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Hierarchical Mixture of Finite Mixtures
(with Discussion)

Alessandro Colombi∗, Raffaele Argiento†, Federico Camerlenghi‡, and Lucia Paci§

Abstract. Statistical modelling in the presence of data organized in groups is a
crucial task in Bayesian statistics. The present paper conceives a mixture model
based on a novel family of Bayesian priors designed for multilevel data and ob-
tained by normalizing a finite point process. In particular, the work extends the
popular Mixture of Finite Mixtures model to the hierarchical framework to capture
heterogeneity within and between groups. A full distribution theory for this new
family and the induced clustering is developed, including the marginal, posterior,
and predictive distributions. Efficient marginal and conditional Gibbs samplers
are designed to provide posterior inference. The proposed mixture model outper-
forms the Hierarchical Dirichlet Process, the foremost tool for handling multilevel
data, in terms of analytical feasibility, clustering discovery, and computational
time. The motivating application comes from the analysis of shot put data, which
contains performance measurements of athletes across different seasons. In this
setting, the proposed model is exploited to induce clustering of the observations
across seasons and athletes. By linking clusters across seasons, similarities and
differences in athletes’ performances are identified.

Keywords: model-based clustering, multilevel data, partial exchangeability,
sports analytics, vector of finite Dirichlet processes.
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1 Introduction
Statistical modelling of population heterogeneity is a recurrent challenge in real-world
applications. In this study, our focus shifts towards hierarchical data scenarios, where
observations emerge from distinct groups (or levels) and our objective is to model het-
erogeneity both within and between these groups. Specifically, heterogeneity within
groups is handled via mixture modelling to get group-specific clustering of observa-
tions, as well as density estimation. Concurrently, between-group heterogeneity can be
addressed through two extreme modelling choices: (i) pooling all observations and (ii)
conducting independent analyses for each of the d groups. However, both alternatives
pose limitations. In the first case, differences across groups are not accounted for, while
in the second one, groups are not linked, preventing sharing of statistical strength. In
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this work, a tunable balance between the two alternatives is proposed to model hetero-
geneity across groups.

In Bayesian formalism, the sharing of information is naturally achieved through
hierarchical modelling; parameters are shared among groups, and the randomness of
the parameters induces dependencies among the groups. In particular, in model-based
clustering, such sharing leads to group-specific clusters that are common among the
groups, i.e., clusters that have the same interpretation across groups allow to define a
global clustering. In general, the number of clusters within each group, as well as the
number of global clusters, are unknown and need to be inferred from the data. In the
hierarchical landscape, several Bayesian nonparametric approaches have been proposed,
the pioneering work being the Hierarchical Dirichlet Process (HDP) mixture model (Teh
et al., 2006). The HDP has been recently extended to encompass normalized random
measures (Camerlenghi et al., 2019; Argiento et al., 2020) and species sampling models
(Bassetti et al., 2020). Despite their mathematical elegance, these methods suffer from
considerable computational complexity and costs, posing a barrier for practitioners.

This work targets these problems and proposes a finite mixture model for each group,
where the random number of mixture components, as well as the mixture parameters,
are shared among groups. Rather, the mixture weights are assumed to be group-specific
in order to accommodate differences between groups. The proposed approach bridges
the gap between infinite and finite mixtures in the hierarchical setting by introducing a
novel family of Bayesian priors, named Vector of Finite Dirichlet Processes (Vec-FDP),
to capture heterogeneity within and between groups. In particular, we use the Vec-
FDP prior to building a new class of hierarchical mixture models, named Hierarchical
Mixture of Finite Mixtures (HMFM), that encompasses the popular Mixture of Finite
Mixtures (MFM) model (Miller and Harrison, 2018; Frühwirth-Schnatter et al., 2021)
as a special case when the number of groups d = 1. We point out that the name
Hierarchical Mixture of Finite Mixtures was previously used by Miller (2014), whose
model falls into a special case of the hierarchical species sampling models discussed by
Bassetti et al. (2020). However, note that both Miller (2014) and Bassetti et al. (2020)
use hierarchical to refer to the hierarchy among the random probability measures, while
we refer to the hierarchy of the data.

Furthermore, following the same approach of Argiento and De Iorio (2022), we intro-
duce a more general construction for the mixing weights. This involves the normalization
of positive unnormalized weights distributed according to any probability distribution
over the positive real numbers. By doing so, we define a broader family of Bayesian
priors, referred to as Vector of Normalized Independent Finite Point Processes (Vec-
NIFPP), which encompasses the Vec-FDP as a special case when the unnormalized
weights are Gamma distributed. Although we borrow Bayesian nonparametric tools to
derive the distributional results and the clustering properties, the model leverages on
a finite, yet random, number of mixture components, enhancing its accessibility to a
broader audience, e.g., those interested in model-based clustering and mixture of experts
modelling (Jacobs et al., 1991).

Posterior inference poses computational challenges in the context of Bayesian non-
parametrics, particularly when dealing with hierarchical data. Rather, leveraging the
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posterior characterization of the Vec-FDP, we design an efficient Markov chain Monte
Carlo (MCMC) sampling strategy, which significantly improves the existing methods
based on infinite dimensional processes, such as the HDP. Notably, given a fixed num-
ber of clusters and groups, the HDP’s computational time scales quadratically with the
volume of data. In contrast, our approach achieves linear scaling.

The reason behind such improvement is evident from the restaurant franchise-like
representation of the Vec-FDP prior. In contrast to the HDP’s complex distinction
between tables and menus, our representation is straightforward due to the absence of
stacked layers of infinite dimensional objects in the model structure. This simplification
enhances model interpretability, which is preserved when moving from a single group
to multiple groups, unlike the HDP. The restaurant franchise metaphor also illuminates
the flexibility of the sharing of information mechanism induced by the proposed method.
In this regard, a comprehensive simulation study compares the proposed HMFM model
with both the HDP mixture model and the MFM model assumed independently for each
group. Experiments shed light on the advantages of employing joint modelling rather
than independent analyses and demonstrate how the excessive sharing of information
induced by the HDP may lead to misleading conclusions. Therefore, the HMFM strikes
a balanced compromise between the HDP and the independent analyses, offering a
tunable approach that combines the strengths of both methods.

The motivating example for this work comes from sports analytics. See Page et al.
(2013) for Bayesian nonparametric methods in this domain. Our methodology finds ap-
plication in the analysis of data from shot put, a track and field discipline that involves
propelling a heavy spherical ball, or shot, over the greatest distance attainable. The
dataset comprises measurements, specifically throw lengths or marks, recorded during
professional shot put competitions from 1996 to 2016, for a total of 35, 637 marks on
403 athletes. The data are organized by aligning marks by season to ensure equitable
comparison among athletes. Athletes have varying durations, with a maximum of 15
seasons, which correspond to the d different groups. We employ the proposed HMFM
model to cluster athletes’ performances within each season while preserving the inter-
pretability of clusters across different seasons. This allows us to enrich the understanding
of the evolution in athletes’ performance trends. A remarkable finding is that the esti-
mated clusters are gender-free, thanks to the inclusion of an additional season-specific
regression parameter. Notably, the model identifies a special cluster consisting of six
exceptional women’s performances achieved by Olympic or world champions; no men
have ever been able to outperform their competitors in such a neat way.

Summing up, our methodological contribution is to propose a new family of de-
pendent Bayesian nonparametric priors designed for analyzing hierarchical data in a
mixture setting. The proposed model allows to identify random clusters of observa-
tions within and between groups. We deeply investigate the theoretical properties of
the HMFM, including the distribution of the random partition, the predictive distri-
bution of the process, and its correlation structure. Additionally, we fully characterize
its posterior distribution. The theoretical properties of the more general Vec-NIFPP
model have also been thoroughly investigated. On the computational side, two efficient
MCMC procedures based on a conditional and a marginal sampler provide inference on
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the number of clusters, and the clustering structure as well as group-dependent density
estimation. Both algorithms show improved computational efficiency with respect to
common strategies for posterior sampling in hierarchical mixture models. The flexibil-
ity of the proposed model is illustrated through an extensive simulation study and a
real-world application in sports analytics.

