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Abstract. In this paper, a new efficient and robust estimator of the Pareto
tail index is proposed. Although the emphasis is on the Pareto distribution,
all results are valid for the estimation of the scale/rate parameter of the two-
parameter exponential distribution. The approach is to assume that the obser-
vations were generated from the FLLP-contaminated Pareto, that is, a mix-
ture of the Pareto and FLLP distributions. The latter is an original distribu-
tion designed specifically to represent any outlier distribution. The parame-
ters are estimated using an iterative process adapted from the expectation-
maximization (EM) algorithm to optimize the properties of the estimators in
a robustness context. A robust confidence interval for the Pareto tail index is
also given. It is shown through different asymptotic results that these estima-
tors reach a breakdown point of 50% with full efficiency. Their simultaneous
high efficiency and high robustness are also shown for finite samples in a
large Monte Carlo simulation study. Finally, an example with a real dataset
of daily crude oil returns is given.

1 Introduction

The Pareto distribution P(σ,α) defined on the domain [σ,∞), whose distribution and density
functions are defined by

FP(x|σ,α) := 1 −
(

σ

x

)α

and fP(x|σ,α) := ασα

x1+α
(1)

for fixed σ > 0 and α > 0, is widely used in modeling variables from many fields such as
economics, finance, actuarial science, computer science or biology, to name a few (see, e.g.,
Brzezinski, 2016). In particular, the Pareto distribution with its decreasing density having
a heavy right tail is suitable for modeling the right tail of many distributions using upper
observations. Indeed, an important result (see, e.g., Vandewalle et al., 2007) establishes that
if the density of a random variable Z is regularly varying at infinity with index −(1+α), then
the conditional distribution of the relative excesses X := (Z

t
|Z > t) over a threshold t > 0

converges to a P(1, α) as t → ∞. In other words, if the right tail decay of the density of Z is
predominantly polynomial (∼ 1/z1+α), like the heavy tailed distributions of Pareto, Cauchy,
Student, Fréchet, Burr, inverse-gamma, log-logistic or log-gamma, then the distribution of
the relative excesses over the threshold t is closely approximated by a P(1, α) if t is large
enough.

The estimation of the Pareto tail index α—or equivalently γ := 1/α—is a widely stud-
ied problem in statistics as evidenced by the review of more than a hundred estimators by
Fedotenkov (2020). The maximum likelihood estimator (MLE), based on a random sample
x1, . . . , xn assumed to come from a P(σ,α), is given by

1

α̂MLE = γ̂ MLE := 1

n

n∑
i=1

log(xi/σ ), (2)

Key words and phrases. Heavy tails, M-estimator, robust weighted maximum likelihood estimator, relative ex-
cesses over a large threshold, Monte Carlo simulations, outliers.

Received October 2022; accepted January 2024.

148

https://imstat.org/journals-and-publications/brazilian-journal-of-probability-and-statistics/
https://doi.org/10.1214/24-BJPS597
http://www.redeabe.org.br/
https://orcid.org/0000-0001-9047-8566
mailto:desgagne.alain@uqam.ca


Efficient and robust estimation of tail parameters for Pareto and exponential models 149

where the scale parameter σ , treated as a nuisance parameter in this article, is estimated by
the sample minimum x(1) ≡ min{x1, . . . , xn} if it is unknown. The MLE is considered the
benchmark given its desirable asymptotic properties such as consistency and minimum vari-
ance among unbiased estimates. However, it is well known that the MLE is very sensitive to
very large observations which conflict with most of the data originating from the assumed
Pareto distribution, which is our definition of outliers in this paper. These outliers have an
undesirable impact on the estimation of the Pareto tail index and therefore on the whole infer-
ence. For example, for the sample x = (1.01,1.02,1.04,1.05,1.07,1.10,1.13,1.17,1.26) ≈
F−1
P (0.1, . . . ,0.9|1,10) “perfectly” generated from a P(1,10), we obtain α̂MLE = 11.38. If

we add a single large observation from the top 0.1% of this Pareto model, say 2, the estimate
of α drops drastically to α̂MLE = 6.74.

Robust estimation methods are generally designed to resolve this conflict by limiting the
impact of outliers and focusing the estimation on non-outliers. A few robust methods us-
ing different approaches have been proposed in the literature. According to the Monte Carlo
simulation comparisons of Brazauskas and Serfling (2001) and Brzezinski (2016), the best
estimators of the Pareto tail index in terms of the efficiency-robustness trade-off are as fol-
lows. The optimal B-robust estimator (OBRE) defined in Hampel et al. (1986) was adapted
by Victoria-Feser and Ronchetti (1994) for the estimation of the Pareto tail index and Dupuis
and Victoria-Feser (2006) introduced the weighted maximum likelihood estimator (WMLE).
OBRE and WMLE are both M-estimators whose ψ-functions and influence functions have
been bounded. Their ψ-functions are based on a weighted score function to reduce the im-
pact of upper observations deviating from the Pareto model. The generalized median esti-
mator (GME), proposed by Brazauskas and Serfling (2000a) and Brazauskas and Serfling
(2000b), first consists of evaluating the MLE of α or γ (adjusted to be median unbiased) over
all subsets of observations taken k at a time. The GME is the median of these

(n
k

)
subsets.

Finkelstein, Tucker and Veeh (2006) introduced the probability integral transform statistic
estimator (PITSE) as the solution in α of the equation n−1 ∑n

i=1(σ/xi)
αt = (t + 1)−1, for

a fixed tuning constant t > 0. The trimmed mean estimator (TME), introduced by Kimber
(1983), consists first in discarding a determined proportion of the uppermost observations,
then in calculating the MLE (corrected for the bias) on the others. More recently, other robust
estimators of the Pareto tail index have been proposed, namely a non-parametric estimator
using the extended Pareto distribution (Dierckx, Goegebeur and Guillou, 2014), a trimmed
version of the Hill estimator (Bhattacharya, Kallitsis and Stoev, 2019) and estimators using
an exponential regression model (Ghosh, 2017; Minkah, de Wet and Ghosh, 2021). Identifi-
cation of large outliers in a Pareto model using boxplot methods was also studied by Safari,
Masseran and Ibrahim (2019).

As can be seen, these approaches are quite different, but they all depend on a tuning con-
stant to adjust the trade-off between efficiency and robustness. Naturally, high breakdown
point robust estimators can easily be obtained with these methods, for example, by discard-
ing the 40% upper observations. However, this unrefined way comes at a high cost in terms of
efficiency, where the performance of a very robust estimator in the absence of outliers is poor.
Conversely, if the tuning constant is adjusted to obtain an efficient estimator, the robustness
becomes rather limited. Common usage is therefore to compromise by finding the sweet spot
to obtain a moderately efficient and robust estimator.

To fill this gap, we propose in this paper a novel Pareto tail index estimator exhibiting si-
multaneously high breaking point and high efficiency, without compromise. Like the WMLE,
it can be thought of as an M-estimator with a ψ-function based on the weighted score func-
tion, where the weights depend on a constant ω representing the proportion of non-outliers.
However, we go further by estimating ω, which allows us to achieve both efficiency and ro-
bustness. Our approach is inspired by the work of Yohai (1987), Gervini and Yohai (2002)
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and mainly Desgagné (2021) which also achieve both efficiency and robustness in a linear
regression context. The first step is to assume that the observations were generated from a
mixture of the Pareto distribution and another distribution that we design specifically to rep-
resent outliers. The second step is to develop an iterative estimation method by modifying the
expectation-maximization (EM) algorithm to optimize the estimation in a context of outliers.
We obtain highly efficient estimators under the Pareto model for all sample sizes, including
full asymptotic efficiency at a fast rate. Moreover, under the Pareto model, our estimators
generate exactly the MLE benchmark most of the time (in a proportion ranging from 0.84
to 0.91 depending on the sample size), which then means no cost for use of a robust esti-
mator. We also obtain very robust estimators that reach an asymptotic breakdown point of
50%. Unlike most robust estimators of the Pareto tail index, inference is entirely based on
observations, which means that there is no tuning constant to be set by the user. Therefore,
no trade-off is made between efficiency and robustness; on the contrary, we get both. We also
obtain for each observation an estimated probability that it comes from the Pareto component
(versus the outlier component), which makes the detection of outliers very easy and efficient.

Although the focus is on the Pareto distribution in this article, all the results can be easily
adapted for the exponential distribution E(μ,α) having the density fE(y|μ,α) := αe−α(y−μ),
with y ∈ [μ,∞), μ ∈ R, α > 0. This can be done using a simple log/exponential transfor-

mation since X
L∼P(σ,α) ⇔ Y

L∼E(μ,α) if Y = logX and μ = logσ . The exponential dis-
tribution is suitable for modeling the right tail—if the threshold is chosen large enough—of
a density whose decay is predominantly exponential (∼ exp(−αz)), like the distributions of
Laplace, gamma (including χ2 and exponential), logistic or Gumbel.

In Section 2, we design an original contaminated Pareto distribution called the P-FLLP
distribution. Robust inference of the Pareto model using the P-FLLP distribution is studied in
Section 3. We construct an iterative estimation method that yields the robust P-FLLP estima-
tors in Section 3.1, the method is validated by asymptotic theoretical results in Section 3.2,
a connection between our approach and M-estimators is made in Section 3.3 and robust con-
fidence interval for the Pareto tail index is discussed in Section 3.4. In Section 4, we study
the performance of the P-FLLP estimator of the Pareto tail index in a Monte Carlo simula-
tion, in the absence and in the presence of outliers. An example is given in Section 5 and we
conclude in Section 6. The detailed programming code using R software is provided in the
Supplementary Material (Desgagné (2024)).

2 Modeling observations with a contaminated Pareto distribution

In this section, we design an original distribution adapted to our robustness context according
to specific optimality criteria. Without loss of generality, the description of our approach is
first made assuming the standardized Pareto distribution P(1,1) for ease of understanding,
with its density given by fP(x|1,1) = x−2, x ≥ 1. Recall that outliers are defined, in this
article, as very large observations that conflict with most of the data coming from the assumed
Pareto distribution. In other words, the right tail of the Pareto density is not heavy enough to
accommodate these too large observations called outliers, resulting in a bad trade-off in the
tail index estimate. A distinction is made between large observations that are plausible under
the Pareto model and outliers that are too large to be plausible. The idea behind our approach
is to use a model that describes our context as closely as possible, that is, the observations
come from a Pareto distribution except for possible large outliers.

The first step in building our model is to define a threshold τ that defines the non-outlier
region [1, τ ] and the outlier region (τ,∞), and to replace the right tail of the Pareto density
over the outlier region [τ,∞) with a heavier tail to account for potential outliers. It is well
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known that heavy tail modeling is an efficient way to deal with outliers, but the heaviness
of the right tail is yet to be determined. In the context of scale inference—such as our expo-
nential model E(μ,1/γ )—Desgagné (2013) showed that super heavy tails with logarithmic
decay (e.g., log-Pareto decay) allow full robustness, in that the influence of outliers disap-
pears completely when their distance with the bulk of data goes to infinity. Under the Pareto
model P(σ,α), this result translates into log-log-Pareto decay. Therefore, to achieve this full
robustness, we replace the right tail of the Pareto density with a log-log-Pareto decay of the
form (x logx)−1(log logx)−(λ+1), where λ > 0 determines the level of tail decay. To main-
tain a density function which integrates to 1, it is necessary in return to multiply the modified
Pareto density by a normalizing constant ω > 0, which depends on the two added parameters
τ and λ.

