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Abstract. Vector autoregressions (VARs) are a widely used tool for modelling
multivariate time-series. It is common to assume a VAR is stationary; this can
be enforced by imposing the stationarity condition which restricts the parameter
space of the autoregressive coefficients to the stationary region. However, imple-
menting this constraint is difficult due to the complex geometry of the stationary
region. Fortunately, recent work has provided a solution for autoregressions of
fixed order p based on a reparameterization in terms of a set of interpretable and
unconstrained transformed partial autocorrelation matrices. In this work, focus is
placed on the difficult problem of allowing p to be unknown, developing a prior
and computational inference that takes full account of order uncertainty. Specifi-
cally, the multiplicative gamma process is used to build a prior which encourages
increasing shrinkage of the partial autocorrelations with increasing lag. Identify-
ing the lag beyond which the partial autocorrelations become equal to zero then
determines p. Based on classic time-series theory, a principled choice of trunca-
tion criterion identifies whether a partial autocorrelation matrix is effectively zero.
Posterior inference utilizes Hamiltonian Monte Carlo via Stan. The work is illus-
trated in a substantive application to neural activity data to investigate ultradian
brain rhythms.

Keywords: Electroencephalography (EEG) data, Granger causality, increasing
shrinkage prior, Stan, time-series decomposition, unconstrained
reparameterization.
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1 Introduction
Vector autoregressive (VAR) processes are widely used to model multivariate time-series
data in a variety of fields including neuroscience (Chiang et al., 2016), bioinformatics
(Jiang et al., 2013; Hannaford et al., 2023), macroeconomics (Koop and Korobilis, 2010),
and energy economics (Heaps et al., 2020). In an autoregression of order p, the random
variable at time t is conditionally independent of its values at lags p+ 1, p+ 2, . . . given
observations at the preceding p time points. Indeed the random variable at time t can be
expressed as a noisy linear combination of these p values. The order of the autoregression
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is therefore intrinsic to the characterization of the joint process and plays a vital role
in forecasting. However, its value is typically not known a priori.

A common assumption when working with Gaussian time-series is that of station-
arity, which posits that the means, variances and covariances of the process do not
change over time. Since the overall level of many time-series exhibits periodic or sys-
tematic variation due to seasonality or time-trends, stationarity is often implausible as
an assumption when modelling the raw data. However, stationary vector autoregres-
sions frequently form the core building block of more sophisticated models, for example
for differenced data in integrated models, for innovations from a time-varying mean in
a time-series regression model or simply as components in state space models which are
thought to be mean-reverting. From a practical perspective, enforcing stationarity pre-
vents the predictive variance of the process from growing without bound into the future.
This is often keenly motivated, for instance in applications where the goal is long-term
forecasting or when modelling the dynamics of a linear system which is assumed to
be in its equilibrium distribution. Moreover, stationarity admits various interpretations
of the relationships between variables through the infinite-order moving average repre-
sentation of the process, for example in Granger causality graphs or impulse response
analysis.

Stationarity can be enforced by restricting the autoregressive coefficient matrices
to lie within a constrained parameter space called the stationary region. However, the
highly complex geometry of this region hampers the process of specifying a prior and
subsequent computational inference. Fortunately, in recent work, Heaps (2023) solved
the problem for vector autoregressions of fixed order by introducing an unconstrained
and interpretable reparameterization of the stationary model. This is constructed by
mapping the original model parameters to a set of partial autocorrelation matrices,
which can be regarded as a vector analogue of the partial autocorrelation function of
a univariate autoregression. A second transformation then scales the singular values of
each of these partial autocorrelation matrices from [0, 1) to the positive real line. The
transformed partial autocorrelation matrices are interpretable and allow specification of
a prior which is invariant with respect to the order of the components in the observation
vector. Markov chain Monte Carlo (MCMC) methods for computational inference need
only operate over a Euclidean space, making implementation routine. However, a clear
limitation of this work is that inference is conditional on a fixed order of the process,
with no account for the uncertainty in its value.

Extending this work, we focus on development of a prior and associated procedures
for computational inference which allow the order of stationary vector autoregressions
to be learned. Although the general problem is hitherto unaddressed in the literature, it
has been widely studied in the special case of univariate stationary autoregressions. In
an approach which is similar in spirit to ours, Barnett et al. (1996) enforce stationarity
by reparameterizing the univariate model in terms of its partial autocorrelations, each
with support restricted to (−1, 1). A univariate stationary autoregression of order p
has a non-zero partial autocorrelation at lag p and zero partial autocorrelations at all
higher lags. Spike-and-slab priors, with an atom of probability at zero, are then cho-
sen for each partial autocorrelation in a model with a large (maximum) value for p, so
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that identifying the lag of the final non-zero autocorrelation identifies the order of the
process. Vermaak et al. (2004) use the same reparameterization of the model to enforce
stationarity but frame the problem of order determination as a model selection problem
and use reversible jump Markov chain Monte Carlo to learn the order of the process. In
Huerta and West (1999), stationarity is enforced through a different reparameterization
of the univariate autoregression in terms of the reciprocal roots of its characteristic
equation. Under this parameterization, the process is stationary if and only if the recip-
rocal roots have moduli less than 1 and the order of the process is determined by the
number of reciprocal roots with non-zero modulus. Priors are assigned to the real and
complex reciprocal roots with atoms of probability at moduli 0 in each case, thereby al-
lowing inference on the model order. In the Bayesian framework, the only generalization
of these ideas to stationary vector autoregressions appears in Huerta and Prado (2006)
who extend Huerta and West (1999) by considering a multivariate generalization of the
characteristic equation. However, because this generalization is only available when the
autoregressive coefficient matrices are diagonal, the approach is limited to the class of
diagonal vector autoregressive processes. Other recent work which addresses the prob-
lem of order determination in vector autoregressions includes Zhang et al. (2021) and
Fan et al. (2022) but their focus is on classes of rank-reduced models and stationarity
is not enforced.

