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Guided Sequential ABC Schemes for
Intractable Bayesian Models

Umberto Picchini∗ and Massimiliano Tamborrino†

Abstract. Sequential algorithms such as sequential importance sampling (SIS)
and sequential Monte Carlo (SMC) have proven fundamental in Bayesian inference
for models not admitting a readily available likelihood function. For approximate
Bayesian computation (ABC), SMC-ABC is the state-of-art sampler. However,
since the ABC paradigm is intrinsically wasteful, sequential ABC schemes can
benefit from well-targeted proposal samplers that efficiently avoid improbable pa-
rameter regions. We contribute to the ABC modeller’s toolbox with novel proposal
samplers that are conditional to summary statistics of the data. In a sense, the
proposed parameters are “guided” to rapidly reach regions of the posterior sur-
face that are compatible with the observed data. This speeds up the convergence
of these sequential samplers, thus reducing the computational effort, while pre-
serving the accuracy in the inference. We provide a variety of guided Gaussian
and copula-based samplers for both SIS-ABC and SMC-ABC easing inference for
challenging case-studies, including multimodal posteriors, highly correlated pos-
teriors, hierarchical models with about 20 parameters, and a simulation study of
cell movements using more than 400 summary statistics.

Keywords: approximate Bayesian computation, copulas, sequential importance
sampling, sequential Monte Carlo, simulation-based inference.

1 Introduction
Approximate Bayesian computation (ABC) is arguably the most popular family of
Bayesian samplers for statistical models characterized by intractable likelihood func-
tions (Sisson et al., 2018). By this, we refer to many scenarios where the likelihood
p(y|θ), for a dataset y ∈ Y and parameter θ, is not available in closed-form or may
be too cumbersome to evaluate computationally or even approximate. However, it is
assumed that is feasible to simulate from the data-generating model to produce a sim-
ulated/synthetic dataset z ∼ p(z|θ). The latter notation means that z ∈ Y has been
implicitly generated by the likelihood function, that is, p(z|θ) is unavailable in closed
form, but we can obtain simulated data z from it. When the time to generate many simu-
lated dataset is not computationally prohibitive, ABC samplers exploit the information
brought by many simulated dataset at different values of θ to learn an approximation of
the posterior distribution. This is attained by comparing the several synthetic dataset
z with the observed y, possibly by first reducing the data-dimension via informative
summary statistics, and rejecting the values of θ yielding simulated data that are too
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different from the observations. The most basic ABC sampler is the so-called ABC-
rejection sampler. This typically compares features of the simulated and observed data
by introducing summary statistics S which reduce the dimension of z as well as y via
s := S(z) and sy := S(y), respectively (Pritchard et al., 1999). Ultimately, s is compared
to sy, rather than comparing z and y directly, via a distance ||s−sy|| or a kernel function
K(||s − sy||), see, e.g. Sisson et al., 2018. As an example, the ABC-rejection sampler
works as follows: (i) a candidate parameter θ∗ is proposed from the prior π(θ); (ii) cor-
responding simulated data are obtained as z ∼ p(z|θ∗), and summaries s∗ = S(z∗) are
obtained; (iii) accept and store θ∗ if ||s∗ − sy|| < δ for some δ > 0, otherwise discard it.
Steps (i)-(iii) are iterated until N accepted parameters are obtained. For the reader’s
benefit, a more general version of this algorithm is given in Supplementary Material K
(Picchini and Tamborrino, 2024). Accepted draws from ABC-rejection are then samples
from the marginal posterior

πδ(θ|sy) ∝
∫

I||s−sy||<δ · p(s|θ)π(θ)ds

(with IA being the indicator function returning 1 if A is true and 0 otherwise). The ABC-
rejection sampler is particularly wasteful, as the prior is used as the parameter proposal.
A number of improvements to this basic algorithm has been produced in the past 20
years and are considered in Sisson et al. (2018). The most important alternative sam-
plers are Markov chain Monte Carlo (MCMC) ABC (Marjoram et al., 2003; Sisson and
Fan, 2011; Picchini, 2014) and sequential Monte Carlo ABC (SMC-ABC, Sisson et al.,
2007, Beaumont et al., 2009, Del Moral et al., 2012). SMC-ABC is especially popular
due to its somehow simpler tuning compared to MCMC-ABC. For example, SMC-ABC
is the chosen algorithm in recent inference platforms such as ABCpy (Dutta et al., 2017)
and pyABC (Schälte et al., 2022). However, ABC algorithms are generally computation-
ally wasteful, making their use computationally challenging when simulating complex
systems or inferring high-dimensional parameters. The goal of this work is to construct
novel proposal functions for sequential ABC samplers (SMC-ABC and sequential impor-
tance sampling ABC), having the unique feature of being rapidly “guided” to target the
region of the parameter space that is compatible with the observed data, hence consider-
ably reducing the computational effort compared to non-guided proposals, especially in
the initial iterations. We achieve this by constructing several proposal functions gener-
ating parameters conditionally to summaries of the data sy. In particular, we construct
Gaussian and copula-based proposal functions, which we call “guided proposals” due to
the explicit conditioning on sy, and show how our methods notably increase the accep-
tance rate of proposed parameters while thoroughly exploring the posterior surface.

Previous work exploiting information from data summaries sy to adjust the output
of an ABC procedure is, e.g., Beaumont et al. (2002), Blum and François (2010) and Li
et al. (2017). However, these approaches do not use sy to improve the proposal sampler
during a run of some ABC algorithm, but only adjust the final output, thus acting on
the already accepted parameters. Instead, our approaches make use of sy to guide the
parameter proposals while ABC is still running. A first work in this direction is that of
Bonassi and West (2015), where a joint product kernel for (θ, sy) is considered to derive
SMC-ABC with adaptive weights, with particles sampled from a proposal (kernel) based
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on θ and weights based on the kernel on sy. While computationally convenient, this
independence assumption does not reflect the intrinsic dependency between θ and sy,
which we instead consider when constructing samplers for θ|sy. A more recent work
in this direction is that of Chen and Gutmann (2019), where “regression adjustment”
(Beaumont et al., 2002, Blum and François, 2010) is performed by employing neural
networks. In particular, starting from many pairs (θ(i), s(i)) simulated from the prior-
predictive distribution, they regression-adjust the accepted parameters as θ(i)′ = g(sy)+
θ(i) − g(s(i)), where g(·) is a function learned by training a neural-network via early-
stopping on the prior-predictive simulations. Then, they use a “best subset” of the
adjusted parameters to construct a multivariate Gaussian sampler with mean g(sy) and
an inflated covariance matrix based on the θ(i)′ to further propose parameters, which
are then fitted using a Gaussian copula and appropriately transformed, to produce an
approximated posterior as final output of the procedure.

While we also propose, among others, copula-based samplers and use the infor-
mation of sy while ABC is running, there are several substantial differences with the
approach proposed by Chen and Gutmann (2019). First, we do not need to construct
a neural network architecture, hence we do not have to choose its design and the op-
timization schemes required for its tuning. Our approach make use of the accepted
draws to construct an effective proposal sampler, without regression adjustments, as
the latter are known to be effective only if the distribution of the residuals from the
regression is roughly constant. Second, for some of our novel guided proposals, we intro-
duce the ability to exploit a-priori knowledge about correlations in blocks of parameters
by proposing from, say, g(θ1, θ2|sy, θ∗3 , θ∗4) if θ = (θ1, . . . , θ4) with (θ1, θ2) known to be
highly correlated and (θ∗3 , θ∗4) being the third and fourth component of a previously
accepted θ∗ = (θ∗1 , . . . , θ∗4). We have shown that this considerably ease exploration of
highly correlated posteriors. Third, we do not only consider Gaussian-copulas but also
Student’s t-copulas, exploring the performance of a variety of possible suggested (instead
of learned via kernel density estimation) marginals such as Gaussian, location-scale Stu-
dent’s t, Gumbel, logistic, uniform and triangular, recommending the last two among
all. Interestingly, the copula-based samplers are not derived starting from (θ, sy) (as
it happens for the guided Gaussian samplers), but directly constructed for θ|sy. This
makes them more general and flexible than the guided Gaussian proposals, derived as-
suming that the summary statistics are Gaussian distributed, something which may not
always be true (despite this having a limited impact on the inference results, as shown
here). Fourth, besides constructing guided proposals for SMC-ABC, most of our guided
proposals are actually for sequential importance sampling ABC (SIS-ABC), and their
performance is competitive, remarkably outperforming the state of art SMC-ABC. Ul-
timately, we show that our guided proposals can dramatically accelerate convergence
to the bulk of the posterior by increasing acceptance rates while preserving accuracy in
the posterior inference. Moreover, our methods seem to offer a viable route for infer-
ence when the dimension of the summary statistics is large, whereas SMC-ABC without
guided proposals may struggle.

Other contributions for sequential likelihood-free Bayesian inference that are not
within the “standard ABC” framework (i.e. procedures that are not necessarily based
on specifying summary statistics that get compared via a threshold parameter δ) are,
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e.g., Papamakarios and Murray (2016), Lueckmann et al. (2017), Papamakarios et al.
(2019), Greenberg et al. (2019), Wiqvist et al. (2021), with ensemble Kalman inversion
(EKI) (Chada, 2022; Duffield and Singh, 2022) being a further possibility. While these
works have notable merits, we do not consider them here, as our goal is to improve
the SIS-ABC and SMC-ABC samplers. However, our guided proposals may be incor-
porated into other samplers, e.g. EKI. In Section 2, we briefly summarize sequential
ABC samplers before introducing our original proposal functions in Section 3. Simu-
lation studies are reported in Section 4, where we consider examples with multimodal
posteriors (Section 4.1), highly non-Gaussian summary statistics (Sections 4.1 and 4.4),
highly correlated posteriors (Section 4.2), hierarchical models with high-dimensional
parameters (Section 4.3), continuous time Markov jump processes with an application
in ecology and systems biology (Section 4.5) and high-dimensional summaries with up
to 400 components (Sections 4.3 and 4.6). Finally, additional theoretical considerations,
further results from the examples and setups for the simulation studies are provided as
Supplementary Material. Supporting MATLAB code is available at https://github.
com/umbertopicchini/guidedABC.