The second step consists in rethinking our model as a contaminated Pareto distribution,
that is, a mixture of a Pareto P(1,1) distribution defined on [1,∞) and a second component
defined on (τ,∞) which models the outliers. The normalizing constant ω becomes a parame-
ter which now plays the role of the mixture weight, which is possible if we add the constraint
0 < ω < 1. These ω and 1 − ω weights can be interpreted as the proportion of non-outliers
and the proportion of outliers, respectively. To compensate for the fact that ω is now a free
parameter, the threshold τ is now set automatically as a function of ω. Finally, to ensure that
the outlier component is positive and well-defined as a density—or equivalently, that the right
tail of the modified Pareto is heavier everywhere than that of the original Pareto—we need to
make sure the right tail is heavy enough or equivalently, that λ is small enough. To achieve
this, we set λ appropriately as a function of ω. We obtain a contaminated Pareto distribution
with only the parameter ω (and eventually the parameters σ and α for the non-standardized
version).

We now see in more details how the contaminated Pareto with the three parameter ω, σ , α

is constructed and then discuss its properties at the end of this section. Similar to the family
of log-Pareto-tailed symmetric distributions introduced by Desgagné (2015), the first step, as
described above, is to replace the right tail of the Pareto distribution with a log-log-Pareto
decay. We obtain the following continuous density:

f (x|σ,α, τ, λ) =
⎧⎪⎨
⎪⎩

ωαx−1z−1 if σ ≤ x ≤ στ 1/α ⇔ 1 ≤ z ≤ τ,

ωαx−1τ−1 log τ

log z

(
log log τ

log log z

)λ+1
if x > στ 1/α ⇔ z > τ,

(3)

where z := (x/σ)α is the standardized version of x, σ > 0 is a scale parameter, α > 0 is a
power parameter, τ > e is a threshold that determines the outlier region, λ > 0 determines
the level of the log-log-Pareto tail decay and ω acts, at this stage, as a normalizing con-
stant. Note that the term αx−1z−1 (if σ ≤ x ≤ στ 1/α) corresponds to the Pareto density
fP(x|σ,α).

Proposition 2.1. The normalizing constant ω is given by

ω = (
1 − τ−1 + λ−1τ−1(log τ) log log τ

)−1
. (4)

Proof. Using the changes of variables z = (x/σ)α and u = (log log z)/(log log τ), respec-
tively in the second and fourth equalities, we have

ω−1 = ω−1
∫ ∞
σ

f (x|σ,α, τ, λ) dx = ω−1
∫ ∞

1
f (z|1,1, τ, λ) dz

=
∫ τ

1
z−2 dz + τ−1(log τ)

∫ ∞
τ

1

z

1

log z

(
log log τ

log log z

)λ+1
dz



152 A. Desgagné

= 1 − τ−1 + τ−1(log τ)(log log τ)

∫ ∞
1

(
1

u

)λ+1
du

= 1 − τ−1 + λ−1τ−1(log τ) log log τ. �

The density f (x|σ,α, τ, λ) in (3) with its log-log-Pareto right tail decay ensures full ro-
bustness, but it is not guaranteed to be a contaminated Pareto distribution. The next step then
consists in rewriting this density as a mixture of a Pareto with an outlier component. We ob-
serve that the normalizing constant ω can also play the role of a mixture weight if we add the
constraint 0 < ω < 1. Since ω is now a free parameter, in return we make the parameter τ act
as the normalizing constant, so τ is set automatically using (4). We obtain

f (x|ω,σ,α,λ) = ωfP(x|σ,α) + (1 − ω)fC(x|ω,σ,α,λ),

where 0 < ω < 1 is the mixture weight for the Pareto component and fC(x|ω,σ,α,λ) is
the contaminating component. If ω = 1, we define f (x|ω,σ,α,λ) = fP(x|σ,α), that is, the
contaminated Pareto is simply the Pareto distribution. Therefore, if 0 < ω < 1, we can deduce
that the contaminating component is defined on x ∈ (στ 1/α,∞) ⇔ z ∈ (τ,∞) and given by

fC(x|ω,σ,α,λ)

= (1 − ω)−1f (x|ω,σ,α,λ) − (1 − ω)−1ωfP(x|σ,α)

=
⎧⎪⎨
⎪⎩

0 if σ ≤ x ≤ στ 1/α⇔ 1 ≤ z ≤ τ,

(1 − ω)−1ωαx−1
[
τ−1 log τ

log z

(
log log τ

log log z

)λ+1
− z−1

]
if x > στ 1/α ⇔ z > τ,

where z := (x/σ)α . By construction, fC(x|ω,σ,α,λ) integrates to 1 over its domain. There-
fore, the last step is to fix the parameter λ such that fC(x|ω,σ,α,λ) > 0 for x > στ 1/α , so
that fC(x|ω,σ,α,λ) is well defined as a density.

Proposition 2.2. The density fC(x|ω,σ,α,λ) is strictly positive for x > στ 1/α ⇔ z > τ if
and only if 0 < λ ≤ (log τ − 1)(log log τ) − 1.

Proof. We first observe that the condition τ > e ⇔ log τ > 1 ensures that log z > 1 and
log log z > 0 for all z ≥ τ . We want to show, for z > τ ⇔ log z > log τ , that

fC(x|ω,σ,α,λ) > 0 ⇔ τ−1 log τ

log z

(
log log τ

log log z

)λ+1
− z−1 > 0

⇔ τ−1(log τ)(log log τ)λ+1 > z−1(log z)(log log z)λ+1

⇔ log z − log log z − (λ + 1) log log log z > log τ − log log τ − (λ + 1) log log log τ

⇔ h(log z) > h(log τ),

where

h(u) := u − logu − (λ + 1) log logu,

with

h′(u) = 1 − u−1 − (λ + 1)(u logu)−1 and h′′(u) = u−2 + (λ + 1)(logu + 1)(u logu)−2.

We observe that h(u) is convex for all u ≥ log τ > 1 since h′′(u) > 0 for all u > 1. Therefore,

h(log z) > h(log τ) for all log z > log τ ⇔ h′(log τ) ≥ 0

⇔ 1 − (log τ)−1 − (λ + 1)(log τ)−1(log log τ)−1 ≥ 0

⇔ λ ≤ (log τ − 1)(log log τ) − 1. �
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While Proposition 2.2 says that all values of 0 < λ ≤ (log τ − 1)(log log τ) − 1 generate a
valid density, we set λ := (log τ − 1)(log log τ) − 1 to obtain the lightest log-log-Pareto right
tail decay. In doing so, we simplify the estimation of the density by reducing the number of
parameters to three, namely ω, σ and α.

We are now ready to define formally our contaminated Pareto model. We name the con-
taminating component “filtered-log-log-Pareto (FLLP)” distribution (specifically, filtered of
the Pareto) and we name the mixture “FLLP-contaminated Pareto distribution” or simply
P-FLLP distribution.

Definition 2.1. A random variable X is said to have a filtered-log-log-Pareto (FLLP) distri-
bution (specifically, filtered of the Pareto), if its density is given by

fFLLP(x|ω,σ,α) := (1 − ω)−1ωαx−1
[
τ−1 log τ

log z

(
log log τ

log log z

)λ+1
− z−1

]
,

for x > στ 1/α ⇔ z > τ , where z := (x/σ)α is the standardized version of x, 0 < ω < 1, σ >

0 is a scale parameter, α > 0 is a power parameter, the decay of the right tail is determined
by λ > 0 as a function of τ by

λ ≡ λ(τ) := (log τ − 1)(log log τ) − 1,

and the domain is determined by τ > 9.3931236 as a function of ω, where τ ≡ τ(ω) is the
unique solution of

ω−1 = 1 − τ−1 + λ−1τ−1(log τ) log log τ. (5)

Note that ω → 0 ⇔ λ → 0 ⇔ τ → 9.39312358 . . . and ω → 1 ⇔ λ → ∞ ⇔ τ → ∞.

Definition 2.2. A random variable X is said to have an FLLP-contaminated Pareto
distribution—also called a P-FLLP distribution—if its distribution is this following mixture:

P-FLLP(ω,σ,α) := ωP(σ,α) + (1 − ω)FLLP(ω,σ,α),

with P(σ,α) denoting a Pareto distribution as defined in (1) and FLLP(ω,σ,α) denoting
the filtered-log-log-Pareto (FLLP) distribution as given in Definition 2.1. If ω = 1, we define
P-FLLP(ω = 1, σ,α) := P(σ,α). The density of the P-FLLP(ω,σ,α) distribution, if 0 <

ω < 1, can be written as

fP-FLLP(x|ω,σ,α) := ωfP(x|σ,α) + (1 − ω)fFLLP(x|ω,σ,α)

=
⎧⎪⎨
⎪⎩

ωαx−1z−1 if σ ≤ x ≤ στ 1/α ⇔ 1 ≤ z ≤ τ,

ωαx−1τ−1 log τ

log z

(
log log τ

log log z

)λ+1
if x > στ 1/α ⇔ z > τ,

where z := (x/σ)α is the standardized version of x, 0 < ω < 1 is the mixture weight, σ > 0
is a scale parameter and α > 0 is a power parameter. The decay of the right tail is determined
by λ > 0 and the outlier region is determined by τ > 9.3931236, where λ ≡ λ(τ) is defined
as a function of τ and τ ≡ τ(ω) is defined as a function of ω, such as given in Definition 2.1.

We have illustrated in Figure 1 the P-FLLP(ω,σ,α) density for σ = 1 and different com-
binations of ω, α. We also showed its P(σ,α) and FLLP(ω,σ,α) components. We observe
that the P-FLLP mixture (solid gray line) and the Pareto density (dashed black line) are visu-
ally almost indistinguishable, which is a desirable property for efficient parameter estimation
is the absence of outliers. More precisely, as expressed in Definition 2.2 and illustrated in
Figure 1, the P-FLLP density is the Pareto density downweighted by the mixture weight ω in
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Figure 1 The P-FLLP(ω,σ,α) density (solid gray line) as a mixture of the P(σ,α) (dashed black line) and the
FLLP(ω,σ,α) (solid black line), for σ = 1 and different combinations of ω, α.

the core part defined as 1 ≤ z ≤ τ and to compensate, the right tail z > τ (the outlier region)
is raised everywhere to accommodate for possibly more extreme observations than expected
under the Pareto model.

