2, one has

P

{
sup

t∈[0,T∧τ0(H0)]

‖φ⊥1 (t)‖Cγ−1 > Mε−ν(h+H0)3

}
6 C(T, ε) e−κh

2/σ2

.
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Note in particular the weaker condition on a(t): instead of having to stay negative,
a(t) may become positive, as long as it stays smaller than (2π)2. This is because the
eigenvalues of the Laplacian ∆⊥ are bounded above by −(2π)2.

Remark 2.16. One can easily extend the result to cases where a(t) exceeds the value
(2π)2 by incorporating more Fourier modes in the variables φ0

1.

It is now relatively straightforward to extend the one-dimensional results from [4] to
the SDE (2.18) governing the zeroth Fourier mode. The idea is that its solution is likely
to remain close, on some time interval, to the solution of the linearised equation

dφ◦(t) =
1

ε
a(t)φ◦(t) dt+

σ√
ε

dW0(t) , (2.20)

which is a Gaussian process, with variance

v◦(t) = v◦(0) +
σ2

ε

∫ t

0

e2α(t,t1)/ε dt1 , α(t, t1) =

∫ t

t1

a(t, t2) dt2 .

One can show (see [4, Lemma 4.2]) that for an initial variance v◦(0) of order σ2, bounded
away from zero, one has

v◦(t) �



σ2

|t− t∗|
for 0 6 t 6 t∗ −

√
ε ,

σ2

√
ε

for −
√
ε 6 t− t∗ 6

√
ε ,

σ2

√
ε

e2α(t,t∗)/ε for t > t∗ +
√
ε .

Note that the variance increases slowly up to time t∗ +
√
ε, and then increases exponen-

tially fast. This suggests defining sets

B−(h−) =

{
(t, φ0

1) ∈ [0, t∗ +
√
ε]×R : |φ0

1| 6
h−
σ
v◦(t)

}
,

B+(h+) =

{
(t, φ0

1) ∈ [t∗ +
√
ε, T ]×R : |φ0

1| 6
h+√
(a(t)

}
.

The first set is a union of confidence intervals associated with the variance v◦(t). The
second set is motivated by the form of the exponential growth of the variance after
the bifurcation. One then has the following generalisation of [4, Theorem 2.10] and [4,
Proposition 4.7].

Theorem 2.17 (Behaviour of φ0
1(t) near a pitchfork bifurcation). There exist positive

constants M, ε0, h0 such that, for any ε < ε0 and h− 6 h0ε
1/2, and any t 6 t∗ + ε1/2, one

has

P
{
τB−(h−) 6 t

}
6 C(t, ε) exp

{
−
h2
−

2σ2

[
1−O(

√
ε )−O

(
h2
−
ε

)]}
, (2.21)

where C(t, ε) = O(α(t)/ε2). Furthermore, for h+ = σ log(σ−1)1/2 and any t > t∗ + ε1/2,
one has

P
{
τB+(h+) > t

}
6
h+

σ
exp

{
−κα(t, t∗)

ε

}
(2.22)

for a constant κ > 0.

The bound (2.21) shows that when σ � h− �
√
ε, sample paths are likely to stay

in B−(h−) up to time t∗ +
√
ε. At time t∗ +

√
ε, typical fluctuations have a size of order

σε−1/4. Since α(t, t∗) grows like (t− t∗)2, the bound (2.22) shows that sample paths are
likely to leave a neighborhood of size σ of 0 at times of order

√
ε log(σ−1).
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Remark 2.18 (Tipping points). Another interesting bifurcation occurs in connection with
tipping points, for instance in climate models. The most generic case is the saddle–node,
or fold bifurcation, whose normal form is given by

F (t, φ) = −t− φ2 .

In that case, a stable and an unstable equilibrium branch given by φ∗±(t) = ±
√
−t exist

for t < 0, while there is no equilibrium branch for t > 0. In the deterministic, time-
dependent case, it is known that solutions react to the disappearance of the equilibrium
states after a delay of order ε2/3 [32, 21]. A stochastic version of this bifurcation for
one-dimensional φ has been studied in [3]. The main results are that the variance of
sample paths increases when approaching the bifurcation point, and that for sufficiently
large noise intensity, sample paths are likely to cross the unstable branch and reach
negative values of order 1 some time before the bifurcation occurs. In the context of
critical transitions, it has been proposed to use the increase of the variance as an early
warning sign for an impeding tipping point [17, 35]. Other rising variance scenarios
involving different types of bifurcations have been investigated in [28]. We expect
that the approach used here for SPDEs can also be used in the case of a saddle-node
bifurcation, at least for periodic and for zero-flux Neumann boundary conditions. The
main increase in variance should be seen in the zeroth Fourier mode, while the variance
of the zero-mean part φ⊥ should remain of constant order.

Remark 2.19 (Other boundary conditions). In the spirit of Remark 2.14, we expect very
similar results to hold in the case of zero-flux Neumann boundary conditions, provided
the construction of the modified heat kernel hinted at in that remark indeed works.
However, for Dirichlet boundary conditions, the situation is somewhat different. In
particular, since even Fourier modes are absent, a pitchfork bifurcation will create
new equilibrium branches that are not constant is space. One way of analysing such a
situation would be to apply similar ideas as in the normal form analysis in [8, Section 4.3],
to show that the dynamics of the first Fourier mode is locally described by an equation
of the form

dφ1(t) =
1

ε

[(
a(t)− µ1

)
φ1(t)− φ1(t)3 + . . .

]
dt+

σ√
ε

dW1(t) ,

where the dots stand for terms of order 4. Indeed, terms of order 3 depending on other
Fourier modes than k = 1 can be locally removed by a normal-form transformation
analogous to the one described in [8, Proposition 4.8]. This suggests that a similar
analysis can be made, based on separating the mode k = 1 from the others. However, a
more thorough investigation would be required to confirm this.

3 Proof of Theorem 2.5

3.1 Relation between Hermite polynomials and binomial formula

We will first give a proof of Theorem 2.5 in the particular case where a(t) = −1 for
all t. That is, we consider the linear equation

dψ(t, x) =
1

ε

[
∆ψ(t, x)− ψ(t, x)

]
dt+

σ√
ε

dW (t, x) .

Its projection on the kth basis vector ek is given by

dψk(t) = −1

ε
(µk + 1)ψk(t) dt+

σ√
ε

dWk(t) , (3.1)

where the µk are the eigenvalues (2.5) of the Laplacian, and the {Wk(t)}t>0 are inde-
pendent Wiener processes. We write αk(t, t1) = −(µk + 1)(t− t1) and αk(t, 0) = αk(t) for
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brevity. The solution of (3.1) is an Ornstein–Uhlenbeck process, which can be represented
using Duhamel’s principle by the Ito integral

ψk(t) = eαk(t)/ε ψk(0) +
σ√
ε

∫ t

0

eαk(t,t1)/ε dWk(t1) . (3.2)

At any time t > 0, ψk(t) is a zero-mean Gaussian random variable of variance

vk(t) = Var
(
ψk(0)

)
e2αk(t)/ε +

σ2

ε

∫ t

0

e2αk(t,t1)/ε dt1

= Var
(
ψk(0)

)
e2αk(t)/ε +

σ2

2(µk + 1)

[
1− e2αk(t)/ε

]
.

In order to obtain a stationary process, we will assume that the initial conditions ψk(0)

follow centred normal distributions with variance vk = σ2/[2(µk + 1)], which are mutually
independent, and independent of the Wiener processes. In this way, we have vk(t) = vk
for all t.

Fix α < 0. By Definition 2.2 of Besov norms,

Pm(h) := P
{

sup
06t6T

‖ :ψ(t, ·)m : ‖Bα2,∞ > hm
}

= P
{

sup
06t6T

sup
q0>0

2−|α|q0 ‖δq0( :ψ(t, ·)m : )‖L2 > hm
}

= P
{
∃q0 > 0: sup

06t6T
‖δq0( :ψ(t, ·)m : )‖L2 > hm2|α|q0

}
6
∑
q0>0

P
{

sup
06t6T

‖δq0( :ψ(t, ·)m : )‖L2 > hm2|α|q0
}
. (3.3)

Remark 3.1. At any fixed time t, the law of ψ(t, ·) is that of the truncated Gaussian free
field, with variance ∑

k∈Z2 : |k|6N

vk = CN ,

which diverges like σ2 log(N), as mentioned in (2.6).

In what follows, it will be convenient to use multiindex notations. For any n ∈ NN
with finitely many nonzero components, we write

|n| :=
∑
q>0

nq and n! :=
∏
q>0

nq! .

