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An extension of the Ising-Curie-Weiss model of
self-organized criticality with a threshold on the
interaction range
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Abstract

In [10], Cerf and Gorny constructed a model of self-organized criticality, by introducing
an automatic control of the temperature parameter in the generalized Ising Curie-
Weiss model. The fluctuations of the magnetization of this spin model are of order n3/4
with a limiting law of the form C exp(—2*), as in the critical regime of the Curie-Weiss
model.

In this article, we build upon this model by replacing the mean-field interaction with
a one-dimensional interaction with a certain range r, which varies as a function of the
number n of particles. In the Gaussian case, we show that the self-critical behaviour
observed in the mean-field case extends to interaction ranges r, > n®/* and we show
that this threshold is sharp, with different fluctuations when the interaction range is
of order of n®/* or smaller than n®/*.
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1 Introduction

1.1 Definition of the model

This article is devoted to the study of a one-dimensional spin model with long range
interactions and with a self-adjusted temperature. More precisely, we study a chain of n
spins, with periodic boundary conditions, where each spin interacts with its 2r, nearest
neighbours, with 0 < 2r,, < n. Thus, we consider the Hamiltonian

n T

n 1
Hy (a1, o) €R = == 3 0 iy, (1.1)

=1 j=1
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Figure 1: In the different regimes studied, if the interaction range is of order r,, ~ n%,
then the fluctuations of the magnetization S,, are of order n’, with b = (1/2+a/3) A (3/4).

where we use the convention =, = 2 for all k € {1, ..., n}. Besides this Hamiltonian,
the spins interact together through the following observable, which we think of as a
“self-adjusted temperature parameter” (which is not really a temperature parameter
because it is a function of the spins):

x%_i'_.._i'_x%
n .

T : (z1,...,2,) ER" —

We then study the following probability distribution on R™:

1 H,(zq1, ..., xp, 2
d/l/n(xl, ceay .’L'n) = Zexp (_M) 1{Tn>0} ’FHldV(xl), (1.2)

where v is the standard normal distribution, and Z,, is the normalization constant.
Note that the spins in our model are real-valued (if they were in {—1,1} then the
temperature 7,, would be constant). In what follows, we are interested in the behaviour,
when 7 tends to infinity, of the “magnetization”

Sn(xla B xn) = a1+ -+ Ty,
when (x4, ..., z,) is distributed according to f,,.

1.2 Results

We now describe the asymptotic behaviour of the magnetization in several regimes
of the interaction range r,,. The results are summarized on figure 1.

1.2.1 Self-critical behaviour in the long range case

The following result indicates the behaviour of the magnetization in the long range case:
Theorem 1.1 (Long range case). If the interaction range r,, is such that r, /n’/*

then under the law u,, defined by (1.2), we have the convergence in distribution

— 00,

Sn i} \/§ x* d
ex —_— € .
n3/4 w5t T(1/4) TP\ 4
This interesting behaviour was already observed by Cerf and Gorny [19, 10] in the
mean-field case, which roughly corresponds to an interaction range r,, = |n/2]. These
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fluctuations of the order of n3/4 and this limiting law correspond to the behaviour of
the critical Ising-Curie-Weiss model [25, 14, 15]. Thus, the introduction of this self-
adjusted temperature pushes the system to exhibit a critical-like behaviour, without the
need to adjust the parameters of the system to precise values: this is why we talk of

self-organized criticality (see paragraph 1.3).

1.2.2 Threshold phenomenon

A natural question is now: is this exponent 3/4 for the interaction range optimal? The
following Theorem provides a positive answer, showing that the limiting distribution
changes when the interaction range 7, is of order n3/4:

Theorem 1.2 (Threshold phenomenon). If the interaction range r,, is such that
rn T An3/4 with A>0,

if (Y;)jez is a family of i.i.d. standard normal variables, and if f is the density of the

random variable
Vav, - i
Zy = Vo - 555 Y. = (1.3)

jeznjoy
then under the law u,, defined by (1.2), we have the convergence in distribution

Sn N f(:cz) dx
n3/4 n—too f]R f(tz) dt’

This Theorem indicates that there is a kind of phase transition phenomenon with
respect to the interaction range. The obtained limiting law results from the competition
between the two terms in (1.3). When A = oo, the second term disappears, leaving the
distribution obtained in Theorem 1.1.

1.2.3 The finite range case

When the interaction range is constant, the behaviour is very different from the long
range case. Indeed, the following Theorem shows that the phenomenon observed in
the mean-field and long range cases does not occur in the finite range case, where the
fluctuations of S,, are Gaussian:

Theorem 1.3 (Finite range case). For every r > 1, under the law u,, defined by (1.2)
with r,, = r, we have the convergence in distribution

Sn L 2
N R CEOR

where o, > 0 is characterized by the equation

.1 T -1
/0 dt <0}% +1— % > Cos(27rmt)> = 1. (1.4)

m=1

In the nearest neighbour case r = 1, we have the explicit variance crf =v2+1.

1.2.4 An intermediate regime

The following theorem shows that the fluctuations of S,, become smaller than n?/* when
the interaction range becomes smaller than n®/4:
EJP 29 (2024), paper 15. https://www.imstat.org/ejp
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Theorem 1.4 (Intermediate regime). If the interaction range satisfies r, //n — oo
and r, /n%/* — 0 then, under the law p, defined by (1.2), we have the convergence in

distribution
Sn L 3 2
rn1/3\/ﬁ n—+00 N<O7 3) ’

We have not been able to carry out the computations in the remaining case r,/y/n — 0
but we expect that the variance o2 defined by (1.4) satisfies o,. ~ (2/3)/6r1/3 when one
lets » — oo, which leads us to conjecture that Theorem 1.4 remains true when r,, — oo
and r, /y/n — 0. This guess corresponds to the dashed segment on figure 1.

1.3 Motivation: a Curie-Weiss model of self-organized criticality

The motivation which leads us to consider this model comes from the work of Cerf
and Gorny [19, 10], who studied a simple mean-field model of self-organized criticality
which is constructed as a variant of the generalized Ising Curie-Weiss model.

The concept of self-organized criticality was coined in by the physicists Bak, Tang
and Wiesenfeld in their seminal article [3], to explain the widespread presence of fractal
structures in nature. They observed that some physical systems present a “critical-like”
behaviour, with fractal structures and power-law correlations, without the need to finely
tune a parameter (e.g., the temperature) to a critical value. They called this phenomenon
“self-organized criticality”. The important difference with ordinary phase transitions is
that the critical regime, instead of being a very specific regime which only appears for
a very precise value of the parameters of the system, becomes an attracting point, the
system being “forced” to look critical. Several mathematical models of self-organized
criticality have been studied, but these models are often quite complex and not easily
tractable [17]. For a broader review of the concept of self-organized criticality and of
the controversies around it, we refer the reader to [2, 18, 24, 27].

