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Abstract

We establish a Berry-Esseen theorem for random walks conditioned to stay positive
under P+ (the probability by Doob’s h-transform), which quantifies the convergence
rate in the Kolmogorov distance of the central limit theorem proved by Bryn-Jones and
Doney (2006). Our approach is based on a recent analogous result by Grama and Xiao
(2021) for random walks conditioned to stay positive over a finite time interval.

Keywords: random walk; Berry-Esseen theorem; conditioned process; h-transform.
MSC2020 subject classifications: 60G50; 60F05; 60J50.
Submitted to ECP on November 21, 2023, final version accepted on July 4, 2024.

1 Introduction and main results

We are interested in the asymptotic behavior of random walks conditioned to stay
positive, which have been studied extensively in recent years. To our knowledge, the
phrase “random walks conditioned to stay positive” has at least two different interpre-
tations. Firstly, we consider the random walk conditioned to stay positive over a finite
time interval; this is a discrete version of meander. It is well-known (see Iglehart [11],
Bolthausen [2] and Doney [7]) that if the random walk is in the domain of attraction
of a standard normal law, a suitably scaled version of this process converges weakly
to a Brownian meander, which is the so-called Iglehart’s invariance principle. Later,
Caravenna [4], Vatutin and Wachtel [15] obtained the local limit theorem under condi-
tions where the random walk is attracted to a normal law and stable law respectively.
Recently, Grama and Xiao [9] proved the corresponding Berry-Esseen theorem which
gives the convergence rate of Iglehart’s result.

The second interpretation involves conditioning on the event that the random walk
never goes negative, and so can be thought of as a discrete version of the Bessel process.
When the random walk oscillates, the conditioning event has zero probability, and one
can make sense of this conditioned process by means of Doob’s h-transform (see Bertoin
and Doney [1]). Bryn-Jones and Doney [3] proved that a suitably scaled version of this
process converges weakly to a Bessel process if the random walk is in the domain of
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attraction of a standard normal law. Later, Caravenna and Chaumont [5] extended this
invariance principle to the stable case in a more straightforward way by exploiting the
absolute continuity with the meander process. For the law of the iterated logarithm of
this model, we refer the readers to Hambly, Kersting and Kyprianou [10]. Compared to
meander case, the main purpose of this paper is to derive a Berry-Esseen theorem for
random walks conditioned to stay (always) positive in the sense of h-transform.

Let S = (Sn)n≥0 denote a random walk in R with starting point zero, that is, S0 = 0,
and for n ≥ 1, Sn =

∑n
i=1Xi, where {Xn : n ≥ 1} are i.i.d. random variables with

EX1 = 0 and E(X2
1 ) =: σ2 ∈ (0,∞). The strict descending ladder process is defined

recursively as follows:

τ0 = H0 = 0, τn = inf{ k > τn−1 : Sk < Sτn−1
}, Hn = −Sτn , n ≥ 1,

and we write τ := τ1 for convenience. Let V (x) denote the renewal function associated
with (Hn)n≥0, which is a positive function defined by

V (x) =
∑
n≥0

P(Hn ≤ x), x ≥ 0. (1.1)

Note that V (x) is the expected number of descending ladder heights which are ≤ x. It is
well-known that V is harmonic for the sub-Markov process obtained by killed (Sn)n≥0
when entering the negative half-line (see Tanaka [14]), that is,

V (x) = E [V (x+ S1); x+ S1 ≥ 0 ] , x ≥ 0. (1.2)

Next we introduce a change of measure P+ which is defined by the well-known Doob’s
h-transform: for any n ∈ N and A ∈ σ(S1, · · · , Sn),

P+(A) := E [V (Sn); A ∩ {τ > n} ] . (1.3)

According to Kolmogorov’s extension theorem and the harmonic property of V , it is easy
to see that P+ is well defined. The random walk (Sn)n≥0 under the new probability P+

is called a random walk conditioned to stay positive, and this terminology is justified by
the following weak convergence result (see Theorem 1 of Bertoin and Doney [1]):

P+(·) = lim
n→∞

P(·|τ > n). (1.4)

Recently, Grama and Xiao (see Theorem 2.7 of [9]) establish a Berry-Esseen type
theorem for random walks under the conditional probability P(·|τ > n), which quantifies
the convergence rate in the Kolmogorov distance of Iglehart’s central limit theorem.