In this paper, we provide the first methodology for quantifying uncertainty in model
order for the full class of stationary vector autoregressions. To this end, we enforce
stationarity using the transformed partial autocorrelation parameterization of Heaps
(2023), exploiting a number of its properties to build a shrinkage prior for an overpa-
rameterized model. In particular, under this parameterization, the model of order k is
nested within the model of order k+1. We can therefore fit an overparameterized model
with purposefully more lags than are required and construct a prior which increasingly
shrinks the transformed partial autocorrelation matrices at higher lags towards zero.
By identifying the lag beyond which the partial autocorrelations become essentially
equal to zero, we learn about the order of the process. The interpretability of the repa-
rameterized model allows classical theory on the sampling distribution of the partial
autocorrelation function to inform specification of the shrinkage prior and subsequent
decision-making about whether a partial autocorrelation matrix is effectively zero. This
is based on a truncation criterion for the max norm of the matrix which is completely
general and could be applied with any prior for an overparameterized stationary model.
We also provide code for implementation of computational inference via Stan thereby
facilitating straightforward use by a variety of practitioners across the spectrum of fields
which rely on vector autoregressions for modelling and forecasting applications.

The remainder of the paper is structured as follows. In Section 2 we discuss the core
reparameterization of stationary vector autoregressive models in terms of transformed
partial autocorrelation matrices. In Section 3 we discuss the prior distribution assigned
to the unknowns in our reparameterized model. Section 4 considers posterior inference
and the use of a truncation criterion to determine model order. In Section 5 we apply our
model and inferential procedures in a set of simulation experiments before considering
a substantive application to neural activity data in Section 6. Finally Section 7 provides
some concluding remarks.
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2 Stationary vector autoregressions
2.1 Vector autoregressions
Without loss of generality, suppose that the m-variate process {yt} can be modelled as
a zero-mean vector autoregression of order p, denoted VARm(p),

yt = φ1yt−1 + . . . + φpyt−p + εt, (1)

where the errors εt form a sequence of uncorrelated, zero-mean multivariate normal
random vectors, εt ∼ Nm(0, Σ). The continuous model parameters therefore comprise
the autoregressive coefficient matrices φi ∈ Mm×m(R), i = 1, . . . , p, which are denoted
collectively as Φ ∈ Mm×m(R)p, and the error variance matrix Σ ∈ S+

m, where Mm×n(V )
and S+

m denote the space of m× n matrices with entries in V and the space of m×m
symmetric, positive definite matrices, respectively. Defining B as the backshift operator,
such that Bkyt = yt−k, it is common to express (1) as

εt = (Im − φ1B − . . .− φpB
p)yt = φ(B)yt,

in which Im is the m×m identity matrix and φ(u) = (Im − φ1u− . . .− φpu
p), u ∈ C,

is referred to as the characteristic polynomial. A vector autoregression is stable if and
only if all the roots of det{φ(u)} = 0 lie outside the unit circle. Since all stable processes
are stationary, and unstable stationary processes are not generally of interest, this is
often referred to as the stationarity condition for Φ and the subset of Mm×m(R)p over
which the condition is satisfied is referred to as the stationary region, denoted Cp,m.

2.2 Reparameterization over the stationary region
As illustrated in Section S1 of the Supplementary Materials (Binks et al., 2024), the
stationary region Cp,m has a complex geometry, especially when p or m is large. With no
standard distributions over Cp,m, this complicates the process of specifying a prior that
conveys meaningful information, for example, concerning the relative sizes of the auto-
correlations at different lags. Moreover, it is difficult to design an efficient MCMC sam-
pler which targets a distribution with support constrained to Cp,m. In recent work, Heaps
(2023) proposes a solution which addresses both issues, reparameterizing the model over
the stationary region in terms of a set of interpretable, unconstrained parameters. The
reparameterization involves two bijective mappings. First, the original model parame-
ters (Σ,Φ) ∈ S+

m×Cp,m are mapped to a new parameter set {Σ, (P1, . . . , Pp)} ∈ S+
m×Vp

in which V denotes the subset of matrices in Mm×m(R) whose singular values are less
than one. The matrix Ps+1 is referred to as the (s+1)-th partial autocorrelation matrix.
It is defined as the conditional cross-covariance matrix between yt+1 and yt−s given
yt, . . . ,yt−s+1 which has been standardized through

Ps+1 = Σ−1/2
s Cov(yt+1,yt−s|yt, . . . ,yt−s+1)Σ∗−1/2

s ,

s = 0, . . . , p− 1, in which Σs and Σ∗
s are the conditional variances

Σs = Var(yt+1|yt, . . . ,yt−s+1) and Σ∗
s = Var(yt−s|yt−s+1, . . . ,yt)
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and Σ1/2 denotes the symmetric matrix-square-root. Full details of the mapping and
its inverse, which proceed by recursion, are described in Heaps (2023). The steps are
also outlined in Section S2 of the Supplementary Materials (Binks et al., 2024), with a
numerical example for the simple case where m = 2 and p = 2.