To construct a simple toy model of self-organized criticality, Gorny started from the
generalized Ising Curie-Weiss model and, following an idea explained by Sornette [26],
he replaced the temperature parameter with a function of the spins, in order to introduce
a kind of feedback from the configuration onto the temperature parameter. Starting from
a model of the form exp(—H,,(0)/T), with a phase transition for a critical temperature 7,
the technique consists of replacing this temperature parameter 7" with a function 7}, (o),
which tends to concentrate around the critical value T, when n — oo.

In [19], Gorny constructed a mean-field model which almost corresponds to the
case 7, = n — 1 of our model!, and he proved Theorem 1.1 in this setting, that is to say,
he showed that the fluctuations of the magnetization are of order n®/*, with a limiting
distribution of the form exp(—z*/4). This corresponds to the behaviour observed in the
critical regime of the Ising-Curie-Weiss model.

1.4 Perspectives

1.4.1 More general distributions

Our results only deal with the case of variables initially Gaussian, that is to say, we
restrict ourselves to the standard normal distribution v. This restriction enables us to
perform exact computations, as was done by Gorny in [19], where he dealt with the
Gaussian case of the model. The work of Gorny was then extended to more general
distributions of the spins in [10] and [20], still in a mean-field setting.

In fact there is a small difference, with a factor 1 — 1/n between our Hamiltonian and the one studied by
Gorny, but this does not change the behaviour of the model.
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In fact, the model studied in the present article with an interaction range could also
be defined with more general spin distributions. But the Gaussian case with a varying
interaction range turns out to be already challenging, and we can already observe an
interesting threshold phenomenon in the interaction range. Yet, we expect that our
results should remain valid for a more general class of spin distributions.

To extend our results to more general distributions, it might be useful to use a
Hubbard-Stratonovich transformation, as Gorny and Varadhan did in [20], or to use
the more general Stein’s method [13], as used in [12]. In fact, our method uses a trick
which consists in considering the self-normalized magnetization S, /v/T,, instead of S,,,
an idea which was already used in [20] and helped extending the result to more general
distributions. In our case, in addition to this, we benefit from the “magical” fact that,
in the Gaussian case, the self-normalized magnetization turns out to be independent
from the temperature, which simplifies the computations. Note that this fact remains
true as long as the measure is spherically symmetric: thus, our method easily extends
to any spherically symmetric base measure on R"”, as long as it is such that 7,, — 1 in
probability. But this symmetry ingredient is not necessary, and the work of Gorny and
Varadhan shows that the method can be used in a more general setting.

1.4.2 The intermediate regime

As was explained in paragraph 1.2.4, we leave apart the regime between finite interaction
range and r,, of order /n, although we do not expect a different behaviour in this regime.
It would be interesting to check if something unexpected happens, or if our limitation
to y/n is only an artefact of our method. If this is the case, there might exist a smarter
way to perform the computations which would allow to remove this limitation and to
deal at the same time with the whole regime 1 < r,, < n3/4.

1.4.3 Different kinds of long range interactions

The first motivation to study this model was to try to extend the construction of Cerf and
Gorny, which was in a mean-field setting, to define a more geometrical model. Thus, we
studied the behaviour of the model in one of the simplest geometrical settings, namely
a one-dimensional nearest neighbour interaction with periodic boundary conditions.
But, as shown by Theorem 1.3, it turns out that this model does not present the same
critical-like asymptotic behaviour as observed for the mean-field model. At this point, a
natural question arises: if the interesting behaviour (with a limiting distribution of the
form exp(—z*/4) and fluctuations of order n*/4) is observed in the mean-field case, but
not when each spin only interacts with its two nearest neighbours, then what about the
intermediate cases between these two extreme situations?

This naturally leads to consider a model with an intermediate interaction range. But
there are many different ways to interpolate between a mean-field interaction and a
nearest neighbour interaction. Generally speaking, one can consider a Hamiltonian H,
of the form

Hp(r1, ..y 2n) = — Z J(@, §)xizy,

1<i,g<n

where the coupling constants J (i, j) = J(]i — j|) are decreasing functions of the distance
separating the particles ¢ and j (with periodic boundary conditions). The behaviour of the
model then depends on the decay rate of this coupling function. In [1], the key example
of a coupling proportional to |i — j|~2 is studied, and it is proved that the resulting Ising
model presents a phase transition, as well as models constructed with a slower-decaying
coupling function. Otherwise, if J(i, j) = o(]i — j|~2), then the obtained Ising model does
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not any more present a phase transition, which shows that a coupling of order |i — j| =2
plays a pivotal role for the appearance of a phase transition.

Another variant, called Kac-Ising models, consists of an interaction function (either
with finite range or decreasing with the distance between spins) scaled by a factor ~,
and one studies the limit of these models when v — 0 [23, 6].

1.4.4 Random couplings

Another way to design intermediate models consists in drawing random couplings J (i, 7).
In [5], Bovier and Gayrard constructed such a model by taking for the J(i, j) independent
Bernoulli variables of parameter p, which amounts to considering the Ising model on
an Erdds-Rényi random graph. This model exhibits different regimes characterized by
different fluctuations of the sum of spins, depending on how the parameter p varies
with the number n of particles. These different regimes were studied by Kabluchko,
Lowe and Schubert [21, 22] who proved in particular that, for a critical temperature
and a parameter p, chosen such that p, /n*3/ 4 — 00, the behaviour resembles that
of the critical Ising Curie-Weiss model, i.e., the sum of the spins is of order n3/* with
fluctuations of the form C exp(—Az*). When the parameter p,, becomes of order n=3/4,
still at the critical temperature, the limiting distribution changes, and a quadratic term
appears besides the term in z*. If p, = o(n*‘r‘/ 4) then this quadratic term dominates,
which results in Gaussian fluctuations of the sum of spins.

This approach was generalized by Deb and Mukherjee [12], who studied the fluc-
tuations of an Ising model defined on a more general set of graphs. Under certain
conditions of homogeneity and connectivity, they obtain the same fluctuations as in the
mean-field model, when the mean degree 7, in the graph satisfies ,,/(n1nn)'/3 — oo in
the supercritical regime, r,/y/n — oo in the subcritical regime, or r,,/\/nlnn — oo at
the critical point.

In our case, we choose an interaction of each spin with its 2r, nearest neighbours,
where r, is a parameter which evolves with n. This corresponds to a coupling function
of the form

o 1 1 ifjefi—ry,...,i—=1}U{i+1,...,i+r,} +nZ,
I, j) = x

4ry, 0 otherwise.

Let us recall that our model is different from the aforementioned models, because
the spins are not valued in {—1, +1} but are real-valued, and because our self-adjusted
temperature in fact induces an interaction between all the spins. Therefore, it is not a
priori evident which scale of r,, is relevant to observe a change of behaviour.

