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Matching Prior Pairs Connecting Maximum A
Posteriori Estimation and Posterior Expectation

Michiko Okudo∗ and Keisuke Yano†

Abstract. Bayesian statistics has two common measures of central tendency of
a posterior distribution: posterior means and Maximum A Posteriori (MAP) esti-
mates. In this paper, we discuss a connection between MAP estimates and poste-
rior means. We derive an asymptotic condition for a pair of prior densities under
which the posterior mean based on one prior coincides with the MAP estimate
based on the other prior. A sufficient condition for the existence of this prior
pair relates to α-flatness of the statistical model in information geometry. We
also construct a matching prior pair using α-parallel priors. Our result elucidates
an interesting connection between regularization in generalized linear regression
models and posterior expectation.

Keywords: Bayesian inference, generalized linear regression, information
geometry, prior selection.

1 Introduction
In Bayesian statistics, two common measures of central tendency of a posterior distri-
bution are posterior mean and Maximum A Posteriori (MAP) estimate. Posterior mean
is the Bayes estimate, an estimate minimizing the expected loss for a squared-error loss
function. This is usually computed by the expectation using Markov chain Monte Carlo
(MCMC). MAP estimate lies in the literature of penalized likelihood estimate or regu-
larized maximum likelihood estimate. This is obtained by the optimization. Although
the computational schemes of two estimates are different, the celebrated Bernstein–
von-Mises theorem tells that in the first-order asymptotic regime of the sample size, the
posterior shape becomes Gaussian with the center equal to the MAP estimate. Thus
the posterior mean and the MAP estimate become the same in the asymptotic regime.
Yet, practical behaviours of these estimates are quite different (e.g., Pananos and Li-
zotte, 2020). Recent studies (Gribonval, 2011; Gribonval and Machart, 2013; Louchet
and Moisan, 2013; Burger and Lucka, 2014) highlight differences and connections be-
tween these estimates in several statistical models. In particular, Gribonval and Machart
(2013) reveals that in Gaussian linear inverse problems, although the posterior mean
and the MAP estimate for the same prior may be different, every posterior mean based
on a prior is also the MAP estimate based on a different prior.

∗Department of Mathematical Informatics, Graduate School of Information Science and Technology,
The University of Tokyo 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, JAPAN, okudo@mist.i.u-tokyo.
ac.jp

†The Institute of Statistical Mathematics, 10-3 Midori cho, Tachikawa City, Tokyo, 190-8562, Japan,
yano@ism.ac.jp

© 2024 International Society for Bayesian Analysis https://doi.org/10.1214/24-BA1500

https://bayesian.org/resources/bayesian-analysis/
mailto:okudo@mist.i.u-tokyo.ac.jp
mailto:okudo@mist.i.u-tokyo.ac.jp
mailto:yano@ism.ac.jp
https://doi.org/10.1214/24-BA1500


2 Matching prior pairs

To elucidate a further connection between MAP estimates and posterior means in
general statistical models, this paper derives the asymptotic condition for a pair of
priors (π, π̃) under which the posterior mean derived from one prior π coincides with
the MAP estimate based on the other prior π̃. We call this pair of priors matching
prior pair. From our discovery of matching prior pairs, we see that in a generalized
linear regression model, although the posterior mean based on a Gaussian prior may
be different from the ridge regression (the MAP estimate based on a Gaussian prior),
the matching prior pair of the Gaussian prior can deliver the MAP estimate closer to
the posterior mean based on the Gaussian prior in asymptotic regimes. Although our
main discovery is theoretical, it can also have practical implications, in particular, in
the computation of each estimate. When there exists a difficulty in optimizing the log
posterior density to obtain a MAP estimate for a prior, we can utilize the posterior mean
based on another prior that forms a matching pair with the given prior. In contrast, when
it is hard to build an MCMC for computing a posterior mean, we can instead evaluate
a MAP estimate that matches to the posterior mean. This point will be further clarified
by numerical experiments in Section 3.

The existence of a matching prior pair has an information-geometrical flavor (Amari,
1985). The information geometry presents a class of α-connections (α ∈ R) concerning
the manifold of probability distributions. We show that a matching prior pair exists for
an α-affine parameterization, that is, the parameterization with α-connection equal to
0. Further, we also provide an explicit construction of the matching prior pair using
α-parallel priors (Takeuchi and Amari, 2005). This information-geometrical notation
appears because the posterior expectation elicits the information about the flatness of
the statistical model with respect to the (−1)-connection as observed in Komaki (1996)
and in Okudo and Komaki (2021).

There is a literature on bridging the gap between the MAP estimation and the
posterior expectation. In the objective Bayesian literature, a prior yielding the posterior
mean asymptotically equal to the maximum likelihood estimate (MLE) is called the
moment matching prior. Ghosh and Liu (2011) derives a formula for constructing a
moment matching prior. Hashimoto (2019) extends the construction to non-regular
statistical models. Yanagimoto and Miyata (2023) extends the moment matching prior
to the conditional inference. Our matching prior pair includes the moment matching
prior and naturally extends its idea to the MAP estimate based on a non-uniform
distribution. Gribonval and Machart (2013) reveals an elegant construction of an exact
matching prior pair for linear inverse problems. Polson and Scott (2016) proposes an
exact prior pair that matches a density with a MAP estimate plugged-in and a marginal
density. These results are exact in the sense that it holds even in the finite regime of
sample size but are limited to several models. Although our construction relies on the
asymptotics with respect to the sample size, it elucidates the connection in general
statistical models using information geometry.

The rest of this paper is structured as follows. Section 2 delivers the main result,
an information-geometrical construction of a matching prior pair. Section 2.3 displays
analytical examples that examine the main result. Section 3 presents numerical examples
using synthetic and real data. All technical proofs are presented in Section 4.
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2 Matching prior pairs
We first prepare several notations for the theory and then present the construction of
the matching prior pair.

2.1 Preparation
Let Y be a sample space and let dy be a base measure. Assume that we have observations
yn = {y(1), y(2), . . . , y(n)} (y(1), . . . , y(n) ∈ Y) independently distributed according to
a probability distribution with a density function p(y ; θ) that belongs to a statistical
model parameterized by θ:

P = {p(y ; θ) | θ ∈ Θ} with Θ ⊂ R
d.

We denote by Eθ the expectation with respect to the density with θ.