2 Sequential ABC schemes
Throughout this section, we summarize the key features of two of the most important
sequential ABC algorithms, i.e. SIS-ABC and SMC-ABC, since they are at the core of
our novel contributions.

2.1 Sequential importance sampling ABC

An obvious improvement to the basic ABC-rejection considers proposing parameters
from a carefully constructed “importance sampler” g(θ). In this procedure, each ac-
cepted parameter receives a weight π(θ)/g(θ) to correct for the fact that the parameter
was not proposed from π(θ), and the weight correction provides (weighted) samples from
the corresponding approximate posterior πδ(θ|sy). When g(θ) ≡ π(θ), importance sam-
pling ABC reduces to the ABC-rejection algorithm. Importance sampling is particularly
appealing when embedded into a series of T iterations, see Algorithm 1, which can also
suggest ways to employ a decreasing sequence of thresholds δ1 < δ2 < · · · < δT (more
on this later). This implies the introduction of T importance distributions g1, . . . , gT ,
with g1(θ) ≡ π(θ). The output of the algorithm provides us with weighted samples
from the last iteration: (θ(1)

T , w̃
(1)
T ), . . . , (θ(N)

T , w̃
(N)
T ), where θ

(i)
T ∼ πδT (θ|sy). These can

be used to compute the ABC posterior mean as E(θ|s) ≈
∑N

i=1 w
(i)
T θ

(i)
T (where the wt

denote normalized weights, i.e. w(i)
t = w̃

(i)
t /

∑N
j=1 w̃

(j)
t ) and posterior quantiles by using

(3.6) in Chen and Shao (1999). Otherwise, perhaps more practically, it is possible to
sample N times with replacement from the set (θ(1)

T , . . . , θ
(N)
T ), using probabilities given

by the normalized weights, and then produce histograms, or compute posterior means
and quantiles by using the resampled particles (after resampling, all samples have the
same normalized weight 1/N). However, Algorithm 1 does not clarify the most impor-
tant issue: how to sequentially construct the samplers g1, . . . , gT . Inspired by work on

https://github.com/umbertopicchini/guidedABC
https://github.com/umbertopicchini/guidedABC
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Algorithm 1 Sequential importance sampling ABC (SIS-ABC).
1: Input:
2: Observed data y, vector of summary statistics S(·), number of kept samples per iteration N , prior π(θ),

importance sampler gt, number of iterations T and starting threshold δ1.
3: Set t := 1.
4: for i = 1, . . . , N do
5: repeat
6: Sample θ∗ ∼ π(θ).
7: Generate zi ∼ p(z|θ∗) from the model.
8: Compute summary statistic si = S(zi).
9: until ||si − sy|| < δ1

10: Set θ
(i)
1 := θ∗

11: set w̃
(i)
1 := 1.

12: end for
13: Obtain δ2.
14: for t = 2, . . . , T do
15: for i = 1, . . . , N do
16: repeat
17: Sample θ∗ ∼ gt(θ).
18: if π(θ∗) = 0 go to step 17, otherwise continue.
19: Generate zi ∼ p(z|θ∗) from the model.
20: Compute summary statistic si = S(zi).
21: until ||si − sy|| < δt

22: Set θ
(i)
t := θ∗

23: set w̃
(i)
t = π(θ(i))/gt(θ(i)).

24: end for
25: Decrease the current δt.
26: end for
27: Output:
28: A set of weighted parameters (θ(1)

T , w̃
(1)
T ), . . . , (θ(N)

T , w̃
(N)
T ) ∼ πδT

(θ|sy).

sequential learning (Cappé et al., 2004, Del Moral et al., 2006), a number of sequential
ABC samplers have been produced, such as Sisson et al. (2007), Toni et al. (2008),
Beaumont et al. (2009), Del Moral et al. (2012). We collectively refer to these methods
as SMC-ABC, as described in Section 2.2.

2.2 Sequential Monte Carlo ABC samplers

At iteration t, SMC-ABC constructs automatically tuned proposal samplers by either
considering “global” features of the collection of N accepted samples from the previ-
ous iteration (θ(1)

t−1, w̃
(1)
t−1), . . ., (θ(N)

t−1 , w̃
(N)
t−1), or “local” features that are specific to each

sample (θ(i)
t−1, w̃

(i)
t−1). In this framework, a sample is traditionally named “particle”. For

example, a global feature could be the (weighted) sample covariance Σt−1 of the particles
(θ(1)

t−1, . . . , θ
(N)
t−1), and this could be used in a sampler to propose particles at iteration t.

More generally, if we consider the importance sampler as gt(θ) ≡ gt(θ|θ(1)
t−1, . . . , θ

(N)
t−1), we

can set gt(θ) = q(θ|μt−1,Σt−1), where Σt−1 is the previously defined covariance matrix
and μt−1 is some central location of the particles at iteration t−1. A reasonable and in-
tuitive choice is (with some abuse of notation) gt(θ) = q(θ|μt−1,Σt−1) ≡ N (μt−1,Σt−1),
where N (a, b) is the N -dimensional Gaussian distribution with mean a and covariance
matrix b. However, this would create a global sampler that may only be appropriate if
the targeted posterior is approximately Gaussian.
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Algorithm 2 Sequential Monte Carlo ABC (SMC-ABC).
1: Input:
2: Observed dataset y, summary statistics S(·), number of kept samples per iteration N , prior π(θ), a

perturbation sampler qt, number of iterations T and starting threshold δ1.
3: Set t := 1.
4: for i = 1, . . . , N do
5: repeat
6: Sample θ∗ ∼ π(θ).
7: Generate zi ∼ p(z|θ∗) from the model.
8: Compute summary statistic si = S(zi).
9: until ||si − sy|| < δ1

10: Set θ
(i)
1 := θ∗

11: set w̃
(i)
1 := 1.

12: end for
13: Obtain δ2.
14: for t = 2, . . . , T do
15: for i = 1, . . . , N do
16: repeat
17: Randomly pick (with replacement) θ∗ from the weighted set {θ(i)

t−1, w
(i)
t−1}N

i=1.
18: Perturb θ∗∗ ∼ qt(·|θ∗).
19: if π(θ∗∗) = 0 go to step 17, otherwise continue.
20: Generate zi ∼ p(z|θ∗∗) from the model.
21: Compute summary statistic si = S(zi).
22: until ||si − sy|| < δt

23: Set θ
(i)
t := θ∗∗

24: set w̃
(i)
t = π(θ(i)

t )/
∑N

j=1 w
(j)
t−1qt(θ

(i)
t |θ(j)

t−1).
25: end for
26: normalize the weights: w(i)

t := w̃
(i)
t /

∑N
j=1 w̃

(j)
t .

27: Decrease the current δt.
28: end for
29: Output:
30: A set of weighted parameters (θ(1)

T , w̃
(1)
T ), . . . , (θ(N)

T , w̃
(N)
T ) ∼ πδT

(θ|sy).

In SMC-ABC, the game-changer idea is the random sampling of a particle (with
replacement) from the N particles with associated normalized weights (θ(1)

t−1, w
(1)
t−1), . . .,

(θ(N)
t−1 , w

(N)
t−1): call the sampled particle θ∗t−1, and then randomly “perturb” it to produce

a θ∗∗t ∼ qt(·|θ∗t−1) (notice the latter notation does not exclude dependence on other
particles as well). The perturbed proposal θ∗∗t may be accepted or not according to the
usual ABC criterion. The procedure is iterated until N proposals are accepted at each
iteration. The SMC-ABC algorithm is exemplified in Algorithm 2, where the key step of
sampling a particle based on its weight is in step 17, and its perturbed version is in step
18. In summary, an accepted particle θ

(i)
t results out of: (i) a randomly drawn particle

from the set at iteration t−1 using probabilities (normalized weights) {w(i)
t−1}Ni=1; (ii) an

additional perturbation of the particle sampled in (i). Which means that the proposal
distribution for the particle θ(i) is an N -components mixture distribution with mixing
probabilities {w(j)

t−1}Nj=1 and components qt(θ(i)|θ(j)
t−1) (j = 1, . . . , N), that is

gt(θ(i)) =
∑N

j=1 w
(j)
t−1qt(θ

(i)
t |θ(j)

t−1), which motivates the importance weight

w̃
(i)
t = π(θ(i)

t )/
N∑
j=1

w
(j)
t−1qt(θ

(i)
t |θ(j)

t−1), i = 1, . . . , N. (1)

Notice that, in (1), the denominator has to be evaluated anew for each accepted θ(i).
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One of the measures of the effectiveness of an importance or an SMC sampler is the
“effective sample size” (ESS), where 1 ≤ ESS ≤ N , the larger the ESS the better. At
iteration t, this is traditionally approximated as ÊSSt = 1/

(∑N
j=1(w

(j)
t )2

)
, however

alternatives are explored in Martino et al. (2017).