A second transformation then maps each partial autocorrelation matrix P ∈ V to
an unconstrained square matrix A ∈ Mm×m(R) through

A = (Im − PPT)−1/2P.

Denoting the singular value decomposition of P by P = Udiag(r1, . . . , rm)V T in which
the singular values satisfy 1 > r1 ≥ r2 ≥ · · · ≥ rm ≥ 0, the corresponding factorization
of A is given by A = Udiag(r̃1, . . . , r̃m)V T where r̃i = ri/(1 − r2

i )1/2 ≥ 0, i = 1, . . . ,m.
Therefore the second transformation can be regarded as an orientation-preserving map-
ping which simply scales the singular values of P from [0, 1) to the positive real line.

3 Prior distribution
3.1 Shrinkage prior for transformed partial autocorrelations
The relationship between the singular value decompositions of P and A, described in
the previous section, has two important implications which we exploit in building our
prior. First, the spectral norms of P and A, r1 = ‖P‖2 and r̃1 = ‖A‖2, are clearly
related through the monotonic mapping: r̃1 = r1/(1 − r2

1)1/2. The relative sizes of the
unconstrained parameters As across lags s = 1, . . . , p therefore relate directly to the
relative sizes of the partial autocorrelation matrices Ps across lags. Second, P = 0m if
and only if A = 0m in which 0m denotes the m×m matrix of zeros. It follows from the
definition of the partial autocorrelation matrices that for k < p, Pk �= 0m and Pk+s = 0m
for s = 1, . . . , p−k if and only if φk �= 0m and φk+s = 0m for s = 1, . . . , p−k. The order
of a VARm(p) process is therefore k < p if and only if Ak �= 0m and Ak+s = 0m for
s = 1, . . . , p − k. Under the unconstrained parameterization, it follows that the model
of order k < p is nested within the model of order k + 1.

A common Bayesian approach to quantifying uncertainty on the dimension of nested
models is to fit an overparameterized model with purposefully more components than
are required. By using a shrinkage prior, components that are shrunk enough to be
deemed negligible in the likelihood can then be discarded. Consequently, inference on
both the continuous model parameters and the model dimension are available from a
single within-model MCMC sampler, without recourse to transdimensional MCMC; see,
for instance, Rousseau and Mengersen (2011) and Bhattacharya and Dunson (2011) in
the context of mixture and factor models, respectively. We can therefore borrow ideas
from this literature by adopting a shrinkage prior for A1, . . . , Apmax with a large value
for pmax. By identifying the lag beyond which the As can be taken as zero matrices,
we therefore learn about the order p of the process. Moreover, we can convey the very
reasonable idea that the partial autocorrelations at higher lags are likely to be smaller
than those at lower lags by choosing a shrinkage prior for the As, s = 1, . . . , pmax, whose
degree of shrinkage increases with the lag s.
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A popular increasing shrinkage prior is the multiplicative gamma process (MGP)
(Bhattacharya and Dunson, 2011) originally developed as a structured sequence of
global-local shrinkage priors for the loadings matrix in infinite factor models. Denoting
the (i, j)th element in As by as,ij we adopt a prior of this form by choosing

as,ij |λs,ij , τs ∼ N(0, λ−1
s,ijτ

−1
s ),

independently for i, j = 1, . . . ,m, s = 1, . . . , pmax, where the local precision parameters
at lag s are assigned the prior

λs,ij ∼ Gam(a/2, a/2),

independently for i, j = 1, . . . ,m, s = 1, . . . , pmax, and the global precision parameter
at lag s is constructed as

τs =
s∏

k=1
δk, δ1 ∼ Gam(a1, 1), δk ∼ Gam(a2, 1), k ≥ 2,

in which the δk are independent. The global precisions τs are therefore a cumulative
product of gamma random variables whose prior expectation E(τs) increases with s
when a2 > 1. Guidelines on the choice of hyperparameter a1 and a2 can be found in
Durante (2017) who presents a numerical method for checking that the global variances
θs = 1/τs are stochastically decreasing in s near zero, that is, Pr{θs ∈ (0, θ]} is non-
decreasing in s for any θ in a small neighbourhood of zero.

The multiplicative gamma process prior does not place any mass at zero and so none
of the As, and hence Ps, matrices are shrunk exactly to zero. We define the effective order
p∗ of the model as the value of s ≤ pmax such that Ps fails a criterion for truncation
to zero when s = p∗ but passes for s = p∗ + 1, . . . , pmax. Applying the truncation
criterion to the standardized Ps matrices, rather than the unconstrained As matrices,
allows classical theory from univariate time-series analysis to inform our judgement in
a manner which is robust with respect to the scale of the data as well as its length and
dimension m. Further details on the truncation criterion are provided in Section 4.2. It
is worth emphasising that although our prior encourages increasing shrinkage of the Ps

matrices towards zero as the lag increases, this ordering does not have to be replicated
in the posterior if it is not supported by the data. Further, although by definition Pp∗

is not truncated to zero for p∗ > 1, any matrix Ps, where s ∈ {1, . . . , p∗ − 1}, can be
truncated to zero.