For the theory, we first introduce several information-geometric notations; for details,
see Amari (1985). Components of the Fisher information matrix g = (gab)a,b=1,...,d are
defined as

gab(θ) :=
∫

p(y ; θ){∂a log p(y ; θ)}{∂b log p(y ; θ)}dy =
∫

∂ap(y ; θ)∂bp(y ; θ)
p(y ; θ) dy,

where ∂a = ∂/∂θa. For a, b = 1, . . . , d, let gab be a component of the inverse matrix of
the Fisher information matrix g. For a, b, c = 1, . . . , d, the m-connection coefficient (the
(−1)-connection coefficient) and e-connection coefficient (the 1-connection coefficient)
are defined as

m
Γabc :=

∫
∂a∂bp(y ; θ)∂cp(y ; θ)

p(y ; θ) dy and

e
Γabc :=

∫
p(y; θ){∂a∂b log p(y ; θ)}{∂c log p(y ; θ)}dy,

(1)

respectively. For a, b, c = 1, . . . , d, let

Tabc :=
m
Γabc −

e
Γabc =

∫
p(y; θ){∂a log p(y ; θ)}{∂b log p(y ; θ)}{∂c log p(y ; θ)}dy.

Further, the α-connection coefficient for α ∈ R is defined as
α

Γabc :=
m
Γabc −

1 + α

2 Tabc =
e
Γabc + 1 − α

2 Tabc (a, b, c = 1, . . . , d). (2)

These connections form dual connections, that is,

∂agbc(θ) =
α

Γabc(θ) +
−α

Γacb(θ) for any α ∈ R. (3)

To ease the notation, we use the Einstein summation convention: if an index occurs
twice in any one term, once as an upper and once as a lower index, summation over
that index is implied. Let

Ta := Tabcg
bc and

α

Γ c
ab :=

α

Γabegce for a, b, c = 1, . . . , d.
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We then prepare notions of flatness in the information geometry. For given α ∈ R,
the statistical model P is called α-flat if and only if there exists a parameterization with
α

Γabc = 0 for all a, b, c = 1, . . . , d; e.g., p. 47 of Amari (1985). The parameterization with
α

Γabc = 0 for a, b, c = 1, . . . , d is called an α-affine coordinate. Further, the statistical
model is said to be statistically equi-affine when ∂aTb = ∂bTa for θ ∈ Θ; e.g., Definition
2 of Takeuchi and Amari (2005). The concept of statistical equi-affinity is important
to the existence of the subsequent α-parallel priors and we have a handy sufficient
condition for the statistically equi-affinity as described below.

Lemma 2.1 (Lauritzen (1987); Propositions 3 and 4 of Takeuchi and Amari (2005)).
If the model is α-flat for a certain α �= 0, it is statistically equi-affine.

We thirdly introduce α-parallel priors. For α ∈ R, an α-parallel prior πα proposed
by Takeuchi and Amari (2005) is defined by

∂a log πα(θ) =
α

Γ b
ab(θ) (a = 1, . . . , d) (4)

if it exists. This class contains several non-informative priors proposed in the objective
Bayesian literature (e.g., Tanaka, 2023). First, it includes the well-known Jeffreys prior
πJ(θ) := |g(θ)|1/2 with the determinant | · | as the 0-parallel prior:

∂a log πJ(θ) = 1
2∂a log |g|(θ) = 1

2g
bc(θ)∂agbc(θ) =

0
Γ b
ab(θ) (a = 1, . . . , d).

Second, it has the χ2-prior πχ2(θ) proposed by Liu et al. (2014) as 1/2-parallel prior:

∂a log πχ2(θ) =
1/2
Γ b

ab(θ) (a = 1, . . . , d),

which is recently pointed out by Tanaka (2023). For α = 1, we call this e-parallel prior
πe, and for α = −1, we call this m-parallel prior πm. Takeuchi and Amari (2005) find
the following lemmas for the existence of α-parallel priors.

Lemma 2.2 (Proposition 2 of Takeuchi and Amari (2005)). A statistically equi-affine
statistical model has α-parallel priors for any α ∈ R. Otherwise, the model has only the
0-parallel prior.

Lemma 2.3 (Proposition 5 of Takeuchi and Amari (2005)). If a statistical model is
α0-flat for a certain α0 �= 0, then the model has α-parallel priors for arbitrary α ∈ R.

Example 2.1 (Exponential family). Consider an exponential family with a sufficient
statistic T (y) ∈ R

d:
{ exp{θ�T (y) − ψ(θ)}m(y) | θ ∈ Θ},

where ψ(θ) is the potential function and m(y) is a given function. The exponential
family is e- & m-flat (±1-flat), that is, it has parameterizations θ and η = Eθ[T (Y )]
with

e
Γ c
ab (θ) = 0 and

m
Γ c
ab(η) = 0, respectively. Thus, Lemma 2.3 implies that exponential

families have α-parallel priors for arbitrary α. In particular, the e-parallel prior is a
uniform prior with respect to θ, and the m-parallel prior is a uniform prior with respect
to η.
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We conclude this subsection by introducing a condition on the existence of the
solution of a certain partial differential equation. For a differentiable function h(θ) =
(h1(θ), . . . , hd(θ))�, consider the partial differential equation of u(θ) given by

∂au(θ) = ha(θ) (a = 1, . . . , d).

Lemma 2.4 (p. 348 of Zwillinger (1997); Section 1-3 of Matsuda (1976)). If ∂bha(θ) =
∂ahb(θ) for 1 ≤ a < b ≤ d, then u(θ) exists locally.

2.2 Main results
We present information-geometrical condition and construction of matching prior pairs.
We begin with an asymptotic condition of matching prior pairs for general models, and
then we derive a simple form for an α-affine coordinate in a statistically equi-affine
model. Lastly, we derive matching prior pairs for other statistics including variance
and higher-order moments. In the rest of the paper, we assume regularity conditions
for asymptotic expansions of posterior mean estimators and MAP estimators, and we
consider only the class of priors that satisfy the regularity conditions. For the details of
the regularity conditions, see Okudo and Yano (2024).

The following theorem delivers an asymptotic condition to match a posterior mean
based on a prior πPM and a MAP estimate based on a prior πMAP except for terms of
op(n−1). The proof is given in Section 4.

Theorem 2.1. The posterior mean θ̂PM based on a prior πPM and the MAP estimate
θ̂MAP based on a prior πMAP coincide except for terms of op(n−1) when the prior pair
(πPM, πMAP) satisfies, for a = 1, . . . , d,

∂a log πPM

πMAP
(θ̂MLE) −

(
∂a log πJ(θ̂MLE) + 1

2g
cd(θ̂MLE)

e
Γcda(θ̂MLE)

)
= op(n−1), (5)

where θ̂MLE is the MLE.

