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Abstract

Cyclic monotone independence is an algebraic notion of non-commutative indepen-
dence, introduced in the study of multi-matrix random matrix models with small rank.
Its algebraic form turns out to be surprisingly close to monotone independence, which
is why it was named cyclic monotone independence. This paper conceptualizes this
notion by showing that the same random matrix model is also a model for the mono-
tone independence with an appropriately chosen state. This observation provides a
unified nonrandom matrix model for both types of monotone independences.
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1 Introduction

Monotone independence was introduced by Muraki [13], and Lu [12] in the context
of non-commutative probability theory. Later on, Muraki [13, 14, 15, 16], Hasebe [6, 7]
and Hasebe and Saigo [10] developed monotone probability theory, which is a non-
commutative probability theory with monotone independence, inspired by Voiculesu’s
free probability theory and Speicher’s universal products [20]. The construction of
non-commutative probability spaces which realize monotone independence was achieved
with the help of Fock spaces and universal products. This theory triggered substantial
interest because monotone independence connects different subjects. For example,
Accardi, Ghorbal, and Obata [1] realized monotone independence via the spectral
analysis of the comb graph. Schleissinger [18] found a relation between monotone
independence and SLE theory. The relation between Löewner chains and monotone
probability theory is developing rapidly [8, 5]. On the other hand, there was no matrix
model for cyclic monotone independence, and only random models in specific cases for
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monotone independence – see Theorem 7.1 in [11]. The goal of this paper is to provide
such a model.

Recently, motivated by the study of outliers in random matrix theory, Collins, Hasebe
and Sakuma found in [3] cyclic monotone independence. One cannot observe outliers
from the empirical eigenvalue distributions of random matrices, but can from their
operator norm. To overcome this problem from the point of view of eigenvalue distribu-
tions, they proposed considering non-commutative probability spaces with a weight. The
weight corresponds to the non-normalized trace. Computations of moments evidenced
the notion of cyclic monotone independence – a rule to compute joint moments that is
quite similar to monotone independence, with the additional property that it conserves
traciality. This similarity was left as a curiosity to explore. However, it raised the natural
question of the relation between both notions and the existence of a unified model for
both independences.

This paper is organized as follows. In Section 2, we recall the notions of monotone and
cyclic monotone independences, and then state and prove a theoretical result about the
structure of the free product algebra quotiented by the monotone (resp. cyclic monotone)
free product state (Theorem 2.7). In Section 3, we apply the result and provide a unified
matrix model for monotone (resp. cyclic monotone) variables. After that, we discuss
random matrix models for monotone and cyclic monotone independences.

2 Notation and abstract result

Let us first review basic notations for monotone and cyclic monotone independences.
For details, see [3]. A non-commutative measure space is a pair (A, ω), where A is a
(unital or non-unital) ∗-algebra over C endowed with a weight ω, i.e.

• ω is defined on a (possibly non-unital) ∗-subalgebra D(ω) of A and ω : D(ω)→ C is
linear,

• ω is positive, i.e. ω(a∗a) ≥ 0 for every a ∈ D(ω),
• ω is respects the involution, i.e. ω(a∗) = ω(a) for all a ∈ D(ω).

Additionally, if ω is tracial, i.e. ω(ab) = ω(ba) for all a, b ∈ D(ω), we call ω a tracial weight.
If A is unital, D(ω) = A and ω(1A) = 1 then we call (A, ω) a non-commutative probability
space and ω is called a state. Moreover if (A, ω) is non-commutative measure space and
in addition (A, τ) is a non-commutative probability space, we call the triple (A, ω, τ) a
non-commutative probability space with a weight ω and a state τ .

Let (A, ω) be a non-commutative measure space and let a1, . . . , ak ∈ D(ω). The
non-commutative distribution of (a1, . . . , ak) is the family of (mixed) moments

{ω(aε1i1 . . . a
εp
ip

) : p ≥ 1, 1 ≤ i1, . . . , ip ≤ k, (ε1, . . . , εp) ∈ {1, ∗}p}.

Given non-commutative measure spaces (A, ω), (B, ξ) and elements a1, . . . , ak ∈ D(ω),
b1, . . . , bk ∈ D(ξ), we say that (a1, . . . , ak) has the same distribution as (b1, . . . , bk) if

ω(aε1i1 · · · a
εp
ip

) = ξ(bε1i1 · · · b
εp
ip

) (2.1)

for any choice of p ∈ N, 1 ≤ i1, . . . , ip ≤ k and (ε1, . . . , εp) ∈ {1, ∗}p.
Let (C, ω, τ) be a non-commutative probability space with a weight ω (or ω̃). Let A, B

be ∗-subalgebras of C such that 1C ∈ B. Let IdealB(A) be the ideal generated by A over
B. More precisely,

IdealB(A) := span{b0a1b1 · · · anbn : n ∈ N, a1, . . . , an ∈ A, b0, . . . , bn ∈ B},

which is a ∗-subalgebra of C containing A. Note IdealB(A) is not necessarily an ideal in C
but in A ∗ B.