Since n has finitely many nonzero components, these quantities are indeed well-defined.
Let

[n] = #{q : nq > 0}

be the number of these nonzero components. We can order them as q1 < q2 < · · · < q[n],
where

q[n] = max{q : nq > 0}

is the index of the largest nonzero entry of n. In what follows, we will always assume
that |n| = m. We notice that this implies [n] 6 m.

The projection of ψ(t, ·) on the annulus Aq has constant variance

cq := E
[
‖δqψ(t, ·)‖2L2

]
=
∑
k∈Aq

vk .
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In fact, δqψ(t, x) has variance cq for all x ∈ T2. An important feature of the projections is
that

cq .
∑
k∈Aq

σ2

1 + ‖k‖2
.
σ2

2

∫ 2q

2q−1

r dr

1 + r2
= σ2 log

(
1 + 22q

1 + 22(q−1)

)
6 σ2 log 2

for all q. Finally note that the cut-off condition |k| 6 N implies q 6 `N = blog2Nc, and
that

CN =

`N∑
q=0

cq .

With these notations in place, we can introduce the binomial formula for Hermite
polynomials, see Lemma B.4 in Appendix B.

Lemma 3.2. For any m ∈ N, we have

Hm(ψ(t, ·);CN ) =
∑
|n|=m

m!

n!

∏
q>0

Hnq (δqψ(t, ·), cq) .

It thus follows from (3.3) that we have

Pm(h) 6
∑
q0>0

P
{

sup
06t6T

∥∥δq0(
∑
|n|=m

m!

n!

∏
q>0

: δqψ(t, ·)nq : )
∥∥
L2 > hm2|α|q0

}
=
∑
q0>0

P
{

sup
06t6T

∥∥ ∑
|n|=m

m!

n!
δq0(

∏
q>0

: δqψ(t, ·)nq : )
∥∥
L2 > hm2|α|q0

}
6
∑
q0>0

P
{

sup
06t6T

∑
|n|=m

m!

n!

∥∥δq0(
∏
q>0

: δqψ(t, ·)nq : )
∥∥
L2 > hm2|α|q0

}
.

Remark 3.3. Note that for any q1, q2 > 0, one has 2q1 + 2q2 6 2max{q1,q2}+1. Therefore,

δq0(
∏
q>0

: δqψ(t, ·)nq : ) 6= 0 ⇒ q0 6 max
i6q[n]

{qi + nqi} 6 q[n] + nq[n]

for any n, which will be useful in restricting the domains of the sums.

For any decomposition hm =
∑
|n|=m h

m
n , one has

Pm(h) 6
∑
q0>0

∑
|n|=m

P
{

sup
06t6T

∥∥δq0(
∏
q>0

: δqψ(t, ·)nq : )
∥∥
L2 >

n!

m!
hmn 2|α|q0

}
. (3.4)

3.2 Martingale and partition

In this section, we fix q0 > 0 and n ∈ NN with |n| = m. Our aim is to estimate one term
in the double sum (3.4). We notice that the stochastic integral ψk(t) is not a martingale.
However,

e−αk(t)/ε ψk(t) = ψk(0) +
σ√
ε

∫ t

0

e−αk(t1)/ε dWk(t1) (3.5)

is a martingale of variance e2αk(t)/ε vk. The variances of ψk(t) and e−αk(t)/ε ψk(t) are
too different on the whole time interval [0, T ] to allow a useful comparison of the two
processes. This is why we introduce a partition 0 = u0 6 u1 < · · · < uL = T of this
interval. Given γ0 > 0 and any k0 ∈ Z2 such that |k0| = 2q[n] , we define the partition by

αk0
(ul+1, ul) = −γ0ε for 1 6 l 6 L =

⌊
((2π)2 ‖k0‖2 + 1)T

γ0ε

⌋
, (3.6)
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and write Il = [ul, ul+1]. Multiplying (3.5) by eαk(ul+1)/ε, we obtain the martingale

ψ̂k(t) := eαk(ul+1,t)/ε ψk(t) = eαk(ul+1)/ε ψk(0) +
σ√
ε

∫ t

0

eαk(ul+1,t1)/ε dWk(t1) , (3.7)

where we do not indicate the l-dependence of ψ̂k(t) in order not to overload the notations.
The variance of ψ̂k(t) is

v̂k(t) = vk e2αk(ul+1,t)/ε . (3.8)

The key observation is the following property of Hermite polynomials, which is proved in
Appendix B.

Lemma 3.4. For any m > 1, {Hm(ψ̂k(t); v̂k(t))}t>0 is a martingale with respect to the
canonical filtration {Ft}t of (Wk(t))t.

This observation will allow us to deal with the supremum over times in (3.4), by using
Doob’s submartingale inequality. We will thus be interested in the martingales

δqψ̂(t, x) =
∑
k∈Aq

ψ̂k(t)ek(x) ,

as well as of the related quantities

X2
n(t) =

∥∥∥∥δq0(∏
q>0

: δqψ̂(t, ·)nq :

)∥∥∥∥2

L2

.

Later on, we will extend the obtained bounds to functions of δqψ(t, x).

Proposition 3.5. Fix a constant γq0,q[n]
∈ R and l ∈ {0, . . . , L}. Then the bound

P

{
sup
t∈Il

X2
n(t) >

( n!

m!
hmn 2|α|q0

)2
}

6 Cn(l, ε) exp

{
−Hn(q0, l)

σ2

}
holds, where

Cn(l, ε) = em−1 + E

[
exp

{
γq0,q[n]

σ2

[
X2

n(ul+1)
]1/m}]

, (3.9)

Hn(q0, l) = γq0,q[n]

(
n!

m!
2|α|q0hmn

)2/m

.

Proof. The process (X2
n(t))t∈Il is a submartingale, because it is the projection of a sum

of squares of independent martingales. We note that the function fγ : R+ → R+ given by

fγ(x) = max
{

em−1, eγx
1/m}

=


em−1 if x 6

(m− 1)m

γ
,

eγx
1/m

if x >
(m− 1)m

γ

is non-decreasing and convex. By Doob’s submartingale inequality, we get

P

{
sup
t∈Il

X2
n(t) >

( n!

m!
hmn 2|α|q0

)2
}

= P

{
sup
t∈Il

fγ
(
X2

n(t)
)
> fγ

(( n!

m!
hmn 2|α|q0

)2
)}

6
1

fγ

((
n!
m!h

m
n 2|α|q0

)2)E[fγ(X2
n(ul+1)

)]
.

In the denominator, we bound fγ(x) below by eγx
1/m

. In the expectation, we bound the
maximum defining fγ above by the sum. Setting γ = γq0,q[n]

yields the result.
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Concentration estimates for singular SPDEs on the 2-torus

Remark 3.6. Corollary 6.13 in [27] implies that if X is a polynomial of degree m in the
field, then E

[
et|X|

]
is finite for m = 2, and is in general infinite if m > 3. This explains

the mth root in Proposition 3.5.

In order to bound the exponential moment in (3.9), we provide the following technical
lemma, whose proof is postponed to Appendix C.

Lemma 3.7. There exists a numerical constant C0 > 0 such that for any l, one has

E
[
X2

n(ul+1)
]
6 Cmσ

2m 22q0

22q[n]
(3.10)

where Cm = Cm0 m!.

The bound (3.10) says that although high frequency modes, of order 2q[n] , have some
influence on lower modes of order 2q0 , this influence decreases exponentially in their
ratio.

Proposition 3.8. For any γq0,q[n]
6 (Cm)−1/m22(q[n]−q0)/m, one has

E

[
exp

{
γq0,q[n]

σ2

[
X2

n(ul+1)
]1/m}]

<
1

1− γq0,q[n]
C

1/m
m 22(q0−q[n])/m

.

Proof. Expanding the exponential, we get

E

[
exp

{
γq0,q[n]

σ2

[
X2

n(ul+1)
]1/m}]

=
∑
p>0

γpq0,q[n]

σ2pp!
E
[(
X2

n(ul+1)
)p/m]

.

By Jensen’s inequality (or Hölder’s inequality with conjugates m and m
m−1 ), we have

E
[(
X2

n(ul+1)
)p/m]

6 E
[(
X2

n(ul+1)
)p]1/m

.

Since X2
n(ul+1) belongs to the 2mth Wiener chaos, we can use for even p equivalence of

norms (see Lemma B.5) to obtain the bound

E
[(
X2

n(ul+1)
)p]

6 (p− 1)mpE
[
X2

n(ul+1)
]p

6
[
(p− 1)mCmσ

2m22(q0−q[n])
]p
,

where we have used Lemma 3.7 in the last inequality. A similar bound follows for odd p
by the Cauchy–Schwarz inequality. Combining these bounds, we get

E

[
exp

{
γq0,q[n]

σ2

[
X2

n(ul+1)
]1/m}]

6
∑
p>0

(p− 1)p

p!