Remark 2.1. Theorem 2.1 includes the construction of the moment matching prior
proposed by Ghosh and Liu (2011). The moment matching prior is the prior that yields
the posterior mean asymptotically equal to the MLE. Tanaka (2023) rewrites the partial
differential equation for the moment matching prior πMM in an information-geometrical
way:

∂a log πMM(θ) −
(
∂a log πJ(θ) + 1

2g
cd(θ)

e
Γcda(θ)

)
= 0 (a = 1, . . . , d).

As the prior that yields MLE as the MAP estimate is a uniform prior, the moment
matching prior πMM satisfies (5) as the matching prior pair of a uniform prior.

Remark 2.2. From the objective Bayesian perspective, the usage of the MAP estimate
is somewhat controversial as the MAP estimate is not invariant with respect to the
parameterization; see Druilhet and Marin (2007) for the literature. To resolve this issue,
Druilhet and Marin (2007) proposes JMAP estimate, that is, the MAP estimate obtained
from the original prior π divided by the Jeffreys prior πJ. Our result also tells the
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connection between the posterior mean based on a prior πPM and the JMAP estimate
based on a prior πJMAP. Putting πJMAP/πJ to πMAP, equation (5) becomes

∂a log πPM

πJMAP
(θ̂MLE) − 1

2g
cd(θ̂MLE)

e
Γcda(θ̂MLE) = op(n−1),

which implies seeking a prior pair between the posterior mean and the JMAP estimate
is more directly related to the behavior of e-connection coefficients.
Remark 2.3. In connection with the invariance in the previous remark, we should men-
tion the lack of invariance in a matching prior pair. In fact, equation (5) is not invariant
with respect to parameterization, which implies that an explicit form of a matching prior
pair depends on parameterization. Consider changing the parameterization θ to ξ. By
using change of variables, equation (5) for the new parameterization ξ becomes

∂θa

∂ξa′ (θ̂MLE)
{

∂

∂θa
log πPM

πMAP
(θ̂MLE) −

(
∂

∂θa
log πJ(θ̂MLE) + 1

2g
cd(θ̂MLE)

e
Γcda(θ̂MLE)

)
−1

2g
cd(θ̂MLE)gab(θ̂MLE)∂ξ

c′

∂θc
(θ̂MLE)∂ξ

d′

∂θd
(θ̂MLE) ∂2θb

∂ξc′∂ξd′ (θ̂MLE)
}

= op(n−1).

So, even the existence of a matching prior pair depends on parameterization. This is
mainly because the connection coefficient is not a tensor, and is reasonable because the
form of the posterior mean itself changes according to the parameterization. Given this
fact, we shall discuss the existence and the construction of a matching prior pair below.

In a one-dimensional statistical model, an explicit construction of a matching prior
pair is easy. Consider the following ordinary differential equation:

d

dθ
log πPM(θ)

πMAP(θ)πJ(θ)
= 1

2g
11(θ)

e
Γ111(θ).

The integration with respect to θ yields, for arbitrary θ0 ∈ Θ,

πPM(θ)
πMAP(θ) ∝ πJ(θ) exp

{∫ θ

θ0

(
1
2g

11(θ′)
e
Γ111(θ′)dθ′

)}
.

Yet, in a multi-dimensional statistical model, even the existence of a matching prior
pair is non-trivial. We then seek a sufficient condition for the existence of a matching
prior pair and an explicit construction of the pair. The following corollary provides
a sufficient condition of the existence and a explicit construction using information
geometry.
Corollary 2.1. Assume that the model is statistically equi-affine and θ is α-affine for a
certain α ∈ R. Then, a matching prior pair exists. Further, the prior pair (πPM, πMAP)
satisfying

πPM(θ)
πMAP(θ) ∝ πJ(θ)

(
πe(θ)
πm(θ)

)(1−α)/4
(6)

is a matching prior pair; that is, the posterior mean based on πPM and the MAP estimate
based on πMAP coincide except for terms of op(n−1).
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Proof. Observe that we have
e
Γabc(θ) = −{(1 − α)/2}Tabc(θ) (a, b, c = 1, . . . , d) for an

α-affine coordinate θ. Together with (2), this implies that for an α-affine coordinate θ,
the condition (5) becomes

∂a

(
log πPM(θ)

πMAP(θ)πJ(θ)

)
= −1 − α

4 Ta(θ) + op(n−1) for θ = θ̂MLE.

Then, consider the following partial differential equation:

∂a

(
log πPM(θ)

πMAP(θ)πJ(θ)

)
= −1 − α

4 Ta(θ). (7)

Lemma 2.4 tells that this equation has a solution if

∂bTa(θ) = ∂aTb(θ) (1 ≤ a < b ≤ d),

which is equal to the statistical equi-affinity of the model and thus a matching prior
pair exists for an α-affine coordinate θ in a statistically equi-affine model.

Further, by the definition of the e-&m-parallel priors (4), we have

∂a log πm(θ)
πe(θ)

= Ta(θ) (a = 1, . . . , d),

and obtain

∂a

(
log πPM(θ)

πMAP(θ)πJ(θ)

)
= ∂a log

(
πe(θ)
πm(θ)

)(1−α)/4

(a = 1, . . . , d).

So, the prior pair (6) is a matching prior pair, which completes the proof.

From Lemma 2.1, α-affine coordinates satisfy the assumption above. In the following
subsections, we shall give several such examples in submodels of exponential families.
However, readers may consider practical applications beyond submodels of exponential
families. Although finding the matching prior pair may be difficult in general statistical
models, in another direction, one-step calibration between the MAP estimate and the
posterior expectation based on a prior is possible using the following corollary.

Corollary 2.2. For a prior π, the posterior expectation θ̂PM is calculated by

θ̂aPM = θ̂aMAP + 1
2ng

ab(θ̂MAP)gcd(θ̂MAP)
{

1
n

n∑
t=1

∂bcd log p(y(t) ; θ̂MAP)
}

+ op(n−1) (8)

for a = 1, . . . , d.

This calibration formula is derived from several ingredients of the proof of the main
theorem. It can also be obtained through the asymptotic expansion in Miyata (2004)
(see also Yanagimoto and Miyata, 2023); however, it has not been used for our specific
purpose, that is, calibrating the posterior expectation and the MAP. In practice, the
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higher-order derivatives in the formula can be efficiently computed using automatic
differentiation (cf. Iri, 1984; Baydin et al., 2018). The supplementary material Okudo
and Yano (2024) checks the validity of this calibration.