We start with the definition of monotone independence.
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Definition 2.1. Let (C, ω̃, τ) non-commutative probability space with a weight ω̃ and A,
B ⊆ C be ∗-subalgebras.

(1) We say that the pair (A,B) is monotonically independent or simply monotone with
respect to (ω̃, τ) if

• IdealB(A) ⊂ D(ω̃);
• for any n ∈ N, a1, . . . , an ∈ A and any b0, . . . , bn ∈ B, we have that

ω̃(b0a1b1a2b2 · · · anbn) = ω̃(a1a2 · · · an)τ(b0)τ(b1)τ(b2) · · · τ(bn),

(2) Given a1, . . . , ak ∈ D(ω̃) and b1, . . . , b` ∈ C, the pair ({a1, . . . , ak}, {b1, . . . , b`}) is mono-
tone if (alg{a1, . . . , ak}, alg{1C , b1, . . . , b`}) is monotone. Note that we do not assume
that alg{a1, . . . , ak} contains the unit of C.

Remark 2.2. Note that for the monotone case ω is not tracial. In fact, monotone product
of tracial states is not tracial in general.

Next, we recall the definition of cyclic monotone independence.

Definition 2.3. Let (C, ω, τ) be a non-commutative probability space with a tracial weight
ω and A,B ⊆ C be ∗-subalgebras.

(1) We say that the pair (A,B) is cyclic monotonically independent or simply cyclic
monotone with respect to (ω, τ) if

• IdealB(A) ⊂ D(ω);
• for any n ∈ N, a1, . . . , an ∈ A and any b0, . . . , bn ∈ B, we have that

ω(b0a1b1a2b2 · · · anbn) = ω(a1a2 · · · an)τ(b1)τ(b2) · · · τ(bnb0).

(2) Given a1, . . . , ak ∈ D(ω) and b1, . . . , b` ∈ C, the pair ({a1, . . . , ak}, {b1, . . . , b`}) is cyclic
monotone if (alg{a1, . . . , ak}, alg{1C , b1, . . . , b`}) is cyclic monotone. As in the previous
definition, we do not assume that alg{a1, . . . , ak} contains the unit of C.

If (A, ω0) be a (non-unital) measure space with a tracial weight ω0 and (B, τ) a non-
commutative probability space with a tracial state τ then there is a natural way to
construct a non-commutative probability space with a tracial weight such that (A,B) is
cyclic monotone.

Definition 2.4. Let (A, ω0) be a (non-unital) measure space with a tracial weight ω0

and (B, τ) a non-commutative probability space with a tracial state τ . We consider the
algebraic free product A ∗ B and the unit 1B identified with C1A∗B. More precisely if
B = C1B ⊕ B̊ is a direct sum decomposition then

A ∗ B = C1A∗B ⊕ B̊ ⊕ A⊕ (A⊗ B̊)⊕ (B̊ ⊗ A)⊕ (A⊗ B̊ ⊗ A) . . .

Then the cyclic monotone product ω0 D τ of ω and τ is defined by

D(ω0 D τ) := D(ω0)⊕ (D(ω0)⊗ B̊)⊕ (B̊ ⊗D(ω0))⊕ (D(ω0)⊗ B̊ ⊗D(ω0)) . . . ,

ω0 D τ(b0a1b1 . . . anbn) := ω0(a1 . . . an)τ(b1) . . . τ(bn−1)τ(bnb0).

It is positive and tracial, and then (A ∗ B, ω0 D τ) is a non-commutative measure space
such that (D(ω0),B) are cyclic monotone in (A∗B, ω0 D τ, τ̃), where τ̃ is the free product
of the zero map on A and tracial state τ on B. So τ̃ is a tracial state on A ∗ B.

Remark 2.5. 1. The construction of A ∗ B is similar to the free product construction
of non-commutative probability spaces (see [17]), though here one needs to take
into account that A is not unital and ω0 may not be defined on all of A.
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2. There is analogous construction for monotone independence. It is denoted by .
instead of D, see Definition 2.3 on page 341 in [16] for details. The details of the
cyclic monotone case can be found in page 1122 in [3].

