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Abstract

The decreasing Markov chain on {1,2,3, . . . } with transition probabilities p(j, j − i) ∝
1/i arises as a key component of the analysis of the beta-splitting random tree model.
We give a direct and almost self-contained “probability” treatment of its occupation
probabilities, as a counterpart to a more sophisticated but perhaps opaque derivation
using a limit continuum tree structure and Mellin transforms.
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1 Introduction

Write hn :=
∑n
i=1

1
i for the harmonic series. We will study the discrete-time Markov

chain (Xt, t = 0, 1, 2, . . .) on states {1, 2, 3 . . .} with transition probabilities

p(j, i) =
1

(j − i)hj−1
, 1 ≤ i < j, j ≥ 2 (1.1)

and p(1, 1) = 1. So sample paths are strictly decreasing until absorption in state 1. The
simple form (1.1, 3.1) of the transitions suggests that this chain might have been arisen
previously in some different context, but we have not found any reference. Let us call
this the harmonic descent (HD) chain.

As discussed at length elsewhere [2], the HD chain arises in a certain model of
random n-leaf trees: the chain describes the number of descendant leaves of a vertex,
as one moves along the path from the root to a uniform random leaf. In this article we
study the “occupation probability”, that is

a(n, i) := probability that the chain started at state n is ever in state i. (1.2)

So a(n, n) = a(n, 1) = 1. The motivation for studying a(n, i) is that the mean number
of i-leaf subtrees of a random n-leaf tree equals na(n, i)/i. There is a general notion
of the fringe distribution [1, 7] of a tree as viewed from a random leaf. Knowing the
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The harmonic descent chain

explicit value of the limits limn→∞ a(n, i) enables one in [3] to describe explicitly the
fringe distribution in our tree model.

We should also mention that
∑n
i=2 a(n, i) is just the mean time EnT1 for the chain

started at n to be absorbed in state 1. A detailed analysis of the distribution of T1 and
related quantities, by very different methods, is given in [5].

It seems very intuitive (but not obvious at a rigorous level) that the limits limn→∞ a(n, i)

exist, however there seems no intuitive reason to think there should be some simple
formula for the limits. But the purpose of this paper is to give an almost1 self-contained
proof of the following result.

Theorem 1.1. For each i = 2, 3, . . .,

lim
n→∞

a(n, i) =
6hi−1

π2(i− 1)
:= a(i). (1.3)

As the reader might guess, we will encounter Euler’s formula
∑
i≥1 1/i

2 = π2/6.

We prove Theorem 1.1 in two stages. In section 3 we will prove by coupling that the
limits a(i) exist. This is straightforward in outline, though somewhat tedious in detail.
More interesting, and therefore presented first in section 2, is the explicit formula for
the limits a(i). The limits satisfy an infinite set of equations (2.2), and a solution was
found by inspired guesswork. Then we need only to check that the solution is unique.

Regarding the “inspired guesswork”, numerical approximation of a(i) (by computing
a(n, i) for large n) suggested that a(i) grows as order (log i)/i. Because we are studying
i ≥ 2, it is in retrospect natural to try hi−1/(i− 1).

Could one prove Theorem 1.1 without guesswork? In the random tree model, there
is a limit continuum tree structure within which there is a continuous analog of the
“hypothetical” chain described below. By analysis of that process and the exchangeability
properties of the continuum tree, forthcoming work [3, 4] relates the (a(i)) to the
x ↓ 0 behavior of a certain function f(x) determined by its Mellin transform. Then by
technically intricate analysis one can re-prove Theorem 1.1 via a “proof by calculation”.

In very recent unpublished work, Iksanov [8] observes that one can exploit an exact
relationship with regenerative composition structures [6], enabling a shorter derivation
of Theorem 1.1 from known results in that theory.

2 The explicit limit

In section 3 we will prove by coupling the following result. Here a(i) is defined by
(2.1).