Some notable SMC-ABC proposal samplers for θ∗∗t ∼ qt(·|θ∗t−1) are detailed in the
Supplementary Material L. Here, we briefly recall the two samplers that provide a useful
comparison with our novel methods introduced in Sections 3. Some of the most interest-
ing work for the construction of such samplers is in Filippi et al. (2013), where particles
randomly picked from the previous iterations are perturbed with Gaussian proposals
with several proposed tuning of the covariance matrix, improving on Beaumont et al.
(2009). As a first approach, Filippi et al. (2013) propose the full θ∗∗ by generating at
iteration t from the dθ-dimensional Gaussian q(θ|θ∗) ≡ N (θ∗, 2Σ), with Σ being the
empirical weighted covariance matrix from the particles accepted at iteration t − 1.
This results in the importance weights (1) becoming (with the usual notation abuse)
w̃

(i)
t = π(θ(i)

t )/
∑N

j=1 w
(j)
t−1N (θ(i)

t ; θ(j)
t−1, 2Σt−1), where N (x; a, b) denotes the probabil-

ity density function of a Gaussian distribution with mean a and covariance matrix b
evaluated at x. In our experiments, this proposal embedded into SMC-ABC is denoted
standard, being in some way a baseline approach. Having θ∗∗t ∼ N (θ∗t−1, 2Σt−1) im-
plies that the mean of the proposal sampler exploits “local” features, since perturbed
draws lie within an ellipsis centred in θ∗t , while its covariance matrix is still global. To
obtain a “local” covariance, Filippi et al. (2013) proposed the “optimal local covariance
matrix” (olcm) sampler. The key feature of this sampler is that each proposed particle
θ∗∗ arises from perturbing θ∗ using a Gaussian distribution having a covariance matrix
that is specific to θ∗ (hence “local”), rather than being tuned on all particles accepted
at t− 1 as in the standard sampler. To construct the olcm, Filippi et al. (2013) define
the following weighted set of particles of size N0 ≤ N at iteration t− 1

{θ̃t−1,l, γt−1,l}1≤l≤N0 =
{(

θ
(i)
t−1,

w
(i)
t−1

γ̄t−1

)
, s.t. ||sit−1 − sy|| < δt, i = 1, . . . , N

}
, (2)

where γ̄t−1 is a normalisation constant such that
∑N0

l=1 γt−1,l = 1. That is, the N0
weighted particles are the subset of the N particles accepted at iteration t − 1 (when
using δt−1) having generated summaries that produce distances that are also smaller
than δt. We used the letter γ to denote normalized weights associated to the subset
of N0 particles, rather than w, to avoid confusion. At iteration t, the olcm proposal is
qt(θ|θ∗) = N (θ∗,Σolcm

θ∗ ), where Σolcm
θ∗ =

∑N0
l=1 γt−1,l(θ̃t−1,l − θ∗)(θ̃t−1,l − θ∗)′, where ′

denotes transposition throughout our work. Accepted particles are then given unnormal-
ized weights w̃

(i)
t = π(θ(i)

t )/
∑N

j=1 w
(j)
t−1N (θ(i)

t ; θ(j)
t−1,Σolcm

θ(j) ). Note that we are required
to store the N distances ||sit−1 − sy|| accepted at iteration t− 1 to be able to determine
which indices i have distance smaller than the t-th threshold δt, i.e. ||sit−1 − sy|| < δt.
Evaluating Σolcm

θ∗ causes some non-negligible overhead in the computations, since it has
to be performed for every proposal parameter, and therefore sanity checks are required
at every proposal to ensure that it results in a positive definite covariance matrix, or
otherwise computer implementations will halt with an error. We postpone such discus-
sion in Section 3.5, where it is better placed, and introduce now our novel proposal
samplers.
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Proposal sampler Guided Family Global or local Algorithm Section
standard no Gaussian local mean, global cov SMC-ABC 2.2
olcm no Gaussian local mean, local cov SMC-ABC 2.2
blocked yes Gaussian global mean, global cov SIS-ABC 3.1
blockedopt yes Gaussian global mean, global cov SIS-ABC 3.2
hybrid yes Gaussian global mean, global cov SIS-ABC 3.3
cop-blocked yes Gaussian or t copula global mean, global cov SIS-ABC 3.4
cop-blockedopt yes Gaussian or t copula global mean, global cov SIS-ABC 3.4
cop-hybrid yes Gaussian or t copula global mean, global cov SIS-ABC 3.4
fullcond yes Gaussian local mean, global var SMC-ABC 3.5
fullcondopt yes Gaussian local mean, local var SMC-ABC 3.6

Table 1: Proposal samplers considered in this work, categorized according to whether
the sampler is guided by data or not, its distributional family, whether the sampler has
features that are specific for each particle (local) or common to all particles (global), the
type of algorithm employing the proposal sampler and the relevant section introducing
it. All listed samplers are novel, except for standard and olcm.

3 Guided sequential samplers
Here, we describe our main contributions to improve the efficiency of both SIS-ABC and
SMC-ABC samplers by constructing proposals that are conditional on observed sum-
maries sy, to guide the particles by using information provided by the data. In particular,
we create proposal samplers of type g(θ|sy) (when the entire vector parameter is pro-
posed in block) or even conditional proposals of type g(θk|θ−k, sy), where θk is the k-th
component of a dθ-dimensional vector parameter θ and θ−k = (θ1, . . . , θk−1, θk+1, . . . , θdθ

).
The starting idea behind the construction of these samplers is loosely inspired by Pic-
chini et al. (2023), where a guided Gaussian proposal is constructed for MCMC inference
using synthetic likelihoods (Wood, 2010; Price et al., 2018). This initial inspiration is
significantly expanded in multiple directions, e.g. by providing strategies to avoid the
“mode-seeking” behaviour of the basic guided proposals, by constructing the above
mentioned proposals of type g(θk|θ−k, sy) and by introducing non-Gaussian proposal
samplers using copulas with a variety of marginal structures, yielding an ABC method-
ology capable to tackle considerably challenging problems. To help the reader navigate
through the several proposals samplers introduced in this work, we classify them in
Table 1.

In Section 3.1, we consider a first approach for a guided Gaussian proposal func-
tion for SIS-ABC, whose covariance matrix is in some sense optimized in Section 3.2.
A hybrid approach combining the two is proposed in Section 3.3. Then, Section 3.4
generalizes the guided Gaussian approaches for SIS-ABC to copula-based proposals,
constructing a sampler directly for θ|sy instead of deriving it starting from a Gaus-
sian sampler g(θ, sy). Finally, in Section 3.5, we propose a guided Gaussian SMC-ABC
scheme, whose covariance matrix is then optimized in Section 3.6.

3.1 A first guided Gaussian SIS-ABC sampler
In Picchini et al. (2023), an MCMC proposal sampler was constructed to aid inference
via synthetic likelihoods (Wood, 2010, Price et al., 2018). There, the idea was to collect
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the several (say L) model-simulated summary statistics {si}Li=1 that were generated
at a given proposed parameter θ, average them to obtain s̄ =

∑L
i=1 s

i/L so that, by
appealing to the Central Limit Theorem, for L “large” enough, s̄ was approximately
Gaussian distributed. Picchini et al. (2023) then observed that if the joint (θ, s̄) is
approximately multivariate Gaussian, then a conditionally Gaussian g(θ|s = sy) can be
constructed and used as a proposal sampler.

Let us now set dθ = dim(θ), ds = dim(sy), d = dθ + ds and denote by (θ(i), s(i))
a d-dimensional particle that has been accepted at iteration t − 1 of SIS-ABC. As-
sume for a moment that (θ(i), s(i)) is a d-dimensional Gaussian distributed vector
(θ(i), s(i)) ∼ Nd(m,S). We stress that this assumption is made merely to construct
a proposal sampler, and does not extend to the actual distribution of (θ(i), s(i)). We set
a d-dimensional mean vector m ≡ (mθ,ms) and the d× d covariance matrix

S ≡
[

Sθ Sθs

Ssθ Ss

]
,

where Sθ is dθ × dθ, Ss is ds × ds, Sθs is dθ × ds and of course Ssθ ≡ S′
θs is ds × dθ.

Once all N accepted particles have been collected for iteration t − 1 of the SIS-ABC
sampler, we estimate m and S using the accepted (weighted) particles. That is, denote
by x

(i)
t−1 := (θ(i)

t−1, s
(i)
t−1) a d-dimensional particle accepted at iteration t − 1. By using

their normalized weights, we have the following estimated weighted mean and weighted
covariance matrix

m̂t−1 =
N∑
i=1

w
(i)
t−1x

(i)
t−1, Ŝt−1 = 1

(1 −
∑N

i=1 w
(i)
t−1

2
)

N∑
i=1

w
(i)
t−1(x

(i)
t−1−m̂t−1)(x(i)−m̂t−1)′

(3)
(snippets of vectorized code to efficiently compute (3) are reported in the Supplementary
Material D). Once m̂t−1 and Ŝt−1 are obtained, it is possible to extract the correspond-
ing entries m̂θ, m̂s and Ŝθ, Ŝs, Ŝsθ, Ŝθs, where we have disregarded the “t−1” iteration
subscript to simplify the notation. We can then use well known formulas for the con-
ditional distributions of a multivariate Gaussian, to obtain a proposal distribution for
iteration t given by gt(θ|sy) ≡ N (m̂θ|sy,t−1, Ŝθ|sy,t−1), with

m̂θ|sy,t−1 = m̂θ + Ŝθs(Ŝs)−1(sy − m̂s) (4)
Ŝθ|sy,t−1 = Ŝθ − Ŝθs(Ŝs)−1Ŝsθ, (5)

and weights (1) given by w̃
(i)
t = π(θ(i)

t )/N (m̂θ|sy,t−1, Ŝθ|sy,t−1), i = 1, . . . , N . Hence, a
parameter proposal for Algorithm 1 can be generated as θ∗ ∼ N (m̂θ|sy,t−1, Ŝθ|sy,t−1),
which has an explicit “guiding” term (sy − m̂s). We call gt(θ|sy) a “guided SIS-ABC
sampler”. To distinguish it from other guided SIS-ABC samplers we introduce later, this
one is named blocked, since all coordinates of θ∗ are proposed jointly, hence “in block”.