The rest of the paper is organized as follows. Section 2 introduces the HMFM model
and defines the local and global clustering. Section 3 provides the main distributional
results, such as the marginal, posterior, and predictive distributions of the Vec-FDP. In
Section 4 we present the hyperpriors choice and the computational strategies. Section 5
showcases a simulation study where we compare the HMFM with the HDP and the
MFM, the latter fitted independently within each group as well as on the pooled dataset.
The analysis of shot put data is illustrated in Section 6. A discussion in Section 7
concludes the paper and Supplementary materials (Colombi et al., 2024) complement
it.

2 Hierarchical mixture of finite mixtures
Given d groups (or levels), let yj =

(
yj,1, . . . , yj,nj

)
denote the data collected over nj

individuals in group j = 1, . . . , d, where yj,i ∈ Y and Y is the sampling space. We
assume that the data in each group j come from a finite mixture of M components,
that is

yj,1, . . . , yj,nj | Pj
iid∼

∫
Θ
f( · | τ)Pj(dτ) for each j = 1, . . . , d, (1)

where {f( · | τ), τ ∈ Θ} is a parametric family of densities over Y and (P1, . . . , Pd) is a
vector of random probability measures over the parameter space Θ ⊂ R

s. We focus on
random probability measures having almost surely discrete realizations. More specifi-
cally, we define a vector of finite dependent random probability measures (P1, . . . , Pd)
as follows,

Pj(·) =
M∑

m=1

Sj,m

Tj
δτm(·), (2)

where Sj,m are the unnormalized weights, δτm stands for the delta-Dirac mass at τm,
and Tj =

∑M
m=1 Sj,m is referred to as the total mass.

As a prior for M , we place a 1-shifted Poisson distribution with parameter Λ, denoted
by Pois1(Λ), so that we are sure that there always exists at least one mixture component.
Then, conditionally to M , (τ1, . . . , τM ) are common random atoms across the d random
probability measures, which are assumed independent and identically distributed (i.i.d.)
with common distribution P0, that is a diffuse probability measure on Θ. Moreover,
given M , the unnormalized weights Sj,m are conditionally independent both within and
between the groups. In particular, we assume the components of Sj = (Sj,1, . . . , Sj,M )
to be i.i.d. from Gamma (γj , 1), independently with respect to j = 1, . . . , d. Throughout
this work, we always refer to a shape-rate parametrization of the gamma distribution.
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The induced prior on the normalized mixture weights (πj,1, . . . , πj,M ) is

(πj,1, . . . , πj,M ) =
(
Sj,1

Tj
, . . . ,

Sj,M

Tj

)
∼ DirM (γj , . . . , γj) , for each j = 1, . . . , d,

where DirM (γj , . . . , γj) denotes the M -dimensional symmetric Dirichlet distribution
with parameter γj . The mixing measure Pj is obtained by normalization:

Pj(·) = μj(·)
μj(Θ) , (3)

where μj(·) =
∑M

m=1 Sj,mδτm(·). The seminal contribution of Regazzini et al. (2003)
has spurred the construction of random probability measures via the normalization
approach, which turns out to be a convenient framework to face posterior inference; see,
e.g., Lijoi et al. (2014) Camerlenghi et al. (2019), Argiento et al. (2020) and Argiento and
De Iorio (2022) for allied contributions. We point out that, marginally, each component
Pj is a finite Dirichlet process as the one described in Argiento and De Iorio (2022).
These discrete random measures are also known as Gibbs-type priors with a negative
parameter (Gnedin and Pitman, 2006; De Blasi et al., 2015).

Our model construction generalizes the work of Argiento and De Iorio (2022) by al-
lowing for the sharing of information across groups thanks to shared atoms and a shared
number of components. Besides, the proposed model retains mathematical tractability
thanks to the normalization approach and the conditional independence of the unnor-
malized weights. The prior specification for the mixture parameters (M,S, τ ), where
S = (S1, . . . , Sd) and τ = (τ1, . . . , τM ), is equivalent to specify the joint law of the
vector (P1, . . . , Pd), called Vector of Finite Dirichlet Process (Vec-FDP) and denoted
by

(P1, . . . , Pd) ∼ Vec-FDP (Λ,γ, P0) , (4)

where γ = (γ1, . . . , γd). Summing up, the model can be formulated in the following
hierarchical form,

yj,1, . . . , yj,nj | Sj , τ ,M
iid∼

M∑
m=1

wj,mf ( · | τm)

τ1, . . . , τM | M iid∼ P0(·)

wj,1, . . . , wj,M | M,γj
iid∼ DirM (γj , . . . , γj) , for j = 1, . . . , d

M | Λ ∼ Pois1(Λ).

(5)

We notice that, when d = 1, the model in (5) coincides with the MFM model (Miller and
Harrison, 2018; Frühwirth-Schnatter et al., 2021). It follows that the proposed model
is an extension of the MFM model to hierarchical data and so we refer to it as the
Hierarchical Mixture of Finite Mixtures (HMFM) model.
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Remark The HMFM model can be framed into a more general and flexible class of
Bayesian nonparametric models. In particular, the choice for the prior distribution of
the number of components M and the unnormalized weights Sj,m, can be generalized
with respect to the choices in (5), while keeping the mathematical tractability. The
theoretical properties of this broader family, named Vector of Normalized Independent
Finite Point Processes, and a detailed construction using point processes are presented
in Section S1 and Section S2 of the Supplementary materials, respectively.

2.1 Clustering
It is worth noticing that the mixture model in (1) can be equivalently written as

yj,i | θj,i ind∼ f( · | θj,i), θj,i | Pj
iid∼ Pj

with i = 1, . . . , nj and j = 1, . . . , d. Under this formulation, we get rid of the integral
in (1) by introducing a latent variable θj,i for each observation yj,i. Conditionally on
(P1, . . . , Pd), the latent variables θj,i’s are i.i.d. within the same group and independent
across groups. In other words, by virtue of the de Finetti representation theorem, θ :=
(θ1, . . . ,θd), where θj = (θj,1, . . . , θj,nj ), is a sample from a partially exchangeable
array of latent variables. This is tantamount to saying that the distribution of the θj,i’s
is invariant under a specific class of permutations; see (Kallenberg, 2005) and references
therein. The distributional properties of θ play a pivotal role in mixture models both in
defining the clustering and devising efficient computational procedures. More precisely,
since the Pj ’s in (4) have discrete realizations, almost surely, the latent variables feature
ties within and across groups; thus they naturally induce both a local and a global
clustering of the observations.

Local clustering For each group j = 1, . . . , d, Pj is almost surely discrete, then ties
are expected with positive probability among θj,1, . . . , θj,nj . Let Kj := Kj,(nj) be the
random number of distinct values in this sample. Such group-specific distinct values are
collected in the set Tj =

{
θ∗j,1, . . . , θ

∗
j,Kj

}
. Furthermore, let ρ̃j =

{
Cj,1, . . . , Cj,Kj

}
be

the random partition of {1, . . . , nj} induced by Tj through the following rule:

θj,i ∈ Cj,k ⇐⇒ ∃k ∈ {1, . . . ,Kj} such that θj,i = θ∗j,k,

for each i = 1, . . . , nj . Note that the random partition ρ̃j is exchangeable due to the
exchangeability of θj,1, . . . , θj,nj and it is called local clustering of group j (or group-
specific clustering).