Proposition 2.1. For each i = 1, 2, 3, . . .,

lim
n→∞

a(n, i) := a(i) exists (2.1)

a(i) =
∑
j>i

a(j)p(j, i) (2.2)

and

a(1) = 1. (2.3)

Such a coupling proof does not give any useful quantitative information about the
limits a(i). In this section we show how to derive the value of the limits, granted
Proposition 2.1.

1We quote one sharp estimate from [5] as our Theorem 3.1.
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The harmonic descent chain

For fixed n ≥ 2 it is clear that the values of (a(n, i), 1 ≤ i ≤ n) are determined by the
natural system of equations

a(n, n) = 1, (2.4)

a(n, i) =
∑
n≥j>i

a(n, j)p(j, i), n− 1 ≥ i ≥ 1, (2.5)

a(n, 1) = 1. (2.6)

So the equations (2.2)–(2.3) are what one expects as the n→∞ analog of (2.5)–(2.6). It
is not obvious that these equations have a unique solution, but the following solution
was found by inspired guesswork, rather than calculation. Define

b(1) = 1; b(i) =
6hi−1

π2(i− 1)
, i ≥ 2. (2.7)

Lemma 2.2. Equations (2.2)–(2.3) are satisfied by b(i) in (2.7).

Proof. Equation (2.2) for b(i) is explicitly

b(i) =
∑
j>i

b(j)

hj−1(j − i)
, i ≥ 1. (2.8)

To verify (2.8), consider i > 1. We have∑
j>i

b(j)

hj−1(j − i)
=

6

π2

∑
j>i

1

(j − i)(j − 1)

=
6

π2(i− 1)

∑
j>i

(
1

j − i
− 1

j − 1

)

=
6

π2(i− 1)
lim
k→∞

k−i∑
j=1

1

j
−
k−1∑
j=i

1

j


=

6

π2(i− 1)
hi−1 = b(i). (2.9)

For i = 1: ∑
j>1

b(j)

hj−1(j − 1)
=

6

π2

∑
j>1

1

(j − 1)2
= 1 = b(1).

As noted before, at first sight we do not know that these equations (2.2)–(2.3) have
a unique solution. We need a further careful argument to prove that a(i) ≡ b(i), which
then (granted Proposition 2.1) completes a proof of Theorem 1.1.

Proposition 2.3. For a(i) defined by the limit (2.1) and b(i) defined by (2.7), we have
a(i) = b(i), i ≥ 1.

Proof. Fix large k. By considering the chain started at n and decomposing at the jump
over k:

a(n, i) =
∑

n≥m>k

∑
k≥j≥i

a(n,m)p(m, j)a(j, i), i ≤ k < n.

Note we write n ≥ m > k in decreasing order, visualizing the chain as coming down from
n. Letting n→∞ suggests

a(i) =
∑
m>k

∑
k≥j≥i

a(m)p(m, j)a(j, i), i ≤ k. (2.10)
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The harmonic descent chain

This does not have a direct Markov chain interpretation, because one cannot formalize
the idea of starting a hypothetical version of the chain from +∞ at time −∞ and making
its occupation probability be (a(i)). Nevertheless (2.10) is correct, and can be derived
from the relation (2.2). Fix i and k with 1 ≤ i ≤ k and in (2.2) recursively substitute a(j)
by the same equation for every j ≤ k. This yields, with summation over all paths of the
form η = (i1 = m > i2 = j > i3 > . . . > iq > i) with i1 > k ≥ i2:

a(i) =
∑
η

a(m)p(m, j)p(j, i3)p(i3, i4) · · · p(iq, i)

which collapses to (2.10). The key part of our proof is that the argument above for (2.10)
depends only on (a(i)) satisfying (2.2), which by Lemma 2.2 also holds for (b(i)), and so
the conclusion holds also for (b(i)):

b(i) =
∑
m>k

∑
k≥j≥i

b(m)p(m, j)a(j, i), i ≤ k. (2.11)

Now consider

b̂k(j) :=
∑
m>k

b(m)p(m, j), 1 ≤ j ≤ k, (2.12)

motivated as the overshoot (over k) distribution associated with our hypothetical version
of a chain run from time −∞. We will verify later the following technical lemma.

