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Abstract

We show that the union of two or more independent uniform spanning forests (USF)
on Zd with d ≥ 3 almost surely forms a connected transient graph. In fact, this also
holds when taking the union of a deterministic everywhere percolating set and an
independent ε-Bernoulli percolation on a single USF sample.
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1 Introduction

Given a finite connected graph G, the uniform spanning tree (UST) on G is a tree
drawn uniformly at random from the finite set of spanning trees of G. The wired
uniform spanning forest (WUSF) and free uniform spanning forest (FUSF) on an infinite,
connected and locally finite graph G are the weak limits of USTs on an exhaustion of G
with wired and free boundary conditions respectively. It was shown by Pemantle [14]
that these do not depend on the choice of the exhaustion. Moreover, the two measures
WUSF and FUSF coincide on Zd. We refer to [11, Chapter 4 and 10] for backgrounds on
USTs and USFs.

A fundamental result of Morris [13] states that every component of the WUSF is
almost surely recurrent on any graph. A natural question is whether this and other
remarkable properties of USFs are stable under various perturbations. In this paper we
will be concerned with taking unions of independent WUSFs. We say that a subgraph
Λ ⊆ G is everywhere percolating if every x ∈ G is contained in an infinite connected
component of Λ. Also, for any ε > 0 we write ε-WUSF for ε-Bernoulli percolation on the
WUSF, that is, conditioned on the WUSF, independently retain each of its edges with
probability ε or erase it otherwise.

Theorem 1.1. Let d ≥ 3 and let Λ be an everywhere percolating subgraph of Zd. Then,
for any ε > 0 the union of Λ and ε-WUSF on Zd is almost surely connected and transient.
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Benjamini and Tassion [4] proved that this result holds when replacing the ε-WUSF

above with ε-Bernoulli percolation. Since the ε-Bernoulli percolation can be trivially cou-
pled to contain an ε-WUSF, Theorem 1.1 is strictly stronger. The proof is an adaptation
of a “spatial” version of the argument in [4] and follows arguments of [6]; see Section 3.

The above theorem applies when Λ itself is an independent WUSF and ε = 1, giving
the following answer to a question posed to us by Peleg Michaeli.

Corollary 1.2. The union of two independent samples of the WUSF on Zd with d ≥ 3 is
almost surely connected and transient.

Unions of independent spanning trees have origins in the computer science literature,
where the union of k independent uniform spanning trees is called a k-splicer (see [7]).
These were the first efficient constructions of sparsifiers – sparse graphs of an ambient
graph which well approximate its spectrum. It is therefore of interest to understand
what other properties are shared by the ambient graph and unions of WUSFs. Since
the USF is a critical statistical physics model, the union of independent WUSF and
ε-WUSF should be supercritical and hence “inherit” the structure of the ambient graph.
Theorem 1.1 shows this is the case in Zd.

It is relatively easy to show that when G is a transitive unimodular nonamenable
graph (see [11] for definitions) almost surely each component of the union of the WUSF

with an independent ε-WUSF is transient. Indeed, one can readily repeat the proof of [2,
Theorem 13.7] to show that when ε > 0 is small enough, this union, denoted here by W ,
has infinitely many components, and each has infinitely many ends. Therefore by Lemma
8.35 in [11] there is an invariant random subforest F ⊂W such that almost surely each
infinite cluster K of W contains a tree of F with infinitely many ends. By Corollary 8.20
in [11], any such tree has pc < 1 and in particular it is transient by Theorem 3.5 in [11].
By Rayleigh’s monotonicity principle, each connected component of W is also transient.
We conjecture that this behavior holds in general.

Conjecture 1.3. On any transitive transient graph and for any ε > 0, every connected
component of the union of the WUSF and an independent ε-WUSF is almost surely
transient.

It is not hard to directly argue that on any bounded degree graph and any p < 1

there exists an integer k ≥ 1 such that the union of k independent WUSFs dominates
p-Bernoulli percolation on the graph (one can also use [10]). Hence by [9] we deduce that
for any transitive transient graph there exists an integer k such that almost surely each
component of the union of k independent WUSFs is transient and hence Conjecture 1.3
asks whether the same holds for “k = 1 + ε”. It is the analogue of [3, Conjecture 1.7]
stating that in the same setup of Conjecture 1.3, for any p > pc all infinite p-Bernoulli
percolation clusters are transient almost surely.