We conclude this section with the following extension of matching prior pairs, that
is, matching prior pairs for other statistics including higher-order moments.

Proposition 2.1. Let f(θ) = (f1(θ), . . . , fd(θ)) be a third-times differentiable function.
If two priors πPM and πMAP satisfy

∂afi(θ)
{
∂b log πPM

πMAP
(θ) − ∂b log πJ(θ) −

1
2g

cd(θ)
e
Γcdb(θ)

}
− 1

2∂a∂bfi(θ) = op(n−1)

at θ = θ̂MLE for i = 1, . . . , d and a = 1, . . . , d, the posterior expectation fπPM of f based
on πPM and the MAP-plugged-in estimate f(θ̂MAP) based on πMAP coincide except for
op(n−1)-terms.

2.3 Examples
In this section, we present matching prior pairs (6) in a submodel of an exponential
family:

{exp{θ�(ξ)T (y) − ψ(θ(ξ))}m(y) | ξ ∈ Ξ},
where θ is the p-dimensional canonical/natural parameter of the exponential family, and
ξ is a d-dimensional model parameter. This includes the exponential family itself and the
generalized linear regression model with a canonical link function. As the exponential
family is e-&m-flat and has α-parallel priors, their e- or m-flat submodels also have
α-parallel priors and so we confine ourselves to e- or m-flat submodels of an exponential
family.

Generalized linear models with canonical links and regression coefficients

We first consider a generalized linear regression model (GLM) with a canonical link
function:

{exp(θ�(β)T (y) − ψ(θ(β)))m(y) | β ∈ Ξ} with θ = Xβ,

where β is an unknown regression coefficient of d dimension (p ≥ d), and X is a given full
rank matrix X ∈ R

p×d. In this case, since θ is the e-affine coordinate and ∂θ/∂β = X�,
the e-connection coefficient with respect to β also vanishes

e
Γabc(β) = 0, it suffices to

seek the prior pair satisfying

∂a log πPM

πMAP
(β) − (∂a log πJ(β)) = 0, (9)

which is equal to

πPM(β)
πMAP(β) ∝ πJ(β). (10)
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As a simple example, consider a Gaussian model with mean zero and unknown vari-
ance: the data yn = {y(1), . . . , y(n)} independently come from a Gaussian distribution
N(0, σ2). Here we employ an inverse-gamma prior

σ2 ∼ InvGamma(a, b) with a, b > 0.

Consider the canonical parameter θ = σ−2 and the posterior mean of θ. In this param-
eterization, the prior becomes

θ ∼ Gamma(a, b).
Let πPM denote its density. The posterior distribution of θ is Gamma(a + n/2, b +∑n

i=1 y(i)2/2), and then the posterior mean based on πPM is

θ̂PM = a + n/2
b +

∑n
i=1 y(i)2/2

.

By using (10), we set πMAP(θ) ∝ πPM(θ)/πJ(θ), where πJ(θ) ∝ θ−1. Since the log
posterior density based on πMAP is

log p(yn ; θ) + log πMAP(θ) = (a + n/2 − 1) log θ − (b +
∑n

i=1
y(i)2/2)θ + log θ + C

with the constant C independent from θ, the MAP estimate based on πMAP is

θ̂MAP = a + n/2
b +

∑n
i=1 y(i)2/2

,

which implies the exact matching θ̂PM = θ̂MAP.

m-flat submodels and m-affine parameters

We proceed to a linear submodel with respect to the expectation parameter η =
Eθ[T (Y )] of the exponential family:

{exp(θ�(ξ)T (y) − ψ(θ(ξ)))m(y) | ξ ∈ Ξ} with η = η(θ) = Xξ,

where η ∈ R
p, ξ is a model parameter of d dimension (p ≥ d), and X is a given full rank

matrix X ∈ R
p×d. In this case, the m-connection coefficients

m
Γabc(ξ) (a, b, c = 1, . . . , d)

vanish and

∂a log πJ(ξ) =
0
Γb
ab(ξ) =

(m
Γb
ab(ξ) −

1
2Ta(ξ)

)
= −1

2Ta(ξ) = −1
2∂a log πm(ξ)

πe(ξ)
,

which implies
πe(ξ)
πm(ξ) ∝ {πJ(ξ)}2

.

Then, the condition (6) becomes

πPM(ξ)
πMAP(ξ) ∝ πJ(ξ)

{
(πJ(ξ))2

}1/2 = {πJ(ξ)}2
. (11)
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As a simple example, consider a Poisson model: the data yn = {y(1), . . . , y(n)}
independently come from a Poisson distribution Poisson(λ). Let us consider a Gamma
prior λ ∼ Gamma(a, b) with a, b > 0 for λ and denote the density by πPM. Then the
posterior distribution is the Gamma distribution Gamma(a+

∑n
i=1 y(n), b+n), and the

posterior mean based on πPM is

λ̂PM =
a +

∑n
i=1 y(n)

b + n
.

Since λ is the expectation parameter and πJ(λ) ∝ λ−1/2, the matching prior pair satisfies

πPM(λ)
πMAP(λ) ∝ λ−1.

We set πMAP(λ) = λπPM(λ). Since the log posterior density based on πMAP is

log p(yn ; λ) + log πMAP(λ) =
(
a +

n∑
i=1

y(i) − 1
)

log λ− (b + n)λ + log λ + C

with the constant C independent from λ, the MAP estimate based on πMAP is

λ̂MAP =
a +

∑n
i=1 y(n)

b + n
,

which implies the exact matching λ̂PM = λ̂MAP.

3 Numerical experiments
In this section, we examine the theory using the Bayesian logistic regression model and
the Poisson shrinkage model.