Let us motivate our main result of the section by the following calculation.
Let (A, ω0) be a (non-unital) measure space with a tracial weight ω0, (B, τ) a non-

commutative probability space with a tracial state τ and consider the monotone and
cyclic monotone product constructions of in Definition 2.4 and Remark 2.5, where we
take B̊ := ker τ . Thus we have the decomposition

B = C1B ⊕ B̊ = C1B ⊕ ker(τ).

i.e. for any given b ∈ B there exists b̊ ∈ B̊ such that b = b̊+τ(b)1B. Following Definition 2.4
we define

ω := ω0 D τ : D(ω)→ C, ω̃ := ω0 . τ : D(ω̃)→ C,

i.e., the cyclic monotone product and the monotone product of ω0 and τ . Note that D(ω)

does not have any elements in B. Then any element of D(ω) can be written as

b0a1b1 . . . anbn ∈ D(ω),

where n ≥ 1, aj ∈ D(ω0) and bj ∈ B̊ with the exception of b0, bn which may be equal
to 1B if the word begins resp. ends with an element of D(ω). Let us explore how this
decomposition interacts with the tracial weight ω and the weight ω̃, and compute some
easy examples. Let 0 6= a = a∗ ∈ D(ω0) and 0 6= b = b∗ ∈ B, then we have

ω(ab) = ω(ba) = ω(aτ(b)1 + åb) = τ(b)ω(a).

For words of length 3 we have

ω(aba) = ω(a2)τ(b) + ω(a2)τ (̊b) = ω(a2)τ(b)

ω(bab) = ω(a)τ(b2).

Moreover consider

ω(abab) = ω(a(̊b+ τ(b)1)a(̊b+ τ(b)1))

= ω0(a2)τ (̊b)2 + 2τ(b)ω0(a2)τ (̊b) + τ(b)2ω0(a2) = τ(b)2ω0(a2).

Now if b ∈ B̊, then all of these expressions vanish besides the word bab. This illustrates
that the only expressions that do not vanish are words that do not have an element
b ∈ B̊ enclosed by elements of D(ω0). We collect the results of the computations in the
following table, where ∗ denotes values which may differ from 0. On the other hand, we

Table 1: Values of monomials evaluated in ω/ω̃

m a1 a1̊b1 b̊1a1 b̊1a1̊b2 others monomials
ω(m) ∗ 0 0 ∗ 0
ω̃(m) ∗ 0 0 0 0

can compute

ω(baab) = ω(abba) = ω(a(̊b+ τ(b)1)(̊b+ τ(b)1)a)
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= ω0(a2)τ (̊b2) + τ(b)2ω0(a2)

and if τ(b) = 0 i.e. b = b̊ then ω(abba) = ω0(a2)τ (̊b2) ≥ 0. The latter is an example on how
such a non vanishing term may be produced by a product of monomials, here ab · ba.
There are only a few of these instances where a product of two monomials may not
vanish, we capture the whole picture in the following tables. The first column and row
consist of monomials m1,m2 alternating in elements bj ∈ B̊, aj ∈ D(ω0) whereas the 0

and ∗ denote whether ω(m1 ·m2) (respectively ω̃(m1 ·m2)) is zero or might be different
from 0 (again denoted by an ∗).

Table 2: Values of ω of monomial products, i.e. ω(m1m2)

m1\m2 a1 a1̊b1 b̊1a1 b̊2a1̊b2 others
a2 ∗ 0 0 0 0

a2̊b3 0 0 ∗ 0 0

b̊3a2 0 ∗ 0 0 0

b̊3a2̊b4 0 0 0 ∗ 0
others 0 0 0 0 0

Table 3: Values of ω̃ of monomial products, i.e. ω̃(m1m2)

m1\m2 a1 a1̊b1 b̊1a1 b̊2a1̊b2 others
a2 ∗ 0 0 0 0

a2̊b3 0 0 ∗ 0 0

b̊3a2 0 0 0 0 0

b̊3a2̊b4 0 0 0 0 0
others 0 0 0 0 0

This shows that only a certain part of D(ω) is not in the kernel of ω. The main theorem
of this section describes this observation. We introduce more notation and then state
the theorem. First, we define I and J through the following equations:

I := D(ω0)⊕ (D(ω0)⊗ B̊)⊕ (B̊ ⊗D(ω0))⊕ (B̊ ⊗D(ω0)⊗ B̊)⊕ (D(ω0)⊗ B̊ ⊗D(ω0))⊕ · · ·︸ ︷︷ ︸
J

J := (D(ω0)⊗ B̊ ⊗D(ω0))⊕ · · ·

Namely, J is the sum of all tensor products with at least three legs and at least two
D(ω0)’s, so that, in particular:

I = D(ω0)⊕ (D(ω0)⊗ B̊)⊕ (B̊ ⊗D(ω0))⊕ (B̊ ⊗D(ω0)⊗ B̊)⊕ J.