We conclude this section with two open questions related to Theorem 1.1 that are
again based on the intuition that such unions should be “supercritical”. In the case of
supercritical Bernoulli percolation on Zd it is shown in [1] that the spectral dimension
of the infinite cluster equals d almost surely, and in [5, 12, 15] it is shown that almost
surely the cluster is such that the simple random walk on it diffuses to Brownian motion.
It is thus natural to ask the following.

Question 1.4. Consider the union of independent WUSF and ε-WUSF on Zd.

1. Is the spectral dimension of the union equal to d almost surely?

2. Does the simple random walk diffuse to d-dimensional Brownian motion almost
surely?
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1.1 Box percolation

In the proof of Theorem 1.1 we will consider a slightly more general structure, for
which we need the notion of box percolation.

Definition 1.5 ((k, ε)-box percolation). Let d ≥ 1. Given k ≥ 1 and ε ∈ (0, 1) we sample a
percolation configuration ϕk(ε) as follows. Firstly, for each k ≥ 1 we write

Bk = [−k, k]d

and for each z = (z1, . . . , zd) ∈ (2kZ)d write

Bz
k = [−k, k]d + z,

and let E(Bz
k) denote its induced edge set. We also let Qz

k denote the subgraph of Bz
k

with the edgeset

{(x, y) ⊂ E(Bz
k) :6 ∃ ` ∈ {1, . . . , d} such that x` = y` = z` − k}.

Then, independently for every z ∈ (2kZ)d, choose a uniform edge from Qz
k and declare it

open with probability ε. Let ϕk(ε) be the set of open edges.

z

Figure 1: Qz
2 in Z2, dotted edges are

not in Qz
2.

z

Figure 2: Qz
1 in Z3, dotted edges are not

in Qz
1.

The rather odd choice of edgeset in Definition 1.5 is made to guarantee two properties:
(i) the sets {E(Qz

k)}z∈(2kZ)d form a partition of the edges of Zd and (ii) for any cycle in
Zd there exists z ∈ (2kZ)d such that at least two edges of the cycle belong to E(Qz

k).
This is proved in Claim 2.2 and is used in Lemma 2.3 to show that for all ε > 0 and all
k ≥ 1 the ε-WUSF stochastically dominates ϕk(ε/2d). As a result, to prove Theorem 1.1
it will in fact be sufficient to prove the following theorem.

Theorem 1.6. Let d ≥ 3. Take any k ≥ 1 and any ε ∈ (0, 1]. Let Λ be an everywhere
percolating subgraph of Zd. Then, almost surely, Λ ∪ ϕk(ε) is connected and transient.

Actually, we remark that for the proof of Theorem 1.1, proving that Λ ∪ ϕ1(ε) is
connected and transient instead of showing it for every k ≥ 1 would suffice.

1.2 Organization

We first show in Section 2 how Theorem 1.1 can be formally deduced from Theo-
rem 1.6. In Section 3 we prove Theorem 1.6.
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2 Proof of Theorem 1.1 given Theorem 1.6

For the rest of this section we denote by F a sample of the WUSF and by Fε a
sample of the ε-WUSF. Also recall the definition of ϕk(ε) in Definition 1.5. To show that
Theorem 1.1 follows from Theorem 1.6, we will show that F stochastically dominates
ϕk(1/2d). This will follow by the two claims below.

Claim 2.1. Let H be a (possibly infinite) set of edges of Zd that does not contain a cycle.
Then, there is an ordering {en}n≥1 of H such that for all n ≥ 1 and any partition of
{e1, . . . , en−1} into two sets A and B we have that

P(en ∈ F | A ⊆ F , B ∩ F = ∅) ≥ 1

2d
.