We also observe in Figure 1 the outlier component represented by the FLLP(ω,σ,α) den-
sity (solid black line). The FLLP density is defined only on the right tail (z > τ) in the spirit
of the outlier region defined by Davies and Gather (1993). It is a rather diffuse or vague den-
sity with its log-log-Pareto decay, similar to the non-informative prior in Bayesian inference.
We do not seek with the outlier component to precisely capture a specific contamination dis-
tribution. Rather, it aims to approximate any upper outlier distribution through its super heavy
tail. Indeed, as mentioned above, it is shown in Desgagné (2013) that super heavy tails with
logarithmic decay allow full robustness in estimating a scale model or, equivalently, with log-
log decay in the estimation of a power model such as the Pareto tail index, and this, for any
outlier pattern. We focus on modeling non-outliers, not outliers.

The last but one of the most important features of the P-FLLP(ω,σ,α) mixture in a robust
estimation context is its automatic adaptation to the proportion of outliers. Both the outlier
region threshold τ and the tail decay λ depend uniquely on the expected proportion of Pareto
observations ω, or equivalently on the expected proportion of outliers 1 − ω. A larger pro-
portion of outliers (i.e., a smaller value of ω) is accompanied by smaller τ and λ values,
meaning a larger outlier region with a heavier right tail, and vice-versa. For example, a value
of ω = 0.95 generates τ = 25.421 and λ = 1.625, while a smaller value of ω = 0.90 gener-
ates τ = 18.171 and λ = 1.023. Naturally, if ω = 1, the P-FLLP model has no contaminating
component and becomes the Pareto distribution.
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3 Robust inference of the Pareto model using the P-FLLP distribution

In this section, the efficient and robust estimator of the Pareto tail index using the FLLP-
contaminated Pareto distribution is introduced. The P-FLLP estimator is presented in Sec-
tion 3.1. In Section 3.2, we present asymptotic results for the P-FLLP estimator, where topics
such as infinite outliers, convergence in probability and breakdown point are investigated.
A connection between our approach and M-estimators is made in Section 3.3. We go a step
further in Section 3.4 where robust confidence interval for the Pareto tail index is discussed.

3.1 Robust estimation of the Pareto tail index using the P-FLLP distribution

Consider a random sample x ≡ (x1, . . . , xn) assumed to come from the Pareto model P(σ,α),
except for potential upper outliers. Recall that σ is treated as a nuisance parameter. It is there-
fore assumed that σ is known, otherwise it suffices to replace it by its estimator x(1). Robust
estimation of the Pareto tail index α should ideally be based only on Pareto observations,
while excluding outliers. Our approach then consists in extending the Pareto model to the
FLLP-contaminated Pareto distribution as introduced in Definition 2.2, that is,

xi
L∼P-FLLP(ω,σ,α) := ωP(σ,α) + (1 − ω)FLLP(ω,σ,α).

The particular case ω = 1, which represents the absence of outliers, gives the Pareto distribu-
tion. The outlier component is modeled by the FLLP distribution, which as mentioned earlier
is a rather diffuse or vague density with a log-log-Pareto decay that aims to represent all up-
per outlier distributions through its super heavy tail. The objective is to estimate the ω and α

parameters efficiently in a robustness context.
Our approach is to adapt the well-known expectation-minimization (EM) algorithm

(Dempster, Laird and Rubin, 1977) to our robustness context. More precisely, the modifica-
tion of the algorithm is done at step M, while step E is identical. We introduce an unobserved
vector of n independent latent Bernoulli variables

v := (v1, . . . , vn)
T , (6)

defined as vi = 1 with probability ω if the observation xi comes from the Pareto component
or vi = 0 with probability 1 − ω if it comes from the FLLP contaminating distribution. Since
the EM algorithm is an iterative process, consider our current estimates to be ω̂(t) and α̂(t)

at step (t). Using Bayes’ theorem, we can verify that vi |x, ω̂(t), α̂(t) ≡ vi |xi, ω̂
(t), α̂(t) has a

Bernoulli distribution with its mean given by

π̂
(t)
i := Evi |xi ,ω̂

(t),α̂(t) (vi) = ω̂(t)fP(xi |σ, α̂(t))

ω̂(t)fP(xi |σ, α̂(t)) + (1 − ω̂(t))fFLLP(xi |ω̂(t), σ, α̂(t))

= ω̂(t)fP(xi |σ, α̂(t))

fP-FLLP(xi |ω̂(t), σ, α̂(t))
.

Ideally, if the vi ’s were known, we could accurately distinguish non-outliers (vi = 1) from
outliers (vi = 0) and base the MLE on the non-outliers. Since they are unknown, the idea is
to estimate each vi by their posterior mean π̂

(t)
i and to base the inference on the observations

weighted by the π̂
(t)
i .

Step E consists in estimating the log-likelihood of the complete data by its expectation.
Since the likelihood function is given by

L(ω,α|x,v) =
n∏

i=1

[
ωfP(xi |σ,α)

]vi
[
(1 − ω)fFLLP(xi |ω,σ,α)

]1−vi ,
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we have

Q
(
ω,α|ω̂(t), α̂(t)) := Ev |x,ω̂(t),α̂(t)

(
logL(ω,α|x,v)

) =
n∑

i=1

Evi |xi ,ω̂
(t),α̂(t)

(
vi

(
logω + logfP(xi |σ,α)

)
+ (1 − vi)

(
log(1 − ω) + logfFLLP(xi |ω,σ,α)

))
=

n∑
i=1

π̂
(t)
i

(
logω + logfP(xi |σ,α)

)

+ (
1 − π̂

(t)
i

)(
log(1 − ω) + logfFLLP(xi |ω,σ,α)

)
.

Step M normally consists of estimating a new set of parameters ω̂(t+1) and α̂(t+1) by maxi-
mizing Q(ω,α|ω̂(t), α̂(t)) with respect to ω and α. However, this is not optimal in our robust-
ness context since the outlier component fFLLP(xi |ω,σ,α) depends on both ω and α. Only
Pareto observations should contain information about α and only the estimated proportion
of Pareto observations should be used for the estimation of ω. Also, we focus on modeling
non-outliers, not outliers. This is where we adapt the algorithm to our robustness context. We
instead assume that the outlier component depends on a distinct set of parameters denoted by
ω0 and α0, so that the quantity to be maximized becomes

Q
(
ω,α,ω0, α0|ω̂(t), α̂(t))
=

n∑
i=1

π̂
(t)
i

(
logω + logfP(xi |σ,α)

) + (
1 − π̂

(t)
i

)(
log(1 − ω) + logfFLLP(xi |ω0, σ,α0)

)
.

Then we proceed normally by estimating ω̂(t+1) and α̂(t+1) by
argω,α max < Q(ω,α,ω0, α0|ω̂(t), α̂(t)) and we find

ω̂(t+1) := 1

n

n∑
i=1

π̂
(t)
i and 1/α̂(t+1) :=

∑n
i=1 π̂

(t)
i log(xi/σ )∑n
i=1 π̂

(t)
i

. (7)

As for the estimation of ω0 and α0, we simply set

ω̂
(t+1)
0 := ω̂(t+1) and α̂

(t+1)
0 := α̂(t+1).

In doing so, our estimators are no longer maximum likelihood estimators. However, our ap-
proach has several advantages. We keep a small number of parameters to estimate and we
obtain the explicit formulas given in (7), which would not be the case if we used the original
EM algorithm. The estimated model remains an P-FLLP(ω,σ,α) distribution, which would
not be the case if we kept distinct parameters for the FLLP component. Thanks to the weights
π̂

(t)
i , the estimation of the Pareto tail index is essentially done on Pareto observations and the

estimation of ω represents, as it should, the mixture weight or the proportion of non-outliers.
Moreover, our approach is validated by theoretical results presented in Section 3.2. For ex-
ample, we show that our estimators achieve an asymptotic breakdown point (BP) of 50%, the
highest desired value. In this paper, BP is defined as the largest proportion of infinite upper
outliers that an estimator can robustly handle. We also show that our estimator of α, under the
Pareto model, behaves asymptotically like the MLE and therefore shares the same asymptotic
properties such as full efficiency. We also show in Section 4.1, that under the Pareto model,
our estimators generate exactly the MLE benchmark in a proportion ranging from 0.84 to
0.91 (depending on the sample size), which is a rare feature for a robust estimator. We now
formally present the P-FLLP estimators of the parameters ω and α.
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Definition 3.1. The robust P-FLLP estimators of ω (the expected proportion of Pareto obser-
vations) and α (the Pareto tail index) are given by

ω̂ := 1

n

n∑
i=1

π̂i and α̂−1 = γ̂ :=
∑n

i=1 π̂i log(xi/σ )∑n
i=1 π̂i

, with

π̂i := ω̂fP(xi |σ, α̂)

fP-FLLP(xi |ω̂, σ, α̂)
.

These estimators are the results of an iterative process. When different solutions are found,
only those with ω̂ > 1/2 are considered. The P-FLLP estimators are then defined as the
solution with the largest value of α̂, or equivalently, with the smallest value of γ̂ . If σ is
unknown, it is replaced by its estimate x(1).

An efficient way to perform multiple searches with different initial values is to con-
sider values of ω̂ uniformly distributed between 1/2 and 1, for example, ω̂ ∈ 1/2 +
{ 1

2(k+1)
, 2

2(k+1)
, . . . , k

2(k+1)
} for say k initial values. For each given ω̂, the initial value of

α̂ is then set at the MLE (as defined in (2)) computed on the �ω̂n smallest observations,
where �· is the floor function. In practice, we have observed that k = 5 searches using this
strategy are generally sufficient to find all existing solutions. We also noted that the itera-
tive process always converges and that one or two solutions are usually found. In addition,
the computation time is fast. For example, it took about 0.25 seconds with the R software
to launch 5 different searches on a sample of size n = 1000. Note that we can consider that
we have reached convergence when the difference between the estimators of two successive
iterations is less than a chosen threshold such as 10−9.

We now examine the strategy adopted in Definition 3.1 when the iterative process produces
more than one solution. First, it is trivial to see that MLE with ω̂ = 1, π̂1 = 1, . . . , π̂n = 1 is
either the only solution (in the absence of outliers) or one of the solutions (in the presence
of outliers). When solutions other than MLE are also found, only those with ω̂ > 0.50 are
considered, which has the effect (see Section 3.2) of generating a breakdown point of 50%,
the highest desirable value. Recall that ω̂ is the estimate of the proportion of non-outliers
and it is common sense that non-outliers represent at least half of the data, which is why
we only consider solutions with ω̂ > 0.50. Among these solutions, the P-FLLP estimators
are defined as the solution with the largest value of α̂, which is the strategy generating the
highest robustness to outliers while sacrificing very little efficiency (which remains very high)
in the absence of outliers.

In addition to ω̂ which estimates the expected proportion of Pareto observations and α̂

which estimates the Pareto tail index, we also obtain a powerful tool for identifying outliers
using π̂i , which estimates the probability that the observation xi comes from the Pareto com-
ponent. If an observation is located in the core part, that is σ < xi ≤ σ τ̂ 1/α̂ ⇔ 1 ≤ (xi/σ )α̂ ≤
τ̂ , then we have π̂i = 1, which means that the probability of being a non-outlier is estimated
at 1. Note that τ̂ ≡ τ̂ (ω̂) is the unique solution in τ of equation (5), replacing ω by ω̂. If
an observation is located in the outlier region, that is xi > σ τ̂ 1/α̂ ⇔ (xi/σ )α̂ > τ̂ , then π̂i

decreases gradually from 1 to 0 as xi increases to infinity. Equivalently, the estimated proba-
bility of being an outlier, given by 1 − π̂i , increases from 0 to 1 as xi increases from σ τ̂ 1/α̂ to
infinity. If we want to make a binary decision about the outlier nature of an observation, we
can simply identify a value as an outlier if π̂i < 0.5 and as a non-outlier if π̂i ≥ 0.5.