Note that the guiding term (sy − m̂s) becomes less and less relevant as m̂s ≈ sy,
which is supposed to happen when δ is small enough. Of course, a concern around the
efficacy of such sampler may arise if the joint (θ, s) is not approximately multivariate
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Gaussian. The case study in Sections 4.1 and 4.4 (and in Supplementary Material E and
H) have markedly non-Gaussian summary statistics, but our guided sampler behaves
well. However, an undesirable feature is that it may occasionally display “mode-seeking”
behaviour, i.e., it may rapidly approach high posterior density areas, quickly accepting
promising particles in the initial iterations, but it may ending up exploring mostly the
area around the posterior mode and not necessarily the tails of the targeted distribution.
We address this issue in the next section by tuning the covariance matrix of the sampler
while preserving its “guided” feature.

3.2 Guided Gaussian SIS-ABC sampler with optimal local
covariance

Proposal samplers can be designed according to several intuitions. For example, they
could be based on the similarity with the targeted density, as suggested by a small
Kullback-Leibler (KL) divergence while maximizing the acceptance probability as in
Filippi et al., 2013, or based on minimizing the variance of the importance weights
while maximizing the acceptance probability as in Alsing et al. (2018), or using guided
approaches as those outlined before. Here, we let the mean of a Gaussian sampler to
be the same as in (4), hence the proposal is guided by the observed summaries, but we
construct the proposal covariance matrix following a reasoning inspired by Filippi et al.
(2013) for SMC-ABC, and extended here to accommodate SIS-ABC.

For the “target” distribution denoted by q∗δt(θ
∗) = πδt(θ∗|sy), we wish to determine

a proposal qδt(θ∗) by minimizing the KL divergence KL(qδt , q∗δt) between its arguments,
where

KL(qδt , q∗δt) =
∫

q∗δt(θ
∗) log

q∗δt(θ
∗)

qδt(θ∗)
dθ∗.

In the context of SMC-ABC, which we discuss later in Section 3.6, Filippi et al. (2013)
mention that it is possible to consider a “multi-objective optimization” problem where,
in addition to minimize the KL divergence, the maximization of an “average acceptance
probability” is also carried out. By transposing their reasoning to our SIS-ABC context,
the multi-objective optimization is equivalent to maximizing the following quantity

Q(qt, δt, sy) =
∫

πδt(θ∗|sy) log qt(θ∗)dθ∗ (6)

with respect to qt. By considering qt(θ∗) ≡ N (m̂θ|sy,t−1,Σt) for unknown Σt and fixed
m̂θ|sy,t−1 defined as in (4), the resulting maximization in Σt leads to (details are in
Supplementary Material A)

Σt =
∫

πδt(θ∗|sy)(θ∗ − m̂θ|sy,t−1)′(θ∗ − m̂θ|sy,t−1)dθ∗. (7)

The latter integral can be approximated following the same reasoning for olcm, detailed
in the Supplementary Material A. Namely, we can consider the N particles accepted
at iteration t − 1 (which used a threshold δt−1) and select from those the N0 ≤ N
particles that produced a distance ||s − sy|| that is also smaller than δt, to obtain
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Σ̂t =
∑N0

l=1 γt−1,l(θ̃t−1,l − m̂θ|sy,t−1)(θ̃t−1,l − m̂θ|sy,t−1)′, with (θ̃, γ) defined as in (2).
We call blockedopt a SIS-ABC sampler with gt(θ|sy) ≡ N (m̂θ|sy,t−1, Σ̂t) as guided
proposal. Importantly, notice that unlike olcm, the covariance matrix Σ̂t is “global”,
which means that at each iteration only one covariance matrix needs to be computed
and used for all proposed particles. This relieves the computational budget from the
necessity to ensure (via Cholesky decomposition and in case of numerical issues, a
more expensive modified-Cholesky decomposition as in Higham, 1988) that the particle-
specific covariance matrix is positive definite for each proposed particle. Of course, there
is appeal in having a particle-specific “local” covariance matrix, and this is explored in
Section 3.5.

3.3 Hybrid guided Gaussian SIS-ABC sampler
We consider a further type of guided Gaussian SIS-ABC sampler, which we denote
hybrid, which is a by-product of the blocked and blockedopt strategies. At iteration
t = 1, the hybrid sampler proposes from the prior, as in all examined strategies. At
t = 2, it proposes using blocked for rapid convergence towards the modal region, while
for t > 2, it uses blockedopt to correct for possible mode-seeking behaviour.

3.4 Guided copula-based SIS-ABC samplers
The previously proposed guided Gaussian SIS-ABC samplers assume an underlying
Gaussian distribution for (θ, sy), which is then used to construct the proposal gt(θ|sy),
which follows a dθ-dimensional Gaussian distribution with a certain mean vector m∗ and
covariance matrix S∗ = (S∗

ij)di,j=1. This can be generalised by dropping the assumption
of Gaussianity on (θ, sy), making the samplers gt(θ|sy) more flexible, both in terms of
joint distribution and marginals. To do this, we use copulas, proposing what we call
cop-blocked, cop-blockedopt, cop-hybrid, the copula-based versions of blocked,
blockedopt and hybrid, respectively, with a few key differences though, as discussed
in Remarks 1 and 2 below. The idea of using copula modelling within ABC has been
proposed e.g. by Li et al. (2017), who use a Gaussian copula for approximating the ABC
posterior for a high-dimensional parameter space, and by An et al. (2020) for modelling
a high-dimensional summary statistic. Instead, we use (Gaussian and t) copulas for the
proposal sampler gt(θ|sy) (and not for the kernel for (θ, sy)).

Suppose that the dθ-dimensional random vector X = (X1, . . . , Xdθ
) has a joint

cumulative distribution function H and continuous marginals F1, . . . , Fd, i.e., X ∼
H(F1(x1), . . . , Fd(xdθ

)). Sklar’s theorem (Sklar, 1959) states that the joint distribution
H can be rewritten in terms of dθ uniform marginal distributions and a multivariate
copula function C : [0, 1]dθ → [0, 1] that describes the correlation structure between
them, i.e.

H(x1, . . . , xdθ
) = C(u1, . . . , udθ

) = C(F1(x1), . . . , Fdθ
(xdθ

)),

with uj = Fj(xj), j = 1, . . . , dθ. Hence, a copula is a multivariate distribution with
uniform marginals. Denoting by h, fj and c the densities of the joint distribution H,
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the marginal Fj and the copula C, respectively, we have

h(x1, . . . , xdθ
) = c(u1, . . . , udθ

)
dθ∏
i=1

fj(xj), j = 1, . . . , dθ, (8)

where c(u1, . . . , dθ) = ∂dθ

∂u1···∂udθ

C(U1, . . . , Udθ
). As copula families C, we consider the

Gaussian and the t copulas, corresponding on having the joint distribution H to be
a multivariate Gaussian and a Student’s t, respectively. While the Gaussian copula is
fully characterised by a correlation matrix R, the t copulas depend on both a corre-
lation matrix R and the degrees of freedom ν, a hyperparameter which we fix to five
(see details in Supplementary Material B). Both are members of the class of elliptical
copulas, which may also be considered (Embrechts et al., 2002). Other copula families
(e.g. Archimedean copulas) are available, but they do not allow for negative correlations
in dimensions larger than two. Vine copulas (Bedford and Cooke, 2002) may be used
to tackle this, but they are not immediate to construct, limiting their use in this con-
text. Notice that the correlation matrix of a multivariate distribution with a Gaussian
(or t) copula with correlation parameter R is, in general, not R, unless all marginals
are normal (or t-distributions with the same degrees of freedom than the t-copula), in
which case the Gaussian (or t) copula model coincides with a multivariate normal (or
t) distribution. This is because the covariance of (Xi, Xj) is not invariant for strictly
monotone functions, and does, thus, depend on the underlying marginals Fi, Fj , see
Hoeffding (1940) and Embrechts et al. (2002). For this reason, here we consider the
Kendall’s τ , a rank correlation which has the properties of being invariant under mono-
tone transformation, of depending only on the copulas (Embrechts et al., 2002) and
of being easier to compute analytically than the Spearman’s rho, another dependent
measure having similar properties. In particular, the Kendall’s τ of two random vari-
ables Xi, Xj with Gaussian or t copulas with correlation parameter Rij is given by
τij := τ(Xi, Xj) = 2/π arcsinRij . Hence, when choosing the copula and the underlying
marginals, we want to preserve the mean vector m∗, the variances S∗

ii, i = 1, . . . , dθ
and the Kendall’s tau dependencies of the guided Gaussian SIS-ABC samplers. To do
this, we derive the Kendall’s τ dependencies from the correlation parameter R, de-
rived from S∗, choosing the parameters of the underlying marginal distributions Fj

such that E[Xj ] = m∗
j and Var(Xj) = S∗

jj . Hence, a dθ-dimensional parameter proposal
θ∗ ∼ gt(θ|sy) with copula C, marginals F1, . . . , Fdθ

, mean vector m∗, variances S∗
ii and

Kendall’s tau rank correlations τij , i, j = 1 . . . , dθ, i 	= j for SIS-ABC can be generated
as follows:

1. Derive the parameters of the marginal distribution Fj such that E[Xj ] = m∗
j and

Var(Xj) = S∗
jj , j = 1, . . . , dθ.