Then we have the following

Lemma 2.6. J is an ideal in I.

Proof. The fact that J is closed under linear operations is clear. The elements of J are
linear combinations of words in alternating elements of D(ω0) and B̊ of length bigger
than 2 and having at least two a’s. Thus let n > 1, x := b0a1b1a2 . . . anbn ∈ J , where
b0, bn may be 1B in case the word begins or ends on an a. and similarly let m ≥ 1 such
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that y := b̃0ã1b̃1 . . . ãmb̃m ∈ I where we allow b̃0, b̃n = 1B. We write b = bnb̃0, then we can
decompose b = τ(b)1 + b̊ ∈ 1⊕ B̊ and hence

xy = b0a1b1a2 . . . an (bnb̃0)︸ ︷︷ ︸
b

ã1b̃1 . . . ãmb̃m

= τ(b)b0a1b1a2 . . . anã1b̃1 . . . ãm + b0a1b1a2 . . . an̊bã1b̃1 . . . ãmb̃m

Both summands are alternating products of length bigger than 2 i.e. elements of J . Note
this is due to the fact that A is non-unital, i.e. does not contain any invertible elements
and A and B have no algebraic relations i.e. the products cannot be reduced.

Let us introduce more notation: Let H be arbitrary vector space, we denote by
Endfin(H) the collection of finite rank endomorphisms on H. As a vector space, it is
canonically isomorphic to H∗ ⊗H. We are particularly interested in the case of H = B.
In this case, H∗ ⊗H becomes Endfin(B). Note we also have the embedding

B ⊗ B → Endfin(B), b1 ⊗ b2 7→ (x 7→ b1τ(b2x))

We define ψτ on Endfin(B) as the linear extension of

ψτ (h∗1 ⊗ h2) = h∗1(1)τ(h2).

Intuitively, it is the upper left coefficient of the matrix of the endomorphism. The map ψτ
is defined on Endfin(B) and via the embedding of B ⊗ B → Endfin(B) we can evaluate it
in elements of B ⊗ B. Note that ψτ depends on the state τ ; however, we will omit this
dependence in the notation and write ψ. Finally we can state the theorem.

Theorem 2.7. The weights ω and ω̃ vanish on the ideal J , and we have a canonical map

χ : I → I/J ∼= B ⊗ B ⊗D(ω0),

which satisfies the following two properties:

ω = ω0 ⊗ Tr ◦ χ,

where Tr is given by Tr(b1 ⊗ b2) = τ(b1b2) and

ω̃ = ω0 ⊗ ψ ◦ χ.

Proof. First note that D(ω) = D(ω̃) = I. We need to show that J annihilates ω and ω̃.
Take a monomial b0a1b1 . . . anbn = x ∈ J , where n > 1, then as we have seen in the
discussion above an enclosed element b ∈ B̊ will annihilate ω,

ω(x) = ω(b0a1b1 . . . anbn) = ω(a1 . . . an)τ(b0) τ(b1)︸ ︷︷ ︸
=0

. . . τ(bn) = 0,

thus J is an ideal contained in the kernel of ω and we have

I/J = D(ω0)⊕ (D(ω0)⊗ B̊)⊕ (D(ω0)⊗ B̊)⊕ (B̊ ⊗D(ω0)⊗ B̊),

the isomorphisms in the theorem are given by the identification

D(ω0) ∼= 1B ⊗D(ω0)⊗ 1B ,D(ω0)⊗ B̊ ∼= 1B ⊗D(ω0)⊗ B̊, B̊ ⊗D(ω0) ∼= B̊ ⊗D(ω0)⊗ 1B .

Hence ω factorized over I/J and by definition ω0 ⊗ Tr(y) = ω(y) for every element in
I/J ∼= B ⊗ B ⊗D(ω0), i.e. it must be the unique map that satisfies ω0 ⊗ Tr ◦ χ. A similar
calculation shows the result for ω̃.

Remark 2.8. This result is the abstract version of the matrix model in the next section.
Note that there we have a large but finite n model such that we actually have an isomor-
phism of B ∼= B∗ which means that B ⊗ B ⊗ D(ω0) from the main result is isomorphic
to Endfin(B) ⊗ D(ω0). And indeed the elements in section 3 will be endomorphisms in
Mn(C)⊗M2q (C).
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3 Matrix model

This section is an application of the result of the previous section: it exhibits a matrix
model for monotone independence and cyclic monotone independence. Basically, this is
a concrete version of the above abstract result.