3.1 The Bayesian logistic regression
Bayesian logistic regression model is a Bayesian version of the popular logistic regres-
sion model. By putting a Gaussian prior on regression coefficients, the working model
becomes

Y (i) | X(i) , β ∼ Bernoulli(σ(X(i)β)) (i = 1, . . . , n),
β ∼ Normal(0, I),

where σ(x) = 1/{1+exp(−x)}. This Bayesian model has been sometimes related to the
logistic ridge regression:

arg max
β

{
n∑

i=1
l(y(i), x(i) ; β) − ‖β‖2

2

}
with l(y(i), x(i) ; β) := y(i) log σ(x(i)β) + (1 − y(i)) log{1 − σ(x(i)β)}. Our theory tells
a gap between the posterior mean based on the Gaussian prior πPM(β) and the logis-
tic ridge regression (the MAP estimate based on πPM). Also, the matching prior pair
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(5) gives another prior πMAP yielding the MAP estimate asymptotically equal to the
posterior mean of πPM

πMAP(β) ∝
∣∣∣∣∣

n∑
i=1

(X(i))�X(i) [σ(X(i)β){1 − σ(X(i)β)}]
∣∣∣∣∣
−1/2

πPM(β),

inducing the following optimization:

arg max
β

n∑
i=1

l(y(i), x(i);β) − ‖β‖2

2 − 1
2 log

∣∣∣∣∣
n∑

i=1
(X(i))�X(i) [σ(X(i)β){1 − σ(X(i)β)}]

∣∣∣∣∣ .
First, we check the behaviour of the matching prior pair by using the following two

synthetic data:

X(1)(i) = i/n,

Y (1)(i) | X(1)(i) ∼ Bernoulli(σ(X(1)(i) + 0.0)),

and

(Y (2)(i), X(2)(i)) =
{

(1, i/n) if i > n/2,
(0, i/n) if otherwise.

The logistic regression model with 2-dimensional parameters (slope and intercept) ap-
plied to the former data {(Y (1)(i), X(1)(i)) : i = 1, . . . , n} is correctly-specified, while
the model applied to the latter data {(Y (2)(i), X(2)(i)) : i = 1, . . . , n} is misspecified.
The former data is random and so we take the mean of the performance using 50 repeti-
tions. For the calculation of the posterior mean, we use the 10000 Markov chain Monte
Carlo samples after the 10000 burnin samples by conducting the Pólya-Gamma aug-
mentation (Polson and Scott, 2016). We vary the sample size in {2t : t = 4, 5, 6, 7, 8, 9}
for the former case and in {2t : t = 4, 5, 6, 7, 8, 9, 10, 11} for the latter case, respectively.

Figures 1 and 2 display the results. From Figure 1, we see that under the correctly-
specified model, the gap between the logistic ridge regression and the posterior mean
based on the Gaussian prior is larger than the gap between the MAP estimate based
on the matching prior pair and the posterior mean based on the Gaussian prior. Both
gaps become smaller as the sample size gets larger. Figure 2 showcases the performance
under the misspecified model. The performance with small sample sizes seems random
but with moderate or large sample sizes, the MAP estimate based on the matching prior
pair gets closer to the posterior mean based on the Gaussian prior. In both cases, there
exists a gap between the logistic ridge regression and the posterior mean based on the
Gaussian prior, and the matching prior pair reduces this gap.

We further examine the computational time for obtaining the posterior mean and
the MAP estimates based on the matching prior pair in the synthetic dataset as in
Figure 1. We calculate the mean and standard deviation using 10 repetitions. Table 1
indicates that the optimization is relatively fast compared to the MCMC algorithm,
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Figure 1: The posterior mean based on the Gaussian prior (colored in black), the logistic
ridge regression (colored in red), and the MAP estimate based on the matching prior
pair (colored in blue) under the correctly specified logistic regression model. (a)–(b)
estimates themselves; (c)–(d) the differences with respect to the posterior mean based
on the Gaussian prior. The horizontal axis adopts a logarithmic scale.

Sample size n Posterior mean MAP of Matching prior pair
24 4.72 s (±0.07 s) 0.01 s (±0.00 s)
25 5.13 s (±0.05 s) 0.01 s (±0.00 s)
26 6.12 s (±0.07 s) 0.02 s (±0.00 s)
27 8.15 s (±0.08 s) 0.05 s (±0.00 s)
28 12.7 s (±0.07 s) 0.08 s (±0.01 s)
29 45.8 s (±2.72 s) 0.17 s (±0.00 s)

Table 1: Computational time for obtaining the posterior mean and the MAP estimates
based on the matching prior pair. The set-up is the same as in Figure 1.

particularly in regimes with large sample sizes. Therefore, the MAP estimate based on
the matching prior pair can serve as a useful approximation of the posterior mean while
providing fast computational times.
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Figure 2: The posterior mean based on the Gaussian prior (colored in black), the logistic
ridge regression (colored in red), and the MAP estimate based on the matching prior
pair (colored in blue) under the misspecified logistic regression model. (a)–(b) estimates
themselves; (c)–(d) the differences with respect to the posterior mean based on the
Gaussian prior. The horizontal axis adopts a logarithmic scale.

Next, we check the performance of the matching prior pair by the banknote au-
thentication data from UCI Machine Learning Repository (Dua and Graff, 2017). The
banknote authentication data set classifies genuine and forged banknote-like specimens
based on four image features (Variance, Skewness, Curtosis, and Entropy). The number
of unknown parameters in this case is 4. We check the performance for sample sizes
of {2t : t = 4, 5, 6, 7, 8, 9, 10}. For each sample size, we take indices randomly taken 50
times and then take the average of the performance.

Figure 3 displays the result. For all four variables, the matching prior pair reduces
the gap with respect to the posterior mean based on the Gaussian prior except for
small sample sizes. Although there seem some biases for the coefficients of Skewness
and Curtosis, we note that there exist deviations from the theoretical values of the
posterior means due to the randomness in MCMC. Overall, the calibration based on
the matching prior pair works well for the logistic regression model.
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Figure 3: The Posterior mean based on the Gaussian prior (colored in black), the logistic
ridge regression (colored in red), and the MAP estimate based on the matching prior
pair (colored in blue) for the banknote authentification data.

3.2 The Poisson shrinkage model
Poisson sequence model is a canonical model for count-data analysis. Recently, incor-
porating the high-dimensional structure with Poisson sequence model has been well
investigated (Komaki, 2004; Datta and Dunson, 2016; Yano et al., 2021; Hamura et al.,
2022).

The working model here is

Y (t) =

⎛⎜⎜⎜⎝
Y1(t)
Y2(t)

...
Yd(t)

⎞⎟⎟⎟⎠ | λ =

⎛⎜⎜⎜⎝
λ1
λ2
...
λd

⎞⎟⎟⎟⎠ ∼ ⊗d
i=1Poisson(λi) (t = 1, . . . , n),

where t is an index for the observation, i is an index for the coordinate, and ⊗ denotes
the product of measures. In this model, each observation Y (t) given λ follows from the
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d-dimensional independent Poisson distribution. In the application to spatio-temporal
count-data analysis, t may be the index for the year and i may be the index for the
observation site such as a district; see Datta and Dunson (2016); Yano et al. (2021);
Hamura et al. (2022) for the details.