The P-FLLP estimator of α or γ in Definition 3.1 can be modified for some bias correction
under the Pareto model. It is well known that if σ is known, γ̂ MLE := n−1 ∑n

i=1 log(xi/σ )

is unbiased since γ̂ MLE L∼�(n, γ /n). However, α̂MLE := n/
∑n

i=1 log(xi/σ ) is biased and it
is rather the estimator α̂MLE-U := (n − 1)/

∑n
i=1 log(xi/σ ) that is unbiased since it can be
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shown that α̂MLE L∼ I�(n,nα), where I� stands for the inverse gamma distribution. If σ is
unknown and estimated by σ̂ := x(1), then it is rather γ̂ MLE-U := (n − 1)−1 ∑n

i=1 log(xi/σ̂ )

that is unbiased for γ since γ̂ MLE L∼�(n − 1, γ /n) in this case. Finally, α̂MLE-U := (n −
2)/

∑n
i=1 log(xi/σ̂ ) is unbiased for α since it can be shown that α̂MLE L∼ I�(n − 1, nα) when

σ is estimated by x(1).
One way to reconcile these disagreements—due to the asymmetry in the distributions of

α̂ and γ̂ —is to make a compromise as done in Brazauskas and Serfling (2000a). Note that
we use σ in the following equations, but recall that we replace σ with its estimate x(1) if it is
unknown. It consists in dividing

∑n
i=1 log(xi/σ ) by 0.5χ2

0.5;2(n−1σ ) ≈ n − 1σ − 1/3 instead

of n, where χ2
0.5;ν ≈ ν − 2/3 is the median of a chi-square distribution with ν degrees of

freedom and 1σ is an indicator function defined as

1σ :=
{

0, if σ is known;

1, if σ is unknown and estimated by x(1).
(8)

In doing so, we obtain a median-unbiased (MU) version of the MLE for both α and γ :

1/α̂MLE-MU = γ̂ MLE-MU :=
∑n

i=1 log(xi/σ )

0.5χ2
0.5;2(n−1σ )

≈
∑n

i=1 log(xi/σ )

n − 1σ − 1/3
. (9)

Therefore, to achieve different bias corrections in our robust context, we modify
∑n

i=1 π̂i =
ω̂n (which represents the estimated number of Pareto observations) in the denominator of γ̂

as follows:

γ̂ P-FLLP-U :=
∑n

i=1 π̂i log(xi/σ )

ω̂n − 1σ

for a correction of bias for γ,

α̂P-FLLP-U := ω̂n − 1σ − 1∑n
i=1 π̂i log(xi/σ )

for a correction of bias for α,

1

α̂P-FLLP-MU = γ̂ P-FLLP-MU :=
∑n

i=1 π̂i log(xi/σ )

0.5χ2
0.5;2(ω̂n−1σ )

≈
∑n

i=1 π̂i log(xi/σ )

ω̂n − 1σ − 1/3
for a correction of median-bias.

(10)

These estimators are used in combination with ω̂ and π̂1, . . . , π̂n in the iterative process
described in Definition 3.1.

3.2 Asymptotic properties of the P-FLLP estimators

We first consider asymptotic properties of P-FLLP estimators in Section 3.2.1 in the sense that
the upper outliers are infinite, for any fixed sample size n, which allows us to determine their
breakdown point (BP). In Section 3.2.2, we consider the classical nature of the asymptotic,
that is, when n → ∞. We study the convergence of the P-FLLP estimators, which allows
us to determine the asymptotic BP for different distributions of the observations. Finally,
we investigate the asymptotic behavior of the P-FLLP estimator of γ := α−1 when the true
distribution is a contaminated Pareto distribution with different levels of contamination.

3.2.1 Behavior of the P-FLLP estimators in the presence of infinite upper outliers. We
suppose that our sample x1, . . . , xn (n ≥ 3) is divided into k ≥ 2 fixed observations (say
x1, . . . , xk) and n− k observations (say xk+1, . . . , xn) which behave as infinite upper outliers,
in the sense that xi → ∞, i = k + 1, . . . , n. The k fixed observations consist of non-outliers
and possibly finite upper outliers. Note that the term “P-FLLP iterative process” refers below
to the iterative process described in Definition 3.1 for finding the P-FLLP estimators.
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Proposition 3.1. If xk+1 → ∞, . . . , xn → ∞, the P-FLLP iterative process produces at least
one robust solution such that γ̂ = α̂−1 < ∞ ⇔ α̂ > 0. Furthermore, γ̂ = α̂−1 < ∞ ⇔
π̂k+1 = 0, . . . , π̂n = 0, that is, a robust solution such that γ̂ = α̂−1 < ∞ is necessarily a
solution which completely rejects the n − k infinite upper outliers, and vice versa.

Proof. We first show that γ̂ = α̂−1 < ∞ ⇒ π̂k+1 = 0, . . . , π̂n = 0. Suppose that the P-FLLP
iterative process converged to a solution where π̂k+1 = 0, . . . , π̂n = 0 is not satisfied, that is, at
least one infinite outlier is not completely rejected. Without loss of generality, suppose π̂n >

0. Then we have α̂−1 := (
∑n

i=1 π̂i)
−1 ∑n

i=1 π̂i log(xi/σ ) ≥ (
∑n

i=1 π̂i)
−1π̂n log(xn/σ ) → ∞

since π̂n > 0, xn → ∞, xi/σ ≥ 1 and 0 ≤ π̂i ≤ 1 for i = 1, . . . , n.
We now show that π̂k+1 = 0, . . . , π̂n = 0 ⇒ α̂−1 < ∞. Suppose we have π̂k+1 =

0, . . . , π̂n = 0, then

α̂−1 :=
(

n∑
i=1

π̂i

)−1 n∑
i=1

π̂i log(xi/σ ) =
(

n∑
i=1

π̂i

)−1 k∑
i=1

π̂i log(xi/σ ) < ∞

since it is based on the fixed observations x1, . . . , xk . Note that σ is fixed, whether known or
estimated by x(1), since the sample minimum is necessarily found among the k fixed obser-
vations.

Finally, we show that the P-FLLP iterative process generates at least one robust solution
such that α̂−1 < ∞, or equivalently as we have just shown, such that π̂k+1 = 0, . . . , π̂n = 0.
Suppose we have π̂k+1 = 0, . . . , π̂n = 0 at the initial step or at some other step in the iterative
process. At the next iteration, we obtain ẑi := (xi/σ )α̂ → ∞ for i = k + 1, . . . , n since xi →
∞, σ is fixed and α̂−1 < ∞ ⇔ α̂ > 0. We therefore always obtain π̂k+1 = 0, . . . , π̂n = 0, at
this iteration and for all the following ones, since

π̂i := ω̂fP(xi |σ, α̂)

fP-FLLP(xi |ω̂, σ, α̂)
= ω̂fP(ẑi |1,1)

fP-FLLP(ẑi |ω̂,1,1)

and the right tail of the P-FLLP density is heavier than that of the Pareto, which implies that
π̂i → 0 as ẑi → ∞. �

Although Proposition 3.1 establishes that the P-FLLP iterative process generates at least
one robust solution (γ̂ = α̂−1 < ∞) and that a robust solution completely rejects infinite
outliers (π̂k+1 = 0, . . . , π̂n = 0), it is not guaranteed that one of them is such that ω̂ > 1/2,
that is, a valid candidate for the P-FLLP estimators. Note that a non-robust solution in this
context of infinite outliers is a solution with γ̂ → ∞ ⇔ α̂ → 0.

Proposition 3.2. If we have

• xk+1 → ∞, . . . , xn → ∞, and
• there exists at least one solution satisfying ω̂ > 1/2 among the robust solutions (those with

γ̂ = α̂−1 < ∞ ⇔ π̂k+1 = 0, . . . , π̂n = 0) generated by the P-FLLP iterative process (see
Proposition 3.1),

then the P-FLLP estimators (see Definition 3.1) are found among the robust solutions satis-
fying ω̂ > 1/2, precisely the solution with the largest α̂.

Proof. According to Definition 3.1, in the case of multiple solutions, the P-FLLP estimators
are defined as the solution with the largest value of α̂, provided that ω̂ > 1/2. It is therefore
sufficient to observe that α̂ → 0 for a non-robust solution and α̂ > 0 for a robust solution, so
the solution with the largest α̂ is necessarily among the robust ones. �



160 A. Desgagné

To better interpret these propositions, recall that there are k fixed observations and n − k

infinite outliers. The proportion and number of outliers are respectively estimated by 1 − ω̂

and n− ω̂n, which include the n−k infinite outliers and hence the potential k − ω̂n ≥ 0 finite
upper outliers (among the k fixed observations). Therefore, the proportion and number of non-
outliers (necessarily found among the k fixed observations) in the sample are respectively
estimated by ω̂ and ω̂n.

Proposition 3.2 ensures that the P-FLLP estimators can handle robustly the n− ω̂n outliers,
that is, the n − k infinite outliers and the k − ω̂n finite outliers (if any), if they represent less
than half of the sample, that is, if n − ω̂n < n/2 ⇔ 1 − ω̂ < 1/2. Or, equivalently, if the
estimated number of non-outliers constitutes the majority of the sample, that is, if ω̂n >

n/2 ⇔ ω̂ > 1/2.
Consider the special case where k = ω̂n ⇔ ω̂ = k/n, which means that the estimated prob-

ability of finding finite upper outliers among the k fixed observations is 0, that is, k − ω̂n = 0.
Since ω̂n = ∑n

i=1 π̂i and π̂k+1 = 0, . . . , π̂n = 0 for robust solutions, ω̂ = k/n is equiva-
lent to π̂1 = 1, . . . , π̂k = 1. The condition ω̂ > 1/2 in Proposition 3.2 is then equivalent to
k > n/2 ⇔ n− k < n/2. In this case, we can determine the breakdown point (BP), which can
be defined in our context as the largest proportion of infinite upper outliers that an estimator
can handle robustly. Since the n − k infinite outliers are rejected as long as they represent
less than 50% of the sample, this corresponds to a BP of n−1 max{m ∈ N : m < n/2} (for
example, BP = 49/100 if n = 100), which tends to a BP of 50% when n → ∞, the highest
desired value.

Proposition 3.2 is also useful for determining the BP of the P-FLLP estimators when n →
∞ and the distribution of the fixed observations is specified. First, we need to study the
convergence of the P-FLLP estimators as n → ∞.