Global clustering Since the Pj ’s share the same support, we also expect ties between
groups, i.e., P

(
θ∗j,k = θ∗j′,k′

)
> 0, with j �= j′. We define T = {θ∗∗1 , . . . , θ∗∗K } the set

of unique values among the θ∗j,k, j = 1, . . . , d and k = 1, . . . ,Kj ; we also observe that
T =

⋃d
j=1 Tj . The corresponding random partition ρ = {C1, . . . , CK} is induced by T

as follows
θj,i ∈ Ck ⇐⇒ ∃k ∈ {1, . . . ,K} such that θj,i = θ∗∗k ,
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for each j = 1, . . . , d and for each i = 1, . . . , nj . The random partition ρ is called global
clustering and the number of global clusters has been denoted by K := K(n1,...,nd).
Since values are expected to be shared also across groups, then K ≤

∑d
j=1 Kj .

To shed light on the relationship between local and global clustering, we introduce
ρj = {Cj,1, . . . , Cj,K} so that Ck =

⋃d
j=1 Cj,k. Note that Cj,k can be empty for some

k = 1, . . . ,K. We define nj,k = |Cj,k| the number of observations of the j-th group in
the k-th cluster. Then, we let nj = (nj,1, . . . , nj,K) and the following hold true

d∑
j=1

nj,k > 0, and
K∑

k=1

nj,k = nj , (6)

for any k = 1, . . . ,K and for any j = 1, . . . , d, respectively.

The random partition induced by the whole sample θ of size n := n1 + · · · + nd

may be described through a probabilistic object called partially Exchangeable Partition
Probability Function (pEPPF). The pEPPF, denoted here as Π(n)

K (n1, . . . ,nd) is the
probability distribution of both the local and global clustering, where n1, . . . ,nd satisfy
the constraints given in (6). The pEPPF is formally defined as follows:

Π(n)
K (n1, . . . ,nd) := E

[∫
ΘK

K∏
k=1

P
nj,k

j (dθ∗∗k )
]
.

We refer to Camerlenghi et al. (2019) for additional details.

Observe that, conditionally to M and τ , the unique values θ∗∗1 , . . . , θ∗∗K are such that
the following properties hold: (i) K ≤ M ; (ii) there exists m ∈ {1, . . . ,M} such that
θ∗∗k = τm, for each k = 1, . . . ,K. Property (i) implies that a distinction between allo-
cated mixture components (clusters) and non-allocated components is required (Nobile,
2004; Argiento and De Iorio, 2022). From property (ii), it follows that there are exactly
K allocated components collected in the following set:

M(a) = {m ∈ {1, . . . ,M} : ∃k ∈ {1, . . . ,K} such that θ∗∗k = τm} .

3 Properties of the HMFM model
3.1 Distributional results

In this section, we derive all the theoretical properties for the latent variables θj,i mod-
eled as follows

θj,i | Pj
iid∼ Pj , (P1, . . . , Pd) ∼ Vec-FDP (Λ,γ, P0) , (7)

where j = 1, . . . , d and i = 1, . . . , nj . In addition, we assume conditional independence
across groups, i.e., θj ,θl | Pj , Pl are independent for j �= l. The distributional results
derived for the model in (7) are the theoretical guidance to understand the clustering
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mechanism, to elicit the prior properly, and they play a pivotal role in devising effi-
cient marginal and conditional algorithms to perform posterior inference. The proofs of
the theoretical properties are obtained as a special case of the more general theorems
presented in Section S3 of the Supplementary materials.

Before moving forward to the main results, we remind that for a Gamma(γj , 1) dis-
tributed random variable, its Laplace transform ψj(uj) and the corresponding derivative
κ(uj , nj,k) equal to

ψj (uj) = 1
(1 + uj)γj

, κj (uj , nj,k) = 1
(1 + uj)nj,k+γj

Γ (nj,k + γj)
Γ (γj)

. (8)

The almost sure discreteness of the Pj , coupled with their common supports, entails
that the hierarchical sample (θ1, . . . ,θd) is equivalently characterized by (θ∗∗, ρ), pre-
viously defined in Section 2.1. The following theorem specifies the distribution of the
pEPPF for the HMFM model.

Theorem 3.1 (pEPPF). The probability to observe a sample θ = (θ1, . . . ,θd) of size
n from (7) exhibiting K distinct values (θ∗∗1 , . . . , θ∗∗K ) with respective counts n1, . . . ,nd

is given by the following pEPPF

Π(n)
K (n1, . . . ,nd) = V(K;γ,Λ)

d∏
j=1

K∏
k=1

Γ (nj,k + γj)
Γ (γj)

, (9)

where V(K;γ,Λ) equals

V(K;γ,Λ) =
∫

(R+)d
Ψ(K,u)

d∏
j=1

u
nj−1
j

Γ (nj)
1

(1 + uj)nj+Kγj
du1 . . .dud,

and, setting ψ(u) =
∏d

j=1 ψj (uj), Ψ(K,u) is defined as follows

Ψ(K,u) = ΛK−1 (K + Λψ(u)) e−Λ(1−ψ(u)). (10)

See Section S3.1 for an extended discussion and derivation of Ψ(K,u).

The predictive distributions, i.e., the distribution of θj,nj+1 given (θ1, . . . ,θd) for
each possible group j, easily follow from Theorem 3.1. These unveil important intuitions
about the clustering mechanism, and they are the building block for a marginal posterior
sampler; we defer their detailed presentation to Section 3.2. Recall that in Section 2.1 we
defined the number of global clusters, denoted as K(n1,...,nd). This is a random quantity
and in the case of d = 2 groups whose cardinalities are n1 and n2, respectively, we can
compute an explicit expression for the prior distribution of K(n1,n2).

Theorem 3.2 (Prior distribution of global number of clusters). Consider d = 2 groups
of observations with size n1 and n2, respectively. Then, the prior distribution for the
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global number of clusters K(n1,n2) is

P
(
K(n1,n2) = K

)
= V (K;γ,Λ)

K∑
r1=0

K−r1∑
r2=0

(
K − r1

r2

)
(K − r2)!

r1!

2∏
j=1

|C(nj ,K − rj ;−γj)| ,
(11)

where for any non-negative integers n ≥ 0 and 0 ≤ K ≤ n, C(n,K;−γj) denotes the
central generalized factorial coefficients. See Charalambides (2002).

The following theorems provides functionals of (P1, . . . , Pd), which are useful for
prior elicitation and to shed light on the dependence structure introduced by our prior.

Theorem 3.3 (Mixed moments). Let (P1, . . . , Pd) ∼ Vec-FDP (Λ,γ, P0) be a vector of
normalized random probability measures defined through normalization as in (3). Then
the following hold:

(i) for any measurable sets A,B and for any j, l ∈ {1, . . . , d},

E [Pj(A)Pl(B)] = P
(
K(1,1) = 1

)
(P0(A ∩B) − P0(A)P0(B)) ; (12)

(ii) for any measurable set A and for any j, l ∈ {1, . . . , d},

E [Pj(A)njPl(A)nl ] = E

[
P0(A)K(nj,nl)

]
=

nj+nl∑
k=1

P0(A)kP
(
K(nj ,nl) = k

)
, (13)

where K(nj ,nl) is the global number of clusters across two groups with size nj and nl

and it can be evaluated via (11).