Proof. Note that since the edges H do not contain a cycle, the edge-set H forms a forest.
Hence we can order H by first ordering the edges in every tree T of H in such a way that
at each step we discover a new vertex, and then concatenate the orderings for all the
trees arbitrarily. Write {en}n≥1 for this ordering of H. Then for every n ≥ 1 and A and B

partitioning {ei}n−1
i=1 , the edge en has at least one endpoint which is not an endpoint of

any of the edges in A ∪B. Denote this endpoint by vn and the other one by un.
Then, by Kirchhoff’s formula [11, Section 4.2 and Section 10.2] and the spatial

Markov property [2, Proposition 4.2], we have for all 1 ≤ k ≤ n that

P(en ∈ F | A ⊂ F , B ∩ F = ∅) = R
(Zd/A)\B
eff (en),

where the right hand side denotes the wired effective resistance between the endpoints
of en in the network (Zd/A) \ B which is obtained from a copy of Zd in which each of
the edges in A have been contracted and each of the edges in B have been removed.
Note that deg(vn) = 2d in this graph so by the Nash-Williams inequality [11, (2.13)] this
resistance is at least 1

2d .

Claim 2.2. Fix k ≥ 1. For any edge e ∈ Zd there exists a unique z ∈ (2kZ)d, which we
denote g(e), such that e is contained in Qz

k. Furthermore, any cycle (e1, . . . , en) in Zd

contains at least two edges ei, ej with g(ei) = g(ej).

Proof. For any vertex u ∈ Zd write ru for the number of coordinate of u that are of
the form k + (2k)Z. Let e = (u, v) be an edge and assume without loss of generality
that ru ≤ rv. For any coordinate ` ∈ {1, . . . , d} there exists a unique n` ∈ Z such that
u` − 2kn` ∈ (−k, k], we claim that z = (2kn1, . . . , 2kn`) is the unique desired z. Indeed,
for any coordinate `, if |z` − u`| < k, then |z` − v`| ≤ k since u and v are neighbors.
If |z` − u`| = k (i.e., if u` = z` + k) we must have that u` = v` since ru ≤ rv. Hence
(u, v) ⊆ Bz

k . By our choice of z we have that u` > z` − k for all ` and therefore (u, v) ∈ Qz
k.

Uniqueness of z follows immediately since the sets {Qz
k}z∈(2kZ)d are disjoint.

For the second assertion write v0, . . . , vn−1, vn = v0 for the vertices of the cycle, so
that ei = (vi−1, vi) (we consider the coordinates mod n). For every j ∈ {0, . . . , n}, write
r(j) for rvj . Note that |r(j)− r(j + 1)| ≤ 1 for all j and that r(0) = r(n). Let i be a global
weak minimum of r : {0, . . . , n} → {0, 1, . . . , }, so that r(i) ≤ r(i + 1) ∧ r(i− 1). From our
description of z in the previous paragraph we obtain that g(ei) = g(ei+1).

We now combine the previous two claims to obtain the desired stochastic domination.

Lemma 2.3. Let d ≥ 1 and k ≥ 1. Then for any ε > 0 the forest Fε stochastically
dominates ϕk( ε

2d ).

Proof. It suffices to prove for ε = 1; the general case follows by applying the same
ε-Bernoulli percolation to F and ϕk( 1

2d ). To sample ϕk( 1
2d ), for each z ∈ (2kZ)d we
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sample an independent uniform edge from Qz
k and denote this collection of edges by H.

Note that H does not contain any cycles by Claim 2.2. Therefore, by revealing the edges
of F ∩H edge by edge according to the ordering obtained from Claim 2.1 we deduce that
F ∩H dominates 1

2d -Bernoulli percolation on H, and the latter is precisely ϕk( 1
2d ).

3 Proof of Theorem 1.6

We start with some notation. As in Definition 1.5, for n ≥ 1 and z ∈ Zd we let Bn

denote the box [−n, n]d and let Bz
n = Bn + z. In addition, when m ≤ n we let Am,n denote

the annulus Bn \Bm. For a subset of vertices K ⊂ Zd, the edge boundary or simply the
boundary ∂EK of K is defined to be the set of edges that connect K to its complement
Zd\K. Finally, for z ∈ Zd and k ≥ 1 we take Qz

k as in Definition 1.5.