[
γq0,q[n]

C1/m
m 22(q0−q[n])

]p
.

Stirling’s formula yields pp/p! 6 ep. The result follows by summing a geometric series.

Choosing γq0,q[n]
= (2 eC

1/m
m )−122(q[n]−q0)/m, we obtain

Cn(l, ε) 6 2 + em−1 ,

Hn(q0, l) =
1

2 eC
1/m
m

(
n!

m!
2|α|q02q[n]−q0hmn

)2/m

.

This motivates the choice

hmn =
1

Km(q0)
hm

m!

n!

1

2(q[n]−q0)/2
1{q[n]+nq[n]

>q0} ,
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where the indicator is due to Remark 3.3, which yields

P

{
sup
t∈Il

X2
n(t) >

( n!

m!
hmn 2|α|q0

)2
}

6 (2 + em−1) exp

{
− h2

2σ2

(
2(q[n]−q0)/22|α|q0

Km(q0)C
1/2
m

)2/m}
.

(3.11)
The condition hm =

∑
|n|=m h

m
n imposes

Km(q0) =
∑
|n|=m

q[n]+nq[n]
>q0

m!

n!

1

2(q[n]−q0)/2
. (3.12)

The proof of the following bound is postponed to Appendix C.

Lemma 3.9. There exist numerical constants c0, c1, c2 > 0 such that

Km(q0) 6 c0m!(m+ c2)m(q0 + c1)m .

Substituting in (3.11) yields the bound

P

{
sup
t∈Il

X2
n(t) >

( hm2|α|q0

Km(q0)2(q[n]−q0)/2

)2
}

6 (2 + em−1) exp

{
−κm

2(q[n]−q0)/m22|α|q0/m

(q0 + c1)2

h2

σ2

}
.

(3.13)
where

κm =
1

2c
2/m
0 (Cm(m!)2)1/m(m+ c2)2

= O
(

1

m5

)
.

We now have to convert the estimate (3.13) into an estimate involving Wick powers of
δqψ(t, ·) instead of δqψ̂(t, ·). For that, we are going to use the following, rather rough
bound. For any l ∈ NN with finitely many nonzero components, we write

|l| :=
∑
q>0

lq , l! :=
∏
q>0

lq! , and l 6 bn2 c ⇔ lq 6 bnq2 c ∀q > 0 .

We introduce the shorthands

ϕ(t, ·) =
∏
q>0

Hnq (δqψ(t, ·); cq) ,

ϕ̂(t, ·) =
∏
q>0

Hnq (δqψ̂(t, ·); ĉq(t)) .

The proof of the following result is postponed to Appendix C.

Proposition 3.10. There is a numerical constant c0 such that for all t ∈ Il, one has∥∥δq0(ϕ(t, ·)− ϕ̂(t, ·)
)∥∥
L2

6 2q0
(
c1γ0

)[n]

( ∏
q>0
nq>0

nq

) ∑
l:l6bn/2c

Anlĉ(t)
|l|
∏
q>0

∥∥δqψ̂(t, ·)
∥∥nq−2lq

L2 , (3.14)

where

ĉ(t) = sup
q>0

ĉq(t) and Anl =
n!

2|l|l!(n− 2l)!
22q[n](|n|−2|l|) .

Note that the first product over q in (3.14) can be bounded above by m[n].

We can now derive the main estimate of this section.
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Proposition 3.11. There is a constant Qm = O(m−1/2) such that, if one chooses γ0 of
order qm0 Qm2−(m+1)q[n] , there exists a constant κ̄m, comparable to κm, such that

P

{
sup
t∈I`
‖δq0ϕ(t, ·)‖L2 >

2|α|q0hm

Km(q0)2(q[n]−q0)/2

}
6 C̄m(n) exp

{
−κ̄m

2(q[n]−q0)/m22|α|q0/m

(q0 + c1)2

h2

σ2

}
holds for all h > σ, where C̄m(n) = 2 + em−1 +c0(q[n] +m) for a numerical constant c0.

Proof. The argument is essentially deterministic. We introduce the two events

Ω1(h̃) =

{
∀q 6 q[n] + nq[n]

, sup
t∈I`
‖δqψ̂(t, ·)‖L2 6 h̃

}
,

Ω2(h, q0) =

{
sup
t∈I`
‖δq0 ϕ̂(t, ·)‖L2 6

1

2

2|α|q0hm

Km(q0)2(q[n]−q0)/2

}
.

The estimate (3.13) provides an upper bound on P(Ω2(h, q0)c). As for Ω1(h̃), the bound

P
(
Ω1(h̃)c

)
6 c0

(
q[n] + nq[n]

)
e−κ0h̃

2/σ2

follows as a particular case of (3.13), applied separately to all n of size |n| = 1. We now
choose h̃ is such a way that

κ0h̃
2 = κm

2(q[n]−q0)/m22|α|q0/m

(q0 + c1)2
h2 ,

so that P(Ω1(h̃)c) and P(Ω2(h, q0)c) are of comparable size. This allows us to bound the
quantity

sup
t∈I`
‖δq0ϕ(t, ·)‖L2 6 sup

t∈I`
‖δq0 ϕ̂(t, ·)‖L2 + sup

t∈I`
‖δq0 ϕ̂(t, ·)− δq0 ϕ̂(t, ·)‖L2

on Ω1(h̃) ∩ Ω2(h, q0). By Proposition 3.10, we have

sup
t∈I`
‖δq0 ϕ̂(t, ·)− δq0 ϕ̂(t, ·)‖L2 6 2q0(c1γ0m)[n]

∑
l:l6bn/2c

n!

l!(n− 2l)!

(
ĉ(t)

2

)|l|(
22q[n] h̃

)|n|−2|l|
.

Note the relation∑
l:l6bn/2c

n!

l!(n− 2l)!
albn−2l =

∏
q>0

∑
lq6bnq/2c

nq!

lq!(nq − 2lq)!
alqbnq−2lq

6
∏
q>0

nq!

(nq/2)!

(√
a+ b

)nq 6 2|n|
(√
a+ b

)|n|
.

Since |n| = m, it follows that

sup
t∈I`
‖δq0ϕ(t, ·)‖L2 6

1

2

2|α|q0hm

Km(q0)2(q[n]−q0)/2
+ 2q0(c1γ0m)m2m

(
ĉ(t) + 22q[n] h̃

)m
holds on Ω1(h̃) ∩ Ω2(h, q0). Choosing γ0 such that both summands are equal yields the
result.

Corollary 3.12. We have

P

{
sup
t∈I

∥∥δq0(
∏
q>0

: δqψ(t, ·)nq : )
∥∥
L2 >

n!

m!
hmn 2|α|q0

}

6
T

ε
C̃m(n)q−m0 2(m+3)q[n] exp

{
−κ̄m

2(q[n]−q0)/m22|α|q0/m

(q0 + c1)2

h2

σ2

}
,

where C̃m(n) = Q−1
m C̄m(n).
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Proof. It suffices to sum the previous estimate over all ` ∈ {1, . . . , L}, where L has been
introduced in (3.6).

3.3 Summing over q0 and n

Replacing the bound obtained in Corollary 3.12 in (3.4), we get

Pm(h) 6
T

ε

∑
q0>0

q−m0

∑
|n|=m

C̃m(n)2(m+3)q[n] exp

{
−β(m, q0)2(q[n]−q0)/m

}
,

where

β(m, q0) = −κ̄m
22|α|q0/m

(q0 + c1)2

h2

σ2
.

We will first perform the sum over n. To this end, we write

K̄m,b(q0) =
∑
|n|=m

qb[n]2
(m+3)q[n] exp

{
−β(m, q0)2(q[n]−q0)/m

}
. (3.15)

The following lemma is obtained in a similar way as Lemma 3.9. We give its proof in
Appendix C.

Lemma 3.13. There are numerical constants c1, β0 such that for all β > β0, one has the
bound

K̄m,b(q0) 6 c1q
m+b
0 mm2(m+3)q0 e−β(m,q0) .

Using the expression for Cm(n) given in Proposition 3.11, we thus obtain

Pm(h) 6
T

ε
Q−1
m

∑
q0>0

q−m0

[
(2 + em−1 +c0m)K̄m,0(q0) + K̄m,1(q0)

]
6
T

ε
c1m

mQ−1
m

∑
q0>0

[
2 + em−1 +c0m+ c0q0

]
2(m+3)q0 e−β(m,q0) . (3.16)

It remains to perform the sums over q0. These are of the form∑
q0>0

f(q0) , f(x) = xb2ax exp

{
−γ 2|α|x/m

(x+ c1)2

}
, a = m+ 3 , γ = κ̄m

h2

σ2
.