Furthermore, both (12) and (13) can be extended to the case of more than two
groups. As a byproduct of Theorem 3.3 we obtain a closed form expression for pairwise
correlation between the components of (P1, . . . , Pd) evaluated on specific sets. Let A be
a measurable set, then, for any j, l ∈ {1, . . . , d}:

corr (Pj(A), Pl(A)) = 1 − e−Λ

Λ (γj + 1) (γl + 1) I (γj ,Λ) I (γl,Λ) , (14)

where I (γj ,Λ) =
∫ 1
0 (1 + Λx) e−Λ(1−x)(1 − x1/γj )dx. The expression in (14) does not

depend on the choice of the set A. Thus, it may be considered an overall measure of
dependence between the two random probability measures. The limits of (14) when
both γj and γl goes to 0 and +∞ equal to

lim
γj ,γl→0

corr (Pj(A), Pl(A)) = 1 − e−Λ

Λ , lim
γj ,γl→∞

corr (Pj(A), Pl(A)) = 1. (15)

These limits are interesting because we see that, given Λ, decreasing γj and γl, the
correlation does not go to 0 but reaches a lower bound that depends on Λ, which, in
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turn, goes to 0 if Λ increases. On the other hand, increasing values of γj and γl lead
correlation equal to 1, regardless of the value of Λ. See the left panel in Figure S1. We
refer to Section S3.6 of the Supplementary materials for the proofs of (14) and (15) and
a generalization of (14).

We now aim at giving a posterior characterization for a vector (P1, . . . , Pd) dis-
tributed as in (4). Since (P1, . . . , Pd) is obtained via normalization of (μ1, . . . ,
μd), it is sufficient to provide a posterior characterization for the latter vector. In or-
der to do this, we follow the same approach of James et al. (2009), Camerlenghi et al.
(2019) and Argiento and De Iorio (2022). Thus, we introduce a vector of auxiliary vari-
ables Un = (U1, . . . , Ud) such that Uj | Tj

ind∼ Gamma (nj , Tj), where Tj = μj(X). This
is possible since the marginal distribution of Un does exist, see Section S3.8. Hence,
conditionally to Un and to (θ1, . . . ,θd), (μ1, . . . , μd) is a superposition of two indepen-
dent processes, one driving the non-allocated components and the other one driving the
allocated components.
Theorem 3.4 (Posterior representation). Let (θ1, . . . ,θd) be a sample from the statis-
tical model in (7). Then, the posterior distribution of (μ1, . . . , μd) is characterized as
the superposition of two independent processes on (R+)d × Θ:

(μ1, . . . , μd) | θ1, . . . ,θd,Un
d=
(
μ

(a)
1 , . . . , μ

(a)
d

)
+
(
μ

(na)
1 , . . . , μ

(na)
d

)
, where:

(i) the process of allocated components
(
μ

(a)
1 , . . . , μ

(a)
d

)
equals

μ
(a)
j =

K∑
k=1

S
(a)
j,k δθ∗∗

k
, as j = 1, . . . , d,

where the random variables S
(a)
j,k | Un

ind∼ Gamma(nj,k + γj , uj + 1), for each
j ∈ {1, . . . , d} and k ∈ {1, . . . ,K};

(ii) the process of non-allocated components
(
μ

(na)
1 , . . . , μ

(na)
d

)
equals

μ
(na)
j =

M∗∑
m∗=0

S
(na)
j,k δτm∗ , as j = 1, . . . , d.

In particular, M∗ is a random variable distributed as a mixture of Poisson distri-
butions, namely

M∗ ∼ (1 − wK(u)) Pois1

⎛⎝Λ
d∏

j=1
ψj (uj)

⎞⎠ + wK(u) Pois

⎛⎝Λ
d∏

j=1
ψj (uj)

⎞⎠ ,

where we have set wK(u) := K/(Λ
∏d

j=1 ψj (uj) + K), and the random variables
S

(na)
j,1 , . . . , S

(na)
j,M∗ | Un,M

∗ iid∼ Gamma(γj , uj + 1), for j ∈ {1, . . . , d}.

Note that for the process of non-allocated component P (M∗ = 0) > 0 even if
P (M = 0) = 0. Hence, it is possible to have zero non-allocated components.
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3.2 Predictive distribution and franchise metaphor

Further intuitions on the cluster mechanism described in Section 2.1 are available when
considering the predictive distributions. Consider a realization (θ1, . . . ,θd) with K dis-
tinct values (θ∗∗1 , . . . , θ∗∗K ) and a partition ρ = {C1, . . . , CK} with counts (n1, . . . ,nd)
satisfying the constraints in (6). Following the approach of James et al. (2009), Favaro
and Teh (2013) and Argiento and De Iorio (2022) we work conditionally to Un = u.
Then, for each group, say j, we have

P
(
θj,nj+1 ∈ · | θ1, . . . ,θd,u,γ,Λ

)
∝

K∑
k=1

(nj,k + γj) δθ∗∗
k

(·) + ψ(u)γjΛ
K + 1 + Λψ(u)
K + Λψ(u) P0(·).

(16)

Such a predictive distribution can be interpreted in terms of a restaurant franchise
metaphor. Consider a franchise of d Chinese restaurants each with possibly infinitely
many tables. Here θj,i represents the dish served to customer i in restaurant j, and
each θ∗∗k represents a dish. All customers sitting at the same table must eat the same
dish. The same dish can not be served at different tables in the same restaurant, but
it can be served across different restaurants. According to the predictive law, the first
customer entering the first restaurant sits at the first table eating dish θ1,1 = θ∗∗1 , which
is drawn from P0. At the same time, an empty table serving dish θ∗∗1 must be prepared
in all the other restaurants: this step corresponds to the first cluster allocation, i.e.,
C1. Then, the second customer of the first restaurant arrives and can either: (i) sit at
the same table as the first customer, with probability proportional to 1 + γ1 or (ii) sit
at a new table with probability proportional to ψ(u)γ1Λ2+Λψ(u)

1+Λψ(u) . In the latter case,
the customer chooses a new dish θ∗∗2 , drawn from P0, and the number of clusters K is
increased by 1; moreover, an empty table serving dish θ∗∗2 must be prepared in all the
other restaurants of the franchise. Then, the process evolves according to (16). Figure
S2 displays a graphical representation of the process.

Interestingly, our model is more parsimonious than the HDP by Teh et al. (2006)
in sharing information across restaurants. While the HDP relies on the popularity of a
dish throughout the entire franchise to influence a new customer’s choice, in our model,
such probability depends on the sample only through the dish’s popularity within the
specific restaurant the customer enters. This distinctive feature proves to be appealing
as it mitigates the excessive borrowing of information across groups that is induced
by hierarchical processes. Subsequent numerical experiments highlight the advantage
of our model by showing that the HDP can lead to misleading results in posterior
inference. An additional advantage of our model with respect to the HDP is that different
tables within the same restaurant cannot serve the same dish. This simplifies the local
clustering structure, and it improves the computational efficiency in posterior sampling,
as discussed in Section 4.2. We conclude by reminding that there are situations where
the stronger capability of sharing information of the HDP can be a preferable feature.
Experiment 1 in Section 5.1 is one such case, although the HMFM still remains a
competitive alternative.
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4 Fitting details
4.1 Hyperpriors

We consider the following hyperpriors for the process hyperparameters (Λ,γ),

π(Λ,γ) = π(γ | Λ)π(Λ) =
d∏

j=1
Gamma(aγ ,Λbγ) × Gamma(aΛ, bΛ). (17)

The prior distribution in (17) extends, to our setting, the prior choice introduced by
Frühwirth-Schnatter and Malsiner-Walli (2019) to encourage sparsity in the mixture,
whose advantages have been studied both theoretically (Rousseau and Mengersen, 2011;
Van Havre et al., 2015) and empirically (Malsiner-Walli et al., 2016, 2017). Furthermore,
this prior formulation assumes the γjs to be conditionally independent given Λ, so tuning
the sharing of information between groups, see also Figure S1. In particular, note that
Λ | γ is still Gamma distributed, i.e., Λ | γ ∼ Gamma

(
aΛ + daγ , bΛ + bγ

∑d
j=1 γj

)
,

which yields tractable posterior inference. We provide practical guidelines for setting the
values of hyperparameters (aγ , bγ , aΛ, bΛ) by exploiting the equivalent sample principle
(Diaconis and Ylvisaker, 1979). To this end, we design a suitable reparametrization of
the prior based on three quantities, Λ0, VΛ and γ0. The first two quantities represent
the prior expected value and variance of Λ, respectively, while γ0 represent a common
prior guess on γj . Thus, the new specification relies on hyperparameters that are easy
to interpret and allows to elicit prior knowledge when available. Further details are
presented in Section S5.1.