Lemma 2.4. (b̂k(j), 1 ≤ j ≤ k) is indeed a probability distribution, for each k ≥ 1.

Now let us re-write (2.11) as

b(i) =
∑
k≥j≥i

b̂k(j)a(j, i) =
∑
k≥j≥1

b̂k(j)a(j, i), i ≤ k (2.13)

and thus
b(i)− a(i) =

∑
k≥j≥1

b̂k(j)(a(j, i)− a(i)), i ≤ k. (2.14)

It follows from (2.12) that b̂k(j)→ 0 as k →∞ for every fixed j, and thus the distributions
b̂k go off to infinity, that is limk→∞ b̂k(L) = 0 for each L <∞. So letting k →∞ for fixed
i we see that (2.14) and Proposition 2.1 imply that b(i) = a(i), establishing Proposition
2.3.

Proof of Lemma 2.4. From the definitions of b(m) and p(m, j) this reduces to proving
that for each k ≥ 2

k∑
j=1

∞∑
m=k+1

1

(m− j)(m− 1)
=
π2

6
. (2.15)

For k = 1 this is Euler’s formula. Furthermore, for k ≥ 1, we have, writing sk for the left
side of (2.15) and φ(m, j) = 1

(m−j)(m−1) , and arguing similarly as in (2.9),

sk+1 − sk =

∞∑
m=k+2

φ(m, k + 1)−
k∑
j=1

φ(k + 1, j)

=

∞∑
m=k+2

1

(m− k − 1)(m− 1)
−

k∑
j=1

1

(k + 1− j)k

=
1

k

∞∑
m=k+2

(
1

m− k − 1
− 1

m− 1

)
− 1

k
hk

=
1

k
hk −

1

k
hk = 0

establishing (2.15).
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The harmonic descent chain

3 Proof of Proposition 2.1

3.1 Outline of proof

As noted in other discussions of the random tree model [2, 5], it is often more
convenient to work with the associated continuous time chain which holds in each state
i ≥ 2 for an Exponential(hi−1) time, in other words has transition rates

λ(j, i) = 1
j−i , 1 ≤ i < j <∞. (3.1)

We call this the continuous HD chain (Xt, 0 ≤ t < ∞). Switching to this continuous
time chain does not affect our stated definition of a(n, i), though of course the mean
occupation time in state i changes from a(n, i) to a(n, i)/hi−1. And switching does more
substantially change T1, the absorption time to state 1. As mentioned before, a detailed
study of absorption time distributions is given in [5], and we quote two results from
there.

Theorem 3.1 ([5, Theorem 1.1]).

In continuous time, Ex[T1] =
6
π2 log x+O(1) as x→∞. (3.2)

Lemma 3.2 (From [5, Corollary 1.3]). Let, for positive integers k,

Tk := min{t : Xt ≤ k}. (3.3)

Then, for any fixed k ≥ 1 and t ≥ 0, we have Px(Tk ≥ t)→ 1 as x→∞; in other words,

Tk
p−→∞.

Lemma 3.2 can in fact be obtained by a simple direct proof, given for completeness
in section 4.

So now we consider the continuous time setting. We will use a shift-coupling [10].
For our purpose, a shift-coupling ((Xt, Yt), 0 ≤ t <∞) started at (x0, y0) is a process such
that, conditional on Xt = xt, Yt = yt and the past, either
(i) over (t, t+ dt) each component moves according to λ(·, ·), maybe dependently; or
(ii) one component moves as above while the other remains unchanged.

Such a process must reach state (1, 1) and stop, at some time T(1,1) <∞. So the coupling
time is such that

T couple := min{t : Xt = Yt} ≤ T(1,1)

and we can arrange that Xt = Yt for t ≥ T couple. Write Scouple := XT couple = YT couple for
the coupling state. We will construct a shift-coupling in which, for each i ≥ 1,

Px0,y0(S
couple < i)→ 0 as x0, y0 →∞. (3.4)

This is clearly sufficient to prove the main “limits exist” part (2.1) of Proposition 2.1,
because |a(x0, i)− a(y0, i)| ≤ Px0,y0(S

couple < i).