As explained in the introduction, the proof of Theorem 1.6 follows an existing proof
of Contreras, Martineau and Tassion [6], relying on techniques from Benjamini-Tassion
[4], for the case when ϕk(ε) is replaced by an ε-Bernoulli percolation. By standard
renormalization techniques, it is in fact sufficient to prove that there exist constants
c > 0 and C <∞ such that for all Λ and all sufficiently large n (cf. [4, Lemma 1.1])

P(∀x, y ∈ Bn, x is connected to y in (Λ ∪ ϕk(ε)) ∩B2n) ≥ 1− C exp(−c
√
n). (3.1)

To establish (3.1) in the case of Bernoulli percolation, Benjamini and Tassion apply a
technique known as sprinkling to the component graph of the connected clusters of Λ

inside a large box; more specifically, they consider the effect of adding an ε-percolation
to this component graph by instead adding 4d independent ε

4d -percolations. At each step,
they showed that there is a high probability that the number of connected components
decreases by a factor of n1/4. We cannot directly apply the same strategy since we cannot
decompose ϕk(ε) into independent copies of ϕk( ε

4d ); however we can instead use a form
of “spatial sprinkling” by considering ϕk(ε) on a sequence of roughly log(n) disjoint
annuli, decreasing the number of connected components by a factor of 1/2 when we
sprinkle on each annulus (similarly to [6, Section 8]).

Their proof strategy relies on the fact that there are many edges which could merge
components when adding percolation and the fact that the percolation on each of these
edges are independent. This is no longer the case for box percolation, but this can
also be easily overcome using the geometry of Zd: since the components must reach
infinity this means that their boundary is large, and hence must contain many edges in
distinct Qz

k.

3.1 Proof of Theorem 1.6 assuming (3.1)

Write ~ei for the i-th unit vector inZd and consider the following random field (XΛ
s )s∈Zd .

For each s ∈ Zd let XΛ
s = 1 if and only if for each y ∈ {ns ± n~ei, i = 1, . . . , d} there is a

finite path in Λ ∪ ϕk(ε) connecting ns and y that also lies entirely in the box Bns
2n. Let

p = pΛ(n) = infs∈Zd P
(
XΛ

s = 1
)
. By (3.1), we have that pΛ(n) → 1 as n → ∞ (in fact

uniformly over choices of Λ) and moreover, provided that n > 2k, we have that XΛ
s and

XΛ
t are independent whenever ||s− t||∞ > 4.

Hence by [10, Corollary 1.4] we deduce that (XΛ
s )s∈Zd dominates a supercritical

Bernoulli site percolation for all sufficiently large n. Since the infinite cluster of a
supercritical Bernoulli site percolation on Zd is transient for d ≥ 3 [8], it follows that
there is a transient connected subgraph formed by the open sites (open means that
XΛ

s = 1) of the random field (XΛ
s )s∈Zd . By the definition of the random field, this subgraph

is roughly equivalent to a subgraph of Λ∪ϕk(ε) (see definition above [11, Theorem 2.17].
Since transience is preserved under rough equivalences [11, Theorem 2.17], we deduce
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that this subgraph of Λ∪ϕk(ε) is transient and hence by Rayleigh’s monotonicity principle
the connected graph Λ ∪ ϕk(ε) is also transient.

3.2 Proof of (3.1)

We will present a proof of (3.1) which is based on the adaptation of the argument
in [4] made in [6]. To this end, we will look at our everywhere percolating graph Λ,
restricted to B2n. Let c > 0 be a constant (depending only on d) that we will choose later,
and write m = bc log (n)c and bj = n + j · n

c log n for every j ∈ {0, . . . ,m}. Furthermore,
define the annuli Aj = A(bj , bj+1−k) for every j ∈ {0, . . . ,m−1}. Note that the {ϕk ∩Aj}
are independent. We will sample them one by one, starting from Ym−1(ε) := Am−1∩ϕk(ε)

to Y0(ε) := A0 ∩ ϕk(ε). Finally, for every r < 2n and every graph (not necessarily
related to Λ) H ⊆ B2n, we will define Nr(H) to be the set of connected components
in H intersecting both Br and ∂B2n. We note that as we usually deal with everywhere
percolating graphs Λ, every component of Λ∩B2n intersects the boundary of B2n). Then,
for every j ∈ {0, . . . ,m− 1}, set

Mj(ε) = Nbj

(
(Λ ∩B2n)

⋃(
∪m−1
r=j Yj(ε)

))
.

That is, Mj(ε) is the set of connected components intersecting Bbj after adding the
box-percolation in the annuli Aj , . . . , Am−1.