4.2 Computational methods

As customary in hierarchical modelling, we introduce latent allocation vectors cj =(
cj,1, . . . , cj,nj

)
whose element cj,i ∈ {1, . . . ,M} denotes to which component obser-

vation yj,i is assigned, for each j = 1, . . . , d. Setting θj,i = τcj,i , we are able to
link the mixture parameters and the observation-specific parameters. We suggest two
MCMC strategies to carry out posterior inference for mixture modelling. The first
one is a conditional algorithm that provides full Bayesian inference on both the mix-
ing parameters (P1, . . . , Pd) and the clustering structure ρ. Namely, we draw a sam-
ple of the vector of random probability measures (P1, . . . , Pd) from its posterior dis-
tribution given in Theorem 3.4 by sampling from the joint posterior distribution of
(S1, . . . ,Sd, τ , c1, . . . , cd,M). Note that the global number of clusters K is automat-
ically deduced from the cluster allocation vectors (c1, . . . , cd). To do so, we resort to
auxiliary variables Un and the hyperparameters (Λ,γ). For the sake of brevity, we denote
S = (S1, . . . ,Sd) and c = (c1, . . . , cd). We adopt a blocked Gibbs sampling strategy. In
particular, let Δ = (S, τ , c,M,U ,γ,Λ) be a vector collecting all the parameters and let
y be the collection of all variables yj,i, for each group j and for each individual i. We
partition Δ in two blocks Δ1 = (S, τ , c,Λ) and Δ2 = (U ,M,γ). The sampling scheme
proceeds by iterating two steps: (i) sampling Δ1 conditionally to Δ2 and y; (ii) sampling
Δ2 conditionally to Δ1 and y. We refer to Section S5.2 for a step-by-step description of
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the algorithm, where all full conditional distributions are detailed together with their
computational times.

The second algorithm is a marginal sampler that simplifies the computation by in-
tegrating the mixture parameters while providing inference on the sole clustering struc-
ture. The algorithm is derived from the predictive distributions detailed in Section 3.2,
and the full conditional distribution of Un given in Theorem S1.3. A detailed descrip-
tion of the marginal algorithm is given in Section S5.3, along with the derivation of its
computational time.

Notably, the HMFM achieves linear scaling, taking O(n(M +K)) and O(n(K + 1))
time for one iteration of the conditional and marginal sampler, respectively. In contrast,
the HDP faces scalability issues that may eventually limit its practical feasibility. A naive
implementation of HDP, based on the traditional Chinese restaurant franchise process,
takes O(n2) time. To overcome this computational burden, Teh et al. (2006) also propose
a direct assignment scheme whose computational bottleneck is the computation of the
unsigned Stirling numbers s(nj,k,m) for each j = 1, . . . , d, k = 1, . . . ,K and for all
positive integers m ≤ nj,k, where nj,k is the number of observations in group j assigned
to cluster k. The computational time to compute s(nj,k,m) is O((nj,k)2). By doing so,
the quadratic cost of the algorithm is deferred to the calculation of the Stirling numbers
which, however, can be precomputed and saved. Once they are available, the cost per
iteration is also linear for the HDP. Thus, while the precomputation of Stirling numbers
makes HDP competitive with HMFM for moderate values of n the linear complexity of
our proposed method makes it more scalable and appealing for large datasets.

The R code implementing both MCMC algorithms is available at https://github.
com/alessandrocolombi/HMFM, along with the simulation study.

5 Simulation study
We carried out an extensive simulation study comparing the HMFM in (5) with: (i)
the HDP (Teh et al., 2006) mixture model; (ii) the MFM model assumed independently
for each group (MFM-indep); (iii) the MFM model assumed for the pooled data, i.e.,
ignoring the groups (MFM-pooled). The MFM model is fitted using the algorithm by
Argiento and De Iorio (2022). Regarding the HMFM, we investigate the performance of
both the conditional (HMFM-cond) and the marginal (HMFM-marg) sampler. To assess
the performance of recovering the true clustering, we compute the Co-Clustering Error
(CCE; Dahl 2006; Bassetti et al. 2020) and the Adjusted Rand Index (ARI; Hubert and
Arabie 1985). Additional details are given in Section S6, together with a comparison in
terms of density estimation.

In summary, the simulation study consists of three experiments: the first one con-
siders d = 2 groups that share a component and clearly shows the advantage of the
joint modelling approach against both independent group-specific analyses and pooled
analyses. The second experiment is an illustrative example with again d = 2 groups, but
without any components shared across the groups. The study highlights the limitations
of the HDP in situations where borrowing information from other groups can lead to

https://github.com/alessandrocolombi/HMFM
https://github.com/alessandrocolombi/HMFM
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misleading conclusions. Rather, this issue is mitigated by the HMFM that borrows less
information across the groups relative to the HDP. The third experiment generates data
from d = 15 groups and further evidences how the HMFM outperforms the HDP; the
results of this experiment are deferred to Section S6 of the Supplementary materials.

5.1 Experiment 1

This experiment considers d = 2 groups, both having two local clusters (K1 = 2,
K2 = 2) one of which is shared; hence, the global number of clusters is K = 3. The
mixing probabilities are set so that the shared component has a lower value in the second
group. In particular, 50 independent datasets are generated from y1,i

iid∼ 0.5N(−3, 0.1)+
0.5N(0, 0.5) and y2,i

iid∼ 0.2N(0, 0.5) + 0.8N(1.75, 1.5), for i = 1, . . . , 300. Note that
the second group is defined so that the two components strongly overlap. As a result,
the shared component is completely masked in this group. Nevertheless, the masked
component can be spotted by exploiting the sharing of information with the other
group. Figure 1 shows the empirical distribution of a simulated dataset, as well as the
pooled data, and the underlying densities.

Figure 1: Empirical distributions of a dataset simulated under Experiment 1. Dots
represent the observations while lines represent the underlying densities. Colours relate
to the mixing components.

For each simulated dataset, we fit the HDP, the independent group-specific MFM,
and the proposed HMFM by setting Λ0 = 5, VΛ = 5, γ0 = 0.5, following the guidelines in
Section S5.1. The HDP and MFMs are fitted employing default hyperpriors (see Section
S6). A clear advantage of joint modelling is the possibility of deriving model-based
clustering also across different groups, which is not possible when we run independent
analyses.