2. Compute the correlation matrix R = (Rij)di,j=1 from the covariance matrix S∗ =
(S∗

ij)di,j=1, with entries

Rij = Cov(Xi, Xj)√
Var(Xi)Var(Xj)]

= 1√
S∗
iiS

∗
jj

S∗
ij .

3. Simulate (u1, . . . , udθ
) from the chosen (Gaussian or t) copula with correlation R.
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4. Set θ∗j := xj = F−1
j (uj) to obtain the desired parameter proposals with Kendall’s

tau τij = 2/π arcsinRij , i, j = 1, . . . , dθ, i 	= j.

For step 1, calculations linking the parameters of the chosen marginal distributions to
the marginal mean m∗

j and variance S∗
jj are reported in Supplementary Material C.

Note that step 4 is well defined thanks to the marginal distributions being continuous.
Finally, the proposal density needed to derive the weights of the ith particle (line 23 of
Algorithm 1) can be computed via (8), using the copula densities reported in Supple-
mentary Material B. As no information is available on θj |sy, we choose all underlying
marginal distributions Fj to be from the same family. Distinct families could be also
considered, as discussed in Remark 3 below. Here, as underlying marginal distributions
Fj , we choose the location-scale Student’s t (with ν degrees of freedom, see Supplemen-
tary Material C for more details), the logistic, the Gumbel, the Gaussian, the triangular
and the uniform distribution. The normal distribution is chosen to favour a comparison
with the corresponding guided Gaussian SIS-ABC samplers (when choosing a Gaussian
copula with the right setting, see Remark 2 below). The first three marginals (resp. last
two) are chosen as they have heavier (resp. lighter) tails than the Gaussian distribution,
allowing to sample less (resp. more) around their mean values. Moreover, the Gumbel
distribution is also chosen to evaluate the impact of (positive) skewness on the results,
as all other marginals are symmetric. We refer to the Supplementary Material C for an
extensive discussion and comparison of the marginals.

Remark 1. The guided Gaussian proposal samplers gt(θ|sy), derived in the previous
sections, are constructed under the assumption of (θ, sy) being Gaussian, thus requiring
also the distribution of the summary to be Gaussian, which may not always be true
(despite having a limited impact on the estimation procedure, as shown in Section 4).
Instead, the guided copula-based proposal sampler gt(θ|sy) is directly constructed on θ|sy,
without assumptions on the distribution of the summaries sy and/or of (θ, sy).

Remark 2. Sampling from a Gaussian copula with normal marginals and correlation
parameter R corresponds to sampling from a multivariate Gaussian proposal with corre-
lation matrix R (Embrechts et al., 2002). Hence, cop-blocked, cop-blockedopt and
cop-hybrid for the conditional sampler gt(θ|sy) with this setting coincide with blocked,
blockedopt and hybrid for θ|sy, respectively. However, even in this setting, the copula-
based distribution of (θ, sy) would differ from Nd(m,S), the joint Gaussian distribution
used to construct the guided Gaussian proposals, unless sy ∼ Nds(ms, Ss).

Remark 3. The guided copula-based SIS-ABC samplers introduce more flexibility than
the guided Gaussian ones, e.g. in the choice of the copula, the marginals (which may
belong to different distribution families or change across iterations, see the “mixed”
marginals introduced in Section 4) and their underlying parameters (e.g. the degrees of
freedom of the t copula or of the location-scale Student’s t marginals). In the simula-
tion studies considered here, the copula and marginal models are fixed in advance, with
the idea of investigating whether a particular combination of copula and marginals out-
performs the other consistently across the experiments. Moreover, it is worth stressing
that the marginal proposals are not for θj, for which some information may be available
(e.g. their support) and used in the choice of the marginals, but for θj |sy, for which
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less is known (e.g., the support will differ from that of θj). Hence, unless some prior
knowledge is assumed/known about θj |sy, we recommend using marginal distributions
assuming also negative values. Two alternative possibilities could be to perform a kind
of “regression adjustment” within each iteration, e.g. by fitting suitable marginals and
copula in the spirit of Chen and Gutmann, 2019, or run a non-parametric estimation
of the copula and the marginals. However, these two approaches would introduce some
extra computational costs though, which is why we do not consider them here.

3.5 Guided Gaussian SMC-ABC samplers
Here, we wish to make the proposal function gt more dependent on the local features of
important particles from the set obtained at iteration t− 1, as in standard SMC-ABC
proposal samplers. As previously discussed, choosing θ∗∗ ∼ N (θ∗, 2Σt−1) in step 18 of
Algorithm 2 as in Filippi et al. (2013) yields a particle-specific mean (local feature) and
a covariance matrix which is common to all particles (global feature). With reference to
Gaussian samplers, we can construct samplers where each proposed particle at iteration
t has its own specific mean and a global covariance structure and, additionally, be
conditional on observed summaries sy.

Constructing a guided and local SMC-ABC sampler is immediate given the reasoning
in Sections 3.1-3.3. Remember that we wish to perturb a sampled particle θ∗ to produce
a proposed θ∗∗ in step 18 of Algorithm 2. Once θ∗ has been sampled from the accepted
particles at iteration t − 1, we define as “augmented data” the vector (θ∗, sy), which
we want to use to produce θ∗∗. It is useful to imagine θ∗ as (θ∗k, θ∗−k) if we wish to
update one component at a time, using the notation established at the beginning of
Section 3, or as (θ∗k,l, θ∗−(k,l)) if we update a block of two components at a time, etc. In
Section 4.2, we consider an example where some components of θ are highly correlated
in the prior, and a sampler exploiting this fact dramatically helps producing an efficient
ABC algorithm. We illustrate this conditional approach by focusing on perturbing a
single component of θ, as the notation is easier to convey the message and extensions
to multiple components are immediate. Hence, here we focus on the augmented data
expressed as the column vector (θ∗k, θ∗−k, sy)′, for which we assume a joint multivariate
Gaussian distribution allowing us to design a “perturbation kernel” qt(θk|θ∗−k, sy). Our
goal is proposing for the k-th component of θ conditionally on the remaining dθ − 1
coordinates of θ∗ and the whole sy. This means that the sampler producing θ∗∗k does not
make use of the value of θ∗k, but the sampler producing θ∗∗k′ will make use of θ∗k (k′ 	= k).
Under the same assumptions of joint Gaussianity considered in Sections 3.1-3.3, we have
that qt(θk|θ∗−k, sy) is a Gaussian sampler, which we now construct.

Say that all N accepted d-dimensional particles of type (θ, s) have been obtained
for iteration t− 1. We now compute the weighted sample mean and weighed covariance
matrix as in (3), and from these we extract the following quantities

• m̂k: scalar element extracted from m̂t−1 and corresponding to component k of θ;

• Ŝk,−k: (d− 1)-dimensional row vector extracted from Ŝt−1 by considering the row
corresponding to θk and retaining all columns except that corresponding to θk.
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• Ŝ−k,−k: (d− 1) × (d− 1)-dimensional matrix extracted from Ŝt−1 by eliminating
the row and column corresponding to θk.

•
[
θ∗−k

sy

]
: (d − 1)-dimensional column vector appending sy to the particle θ∗−k,

where the latter is the θ∗ randomly picked in step 17 of Algorithm 2 with its k-th
component eliminated.

•
[
m̂−k

m̂s

]
: (d−1)-dimensional column vector concatenating the dθ−1 (weighted) sam-

ple means of the particles for θ, except the k-th component, and the ds (weighted)
sample means of the corresponding summary statistics.

• σ̂2
k: scalar value found in Ŝt−1 correspondingly to the row and column entry for

θk.

• Ŝ−k,k: (d−1)-dimensional column vector extracted from Ŝt−1 by retaining all rows
except that corresponding to θk, and considering only the column corresponding
to θk.

Then, upon completion of iteration t− 1, we have

m̂∗
k|sy,t−1 = m̂k + Ŝk,−k(Ŝ−k,−k)−1

([
θ∗−k

sy

]
−
[
m̂−k

m̂s

])
, k = 1, . . . , dθ (9)

σ̂2
k|sy,t−1 = σ̂2

k − Ŝk,−k(Ŝ−k,−k)−1Ŝ−k,k, k = 1, . . . , dθ. (10)

The asterisk in m̂∗
k|sy,t−1 is meant to emphasize that this quantity depends on the spe-

cific θ∗, unlike the variance (10) which is common to all perturbed particles. That is, the
sampler has “local” mean features but global covariance, which can also be made local as
described in Section 3.6. We define the perturbation kernel at iteration t for component
k as θ∗∗k ∼ N (m̂∗

k|sy,t−1, σ̂
2
k|sy,t−1). By looping through (9)–(10) and then proposing

θ∗∗k ∼ N (m̂∗
k|sy,t−1, σ̂

2
k|sy,t−1) for all k = 1, . . . , dθ, we form θ∗∗ = (θ∗∗1 , . . . , θ∗∗dθ

).

If we follow the procedure above, then the qt(θ|θ∗) consists in the product of dθ
1-dimensional Gaussian samplers each of type qt(θk|θ∗−k, sy) = N (m̂∗

k|sy,t−1, σ̂
2
k|sy,t−1).