3.2.2 Behavior of the P-FLLP estimators when n → ∞. We take the analysis further by
studying the asymptotic behavior of the P-FLLP estimators, where the asymptotic nature
is now understood as the sample size n approaching infinity. Instead of directly assuming
that xi → ∞ for i = k + 1, . . . , n as in Section 3.2.1, suppose now that the observations
x1, . . . , xn come from a density g defined on [σ,∞). The outlying nature of the observations
xi is then integrated into the model by their density g, for example, via a contaminated Pareto

distribution. Given the well-known result x(1)
P→σ as n → ∞, we assume in this section that

σ is known.

Proposition 3.3. Consider a random sample x1, . . . , xn generated from a density g(x) de-
fined on [σ,∞). Consider the iterative process leading to the robust P-FLLP estimators
described in Definition 3.1, except that at iteration (t + 1) the values of ω̂(t) and α̂(t) are
replaced by known constants ω̂∗(t) and α̂∗(t), that is,

ω̂(t+1) = 1

n

n∑
i=1

π̂
(t)
i and δ̂(t+1) := ω̂(t+1)

α̂(t+1)
= 1

n

n∑
i=1

π̂
(t)
i log(xi/σ ),

with

π̂
(t)
i = ω̂∗(t)fP(xi |σ, α̂∗(t))

fP-FLLP(xi |ω̂∗(t), σ, α̂∗(t))
and

1

α̂(t+1)
= γ̂ (t+1) = δ̂(t+1)

ω̂(t+1)
.

Then we have, as n → ∞,

ω̂(t+1) P→ ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
g(x) dx,
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δ̂(t+1) P→ ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
log(x/σ)g(x) dx,

1

α̂(t+1)
= γ̂ (t+1) P→

∫ ∞
σ

fP (x|σ,α̂∗(t))

fP-FLLP(x|ω̂∗(t),σ,α̂∗(t))
log(x/σ)g(x) dx∫ ∞

σ
fP (x|σ,α̂∗(t))

fP-FLLP(x|ω̂∗(t),σ,α̂∗(t))
g(x) dx

.

Proof. Since the values of ω̂(t) and α̂(t) are replaced by known constants ω̂∗(t) and α̂∗(t), the
only random components of ω̂(t+1) and δ̂(t+1) are x1, . . . , xn, more precisely xi in each term
π̂

(t)
i . Therefore, using the weak law of large numbers, we have, as n → ∞,

ω̂(t+1) = 1

n

n∑
i=1

π̂
(t)
i

P→E
(
π̂

(t)
1

) = ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
g(x) dx,

δ̂(t+1) = 1

n

n∑
i=1

π̂
(t)
i log(xi/σ )

P→E
(
π̂

(t)
1 log(X/σ)

)

= ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
log(x/σ)g(x) dx,

and the convergence of 1/α̂(t+1) = γ̂ (t+1) follows directly from Slutsky’s theorem since
γ̂ (t+1) = δ̂(t+1)/ω̂(t+1). �

Using the idea of Proposition 3.3, we construct an algorithm for computing the asymp-
totic estimators of ω and α. This corresponds to the asymptotic version of the P-FLLP iter-
ative process described in Definition 3.1, where the density g(x) replaces the finite sample
x1, . . . , xn.

Definition 3.2. The asymptotic robust P-FLLP estimators of ω (the expected proportion of
Pareto observations) and α (the Pareto tail index), if the observations x1, . . . , xn (with n →
∞) are assumed to come from a density g defined on [σ,∞), are denoted ω̂∗ and α̂∗ = 1/γ̂ ∗
and are the results of the iterative process given by

ω̂∗(t+1) = ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
g(x) dx,

δ̂∗(t+1) = ω̂∗(t)
∫ ∞
σ

fP(x|σ, α̂∗(t))

fP-FLLP(x|ω̂∗(t), σ, α̂∗(t))
log(x/σ)g(x) dx,

1

α̂∗(t+1)
= γ̂ ∗(t+1) = δ̂∗(t+1)

ω̂∗(t+1)
.

When different solutions are found, only those with ω̂∗ > 1/2 are considered. The asymptotic
P-FLLP estimators are then defined as the solution with the largest value of α̂∗, or equiva-
lently, with the smallest value of γ̂ ∗. If σ is unknown, it is replaced by its estimate x(1).

Initial values ω̂∗(0) and α̂∗(0) must be provided. If we set ω̂∗(0) = 1, the convergence is
immediate and we obtain ω̂∗ = 1 and the asymptotic value of the MLE of α expressed in a
functional form:

1/α̂∗MLE = γ̂ ∗MLE =
∫ ∞
σ

log(x/σ)g(x) dx = Eg

(
log(X/σ)

)
. (11)

For the remainder of this section, we explore the behavior of the asymptotic P-FLLP esti-
mators ω̂∗ and α̂∗ = 1/γ̂ ∗ for different densities g. First, consider that g is the P-FLLP(ω,σ ,
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α) density defined on [σ,∞). Using the iterative process described in Definition 3.2, we find
ω̂∗ = ω and α̂∗ = α for any values of ω, σ , α. Given that the P-FLLP distribution is the
underlying model of the P-FLLP estimators, these results are not surprising, but reassuring
nonetheless. In the particular case where ω = 1, we have that g is the P(σ,α) density. Then
we find ω̂∗ = 1 and α̂∗MLE = [EP(σ,α)(log(X/σ))]−1 = α using (11). Note that, as expected,
if we instead use the P-FLLP estimators described in Definition 3.1 with a very large sample,
say of size n = 10,000, the estimates ω̂ and α̂ = 1/γ̂ approximate very closely to the asymp-
totic P-FLLP estimators ω̂∗ and α̂∗ = 1/γ̂ ∗. As a result, α̂P-FLLP behaves asymptotically like
α̂MLE under the Pareto model and therefore shares the same asymptotic properties.

Second, we study the behavior of the asymptotic P-FLLP estimators when g is the den-
sity of a contaminated Pareto, specifically the mixture ξ P(1,1) + (1 − ξ)δx0 , where δx0

is the probability measure that places mass 1 on point x0. We consider six levels of con-
tamination, namely 1 − ξ ∈ {0.02,0.05,0.10,0.20,0.35,0.48}. For each level of contami-
nation, the asymptotic value of γ̂ ∗ = 1/α̂∗ is calculated for a set of values of x0 covering
the range logx0 ∈ [log 2,15]. The asymptotic P-FLLP estimator of γ := α−1 is compared to
the asymptotic non-robust MLE in (11) and the robust probability integral transform statis-
tic estimator (PITSE) introduced by Finkelstein, Tucker and Veeh (2006). For the latter, five
tuning constants are considered to obtain asymptotic BP of 0.1, 0.2, 0.3, 0.4 and 0.5 and the
asymptotic estimates are approximated with a sample size n = 10,000. Note that we also
considered other robust estimators such as the optimal B-robust estimator (OBRE) proposed
by Victoria-Feser and Ronchetti (1994), the generalized median estimator (GME) proposed
by Brazauskas and Serfling (2000a) or the trimmed mean estimator (TME) introduced by
Kimber (1983). However, they are not presented here since they exhibit the same behavior
as the PITSE. Furthermore, Brzezinski (2016) recommended in their Monte Carlo simula-
tion comparisons the use of the PITSE for its simplicity and good performance in terms of
efficiency and robustness.

The results are presented in Figure 2. We observe that the asymptotic P-FLLP estima-
tor of γ := α−1 shows the same full robustness for all contamination levels. As long as the
value of x0 agrees with a Pareto distribution, no outliers are detected and γ̂ ∗P-FLLP = γ̂ ∗MLE.
When x0 exceeds a certain threshold and conflicts with the Pareto model, then the influence
of x0 on γ̂ ∗P-FLLP gradually decreases to almost nothing as x0 increases. In comparison, the
PITSE offers partial robustness, in that the influence of outliers is limited but not completely
eliminated, provided that the right tuning constant is chosen beforehand to match the level
of contamination. Recall that, for the PITSE and other robust estimators in general, an in-
crease in robustness is associated with a decrease in efficiency (performance in the absence
of outliers). As for the P-FLLP estimators, the parameter ω acts as a tuning constant that de-
termines the level of robustness, but its value is estimated by ω̂∗P-FLLP based on the level of
contamination of each sample. Moreover, since the P-FLLP estimator of γ := α−1 behaves
asymptotically like the MLE under the Pareto model, it achieves full asymptotic efficiency.

We observe in Figure 2 that the asymptotic P-FLLP estimators can robustly handle a pro-
portion of 1 − ξ = 48% “infinite” outliers represented by x0 = e15, when the other 52%
observations have a P(1,1) distribution. If we take the analysis a little further, we find that
the asymptotic P-FLLP estimators can robustly handle up to a proportion of 48.54% infinite
outliers, which means a BP of 48.54% when the “fixed” observations come from a Pareto
distribution. Specifically, we obtain ω̂∗P-FLLP = 0.50, which means 50% non-outliers to com-
pensate for 48.54% infinite outliers and a remaining proportion of 1.46% finite outliers re-
sulting from the upper values generated by the heavy-tailed Pareto distribution. It is possible
to achieve a BP of 50% if the Pareto component in the mixture g is replaced by a distribution
with a lighter right tail such as the half-normal distribution.
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Figure 2 Asymptotic estimation of γ := α−1, when the true distribution is the mixture ξ P(1,1) + (1 − ξ)δx0 ,
with six levels of contamination: 1 − ξ ∈ {0.02,0.05,0.10,0.20,0.35,0.48}.

3.3 Comparison of the P-FLLP estimator of the Pareto tail index with M-estimators

The family of M-estimators, in our context, can be defined as the solution in α of the equation∑n
i=1 ψα(xi) = 0 for a given ψ-function ψα(x). Given that

α̂−1 =
∑n

i=1 π̂i log(xi/σ )∑n
i=1 π̂i

⇔
n∑

i=1

π̂i

(
log(xi/σ ) − 1/α̂

) = 0,

we can define the ψ-function for the P-FLLP estimator of α as

ψα(x) := ωfP(x|σ,α)

fP-FLLP(x|ω,σ,α)

(
log(x/σ) − 1/α

)
,

if the true value of ω is assumed to be known (ω̂ depends on the sample x1, . . . , xn and ψα(x)

must be defined as a function of x only). In particular, if ω = 1, the ψ-function for the MLE
is given by

ψα(x) = log(x/σ) − 1/α,

which is the negative of the score function sα(x) := ∂
∂α

logfP(x|σ,α). Note that ψα(x) =
sα(x) would also be a valid ψ-function for the MLE since any multiplicative constant with
respect to x can be added to ψα(x).

Therefore, like the WMLE, the P-FLLP estimator of α can be thought of as an M-estimator
with a ψ-function based on the weighted score function, where the weights depend on a
constant ω representing the proportion of non-outliers. However, we go one step further by
estimating ω in the iterative process, which largely explains the simultaneous efficiency and
robustness of α̂P-FLLP.

The ψ-functions are plotted in Figure 3 for α̂MLE and α̂P-FLLP with σ = 1, α = 1 and ω set
to 0.50, 0.95 and 0.99. We observe that the P-FLLP estimators (for any fixed value of ω < 1)
are redescending, meaning that ψα(x) → 0 as x → ∞.
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Figure 3 The ψ -functions for α̂MLE and α̂P-FLLP, with σ = 1, α = 1 and ω set to 0.50, 0.95 and 0.99.