3.1 Setup

Let us denote by M∞(C) the inductive limit given by the non-unital embeddings
Mn(C) into Mm(C) for n < m

fn,m : Mn(C)→Mm(C), a 7→
(
a 0

0 0

)
, (3.1)

i.e. we are plugging a ∈ Mn(C) into the left upper corner and padding it by zeros.
Note that these embeddings are compatible with the non-normalized traces on Trn on
Mn(C), i.e. Trm ◦ fn,m = Trn. This induces the trace Tr on M∞(C). Given any collection
of elements a1, . . . , ap ∈ M∞(C), we may always choose n ∈ N big enough such that
ai ∈Mn(C), i.e. in an upper corner of size n of M∞(C).

From now on let (C, ω, τ) be a non-commutative probability space with a tracial weight
ω and a tracial state τ , where A, B are ∗-subalgebras of C and C = A∗B. We also assume
that A = M∞(C). Moreover we consider the following setup:

• a1, . . . , ap ∈ A are self-adjoint;

• τ(a) = 0 for all a ∈ A;

• b0 = 1;

• b1, . . . , bq ∈ B are self-adjoint, τ(bi) = 0 and τ(b2i ) = 1 for any i = 1, 2, . . . q, and
bi⊥bj , that is, τ(bibj) = 0 if i 6= j.

Roughly speaking τ measures elements in B, which we consider as large elements and
τ(a) is 0 for all a ∈ A which we consider as small elements.

Remark 3.1. There is no loss in making these assumptions on bi because we can
simultaneously take their real and imaginary parts if they are not self-adjoint. As for
orthogonality, we can subsequently make a Gram-Schmidt orthogonalization to ensure
that this property is satisfied too.

We consider a linear combination of words in a1, . . . ap, b1, . . . bq with the property that
each word non-trivially involved in the linear combination has a non-zero valuation in at
least one of the ai’s. Such a linear combination can be written as

P := P (a1, . . . , ap, b0, . . . , bq) =

q∑
i1,i2=0

p∑
j1=1

λi1,i2,j1bi1aj1bi2 + · · · , (3.2)

where P can be viewed as a non-commuting polynomial in p + q variables and “· · · ”
stands for a sum of alternating monomials in ai, bj with at least two a’s.

In the following we model the polynomial, we denote by In ∈ Mn(C) the identity
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matrix. Then we consider the operator b̃j,n ∈Mn(C)⊗M2q (C), j = 0, 1, . . . q, defined by

b̃0,n = In ⊗ I2q =: In ⊗B0

b̃1,n = In ⊗ J ⊗ I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
=:B1, q terms

b̃2,n = In ⊗ I2 ⊗ J ⊗ · · · ⊗ I2︸ ︷︷ ︸
=:B2, q terms

...

b̃q,n = In ⊗ I2 ⊗ · · · ⊗ I2 ⊗ J︸ ︷︷ ︸
=:Bq, q terms

,

(3.3)

where J =

(
0 1

1 0

)
. The tensor model for P in Mn(C)⊗M2q (C) is the matrix

P̃ := P̃ (a1, . . . , ap, b̃0,n, . . . b̃q,n) =
∑

i1,i2,j1

λi1,i2,j1 b̃i1,n · φ(aj1) · b̃i2,n,

where

E11 =

(
1 0

0 0

)
and φ(a) := a⊗ E⊗q11 =

a 0 . . . 0

0 0 . . . 0

0 0 . . . 0

 ∈Mn(C)⊗M2q (C)

and we assumed n ∈ N large enough to fit ai ∈ Mn(C) as described earlier. Here for
simplicity, we do not write P̃ (φ(a1), . . . , φ(ap), b̃0,n, . . . , b̃q,n) but P̃ (a1, . . . , ap, b̃0,n, . . . b̃q,n).

We aim to prove that noncommutative distribution of (a1, . . . , ap, b0, . . . , bq) under the
tracial weight ω is same as noncommutative distribution of (φ(a1), . . . , φ(ap), b̃0,n, . . . , b̃q,n).
To do it, we shall see that the moments of P equal with the moments of P ′.

3.2 A tensor model for cyclic monotone independence

Now, we assume that the pair (A,B) is cyclic monotone with respect to (ω, τ). Then
the moments of P under ω can be obtained from the tensor model P̃ in the following
sense.

Theorem 3.2. We have

ω(P (a1, . . . , ap, b0, . . . , bq)
k) = Trn ⊗ Tr⊗q2 (P̃ (a1, . . . , ap, b̃0,n, . . . , b̃q,n)k)

for all n ∈ N.