Table 1 presents the results of model comparison based on the mean and standard
deviation (in brackets) of the ARI over the simulated datasets. The results show that
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Group 1 Group 2 % 1 cluster Global
HMFM-cond 0.991 (0.012) 0.133 (0.185) 62% 0.720 (0.024)
HMFM-marg 0.991 (0.011) 0.130 (0.181) 62% 0.719 (0.024)
HDP 0.993 (0.010) 0.097 (0.169) 74% 0.721 (0.018)
MFM-indep 0.993 (0.011) 0.027 (0.100) 90% –
MFM-pooled 0.971 (0.033) 0.100 (0.126) 28% 0.540 (0.071)

Table 1: The first two columns report the mean and the standard deviation (in brackets)
of the ARI for the two groups over the 50 simulated datasets under Experiment 1. The
third column shows the percentage of times that each method gathers all observations
of the second group in a single cluster. The final column reports mean and standard
deviation of the ARI relative to the final partition of the data.

all methods, with negligible differences, are able to perfectly recover the true clustering
in the first group, where the two components are well separated. Instead, the advantage
of the sharing of information allowed by hierarchical modeling is evident in the second
group, where components overlap. Indeed, the MFM-indep fails to identify the presence
of two different clusters in the second group, gathering all observations together and
obtaining an ARI value close to zero. On the other hand, the HDP and the HMFM are
able to borrow information from the first group to recognize the presence of two clusters
in the second group, leading to higher values of ARI, with HMFM (both marginal and
conditional samplers) outperforming the HDP. The MFM-pooled method represents an
intermediate situation between independent analyses and hierarchical approaches. By
pooling all the data, it retains information from the first group, enabling it to identify
the presence of two clusters even in the second group with performance comparable to
the HMFM and the HDP. To clarify, we compute the percentage of simulated datasets
for which each method obtains a partition of the second group consisting only of a single
cluster. Note that lower values are better as we know that the true number of clusters is
two. The results are reported in the third column of Table 1 and show how the MFM-
indep consistently fails to identify at least two clusters for the second group, showing
the limitations of the independent analyses against the hierarchical approaches. This
limitation is even more pronounced with respect to the MFM-pooled, which represents
the extreme case of information sharing. By pooling all data together, the presence of
two clusters in the second group becomes evident.

However, we point out that the competitiveness of the MFM-pooled compared to
the HMFM and the HDP holds only when looking at the group-specific metrics. Rather,
when we evaluate the global ARI in the final column of Table 1, i.e., the ARI relative
to the final partition of all the data, it becomes clear that the pooled solution is still
sub-optimal compared to the joint modeling; recall that the ARI for the global partition
is not defined for MFM-indep.

To conclude the clustering comparison, Figure 2 provides a picture of the distribu-
tion of the CCE within each group over the simulated datasets. Unlike the ARI, which
considers only the final clustering estimate, the CCE accounts for all MCMC iterations,
thus better reflecting the posterior variance. However, since it relies on the group-specific
posterior similarity matrix, it is not well-defined for MFM-pooled. Therefore, the latter
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Figure 2: Co-Clustering Error in the first group (left) and second group (right). Boxplots
are obtained over 50 datasets simulated under Experiment 1.

case is discarded from the results. In the first group, differences between the HMFM
(conditional and marginal) and the MFM-indep are negligible. On the other hand, the
MFM-indep commits a higher error in the second group, with also higher variability
among different datasets, which confirms the findings reported in Table 1 about the
sub-optimality of using independent analyses relative to joint modeling of the groups.
Finally, we point out that the HDP performs better than the HMFM in the first and
second groups. Indeed, in this example, the high sharing of information of the HDP
enhances the inference as the two clusters strongly overlap, i.e., sharing as much infor-
mation as possible from the two groups becomes beneficial. Hence, Figure 2 indicates
that the HDP is preferable overall, considering all the MCMC iterations. However, such
improvement becomes negligible, if not completely reversed, when considering only the
final estimate obtained by minimizing the variation of information criterion, see Table 1.

5.2 Experiment 2

This experiment considers d = 2 groups coming from two components, not shared
across the groups, namely K1 = 2, K2 = 2, so that K = 4. In particular, 50 datasets are
generated from the model y1,i

iid∼ 0.5N(−3, 1) + 0.5N(1, 1) and y2,i
iid∼ 0.5N(−4, 1) +

0.5N(0, 1), each for i = 1, . . . , nj . We repeat the experiment for an increasing number
of observations, n = 50, 100, 200, which we equally divided into the two groups. See
Figure 3 for an example of the empirical distribution of a simulated dataset with n =
100 and the underlying densities. This experiment is designed to assess whether the
borrowing of information may lead to misleading results in situations where groups do
not share any features. Hence, for this scenario, we confine the comparison in terms of
global clustering among the HMFM, the HDP, and the MFM-pooled. Here, the HMFM
is fitted by setting Λ0 = 10, VΛ = 2, γ0 = 0.01 while the HDP and MFM are fitted
employing default hyperpriors.
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Figure 3: Empirical distributions of a dataset simulated under Experiment 2. Dots
represent the observations, while lines represent the underlying densities. Colors relate
to the mixing components.

n = 50 n = 100 n = 200
HMFM-cond 0.60 (0.35) 0.74 (0.24) 0.90 (0.10)
HMFM-marg 0.59 (0.33) 0.74 (0.24) 0.89 (0.08)
HDP 0.30 (0.27) 0.48 (0.28) 0.73 (0.18)
MFM-pooled 0.36 (0.13) 0.40 (0.72) 0.41 (0.04)

Table 2: Mean and standard deviation (in brackets) of the ARI for the two groups over
the 50 simulated datasets under Experiment 2.

Table 2 presents the results of model comparison based on the mean and standard
deviation (in brackets) of the ARI over the simulated datasets. Although the scenario
is simple, the table shows that the HDP struggles to find the underlying global clus-
tering, and it is outperformed by the HMFM, both marginal and conditional. For what
concerns MFM-pooled, Figure 3 clearly shows that discarding the group-membership
information makes the clustering task much harder as all clusters strongly overlap. This
explains the poor performances of the MFM-pooled reported in Table 2, which do not
significantly improve increasing the sample size. The same conclusions can be drawn
from the CCE relative to the global partition (Figure 4) which takes into account all
the posterior pairwise probabilities of observations to be clustered together. Clearly,
the HMFM outperforms both HDP and the MFM-pooled in terms of clustering estima-
tion.

Finally, Figure 5 shows the frequencies of the estimated number of clusters over
the 50 different datasets. The HMFM always prefers a number of clusters greater than
two and, as the sample size increases, it selects four clusters, which is the true value.
In contrast, the HDP tends to identify only two clusters when n is small, discarding
this preference when more data are added. This example showcases that the poorer
clustering performance of the HDP is due to the oversharing of information which
can compromise the recovery of the true underlying partition. Indeed, in the extreme
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Figure 4: Co-Clustering Error for different sample sizes. Boxplots are obtained over 50
datasets simulated under Experiment 2.

Figure 5: Estimated number of global clusters. Frequencies are obtained over 50 datasets
simulated under Experiment 2. Red and orange bars represent the HMFM, conditional
and marginal algorithms, respectively. Green bars are for the HDP, while the light blue
bars are for the MFM-pooled.

situation (i.e., ignoring the groups), the MFM-pooled remains fixed at the two-cluster
solution, even when the sample size increases.

To better clarify the clustering mechanism of the different models, we resort to the
restaurant franchise metaphor discussed in Section 3.2. According to the HDP, when a
new customer arrives, the probability of consuming a dish not yet served in that spe-
cific restaurant, but available in other franchise restaurants, hinges on the cumulative
number of clients eating that dish across all restaurants. In contrast, the HMFM uses
information only about whether a dish is being consumed or not in other restaurants.
This experiment unveils a potential issue in the HDP’s clustering mechanism; the con-
centration of all clients within the first restaurant (group) eating the same dish increases
the probability of that dish being offered in the second restaurant (group), even though
no components are shared between them. Rather, this confusion is circumvented by the
HMFM’s clustering mechanism. We notice that this phenomenon is directly tied to the
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choice of the prior, and its impact diminishes as the sample size increases, as shown in
Table 2. Nevertheless, the HMFM model still outperforms the competing approaches
even when n = 200.