1.5 Sketch of the proof and organization of the paper
1.5.1 Diagonalization of the interaction Hamiltonian
Our starting point to study the model is to diagonalize the interaction Hamiltonian. The

matrix of the quadratic form H, given by (1.1) is a symmetric circulant matrix, which
writes
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where the matrix J is given by

o1 o0 - 0
0 0 1
T = : . 0| T (1{j:i+1 mod. n}>1§i,j<n.
0 0 1
10 v - 0

The matrix J is diagonalizable, with eigenvalues

sp(J) = {eZij“/” jef{l, ..., n} }

Therefore, for every m > 1, we have

sp(J7"+ ) = {2cos<2j;m> :je{17~~,n}},

and thus the eigenvalues of our Hamiltonian H,, are

Sp(Hn) = { - 05"71) R _O"rmz }7

2 2
where i,
. 1 & 29mm
vie{l,...,n} an’jzranos( - ) (1.5)
m=1
Also, for every j € {1, ..., n}, we define ,;, = 1 — a,, ;. In section 2.1, we gather a

series of estimates on these eigenvalues that are used throughout the article.

1.5.2 Change of variables

Let P € O,(R) be an orthonormal matrix such that the matrix of the quadratic form H,
writes P~!DP, where D is the diagonal matrix with coefficients —a, 1/2, ..., —apn /2
on the diagonal. Performing the change of variables

o (w1, o) ER® — (Y1, .oy Yn) = <ZPj,kxk> ,
k=1 1

<jgn
the Hamiltonian H,, and the self-adjusted temperature 7;,, become
1 « ) 1<,
H,(z1, ..., 2p) = _§;a7L7jyj’ and T,(z1,...,2,) = E;yj

To see what happens to the sum S,, = z1 4+ - -4z, of the spins, note that o, ,, = 1 and that
this eigenvalue —«,, ,,/2 = —1/2 of H,, corresponds to the eigenvector (1/+/n, ..., 1/y/n),
whence P, =1/y/nforall k € {1, ..., n}. Therefore, we have

(ylv"'ayn):Sﬁ(xly---axn) = Sn:x1+"‘+xn:\/ﬁyn~

Also, the change of variable being orthonormal, we have

n

de(xi) = dy@ﬂw_l(yh R yn) = de(yi)v
=1

i=1

which allows us to forget the variables z1, ..., x;, and to work only with the new vari-
ables y1, ..., Y, to study the limiting behaviour of S,,, which is now S,, = \/ny..
EJP 29 (2024), paper 15. https://www.imstat.org/ejp
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1.5.3 A competition between two terms

Using the fact that «, , = 1, we may write

1 n ) y2 1 n—1 ) SQ 1 n—1 )
Hy(xq, ..., 2n) = —§Zan,jyj = _7” 3 Zan,jyj = _ﬁ - §Zan,jyj- (1.6)
j=1 j=1 Jj=1

The first term exactly corresponds to the Hamiltonian in the mean-field model of
Cerf and Gorny, as mentioned in section 1.3. In the mean-field case 2r, = n — 1 we
have «,, ; = —1/(2r,) for every j # n, so that the second term almost disappears (in fact
it contributes as —S2 /(4nr,) but this has no significant effect). Hence, in this case the
model behaves as if there were only the first term —S2 /(2n).

For a general interaction range r,, there is a competition between the two terms
in (1.6). As long as 7, /n3/ 4 3 00, we show that the first term prevails, whence a
behaviour similar to the mean-field case. The interesting change of behaviour intervenes
when the second term becomes big enough to disturb the first term, and it turns out that
this happens when 7, is of order n®/4.

1.5.4 Independence of the temperature

The following important observation simplifies significantly the study of the model.

Lemma 1.5 (Independence of the temperature). Letn > 1. If Yy, ..., Y, are ii.d.
standard normal variables (we denote by v®" their joint distribution), then the vari-
able T, = (Y? + --- + Y,?)/n is independent of (Y1/\/T,, ..., Y,/v/T,). For every mea-
surable and bounded function g : R™ — R, we have

_ _T(/2)
T gn/2p(n—2)/2

®"

dz1 dzn—l 1{z?+-»~+zi71<n} 5 5
X gs| 21y -5 Zj—1, n—z{—--—z:_11,
Rn—1 \/ 2 2

n—2zy = =%

where g, is the even part of g with respect to the last variable, that is to say,

9(217 ceey Bn—1, Zn) +9(217 ceey Bn—1, 7Zn)
D) .

This Lemma is proved in section 2.2. It follows from this result that, under »®", that
is to say when the variables Y; are i.i.d. standard Gaussian variables, the variable T, is

independent of
H, 1 & Y?
o () = oo (357 )

Jj=1

gs : (21, ..., zn) ER™ +—

(1.7)

Therefore, for every bounded and measurable function f : R — R, we have

Hn [f (Tn)} Z

I
—
R
©
| —]
¢}

]
T
/|\
= 5=

N———
~
—
3
~—
[

n

Thus, the variable T;, has the same distribution in our model p,, as if the variables Y
were i.i.d. standard normal variables, so the law of large numbers implies the following
fact:

Corollary 1.6 (Behaviour of the temperature). Under u,,, we have the convergence in
probability T,, — 1.
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1.5.5 Slutsky’s Lemma and self-normalized magnetization

Now that we know that 7;, — 1 in probability, by virtue of Slutsky’s Lemma (Theorem 3.9
in [4]), to prove the convergences in distribution announced in section 1.2, it is enough
to show the same results for the self-normalized magnetization .S, / \/T,, instead of S,,, as
was done in [20]. Thus, there now remains to study the behaviour of this variable S,,/ VT,
Using the formula for the distribution of (Y1/v/Ty, ..., Y,/v/T,) given by Lemma 1.5
and plugging it into the definition of our model, we easily obtain:

Lemma 1.7 (Distribution of the self-normalized magnetization). For every bounded and
measurable function g : R — R and every n > 3, we have

Sn
g 7/—Tn
with A,, = Z}+---+Z2_,, where the variables Z; are independent with Z; ~ N(0, 1/8,;),
and where the constant C,, and the function g are given by

n = CuE {ﬁ(n(" - 4)) 1{An<n}}

r 2 (n73)/22n/2 n—1 1 _
C, = (n/ )en/2 and g :xz¢€(0,00) —
n"?zZ, e /5,%]»

The above Lemma has the following corollary, which will allow us to deduce the
asymptotic behaviour of S,,/+/T,, from the asymptotic behaviour of the auxiliary vari-
able n — A,:

Corollary 1.8 (Relating the self-normalized magnetization to the behaviour of A,,). If, for
a certain sequence (v,,),>3 of positive real numbers, the random variable n(n — A,)/v2,
conditioned to be positive, converges in distribution to a random variable with density f
with respect to the Lebesgue measure on R, then we have the convergence in distribution

9(vVz) +9( - V)
NG '

S, C f(2?) da

v/, oo [o f(E2)dt

The proof of Lemma 1.7 and of this Corollary 1.8 are given in section 2.3.