One checks that f is decreasing, so that one has the upper bound∑
q0>0

f(q0) 6 f(0) + f(1) +

∫ ∞
1

f(x) dx .

The terms f(0) and f(1) are both exponentially small in h2/σ2. To evaluate the integral,
we can absorb the constant c1 in γ, and the term xb into 2ax, by changing slightly the
definitions of γ and a. We first consider the case where the term x2 in the denominator
is absent, where the changes of variables y = 2|α|x/m and z = γy yield∫ ∞

1

2ax e−γ2|α|x/m dx =
m

|α| log 2

∫ ∞
2|α|/m

yam/|α|−1 e−γy dy (3.17)

6
m

|α| log 2

1

γλ+1

∫ ∞
γ

zλ e−z dz ,

where λ = am/(2|α|). The asymptotics of the incomplete Gamma function shows that∫ ∞
1

2ax e−γ2|α|x/m .
m

|α|
e−γ

γ
.

m

|α|
e−γ/2 .
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In order to incorporate the effect of the denominator x2, we use the upper bound

x2 e−|α|x/m 6 4 e−2 m2

|α|2

We can thus bound the integral of f by the integral (3.17), with γ multiplied by a constant
times |α|2/m2, and α divided by 2. In other words, we get∫ ∞

1

f(x) dx 6 c
m

|α|
e−κ|α|

2γ/m2

.

Replacing this in (3.16) yields a bound on Pm(h), completing the proof of Theorem 2.5 in
the case of a constant linearisation a(t).

3.4 The case of a general linearisation a(t)

Recall that we actually want to consider the more general linear equation (2.12)

dψ̃(t, x) =
1

ε

[
∆ψ̃(t, x) + a(t)ψ̃(t, x)

]
dt+

σ√
ε

dW (t, x) ,

where here a(t) satisfies (2.11), and we write ψ = ψ̃ to avoid confusion in the notations.
Projecting (3.18) on the kth basis vector ek, we obtain

dψ̃k(t) =
1

ε

[
∆ψ̃k(t)− ak(t)ψ̃k(t)

]
dt+

σ√
ε

dWk(t) , (3.18)

where ak(t) = −µk+a(t) and the {Wk(t)}t>0 are the same independent Wiener processes
as before. The solution of (3.18) with the same initial condition ψk(0) in (3.2), is given by

ψ̃k(t) = eα̃k(t)/ε ψk(0) +
σ√
ε

∫ t

0

eα̃k(t,t1)/ε dWk(t1) ,

where

α̃k(t, t1) = αk(t, t1) +

∫ t

t1

(1 + a(t2)) dt2 = αk(t, t1) +O(|t− t1|) .

For given q0, we use the same partition of [0, T ] into intervals Il as before. On each
interval, we can write

ψ̃k(t) = e−α̃k(ul+1,t)/ε

[
eα̃k(ul+1)/ε ψk(0) +

σ√
ε

∫ t

0

eα̃k(ul+1,t1)/ε dWk(t1)

]
.

The term in square brackets is again a martingale, so that its supremum over the interval
Il can be estimated as before. Note however that the variance of the associated sums
over k ∈ Aq is not exactly equal to ĉq(t): it is rather of the form

ĉq(t)
[
1 +O(γ02−2(q[n]−q))

]
.

Therefore, the Wick powers of this martingale with respect to ĉq(t) are not martingales.
One can however estimate the supremum of the Wick powers with the correct variance
as before, and then compare the two types of Wick powers, using the relations (B.1)
between Hermite polynomials and usual monomials. This provides the required estimates
on the non-normalised Wick powers, which can then by lifted to estimates on δqψ̃(t, x) in
exactly the same way as above.
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4 Proof of the concentration results

4.1 Proof of Proposition 2.10

The proof of Proposition 2.10 is almost the same as the proof of Proposition 2.3 in [9],
the only difference being that x belongs to the two-dimensional torus. We give some
hints for the proof.

Recall the deterministic equation

dφ(t, x) =
1

ε

[
∆φ(t, x) + F (t, φ(t, x))

]
dt ,

where F satisfies (2.2) and Assumption 2.9. We consider the difference ψ(t, ·) = φ(t, ·)−
φ∗(t)e0. Using Taylor’s formula to expand F (t, ψ(t) + φ∗(t)e0), we obtain that ψ satisfies
the equation

ε∂tψ(t, x) = ∆ψ(t, x) + a(t)ψ(t, x) + b(t, ψ(t, x))− ε d

dt
φ∗(t)e0(x) ,

where

a(t) = ∂φF (t, φ∗(t)e0) ,

b(t, ψ) =
1

2
∂2
φF
(
t, φ∗(t) + θψ

)
ψ2 for some θ ∈ [0, 1] .

We define the Lyapunov function

V (ψ) =
1

2
‖ψ‖2H1 =

1

2
‖ψ‖2L2 +

L2

2π2
‖∇ψ‖2L2 .

Its time derivative satisfies

ε
d

dt
V (ψ) 6 2a(t)V (ψ) + 〈ψ, b(t, ψ)〉 − L2

π2
〈∆ψ, b(t, ψ)〉 − ε d

dt
φ∗(t)〈ψ, e0〉 . (4.1)

We introduce for a fixed C0 > 0, τ̄ , the first-exit time from the set
{
V (ψ(t, ·)) 6 C0

}
.

Then, we bound the different terms in (4.1) similarly to the proof in [9]. We arrive at the
relation

εV̇ 6 −1

2
C1V + εC2V

1/2

for all t 6 τ̄ , and some constants C1, C2 > 0. By integrating, we find that there exists a
particular solution satisfying V (ψ(t, ·)) = O(ε2) for all t 6 τ̄ . The result extends to all
t ∈ I.

4.2 Proof of Lemma 2.11

The binomial formula for Hermite polynomials yields

:φ(t, x)i : =

i∑
j=0

(
i

j

)
φ̄(t, x)i−j :φ0(t, x)j : .

Using the definition (2.2) of F and swapping the sums, we obtain

:F0(t, x, φ0(t, x)) : =

n∑
j=1

[ n∑
i=j

(
i

j

)
Ai(t)φ̄(t, x)i−j

]
:φ0(t, x)j :

(note that the terms j = 0 cancel). This proves the claim for the terms with j > 2. For
j = 1, we note that

a(t) = ∂φF (t, φ∗(t)) =

n∑
i=1

iAi(t)φ
∗(t)i−1 .

Rearranging terms yields the claimed result. Proposition 2.10 shows that φ̄(t, ·) ∈ H1,
and that ‖Â1(t, ·)‖H1 = O(ε). By [10, Théorème 7], powers of φ̄ belong to H1 as well.
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4.3 Proof of Theorem 2.13

Recall that φ1(t, x) solves the equation

dφ1(t, x) =
1

ε

[
∆φ1(t, x) + a(t)φ1(t, x) + : b(t, x, ψ(t, x) + φ1(t, x)) :

]
dt ,

where ψ(t, x) is the stochastic convolution, and

: b(t, x, ψ(t, x) + φ1(t, x)) : =

n∑
j=1

Âj(t, x)

j∑
`=0

(
j

`

)
φ1(t, x)j−` :ψ(t, x)` : . (4.2)

Assume that ψ(t, ·) ∈ Bα2,∞ and φ1(t, ·) ∈ Bβ2,∞ for all t ∈ [0, T ]. The bound (2.10) on
products in Besov spaces shows that

‖φ1(t, ·)j−` :ψ(t, ·)` : ‖B2(j−`)+1
2,∞

6M1 ‖φ1(t, ·)‖j−`
Bβ2,∞

‖ :ψ(t, ·)` : ‖Bα2,∞

for a constant M1, provided β > 1 + 2α.
We treat separately the term j = 1 in the sum (4.2) and the remaining terms. For

j = 1, we use the fact that Â1(t, ·) ∈ B1
2,∞ has a norm of order ε and (2.9) to obtain that

‖Â1(t, ·)(φ1(t, ·) + ψ(t, ·))‖Bᾱ2,∞ 6M2ε
(
‖φ1(t, ·)‖Bβ2,∞ + ‖ψ(t, ·)‖Bα2,∞

)
for any ᾱ < α. For j > 2, we have a similar bound, but without the factor ε, since the Âj
are of order 1 in H1. Now let h,H ∈ (0, 1] be constants such that

max
16`6n

‖ :ψ(t, ·)` : ‖Bα2,∞ 6 h , ‖φ1(t, ·)‖Bβ2,∞ 6 H .