An alternative inferential approach would have been to adopt a spike-and-slab prior
for each unconstrained As matrix. This is the basis of the Bayesian stochastic search
procedure that is often used for individual coefficients in the analysis of autoregressions
(George et al., 2008; So et al., 2006). An increasing shrinkage prior within this class
is the cumulative shrinkage process (CUSP) (Legramanti et al., 2020). However, our
experience working with this prior suggests that, though sensible posterior inferences
can be obtained in the analysis of simulated data, inference on the model order is very
sensitive to the choice of prior hyperparameters in analyses involving real data. This
suggests a lack of robustness to the kind of model misspecification that is inevitable
in analyses of real time-series. Further discussion of these approaches can be found in
Chapter 5 of Binks (2024).
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3.2 Joint prior

Denoting the collection of unknown hyperparameters in the multiplicative gamma pro-
cess prior by ϑ, we adopt an overall prior specification of the form

π(Σ,A1, . . . , Apmax ,ϑ) = π(Σ)π(ϑ)
pmax∏
s=1

π(As|ϑ). (2)

Various options are available for the error variance matrix Σ and distributions which
offer the property of invariance with respect to the order of the variables in the obser-
vation vector are discussed in Heaps (2023). In the applications in this paper, we use
one such distribution, taking Σ to be inverse Wishart, with a scale matrix that has a
common element on the diagonal and a common element off the diagonal.

4 Posterior inference
4.1 Posterior distribution

For i ≤ j, denote by yi:j the time-series yi, . . . ,yj . The likelihood for a series of n
observations, y1:n, from a zero-mean VARm(pmax) process can be expressed as

p(y1:n | Σ,Φ) = p(y1:pmax
| Σ,Φ)

n∏
t=pmax+1

p(yt | y(t−pmax):(t−1), Σ, Φ)

in which Y t | y(t−pmax):(t−1), Σ, Φ ∼ Nm

(∑pmax
i=1 φiyt−i , Σ

)
and the initial distribution

is (Y T
1 , . . . ,Y

T
pmax

)T | Σ,Φ ∼ Nmpmax(0, G). Here G is given by

G =

⎛
⎜⎜⎜⎝

Γ0 Γ1 · · · Γpmax−1
ΓT

1 Γ0 · · · Γpmax−2
...

...
. . .

...
ΓT
pmax−1 ΓT

pmax−2 · · · Γ0

⎞
⎟⎟⎟⎠ ,

where the matrices Γs = Cov(yt,yt+s), s = 0, . . . , pmax−1, are available as by-products
of the recursive mapping between the partial autocorrelation matrices and the original
model parameters.

Regarding the likelihood as a function of the new parameters and combining it with
the prior (2) via Bayes theorem yields the posterior distribution as

π(Σ,A1, . . . , Apmax ,ϑ | y1:n) ∝ π(Σ)π(ϑ)
pmax∏
s=1

π(As | ϑ)p(y1:n | Σ,A1, . . . , Apmax). (3)

As explained in Heaps (2023), the posterior distribution is a complicated function of the
As, making it ill-suited to computational inference based on Gibbs sampling. Rather
than appealing to conditional independence structure in the posterior for one-at-a-time
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parameter updates, Hamiltonian Monte Carlo (HMC) (Neal, 2011) uses information on
the slope of the logarithm of the posterior density to generate global proposals that
update all parameters simultaneously. We have found it efficient in sampling from the
posterior (3) and use cmdstanr (Gabry and Cesnovar, 2021), a lightweight R interface
to the Stan software (Carpenter et al., 2017), to implement the HMC algorithm. Stan
requires users to write a program in the probabilistic Stan modelling language, the
role of which is to provide instructions for computing the logarithm of the kernel of
the posterior density function. The Stan software then automatically sets up a Markov
chain simulation to sample from the resulting posterior. This includes calculation of the
gradient of the logarithm of the posterior density, random initialization of the chains,
and the tuning of the sampler.

4.2 Truncation criterion

Following Bhattacharya and Dunson (2011), we choose to truncate Ps to a zero matrix
if the absolute values of all of its elements lie below some threshold, say ε. In classical
time-series analysis, the partial autocorrelation plot, with its associated confidence in-
tervals, plays an important role in the choice of order for a univariate autoregression
(AR). Under the hypothesis that the process is AR(p), the estimators for the partial
autocorrelations of order p+ 1, p+ 2, . . . based on a sample of size n are approximately
independent with mean equal to zero and variance equal to 1/n. As a guide, we therefore
approximate the posterior for the m2 components ps,ij of Ps under this hypothesis as
independent N(0, 1/n) random variables and then compute the quantile qm,n(β) such
that Pr{maxi,j |ps,ij | < qm,n(β)} = β for some large value of β and set the threshold

ε = qm,n(β) = Φ−1{(β1/m2
+ 1)/2}/

√
n. (4)

By choosing the threshold in this way, we account for both the length and dimension
of the data, in addition to operating on a parameter which is unit-free. We typically
set β = 0.99, however, as discussed further in Section 5, the posterior for the effective
order p∗ is largely insensitive to sensible variation in the value of β, for example, from
β = 0.95 to β = 0.999.