1.5.6 Behaviour of the auxiliary variable in the various regimes

Now, there only remains to study the behaviour of the random variable n— A,, conditioned
to be positive, in the various regimes of the interaction range r,, and with a suitable
scaling v,,. This behaviour is described by the following four Lemmas. In what follows,
we keep the notation of Lemma 1.7 above, writing A,, = Z? +---+ Z2_,, where the
variables Z; are independent with Z; ~ N(0, 1/8, ;), recalling that 3, ; = 1 — a, ;.

Lemma 1.9 (Behaviour of 4, in the long range case). If r,, /n/* — oo, then we have the

convergence in distribution
—A
DT By N0, 2).
\/’71, n—-+oo
Lemma 1.10 (Behaviour of 4,, at the threshold). Ifr,, ~ A\n3/* with A\ > 0, then we have
the convergence in distribution

n—A C
n _) Z}\,

\/'ﬁ n——+oo
where 7 is the variable defined by (1.3).
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Lemma 1.11 (Behaviour of A, in the finite range case). If r, = r is constant, then,
conditioned on the event {A,, < n}, the variable n — A,, converges in distribution to an
exponential variable with parameter 1/(20?), where o, is characterized by (1.4).

Lemma 1.12 (Behaviour of A, in the intermediate regime). If the range r, is such
that r,/\/n — oo and r,/n*/* — 0 then, conditioned on the event {A, < n}, the
random variable (n — A,,)/ r,,Q/ 8 converges in distribution to an exponential variable with
parameter 3'/3 /24/3,

Together with Corollaries 1.6 and 1.8 and Slutsky’s Lemma, the four above Lemmas
easily imply our main results, namely Theorems 1.1, 1.2, 1.3 and 1.4.

Note that, as explained above, since we expect that r%/3/(202) — 3'/3/2%/3 when one
lets r — oo, we conjecture that the hypothesis r,/y/n — oo in Lemma 1.12 is not optimal.
It might be that this hypothesis could be improved to r,, — oo, but this would require a
more delicate analysis (see the proof of Lemma 1.12 in section 3.5 and the remark after
the proof).

To study the asymptotic behaviour of the auxiliary variable n — A,, in these various
regimes, our common starting point is its characteristic function given by the following
Lemma, which immediately follows from the formula for the characteristic function of
the chi-squared distribution (see for example [16]).

Lemma 1.13 (Fourier transform of A,,). For every n > 1, the characteristic function
of n — A,, writes

E[eiu(n—An)} — eiun H E[e—iuZ?] = exp [gon(u)] 7
j=1
where ¢,, is the function
1= 2iu
n i uwelU, — tun — = In(1+ >7 (1.8)
’ 2 ; ( B
which can be defined on the complex domain
U, = {uEC : 20mu < min(By, ...,5,%”,1)}, (1.9)
using the following determination of the logarithm:
. 1 2, 2 . y
In:z=z+1wyeC\(—00,0 — =In(z" +y*) + 2iarctan | ———=— | .
2 z+ /22 + 2

To obtain Lemmas 1.9 and 1.10, we simply compute the limit of the characteristic
function with a suitable scaling. This is done in sections 3.1 and 3.2. In these cases, the
conditioning on the event { A, < n} is completely transparent, so that we may study the
convergence in distribution without this conditioning.

1.5.7 Saddle-point method

The method in the regimes when r,, = o(n3/ 4) is less straightforward because, in this
case, it turns out that P(A4,, < n) — 0 when n — oo, that is to say, we have to study some
large deviations of the variable n — A,,.

To do so, we use the Fourier transform to obtain an exact integral formula for the
density of n — A,, and, to understand the limiting behaviour of the integral, we use the
saddle-point method. This method (see for example [11]) consists in a judicious change
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of integration contour in the complex plane in order to obtain an integrand with an
appropriate limiting behaviour.

We perform this change of contour in section 3.3, before studying the limiting
behaviour of the obtained integral, first in the case of r,, constant in section 3.4 and then
in the intermediate regime of Theorem 1.4 in section 3.5.

This idea to use the saddle-point method to study a long range Ising model, after
having diagonalized the interaction matrix, was already presented by Canning in a series
of publications [8, 9, 7]. However, Canning only discusses the saddle-point method in
cases where the interaction matrix has a finite rank, and he does not give rigorous
bounds on the precision of the obtained approximation. In our computations, it turns
out that the proof of the convergence in distribution requires a precise control of the
asymptotic behaviour of the eigenvalues «,, ;. The analytical results on these eigenvalues
that we need are gathered in the next section.

2 Preliminaries

2.1 Estimates on the eigenvalues

We now state some preliminary estimates on the eigenvalues which are needed in the
various regimes of the interaction range. These eigenvalues («, ;)i1<j<n» Were defined

by (1.5). Note that we have o, ,, =1 and, forevery j € {1, ..., n — 1},
- 2Jm7r cos (j(rn + 1)7/n) sin (jrom/n)
Gy = = 3 cos = — (2.1)
[ — 7y, Sin (jﬂ'/’n)
1 [sin((2r,+1)j
_ L (sin(@ra+ Dgm/m) (2.2)
2ry, sin (j/n)
The eigenvalues are symmetric with respect to j, that is to say o, ; = oy,,—; for
every j € {1, ..., n— 1}. It follows from (2.1) that
{8} € g < g @
e ’S Qn il X . A S T . .
J L2 7 rp sin(jm/n) 27

For every j € {1, ..., n}, we write Bn,j = 1 — ap ;. The proofs of the following technical
Lemmas are deferred to the appendix A.

Lemma 2.1 (Upper bounds on the eigenvalues). We have the upper bounds

" nlnn neln/ral=l 1 nlnn
> o d 3 1l =0 .
= lon il = ( T ) . Bn.j ’ < Tn )

" j=1+In/rs]
Lemma 2.2 (Asymptotics of the eigenvalues). If r,, — oo, then there exists K > 0 such
that, forn >3 and 1 < j < [n/2],

(27,)2 6

n2B,, w252

K Krp?
X .
mj* o n?

2.2 Independence of the temperature: proof of Lemma 1.5

Proof of Lemma 1.5. Let f : R — R and g : R — R be two measurable and bounded
functions, and define, for every n > 1,

I, = v

f(Tw)g (\};— \2#)
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Considering the function g, defined as in (1.7), we can write

SN

1\3‘@

dyy ... dy, (1 yivn Ynv/ S
e f () o o
j=1 > i=1Y; 2i=1Y; J=1
2 o 1
= —- dyi ... dyn_ dyn f| = 2
o s [T (1302)

no,2
ylf Ynv/10 exp<_zyﬂ>.
no 2 — 2
\/ =1 yg \/ Zj:l Yj j=1
We now perform the change of variable y,, = \/nt —y? — .- —y2_ |, which leads to
2 e nl n 20 ... 442
I, = 771/2/ dyl dyn—l/ dt vttt f(t)
(271') Rr—1 0 2 nt_yQ_..._yzb_l

N nt -y} — ~-fyn1 exp( nt)
S \/27:7 7\/* 2

Swapping the summations using Fubini’s Theorem and writing y; = zj\/f for every j < n,
we obtain

n > (n—2)/2 _—nt/2

dZ1 dzn—l 1{Zf+,,,+z‘i71<n} 5 5
X 95(217---52’1’7]717 n_zl_'”_zn—l) ’
Rr—1 \/ 2 2

n—2zy— =2

which shows that the variables T, and (Yl/ VT, ..., Y,/ \/Tn) are independent, and
yields the formula for the distribution of the latter variable which appears in the state-
ment of the Lemma. O

2.3 Relating the self-normalized magnetization to the auxiliary variable
This section is devoted to the proof of Lemma 1.7 and of Corollary 1.8.