Summing over j, we get the existence of constants M3,M4 such that

‖ : b(t, x, ψ + φ1) : ‖Bᾱ2,∞ 6M2ε(H + h) +M3

[
H2 +

n∑
j=2

j∑
`=1

Hj−`h`
]

6M4(H + h)(H + h+ ε)

for any ᾱ < (2n− 1)α. We now fix a γ < ᾱ+ 2 and introduce the stopping time

τ = inf
{
t ∈ [0, T ] : ‖φ1(t, ·)‖Bγ2,∞ > H

}
.

Then we have

P{τ < T} 6 P
{
∃` ∈ {1, . . . , n} : sup

t6T
‖ :ψ(t, ·)` : ‖Bα2,∞ > h`

}
+ P

{
τ < T, sup

t6T
‖ :ψ(t, ·)` : ‖Bα2,∞ 6 h` ∀` ∈ {1, . . . , n}

}
. (4.3)

The first term on the right-hand side can be bounded using Theorem 2.5. As for the
second term, we use the fact that under the condition on the Wick powers of the
stochastic convolution being small, the Schauder estimate given in Corollary A.3 yields

‖φ1(T ∧ τ, ·)‖Bγ2,∞ 6Mε−ν(H + h)(H + h+ ε) , ν = 1− γ − ᾱ
2

for a constant M . Choosing first H = 2Mε−νh(h + ε), and then ε small enough and
h < h0ε

ν for a sufficiently small h0, one can ensure that (H + h)(H + h+ ε) < 2h(h+ ε),
so that the second probability is actually equal to zero.

To conclude the proof, we first pick a γ < 2, and then ᾱ ∈ (γ − 2, 0), and finally
α ∈ ( ᾱ

2n−1 , 0). We also require that β > γ, which is possible by choosing β = 1 + 2α

and asking that α > − 1
2 (1− γ). This yields the claimed result, thanks to the embedding

Bγ2,∞ ↪→ Bγ−1
∞,∞ = Cγ−1.

EJP 29 (2024), paper 35.
Page 22/35

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1094
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration estimates for singular SPDEs on the 2-torus

4.4 Proof of Theorem 2.15

The proof is very similar to the proof of Theorem 2.13, so we only comment on the
differences. Given α < 0 and H⊥ > 0, we introduce stopping times

τψ(h) = inf
{
t ∈ [0, T ] : max

16`63
‖ :ψ⊥(t, ·)` : ‖Bα2,∞ > h

}
,

τ⊥(H⊥) = inf
{
t ∈ [0, T ] : ‖ :φ⊥1 (t, ·) : ‖Bγ2,∞ > H⊥

}
.

For any ᾱ < 5α, writing τ = τψ(h) ∧ τ⊥(H⊥) ∧ τ0(H0), one obtains the existence of a
constant M such that, for any t 6 τ , one has

‖ :F⊥(ψ⊥(t, ·), φ0
1(t, ·), φ⊥1 (t, ·)) : ‖Bᾱ2,∞ 6M(h+H0 +H⊥)3 .

Using Duhamel’s formula to write the solution of (2.19) in integral form, and the Schauder
estimate in Corollary A.3 (adapted to the eigenvalues of the new linear part), one obtains

‖φ0
1(t ∧ τ)‖Bγ2,∞ 6M1ε

−ν(h+H0 +H⊥)3

for ν < 1− 1
2 (γ − ᾱ) and a constant M1(ν) > 0, provided 1 + 2α > γ. Then it suffices to

decompose the probability as in (4.3). Choosing H⊥ = ε−ν(h+H0)3 and h+H0 of order
εν/2 yields the result.

4.5 Proof of Theorem 2.17

The proof is essentially the same as the proof of [4, Theorem 2.10] and [4, Proposi-
tion 4.7], except that one has to account for the effect of the extra term F0(ψ⊥, φ

0
1, φ
⊥
1 ) in

the equation. The solution of (2.18) admits the integral representation

φ0
1(t) = φ◦(t) +

1

ε

∫ t

0

eα(t,t1)/ε
[
−(φ0

1(t1))3 + F0(ψ⊥(t1), φ0
1(t1), φ⊥1 (t1))

]
dt1 ,

where φ◦ is the solution of the linear equation (2.20). Proposition 4.3 in [4] provides a
similar estimate as (2.21) for φ◦. Furthermore, up to time τB−(h−) ∧ τψ(h) ∧ τ⊥(H⊥), we
have the bound

∣∣F0(ψ⊥(t1), φ0
1(t1), φ⊥1 (t1))

∣∣ 6 M√
ε

(
h−
ε1/4

+ h+H⊥

)3

for a constant M . This allows to bound the supremum of φ0
1(t) in terms of the supremum

of φ◦(t) on the event
Ωh,H⊥ =

{
τψ(h) ∧ τ⊥(H⊥) > τB−(h−)

}
.

The probability of the complement Ωch,H⊥ can be estimated by Theorems 2.5 and 2.15.
Choosing H0 = h−ε

−1/, h = h− and H⊥ = ε−ν(h + H0)3, one finds that P(Ωch,H⊥) is
negligible with respect to the probability of φ◦ leaving B−(h−[1 − O(h2

−/ε)]), which
proves (2.21).

The proof of (2.22) uses a similar extension of the proof of [4, Proposition 4.7].

A Besov spaces

Lemma A.1. Let η : T2 → R be a compactly supported function of class C2, with
‖η‖C2 = 1. For any p ∈ [2,∞] and any ρ ∈ (0, 1], let

η(p)
ρ (x) =

1

ρ2(1−1/p)
η

(
x

ρ

)
.
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Then ‖η(p)
ρ ‖Lr = ‖η‖Lr for all ρ ∈ (0, 1], where r is the Hölder conjugate of p. Moreover,

for any ψ ∈ Bαp,∞ with α ∈ (−1, 0), and any q ∈ N0, one has∣∣〈ψ, η(p)

2−q0
〉
∣∣ . 2|α|q0 ‖ψ‖Bαp,∞ .

Proof. We have

‖η(p)
ρ ‖rLr =

1

ρ2

∫
T2

η

(
x

ρ

)r
dx =

∫
T2

η(y)r dy = ‖η‖rLr ,

where we have used the change of variables x = ρy, and the fact that the integration
domain does not change because η is compactly supported. For the same reason, we
have ∣∣〈ek, η(p)

ρ 〉
∣∣ = ρ2/p

∣∣∣∣∫
T2

e− i ρk·y η(y) dy

∣∣∣∣ 6 ρ2/p

1 ∨ ρ2(|k1| ∨ |k2|)
,

where we have used two integrations by parts with respect to y1 if ρ2|k1| > ρ2|k2| > 1,
and two integrations by parts with respect to y2 if ρ2|k2| > ρ2|k1| > 1. In particular, for
k ∈ Aq and ρ = 2−q0 , this yields

∣∣〈ek, η(p)

2−q0
〉
∣∣ 6 2−2q0/p

1 ∨ 22(q−q0)
. (A.1)

Using Hölder’s inequality, we obtain∣∣〈δqψ, η(p)

2−q0
〉
∣∣ =

∣∣〈δqψ, δqη(p)

2−q0
〉
∣∣ 6 ‖δqψ‖Lp ‖δqη(p)

2−q0
‖Lr

6 ‖δqψ‖Lp
(∑
k∈Aq

∣∣〈ek, η(p)

2−q0
〉
∣∣p)1/p

6 2|α|q ‖ψ‖Bαp,∞
22(q−q0)/p

1 ∨ 22(q−q0)
.

The result then follows by summing over all q ∈ N0, noticing that this sum is dominated
by the term q = q0.

Proposition A.2 (Schauder estimate on the heat kernel). Let g ∈ Bα2,∞ for some α ∈ R,
and let et∆ denote the heat kernel. Then there exists a constant M0 = M0(β − α) such
that ∥∥et∆ g

∥∥
Bβ2,∞

6M0t
− β−α2 ‖g‖Bα2,∞

holds for all t > 0 and all β 6 α+ 2.

Proof. Denoting by µk the eigenvalues of the Laplacian (cf. (2.5)) and by (gk)k∈Z2 the
Fourier coefficients of g, there is a constant c > 0 such that∥∥δq(et∆ g)

∥∥2

L2 =
∑
k∈Aq

e−2µkt |gk|2 6 e−c2
2qt ‖δqg‖2L2 6 e−c2

2qt 2−2qα ‖g‖2Bα2,∞

for all q. Therefore, ∥∥et∆ g
∥∥
Bβ2,∞

6 sup
q>0

2q(β−α) e−
1
2 c2

2qt ‖g‖Bα2,∞ .