Theorem A (Grama & Xiao, 2021). Assume that EX1 = 0, E(X2
1 ) =: σ2 ∈ (0,∞) and

E(|X1|2+δ) <∞ for some δ > 0. Then there exists ρ > 0 such that as n→∞,

sup
x≥0

∣∣∣∣P( Sn
σ
√
n
≤ x

∣∣∣ τ > n

)
− Φ̃(x)

∣∣∣∣ = O
(
n−ρ

)
, (1.5)

where Φ̃(x) = 1− e− x2

2 , x ≥ 0 is the Rayleigh distribution function.

Remark 1.1. Recently, the paper [9] has been accepted by AIHP, but the appendix
contained the proof of (1.5) is omitted because of the limitation of the length. We refer
the readers to the arXiv version for proofs. Furthermore, an upper bound for ρ is given
by δ/(20 + 8δ). Thus the error term in (1.5) is far from optimal compared with classical
Berry-Esseen theorem for sums of i.i.d. variables, where ρ = (δ ∧ 1)/2. At the moment
giving the optimal error term under the current assumptions seems very delicate.
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Our main result is a Berry-Esseen theorem for random walks conditioned to stay
positive in the sense of h-transform, which quantifies the convergence rate in the
Kolmogorov distance of the central limit theorem due to Bryn-Jones and Doney [3].

Theorem 1.2. Assume that EX1 = 0, E(X2
1 ) =: σ2 ∈ (0,∞) and E(|X1|2+δ) < ∞ for

some δ > 0. Then as n→∞,

sup
x≥0

∣∣∣∣P+

(
Sn
σ
√
n
≤ x

)
− Φ+(x)

∣∣∣∣ = O
(
n−ρ

√
log n

)
, (1.6)

where Φ+(x) =
∫ x
0

√
2
π y

2 e−y
2/2dy, x ≥ 0 and ρ is the constant in (1.5).

Remark 1.3. Note that (1.6) and (1.5) share almost the same convergence rate with a√
log n gap, since the probability P+ and P(·|τ > n) are closely related to each other via

an h-transform given by the harmonic function V , which is asymptotically linear and the
error is under control. We will prove Theorem 1.2 by exploiting this absolute continuity
relation and Grama and Xiao’s result.

2 Preliminaries

The goal of this section is to give some auxiliary results which will be used to prove
the Berry-Esseen theorem for random walks conditioned to stay positive in the sense of
h-transform. We will denote the positive constants by Ci, i ∈ N which may change from
line to line if a constant is not of our interest. Constants appearing in our claims and
fixed throughout this paper will be denoted by ci with i ∈ N. To emphasize dependence
on some variables, we put them in subscripts.

The following lemma gives the convergence rate of the elementary renewal theorem
for the harmonic function V (x), which plays an important role in the proof of our main
theorem.

Lemma 2.1. Assume that EX1 = 0 and E(|X1|2+δ) < ∞ for some δ ∈ (0, 1]. Then we
have EH1 ∈ (0,∞), and there exists a constant cδ > 0 such that for any x ≥ 1,∣∣∣∣V (x)

x
− 1

EH1

∣∣∣∣ ≤ cδ x−δ. (2.1)

Proof. According to Corollary 2 of Doney [6], we have E(H1+δ
1 ) <∞ under the moment

condition E(|X1|2+δ) <∞. Then by Corollary 4 of Rogozin [13], it follows that∣∣∣∣V (x)

x
− 1

EH1

∣∣∣∣ = O
(
x−δ

)
, as x→∞.

The desired result follows.