Proof of Lemma 1.7. Let g : R — R be a measurable and bounded function, and let n > 3.
Recalling the definition (1.2) of our model and defining

9(z) +g(—=)

gs tr€R — 5 ,

we can write

S L on Sn Y, H,
n T = - T X —
Hn |9 T Z g T, p T,
n 2
= L en g Yov/n exp L Z an, Y
Zn VT, 2 Jfl g T
I'(n/2) / dzn_1 1
= 24 .42 n
an/2n(n=2)/27 [p. \/ .'._2721_1 {zi4- 427 <n}
1 2.2
><gs<\/n(n—z%—...—zfl1>exp<22anj2 — 2y ' Zn—1>7
EJP 29 (2024), paper 15. https://www.imstat.org/ejp
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using Lemma 1.5. With g and A,, defined as in the statement, this can be rewritten

n/2
1 n—1
X ﬁ(n(n — = 3721—1)) exp (— 3 Z BnJZ]Q)
j=1
n/2on/2 n—1
= F<Z(/n2)§)//222n/ I ;nyj E[ﬁ(n(n - An))l{An<n}:| ,
which concludes the proof of the Lemma. O

We now briefly explain how Corollary 1.8 follows from this Lemma:

Proof of Corollary 1.8. Assume that n(n — A,,)/v2, conditioned to be positive, converges
in distribution to a random variable with density f with respect to the Lebesgue measure
on R, and let g : R — R be a bounded and continuous function. Following Lemma 1.7,
for n > 3, we have

< S'I'L ) O’rb
Hn |9 U'n\/ﬁ

= K
Un

noype CuPlAy <) / o f(@) g2

Un

Then, notice that

/0 T f(@) () = / Oodxf(w)gsf/?) _y / Ty F() 9.ly) = /R dy £(47) 9()

To conclude the proof, there only remains to check that

i S < ()

n—00 Un

which follows by taking ¢ to be the constant function g = 1. O

3 Study of the asymptotic behaviour of the auxiliary variable

We now prove Lemmas 1.9, 1.10, 1.11 and 1.12, that is to say, we study the behaviour
of the random variable n — A,, in the various regimes of the interaction range.

3.1 The long range case: proof of Lemma 1.9

To prove the announced convergence in law, we simply compute the characteristic
function and check that it tends to that of the normal distribution.

Proof of Lemma 1.9. Assume that r, /n3/ 4 5 0o. It follows from Lemma 1.13 that the

characteristic function of (n — A,,)/+/n writes

exp (zu o \_/?’;1”) — exp lcpn (\;‘5)1 , (3.1)

where ¢,, is the function defined by (1.8). It follows from Taylor’s formula that, for
every y € R,

E

2 3 3
Ly 1 2|yl ||
In(1+iy)—iy—=| < = /L ==
21 76 tefo,1] |1+ ity\?’ 3
EJP 29 (2024), paper 15. https://www.imstat.org/ejp
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Plugging this into (1.8), we deduce that, for every u € R,
9 n—1

u , w1 1 11
on () = v i 2 G WG O(w 2 (ﬁn,m) G2

Jj=1

We now estimate these three sums. First, we can write

n— —1) <1+2{ J+2 —1’.
j=1 ﬂn,j j=1 577, ] Bn N '—1+|_n/TnJ ﬂn,j
(3.3)

Following Lemma 2.2, we have

B 0< ”22_2)+0(1),

Bn,j =]

where the O is uniform over all n and j < |n/2], implying that

/ZJ Bu <;122) = olvn).

Plugging this and the second estimate given by Lemma 2.1 into (3.3), we deduce that

n—1

j=1 ﬁn,j

= n+o(vn).

The same decomposition of the two other sums in (3.2) yields
g n nt nlnn

5 n+0(>+0( )—1—0( )
i—1 (ﬂn,]) Tn TL T'n

n—1
> G = ”*OC)*O(ﬁ)*O(n?n) = o).
- n,j n n n

Plugging everything into (3.2), we get

un/n — zu(n J:/%(\/E)) — w (n;o(n)) +0(1)

= —u?+o(1) = B[] +0(1),

n+ o(n)

and

®
/~
Sl
~—
I

where X is a centred normal variable with variance 2, leading to the claimed convergence
in law. O

3.2 The threshold: proof of Lemma 1.10

We now turn to the proof of Lemma 1.12, proceeding as for the proof of Lemma 1.9.

Proof of Lemma 1.12. Assume that r, ~ An®/% with A\ > 0, and consider the random

variable Z) defined by (1.3). For every u € R, we have

2
3iuY? 3iu
J _
exp (2)\2772],2)] = exp |—u —Zln (1+ 22 2)

j=1

]E|:eiuZ)\:| — E[GZiuYO] H]E
1
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Therefore, to obtain the claimed convergence in distribution, there only remains to prove
that, for every u € R, we have

12
T, <\UF> = —u —Zln( 2;”2) : (3.4)

where ¢, is the function defined by (1.8). Let u € R. We start by writing

o () = w4 28) - i (5 )

Expanding the logarithm around 1, we get

?}%) = —u?+o(1).

Thus, to prove (3.4), there only remains to show that
2iu 1 3iu
nlgréo = Z In \F-F T (/an > ] Zln < 2 2> . (3.5)
For every j € {1, ..., n — 1}, we have 3, ; < 2, whence

L vy _1+4u2 1 1>1+4u2><1>1
(v/n + 2iu) \ Bn T n+4u2 \ By T nt 42 2) 7 27

Yet, it follows from Taylor’s Theorem that, for every complex numbers z, 2/ € C such
that Rez > 1/2 and Re 2z’ > 1/2, we have |Inz —In 2’| < 2|z — 2/|. Therefore, we have

-1
' n—n21n<1+

Re

n—|n/r,|—1 %% 1 1 n—|n/rnp]—1 1
> 1n1+,<—1>] = ( > —1‘)
j=1+(n/ra) (v/n + 2iu) \ Bn.; vn =1l Br.j

Inn
- o(5i7)

using the second estimate given by Lemma 2.1. Similarly, we have

[n/rn] . .