We investigate the calibration based on the matching prior pair in high-dimension
and under an improper prior. We work with the improper shrinkage prior proposed by
Komaki (2006):

π(λ) =
λβ1−1

1 · · ·λβd−1
d

(λ1 + · · · + λd)α
,

where α > 0 and β = (β1, . . . , βd). The reason of the prior choice is as follows. The
optimization in finding the MAP estimate based on this prior is a bit tricky due to the
singularity around λ = 0, while we can easily access the posterior expectation as the
efficient Gibbs sampling algorithm is available. So, the matching prior pair can offer
useful surrogates of the MAP estimate. The number of dimension d is 100 for synthetic
data analysis and is 99 for real data analysis, respectively. We set β = (3, . . . , 3) and
α =

∑d
j=1 βj − 1. In order to avoid the singularity issue in the optimization finding

the MAP estimate, we restrict the parameter space to [10−3,∞)d on the basis of the
try-and-error.

We begin with displaying the numerical experiment using the following synthetic
data:

Y (t) =

⎛⎜⎜⎜⎝
Y1(t)
Y2(t)

...
Y100(t)

⎞⎟⎟⎟⎠ | λ =

⎛⎜⎜⎜⎝
λ1
λ2
...

λ100

⎞⎟⎟⎟⎠ ∼ ⊗100
i=1Poisson(λi) (t = 1, . . . , n),

λj =
{

0.001 if j is odd,
2 if otherwise

(j = 1, . . . , 100).

In this experiment, we display the result for one realization because the result is not so
much dependent on realization. For the calculation of the posterior mean, we use 10000
MCMC samples.

Figure 4 showcases the MAP estimate based on the shrinkage prior (colored in black),
the posterior mean based on the shrinkage prior (colored in red), and the posterior mean
based on the matching prior pair (colored in blue). From (c)–(d) of Figure 4, we see that
the posterior mean based on the matching prior pair of the shrinkage prior can get closer
to the MAP estimate based on the shrinkage prior than that based on the shrinkage
prior. Surprisingly, even for high dimensional cases such as (n, d) = (1, 100) and (n, d) =
(10, 100), the matching prior pair works well. One of potential reasons for this success
in high dimension is that a Laplace approximation of the posterior distribution might
still work in certain high-dimensional set-ups (e.g., Panov and Spokoiny, 2015; Yano
and Kato, 2020; Kasprzaki et al., 2023). Further, we measure the computational time
(CPU times) for the MAP estimate and the posterior expectation based on the matching
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Figure 4: The MAP estimate based on the shrinkage prior (colored in black), the poste-
rior mean based on the shrinkage prior (colored in red), and the posterior mean based on
the matching prior pair (colored in blue) under the synthetic Poisson sequence model.

Sample size n MAP Posterior means based on Matching prior pair
1 6.38 s 0.07 s

10 3.53 s 0.06 s
100 5.12 s 0.06 s

1000 12.5 s 0.06 s
Table 2: Computational time for obtaining the MAP estimates and the posterior expec-
tation based on the matching prior pair. The set-up is the same as in Figure 4.

prior pair. In this example, due to the singularity issue and the high-dimensionality, the
optimization for the MAP estimate is relatively slow compared to the MCMC algorithm
as in Table 2. Thus, this implies that the Bayesian computation using the matching prior
pair can offer a good surrogate for the MAP estimate if we have an efficient MCMC
algorithm and the optimization is slow or difficult.
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Figure 5: The MAP estimate based on the shrinkage prior (colored in black), the poste-
rior mean based on the shrinkage prior (colored in red), and the posterior mean based on
the matching prior pair (colored in blue) for pickpockets in Chuo ward, Tokyo, Japan.
(a) estimates using only data for the entire year of 2012; (b) estimates using data from
the two-year period of 2012–2013; (c)–(d) the differences with respect to the MAP es-
timate based on the shrinkage prior.

We proceed to an application to Japanese pickpocket data from Tokyo Metropoli-
tan Police Department (2023). This data reports the total numbers of pickpockets in
each year in Tokyo Prefecture, and are classified by town and also by the type of crimes.
We use pickpocket data from 2012 to 2013 at 99 towns in Chuo ward. We work with
the Poisson sequence model (d = 99, n ≤ 2; n is the number of years we use in the
analysis) and report how the matching prior pair calibrates the shrinkage prior so as to
get the posterior mean closer to the MAP estimate based on the shrinkage prior. For
the calculation of the posterior mean, we use 10000 MCMC samples.

Figure 5 showcases the MAP estimate based on the shrinkage prior π (colored in
black), the posterior mean based on the shrinkage prior π (colored in red), and the
posterior mean based on the matching prior pair of π (colored in blue) for pickpockets
in Chuo ward, Tokyo, Japan. Figure 5 shows that for pickpocket data, the MAP estimate
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and the posterior mean based on the same shrinkage prior are different although the
difference gets smaller as the sample size becomes larger, and the matching prior pair
successfully yields the posterior mean closer to the MAP estimate based on the improper
shrinkage prior.

4 Proofs
This section provides the proof of the main results.

Proof of Theorem 2.1. The proof employs the following asymptotic expansions for a
posterior mean and a MAP estimate.

Lemma 4.1. The posterior mean of θ based on a prior πPM(θ) is expanded as

θ̂aPM = θ̂aMLE + gab(θ̂MLE)
n

(
∂b log πPM

πJ
(θ̂MLE) + Tb(θ̂MLE)

2

)

+ gbc(θ̂MLE)
2n

(
−

m
Γ a
bc (θ̂MLE)

)
+ op(n−1) (a = 1, . . . , d). (12)

Lemma 4.2. The MAP estimate of θ based on a prior πMAP(θ) is expanded as

θ̂aMAP = θ̂aMLE + gab(θ̂MLE)
n

∂b log πMAP(θ̂MLE) + op(n−1) (a = 1, . . . , d). (13)

The proofs of these lemmas are given right after the main proof.