We also need the following result that describes the large deviation probability for
the random walk (Sn)n≥0 conditioned on the event {τ > n}.
Lemma 2.2. Assume that EX1 = 0 and E(|X1|2+δ) <∞ for some δ > 0. Then there exist
some constants c1, c2 > 0 such that for any n ≥ 1 and y ≥ c1

√
n log n,

P (Sn ≥ y | τ > n) ≤ c2 n y−(2+δ). (2.2)

Proof. This relation, under the assumption that X1 is in the domain of attraction of an
α-stable law, was proved by Doney and Jones (see Lemma 1.2 of [8]). Note that the proof
therein still works if we replace Proposition 0.1 of [8] with the following claim: there
exists a constant c3 > 0 such that for any n ≥ 1 and y ≥

√
n,

P(Sn ≥ y) ≤ c3 n y−(2+δ). (2.3)
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In fact, by the moment condition E(|X1|2+δ) <∞, it follows that

P(X1 > t) ≤ C t−(2+δ), ∀ t ≥ 0, (2.4)

for some constant C > 0. Then applying the Fuk-Nagaev inequality for tail probabilities
of sums of i.i.d. variables (see Corollary 1.7 of Nagaev [12]), we have for any u, v > 0

and t ≥ 2,

P(Sn ≥ u) ≤ nP(X1 ≥ v) + exp

{
− 2u2

(t+ 2)2etσ2

}
+

{
(t+ 2)nE|X1|t

tuvt−1

} tu
(t+2)v

. (2.5)

Putting here u = y, v = (2+δ)y
4+δ , t = 2 + δ and combing (2.4), we get (2.3). The rest of the

proof is in the same vein as Lemma 1.2 of Doney and Jones [8].

3 Proof of Theorem 1.2

Without loss of generality, we assume σ2 = 1. Note that we need to show that (1.6) is
valid uniformly for x ≥ 0. To this aim, we split up the range of supremum into 3 parts:{

0 ≤ x ≤ n−1/6
}
,
{
n−1/6 < x ≤ A

√
log n

}
and

{
x > A

√
log n

}
,

for some constant A ≥ max{2, c1}. We first consider the case 0 ≤ x ≤ n−1/6.

Lemma 3.1. Assume that EX1 = 0 and E(X2
1 ) = 1. Then as n→∞,

sup
0≤x≤n−1/6

∣∣∣∣P+

(
Sn√
n
≤ x

)
− Φ+(x)

∣∣∣∣ = O
(
n−1/2

)
. (3.1)

Proof. We first consider the lattice case and assume that X1 is (h, a)-lattice, that is, the
h is the maximal number such that the support of the distribution of X1 is contained in
the set a+ hZ for some a ∈ [0, h). According to Theorem 6 of Vatutin and Wachtel [15],
it follows that uniformly in y ∈ [0, o(

√
n)] ∩ (an+ hZ),

P(Sn = y, τ > n) ≤ C1(1 + y)

n3/2
. (3.2)

By the renewal theorem of V , we have V (y) ∼ y/EH1 as y →∞, then there exist some
positive constants c4, c5 such that

c4(1 + y) ≤ V (y) ≤ c5(1 + y), for any y ≥ 0. (3.3)

Denote An := [0, n1/3]∩ (an+hZ), then by the definition of measure change P+, we have
for any x ≤ n−1/6,

P+

(
Sn√
n
≤ x

)
= E

[
V (Sn);

Sn√
n
≤ x, τ > n

]
=

∫ √nx
0

V (y)P(Sn ∈ dy, τ > n)

≤ c5
∫ n1/3

0

(1 + y)P(Sn ∈ dy, τ > n) ≤ C2

∑
y∈An

(1 + y)P(Sn = y, τ > n)

≤ C1C2

∑
y∈An

(1 + y)2

n3/2
≤ C3 n

−1/2. (3.4)

On the other hand, applying Theorem 4 of Vatutin and Wachtel [15] in the non-lattice
case, we obtain that uniformly in y ∈ [0, o(

√
n)],

P(Sn = [y, y + 1), τ > n) ≤ C4(1 + y)

n3/2
. (3.5)
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Hence by the definition of measure change P+ and (3.3), we have for any x ≤ n−1/6,

P+

(
Sn√
n
≤ x

)
=

∫ √nx
0

V (y)P(Sn ∈ dy, τ > n) ≤ c5
∫ n1/3

0

(1 + y)P(Sn ∈ dy, τ > n)

≤ C5

n1/3∑
k=0

(2 + k)P (Sn = [k, k + 1), τ > n)

≤ C4C5

n1/3∑
k=0

(2 + k)2

n3/2
≤ C6 n

−1/2. (3.6)

Note that for any x ≤ n−1/6, we have

Φ+(x) =

∫ x

0

√
2

π
y2 e−y

2/2dy ≤ C7 x
3 ≤ C7 n

−1/2. (3.7)

Therefore we conclude the proof of this lemma by combing (3.4), (3.6) and (3.7).