For each draw from the posterior, we can apply this criterion to determine the effec-
tive order p∗ of the process. This can be summarized to yield a numerical approximation
of the posterior for p∗ which provides a proxy for the posterior for p. We emphasize that
this truncation criterion does not depend on the choice of prior and could be applied in
conjunction with any prior for an overparameterized stationary vector autoregression
in order to learn the order of the process.

5 Simulation experiments
Consider the idealized setting in which we know that the data were generated from a
stationary vector autoregression of known order, p. In order to explore the behaviour of
the posterior distribution for p∗ in this context, we carried out simulation experiments
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that considered data generated from processes whose orders took various values. Our
choice of truncation criterion makes allowance for the dimension of the observation
vector m and the length of the time-series n. We might therefore expect some degree of
robustness in the more challenging inferential situations when n is small or, in particular,
when m is large. This was investigated by considering simulations under a variety of
values of m and n.

For each m ∈ {1, 3, 5, 7} and p ∈ {1, 2, 3, 4} we simulated ten sets of m×m matrices
A1, . . . , Ap with elements sampled independently from a standard normal distribution.
Taking the error variance matrix to be Σ = Im, these were used to simulate ten sta-
tionary VARm(p) processes of length n = 1000. Conditional on each data set, we then
generated samples from the posterior distribution using Stan, as described in Section 4,
setting the maximum possible order as pmax = 8. Values for the other hyperparameters
in the prior are detailed in Section S3.1 of the Supplementary Materials (Binks et al.,
2024). In all cases, we used four chains each with 1,000 iterations of warm-up followed by
4,000 sampling iterations. Using the truncation criterion with β = 0.99, we calculated
the limits qm,n(β) as 0.081, 0.103, 0.112 and 0.117 for m = 1, 3, 5, and 7 respectively,
and obtained a posterior mass function for the effective order p∗ of each process. The
posterior mass functions are summarized in Figure 1 across all simulation experiments.
For a given (m, p), the posteriors for the ten data sets are presented as a collection of
overlaid bar charts. In all but three (of 160) cases, the true order p of the process is
the mode in the posterior for p∗, with considerable posterior support. The results are
similar across different values of m and p, suggesting robustness to the dimension of the
data through our choice of truncation criterion.

Fixing m = 3, considering p ∈ {1, 2, 3, 4} and using the same ten sets of matrices
A1, . . . , Ap as in the previous experiment, we then simulated ten stationary VARm(p)
processes of length n = 100 and another ten of length n = 500, facilitating comparison
across n ∈ {100, 500, 1000}. Retaining the same prior specification in the new exper-
iments, we fit the model using HMC via Stan, as discussed above. Again, using the
truncation criterion with β = 0.99 led to limits qm,n(β) equal to 0.326, 0.146 and 0.103
for n = 100, 500 and 1000, respectively. This yielded the posterior mass functions for
p∗ which are displayed in Figure 2. In all but one experiment for the different values of
n, the posterior mode for the effective order p∗ recovers the true order p of the process,
again, with considerable support. The similarity in the behaviour of the posterior for all
values of n suggests robustness through the choice of truncation criteria, even for short
time-series.

In order to assess sensitivity to our choice of truncation criterion we considered a
selection of other choices for the probability β in (4). The results, presented in full
in Section S3.2 of the Supplementary Materials (Binks et al., 2024), revealed that the
posterior for the effective order p∗ of the process was largely insensitive to variation in
the value of β over a sensible range, with the posterior mode remaining equal to the
known order of the process and an increasing degree of concentration about the mode
as β increased. Indeed, posterior mass only started to concentrate above the known
order when the value of β was purposely chosen to be unreasonably small, leading
to overestimation of p. These observations held across all values of m, n and p which
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Figure 1: Overlaid posterior mass functions for the effective order p∗ from 10 experiments
for each combination of m ∈ {1, 3, 5, 7} and p ∈ {1, 2, 3, 4}, with n = 1000.

provides further empirical evidence of the utility of our principled approach for selecting
the truncation criterion.

6 Application: understanding brain rhythms
6.1 Background
As an example application, we will apply our model and inferential procedures to a
dataset of long-term intracranial electroencephalography (EEG) recordings to under-
stand biological rhythms in the brain. Biological rhythms on ultradian, circadian, and
longer timescales have been demonstrated in human physiology but particularly the
ultradian rhythms remain elusive in mechanism and function in the brain (Goh et al.,
2019; Lloyd and Stupfel, 1991). Multiple lines of evidence suggest that some promi-
nent ultradian rhythms exist in brain activity as measured by EEG (Hayashi et al.,
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Figure 2: Overlaid posterior mass functions for the effective order p∗ from 10 experiments
for each combination of n ∈ {100, 500, 1000} and p ∈ {1, 2, 3, 4}, with m = 3.

1994; Panagiotopoulou et al., 2022), and may be related to rest-activity cycles, or even
modulate disease symptoms.

In this exploratory application we investigate the properties that such ultradian
biological rhythms may display in human brain activity. We use band power in two
common frequency bands (delta and beta) as our features of interest.