3.4 Robust confidence interval for the Pareto tail index

We take inference a little further in this section with a robust confidence interval for the
Pareto tail index α. We construct the confidence interval with the same approach as that used
for the robust estimators. If the vi ’s were known, we could accurately distinguish non-outliers
(vi = 1) from outliers (vi = 0) and proceed with the usual technique on the non-outliers. Since
they are unknown, the idea is to estimate each vi by their posterior mean π̂i and to base the
confidence interval on the observations weighted by the π̂i .

We first find the usual confidence interval on the Pareto observations assuming that
the vector v as defined in (6) is known (recall that vi = 1 if xi comes from the Pareto

component, and vi = 0 otherwise). It is well known that if x1, . . . , xn
L∼P(σ,α), then

2α
∑n

i=1 log(xi/σ )
L∼χ2

2n and 2α
∑n

i=1 log(xi/x(1))
L∼χ2

2(n−1). Note that we use σ in the fol-
lowing equations, but recall that we replace σ with its estimate x(1) if it is unknown. There-

fore, if xi |(vi = 1)
L∼P(σ,α) for i = 1, . . . , n, then we have

2α

n∑
i=1

vi log(xi/σ )
∣∣∣ v

L∼χ2
2(

∑n
i=1 vi−1σ ),

where 1σ is the indicator function defined in (8). Therefore, given that v is known, a 100(1 −
a)% confidence interval for α is given by

0.5χ2
a/2;2(

∑n
i=1 vi−1σ )∑n

i=1 vi log(xi/σ )
≤ α ≤

0.5χ2
1−a/2;2(

∑n
i=1 vi−1σ )∑n

i=1 vi log(xi/σ )
,

where χ2
p;ν is the p-th percentile of a χ2

ν distribution. If v were known, the true coverage
probability of this confidence interval (assuming the Pareto model for non-outliers) would be
equal to the nominal coverage probability, for any sample size.

In a second step, the latent variables vi are estimated by π̂i , which represents the estimated
probability that the observation xi comes from the Pareto component. Given that

∑n
i=1 π̂i =

ω̂n, we obtain this robust P-FLLP 100(1 − a)% confidence interval for α:

0.5χ2
a/2;2(ω̂n−1σ )∑n

i=1 π̂i log(xi/σ )
≤ α ≤ 0.5χ2

1−a/2;2(ω̂n−1σ )∑n
i=1 π̂i log(xi/σ )

. (12)
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It can be useful to express (12) using α̂ ≡ α̂P-FLLP as defined in (3.1) or using α̂P-FLLP-MU as
defined in (10). We obtain

χ2
a/2;2(ω̂n−1σ )

2ω̂n
α̂P-FLLP ≤ α ≤ χ2

1−a/2;2(ω̂n−1σ )

2ω̂n
α̂P-FLLP,

χ2
a/2;2(ω̂n−1σ )

χ2
0.5;2(ω̂n−1σ )

α̂P-FLLP-MU ≤ α ≤ χ2
1−a/2;2(ω̂n−1σ )

χ2
0.5;2(ω̂n−1σ )

α̂P-FLLP-MU.

(13)

The P-FLLP confidence interval for γ := 1/α is found by inverting the bounds. The true
coverage probability of this robust confidence interval under the Pareto model is investigated
by Monte Carlo simulations in Section 4 for a nominal coverage probability of 95% and
different sample sizes.

4 Comparison of MLE, PITSE and P-FLLP estimators using Monte Carlo
simulations

We now investigate the performance of the P-FLLP estimator of the Pareto tail index for
finite samples using Monte Carlo simulations. The performance in the absence of outliers is
examined in Section 4.1, where efficiency and coverage probability of confidence intervals
are established for different sample sizes. Robustness to outliers is studied in Section 4.2,
where the P-FLLP estimator of α is compared to the MLE and PITSE. Efficiency versus
robustness is analyzed in Section 4.3. The detailed programming code using R software is
provided in the Supplementary Material (Desgagné (2024)).

4.1 Performance in the absence of outliers

We first compare the performance of the P-FLLP estimator of the Pareto tail index α to the
MLE benchmark when the model to be estimated is P(σ,α) as defined in (1) and the true
model from which the observations x ≡ (x1, . . . , xn) were generated is P(σ0, α0)—the un-
contaminated model. The scale parameter σ , treated as a nuisance parameter, is estimated
by the sample minimum x(1) and we compare the median-unbiased estimators α̂MLE-MU

and α̂P-FLLP-MU as defined in (9) and (10), for the sample sizes n = 50, 100, 200, 500 and
1000. Note that the robust competitors compared in the comprehensive Monte Carlo study
of Brzezinski (2016), namely optimal B-robust estimator (OBRE), weighted maximum like-
lihood estimator (WMLE), generalized median estimator (GME), probability integral trans-
form statistic estimator (PITSE) and trimmed mean estimator (TME), depend on a tuning
constant. Therefore, any level of efficiency can be achieved in the absence of outliers (always
making a trade-off for the level of robustness), so there is no need to include these estimators
for this analysis under the uncontaminated model.

The performance of a given estimator α̂ := 1/γ̂ is measured in this paper by

E
(∣∣log(α̂/α0)

∣∣) = E
(∣∣log(γ̂ /γ0)

∣∣), (14)

where γ0 := 1/α0 and the expectation is taken with respect to the random sample. We can
show that the corrected MLE which minimizes (14) is given precisely by the median-unbiased
benchmark α̂MLE-MU := 1/γ̂ MLE-MU. Moreover, this measure is invariant whether we study
the performance of the Pareto tail index α or the index γ := 1/α.

In the absence of outliers, there is a price to pay for using robust estimators instead of the
MLE benchmark. We measure this cost for a given estimator α̂ by the relative efficiency (RE)
that we define as

RE :=
(
E(| log(α̂MLE-MU/α0)|)

E(| log(α̂/α0)|)
)2

. (15)
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Table 1 Relative efficiency of the P-FLLP estimator of α (to the MLE) for the uncontaminated model

Sample size 50 100 200 500 1000 ∞
Relative efficiency 0.932 0.948 0.961 0.975 0.984 1

Table 2 Probability in %, under the uncontaminated model, that the P-FLLP estimate of α is identical to that
of the MLE, for different sample sizes

Sample size 50 100 200 500 1000

Probability in % 91.0 89.1 87.2 85.1 84.0

Note that the square of the ratio is used to obtain results very similar to the relative efficiency
computed with mean squared errors, that is E((α̂MLE-MU − α0)

2)/E((α̂ − α0)
2), as is often

done in the literature.
We can verify that for most known estimators of α (including MLE, P-FLLP and PITSE),

the choice of the parameters σ0 and α0 in the true model P(σ0, α0) has no impact on the value
of α̂/α0 = (γ̂ /γ0)

−1, whether σ0 is known or estimated. As a result, we can fix σ0 = α0 = 1
without loss of generality in the simulations.

To study the performance under the uncontaminated model, 100,000 random samples were

simulated using x1, . . . , xn
L∼P(σ0, α0), for each of the sample sizes n = 50, 100, 200, 500

and 1000. For each sample generated, | log(α̂MLE-MU/α0)| and | log(α̂P-FLLP-MU/α0)| were
computed and their expectation were estimated by the average of the corresponding 100,000
simulated distances, for a given sample size. The estimated RE of α̂P-FLLP-MU are given in
Table 1. We observe that the RE of 0.932 is already high at n = 50 and that it increases with
the size of the sample to approach 1 as n → ∞ for full asymptotic efficiency.

In Table 2, we have estimated using 100,000 Monte Carlo simulations the probability that
α̂P-FLLP-MU is equal to α̂MLE-MU, or equivalently that ω̂P-FLLP-MU = 1, under the uncontami-
nated model and for sample sizes n of 50, 100, 200, 500 and 1000. Again, note that the choice
of the parameters σ0 and α0 in the true model P(σ0, α0) has no impact on these probabilities.
We observe high probabilities ranging from 0.84 to 0.91, which means that most of the time,
the P-FLLP estimators generate the MLE benchmark under the Pareto model. This largely
explains the high efficiency of the P-FLLP estimator. Moreover, this rare feature for a robust
method represents an asset for practitioners familiar with MLE.

We also investigated the true coverage probability and the average length (divided by α0)
of the confidence intervals (CI) for the Pareto tail index α, for a nominal coverage probability
of 1−a = 95% and under the uncontaminated P(σ0, α0) model. To this end, 100,000 random
samples were simulated under the P(σ0, α0) model for each of the sample sizes n = 50, 100,
200, 500 and 1000. For each sample generated, 95% CI using the P-FLLP and MLE estimates
were computed using (13) (it suffices to fix π̂1 = 1, . . . , π̂n = 1, ω̂ = 1 to obtain MLE CI).
The true coverage probability was estimated by the proportion of the 100,000 CI that included
α0, for a given sample size. The results are given in Table 3. The true coverage probabilities
are very close to 95% for the P-FLLP estimator, starting at 94.3% for n = 50 and increasing
toward 0.95 as n → ∞. We also found that the average length (divided by α0) of the P-FLLP
CIs are slightly larger than the MLE CIs, and the difference decreases toward 0 as n increases.
This demonstrates on the one hand that the robust P-FLLP confidence intervals defined in (12)
and (13) are well constructed and on the other hand that the price to pay compare to the MLE
CI is low.
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Table 3 True coverage probabilities (in %) and average length (divided by α0) of CI for α, under the uncontam-
inated model P(σ0, α0), for a nominal coverage probability of 95%

Sample size 50 100 200 500 1000

MLE true coverage 95.0 95.0 95.0 95.0 95.0
P-FLLP true coverage 94.3 94.3 94.4 94.7 94.8

Average length of the MLE CI 0.571 0.398 0.279 0.176 0.124
Average length of the P-FLLP CI 0.578 0.401 0.280 0.176 0.124

4.2 Performance in the presence of outliers

We now study the performance of the robust P-FLLP estimator when the model to be es-
timated is P(σ,α) and the true model from which the observations x ≡ (x1, . . . , xn) were
generated is contaminated. We included the non-robust MLE in our study as a benchmark
in terms of efficiency. Regarding the robust competitors, Brzezinski (2016) compared in a
comprehensive Monte Carlo analysis the best robust estimators, namely optimal B-robust es-
timator (OBRE), weighted maximum likelihood estimator (WMLE), generalized median es-
timator (GME), probability integral transform statistic estimator (PITSE) and trimmed mean
estimator (TME). They concluded that the robustness performance of the best estimators, for
a given level of efficiency, was quite similar. They recommended PITSE for its simplicity and
good performance in terms of robustness. Since these estimators exhibit the same behavior
against outliers, which is largely explained by the fact that they all depend on a tuning con-
stant, we included in our study PITSE with five tuning constants chosen to obtain asymptotic
breakdown points (BP) of 10%, 20%, 30%, 40%, 50%, which corresponds respectively to
asymptotic relative efficiencies (ARE) of 0.99, 0.96, 0.91, 0.84, 0.75. At one extreme we find
a PITSE estimator that is robust (BP = 50%) but not very efficient (ARE = 0.75) and at the
other extreme we find a PITSE estimator that is barely robust (BP = 10%) but very efficient
(ARE = 0.99). The comparison of PITSE and the P-FLLP estimator is delicate because the
first depends on a tuning constant chosen by the user which fixes the efficiency/robustness
compromise and the second depends only on the observations (its implicit tuning constant
ω is estimated for each dataset) so its ARE = 1 and its asymptotic BP ≈ 50% are fixed. For
traditional estimators with a tuning constant, the robustness is generally compared for the
same level of efficiency, which is however not possible when the comparison is made with
an estimator whose tuning constant is fixed automatically by the data, such as the P-FLLP
estimator. It will therefore be important in our comparison to consider the performance of ro-
bustness in relation to the level of efficiency. This efficiency-robustness trade-off is analyzed
using the premium-protection approach in Section 4.3

We now compare the performance of the P-FLLP estimator with the MLE benchmark and
the robust competitor PITSE when the model to be estimated is P(σ,α) and the true model
from which the observations x ≡ (x1, . . . , xn) were generated is a P(σ0, α0) contaminated
with a P(σ ∗

1 , α0), σ ∗
1 > σ0. Specifically,

• a fixed proportion ξ of the observations is generated from a P(σ0, α0), and
• a fixed proportion 1 − ξ is generated from the contaminating component modeled by a

P(σ ∗
1 , α0), with σ ∗

1 = σ0σ
1/α0
1 and σ ∗

1 > σ0 ⇔ σ1 > 1.