Next we turn to the case of n−1/6 < x ≤ A
√

log n, and show that it makes a major
contribution to (1.6).

Lemma 3.2. Assume that the conditions of Theorem 1.2 are valid. Then as n→∞,

sup
n−1/6<x≤A

√
logn

∣∣∣∣P+

(
Sn√
n
≤ x

)
− Φ+(x)

∣∣∣∣ = O
(
n−ρ

√
log n

)
, (3.8)

where ρ is the constant in (1.5).

Proof. Denote δ̃ := δ ∧ 1, then by Lemma 2.1, we have∣∣∣V (y)− y

EH1

∣∣∣ ≤ C1(1 + y)1−δ̃, ∀ y ≥ 0, (3.9)

which implies that ∣∣∣∣∣P+

(
Sn√
n
≤ x

)
−
∫ √nx
0

y

EH1
P(Sn ∈ dy, τ > n)

∣∣∣∣∣
≤
∫ √nx
0

∣∣∣V (y)− y

EH1

∣∣∣P(Sn ∈ dy, τ > n)

≤ C1

∫ ∞
0

(1 + y)1−δ̃ P(Sn ∈ dy, τ > n). (3.10)

Next we split up the range of the above integral into two parts, and first show that∫ n∗

0

(1 + y)1−δ̃ P(Sn ∈ dy, τ > n) = O
(
n−δ̃/2

)
, (3.11)

where n∗ =
√
n/ log n. In fact, by (3.5) we have in the non-lattice case,∫ n∗

0

(1 + y)1−δ̃ P(Sn ∈ dy, τ > n)

≤ C2

n∗∑
k=0

(2 + k)1−δ̃ P (Sn = [k, k + 1), τ > n)

≤ C3

n∗∑
k=0

(2 + k)2−δ̃

n3/2
≤ C4 n

−δ̃/2. (3.12)
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The lattice case is in the same vein, thus (3.11) holds true. Furthermore, by (3.3) we
have for any y ≥ n∗,

(1 + y)1−δ̃ ≤ c−14 n−δ̃/2(log n)δ̃/2 V (y), (3.13)

which implies that ∫ ∞
n∗

(1 + y)1−δ̃ P(Sn ∈ dy, τ > n)

≤ c−14 n−δ̃/2(log n)δ̃/2
∫ ∞
n∗

V (y)P(Sn ∈ dy, τ > n)

≤ c−14 n−δ̃/2(log n)δ̃/2. (3.14)

Implementing the bound (3.11) and (3.14) into (3.10), we get that∣∣∣∣∣P+

(
Sn√
n
≤ x

)
−
∫ √nx
0

y

EH1
P(Sn ∈ dy, τ > n)

∣∣∣∣∣ = O
(
n−δ̃/2(log n)δ̃/2

)
. (3.15)

Now we turn to the estimate of∫ √nx
0

y

EH1
P(Sn ∈ dy, τ > n)

=

√
nx

EH1
P(Sn ≤

√
nx, τ > n)− 1

EH1

∫ √nx
0

P(Sn ≤ y, τ > n)dy. (3.16)

Applying Theorem 2.7 from Grama and Xiao [9], it follows that for any x ≥ 0 and n ≥ 1,∣∣∣P (Sn ≤ √nx, τ > n
)
−
√

2EH1√
πn

Φ̃(x)
∣∣∣ ≤ C5 n

−(ρ+1/2). (3.17)

For the first term of (3.16), using the above bound, we have for n−1/6 < x ≤ A
√

log n,

√
nx

EH1
P(Sn ≤

√
nx, τ > n)