21U 1 3iu
Y +_(_1) _1n(1+‘)
=~ (Vv + 2iu) \ Bn ] m2\252

2 3
(Vi + 2iu)Bn,;  72N252

_ O<Ln§;w)+o<“§

To deal with this last term, we write

)

L%,J 9 3 B 1Ln/iq,J 22 3 Y Ln/id 1
L [(Vn 2By N2 T N L |02B 7 2 Bugvn )

Using now the bound given by Lemma 2.2, this becomes

LTLE/'S,J (Lrgjﬁ 1 ) (Ln/rnJ 1 > (Ln}/’rfj 1)
-0 ——]+o0 — | +o =

3/4 52 -2

=1 P = v = 7

_ o( 31/4)+0< ! )—1—0(1) = o(1).

By symmetry of the eigenvalues, we obtain (3.5), concluding the proof of (3.4) and thus
of the convergence in distribution. O

2 3
(Vi + 2iu)B,,;  T2A242
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3.3 Preliminaries to the saddle-point method

We now perform some preliminary computations which will be useful for the proofs
of Lemmas 1.11 and 1.12.

For every n > 4, the characteristic function of n — A,, given by Lemma 1.13 is
integrable, implying by Fourier’s inversion formula that the auxiliary variable n — A,,
admits the following density with respect to the Lebesgue measure on R:

1
foniT€eER — —/duexp[—iux—ﬂpn(u)].
2 R

Now, let g : R — R be a bounded and continuous function and let (w,,),>4 be a sequence
of real numbers such that w,, > 1 for every n > 4 (we will take w,, = 1 in the proof of
Lemma 1.11 and w,, = T,Q/3 in the proof of Lemma 1.12). For every n > 4, we have

g (n ;:1”) l{An<n}] = /0 dxg ('Ui) fn(x)

1 n
= 5 ; dx g (;n) /]Rdu exp [ — iux + on(u)]
wy, n/wny

= dzx g(x) / du exp [ — wypiuT + <pn(u)} (3.6)
21 Jo R

E

where ¢, is the function given by (1.8). We now wish to move the integration contour
of u from R to —iu*/w,, + R, where u* > 0 will be chosen later. For every fixed z € R
and n > 4, the function f: u — exp | — wyiuz + ¢, (u)] is analytic on the open set U,
defined by (1.9). Therefore, Cauchy’s theorem applied to the closed contour represented

M 0 u

—iu* fwy, Cy

u € —iu*/w, +

Figure 2: Cauchy’s Theorem allows us to replace the integral on the segment [—M, M|
by the integral along the three segments C;, C; and Cs.

on figure 2 ensures that, for any M > 0, we have

/_A;duf(u) = /Clduf(u)+/czduf(u)+/caduf(u)

sk 1 2% M e L 1 sk
- dtf(—wt—M>+/ duf(—w—i—u)—i-w/ dtf(—wt—i-M).
Wn Jo W, -M W, Wy Jo W,

One easily checks that, n and x being fixed, we have

1 S 1 sk
lim dtf(—wt—M> = lim dtf(—”‘t+M> — 0,
0 0

M =00 n M—o0 n

whence
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Going back to (3.6), we obtain

n—A,
g < Wy, > 1{A"<n}]

Wn,

n/wy u*
= = dz g(x) / du exp | — wpiur — u*x + @y, ( + U>
w

2r 0 R n
= C’n/ dx / duliycn/w,y 9()
0 R

Wy UL N u* u wr

where the constant C,, is given by

E

Wh, u*
Cn, = 271\/73 exp l@vL <_wn>‘| .

In the following two subsections, we prove the pointwise convergence of the integrand in
the above formula, for a suitable choice of w,, depending on the regime of the interaction
range r,. We then want to apply the dominated convergence Theorem and, to this
end, we need to check that the domination hypothesis is satisfied. For every n > 4 and
every u € R, we can write

. . n—1 .
u* U u* . 1 24
Re [gon (—wn + \/ﬁ> — ¥n (—wn> ] = 9%[— juv/n — > ;ln (1 — —ij n 2u*/wn> ]

n—1
1 4y?
= -S|l
120 +<5n7j+2u*/wn>2]
n—1 4y?
< - In 14 —o
i (2+2u*)2]
2
u
< —h|l+—=],
T o

where we used that 3, ; < 2 and w,, > 1 in the first inequality. Thus, for every n > 4,
every z > 0 and every u € R, we have

(x) ex WnlUT uwrx + _t TN i

< sup|g| exp ( - u*x)
R

—3/4
u2

1%
* (1+u*)?

which is an integrable function of (x, u) on (0,00) x R. Hence, there remains to study
the pointwise convergence of the integrand in (3.7), which is the object of the two next
subsections.

3.4 Finite range interactions: proof of Lemma 1.11

Before proving Lemma 1.11, we state an elementary result which gives a bound on
the approximation of an integral with a sum of rectangles:
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Lemma 3.1 (Rectangle rule). Let f : [0,1] — C be a Lipschitz-continuous function with a
Lipschitz constant K > 0. For every n > 1, we have

Zf() /dtf() < X

Proof. We write

I~ (3 [ S j ]

— =) - dt f(t)| < dt =) —f(t)] < K|l=—t| = —,
() faro| <X [Lalr(G) -0 < X L x]i-i] - g
Jj=1 J=1 n J=1 n

which is the desired inequality. O

We now turn to the proof of Lemma 1.11.

Proof of Lemma 1.11. Letr > 1, and let o,- > 0 be characterized by (1.4). Note that this
equation indeed has one unique solution in (0, co) because the function

1 r -1
1
F:x>0»—>/dt (:r:—i—l—g cos(27rmt)>
0 rm:l

is continuous and strictly decreasing and has limits

lim F(z) = oo and lim F(z) = 0,
z—0

T—>00

so that there exists a unique value o, > 0 such that F' (1 / af) = 1. The explicit value
for o, in the particular case r = 1 follows from the formula

1 [" dt 1
Ya >0 Vbe (- — =
a= €(-aa) 27r/wa+bcost Vaz =2’
which is easily obtained with a change of variable 6 = tan(¢/2), and which implies that
1
Fz) = —/—m———— =1 & r=V2-1.
(x+1)2-1

Going back to the general case r > 1 and taking w,, = 1 and v* = 1/(202), we wish to
show that the function ¢,, defined by (1.8) satisfies

: i x i _ _ia*) — 2
Yu € R n11—>12<> gon< u +\/ﬁ> gpn( Zu) hu*, (3.8)

for a certain constant A > 0. The function ¢,, being holomorphic on U,, it follows from
Taylor’s formula that, for every u € R,

- u - u - u A
’@n<—lu +\/ﬁ)_¢"(_zu)_\/ESD;L(_ZU>_2”¢Z(_ZU)
@) [ g1 B
on ( P +\/ﬁ>’ (3.9)

First, recalling the expression (1.8) of the function ¢,, and the formula (1.5) for «, ;, we
write

< —5 sup
= 6nd/2 te[0,1]

n

) 1 . 1
7Zn+222u*+/8n] 7Zn72u*+1.;2u*+1_an7j

2r(5)
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where the function f is given by

m=1

, -1
f:tel0,1] — <2u* +1-— % Z cos(?wmt)) .