6 Analysis of shot put data
Shot put is a track and field event in which athletes throw a heavy spherical ball,
known as the shot, as far as possible. Our dataset comprises measurements, specifically
the throw lengths or marks, recorded during professional shot put competitions from
1996 to 2016, for a total of 35, 637 measurements on 403 athletes. Each athlete’s record
includes the mark achieved, competition details, and personal information, namely, age,
gender, and whether the event took place indoors or outdoors. The analyzed data are
publicly available (www.tilastopaja.eu). Our objective is to model the seasonal per-
formance for each shot putter, interpreted as the mean and variance of his/her seasonal
marks. In particular, the season number assigned to each observation corresponds to
the number of seasons the athlete has participated in, excluding seasons where he/she
did not compete. For example, season 1 represents the athlete’s first active season. This
grouping of observations into seasons reflects the athletes’ years of experience. Figure S9
in the Supplementary materials visually illustrates the performance evolution through-
out the career of four randomly selected shot putters from the dataset. Each athlete has
different participation in competitions, and the length and trajectory of their perfor-
mance careers vary. While performance is expected to vary over the athlete’s career, the
figure evidences that the performance remains relatively consistent within each season.
We characterized the seasonal performances as arising primarily from random fluctua-
tions around a mean value. The values of this mean and the associated variability are
unknown and are inferred from the data. Although it is a simplified representation, this
captures the essential characteristics of athletes’ careers.

In a previous study, Dolmeta et al. (2023) employed a generalized autoregressive
conditional heteroskedasticity (GARCH) model to account for the volatility clustering
of athletes’ results over time. Rather, in this work, we frame the data into a hierarchical
structure where each season represents a different group. Hence, we assume the HMFM
model described in Section 2 for analyzing the athletes’ performance; the proposed
model allows us to capture the variability among different seasons and clustering the
performances both within the seasons and across them.

Let nj be the number of athletes competing in season j, with j = 1, . . . , d. The
longest career consists of 15 seasons, which is then the total number of groups d = 15.
Each active athlete i in season j, with i = 1, . . . , nj , takes part in Nj,i events. At each
event, indexed by h = 1, . . . , Nj,i, the athlete’s mark yj,i,h is measured. Moreover, r
event-specific covariates are available, xj,i,h ∈ R

r, and collected in the design matrices
Xj,i ∈ R

Nj,i×r.

Assuming that observations are noisy measurements of an underlying athlete-specific
function, the model we employ for these data is yj,i,h = μj,i + Xj,iβj + εj,i,h, with
εj,i,h

iid∼ N
(
0, σ2

j,i

)
, where μj,i is a season-specific random intercept, βj is a r-dimensional

http://www.tilastopaja.eu
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vector of regression parameters, shared among all the athletes in season j, and σ2
j,i

denotes the error variance. Therefore, within each season j, the athlete’s observations
yj,i = (yj,i,1, . . . , yj,i,Nj,i) are distributed as

yj,i | μj,i, σ
2
j,i,βj , Xi,j

ind∼ NNj,i

(
μj,i1Nj,i + Xj,iβj , σ

2
j,iINj,i

)
, (18)

where NNj,i denotes the Nj,i-dimensional normal distribution, 1Nj,i is a vector of length
Nj,i with all entries equal to 1 and INj,i is the identity matrix of size Nj,i. To ensure iden-
tifiability, observations yj,i have been centered within each season, i.e.,∑nj

i=1
∑Nj,i

h=1 yj,i,h = 0 for each j.

Letting θj,i =
(
μj,i, σ

2
j,i

)
, we place a Vec-FDP prior for θj,i so that a clustering of

athletes’ performances both within and across different seasons is achieved. We assume a
multivariate normal prior distribution for the regression coefficients, whose prior mean is
denoted by β0 and covariance matrix Σ0. We define y as the collection of all observations
across seasons j and athletes i. Based on evidence from a previous analysis (Dolmeta
et al., 2023) and for ease of interpretation, we use only gender as a covariate in our
analysis. In particular, we use male athletes as reference baseline and set β0 = −21d

and Σ0 = Id expecting male athletes to throw longer than females.

We set the base probability measure P0 for θ =
(
μ, σ2) to be a Normal-Inverse

Gamma, exploiting the conjugacy with the likelihood in (18). In particular, the Normal-
Inverse Gamma distribution is parametrized as is Hoff (2009), i.e.,(

μ, σ2) ∼ InvGamma(μ0, k0, ν0, σ
2
0) = N

(
μ0,

σ2

k0

)
× Gamma

(ν0

2 ,
ν0

2 σ2
0

)
.

Following the approach of Richardson and Green (1997) and Lijoi et al. (2007a), we
set μ0 = 0 and k0 = 1

range(y)2 . Then, we set ν0 = 4 and σ2
0 = 10 to have a vague

InvGamma with infinite variance. For the process hyperparameters Λ and γ, we set the
hyperprior in (17). To achieve sparsity in the mixture, we follow the approach in Section
S5.1, and set Λ0 = 25, VΛ = 3 and γ0 = 1/

∑d
j=1 nj = 0.00027, leading to aγ = 13.89,

bγ = 2007.78, aΛ = 208.33, bΛ = 8.33. The complete formulation of the hierarchical
model can be found in Section S7. The burn-in period has been set equal to 50, 000,
then 200, 000 additional iterations were run with a thinning of 10. The initial partition
has been set using the k-means on the pooled dataset with 20 centrers. Posterior analysis
is not sensible for such a choice.

Figure 6 shows the posterior 95% credible intervals of the regression coefficients. The
posterior distribution is concentrated on negative values, meaning that the athletes’
marks are, on average, higher for males than females. Also, the effect of gender on
athletes’ performance is significantly different across seasons, e.g., it is more evident in
the first years and it reduces over career years, with the exception of the final season.

The final clustering has been obtained through minimization of the variation of in-
formation (Wade and Ghahramani, 2018; Dahl et al., 2022) loss function, and it consists
of 13 clusters, with the posterior mode being equal to 15. Among these, we identify 11
main clusters since two of them capture noisy observations with high variance. The
estimated clusters have been relabeled according to decreasing means.
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Figure 6: 95% posterior credible intervals of season-specific coefficients β’s.

A remarkable finding is that the cluster interpretation does not depend on gender,
whose effect has been filtered out by the season-specific parameter β. In other words,
our clustering does not trivially distinguish between males and females, but it models
the athletes’ performance regardless of their gender. This claim is supported by the fact
that, when ordering the clusters according to their means, both males’ and females’
average performance are ordered too, with the exception of one cluster which is made of
female athletes only. Moreover, Figure 7 reports the athletes’ marks, coloured according
to their cluster membership, for male and female players, respectively. The two plots
are similar, highlighting that the cluster interpretation is gender-free.

Figure 7: Shot put marks for male athletes (left panel) and female athletes (right panel).
Vertical dotted lines delimit seasons. Dots are coloured according to their cluster mem-
bership.

Nevertheless, we are able to identify the presence of a particular cluster, whose points
are highlighted in the right panel of Figure 7, including three exceptional women per-
formances, which are much above the average mean throw for female athletes. No man
belongs to such a cluster, meaning that no one has ever been able to outperform com-
petitors in such a neat way. In particular, in this cluster, we find Astrid Kumbernuss,
who is a three-time World champion and one-time Olympic champion; Valerie Adams,
who, during her outstanding career, won two Olympic Games and four World Champi-
onships and Nadzeya Ostapchuk, who won a bronze medal at the Olympic Games.
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Figure 8: Left panel: local cluster sizes. Right panel: absolute frequencies of the seasons
in which each athlete reaches their peak cluster for the first time, i.e., the one with the
highest average.

According to the model (18), clusters are interpreted according to their correspond-
ing mean and variances, but many insights can be gained from the clustering results.
Notably, our analysis focuses on global considerations about the average evolution of
the athletes’ careers, as well as on the individual-specific sequence of clusters that char-
acterizes every athlete. We refer to Section S7 for tables reporting all season-specific
cluster sizes and cluster summaries and to the left panel of Figure 8 for a representa-
tion of the local cluster sizes. Finally, see Section S7.1 for a comparison with a naive
modeling, which consists of fitting a mixture model to the pooled data.