Proof. Let us start by computing the k-moment of P . Recall that by Theorem 2.7, only
the terms containing one a contribute to the calculation. We can ignore higher moments.
So its computation will be quite simple.

ω(P k) = ω


 q∑
i1,i2=0

p∑
j1=1

λi1,i2,j1bi1aj1bi2 + · · ·

k


=

q∑
i1,i2,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
ω(bi1aj1bi2 . . . bi2k−1

ajkbi2k)

=

q∑
i1,i2,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
ω(aj1 . . . ajk)τ(bi2kbi1) . . . τ(bi2k−2

bi2k−1
)
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=

q∑
i1,i2,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
ω(aj1 . . . ajk)δi2k,i1δi2,i3 . . . δi2k−2,i2k−1

=

q∑
i1,i3,...,i2k−1=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r+1,jr

)
ω(aj1 . . . ajk).

We show that it is equal to Trn ⊗ Tr⊗q2 (P̃ (a1, . . . , ap, b̃0,n, . . . , b̃q,n)k). We have

Tr⊗q2 (Bi1E
⊗q
11 Bi2 . . . Bi2k−1

E⊗q11 Bi2k) =

{
1 i2k = i1, . . . , i2k−2 = i2k−1

0 otherwise

from JE11J =

(
0 0

0 1

)
and E11JE11 = 0. Here are examples in the q = 2 case:

Tr⊗22 (B1E
⊗2
11 B2B2E

⊗2
11 B1) = 1,

Tr⊗22 (B1E
⊗2
11 B2B1E

⊗2
11 B2) = 0.

Thus, its computation will be quite straightforward again and we obtain

Trn ⊗ Tr⊗q2 (P̃ (a1, . . . , ap, b̃0,n, . . . , b̃q,n)k)

=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
Trn(aj1 . . . ajk)Tr⊗q2 (Bi1E

⊗q
11 Bi2 . . . Bi2k−1

E⊗q11 Bi2k)

=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
Trn(aj1 . . . ajk)δi2k,i1δi2,i3 . . . δi2k−2,i2k−1

=

q∑
i1,i3,...,i2k−1=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r+1,jr

)
Trn(aj1 . . . ajk)

=

q∑
i1,i3,...,i2k−1=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r+1,jr

)
ω(aj1 . . . ajk).

Recall that we have Trn(aj1 . . . ajk) = ω(aj1 . . . ajk), which concludes the proof.

3.3 A tensor model for monotone independence

As it follows from the main theorem, we can also treat monotone independence with
the very same model, provided that we modify the weight. Let us assume that the pair
(A,B) is monotone independent with respect to (ω̃, τ).

Theorem 3.3. Let η(B) = B11 for B = (Bij)ij ∈M2(C). Then we have

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k) = Trn ⊗ η⊗q(P̃ (a1, . . . , ap, b̃0,n, . . . , b̃q,n)k).

for all n ∈ N.

Note that Trn ⊗ η⊗q is a non-tracial weight.

Proof. First, note that similar to the cyclic monotone case, we may omit all terms
containing at least two a’s. By monotone independence, we have for the remaining
terms:

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k))
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=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
ω̃(aj1 . . . ajk)τ(bi2k)τ(bi1)τ(bi2bi3) . . . τ(bi2k−2

bi2k−1
)

=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
ω̃(aj1 . . . ajk)δi2k,0δi1,0δi2,i3 . . . δi2k−2,i2k−1

=

q∑
i2,i4,...,i2k−2=0

p∑
j1,...,jk=1

λ0,i2,j1

(
k−1∏
r=2

λi2r−2,i2r,jr

)
λi2k−2,0,jk ω̃(aj1 . . . ajk).

On the other hand, since η(JE11J) = 0, we obtain

Trn ⊗ η⊗q(P̃ k)

=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
Trn(aj1 . . . ajk)η⊗q(Bi1E

⊗q
11 Bi2 · · ·Bi2k−1

E⊗q11 Bi2k)

=

q∑
i1,...,i2k=0

p∑
j1,...,jk=1

(
k∏
r=1

λi2r−1,i2r,jr

)
Trn(aj1 . . . ajk)δi10δi2i3 . . . δi2k−2i2k−1

δi2k0

=

q∑
i2,i4,...,i2k−2=0

p∑
j1,...,jk=1

λ0,i2,j1

(
k−1∏
r=2

λi2r−2,i2r,jr

)
λi2k−2,0,jk ω̃(aj1 . . . ajk).