Now we observe that for any γ > 0,

2q(β−α) e−
1
2 c2

2qt = 2q(β−α−2γ)t−γ(22qt)γ e−
1
2 c2

2qt 6M0(2γ)2q(β−α−2γ)t−γ

by boundedness of the map x 7→ xγ e−x. Choosing γ = β−α
2 yields the result.
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Corollary A.3 (Schauder estimate on convolutions with the heat kernel). Let g(t) ∈ Bα2,∞
for all t ∈ [0, T ], where α ∈ R. Let φ be the solution of

dφ(t, x) =
1

ε

[
∆φ(t, x) + a(t)φ(t, x) + g(t, x)

]
dt , (A.2)

starting from 0, where a ∈ C1([0, T ],R−) is bounded away from 0 (cf. (2.11)). Then
φ(t) ∈ Bβ2,∞ for all β < α+ 2 and all t ∈ [0, T ], and there is a constant M = M(β−α) such
that

‖φ(t, ·)‖Bβ2,∞ 6Mε
β−α

2 −1 sup
t1∈[0,T ]

‖g(t1, ·)‖Bα2,∞

holds for all β < α+ 2 and all t ∈ [0, T ].

Proof. The solution of (A.2) can be written as

φ(t, x) =
1

ε

∫ t

0

eα(t,t1)/ε
(
e
t−t1
ε ∆ g

)
(t1, x) dt1 ,

where α(t, t1) =
∫ t
t1
a(t2) dt2 is negative whenever t > t1. Therefore

‖φ(t, ·)‖Bβ2,∞ 6
1

ε

∫ t

0

‖
(
e
t−t1
ε ∆ g

)
(t1, ·)‖Bβ2,∞ dt1

6
1

ε
M0(β − α)

∫ t

0

(
t− t1
ε

)− β−α2

‖g(t1, ·)‖Bα2,∞ dt1

6 ε
β−α

2 −1M0(β − α) sup
t1∈[0,T ]

‖g(t1, ·)‖Bα2,∞

∫ t

0

(t− t1)−
β−α

2 dt1 .

The integral is bounded whenever β < α+ 2.

B Wick calculus

This appendix summarises some properties of Hermite polynomials and Wick calculus
needed in this work. Proofs of these properties can be found, for instance, in the
monographs [30, 31], the lecture notes [23], and Section 4.2.2 and Appendix D of [1].

Hermite polynomials with variance C have been introduced in Section 2.1. Some of
the above references consider the special case C = 1, but results for that case can easily
be converted into results for the general case by using the scaling property

Hn(x;C) = Cn/2Hn(C−1/2x; 1) .

The first n Hermite polynomials and the monomials 1, . . . , xn both form a basis of the
vector space of polynomials of degree n, where the change of basis is given by the
formulas

Hn(x;C) =

bn/2c∑
`=0

an`C
`xn−2` , an` =

(−1)`n!

2``!(n− 2`)!
, (B.1)

xn =

bn/2c∑
`=0

bn`C
`Hn−2`(x;C) , bn` =

n!

2``!(n− 2`)!
= |an`| .

The Hermite polynomials admit the generating function

G(t, x;C) := etx−Ct
2/2 =

∞∑
n=0

tn

n!
Hn(x;C) , (B.2)

which can be used to establish the following identity.
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Lemma B.1 (Expectation of products of Wick powers). Let X and Y be jointly Gaussian
centred random variables, of respective variance C1 and C2. Then for any n,m > 0, one
has

E
[
Hn(X;C1)Hm(Y ;C2)

]
=

{
n!E

[
XY

]n
if n = m ,

0 otherwise .

Another consequence of the expression (B.2) of the generating function is the follow-
ing binomial formula.

Lemma B.2 (Binomial formula for Hermite polynomials). For any x, y ∈ R, C1, C2 > 0 and
n ∈ N0,

Hn(x+ y;C1 + C2) =

n∑
m=0

(
n

m

)
Hm(x;C1)Hn−m(y;C2) . (B.3)

A direct consequence is Lemma 3.4, which we recall here. We recall that ψ̂k(t) is the
martingale introduced in (3.7), and that v̂k(t) is its variance defined in (3.8).

Lemma B.3 (Martingale property). For any m > 1, Hm(ψ̂k(t); vk(t)) is a martingale with
respect to the canonical filtration Ft of the Wiener process (Wk(t))t>0.

Proof. We write Hm(ψ̂k(t); vk(t)) = Hm(ψ̂k(t)) in order not to overload the notation. For
any 0 6 s < t, we have

E
[
Hm(ψ̂k(t))

∣∣ Fs] = E
[
Hm

(
ψ̂k(s) + (ψ̂k(t)− ψ̂k(s))

) ∣∣ Fs]. (B.4)

By the binomial formula (B.3),

Hm

(
ψ̂k(s) + (ψ̂k(t)− ψ̂k(s))

)
=

m∑
n=0

(
m

n

)
Hn(ψ̂k(s))Hm−n(ψ̂k(t)− ψ̂k(s)) .

We replace this expression in (B.4). Since Hn(ψ̂k(s)) is Fs-measurable and Hm−n(ψ̂k(t)−
ψ̂k(s)) is independent of Fs we obtain

E
[
Hm(ψ̂k(t))

∣∣ Fs] =

m∑
n=0

(
m

n

)
E
[
Hn(ψ̂k(s))Hm−n(ψ̂k(t)− ψ̂k(s))

∣∣ Fs]
=

m∑
n=0

(
m

n

)
Hn(ψ̂k(s))E

[
Hm−n(ψ̂k(t)− ψ̂k(s))

]
= Hm(ψ̂k(s)) .

The last equality is due to the fact that mth Hermite polynomials are centred variables
for m > 1 and for m = n, and H0(ψ̂k(t)− ψ̂k(s)) = 1.

The following generalisation of the binomial formula (B.3) is obtained by induction.

Lemma B.4 (Multinomial formula for Hermite polynomials). Let (aq)q>0 be a sequence of
real numbers in `2. Then for any convergent sequence (xq)q>0, one has

Hm

(∑
q>0

xq;
∑
q>0

a2
q

)
=
∑
|n|=m

m!

n!

∏
q>0

Hnq (xq; a
2
q) ,

where the sum runs over all n ∈ NN0
0 such that |n| :=

∑
q>0 nq = m, and n! :=

∏
q>0 nq!.
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Given a set {ψq}q of independent centred Gaussian random variables, one defines the
mth homogeneous Wiener chaos Hm as the vector space generated by all Wick powers
of the ψq of total degree m, that is, all

Φn =
∏
q>0

Hnq

(
ψq; Var(ψq)

)
with |n| = m. Then one has the following result on equivalence of norms, which is
a consequence of hypercontractivity of the Ornstein–Uhlenbeck semigroup. See for
instance [16, Theorem 4.1] or [30, Theorem 1.4.1].

Lemma B.5 (Equivalence of moments). Let X be a random variable, belonging to the
m-th homogeneous Wiener chaos. Then for any p > 1 one has

E
[
X2p

]
6 (2p− 1)mpE

[
X2
]p
.

C Some technical proofs for Section 3

C.1 Proof of Lemma 3.7

We divide the proof of the lemma into the following two parts.

Lemma C.1. For any q0 > 0, t ∈ Il and n, one has

E
[
X2

n

]
= m!

∑
k

(q)
1 ,k

(q)
2 ,...,k(q)

nq
∈Aq ∀q∑

q>0

∑nq
i=1 k

(q)
i ∈Aq0

∏
q>0

nq∏
i=1

v̂
k

(q)
i

(t) . (C.1)

Proof. Let ϕ(t, ·) =
∏
q>0 : δqψ(t, ·)nq : . The L2-norm of its projection on Aq0 is given by∥∥δq0ϕ(t, ·)

∥∥2

L2 =
∑
k∈Aq0

|(Pkϕ)(t, ·)|2 ,

where (Pkϕ)(t, x) is the projection of ϕ on the kth Fourier basis vector ek(x), given by

(Pkϕ)(t, x) =

∫
T2

e−k(x1)ϕ(t, x1) dx1ek(x) .

Therefore,

E
[∥∥δq0ϕ(t, ·)

∥∥2

L2

]
=
∑
k∈Aq0

E
[
|(Pkϕ)(t, ·)|2

]
.