In outline the construction is very simple. If the initial states x0 and y0 are not of
comparable size, then we run the chain only from the larger state (as in (ii) above) until
they are of comparable size; then at each time there is some non-vanishing probability
that we can couple at the next transition (as in (i) above).

The details are given via two lemmas below. By symmetry, it suffices to consider the
case x0 ≤ y0, and by considering subsequences we may assume that x0/y0 → a for some
a ∈ [0, 1]. First we consider the “comparable size starts” case a > 0, and then the case
a = 0. As in [2] and as suggested by (3.2) we analyze the processes on the log scale.
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The harmonic descent chain

3.2 The maximal coupling regime

In the maximal coupling regime, we construct the joint process ((Xt, Yt), 0 ≤ t <∞)

as follows. From (Xt, Yt) = (x, y) with x ≤ y, each component moves according to λ(·, )̇
but with the joint distribution that maximizes the probability that they move to the same
state. That joint distribution is such that, for infinitesimal dt,

Px,y(Xdt = Ydt = i) = Px,y(Ydt = i) =
dt

y − i
, 1 ≤ i < x.

So

Px,y(Xdt = Ydt) =

x−1∑
i=1

dt

y − i
≥ x− 1

y
.

Hence, for any c ∈ (0, 1), if c ≤ x/y ≤ 1, then

Px,y(Xdt = Ydt) ≥ (c− y−1)dt. (3.5)

Lemma 3.3. For the maximal coupling process, if y0 → ∞ and x0/y0 → a ∈ (0, 1] then
for each k we have Px0,y0(S

couple ≤ k)→ 0.

Proof. Write TYk := min{t : Yt ≤ k}, and note that {Scouple ≤ k} = {TYk ≤ T couple}.
Consider the process (Xt, Yt) using the maximal coupling with (X0, Y0) = (x0, y0), where
x0 ≤ y0. The coupling is stochastically monotone, so Xt ≤ Yt and the absorption times
into state 1 satisfy TX1 ≤ TY1 . By (3.2) we have

Ex0,y0 [T
Y
1 − TX1 ] =

6

π2
log

y0
x0

+O(1) (3.6)

where the O(1) bound is uniform in all x0, y0 ≥ 1.
Fix 0 < c < a ≤ 1. Consider the stopping time

Uc := min{t : Xt/Yt ≤ c}.

Fix also a large τ and let ` ≥ k. Then

Px0,y0(S
couple ≤ k) = Px0,y0(T

couple ≥ TYk ) ≤ Px0,y0(T
couple ≥ TY` )

≤ Px0,y0(Uc < TY` ) + Px0,y0(T
Y
` ≤ τ) + Px0,y0(T

couple ∧ Uc ∧ TY` > τ). (3.7)

We consider the three terms in (3.7) separately.
On the event {Uc < TY` } the conditional expectation of (TY1 −TX1 ) is at least 6

π2 log 1/c−
O(1) by (3.6) and conditioning on (XUc , YUc), noting that YUc/XUc ≥ 1/c. So by Markov’s
inequality and (3.6) again, there exists a constant C (not depending on a, c) such that,
provided log 1/c > C and y0 is large enough,

Px0,y0(Uc ≤ TY` ) ≤ log(y0/x0) +O(1)

log 1/c−O(1)
≤ log 1/a+ C

log 1/c− C
. (3.8)

This holds for any sufficiently small c > 0, and can be made arbitrarily small by choosing
c small.

As long as t < T couple ∧Uc ∧TY` , the coupling event happens at rate ≥ c− `−1 by (3.5),
so

Px0,y0(T
couple ∧ Uc ∧ TY` > τ) ≤ exp

(
(−c+ `−1)τ

)
, (3.9)

which for fixed c can be made arbitrarily small by choosing ` ≥ 2/c and τ large.
Finally, for fixed ` and τ , Px0,y0(T

Y
` ≤ τ)→ 0 as y0 →∞ by Lemma 3.2.