While we perturb each component of θ∗ separately from the others, our approach is much
different from the component-wise approach of Beaumont et al. (2009), since correlation
between the dimensions of θ is taken into account and, additionally, we condition on sy.
Once N particles {θ(i)}Ni=1 have been accepted, the importance weight (1) is given by

w̃
(i)
t = π(θ(i)

t )/
{ N∑

j=1
w

(j)
t−1

dθ∏
k=1

N (θ(i)
t,k; m̂

∗(j)
k|sy,t−1, σ̂

2
k|sy,t−1)

}
, i = 1, . . . , N,

where θ
(i)
t,k is the k-th component of the accepted θ

(i)
t and m̂

∗(j)
k|sy,t−1 is the guided mean

(9) obtained from every sampled θ∗(j) (j = 1, . . . , N)

m̂
∗(j)
k|sy,t−1 = m̂k + Ŝk,−k(Ŝ−k,−k)−1

([
θ
∗(j)
−k

sy

]
−
[
m̂−k

m̂s

])
, j = 1, . . . , N. (11)
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When using the SMC-ABC in Algorithm 2 with guided sampler qt(θk|θ∗−k, sy) =

N (m̂∗
k|sy,t−1, σ̂

2
k|sy,t−1), we call the resulting procedure fullcond, since each coordi-

nate θ∗∗k is “fully conditional” on all the coordinates of θ∗ (except for θ∗k). The scheme
outlined is just an example, and the procedure opens up the possibility to jointly sample
“blocks” of elements of θ conditionally on the remaining components and sy. This turns
out to be particularly useful if it is known that some parameter components are highly
correlated in the posterior, as proposing those correlated components in block can ease
exploration of the posterior surface. For example, in Section 4.1 we have two highly cor-
related parameters where proposing from qt(θk|θ∗−k, sy) is largely suboptimal. However,
in Section 4.2 we exploit a-priori knowledge of the high correlation between the first two
components (of a five dimensional vector θ), and proposing from qt(θ∗∗1 , θ∗∗2 |θ∗−{1,2}, sy)
results in a very efficient sampler whose structure is in the Supplementary Material
F.1. Similarly to the guided SIS-ABC blocked sampler, the constructed SMC-ABC
fullcond may suffer from “mode seeking” behaviour. In the next section, we address
this issue and construct a version that uses an “optimal local” covariance matrix.

3.6 Guided SMC-ABC samplers with optimal local covariance

We now follow a similar route to that pursued in Section 3.2 when optimizing the
covariance matrix of a guided SIS-ABC sampler, focusing now on improving the SMC-
ABC fullcond proposal. At iteration t, denote by θ∗∗ the perturbed version of some
θ∗ obtained from the particles accepted at t − 1 according to θ∗∗ ∼ qt(·|θ∗). We can
imagine accepting the couple (θ∗∗, θ∗) (even though of course we are only interested in
θ∗∗) if and only if ||s∗∗−sy|| < δt, where s∗∗ ∼ p(s|θ∗∗). A joint proposal distribution for
(θ∗∗, θ∗) should somehow resemble the target product distribution induced by sampling
θ∗∗ and θ∗ independently from πδt(θ|sy) and πδt−1(θ|sy), respectively, and whose density
is πδt(θ|sy)πδt−1(θ|sy).

The approach detailed in Filippi et al. (2013) considers the “target product” distri-
bution denoted by q∗δt−1,δt

(θ∗, θ∗∗) = πδt(θ∗∗|sy)πδt−1(θ∗|sy) and determines a proposal
qδt−1,δt(θ∗, θ∗∗) by minimizing the KL divergence KL(qδt−1,δt , q

∗
δt−1,δt

) between its ar-
guments, where

KL(qδt−1,δt , q
∗
δt−1,δt) =

∫
q∗δt−1,δt(θ

∗, θ∗∗) log
q∗δt−1,δt

(θ∗, θ∗∗)
qδt−1,δt(θ∗, θ∗∗)

dθ∗dθ∗∗.

This time, the multi-objective criterion to optimize is equivalent to maximizing the
following Q

Q(qt, δt−1, δt, sy) =
∫

πδt(θ∗∗|sy)πδt−1(θ∗|sy) log qt(θ∗∗|θ∗)dθ∗dθ∗∗ (12)

with respect to qt. The above is useful if we want to obtain a proposal sampler that has
“global properties”, that is a sampler that is not specific for a given θ∗, and in fact the
latter is considered as a variable in the integrands for both the KL and the Q quantities
above, so that they result independent of θ∗ (and θ∗∗) since it is integrated out. Instead,
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here we want to construct a sampler which is optimal “locally” for θ∗, optimizing qt
with respect to an unknown variance that is specific to the sampled θ∗ instead of being
global for all particles. When looking at the guided SMC-ABC sampler outlined in
Section 3.5, we have that qt(θ∗∗|θ∗, sy) ≡

∏dθ

k=1 N (m̂∗
k|sy,t−1, σ

∗2

k ) with local means (9)
and unknown σ∗

k which we wish to maximize Q for. As the particle θ∗ entering in (9) as
θ∗−k is considered fixed, (12) simplifies to Q(qt, δt, sy) =

∫
πδt(θ∗∗|sy) log qt(θ∗∗|θ∗)dθ∗∗

which, optimized with respect to qt, yields (see details in Supplementary Material A)

σ∗2

k =
∫

πδt(θ∗∗k |sy)(θ∗∗k − m̂∗
k|sy,t−1)2dθ∗∗k . (13)

The latter can be approximated via standard Monte Carlo. In fact, even though we
only have N samples obtained at iteration t − 1 (and not at iteration t since these
have not been sampled yet), we can use the same argument as for olcm. That is, from
the N particles sampled and accepted at iteration t − 1 using δt−1, we subselect the
N0 particles, denoted by θ̃t−1,l, whose distances are also smaller than δt, having then
normalized weights γt−1,l. These N0 particles are then sampled from πδt(θk|sy) and
we can approximate σ∗2

k with σ̂∗2

k =
∑N0

l=1 γt−1,l(θ̃t−1,k,l − m̂∗
k|sy,t−1)2, k = 1, . . . , dθ,

with θ̃t−1,k,l being the k-th component of θ̃t−1,l. Hence, we have constructed a guided
SMC-ABC sampler having “local” features for both the mean and the variance, since
they both depend on θ∗, unlike fullcond in Section 3.5 where the variance is global. At
iteration t, this samples from qt(θ∗∗|θ∗, sy) ≡

∏dθ

k=1 N (m̂∗
k|sy,t−1, σ̂

∗2

k ), with normalized
weights given by

w̃
(i)
t = π(θ(i)

t )/
{ N∑

j=1
w

(j)
t−1

dθ∏
k=1

N (θ(i)
t,k; m̂
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N0∑
l=1

γt−1,l(θ̃t−1,k,l − m̂
∗(j)
k|sy,t−1)

2, j = 1, . . . , N ,

k = 1, . . . , dθ. We call fullcondopt the sampler just outlined. An exciting display of
a particular version of it is in Section 4.2, where the sampler successfully exploits the
fact that two components (θ1, θ2) of a 5-dimensional parameter θ are highly correlated
in the prior. Details on this specific sampler are in Supplementary Material F.1.

4 Examples
In this section, we consider several experiments to assess the performances of our guided
proposals (cf. Section 3) against those of the non-guided standard and olcm proposal
samplers (cf. Section 2.2). We refer to Table 1 for an outline/classification of the pro-
posal samplers considered here. The cop-blocked, cop-blockedopt and cop-hybrid
approaches use either Gaussian or t copulas, with triangular, location-scale Student’s t
(with five degrees of freedom), logistic, Gumbel, uniform or normal marginal distribu-
tions, as discussed in Section 3.4 and Supplementary Material C. Moreover, a “mixed”
case with uniform marginals at iteration t = 2 and triangular marginals from t > 2 is also
considered for the copula-based SIS-ABC samplers to tackle the possible mode-seeking
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behaviour of the samplers with uniform marginals (see Sections 4.1 and 4.2). Unless dif-
ferently specified, we launch ten independent runs for each method, fixing the number
of particles to N = 1, 000 (except in Section 4.3, where N = 10, 000). We compare the
algorithms at either prefixed (cf. Sections 4.1 and 4.4) or online updated δt values (cf.
Sections 4.2, 4.3, 4.5 and 4.6), focusing on the quality of the posterior inference, the
acceptance rates and the running (wallclock) times. When thresholds are automatically
updated, we use the following strategy: set an initial threshold δ1 < ∞, then, for t > 1,
δt is automatically chosen as a percentile of all the ABC distances ρt−1 = ||s(z) − sy||
produced at iteration t− 1 (including distances from rejected proposals), say the ψ-th
percentile. However, occasionally, this may not be enough to produce monotonously
decreasing δ’s. We adjust this as follows: call δ̃t the ψ-th percentile of ρt−1, then we
set δt := δ̃t if δ̃t < δt−1, otherwise δt := 0.95δt−1. All our novel samplers collect, at
each iteration, the accepted summaries and reuse them to create our guided proposal
samplers. As such, we found that it is best to not allow the initial threshold δ1 to be
too large (e.g. neither δ1 = ∞ nor a δ1 that accepts almost all proposals), as this would
too liberally accept summary statistics that are extremely different from observations.
This would allow very poor realizations from the forward model to contribute to the
covariance matrices of the summary statistics, thus resulting in a poor initial sampler.