Note that if we set y := (x/σ0)
α0 to obtain the standardized case, this is equivalent to

simulating a proportion ξ of the observations y from a P(1,1) and a proportion 1 − ξ from a
P(σ1,1), σ1 > 1. Here again, the choice of the parameters σ0 and α0 in the true contaminated
model has no impact on the value of α̂/α0 = (γ̂ /γ0)

−1, whether σ0 is known or estimated.
As a result, we can fix σ0 = α0 = 1 without loss of generality in the simulations.
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Figure 4 Example of two datasets of size n = 50, where 5 outliers (left graph) and 10 outliers (right graph)
were generated from a P(e10,1). Note that the abscissa is on a logarithmic scale.

The sample size is set to n = 50. Other sample sizes such as n = 100 were considered,
but results were similar. Note that infinite sample size is studied in Section 3.2.2, especially
in Figure 2. We consider six levels of contamination, namely 1 − ξ ∈ {0.04,0.06,0.10,0.20,

0.30,0.40}, which corresponds to 2, 3, 5, 10, 15 and 20 observations for a sample of size
n = 50. The first four levels, from 4% to 20%, represent in practice a spectrum of light,
moderate and severe contamination. The extreme levels of 30% and 40%, of more theoret-
ical interest, allows us to evaluate the BP of an estimator, which we wish to be as high as
possible and ideally close to 50%. The scale parameter σ is estimated by the sample min-
imum x(1) and we compare the median-unbiased estimators α̂P-FLLP-MU and α̂MLE-MU with
the competitor PITSE. The performance of a given estimator α̂ := 1/γ̂ is again measured by
E(| log(α̂/α0)|) = E(| log(γ̂ /γ0)|).

Figure 4 shows an example of two contaminated datasets of size n = 50. In the left graph,
45 observations (ξ = 0.90) were generated from a P(1,1) and 5 outliers (1 − ξ = 0.10)
were generated from a P(logσ1 = 10,1). In the right graph, the ratio is instead ξ = 80%
non-outliers (40 observations) and 1 − ξ = 20% outliers (10 observations).

We must set the parameter σ1 > 1, which represents the left bound of the domain of the
standardized contamination component P(σ1,1), which amounts to selecting the parame-
ter σ ∗

1 in the contamination component P(σ ∗
1 , α0). Each value of σ1 represents a different

scenario. Instead of choosing a few rather arbitrary values, as is generally the case in the lit-
erature, we go further by choosing, for all practical purposes, all the values of σ1. To achieve
this, an interval logσ1 ∈ [log 2,B] is selected for each of the 6 contamination levels, so that
for any logσ1 beyond B , the influence of outliers on the robust estimators becomes stable.
We selected B = 15 for the four lowest contamination levels and B = 18 for the other two.
The interval [log 2,B] is then divided equally into 30 values of logσ1 to obtain a smooth
performance curve. This represents 30 different specific scenarios for each of the 6 contam-
ination levels, for a total of 180 scenarios. For each of these 180 scenarios, the measure
E(| log(α̂/α0)|) is estimated for each estimator in the study using 2000 Monte Carlo simula-
tions.

The results are shown in Figure 5, in which a separate graph is presented for each level
of contamination. In each graph, we find 7 curves representing the estimators P-FLLP, MLE
and PITSE with five tuning constants t ∈ (1/9,1/4,3/7,2/3,1) chosen to obtain asymptotic
BP of 10%, 20%, 30%, 40%, 50% respectively, which corresponds to ARE of 0.99, 0.96,
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Figure 5 Performance of different estimators of α (or γ ) for six levels of contamination.

Table 4 Average distances for the estimation of α or γ . The best value for each row appears in bold

PITSE

Contamination P-FLLP BP50% BP40% BP30% BP20% BP10% MLE

4% 0.15 0.14 0.14 0.14 0.16 0.20 0.28
6% 0.16 0.15 0.15 0.18 0.22 0.29 0.38
10% 0.21 0.20 0.24 0.30 0.39 0.47 0.56
20% 0.36 0.43 0.54 0.67 0.77 0.83 0.90
30% 0.44 0.75 0.95 1.09 1.17 1.20 1.25
40% 0.57 1.18 1.33 1.39 1.42 1.43 1.46

Avg. 4% to 10% 0.17 0.16 0.18 0.21 0.26 0.32 0.41
Rank 2 1 3 4 5 6 7

Avg. 4% to 20% 0.22 0.23 0.27 0.32 0.38 0.45 0.53
Rank 1 2 3 4 5 6 7

Avg. 4% to 40% 0.31 0.47 0.56 0.63 0.69 0.74 0.81
Rank 1 2 3 4 5 6 7

0.91, 0.84, 0.75. The values of logσ1 lie in the x-axis, and the measure E(| log(α̂/α0)|) =
E(| log(γ̂ /γ0)|) lies in the y-axis. Note that the upper bound of the y-axis was chosen such
that the MLE line finishes at the top-right corner to consistently visualize the performance of
each estimator relative to the MLE.

The results are also summarized in Table 4 by calculating, for each contamination level
and each estimator, the average of the distances E(| log(α̂/α0)|) computed at the 30 differ-
ent values of logσ1. This average distance can be interpreted as a measure of the distance
between a curve in a graph and the horizontal line at the origin. Equivalently, this can be
interpreted as the measure E(| log(α̂/α0)|) when a proportion ξ of the observations is gener-
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ated from a P(σ0, α0) and a proportion 1 − ξ is generated from a P(σ0σ
1/α0
1 , α0), with logσ1

randomly selected from the interval [log 2,B]. The smaller this average distance, the better.
The six rows in Table 4 labeled 4% to 40% correspond to the six graphs, respectively. The
best performance for each row appears in bold. Overall scores are assigned to each estimator
by calculating the average of the distance averages for (i) the 4%, 6% and 10% contamina-
tion scenarios, (ii) for the 4%, 6%, 10% and 20% contamination scenarios and (iii) for all
contamination scenarios ranging from 4% to 40%. The seven estimators are finally ranked
according to these overall scores.

Let us briefly analyze the robustness results only, without considering the efficiency of the
estimators (which is done in Section 4.3). As expected, for all contamination scenarios, MLE
has the worst robustness performance and that of PITSE increases with its BP. Looking at the
graphs in Figure 5, it can be seen that the P-FLLP estimator is the only one to show the same
complete robustness for all contamination levels. As long as the value of σ1 is below a certain
threshold, the observations of the contaminating component are in agreement with the uncon-
taminated component P(σ0, α0) and no outliers are detected by the P-FLLP estimator. Then,
an increasing conflict arises between the observations of the two different components as the
value of σ1 increases. The P-FLLP estimator manages this conflict by gradually decreasing
the influence of outliers to a point where they are virtually excluded. Note that the graphs in
Figure 5 for the case n = 50 are very similar to those in Figure 2 for the case n → ∞, which
confirms that our results are relevant for all sample sizes. If we look at Table 4, we observe
that for the low contamination scenario of 4%, P-FLLP and PITSE BP20% to BP50% have
the best performance, with their average distances ranging from 0.14 to 0.16. For the 6%
contamination scenario, P-FLLP and PITSE BP30% to BP50% have the best performance,
with their average distances ranging from 0.15 to 0.18. For the 10% contamination scenario,
P-FLLP, PITSE BP40% and PITSE BP50% have the best performance, with their average
distances ranging from 0.20 to 0.24. For the 20%, 30,% and 40% contamination scenarios,
the P-FLLP estimator clearly has the best performance, with respective average distances of
0.36, 0.44 and 0.57.

4.3 Efficiency-robustness trade-off using the premium-protection approach

In this section, we use the premium-protection approach of Anscombe (1960) to investi-
gate the efficiency-robustness trade-off. As in the previous section, we set the sample size to
n = 50. In the absence of outliers, the price of using a robust estimator instead of the MLE
benchmark is called the premium. For a given estimator α̂, we define the premium as

Premium(α̂) := E(| log(α̂/α0)|) −E(| log(α̂MLE-MU/α0)|)
E(| log(α̂MLE-MU/α0)|) ,

where the observations come from the uncontaminated model P(σ0, α0). The premiums, es-
timated using 100,000 Monte Carlo simulations for each of the seven estimators in the study,
are given in Table 5. The distances E(| log(α̂/α0)|) and RE are also given, where RE is de-
fined in (15). The premium and the RE are two equivalent measures since Premium(α̂) =

Table 5 Distances E(| log(α̂/α0)|), RE and premiums of different estimators of α, for a sample size of n = 50

PITSE

MLE P-FLLP BP10% BP20% BP30% BP40% BP50%

E(| log(α̂/α0)|) 0.1141 0.1182 0.1168 0.1187 0.1223 0.1279 0.1363
RE 1 0.932 0.954 0.924 0.871 0.796 0.700
Premium 0 3.6% 2.4% 4.1% 7.1% 12.1% 19.5%
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RE−1/2 − 1. For example, using the robust P-FLLP estimator instead of MLE increases the
distance E(| log(α̂/α0)|) from 0.1141 to 0.1182, under the pure P(σ0, α0) model. This in-
crease of 0.0041 represents 3.6% of the MLE distance of 0.1141, or a 3.6% premium to pay
for using this robust estimator.