This function being continuously differentiable on [0, 1], it follows from Lemma 3.1 that,
when n — oo,

o (—wu*) = —in+0(1)+in/0 dt f(t) +0(1) = —in+inF (012> +0(1) = 0(1),

because F(1/02) = 1 by definition of o,. Similarly, we have

n—1

"(—iut) = 2 "X _2hn
(Pn( ; Qu* +/8n_7)
where

1 T -2
1
h = / dt <2u*—|—1 - = E cos(27rmt)> ,
0 " m=1

following again Lemma 3.1. Lastly, for every u € R, we have

O (=it )| < 3 < "
’Qpn ( Wt z:: 2u* +/an = 2(’[1,*)3

Plugging all these estimates into our Taylor expansion (3.9), we obtain the claimed
development (3.8) of ¢,,. Then, applying the dominated convergence Theorem to the
integral in (3.7), we deduce that, for every continuous and bounded function g : R — R,
we have

. 1 _ * —uw*z—hu?® _ h > —urT
nh_{rgo C—ﬂE[g(n—An)l{An<n}} = /0 dm/}Rdug(:v)e = \/;/0 dxg(x)e )

which shows the convergence in distribution of the auxiliary variable n — A,,, conditioned
to be positive, to an exponential variable with parameter «* = 1/(202), concluding the
proof of Lemma 1.11. O

3.5 The intermediate regime: proof of Lemma 1.12
Before proving Lemma 1.12, we state an elementary result:
Lemma 3.2 (An asymptotic expansion). When y — 400, we have

y ! :W+O<1)
Syt 2y y/)

Proof. Defining, for every y > 0,

> dt S|
Ity) = - y+j :/ Wizﬁ’
= 0o Y Syt

we have, on the one hand,

= [ 1 1
=Y [ () =0
i y+to y+J
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and, on the other hand,
dt > dt
I < _— _— =
() /0 y + t2 /0 y+ (t+1)2
< /“(2t+1)dt _ /OO dr
S o (y+t2)? o (W+r7)?
B l/w dv . 1 /°° d
Sy (402 g2 g (1+402)?

which shows that I(y) = O(1/y) when y — oc. O

(2t + 1) dt
y+2)(y+(t+1)?)
)

/ooo<
+/0°° dt

(y +12)?

We now turn to the proof of Lemma 1.12.

Proof of Lemma 1.12. We now assume that the interaction range is such that r,,/\/n —
oo and r,/n** — 0, we take w, = r,?/® and u* = 3'/3/2*/3, and we show that the
function ¢,, defined by (1.8) satisfies

, iu* U wr 3,

To use Taylor’s formula as in (3.9), we compute

- n—1 * —1
’ u . . 2u _
(pn (_7"7712/3> = —Zn+l; <Bn7j+7"n2/3) = Sl"‘SQ,
J:
where
n/rn] Qu* 1 n—1—|n/ry,| Qu* -1
S1 = 2i Z (/BTLJ' + w) and Sy = —in+1 | Z <Bn,j + 7”112/3> .
Jj=1 j=1+[n/rm]
We now evaluate these two terms. First, writing
Ln/rn] 2 N
2rsmej 2u
! .
Sy = 2i Z: <3n2 + rn2/3> ,
]:

we have, using Lemma 2.2,

[n/rn] 2_92.2 * 2 2.2 * \ 1
2r;mej 2u 2r;mj 2u
! _ . . — —_—
‘Sl -5 2 E <3n2 Bn,J) <5n71 + rn2/3> ( 302 + Tn2/3>

j=1
[n/r]
S

[n/rn]
3j

1 3n?
Bn.j 27“ w252

o(2)+0(2) - um

Then, defining the function

N

2

fry>0 — Zy+]

and noting that
ad 2rin22  2u* -t n? Sl 1 n
> (B ekm) colm X w)-o(R) - e,
j=ln/ral+1 " " =ln/ral 41 "
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we can write, using Lemma 3.2,

3 2 3 2,,%
Si = Si+o(vi) = s f (i ) +ol(v)

3in? |7 [r,8/3n2 1, 8/3
= -1/ +0

r2m2 |2V 3nlur n?
Vs
2rp2/3/ur

+o(vi)

21, 2/3/u*

(ra?/%) + o(Vn) = (Vn). (3.11)

We now deal with the second term. Defining
n—1—|n/r,|

2u* \
Sé:l Z [(1an7j+7n1;ﬂ’>> 1],
n

j=14+|n/ryn]

we have
Sy = Sg+o(”) — S, +o(v/n).
Tn
Then, we can write
n—1—[n/rn] -1 -1 -1
2u* 2u* 2u*
ro_ . _ . _
Sy =1 | Z (1 + Tn2/3> —1+an; <1 + Tn2/3> (1 Qn,j + rn2/3) ]
j=1+[n/ry|

n—1—|n/ry,| -1
. 2u*  4(u*)? 2u*
=t Z [_ 2/3 + R 1+ 2/3

j=1+|n/rm] " '
2u* \ 2u \ 7
+ o 1+rnT/3 1_0‘n’j+rnT/3
) n—1—|n/r,| -1
2inu* 2u
= I o 0| > an (1 ans+ i) ]
n j=1+[n/rs] "

Thanks to the upper bound (2.3) on «,, ;, we know that

2u*

vje{i+n/ralin=1=In/ra)} 1=an;+ 55

7

N | =

2 l_an,j 2

allowing us to expand, using again the upper bound (2.3) on «,, ; and the first estimate
of Lemma 2.1, and noting that >-7_, a, ; =0,

X\ —1
2u
Qnj <1 R R 2/3)
j=1+|n/rn] "

n—1—|n/ry,| n—1—|n/ry,| ) n—1 |04n ’
Z O[n7j+0< Z (Ozn,j)>+0<zr2’/j3>
j=1'm

n—1—|n/ry,|

Jj=1+[n/rn] j=1+[n/rn]
n il n? /2] 1 nlnn n
=0 _ JFZO‘TLJJFO 2 Z 2| TO(5m) =9\ )
n . n . j TTL rn
Jj=1 j=1+n/rn]
leading to
2inu*
SQ = 71",07/3 + O(\/ﬁ) .
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Combining this with (3.11), we deduce that

() = (o -2 ) sl olva) = o),

since we took u* = 3'/3/2%/3. We now study the second derivative, writing

-2
(-5) = 25 ()

Dividing the sum similarly, we show that, on the one hand,

ol dn/ra 2\ 2 nlnn n
2 X (tiEm) =m0 (TT) R0 nam) = kel
j=1+n/r

and, on the other hand,

[n/rn] —2 [n/rn] -2
2u* n? n 2r2 252 2u*
- j; (ﬁn,j - 74712/3> =9 (T'rzz) o (T) - Z ( 3n 2 * Tn2/3>

nv3 > dt
= o(n) + O(?“n4/3) +0 (M) T x@ )2 f, Ut )2

whence
1 > . nv3 o
O, <—n2/3) = —2n — 7(11* 32 + O(n) = —3n+ O(n) .