Consequently, (3.7) shows that Px0,y0(S
couple ≤ k)→ 0 as y0 →∞ and x0/y0 → a.
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3.3 The large discrepancy regime

Given Lemma 3.3, to establish (3.4) it remains only to consider the case x0/y0 → 0.
Here we first run the chain (Yt) starting from y0 � x0 while holding Xt = x0 fixed. The
next lemma shows that the (Yt) process does not overshoot x0 by far, on the log scale.

For x ≥ 1 write as above

TYx := min{t : Yt ≤ x}.

Let also

Vx := log x− log YTY
x

(the overshoot factor).

Lemma 3.4. There exists an absolute constant K such that

Ey[Vx] ≤ K, 1 ≤ x < y <∞.

Proof. Here we work in discrete time, which does not change Ey[Vx]. Consider a single
transition y → Y1. From the transition probabilities (1.1) we obtain the exact formula,
for any a > 0, and writing b = e−a ∈ (0, 1),

Py(log y − log Y1 ≥ a) = Py(Y1 ≤ e−ay) =
∑y−1
y−bbyc

1
i

hy−1
=
hy−1 − hy−bbyc−1

hy−1
. (3.10)

If, say, a ≥ 1 is fixed, then it follows by the formula

hn = log n+ γ + o(1) as n→∞ (3.11)

that as y →∞

Py(log y − log Y1 ≥ a)→
θ[a,∞)

log y
, (3.12)

where θ is the measure on (0,∞) defined by

θ[a,∞) := − log(1− e−a). (3.13)

We will show that the approximation (3.12) holds within some constant factors uniformly
for all y ≥ 2 and a ∈ [a1(y), a2(y)] where a1(y) := log y − log(y − 1) = − log(1 − 1/y)

and a2(y) := log y. (Note that for a ≤ a1(y), trivially Py(log y − log Y1 ≥ a) = 1, and for
a > a2(y), trivially Py(log y − log Y1 ≥ a) = 0.) That is, for some C1, C2 > 0,

C1
θ[a,∞)

log y
≤ Py(log y − log Y1 ≥ a) ≤ C2

θ[a,∞)

log y
, a ∈ [a1(y), a2(y)]. (3.14)

To verify (3.14), note first that by (3.11) we only have to estimate the numerator in (3.10).
We have ∫ y

y−bbyc

dx

x
≤

y−1∑
y−bbyc

1

i
≤
∫ y−1

y−bbyc

dx

x
+

1

y − bbyc
(3.15)

where b = e−a ∈ [e−a2(y), e−a1(y)] = [ 1y ,
y−1
y ], and it is easily seen that both sides of (3.15)

are within constant factors of − log(1− b) = θ[a,∞), thus showing (3.14).
The measure θ has the property∫∞

a
(u− a)θ(du)
θ[a,∞)

↑ 1 as a ↑ ∞, (3.16)

ECP 29 (2024), paper 77.
Page 7/10

https://www.imstat.org/ecp

https://doi.org/10.1214/24-ECP645
https://imstat.org/journals-and-publications/electronic-communications-in-probability/
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and thus the conditional mean excess over a is bounded above by 1. One can now use
(3.14) to see that there exists K <∞ such that the corresponding property holds for one
transition y → Y1 of the discrete chain on the log scale:

Ey[(log y − log Y1 − a)+] ≤ KPy(log y − log Y1 ≥ a). (3.17)

In fact, for a1(y) ≤ a ≤ a2(y), this follows immediately from (3.14), (3.16), and

Ey[(log y − log Y1 − a)+] =
∫ a2(y)

a

Py(log y − log Y1 > s)ds. (3.18)

For a < a1(y), (3.17) follows from the case a = a1(y), with the right side equal to K, and
for a > a2(y), both sides of (3.17) are 0.