For a fixed k ∈ Aq0 , we have

E
[
|(Pkϕ)(t, x)|2

]
= E

[∫
T2

∫
T2

e−k(x1)ϕ(t, x1)ek(x2)ϕ̄(t, x2) dx1 dx2ek(x)e−k(x)
]

=

∫
T2

∫
T2

e−k(x1 − x2)E
[
ϕ(t, x1)ϕ̄(t, x2)

]
dx1 dx2 ,

where

E
[
ϕ(t, x1)ϕ̄(t, x2)

]
= E

[∏
q>0

: δqψ̂(t, x1)nq : : δqψ̂(t, x2)nq :
]

=
∏
q>0

E
[
: δqψ̂(t, x1)nq : : δqψ̂(t, x2)nq :

]
,

since the projections δq and δq′ are independent for q 6= q′. By Lemma B.1, we get

E
[
: δqψ̂(t, x1)nq : : δqψ̂(t, x2)nq :

]
= nq!E

[
δqψ̂(t, x1)δqψ̂(t, x2)

]nq
,
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where

E
[
δqψ̂(t, x1)δqψ̂(t, x2)

]
=

∑
k1,k2∈Aq

E
[
ψ̂k1

(t)ψ̂k2
(t)
]
ek1

(x1)ek2
(x2)

=
∑

k1,k2∈Aq

v̂k1
(t)δk1,−k2

ek1
(x1)ek2

(x2)

=
∑
k1∈Aq

v̂k1
(t)ek1

(x1 − x2) .

Therefore,

E
[
ϕ(t, x1)ϕ̄(t, x2)

]
=
∏
q>0

nq!
( ∑
k1∈Aq

v̂k1
(t)ek1

(x1 − x2)
)nq

=

(∏
q>0

nq!

)∏
q>0

( ∑
k1,...,knq∈Aq

v̂k1
(t) · · · v̂nq (t)ek1+···knq (x1 − x2)

)
.

Integrating over x1 and x2, we get

E
[
|(Pkϕ)(t, x)|2

]
= m!

∑
k

(q)
1 ,...,k

(q)
nq ∈Aq, ∀q

∏
q>0

nq∏
i=1

v̂
k

(q)
i

(t)

×
∫
T2

∫
T2

e−k(x1 − x2)e∑
q>0 k

(q)
1 +···+k(q)

nq
(x1 − x2) dx1 dx2

= m!
∑

k
(q)
1 ,...,k

(q)
nq ∈Aq, ∀q

∏
q>0

nq∏
i=1

v̂
k

(q)
i

(t)1{∑
q>0

∑nq
i=1 k

(q)
i =k

}
= m!

∑
k

(q)
1 ,...,k(q)

nq
∈Aq, ∀q∑

q>0

∑nq
i=1 k

(q)
i =k

∏
q>0

nq∏
i=1

v̂
k

(q)
i

(t) .

Summing over k0 ∈ Aq0 yields the claimed result.

Lemma C.2. There exists a numerical constant C0 such that

E
[
X2

n

]
6 Cm0 m!σ2m 22q0

22q[n]
.

Proof. We have to evaluate the sum given by (C.1). Recall that q1 < q2 < · · · < q[n] denote
the indices of the [n] nonzero entries of n, and that there is a numerical constant c0 such
that

v̂k(t) 6
c0σ

2

1 + ‖k‖2
.

For a fixed k0 ∈ Aq0 , we get the bound

Sn,k0
:=

∑
k

(q)
1 ,...,k(q)

nq
∈Aq, ∀q∑

q>0

∑nq
i=1 k

(q)
i =k0

∏
q>0

nq∏
i=1

v̂
k

(q)
i

(t) 6
∑

k
(q)
1 ,...,k(q)

nq
∈Aq, ∀q∑

q>0

∑nq
i=1 k

(q)
i =k0

∏
q>0

nq∏
i=1

c0σ
2

1 +
∥∥k(q)

i

∥∥2 .

Note that ∏
q>0

nq∏
i=1

(c0σ
2) =

∏
q>0

(c0σ
2)nq = (c0σ

2)
∑
q>0 nq = (c0σ

2)m ,
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and that we can write

k
(q1)
1 = k0 −

[n]∑
j=2

k
(qj)
1 −

[n]∑
j=1

nq∑
i=2

k
(qj)
i . (C.2)

Since
∥∥k(q1)

i

∥∥ < ∥∥k(q2)
i

∥∥ < · · · < ∥∥k(q[n])

i

∥∥ and
∥∥k0

∥∥ 6
∥∥k(q[n])

i

∥∥, by the second triangle
inequality, we get∥∥∥∥k0 −

[n]∑
j=2

k
(qj)
1 −

[n]∑
j=1

nq∑
i=2

k
(qj)
i

∥∥∥∥ >

∣∣∣∣∥∥k0

∥∥− [n]∑
j=2

∥∥k(qj)
1

∥∥− [n]∑
j=1

nq∑
i=2

∥∥k(qj)
i

∥∥∣∣∣∣
>

[n]∑
j=2

∥∥k(qj)
1

∥∥+

[n]∑
j=1

nq∑
i=2

∥∥k(qj)
i

∥∥− ∥∥k0

∥∥
> c

∥∥∥k(q[n])
1

∥∥∥ (C.3)

for a numerical constant c > 0. Replacing k(q1)
1 by (C.2) and bounding its norm by (C.3),

we obtain

Sn,k0 . (c0σ
2)m

[n]∏
j=1

( ∑
k

(qj)

1 ,...,k
(qj)
nqj
∈Aqj

1∥∥k(q)
i

∥∥2

)nqj ∑
k

(q[n])

1 ∈Aq[n]

1∥∥k(q[n])
1

∥∥4
.

For a fixed qj , we view these sums as Riemann sums and we integrate using polar
coordinates

∑
k

(qj)

1 ,...,k
(qj)
nqj
∈Aqj

1∥∥k(qj)
i

∥∥2
.
∫ 2qj

2qj−1

r

r2
dr 6 log(2qj )− log(2qj−1) = log(2) ,

and ∑
k

(q[n])

1 ∈Aq[n]

1∥∥k(q[n])
1

∥∥4
.
∫ 2

q[n]

2
q[n]−1

r

r4
dr .

1

22q[n]
.

We conclude that

Sn,k0 . (c0σ
2)m

[n]∏
j=1

(c1 log(2))nq
1

22q[n]
= Cm0 σ

2m 1

22q[n]

for some numerical constant c1, C0. The result follows again by summing over k ∈ Aq0 .

C.2 Proof of Lemma 3.9

We decompose the sum (3.12) as

Km(q0) =

m∑
[n]=1

Sm([n], 0) , (C.4)

where for a ∈ {1, . . . ,m} and b ∈ N0, we define

Sm(a, b) =
∑

n:|n|=m
[n]=a, q[n]+nq[n]

>q0

m!

n!

qb[n]

2(q[n]−q0)/2
.
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We will estimate this sum by induction on a, for arbitrary b ∈ N0. For a = 1, the only
possible n are those with one component, say q, equal to m, and all other components
equal to 0. Therefore,

Sm(1, b) 6
∑

q>(q0−m)∨0

qb

2(q−q0)/2

(since one must have q > 0). The sum can be computed via the inequality
∞∑
q=0

(q + 1)bzq 6
b!

(1− z)b+1
,

valid for any z ∈ [0, 1) and b ∈ N, which follows directly from the definitions of the
polylogarithm function and Eulerian numbers. Setting 1/

√
2 = z, we have

Sm(1, b) 6
∑

q>(q0−m)∨0

qbzq−q0 = z−m
∑

p>0∨(m−q0)

(q0 −m+ p)bzp

6 z−m
b∑
`=0

(
b

`

)
qb−`0

∑
p>0

p`zp

6 z−m
b!

1− z

b∑
`=0

(
b

`

)
qb−`0

(1− z)`

= 2m/2b! c1(q0 + c0)b ,

where c1 = (1− z)−1 = 2 +
√

2.
Assume now that a > 1 and [n] = a+ 1. We decompose n = n1 +n2, with [n1] = a and

[n2] = 1, and |n1| = m1, |n2| = m2 with m1 +m2 = m. We may assume that the largest
nonzero component of n appears in n1, so that q[n1] = q[n] and q[n2] = q < q[n]. It follows
that

Sm(a+ 1, b) =
∑

m1+m2=m

∑
q<q[n]

∑
|n1|=m1

[n1]=a
q[n1]+nq[n1]

>q0

m!

n1!m2!

qb[n1]

2(q[n1]−q0)/2

6
m−1∑
m1=1

(
m

m1

)
Sm1(a, b+ 1) ,

where we have bounded the sum over q by q[n] = q[n1]. It is then straightforward to show
by induction that

Sm(a, b) 6 c1(
√

2 + a− 1)m(q0 + c1)a+b−1(a+ b− 1)!

for all a, b. In particular,

Sm(a, 0) 6 c1(
√

2 + a− 1)m(q0 + c1)a−1(a− 1)! .

Replacing this in (C.4) yields the result, with c2 =
√

2− 1.