3.4 Replacing tensors by limit swaps

This subsection is a simple observation: the previous proofs rely on the same model
that relies on tensors and considers two different states – one for monotone cyclic
independence, and one for monotone independence. Here, we show that in a context of
a sequence of matrix models, we can avoid resorting to tensors.

Let us first recall that we are interested in polynomials P̃n ∈ Mn(C)⊗M2(C)⊗q. In
addition, P̃n depends tacitly on n, q and is well defined for any q, n large enough via the
embedding described in Equation (3.1). Likewise, with the same embedding, we will
freely view P̃n (as a double sequence in n, q) as elements of M∞(C). In the sequel of this
paper, we denote by ηl the function

A = M∞(C)→ C, x 7→
l∑

k=0

xkk.

This is sometimes called a partial trace, e.g. in the context of Horn inequalities (although
it is not the partial trace of quantum information theory). We have

Theorem 3.4. The following holds true

ω(P k) = lim
n→∞

lim
l→∞

ηl(P̃
k
n ),

i.e. convergence to the cyclic monotone independent moments and

ω̃(P k) = lim
l→∞

lim
n→∞

ηl(P̃
k
n ),

i.e. convergence to the monotone independent moments.

Proof. First, recall that we have

ω(P (a1, . . . , ap, b0, . . . , bq)
k) = Tr(P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k)
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by Theorem 3.2. Note that the right hand side has a dependency on the size n that can
be easily removed by letting n → ∞ (taking n large enough is sufficient in the proof),
and we get

ω(P (a1, . . . , ap, b0, . . . , bq)
k) = lim

n→∞
Tr(P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k)

which proves the first claim.
On the other hand we note Tr = liml→∞ ηl, and therefore we get

ω(P (a1, . . . , ap, b0, . . . , bq)
k) = lim

n→∞
lim
l→∞

ηl(P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k)

Likewise, Theorem 3.3 gives

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k) = lim

n→∞
Tr(fn,2qn(In)P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k).

Rewriting it as

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k) = Tr( lim

n→∞
fn,2qn(In)P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k),

we get

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k) = lim

l→∞
ηl( lim

n→∞
fn,2qn(In)P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k),

but clearly, for n ≥ l, we have ηl(fn,2qn(In)P ) = ηl(P ) and therefore

ω̃(P (a1, . . . , ap, b0, . . . , bq)
k) = lim

l→∞
ηl( lim

n→∞
P̃n(a1, . . . , ap, b̃0,n, . . . , b̃q,n)k),

which concludes the proof.

3.5 Example

Let us illustrate our result with an example. We consider a non-commutative prob-
ability space (C, ω, τ) with a tracial weight ω, finite rank operator a ∈ D(ω) with the
eigenvalues (2−1, 2−2, 2−3) and a operator b ∈ B with τ(b) = 0 and τ(b2) = 1. We, in
addition, assume that the operators a and b are cyclic monotone independent.

From our result we can give the following matrix model A and B for a and b:

A = diag(2−1, 2−2, 2−3)⊗ E11 =



1
2 0 0 0 0 0

0 1
4 0 0 0 0

0 0 1
8 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

 ,

B = I3 ⊗ J =



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

 .

We consider X = A+BAB and Y = AB +BA:

X =



1
2 0 0 0 0 0

0 1
4 0 0 0 0

0 0 1
8 0 0 0

0 0 0 1
2 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
8

 , Y =



0 0 0 1
2 0 0

0 0 0 0 1
4 0

0 0 0 0 0 1
8

1
2 0 0 0 0 0

0 1
4 0 0 0 0

0 0 1
8 0 0 0
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The lists of eigenvalues X and Y are

{2−1, 2−1, 2−2, 2−2, 2−3, 2−3}

and
{2−1,−2−1, 2−2,−2−2, 2−3,−2−3},

respectively. They correspond with the eigenvalues of a+ bab and ab+ ba, respectively.

3.6 Random matrix models and concluding remarks

This paper presents a matrix model for monotone and cyclic monotone independences,
which is not random. In free probability, there exist random matrix models which have
few symmetries [19], but symmetric random matrix models are much more common.
Therefore, it is natural to wonder whether there is a random model in the case of
monotone and cyclic monotone independences. This turns out to be the case, and we
can easily show that the model introduced by Collins, Hasebe and Sakuma in [3] is also a
model for monotone independence, provided that we consider liml limn ηl as our limiting
weight.