From the global interpretation of the clustering results, we observe that in the first
season of their careers, most of the athletes are grouped into the lowest-ranked cluster.
This finding aligns with the expectation that rookies tend to exhibit similar perfor-
mances. Then, the remaining athletes are divided among other low-ranked clusters,
with the exception of some athletes who already belong to high-ranked clusters. The
intermediate-level clusters are notably empty, highlighting a highly polarized situation.
An interesting feature of our model is the ability to evaluate how the larger cluster
changes across seasons. Notice in the left panel of Figure 8 the darkest squares progres-
sively shift from the lowest-ranked cluster toward the intermediate-ranked clusters up
to season 7. This trend likely reflects both the athletes’ increasing experience and ongo-
ing physical development during the early stages of their careers. However, from season
7 onwards, this progression is eventually tempered by external factors not captured
by the model, such as training consistency and injuries. Furthermore, the right panel
of Figure 8 shows the absolute frequencies of the seasons in which each athlete first
reached the highest-ranked cluster of their career. This depicts a skewed distribution,
with a mode at the season 4, and subsequent seasons being more frequent compared to
the first three seasons. The frequencies decrease significantly from season 10 onwards.

The analysis of cluster summaries provides additional insights. From Table S2, we
note that male athletes in the highest-ranked clusters have higher average ages than
female athletes. This indicates that women tend to reach their peak performance at a
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younger age than men. A possible explanation for this disparity is that female bodies
develop earlier than male bodies; this is supported by the fact that women begin their
careers at an average age of 18.2, while men start at an average age of 19.4. Cluster 1
stands out from this trend as it comprises female athletes with a mean age of 28, which
is considerably older than the average peak age. Lastly, it is worth noting that top-level
clusters, specifically clusters 2 and 3, have a higher proportion of female athletes than
male athletes. This is despite the overall number of observations for women being smaller
than for men. This suggests that male competitions may be more balanced, making it
more challenging for athletes to distinguish themselves from the average level.

Figure 9: Shot put measurement for four randomly selected athletes. Points are coloured
according to the cluster membership of the corresponding performance. Solid means
represent the estimated cluster means. Shaded areas represent the 95% credible bands.

A key feature of our analysis is the possibility of studying the evolution of season-
specific cluster membership of each player. This is exemplified in Figure 9, which show-
cases the trajectories of four players (two men and two women). In the plot, marks rep-
resenting each season are colour-coded according to their cluster memberships, while
solid lines represent the estimated seasonal mean performances, and the shaded ar-
eas represent 95% credible bands. One notable pattern emerges from the trajectory
of Robert Häggblom, where a drop occurred immediately after the peak of his career,
where he even participated in the 2008 Olympic games. A back injury conditioned the
final part of its career. This sudden change would have been challenging to capture by a
time-smoothing model. In contrast, Rachel Wallader demonstrates significant improve-
ments throughout her career, starting from cluster 12, which we recall being the pre-
dominant cluster among rookies, and eventually reaching the higher-performing cluster
before retiring, also managing to win the British title. Anton Lyuboslavskiy and Na-
tallia Mikhnevich share remarkable career paths, showcasing exceptional performance
not only for a single season but for extended periods of time, both around 9 years.
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Indeed, both are Olympic level players. Unlike Rachel Wallader, Anton Lyuboslavskiy
continued to compete beyond his prime, maintaining high levels of performance but
eventually transitioning to intermediate cluster levels. Lastly, we highlight that Robert
Häggblom and Natallia Mikhnevich achieved comparable marks, but the performances
of the second athlete, a woman, are assigned to higher-ranked clusters. This demon-
strates our model’s ability to recognize top players, regardless of their gender. Indeed,
Natallia Mikhnevich’s career has been richer in success, as she won both gold and silver
at the European Championships. Finally, we point out that we identify athlete-specific
sequences of clusters, which could themselves be clustered to capture similarities and
differences in the development trajectories of the athletes. A model-based solution to
this task would necessitate moving beyond the framework of partial exchangeability
across the seasons and adopting temporal modeling; see Page et al. (2022) for a possible
alternative.

7 Discussion
We have introduced an innovative Bayesian nonparametric model for the analysis of
grouped data, leveraging the normalization of finite dependent point processes as its
foundation. Furthermore, we provided a comprehensive Bayesian analysis of this novel
model class, delving into the examination of the pEPPF, posterior distributions and
predictive distributions. A special emphasis has been placed on vectors of finite Dirich-
let processes, which stand out as a noteworthy example in this context. Besides, we
have also defined the HMFM as a natural extension of the work by Miller and Harrison
(2018). Based on our theory, marginal and conditional algorithms have been developed.
One significant benefit of HMFM is its ability to effectively capture dependence across
groups. Moreover, we have empirically shown that HMFM better calibrates the bor-
rowing of information across groups than a traditional HDP and also performs better
in terms of computational time. In other words, the HMFM is a harmonious balance
between HDP and independent analyses. Finally, the analysis of the shot put data il-
luminated the flexibility of the model employed to infer athlete career trajectories and
group them into clusters with a meaningful interpretation.

We now pinpoint several open problems related to our work, which are left for future
research. First, note that our construction allows a local and a global clustering. How-
ever, in numerous applications, one is also interested in clustering the different groups of
observations. Nested structures, introduced by Rodríguez et al. (2008), have gained pop-
ularity as valuable Bayesian tools for accomplishing this task. Recent developments also
include Denti et al. (2023) and D’Angelo et al. (2023). We intend to explore the use of
NIFPP to simplify the complexity of nested models, and to alleviate the computational
burden associated with traditional nested structures.

Other future directions of research aim to enhance between-group dependence based
on our approach. An intriguing extension we plan to investigate is to adopt a con-
struction akin to compound random measures (Griffin and Leisen, 2017). Our idea is
to replace Sj,m, the unnormalized weight referring to group j and atom m, with a
product between a shared component across groups, i.e., depending only on m, and an
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idiosyncratic component, which depends on both group j and the specific atom m. This
modification would break the conditional independence, given M , of the unnormalized
weights. However, it could be advantageous in situations where additional information
sharing is desired, as for the overlapping community in modular graphs, see (Todeschini
et al., 2020).

Throughout the paper, we assumed that the atoms τ1, . . . , τM are i.i.d. according to
a diffuse base measure P0. However, recent research lines have explored the use of repul-
sive point processes as priors for mixture parameters (Petralia et al., 2012; Beraha et al.,
2021) and applied them to model-based clustering for high-dimensional data (Ghilotti
et al., 2024). Furthermore, the new general theory presented by Beraha et al. (2023)
unifies various types of dependence on location, including independence, repulsiveness,
and attractiveness. Palm calculus, which was a fundamental tool in our analysis, pro-
vides a mathematical framework for analysing these models. As a consequence, it is
a promising avenue to extend our model to incorporate more sophisticated forms of
dependence across the atoms τ1, . . . , τM .

The use of vectors of NIFPP is not limited to the mixture framework. Indeed they
can be helpful to face extrapolation problems when multiple populations of species are
available. To have a glimpse of this, consider two populations of animals composed of
different species with unknown proportions. Given samples from the first and the second
populations, extrapolation problems refer to out-of-sample prediction. For instance, a
typical question is: how many new and distinct species are shared across two additional
samples from the populations? The seminal work of Lijoi et al. (2007b) faced extrapo-
lation problems in the simplified framework of a single population, but no results are
available in the presence of multiple groups. We think that the use of vectors of NIFPP
can help to face the multiple-sample setting, still unexplored in the Bayesian framework.
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