4.1 Two-moons model with bimodal posterior and non-Gaussian
summaries

As some of the novel proposal samplers are multivariate Gaussian distributions de-
rived by exploiting the multivariate Gaussianity of the pair (θ, s) as in Section 3.1, it
is of interest to assess their performance when such assumption is not met. For this
reason, here we consider the two-moons model, a bimodal two-dimensional model char-
acterised by highly non-Gaussian summary statistics (cf. Supplementary Material E)
and a crescent-shaped posterior (under some parameter setting). We consider the same
setup as in Greenberg et al. (2019) and Wiqvist et al. (2021) for simulation-based infer-
ence. We refer to the Supplementary Material E for details on the generative model, the
priors, and the prefixed values of δt. We assume observed data y = (0, 0) and consider
the identity function as summary statistics function, i.e. S(z) = z. Here exact posterior
inference via MCMC is possible, and therefore we use it as a benchmark. First, we ob-
tain 1,000 MCMC posterior draws via the Python simulator1 associated to Lueckmann
et al. (2021). Then, we compute the order-1 Wasserstein distances (Sommerfeld and
Munk, 2018) between each of the ABC posteriors and the MCMC posterior using the
R package transport (Schuhmacher et al., 2020). The medians of the log-Wasserstein
distances across the ten runs are reported in Figure 1 (quartiles of these distances are
not shown to ease the reading of the plot, but the variability across the runs is very
small). Interestingly, the guided blocked and cop-blocked approaches have the small-
est Wasserstein distances during the first five iterations, that is when approaching the
high-posterior probability region. At smaller values of δt (and thus larger iterations),
when more precise local information is needed, the methods perform similarly, except

1The Python code is available at https://github.com/sbi-benchmark/sbibm/tree/main/sbibm/
tasks/two_moons.

https://github.com/sbi-benchmark/sbibm/tree/main/sbibm/tasks/two_moons
https://github.com/sbi-benchmark/sbibm/tree/main/sbibm/tasks/two_moons
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Figure 1: Two-moons model: median log-Wasserstein distances between the “ex-
act”(MCMC) posterior and the ABC posteriors obtained via the guided or non-guided
samplers across ten independent estimations. Panel A: non-copula-based methods, both
guided and non-guided. Panel B: cop-blocked; Panel C: cop-blockedopt; Panel D:
cop-hybrid. The copula-based methods are derived using either Gaussian (solid lines)
or t copulas (dot-dashed lines) for different marginals, as described in the legend.

at the smallest δt, where the non-guided standard and olcm display slightly larger dis-
tances. The different types of copulas and marginal distributions yield similar results,
except for the Gaussian cop-blocked (and t cop-blocked, figure not shown) with
uniform marginals, which performed poorly in most of the runs, with particles sampled
from the ABC posterior covering only a sub-region of only one of the two moons (see
Figure 2, first run) and both moons only in few attempts (see Figure 2, ninth run), which
explains the higher log-Wasserstein distances in Figure 1, panel B. This is tackled when
considering mixed marginals, which successfully target both moons and have similar
performances as the samplers with triangular marginals (see Figure 1, Panel B, brown
line). The Gaussian cop-blocked with Gumbel marginals performed similarly bad in
only one of the runs (see Figure 2, seventh run), with this happening more often for the
t cop-blocked proposal, which explains the higher log-Wasserstein distances (Figure 1,
panel B). For these marginals, the performance (measured by the log-Wasserstein) can
be improved (resp. decreased) by choosing t-copulas with higher (resp. smaller) degrees
of freedom (e.g. ν = 10 vs 3). Similar results and conclusions hold for the copula-based
samplers with location-scale Student’s t marginals with degrees of freedom ν (results not
shown), while other marginals are not affected by this (results not shown). Throughout
this work, we choose ν = 5, as choosing ν = 10 would lead to samplers closer to the
Gaussian copulas/Gaussian marginals, with results very similar to those samplers.

Acceptance rates are reported in Figure 3, and appear very stable across the ten runs,
except for cop-blocked with uniform marginals. As also observed in Filippi et al. (2013),
olcm is superior to standard in terms of acceptance rate, but both are outperformed
across all iterations by all our novel guided methods except fullcondopt which is
better than standard but slightly worse than olcm. Importantly, differences between
the acceptance rates are large in early iterations, which is where the samples are still very
dispersed in the posterior surface. Our methods are of great help in this case, as we wish
to spend the least time possible to rule out initial “bad” particles, which is especially
relevant for models that are computationally intensive to simulate. When we consider
the wallclock running times, Figure 4 reveals that olcm requires way more time than
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Figure 2: Two-moons model: 1,000 MCMC draws from the “exact”(MCMC) posterior
(brown) and from the ABC posteriors obtained using the Gaussian-cop-blocked sam-
pler with Gumbel marginals (purple, run number 7) and uniform marginals from run
number 1 (grey) and 9 (orange). The 1,000 ABC draws obtained from copulas with
uniform marginals cover the whole true posterior region only in some runs (here run
9), targeting a small sub-region of one of the two moons in most of the cases (here the
first run), while those from the Gumbel marginals cover a larger sub-region of one of
the two moons only in one run, successfully covering both moons in the other runs.

Figure 3: Two-moons model: median acceptance rates and error bars with
first and third quartile across ten independent runs at each iteration.
Panel A: Non-copula based methods, both guided and non-guided; Panel
B: cop-blocked; Panel C: cop-blockedopt; Panel D: cop-hybrid. The
copula-based methods are derived using either Gaussian (G, solid lines)
or t copulas (dot-dashed lines) for different marginals, as described in the legend.

any guided method to accept a particle (without improving the final inference though),
and the guided fullcond, block, blockedopt and hybrid methods are the fastest in
accepting particles. Overall, on our desktop machine (Intel Core i7-7700 CPU 3.60GHz
32 GB RAM) and without using any parallelization, the inference across the ten runs
was completed in 5.5 minutes (with blocked), 5.4 minutes (blockedopt), 5.7 minutes
(hybrid), 4.8 minutes (fullcond), 17.7 minutes (fullcondopt), 38.7 minutes (olcm)
and 23.6 minutes (standard). These are major time-differences given that this model
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Figure 4: Two-moons model: median number of seconds required to accept a particle
and error bars with first and third quartile across ten independent runs at each itera-
tion. Panel A: Non-copula based methods, both guided and non-guided; Panel B: cop-
blocked; Panel C: cop-blockedopt; Panel D: cop-hybrid. The copula-based methods
are derived using either Gaussian (G, solid lines) or t (dot-dashed lines) copulas for
different marginals, as described in the legend.

is particularly simple to simulate. Copula methods are intrinsically slower in simulating
proposals due to the more involved construction of a generic copula sampler and the less
optimized numerical libraries compared to those implementing multivariate Gaussian
samplers, independently on whether the codes are run in, say, R or Matlab (e.g. the
Gaussian-cop-blocked, Gaussian-cop-blockedopt and Gaussian-cop-hybrid with
normal marginals take 8.1, 11.4 and 9.4 minutes, instead of 5.5, 5.4 and 5.7 minutes
of the corresponding blocked, blockedopt and hybrid). Since the acceptance rates of
the guided-copula samplers are similar to those of the guided Gaussian samplers, the
wallclock times of the former will become lower than the alternative non-guided samplers
should the implementation of the R/Matlab copula built-in routines be improved (which
is outside the scope of this work).

4.2 Twisted-prior model with an highly correlated posterior
We now consider a model with a challenging posterior characterised by a strong correla-
tion between some of the parameters. This case study is particularly interesting, as the
likelihood only provides location information about the unknown parameter while the
dependence structure in the posterior comes mostly from the prior. For this reason, the
posterior dependence changes direction depending on whether the likelihood locates the
posterior in the left or right tail of the prior (see Nott et al., 2018 for a graphical illustra-
tion). This case study was analysed in an ABC context in Li et al. (2017). The model
assumes observations y = (y1, . . . , ydθ

) drawn from a dθ-dimensional Gaussian y ∼
N (θ,Ψ), with θ = (θ1, . . . , θdθ

) and diagonal covariance matrix Ψ = diag(σ0, . . . , σ0).
The prior is the “twisted-normal” prior of Haario et al. (1999), with density function

proportional to π(θ) ∝ exp
{
−θ2

1/200− (θ2 − bθ2
1 +100b)2/2−1{dθ>2}

∑dθ

j=3 θ
2
j

}
, where

1B denotes the indicator function of the set B. This prior is essentially a product of
independent Gaussian distributions with the exception that the component for (θ1, θ2)
is modified to produce a “banana shape”, with the strength of the bivariate dependence
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Figure 5: Twisted model: median log-Wasserstein distances between the “exact” poste-
rior (MCMC) and the ABC posteriors across ten independent runs. Panel A: non-copula
based methods, both guided (fullcondopt with (θ1, θ2) blocked) and non-guided (olcm,
standard); Panels B-H: guided Gaussian copula-based methods with triangular (B),
uniform (C), “mixed” (D), normal (E), location-scale Student’s t (F), logistic (G) and
Gumbel (H) marginals. The dashed lines mark a log-distance value of -0.5 (an arbitrary
value only meant to ease eye-comparisons). Some runs are shorter than others depending
on how many iterations t it took to reach a value of δt smaller than 0.25. The results for
the t copula-based samplers are almost indistinguishable to whose based on Gaussian
copulas, and are thus not reported.

determined by the parameter b. Simulation from π(θ) is achieved by first drawing θ from
a dθ-dimensional multivariate Gaussian as θ ∼ N (0, A), where A = diag(100, 1, . . . , 1),
and then placing the value θ2 + bθ2

1 − 100b in the slot for θ2. We consider a value for
b that induces a strong correlation in the prior between the first two components of
θ. Specifically, we use the same setup as Li et al. (2017), namely σ0 = 1, b = 0.1 and
dθ = 5, i.e. both yobs and θ have length five, with observations given by the vector
yobs = (10, 0, 0, 0, 0). We take the identity function as summary statistic, i.e. S(y) = y,
set an initial δ1 = 50 and let δt automatically decrease across iterations by taking ψ = 1
(first percentile of the distances), as described at the beginning of Section 4, until the
updated δ value gets smaller than 0.25, when the inference is then stopped. Low val-
ues of the ESS for some of the guided-methods (see the Supplementary Material F.2)
are responsible for a larger variability between different runs, as in this case only few
particles are resampled at the last iteration, and these appear to differ between runs.
Instead, the ESS of the guided SMC-ABC fullcondoptblocked (Panel A), the guided
SIS-ABC cop-blocked with triangular (Panel B) or mixed marginals (Panel D), or the
guided-copulas with uniform marginals (Panel C) are higher than the non-guided ones
(see the Supplementary Material F.2), being then less sensible to variability across in-
dependent runs. However, the distances obtained from marginal uniforms increase with
the iterations as the consequence of the method becoming somehow overconfident, as
illustrated in the Supplementary Material F.2, where the contour plots of the ABC
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Figure 6: Schematic representation of the hierarchical g-and-k model.

posteriors at the last iteration of (θ1, θ2) are reported. As for the two-moons study, this
can be solved by considering mixed marginals (Panel D). Similar increasing distances
happen also to fullcondoptblocked. Deriving a “sanity check”to prevent this deterio-
ration in the inference performance, while of interest, is out of the scope of this work.
However, a possible suggestion would be to stop the methods once the acceptance rate
becomes lower than 1.5% for two consecutive iterations (similarly to Del Moral et al.,
2012), as it is unlikely that the inference will improve while the computational cost will
increase. Additional results using this stopping criterion are in the Supplementary Mate-
rial F.2, showing, indeed, an improved inference. Among all methods, for this case study
we recommend using cop-blocked with either mixed or triangular marginals, as they
have the merits of being robust across several runs and, more importantly, having small
log-Wasserstein distances starting from as little as two or three iterations, respectively,
with the mixed marginals having also higher acceptance rates at iteration two.