These lemmas give the following condition under which the posterior mean θ̂PM (12)
and the MAP estimate θ̂MAP (13) coincide except for op(n−1) terms: for a = 1, . . . , d,

gab(θ̂MLE)
n

(
∂b log πPM

πJ
(θ̂MLE) + Tb(θ̂MLE)

2

)
+ gbc(θ̂MLE)

2n

(
−

m
Γ a
bc (θ̂MLE)

)

= gab(θ̂MLE)
n

∂b log πMAP(θ̂MLE) + op(n−1).

This is rewritten as

gab(θ̂MLE)∂b log πPM

πMAP
(θ̂MLE)

= gab(θ̂MLE)
(
∂b log πJ(θ̂MLE) − Tb(θ̂MLE)

2

)
+ gbc(θ̂MLE)

2
m
Γ a
bc (θ̂MLE) + op(n−1)

= gab(θ̂MLE)
[
∂b log πJ(θ̂MLE) − 1

2

{m
Γcdb(θ̂MLE) −

e
Γcdb(θ̂MLE)

}
gcd(θ̂MLE)

]
+ gbc(θ̂MLE)

2
m
Γ a
bc (θ̂MLE) + op(n−1)
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= gab(θ̂MLE)∂b log πJ(θ̂MLE) + gbc(θ̂MLE)
2

e
Γ a
bc (θ̂MLE) + op(n−1), (14)

where the second identity follows since Tabc =
m
Γabc−

e
Γabc. This completes the proof.

Proof of Lemma 4.1. In the proof, we consider an approximation of the posterior ex-
pectation of arbitrary third-times differentiable function f : Θ → R. Setting f(θ) = θa

(a = 1, . . . , d) gives the approximation of the posterior mean of θ. The following proof
of Lemma 4.1 proceeds closely following the proof of Theorem III.1 in Okudo and Ko-
maki (2021). The first step is to employ the Laplace approximation of integrals to get
an approximation of the posterior expectation. The second step is to arrange terms in
information-geometrical notations.

Step 1: Laplace approximation. Observe that the posterior expectation of a
third-times differentiable function f(θ) based on a prior π(θ) is written as

fπ(yn) =
∫
f(θ)p(yn ; θ)π(θ)dθ∫
p(yn ; θ)π(θ)dθ

=
∫
f(θ) exp(nL̄(θ))π(θ)dθ∫

exp(nL̄(θ))π(θ)dθ
,

where L̄(θ) = (1/n)
∑n

t=1 log p(y(t) ; θ). We approximate this using the Laplace method
(e.g., Theorem 4.6.1 of Kass and Vos (1997) and Tierney and Kadane (1986)). Consider
an expansion of π(θ) exp(nL̄(θ)) around θ = θ̂MLE. In the following, for any function
g(θ), we abbreviate the value g(θ̂MLE) to ĝ; e.g., π̂ := π(θ̂MLE). By rescaling θ as
θ = θ̂MLE + φ/

√
n, we get

π(θ) exp(nL̄(θ))

=
(
π̂ + (∂aπ̂)φa

√
n

+ (∂abπ̂)φaφb

2n + (∂abcπ̂)φaφbφc

6n
√
n

+ Op(n−2)
)

× exp
(
nL̂ + (∂abL̂)φaφb

2 + (∂abcL̂)φaφbφc

6
√
n

+ (∂abcdL̂)φaφbφcφd

24n

+(∂abcdeL̂)φaφbφcφdφe

120n
√
n

+ Op(n−2)
)

= π̂enL̂e(∂abL̂)φaφb/2
(

1 + (∂aπ̂)φa

π̂
√
n

+ (∂abπ̂)φaφb

2π̂n + (∂abcπ̂)φaφbφc

6π̂n
√
n

+ Op(n−2)
)

×
(

1 + (∂abcL̂)φaφbφc

6
√
n

+ (∂abcdL̂)φaφbφcφd

24n

+(∂abcL̂)(∂a′b′c′L̂)φaφbφcφa′
φb′φc′

72n + Op(n−3/2)
)

= π̂enL̂e−Ĵabφ
aφb/2

(
1 + (∂aπ̂)φa

π̂
√
n

+(∂abcL̂)φaφbφc

6
√
n

+ (∂abπ̂)φaφb

2π̂n

+(∂aπ̂)(∂bcdL̂)φaφbφcφd

6π̂n
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+(∂abcπ̂)φaφbφc

6π̂n
√
n

+ (∂abπ̂)(∂cdeL̂)φaφbφcφdφe

12π̂n
√
n

+ (∂aπ̂)(∂bcdeL̂)φaφbφcφdφe

24π̂n
√
n

+(∂aπ̂)(∂bcdL̂)(∂efgL̂)φaφbφcφdφeφfφg

72π̂n
√
n

+C1

n
+ Op(n−2)

)
, (15)

where the second equation follows from exp(x) = 1 + x + O(x2), and in the third
equation, we denote −∂abL̂ by Ĵab and denote terms not depending on π and n by C1,
respectively.

Next, we integrate both sides of (15) with respect to θ. Let (Ĵab) be the inverse
matrix of (Ĵab). By changing the variables from θ to φ, and by using the formula of
moments of multivariate Gaussian distributions, we obtain∫

π(θ) exp(nL̄(θ))dθ

= C2π̂

(
1 + (∂abπ̂)

2π̂n

∫
φaφbe−Ĵcdφ

cφd/2dφ + (∂aπ̂)(∂bcdL̂)
6π̂n

∫
φaφbφcφde−Ĵefφ

eφf/2dφ

+C1

n
+ Op(n−2)

)
= C2π̂

(
1 + (∂abπ̂)Ĵab

2π̂n + (∂aπ̂)(∂bcdL̂)(ĴabĴcd + ĴacĴbd + ĴadĴbc)
6π̂n + C1

n
+ Op(n−2)

)

= C2π̂

(
1 + (∂abπ̂)Ĵab

2π̂n + (∂aπ̂)(∂bcdL̂)ĴabĴcd

2π̂n + C1

n
+ Op(n−2)

)
,

where C2 is a constant not depending on π and n. Replacing π(θ) by f(θ)π(θ) for an
arbitrary third-times differentiable function f : Rd → R, we have∫

f(θ)π(θ) exp(nL̄(θ))dθ

= C2f̂ π̂

(
1 + {∂ab(f̂ π̂)}Ĵab

2f̂ π̂n
+ {∂a(f̂ π̂)}(∂bcdL̂)ĴabĴcd

2f̂ π̂n
+ C1

n
+ Op(n−2)

)
.