6.2 Data preprocessing

Intracranial EEG (iEEG) recordings are considered from four subjects with refractory
focal epilepsy from the University College London Hospital (UCLH). We give the in-
dividuals the anonymous identities of A, B, C and D. The nature of the recording was
chosen for its high signal-to-noise ratio without the need for extensive artefact detection
and removal.
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Firstly, we divided each subject’s iEEG data into non-overlapping, consecutive seg-
ments of length 30 seconds. All channels within each segment were re-referenced to a
common average reference. In the common average calculation, channels with extreme
amplitude values were excluded. A notch filter was then applied at 50 Hz for each 30
second time window to remove line noise, after which the time windows were band-pass
filtered from 0.5–80 Hz using a fourth order zero-phase Butterworth filter (second order
forward and backward filter applied) and downsampled to 200 Hz.

Next, the iEEG data were decomposed into commonly studied frequency bands, in-
cluding delta and beta (Taylor et al., 2022). We calculated the iEEG band power for each
30 second segment for all channels in two frequency bands (δ: 1–4 Hz, β: 13–30 Hz) using
Welch’s method with three-second non-overlapping windows. After taking logarithms to
base 10 of the band power recordings in each channel, the channels were averaged into
the brain regions from which they were recorded based on the Desikan-Killiany atlas;
see Wang et al. (2023) for further details. The number of brain regions varied between
individuals, with m = 8, 8, 9 and 13 for individuals A, B, C and D respectively. Finally,
the data were mean-centered prior to analysis.

For each individual we analysed the longest possible contiguous time period of their
band power time-series for which graphical interrogation of the data suggested station-
arity was a plausible assumption; therefore the length of the recording chosen for further
analysis varied across subjects. The number of observations in the recordings used were
n = 685, 622, 651 and 231 for individuals A, B, C and D respectively, equivalent to 5.7,
5.175, 5.417 and 1.917 hours. These recordings were obtained during day-time hours.
We apply our model and inferential procedures to the time-series of both the beta and
delta band power values for each individual, with a maximum order of pmax = 8. The
choices of hyperparameters in the prior are provided in Section S4.1 of the Supplemen-
tary Materials (Binks et al., 2024).

6.3 MCMC implementation
For each individual and frequency band, we used the cmdstanr interface to the Stan
software (version 2.29.2) to run 4 chains, initialized at different starting points. The
chains were run for 17,000 iterations, discarding the first 1,000 as burn-in, and thin-
ning to retain every fourth draw in order to reduce computational overheads. The usual
graphical and numerical diagnostics gave no evidence of any lack of convergence and,
after pooling the chains, the effective sample size was at least 2,023 for every model
parameter. Using a CentOS Linux 7 (Core) 64bit operating system with an Intel Xeon
E5-2699 v4 processor (2.2 GHz), the average run time across chains for the beta fre-
quency band in individual A was 31.3 hours, with similar run times obtained for the
other data sets.

6.4 Order determination
For each of the individuals, the posterior distributions for p∗ for both the beta and
delta series were calculated using the truncation criteria described in Section 4.2 with
β = 0.99. For example, in Figure 3, the posterior mass functions for the data pertaining
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Figure 3: Posterior mass function for the order of process for the beta (left) and delta
(right) series for individual A.

to individual A are shown. For both the delta and beta series, the posterior mode is 2,
with posterior support exceeding 2/3. Similar results were obtained using the commonly
adopted frequentist strategy of selecting model order based on the Akaike’s Information
Criterion (AIC) or Schwartz Criterion (SC) (Lütkepohl, 2006, Chapter 4), with the AIC
selecting an order of 2 for the data in the beta and delta bands and the SC selecting 1
in each case. These results are quantitatively similar across all individuals, with figures
provided in Section S4.2 of the Supplementary Materials (Binks et al., 2024), possibly
indicating similar generative processes for their ultradian rhythms.

6.5 Granger causality

Conditioning on the modal order of the process for both series in each subject, we obtain
samples from the posterior distributions of the autoregressive coefficient matrices. The
(i, j)-th element in the autoregressive matrix at lag-s, φs,ij , governs the effect of the
j-th variable at time t − s on the i-th variable at time t. If φs,ij is non-zero we say
that variable j Granger-causes variable i at lag s; this Granger-causal connection can
be represented in a directed network, called a Granger causality plot, through an edge
from vertex j to vertex i. Conditional on the posterior modal order, p∗ = 2, Figures 4
and 5 show the Granger causality plots at lags 1 and 2 for individual A in the beta
and delta bands, respectively. In these plots, an autoregressive coefficient is visualized
as non-zero whenever zero lies outside the 50% equi-tailed Bayesian credible interval;
the thickness of the edges representing non-zero coefficients are representations of the
absolute value of the posterior mean. The coordinates of the vertices, representing the
different brain regions, correspond to the x and y coordinates of the centre of the region
using the Desikan-Killiany atlas. A noticeable feature of these Granger causality plots
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Figure 4: Granger causality plots of the posterior mean of the autoregressive coefficient
matrices for the VAR process of individual A in the beta band at lag 1 (left) and lag
2 (right), overlaid on glass brains showing the locations of the regions. Region names:
1 – r.bankssts, 2 – r.middletemporal, 3 – r.postcentral, 4 – r.superiortemporal, 5 –
r.supramarginal, 6 – r.inferiorparietal, 7 – r.inferiortemporal, 8 – r.precentral.

is the higher number of connections in the delta band compared to the beta band. This
was common across all individuals (see Section S4.3 of the Supplementary Materials
Binks et al., 2024), and may indicate more localized processes underpinning the delta
rhythms that interact with each other, whereas the beta rhythms in each region may be
more driven by common processes. However future work has to confirm if this feature
is a result of the epilepsy, or medication.