In the presence of outliers, the gain provided by the use of a robust estimator instead of the
MLE is called the protection. For a given contamination level, we define the protection of a
given estimator α̂ as

Protection(α̂) := E(| log(α̂MLE-MU/α0)|) −E(| log(α̂/α0)|)
E(| log(α̂MLE-MU/α0)|) , (16)

where the observations come from a specified contaminated model. Instead of considering
each contaminated model separately, that is, each value of logσ1 in the interval [log 2,B],
we aggregate them as we did in Section 4.2. In other words, for a a given contamination
level ξ ∈ {4%,6%,10%,20%,30%,40%}, E(| log(α̂/α0)|) is the distance measure when a
proportion ξ of the observations is generated from a P(σ0, α0) and a proportion 1 − ξ is
generated from a P(σ0σ

1/α0
1 , α0), with logσ1 randomly selected from the interval [log 2,B].

The distance measures E(| log(α̂/α0)|) and E(| log(α̂MLE-MU/α0)|) in (16) then correspond
to the average distances found in Table 4. For example, using the robust P-FLLP estimator
instead of MLE decreases the average distance E(| log(α̂/α0)|) from 0.90 to 0.36, under the
20% contamination model. This decrease of 0.54 represents 60% of the MLE distance of
0.90, or 60% of protection obtained by using this robust estimator.

For each level of contamination, the protections are plotted against the premiums in Fig-
ure 6. Estimators with low premium and high protection are desired, which corresponds to
the upper left corner of the graphs where the P-FLLP estimator is located. This clearly shows
the simultaneous efficiency and robustness of the P-FLLP estimator. The dominance of the
P-FLLP estimator over PITSE is clear for the five contamination scenarios 6% to 40%, in

Figure 6 Premium versus protection, for a sample size of 50.
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terms of efficiency/robustness. Only PITSE-BP10% has a slightly lower premium than P-
FLLP, but it comes with a huge loss of protection. Only PITSE-BP40% and PITSE-BP50%
provide slightly more protection than P-FLLP for certain contamination scenarios, but this
comes with a huge premium increase. As for the PITSE-BP20% and PISTE-BP30%, they are
dominated by the P-FLLP both in premium and protection. For the 4% low contamination
scenario, P-FLLP, PITSE-BP20% and PITSE-BP30% show the best performance in terms of
premium/protection, making them excellent choices of robust estimators.

5 Fitting the Pareto and exponential models to daily crude oil returns

We collected daily closing prices (denoted pt , t = 0,1, . . . ,998) of crude oil futures for the
4-year period from October 9, 2017 to October 8, 2021 from the Yahoo Finance website
(product code CL = F). We then calculated their n = 998 corresponding log returns rt :=
log(pt/pt−1) and discount factors vt := exp(−rt ), t = 1, . . . ,998. We checked that the rt ’s
and the vt ’s are not serially correlated. Here we are interested in modeling losses, which are
characterized by negative log returns and discount factors greater than 1.

Specifically, we want to fit the Pareto model P(σ,α) to the right tail of the distribution of
discount factors vt , which is equivalent to fitting the exponential model E(μ = logσ,α) to
the right tail of the distribution of negative log returns −rt = logvt . The first step is to set the
parameter σ which defines the right tail. Since the cumulative distribution function (CDF) of
the Pareto model defined in (1) can be rewritten as

logvt = logσ − α−1 log
(
1 − FP(vt |σ,α)

)
,

we expect a positive linear relationship between logvt and − log(1 − FP(vt |σ,α)), with the
intercept and slope given by logσ and α−1. We show in Figure 7 the plot of logvt against
− log(1 − Fn(vt )), where Fn is the empirical CDF (adjusted by a factor of n/(n + 1)). This
plot is often used (see, e.g., Dupuis and Victoria-Feser, 2006) to graphically detect the quan-
tile vt above which the Pareto model is valid, which is found by the value of logvt above
which the plot yields a straight line. We observe that the points form a straight line for all
logvt > 0 ⇔ vt > 1, except for the 4 largest observations which clearly appear as outliers.
The Pareto model therefore seems quite adequate for most of the losses and we set the inter-
cept to logσ = 0, thereby assuming that σ = 1 is known.

Figure 7 Pareto linear relationship for crude oil discount factors.
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Figure 8 On the left, histogram for crude oil discount factors below 1.09. On the right, histogram for crude oil
discount factors above 1.09, that is, the 10 highest values. The histograms are modeled by the Pareto density with
the Pareto tail index estimated by the MLE (dashed black line), PITSE (solid grey line) and P-FLLP (solid black
line) estimators.

The Pareto model is then fitted to discount factors greater then 1, that is, the 442 largest dis-
count factors denoted by v(557) ≤ · · · ≤ v(998). The histogram of these discount rates is shown
in two parts in Figure 8. On the left, we show the histogram of discount rates below 1.09,
which excludes the 10 highest values. On the right, we show the histogram of the 10 highest
values, with discount rates greater than 1.09, to better visualize the data set. We now consider
the estimation of the tail parameter α using the non-robust MLE and the robust estimators
P-FLLP and PITSE. The MLE estimate is α̂MLE = 46.501 with a 95% confidence interval
of α ∈ [42.266,50.935] and the P-FLLP estimates are ω̂ = 0.984 and α̂P-FLLP = 56.102 with
a 95% confidence interval of α ∈ [50.953,61.495]. For the PITSE, it is necessary to fix a
tuning constant t by making a compromise between efficiency and robustness. In view of the
apparent small proportion of outliers, we choose t = 1/9 for an asymptotic relative efficiency
(ARE) of 0.99 and a breakdown point (BP) of 10%. Recall that the P-FLLP estimator has
the optimal values of ARE = 1 and BP = 50%. We obtain α̂PITSE = 50.570, halfway be-
tween α̂MLE and α̂P-FLLP. Pareto densities using these MLE, P-FLLP and PITSE estimates
of α were added to the histograms in Figure 8. We observe that the Pareto densities with
MLE (dashed black line) and P-FLLP (solid black line) estimates have the heaviest and light-
est right tail, respectively. Even though the difference in the thickness of the tails might not
look that big visually, it still has a major impact on statistical inference. Even though outliers
represent a small proportion of the dataset, we see that their impact on the estimation is sig-
nificant when we compare α̂P-FLLP = 56.102 to α̂MLE = 46.501. As for the PITSE, a partial
robustness is obtained with α̂PITSE = 50.570, in the sense that the influence of the outliers is
reduced but not completely removed. The impact of outliers is even greater when the estima-
tion is concentrated in the right tail. For example, the probability of observing a discount rate
greater than v(994) = 1.1244 (the largest observation excluding the 4 clear outliers), given by
S(1.1244|σ = 1, α) := 1.1244−α , is estimated at 0.0014, 0.0027 and 0.0043, respectively for
the P-FLLP, PITSE and MLE, that is, a variation from single to double and even triple.

We now take the analysis of the P-FLLP estimates further. In addition to the non-robust
MLE solution with ω̂ = 1, the iterative process described in Definition 3.1 generated the
unique robust solution ω̂ = 0.984 and α̂P-FLLP = 56.102 as given above. The proportion of
outliers in therefore estimated at 1 − ω̂ = 0.016, that is, around 7 observations out of 442.
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The estimated probabilities of not being outliers, represented by the π̂i ’s, are given for the 10
largest observations by 0.703, 0.684, 0.658, 0.572, 0.539, 0.419, 0.0005, 0.0004, 0.0004 and
0. We see that the 4 largest observations v(995), v(996), v(997) and v(998) are clearly identified
as outliers and practically completely rejected in the calculation of α̂P-FLLP with their weights
π̂i of 0.0005 or less. As for the other 6 largest observations v(989), . . . , v(994), their estimated
probabilities of not being outliers are in a gray area between 0.419 and 0.703, which means
that about 3 of them should come from the Pareto component and 3 of them from the outlier
component, for our total of about 7 outliers.

Finally, we confirm our results by testing that the observations were drawn from the
Pareto distribution. Desgagné, Lafaye de Micheaux and Ouimet (2022) performed an em-
pirical power comparison of 40 goodness-of-fit tests for the univariate Laplace distribution
and identified a test named DLOZ as the most powerful against symmetric alternatives. This
test is derived from Rao’s score test applied to the symmetric exponential power distribution.
Given that the Laplace distribution is a double-exponential, this test can be easily adapted
to our situation, where we want to test the composite null hypothesis “H0 : X1, . . . ,Xn is a
random sample from a Pareto model P(σ,α), where σ is known and α is unknown”.

The test statistic DLOZ adapted for our composite null hypothesis is given by

K1(x1, . . . , xn, σ ) := 1

n

n∑
i=1

zi log zi, with zi := yi/ȳ and yi := log(xi/σ ),

and K1 is called the first-power kurtosis. A large (small) value of K1 indicates a heavier
(lighter) right tail than that of a Pareto model, so the test is rejected for sufficiently small or
large values of K1. The distribution of K1 and the p-value of the test can be estimated by
Monte Carlo simulations.

When the test is applied to the entire sample of n = 442 discount rates, the null hypothesis
is rejected with a p-value close to 0 because the right tail is too heavy for a Pareto distribution
due mainly to the outliers. When the test is applied to the dataset excluding the four largest
observations (which were clearly identified as outliers, that is, in conflict with the Pareto
model), we obtain a p-value of 0.394, which means that there is no evidence to reject the
Pareto model. The p-value reaches a maximum of 0.981 when the 7 largest observations are
excluded, which is in agreement with the P-FLLP estimates.

6 Conclusion

In this paper, we introduced an original robust estimator of the Pareto tail index. Although the
emphasis is on the Pareto distribution, all results are valid for the estimation of the scale/rate
parameter of the two-parameter exponential distribution. This estimator can be thought of
as an M-estimator with a ψ-function based on the weighted score function, except that the
weights that depend on the proportion of outliers are also estimated. Our approach was to
assume that the observations were generated from the FLLP-contaminated Pareto, that is,
a mixture of the Pareto and FLLP distributions. The FLLP distribution is an original dis-
tribution that we designed specifically to represent any outlier distribution. The parameters
are estimated using an iterative process adapted from the expectation-maximization (EM)
algorithm to optimize the properties of the estimators in our robustness context. A robust
confidence interval for the Pareto tail index is also given.

We showed through different asymptotic results that our estimators reach a breakdown
point of 50% with full efficiency. We also showed their simultaneous high efficiency and
high robustness for finite samples in a large Monte Carlo simulation study. In particular,
the relative efficiency (compared to MLE) increases rapidly from 0.932 to 1 as the sample
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size increases from 50 to infinity. This efficiency is largely explained by the fact that the P-
FLLP estimators generate MLE-identical results for most uncontaminated samples generated
from the Pareto model, an attractive feature for practitioners using MLE. We also compared
the performance of MLE, PITSE and P-FLLP estimators for different contamination level
scenarios. The P-FLLP estimator had the best overall performance and showed complete
robustness for all levels of contamination, where the influence of the outliers is gradually
diminished to a point where they are virtually excluded. Finally, we showed how to use
our estimators on a real dataset of daily crude oil returns. Unlike most robust estimators
of the Pareto tail index, inference is entirely based on observations, which means that there
is no tuning constant to be set by the user. We also obtain for each observation an estimated
probability that it comes from the Pareto component (versus the outlier component), which
makes the detection of outliers very easy and efficient.
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