Now fix x. For y ≥ x write

m(x, y) := max
x≤z≤y

Ez[Vx]

and note that m(x, x) = 0. If y > x, by considering the first step y → Y1, which goes
either into the interval [1, x] (probability qx,y say) or into the interval [x+ 1, y − 1]:

Ey[Vx] ≤ Ey[(log x− log Y1)
+] + Py(log x− log Y1 < 0)m(x, y − 1). (3.19)

By (3.17) with a = log y − log x

Ey[(log x− log Y1)
+] ≤ KPy(log x− log Y1 ≥ 0) = Kqx,y. (3.20)

Combining (3.19) and (3.20):

Ey[Vx] ≤ Kqx,y + (1− qx,y)m(x, y − 1) (3.21)

and so the bound m(x, y) ≤ K holds by induction on y = x, x+ 1, x+ 2, . . ..

3.4 Completing the proof of Proposition 2.1

As noted at the start of the previous section, given Lemma 3.3, to show (3.4), it
remains only to consider the case x0/y0 → 0. Use the shift regime dynamics (x0, Yt) in
section 3.3 from Y0 = y0 until time

TYx0
:= min{t : Yt ≤ x0},

and then use the maximal coupling in section 3.2. Lemma 3.4 shows that the overshoot
factor of the first phase

Vx0
:= log x0 − log YTY

x0

has Ey0 [Vx0
] ≤ K. Hence the overshoot factors are tight, and by considering a subse-

quence we may assume that Vx0
converges in distribution to some random variable V .

For convenience, we may also by the Skorohod coupling theorem [9, Theorem 4.30]
assume that Vx0

converges to V almost surely, and thus

x0/YTY
x0

a.s.−→ eV > 0. (3.22)

This allows us to condition on YTx0
and apply Lemma 3.3 (with X and Y interchanged)

with starting state (x0, YTx0
). Hence, for every fixed k, we have

Px0,y0

(
Scouple ≤ k | YTx0

)
→ 0 a.s. (3.23)
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The harmonic descent chain

and thus (3.4) follows by taking the expectation. As noted after (3.4), this completes the
proof of the main “limits exist” part (2.1) of Proposition 2.1. To complete the proof of
Proposition 2.1, and by section 2 thus also the proof of Theorem 1.1, we need to verify
(2.2), that is

a(i) =
∑
j>i

a(j)p(j, i), i ≥ 1. (3.24)

From the pointwise convergence a(n, j)→ a(j), Fatou’s lemma gives∑
j>i

a(j)p(j, i) ≤ lim inf
n

∑
j>i

a(n, j)p(j, i)

= lim
n
a(n, i) = a(i).

To prove equality we need to show that, for every fixed i,

lim
L→∞

lim inf
n

∑
j>L

a(n, j)p(j, i) = 0. (3.25)

This is an easy consequence of the overshoot bound, as follows. Assume, as we may,
L > i. The sum above is the probability, starting at n, that the first entrance into
{L,L− 1, L− 2, . . .} is at i, which is bounded by the probability that first entrance is in
{i, i− 1, i− 2, . . .}. The latter, in the notation of Lemma 3.4, is just Pn(VL ≥ logL− log i).
By Markov’s inequality and Lemma 3.4

∑
j>L

a(n, j)p(j, i) ≤ K

logL− log i

implying (3.25).

4 Direct proof of Lemma 3.2

Let Zt := X
−1/2
t . Then (3.1) implies that for an infinitesimal time dt, we have

Ex[Zdt]− x−1/2 = dt
∑

1≤i<x

λ(x, i)

(
1√
i
− 1√

x

)
= dt

∑
1≤i<x

√
x−
√
i

(x− i)
√
i
√
x

= dt
∑

1≤i<x

1

(
√
x+
√
i)
√
i
√
x
≤ dt

x

∑
1≤i<x

1√
i

≤ dt

x

∫ x

0

1
√
y
dy = 2

dt√
x
= 2Z0dt. (4.1)

Hence, by the Markov property,

d

dt
Ex[Zt] ≤ 2Ex[Zt], t ≥ 0, (4.2)

and consequently,

Ex[Zt] ≤ e2tZ0 = e2tx−1/2, t ≥ 0. (4.3)

Finally, Markov’s inequality yields

Px(Tk ≤ t) = Px(Xt ≤ k) = Px(Zt ≥ k−1/2) ≤ e2t
√
k/x. (4.4)
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