The proof is based on the following lemma:

Lemma 3.1. Let d ∈ N, let k ∈ N, let n ∈ N and let ε > 0. Let m and Mj(ε) be as in the
previous paragraph for every j ∈ {0, . . . ,m− 1}. Then, for every j ∈ {0, . . . ,m− 1}.

P

(
|Mj(ε)| > max

{
1,
|Mj+1(ε)|

2

})
≤ (2n)d exp

(
− ε

√
n

d2(2k)2d

)
. (3.2)

Proof. For a given graph H, note that Nbj (H) ⊆ Nbj+1
(H). We will start by taking

H =
(

(Λ ∩B2n)
⋃(
∪m−1
r=j+1Yr(ε)

))
and look at components of Nbj (H). If Nbj (H) contains only one component, we have
nothing to prove (as Mj(ε) = Nbj (H ∪ Yj(ε))). Else, we claim that with high probability,
every component C of Nbj (H) is merged when adding the box-percolation on Aj . More
precisely, we will show that when adding Yj(ε), every such C is connected to at least one
more C ′ ∈ Nbj+1

(H) = Mj+1(ε) (note that we used here bj+1 and not bj).

So, let us assume that C is a connected component in Nbj (H) and that it is not trivial,
that is, there is at least one more component in Nbj (H). As C crosses the annulus Aj ,
there must be at least one edge in every level r in the annulus Aj between C and its
complement. In particular, the size of C’s edge boundary intersected with Aj is at least
the radius of Aj , which is at least n/c log(n)− k. For n large enough, this is larger than,
say,

√
n. As every box of the form Qz

k has at most d(2k)d edges, we can find a subset
of at least

√
n/(d(2k)d) boundary edges, each belonging to distinct Qz

k. If one of these
edges are open when adding Yj(ε), then there is an edge in Yj(ε) between C and another
component in Nbj+1

(H) and hence C is merged. It follows that the probability that C
does not merge when adding Yj(ε) is bounded from above by the probability that all
these

√
n/(d(2k)d) edges are closed. This probability is bounded by

P(C does not merge) ≤
(

1− ε

d(2k)d

) √
n

d(2k)d

≤ exp

(
− ε

√
n

d2(2k)2d

)
.
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Therefore, as the number of components is bounded by the number of vertices in Bbj ,
we have that

P
(
∃C ∈ Nbj (H) such that C does not merge

)
≤ (2n)d exp

(
− ε

√
n

d2(2k)2d

)
. (3.3)

Finally, if indeed Nbj (H) has more than one component, we observe that under the
event that all components merge we have

|Mj(ε)| ≤
|Mj+1(ε)|

2
. (3.4)

Indeed, if we take some component C in Mj(ε), we have that there exists some C1 ∈
Nbj (H) ⊆ Nbj+1

(H) such that C1 ⊆ C. Also, since this C1 was merged, there exists
C2 ∈ Nbj+1

(H) (where C2 6= C1) that it was merged with, that is, C2 ⊆ C. Hence, C
contains at least two components of Nbj+1

(H). This means that every component in
Mj(ε) contains at least two components of Mj+1(ε), yielding (3.4).

Corollary 3.2. Let k, d ∈ N and let ε > 0. Then, there exist c, C > 0 such that for all
n ∈ N we have that

P(∀x, y ∈ Bn, x is connected to y in (Λ ∪ ϕk(ε)) ∩B2n) ≥ 1− C exp(−c
√
n).

Proof. Let k, d ∈ N and let ε > 0. Take n large enough such that Lemma 3.1 holds and
apply it iteratively for j = m − 1 until j = 0. The probability that there exists some j

such that the event in (3.2) does not hold is bounded by c log(n)(2n)d · exp
(
− ε

√
n

d2(2k)2d

)
.

Moreover, when the event holds for all j ∈ {0, . . . ,m− 1}, we have that the number of
components in Nb0(ϕk(ε) ∪Λ) is at most 2−m the number of components in Nbm−1

(Λ). As
the original number of components is bounded by the size of B2n which is bounded by
nd, we can choose c large enough such that 2−c log(n) < nd, and hence we obtain that
Nb0(ϕk(ε) ∪ Λ) contains only one component. This in turn means that every two vertices
in Bn are in the same connected component in Λ ∪ ϕk(ε), finishing the proof.
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