Theorem 3.5. Let A(n)
1 , . . . , A

(n)
p , B

(n)
1 , . . . , B

(n)
q ∈Mn(C) be matrices such that there is

C > 0 such that for any m ∈ N, i1, . . . , im ∈ {1, . . . , p} and j0, j1, . . . , jm ∈ {1, . . . , q} we
have

|Tr(A(n)
i1

. . . A
(n)
im

)| ≤ C

and
|tr(B(n)

j0
. . . B

(n)
jm

)| ≤ C.

Moreover let U = U(n) be a Haar unitary random matrix. Then, if

lim
l→∞

lim
n→∞

ηl(A
(n)
i1

. . . A
(n)
im

)tr(B
(n)
j0

) . . . tr(B
(n)
jm

)

exists, it implies that

lim
l→∞

lim
n→∞

ηl(UB
(n)
j0
U∗A

(n)
i1
UB

(n)
j1
U∗ . . . A

(n)
im
UB

(n)
jm
U∗))

exists too, and that they are both equal.

Proof. It follows from a standard computation using Weingarten calculus (see for details
Section 4 in [4]) that

EU (tr(UB
(n)
j0
U∗A

(n)
i1
UB

(n)
j1
U∗ . . . A

(n)
im
UB

(n)
jm
U∗))

=
∑

π∈NC(m)

Kπ(A
(n)
i1
, . . . , A

(n)
im

)Kπc(B
(n)
i0
, . . . , B

(n)
im

) +O(n−2),

where NC(m) are the non-crossing partitions on m elements, Kπ are Speicher’s free
cumulants, and πc is Kreweras’s complement (specifically, the largest partition on
{0, . . . ,m} such that its concatenation with π respecting the alternating order remains
non-crossing. See Section 9, 11 and 14 in [17] for definitions and details of these.
Dividing both sides by n and observing that

Kπ(A
(n)
i1
, . . . , A

(n)
im

) = n−1(δ1,#block(π)Tr(A
(n)
i1

. . . A
(n)
im

)) +O(n−1)), we get

EU |Tr(UB(n)
j0
U∗A

(n)
i1
UB

(n)
j1
U∗ . . . A

(n)
im
UB

(n)
jm
U∗)

− Tr(A
(n)
i1

. . . A
(n)
i1

)tr(B
(n)
j0

) . . . tr(B
(n)
jm

)| = O(n−1).

It is similar with (4.15) in [3].
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For l ≤ n, recall fl,n(Il) is the matrix whose first l diagonal entries are 1 and all other
entries in Mn(C) are zero, the above formula implies

EU |Tr(fl,n(Il)UB
(n)
j0
U∗A

(n)
i1
UB

(n)
j1
U∗ . . . A

(n)
im
UB

(n)
jm
U∗)

− Tr(fl,n(Il)A
(n)
i1

. . . A
(n)
i1

)tr(B
(n)
j0

) . . . tr(B
(n)
jm

)| = O(n−1).

Noting that
Tr(fl,n(Il)A

(n)
i1

. . . A
(n)
im

) = ηl(A
(n)
i1

. . . A
(n)
im

),

we obtain our desired model for monotone convergence by letting n→∞ followed by
l→∞.

In the space of compact operators of l2, this is compared to the result of Collins,
Hasebe and Sakuma for the very same model, where we first take l → ∞ (to get the
non-normalized trace), followed by n→∞ (to get monotone convergence).

Let us discuss the relation between this result and previous results on this model. In
the paper [3], the same model was in consideration, with the additional assumption of
moment convergence for the sequences A(n)

1 , . . . , A
(n)
p , B

(n)
1 , . . . and B(n)

q ∈Mn(C) respec-

tively. Namely, in addition to assuming |Tr(A(n)
i1

. . . A
(n)
im

)| ≤ C and |tr(B(n)
j1

. . . B
(n)
jm

)| ≤ C,
it was assumed that

lim
n

Tr(A
(n)
i1

. . . A
(n)
im

) = f(i1, . . . , im) and lim
n

tr(B
(n)
j1

. . . B
(n)
jm

) = g(j1, . . . , jm).

There, the main result was to prove that

lim
n

Tr(A
(n)
i1
UB

(n)
i1
U∗ . . . A

(n)
im
UB

(n)
im
U∗)

converges almost surely to

lim
n

Tr(A
(n)
i1

. . . A
(n)
im

)tr(B
(n)
i1

) . . . tr(B
(n)
im

),

which defines the cyclic monotone independence. Given that Tr = liml ηl, Theorem 3.5
implies that the monotone state can be obtained from the same model provided that we
swap the limits n and l. In this respect, we completely generalize and conceptualize the
results of [3].

We conclude by remarking that in a work [2] by Arizmendi, Hasebe and Lehner, they
obtain models for cyclic monotone independence and monotone independence which are
different from ours.
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