C.3 Proof of Proposition 3.10

Using the relation (B.1) between Wick polynomials and monomials, we get

∏
q>0

Hnq (δqψ(t, ·); cq) =
∏
q>0

(bnq/2c∑
lq=0

anqlqc
lq
q

(
δqψ(t, ·)

)nq−2lq

)
=

∑
l:l6bn/2c

anl
∏
q>0
nq>0

clqq
(
δqψ(t, ·)

)nq−2lq
,

EJP 29 (2024), paper 35.
Page 30/35

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1094
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration estimates for singular SPDEs on the 2-torus

where

anl =
∏
q>0
nq>0

anqlq =
∏
q>0
nq>0

(−1)lqnq!

2lq lq!(nq − 2lq)!
=

(−1)|l|n!

2|l|l!(n− 2l)!
.

Recall that
δqψ(t, x) =

∑
k∈Aq

ψk(t)ek(x) ,

which implies∏
q>0
nq>0

(
δqψ(t, x)

)nq−2lq
=
∏
q>0
nq>0

( ∑
k1,...,knq−2lq∈Aq

ψk1
(t) · · ·ψknq−2lq

(t)ek1+···+knq−2lq
(x)

)

=
∑

k
(q)
1 ,...,k

(q)
nq−2lq

∈Aq ∀q

∏
q>0
nq>0

nq−2lq∏
i=1

ψ
k

(q)
i

(t)e∑
nq>0

∑nq−2lq
i=1 k

(q)
i

(x) ,

whose projection on the k0th Fourier basis vector is given by

Pk0

( ∏
q>0
nq>0

(
δqψ(t, x)

)nq−2lq

)
=
∑
B(k0)

∏
q>0
nq>0

nq−2lq∏
i=1

ψ
k

(q)
i

(t)ek0
(x) ,

where the sum runs over all tuples (k
(q)
1 , . . . , k

(q)
nq−2lq

)q>0 in the set

B(k0) =

{
k

(q)
1 , . . . , k

(q)
nq−2lq

∈ Aq ∀q :
∑
q>0

nq−2lq∑
i=1

k
(q)
i = k0

}
.

Similar relations hold with ψ̂(t, x). We now note that∥∥δq0(ϕ(t, ·)− ϕ̂(t, ·)
)∥∥2

L2 =
∑

k0∈Aq0

∣∣〈ek0 , Pk0ϕ(t, ·)− Pk0 ϕ̂(t, ·)〉
∣∣2 ,

where

〈ek0 , Pk0ϕ(t, ·)− Pk0 ϕ̂(t, ·)〉

=
∑

l:l6bn/2c

anl
∑
B(k0)

[ ∏
q>0
nq>0

clqq

nq−2lq∏
i=1

ψ
k

(q)
i

(t)−
∏
q>0
nq>0

ĉq(t)
lq

nq−2lq∏
i=1

ψ̂
k

(q)
i

(t)

]
. (C.5)

Observe that

nq−2lq∏
i=1

ψ
k

(q)
i

(t) = exp

{
−1

ε

nq−2lq∑
i=1

α
k

(q)
i

(ul+1, t)

} nq−2lq∏
i=1

ψ̂
k

(q)
i

(t) ,

clqq 6 exp

{
−2

ε
lqαk(q)(ul+1, t)

}
ĉq(t)

lq

for some k(q) ∈ Aq. The definition of the partition implies that |ul+1 − t| has order
2−2q[n]γ0ε, and therefore there is a numerical constant c0 such that

−1

ε
αk(ul+1, t) 6 c02−2(q[n]−q)γ0

EJP 29 (2024), paper 35.
Page 31/35

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1094
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration estimates for singular SPDEs on the 2-torus

holds for all k ∈ Aq. Therefore,

−1

ε

nq−2lq∑
i=1

α
k

(q)
i

(ul+1, t)−
2

ε
αk(q)(ul+1, t) 6 c0γ0|nq|2−2(q[n]−q) .

Replacing this in (C.5) yields∣∣〈ek0 , Pk0ϕ(t, ·)− Pk0 ϕ̂(t, ·)〉
∣∣

6
∑

l:l6bn/2c

∣∣anl∣∣ ∑
B(k0)

∏
q>0
nq>0

(
ec0γ0|nq|2

−2(q[n]−q) −1
) ∏
q>0
nq>0

(
ĉq(t)

lq

nq−2lq∏
i=1

∣∣ψ̂
k

(q)
i

(t)
∣∣) . (C.6)

Since the exponent c0γ0|nq|2−2(q[n]−q) is bounded, we can write, for a numerical con-
stant c1, ∏

q>0
nq>0

(
ec0γ0|nq|2

−2(q[n]−q) −1
)
6
∏
q>0
nq>0

(
c1γ0|nq|2−2(q[n]−q)

)

6
(
c1γ0

)[n] ∏
q>0
nq>0

nq ,

since the product of powers of 2 is bounded by 1 (in fact, it can even be bounded by
2−2([n]−1), but this just decreases the constant c1). Since∥∥δqψ̂(t, ·)

∥∥2

L2 =
∑
k∈Aq

|ψ̂k(t)|2,

we have the rough bound

|ψ̂k(t)|2 6
∥∥δqψ̂(t, ·)

∥∥2

L2 ∀k ∈ Aq .

Plugging the last bounds into (C.6), we get∣∣〈ek0 , Pk0ϕ(t, ·)− Pk0 ϕ̂(t, ·)〉
∣∣

6
(
c1γ0

)[n]

( ∏
q>0
nq>0

nq

) ∑
l:l6bn/2c

∣∣anl∣∣ĉ(t)l ∏
q>0
nq>0

(∥∥δqψ̂(t, ·)
∥∥nq−2lq

L2

)
#B(k0) .

Finally, by counting the number of choices of the k(q)
i , we obtain

#B(k0) 6 22q[n](|n|−2|l|) .

This yields the claimed result, noticing that this bound is independent of k0, so summing
over all k0 ∈ Aq0 only yields an extra factor 22q0 in the L2-norm squared.

C.4 Proof of Lemma 3.13

We decompose the sum (3.15) as

K̄m,b(q0) =

m∑
a=1

Sm,m(a, b) ,

EJP 29 (2024), paper 35.
Page 32/35

https://www.imstat.org/ejp

https://doi.org/10.1214/24-EJP1094
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Concentration estimates for singular SPDEs on the 2-torus

where for a ∈ {1, . . . ,m} and b ∈ N0, we define

Sm,m0(a, b) =
∑

n:|n|=m
[n]=a, q[n]+nq[n]

>q0

qb[n]2
(m0+3)q[n] exp

{
−β(m0, q0)2(q[n]−q0)/m0

}
.

We will proceed similarly to the proof of Lemma 3.9, and estimate this sum by induction
on a, for arbitrary b ∈ N0. For a = 1, the only possible n are those with one component,
say q, equal to m, and all other components equal to 0. Then q[n] = q, and writing
x+ = x ∨ 0 we get

Sm,m0
(1, b) 6

∑
q>(q0−m)+

qb2(m0+3)q exp

{
−β(m0, q0)2(q−q0)/m0

}

=
∑

p>(m−q0)+

(q0 −m+ p)b2(m0+3)(p+q0−m) exp

{
−β(m0, q0)2(p−m)/m0

}

= 2(m0+3)(q0−m)
∑

p>(m−q0)+

(q0 −m+ p)b2(m0+3)p exp

{
−β(m0, q0)2(p−m)/m0

}
.

One checks that for β(m0, q0) larger than a numerical constant of order 1, the general
term of this sum is decreasing in p. Estimating the sum by an integral, we get

Sm,m0(1, b) 6 c1(q0 −m)b2(m0+3)(q0−m)+ exp

{
−2−m/m0β(m0, q0)

}
for a numerical constant c1. Assume now that a > 1 and [n] = a + 1. We decompose
n = n1 + n2, with [n1] = a and [n2] = 1, and |n1| = m1, |n2| = m2 with m1 +m2 = m. We
may assume that the largest nonzero component of n appears in n1, so that q[n1] = q[n]

and q[n2] = q < q[n]. It follows that

Sm,m0(a+ 1, b) =
∑

m1+m2=m

∑
q<q[n]

∑
|n1|=m1

[n1]=a
q[n1]+nq[n1]

>q0

qb[n]2
(m0+3)q[n] exp

{
−β(m0, q0)2(q[n]−q0)/m0

}

6
m−1∑
m1=1

Sm1,m0
(a, b+ 1) ,

where we have bounded the sum over q by q[n] = q[n1]. It is then straightforward to show
by induction that

Sm,m0
(a, b) 6 c1m

a−1qa+b−1
0 2(m0+3)q0 exp

{
−β(m0, q0)

}
for all a, b. Summing over a and setting m = m0 yields the result.
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