Lastly, for every u € R, we can write

. n—1 -3
i 2u*
‘ﬂ?( 7 +u)’ < 82(% /3) = S3+ 54,

where

-3 n—sp—1 -3
2u*
S5 = 162 (5 2/3) and 5 =8 Y <5 2/3) ,

with s, = [n/r,,*/?|. One the one hand, we have

2
S3 < 16{ Z/3J X (22%)3 - O(nrn2/3) _ O(nS/z)

and, on the other hand, using Lemma 2.2, we can write

n—sy—1 %) 2 3
n

Sy < 8 Z 5 = O(n)+0 Z (r 2j2) ]
j=sp+1 VT j=snt1 N
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Thus, applying Taylor’s theorem as in (3.9), we obtain the pointwise convergence (3.10).
After this, applying the dominated convergence Theorem to the integral in (3.7), we get,
for every continuous and bounded function g : R — R,

. ]. n — An > 7u*m7 u2
e e E] I Y R
2 o0 *
— 5 | dwg@e,
3 Jo
which shows the claimed convergence in law, concluding the proof of the Lemma. O

As explained before, the convergence in law we just proved might hold also in the
regime r,, = o(y/n). Yet, to extend the above proof to possibly deal with this regime, a
finer analysis would be needed. Indeed, the hypothesis r,/\/n — oo is used many times
in our estimation of the first and second derivative of ¢,, (while the estimate about the
third derivative only uses 7,, = o(n3/4)).

A Study of the eigenvalues

A.1 Proof of Lemma 2.1

Proof of Lemma 2.1. The first bound follows from the upper bound (2.3) on «, ;, writing

n Ln/2] SCTEIN .
> lanl < 2; lngl <= > i - O( - )

j=1 j= =1

Furthermore, the upper bound (2.3) on «, ; ensures that when n/r, < j <n—n/r,, we
have «,, ; < 1/2 and thus 3, ; > 1/2, leading to

n—|n/rn]—1 1 n—|n/rn]—1 | n—|n/rn]—1 n
O D DI I DN U ) S
j=1+{n/ry) 7 j=1+4[n/rp] "7 j=1+1n/rp] 7=1
so that the second estimate in the statement follows from the first one. O

A.2 An asymptotic formula for the eigenvalues: proof of Lemma 2.2
Proof of Lemma 2.2. Assume that r,, — oo. First, for every n and j such that

n n
<j< kJ , Al
o1 7 2 (A-1)
our formula (2.1) for «,, ; implies that
1 1 n—oo 2
an il < < . ~ - < 1)
[an.; Ty, sin (jm/n) T sin (7/(2r, + 1)) i

using that r,, — oco. Therefore, uniformly for all n and j satisfying (A.1), we have

1 1 6n2

ﬁTJ = T~ = 0Q1) = 7(27“”)277%2 +0(1),

which implies the desired estimate. Hence, there only remains to deal with the case 1 <
Jj < |n/(2r, + 1)]. In this case, we can write, with a uniform O with respect to j and n,

w ((2rn + 1)j7r> _ @rat)jr [1 BV (r;ﬁj‘l) ] |

n n 6n2 nt
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Besides, since jn/n < w/2, we have

1 _on
sin(jm/n)  jw

o (5)]

Using our formula (2.2) for «, ;, we obtain that, for 1 < j < [n/(2r, +1)],

sin ((2ry, + 1)j7/n) 1

Qn,j

2r, sin(jm/n) 2,
_ @t gn/n| @120 it o () ] L
2rpjm/n 6n2 nt n? 21,
1 (2, +1)%jn2 j2 gt 1
= {1 l—-———F——+0 (= o= —
< * 2rn> [ 6n2 * n2 * n4 2r,
B (27, + 1)%4272 Tnj> r g4
=1- n2 +0 2 +0 o
27"%]'2%2 Tnj> 7";1Lj‘l
=1 T +0< ] )+0< o )
implying that
QT%jQﬂ'Z

Bnj = 1—an; =

252
1+o<:>+o(% )] (A2)

with uniform O symbols for all 1 < j < [n/(2r, + 1)]. To obtain the result, we wish to
take the inverse of this development. To this end, we show that the quantity between
brackets in (A.2) is bounded away from 0. Let us go back to the formula (2.2) which
reads

3n2

o sin ((2ry, + 1)j7/n) 1 (A3)
e 21y, sin(jm/n) o2ry, ’

A straightforward function study shows that, for every x > 0,

2 2 4
x(l—%)ésinxéx(l—x—i—x). (A.4)

From this we deduce that

: , o 2
sin (27) > 0 (117 )
n n 6n2

Yet, for j < |[n/(2r, +1)], we have

j2ﬂ.2 71'2

<
6n2  6(2r, +1)2

DN | =

<

for n large enough, because r, — co. Therefore, we get

g\ ! n j2m? -1 n R
ST (EAA Py (IR Y A I (A.5)
n jm 6n2 jm 3n?2
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using the convexity of the function u +— (1 — u)~! over [0,1/2]. We now use the other
inequality in (A.4) to write, for j < |n/(2r, +1)],

2 1)4 2 14 2 1)25272 2 1)45474
Sin((rﬁ)ﬁr)g(rw)mr(l (2ra + 1?7 (2 + 1)) )

n n 6n2 120n4

(2rn+1 [ (7; 120) (2rn ;1)“]
(

< (2r, + )]7r<1 27y, +1)2 2)-

X
n

(A.6)

Using (A.5) and (A.6) in our formula (A.3) yields
2r, +1 272 2r, + 1)%52 1
P TR S il N R C LT
’ 21y, 3n2 2n? 21y,
1 2,2 2 " 1 2,2 1
14— 1+JW—(T+)] - —
2r, 3n2 2n2 2r,
1 272 2r, + 1)%52
1—(1+ p—— (2rn £ 1)7
21y, 3(2r, +1)2 2n2

3 2
1 27 272 52
1—(1+— 1-— n
( +2rn> ( 3(2rn+1)2) n2

Since r,, — oo, this implies that, for n large enough, we have

/

N

2 2
3 n T‘n]
W<27“n+1 frg = 1=-an; 2 =5

This allows us to take the inverse of the development (A.2), yielding, with a uniform O
symbol valid forall 1 < j < [n/(2r, +1)],

2,2
1+O<1>+O<T"] )]
Tn n

(2r,)? 6 1 72
= o o=
n25n,j 7r2j2 + 7nnj2 + n2 ’

1 3n?

Bn.j 2r2m2j2

which implies

concluding the proof of the Lemma. O
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