Therefore, the posterior expectation of f(θ) is expanded as

fπ =
∫
f(θ) exp(nL̄(θ))π(θ)dθ∫

exp(nL(θ))π(θ)dθ

= C2f̂ π̂

(
1 + ∂ab(f̂ π̂)Ĵab

2f̂ π̂n
+ {∂a(f̂ π̂)}(∂bcdL̂)ĴabĴcd

2f̂ π̂n
+ C1

n
+ Op(n−2)

)
/

C2π̂

(
1 + (∂abπ̂)Ĵab

2π̂n + (∂aπ̂)(∂bcdL̂)ĴabĴcd

2π̂n + C1

n
+ Op(n−2)

)

= f̂

(
1 + Ĵab

2n

(
∂ab(f̂ π̂)
θ̂iπ̂

− ∂abπ̂

π̂

)
+ ĴabĴcd∂bcdL̂

2n

(
∂a(f̂ π̂)
θ̂π̂

− ∂aπ̂

π̂

)
+ Op(n−2)

)



M. Okudo and K. Yano 21

= f̂ + Ĵab

2n

(
∂abf̂ + 2(∂af̂)(∂bπ̂)

π̂

)
+ ĴabĴcd∂bcdL̂

2n ∂af̂ + Op(n−2). (16)

This completes Step 1.

Step 2: Rearrangement using the information-geometric notations. The
law of large numbers yields Ĵab = ĝab + op(1) and ∂bcdL̂ = Eθ[∂bcdL̂] + op(1). The
Bartlett identity gives

Eθ[∂bcdL̄] = −∂bgcd(θ) −
e
Γcdb(θ) = −∂bgcd(θ) −

m
Γcdb(θ) + Tbcd(θ). (17)

Together with the definition of 0-parallel prior gcd∂bgcd = ∂b log(|g|) = 2∂b log πJ, these
give the following representation of the approximated posterior expectation of f :

fπ = f̂ + ĝab

2n

(
∂abf̂ + 2∂af̂∂b log π̂

)
+ ĝab

2n

(
−2∂b log π̂J − ĝcd

m
Γcdb(θ̂MLE) + T̂b

)
∂af̂ + op(n−1)

= f̂ + ĝab

2n

(
∂abf̂ −

m
Γ c
ab(θ̂MLE)∂cf̂

)
+ ĝab

n

(
∂b log π̂

π̂J
+ T̂b

2

)
∂af̂ + op(n−1).

Thus, replacing f by θa, we have

θ̂aPM = θ̂a + ĝbc

2n

(
−

m
Γ a
bc (θ̂MLE)

)
+ ĝab

n

(
∂b log π̂

π̂J
+ Tb(θ̂MLE)

2

)
+ op(n−1).

Proof of Lemma 4.2. Observe the definition of the MAP estimate θ̂MAP:

n∂aL̄(θ̂MAP) + ∂a log π(θ̂MAP) = 0 (a = 1, . . . , d),

where L̄(θ) = (1/n)
∑n

t=1 log p(y(t) ; θ). Letting δ = θ̂MAP− θ̂MLE, the Taylor expansion
around θ̂MLE yields, for a = 1, . . . , d,

0 = ∂aL̄(θ̂MAP) + 1
n
∂a log π(θ̂MAP)

= ∂aL̄(θ̂MLE) + δb∂abL̄(θ̂MLE) + 1
n
∂a log π(θ̂MLE) + Op(‖δ‖2),

= δb∂abL̄(θ̂MLE) + 1
n
∂a log π(θ̂MLE) + Op(‖δ‖2),

where the last equation follows since ∂aL̄(θ̂MLE) = 0 for a = 1, . . . , d. Because the law
of large numbers and the central limit theorem give

∂abL̄(θ̂MLE) = −gab(θ̂MLE) + op(1) and ∂abL̄(θ̂MLE) + gab(θ̂MLE) = Op(1/
√
n),

we get

δbgab(θ̂MLE) + Op(‖δ‖/
√
n) = 1

n
∂a log π(θ̂MLE) + Op(‖δ‖2)

and completes the proof.
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Proof of Corollary 2.2. Using (17) and the definition of 0-parallel prior,

gabgcdEθ[∂bcdL̄] = −gabgcd∂bgcd(θ) − gabgcd
m
Γcdb(θ) + gabgcdTbcd(θ)

= −2gab∂b log πJ(θ) − gcd
m
Γa
cd(θ) + gabTb(θ).

From (12) and (13), we have for a = 1, . . . , d,

θ̂aPM − θ̂aMAP

= gab(θ̂MLE)
n

(
∂b log πPM

πJ
(θ̂MLE) + Tb(θ̂MLE)

2

)
+ gbc(θ̂MLE)

2n

(
−

m
Γ a
bc (θ̂MLE)

)

− gab(θ̂MLE)
n

∂b log πMAP(θ̂MLE) + op(n−1)

= gab(θ̂MAP)
n

∂b log πPM

πMAP
(θ̂MAP) + 1

2ng
ab(θ̂MAP)gcd(θ̂MAP)∂bcdL̄(θ̂MAP) + op(n−1).

In the last identity, we used ∂bcdL̄(θ̂MLE) = Eθ[∂bcdL̄(θ̂MLE)]+op(1) and θ̂MLE = θ̂MAP+
op(1). When πPM = πMAP, we have

θ̂aPM − θ̂aMAP = 1
2n2 g

ab(θ̂MAP)gcd(θ̂MAP)
n∑

t=1
∂bcd log p(y(t) ; θ̂MAP) + op(n−1).

Proof of Proposition 2.1. This proposition is proved simply by changing Lemmas 4.1–4.2
to the following lemmas. Their proofs are straightforward and omitted.

Lemma 4.3. For i = 1, . . . , d, the posterior mean of fi(θ) based on a prior π(θ) is
expanded as

(fπ)i =fi(θ̂MLE) + gab(θ̂MLE)
n

(
∂b log π

πJ
(θ̂MLE) + Tb(θ̂MLE)

2

)
∂afi(θ̂MLE)

+ gbc(θ̂MLE)
2n

(
∂b∂cfi(θ̂MLE) −

m
Γ a
bc (θ̂MLE)∂afi(θ̂MLE)

)
+ op(n−1).

Lemma 4.4. For i = 1, . . . , d, a plugin of the MAP estimate θ̂MAP of θ based on a
prior π(θ) into a statistic fi(θ) is expanded as

fi(θ̂MAP) = fi(θ̂MLE) + gab(θ̂MLE)
n

∂b log π(θ̂MLE)∂afi(θ̂MLE) + op(n−1).
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