6.6 Decomposition into latent series
Using classic theory of time-series decompositions (Prado, 1998), a VARm(p) process
can be decomposed into pm latent series. These series correspond to the pm distinct
eigenvalues of the companion matrix which arises from the representation of the model
as a VARmp(1) process. Suppose there are c complex conjugate pairs of eigenvalues
denoted rje

±iωj , j = 1, . . . , c, and pm−2c real eigenvalues denoted rj , j = 2c+1, . . . , pm
where rj > 0 and ωj ∈ [0, π). The latent decomposition of yt = (yt1, . . . , ytm)T then
takes the form

yti =
c∑

j=1
ztij +

pm∑
j=2c+1

xtij ,

where ztij and xtij are real-valued processes corresponding to the jth pair of com-
plex eigenvalues and the jth real eigenvalue, respectively. The process ztij has similar
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Figure 5: Granger causality plots of the posterior mean of the autoregressive coefficient
matrices for the VAR process of individual A in the delta band at lag 1 (left) and lag
2 (right), overlaid on glass brains showing the locations of the regions. Region names:
1 – r.bankssts, 2 – r.middletemporal, 3 – r.postcentral, 4 – r.superiortemporal, 5 –
r.supramarginal, 6 – r.inferiorparietal, 7 – r.inferiortemporal, 8 – r.precentral.

behaviour to an AR(2) process with coefficients 2rj cosωj and −r2
j and is therefore

quasi-periodic with characteristic frequency ωj and modulus rj . This holds for all di-
mensions i = 1, . . . ,m, though the time-varying amplitude and phase are different for
each i. Similarly, the process xtij follows an AR(1) structure with coefficient rj for all
i = 1, . . . ,m. The innovations that drive the ztij and xtij processes are correlated and
arise from the error terms εt in the original model.

The quasi-periodic series arising from the complex conjugate pairs of eigenvalues
are of particular interest as they can capture the cyclical patterns that are key to
understanding variation in brain activity. The pairs of complex eigenvalues, rje

±iωj ,
j = 1, . . . , c, are not identifiable as the model remains unchanged under any permuta-
tion of their labelling. However, identification can be achieved by applying an ordering
constraint, for example, based on the modulus or the argument. Imposing the con-
straint ω1 < ω2 < · · · < ωc, the quasi-periodic series ztij are ordered by decreasing
period 2π/ωj .

For individual A the posteriors for the moduli and periods of the first four quasi-
periodic series are presented in Figures 6 and 7. We note that the ztij with highest
period also have highest modulus and might therefore be regarded as the dominating
latent series. Corresponding figures for the other individuals are provided in Section
S4.4 of the Supplementary Materials (Binks et al., 2024). Across individuals, a common
feature is that the posterior for the period of the dominating latent series in each
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Figure 6: Posterior densities for the moduli of the first four quasi-periodic series for
individual A.

Figure 7: Posterior densities for the periods of the first four quasi-periodic series for
individual A.

band has its mean at around 20 minutes; for example, for individual A, the posterior
means in the beta and delta bands are 22.83 and 29.51 minutes, with 95% equi-tailed
Bayesian credible intervals of (4.04, 96.24) and (4.32, 131.05) minutes, respectively. It is
also noticeable that though there are some differences between the moduli of the series
in the delta band compared to the beta band, there is very little difference between
the corresponding periods. Again, this feature is replicated across all individuals. We
elaborate further on this observation in Section 7.

7 Discussion
We have proposed a hierarchical Bayesian model, with accompanying model-fitting
methodology, which allows inference on the order of a stationary vector autoregres-
sion. This is based on an unconstrained reparameterization of the stationary model



R. L. Binks, S. E. Heaps, M. Panagiotopoulou, Y. Wang, and D. J. Wilkinson 17

in terms of a set of transformed partial autocorrelation matrices (Heaps, 2023) whose
properties can be exploited in the design of the prior. In particular, we capitalize on
the nested structure of the new parameterization by constructing an overparameterized
hierarchical model which shrinks unnecessary, high-order terms to zero; by identifying
the lag beyond which the partial autocorrelation parameters become effectively equal to
zero, we can then learn the order of the process. Further, using the relationship between
the spectral norm of a partial autocorrelation matrix and its unconstrained counter-
part, the prior is chosen to increasingly shrink the partial autocorrelation matrices at
higher lags towards zero through a multiplicative gamma process for the unconstrained
matrices.

An efficient Hamiltonian Monte Carlo sampler for computational inference was pro-
posed and implemented through Stan, with accompanying code to allow easy dissem-
ination into other fields. The interpretability of the reparameterization allowed use of
classical theory on the distribution of the estimators of the partial autocorrelation func-
tion to make a judgement about which sampled partial autocorrelation matrices are
approximately equal to zero. An associated truncation criterion determines the number
of non-zero partial autocorrelation matrices, allowing posterior inference on the order
of the process in a manner which accounts for the scale, dimension and length of the
time-series. This truncation criterion is independent of the choice of prior and could
be applied in conjunction with any prior for an overparameterized stationary vector
autoregression.