=

√
2

π
x Φ̃(x) +

√
nx

EH1

(
P(Sn ≤

√
nx, τ > n)−

√
2EH1√
πn

Φ̃(x)

)

=

√
2

π
x Φ̃(x) +O

(
n−ρ

√
log n

)
. (3.18)

For the second term of (3.16), note that

1

EH1

∫ √nx
0

P(Sn ≤ y, τ > n)dy =

∫ √nx
0

√
2√
πn

Φ̃

(
y√
n

)
dy

+
1

EH1

∫ √nx
0

(
P(Sn ≤ y, τ > n)dy −

√
2EH1√
πn

Φ̃

(
y√
n

))
dy. (3.19)

Using the bound (3.17) again, it follows that for n−1/6 < x ≤ A
√

log n,∣∣∣∣∣ 1

EH1

∫ √nx
0

(
P(Sn ≤ y, τ > n)dy −

√
2EH1√
πn

Φ̃

(
y√
n

))
dy

∣∣∣∣∣
≤ 1

EH1

∫ √nx
0

C5 n
−(ρ+1/2)dy ≤ C6 n

−ρ
√

log n. (3.20)
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On the other hand, changing the variables and integrating by parts, we obtain that∫ √nx
0

√
2√
πn

Φ̃

(
y√
n

)
dy =

√
2

π

∫ x

0

Φ̃(z)dz

=

√
2

π
x Φ̃(x)−

∫ x

0

√
2

π
z2 e−z

2/2dz

=

√
2

π
x Φ̃(x)− Φ+(x). (3.21)

Combing this and (3.19), (3.20), we get that

1

EH1

∫ √nx
0

P(Sn ≤ y, τ > n)dy =

√
2

π
x Φ̃(x)− Φ+(x) +O

(
n−ρ

√
log n

)
. (3.22)

Then implementing the estimate (3.18) and (3.22) into (3.16), it follows that∫ √nx
0

y

EH1
P(Sn ∈ dy, τ > n) = Φ+(x) +O

(
n−ρ

√
log n

)
. (3.23)

Therefore we conclude the proof of Lemma 3.2 by virtue of (3.15) and (3.23).

Finally, we show that the supremum of (1.6) taking in x > A
√

log n can be ignored.

Lemma 3.3. Assume that the conditions of Theorem 1.2 are valid. Denote δ̃ := δ ∧ 1,
then as n→∞,

sup
x>A

√
logn

∣∣∣∣P+

(
Sn√
n
≤ x

)
− Φ+(x)

∣∣∣∣ = O
(
n−δ̃/2

)
. (3.24)

Proof. Recall that we fix the constant A such that A ≥ max{2, c1}, then integrating by
parts yields that for any x > A

√
log n,

1− Φ+(x) ≤
∫ ∞
A
√
logn

√
2

π
y2 e−y

2/2dy

=

√
2

π
An−A

2/2
√

log n+

∫ ∞
A
√
logn

√
2

π
e−y

2/2dy

≤ C1 n
−A2/2

√
log n ≤ C2

n
. (3.25)

Hence it is sufficient to show that

sup
x>A

√
logn

∣∣∣∣P+

(
Sn√
n
> x

) ∣∣∣∣ = O
(
n−δ̃/2

)
. (3.26)

By Lemma 2.2, we have for any y ≥ A
√
n log n,

P (Sn > y, τ > n) ≤ C3

√
n y−(2+δ). (3.27)

Then integrating by parts and using (3.3), we obtain that for any x > A
√

log n,

P+

(
Sn√
n
> x

)
≤ c5

∫ ∞
√
nx

(1 + y)P(Sn ∈ dy, τ > n)

= c5(1 +
√
nx)P(Sn >

√
nx, τ > n) + c5

∫ ∞
√
nx

P(Sn > y, τ > n)dy

≤ C4(1 +
√
nx)
√
n(
√
nx)−(2+δ) + C5

∫ ∞
√
nx

√
n y−(2+δ)dy

≤ C6 n
−δ/2, (3.28)

which concludes the proof of this lemma.

Therefore, we conclude the proof of Theorem 1.2 by combing the above 3 lemmas.
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