We applied our methodology to a series of simulation experiments in which data
sets of various lengths n were sampled from various stationary VARm(p) models. For
all values of m, p and n considered, the posterior for the effective order of the process
was highly concentrated around the known model order. We then applied our method-
ology to iEEG data from recordings at various locations in the brain. Conditioning on
the posterior modal order of these processes allowed physiological insight in a number of
directions. By constructing Granger causality plots, we were able to highlight relation-
ships between activity in different regions of the brain. Similarly, by constructing the
latent decomposition of the series, we were able to identify underlying quasi-periodic
structure. In particular, we found that the dominant latent component had a period that
was around 20 minutes across all individuals in both the beta and the delta bands. This
is consistent with ultradian rhythms of around 20 minutes which have previously been
observed (Panagiotopoulou et al., 2022). The similarity in the periods across the beta
and delta bands indicate that there is a global cycle in the band power pattern, rather
than a local cycle within a specific band. The similarities between subjects are striking,
particularly the period of 20 minutes, and warrant future investigations into the possible
biological mechanisms and potentially endogenous drivers (Goh et al., 2019). However,
as we only considered four subjects in this work, a larger study would be needed to con-
firm any biological interpretations, with a larger number of patients, longer recordings
and accounting for the potential pathology present in these subjects.

Although our focus has been learning the order of stationary vector autoregres-
sions with independent, Gaussian errors, these assumptions about the error process
could be relaxed in a number of ways. First, we could readily allow higher probabil-
ities of extreme values by assuming the errors arose from a heavy tailed distribution
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with finite first and second moments, such as the multivariate-t distribution with de-
gree of freedom parameter greater than two. Second, it may also be possible to allow
for heteroskedasticity by modelling the errors according to a multivariate generalized
autoregressive conditional heteroskedasticity (GARCH) process, such as that described
by Ling and McAleer (2003), in which additional constraints on the parameters of the
error process guarantee second order stationarity. In this instance, however, because
the mapping from the original parameter space (Σ,Φ) to {Σ, (P1, . . . , Pp)} depends on
the conditional variance Σ and this conditional variance would change at every time
point, further work would be needed to investigate an alternative choice of positive
definite matrix to replace Σ, and to establish the interpretation of the resulting ma-
trices P1, . . . , Pp. Finally, we could allow the errors to be autocorrelated by considering
the more general class of stable and invertible vector autoregressive moving average
(VARMA) models. A vector autoregressive moving average model of order (p, q) has
the form

yt = φ1yt−1 + . . . + φpyt−p + εt + ψ1εt−1 + . . . + ψqεt−q,

where εt ∼ N(0,Σ) for t = q + 1, . . . , n, the parameters ψi ∈ Mm×m(R), i = 1, . . . , q,
are m × m moving average coefficient matrices and the parameters φ1, . . . , φp are the
autoregressive coefficient matrices which lie in Cp,m for a stable process. In backshift
notation, this can be written as φ(B)yt = ψ(B)εt where ψ(u) = (Im+ψ1u+ . . .+ψqu

q),
u ∈ C, is the characteristic moving average polynomial. The VARMA process is invert-
ible if and only if all roots of the equation det{ψ(u)} = 0 lie outside the unit circle.
The subset of Mm×m(R) in which the matrices −ψ1, . . . ,−ψq satisfy this condition is
simply Cq,m. To constrain the parameters to this region, we can therefore use the repa-
rameterizations discussed in Section 2.2 to first map from the moving average coefficient
matrices and variance matrix to a set of matrices Q1, . . . , Qq with singular values less
than one, and then to map to a set of unconstrained square matrices; (see Heaps, 2023,
Supplementary Materials). To allow inference on q, as well as p, a second multiplicative
gamma process prior could then be used to increasingly shrink the unconstrained ma-
trices at higher lags towards zero, again using a truncation criterion to determine which
of the matrices are effectively zero. However, since the matrices Q1, . . . , Qq do not have
a clear interpretation, making a principled choice of truncation criterion for the repa-
rameterized moving average coefficients would not be straightforward. Moreover, since
VARMA models can be approximated by higher order vector autoregressions, it is likely
that posteriors would be multimodal, demanding development of a Markov chain Monte
Carlo sampler that can move efficiently between modes. We defer further consideration
of this challenging topic to future work.

Our ideas could also be extended to learn the order of processes that are only
piecewise stationary. Indeed, an obvious limitation in the application to iEEG data was
the necessity to pick out contiguous segments of data where stationarity was a plausible
assumption. However, as remarked in Section 1, stationary autoregressions often serve as
building blocks in the construction of more complex models. Motivated by applications
involving iEEG data where subjects transition between states of wakefulness and sleep,
or states of normal brain activity and seizure, we are currently exploring a hidden
Markov model in which a (locally) stationary vector autoregression describes the within-
state dynamics. Such a model would be ideally suited to a wide variety of time-series
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where there are occasional step-changes in a process which otherwise appears to be
mean reverting.
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