4.3 Hierarchical g-and-k model with high-dimensional summaries
We now consider a high-dimensional model from Clarté et al. (2021). This is a hierar-
chical version of the g-and-k model, with the latter being often used as a toy case study
in simulation-based inference (e.g. Fearnhead and Prangle, 2012), since its probability
density function is unavailable in closed-form but it is possible to simulate from its
quantile function. The g-and-k distribution is used to model non-standard data through
five parameters θ = (A,B, g, k, c), though in practice c is often fixed to 0.8 (Prangle,
2020), as we do here. Details about simulating x ∼ gk(A,B, g, k) from a g-and-k distri-
bution are in the Supplementary Material G. Same as Clarté et al. (2021), we assume
to have observations xij (i = 1, . . . , n, j = 1, . . . , J) sampled from a hierarchical g-and-k
model, where each J-dimensional vector xi = (xi1, . . . , xiJ) is characterised by its own
parameter Ai, while (B, g, k) are common to all n units and are assumed known. We
assume Ai ∼ N (α, 1) for α unknown and xij ∼ gk(Ai, B, g, k), see Figure 6. We also
assume α ∼ Unif(−10, 10) and, ultimately, we infer θ = (α,A1, . . . , An). Here, we gener-
ate data with n = 20 and J = 1, 000 by using (B, g, k, α) = (0.192, 0.622, 0.438, 5.707).
Same as Clarté et al. (2021), summary statistics for xi are the vector of nine quantiles
quant(xi, l/8) (l = 0, 1, . . . , 8), where quant(x, p) is the p-th quantile of sample x. This
setting leads to a challenging inference problem for ABC, as the vector θ to infer is
21-dimensional and summary statistics are a vector of length 9n = 180.
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Since an exact posterior is not available here, we obtain 1,000 posterior samples
from the ABC-Gibbs sampler2 of Clarté et al. (2021) to produce a “reference poste-
rior”, as this method is designed (and thus especially suited) for hierarchical models.
Here, our focus is on comparing the performance (with respect to the reference ABC-
Gibbs) and running times of N = 104 draws sampled from our proposed guided hybrid
and cop-hybrid SIS-ABC versus the SMC-ABC olcm and standard. For sequential
ABC methods, we set an initial δ1 = 50 and let δt automatically decrease across itera-
tions as described at the beginning of Section 4 by taking ψ = 25 (25-th percentile of all
simulated distances), stopping the methods as soon as the updated δ value gets smaller
than 0.62. However, most methods did not manage to reach this value in reasonable
time and had to be halted, as the number of seconds required to accept a particle be-
came rapidly larger than that of hybrid, which succeeds in drastically decreasing the
threshold δt at iteration 3 compared to the non-guided approaches, see the Supplemen-
tary Material G. In terms of running times, the non-guided standard was very slow,
with 14.5 million model simulations (for a single run) to attain a threshold around 2.14
in 42 hours (at iteration t = 26). Moreover, standard resulted in quite uninformative
marginal posteriors for the Ai parameters, see Figure 7 (for ease of display, we only re-
port the ABC posteriors of α and A1, . . . , A5). Hence, not much is being learned except
for α, despite the large number of simulations. On the contrary, hybrid locates the high
posterior mass region with higher precision and much more rapidly. In each of the ten
runs, hybrid reached δ = 0.62 with 9 · 105 − 1 · 106 model simulations in 2–3 hours, a
speedup of at least fourteen times compared to standard. In fact, the total speedup is
likely to be much larger, as we do not know how longer standard should have run to
reach satisfying inference. Notice that, for this example, the guided hybrid is plagued
by a very small ESS (see the Supplementary Material G), so the posterior variability is
different between runs. A possibility to tackle this may be to incorporate guided pro-
posal samplers into the SMC-ABC of Del Moral et al. (2012) (or vice versa), which is
designed to progressively, albeit slowly, reduce δ while maintaining a reasonably high
ESS value. Doing this would, on the one hand, open some theoretical questions (e.g.
whether the resulting proposal kernel satisfies the detailed balance equation) and, on
the other hand, introduce a MCMC step which would modify all weights, something
which goes beyond the scope of this work. Note however that, despite the low ESS
in this example, the bulk of the posteriors resulting from hybrid resembles that from
the ABC-Gibbs method. The non-guided olcm yields more satisfactory results than
standard (see the Supplementary Material G), but the corresponding threshold value
after 1 million model simulations was still δ = 1.87, so it was still fairly spread compared
to hybrid. Moreover, olcm took about 55 hours to reach δ = 0.70 compared to about
2–3 hours for hybrid to reach δ = 0.62, with a median speedup of 20 times. ABC-Gibbs
was the fastest one (with a running time of 30 minutes), which is not surprising, as that
scheme is especially suited for hierarchical models.

2We appropriately modified the code at https://github.com/GClarte/ABCG to work with our data
and model settings.

https://github.com/GClarte/ABCG
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Figure 7: Hierarchical g-and-k model: posteriors displayed only for
(α,A1, . . . , A5), using: (a) standard at iteration t = 26 and δ = 2.14
after 14.5 · 106 model simulations; (b) five inference runs of hybrid,
all reaching δ = 0.62 in approximately 106 model simulations per run. Dashed lines are
posteriors from ABC-Gibbs. Red vertical lines mark ground-truth values.

4.4 Recruitment boom-and-bust model with highly skewed
summaries

We now challenge our guided proposals samplers, whose non-copula (more precisely,
non-t-copula) approaches have been constructed assuming joint normality of the par-
ticle pairs (θ, s), on another example characterised by highly non-Gaussian summary
statistics, namely, the recruitment boom-and-bust model. This is a stochastic discrete
time model which may be used to describe the fluctuation of population sizes over time.
The model is characterised by four parameters θ = (r, κ, α, β), with small values of β (as
used here to generate our data) giving rise to highly non-Gaussian summary statistics.
This case study, which we fully describe and analyze in the Supplementary Material
H, was also considered in Fasiolo et al. (2018), An et al. (2020) and Picchini et al.
(2023) in the context of MCMC via synthetic likelihood, to test how that methodology,
constructed under approximately Gaussian distributed summary statistics, performed.
As a reference gold-standard posterior is unavailable, here we compare guided and non-
guided ABC approaches with the robustified semiparametric (Bayesian) synthetic like-
lihood approach of An et al. (2020), denoted semiBSL. Note that this case study uses
twelve summary statistics, three times as many as the number of parameters to infer,
a setting where ABC is expected to struggle with its curse-of-dimensionality. In fact,
the ABC posteriors are more spread than the posterior returned by semiBSL, which
concentrates around the true parameter values thanks to its (semi)parametric nature.
Among our proposed approaches, guided methods without “optimised” covariances oc-
casionally appear mode-seeking, as discussed and observed elsewhere. However, some
of the copula-methods (notably Gaussian copulas with triangular marginals) behave
quite similarly to semiBSL. More generally, guided approaches show higher acceptance
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rates, similar (if not better) performances and quicker runtimes than the considered
traditional non-guided ABC approaches.

4.5 Lotka-Volterra
We now test our guided proposals on a case-study which is often considered in the
likelihood-free inference literature (see for example Owen et al., 2015a,b), namely the
Lotka-Volterra model, a process (here expressed as a continuous time Markov jump
process) used in population dynamics and systems biology to describe the interactions
between species and chemical components, respectively. In the chosen formulation, the
model is characterised by three reactions and three parameters, as detailed in Supple-
mentary Section I. There we also report all inferential results obtained when comparing
our guided method blokedopt with the best non-guided method olcm on 10 indepen-
dent runs. Not only blockedopt had higher acceptance rates than olcm in most of
the iterations and run, with the latter requiring approximately twice as many model
simulations than blockedopt and a total three hours longer runtime (12.8h with olcm
vs 9.4h with blockedopt), but led to smaller Wasserstein distances (with respect to a
reference posterior) and thus more accurate inference than olcm.

4.6 Cell motility and proliferation with high-dimensional summaries
Finally, we consider a simulated, yet realistic, study of cell movements characterised
by high dimensional summary statistics, a well-known challenge for ABC. We initially
considered 145 summary statistics, then 289 and finally 433. Model details and inferen-
tial results are reported in the Supplementary Material J. While our proposed methods
have not been designed to specifically deal with high-dimensional summary statistics (as
they would require the inversion of high-dimensional covariance matrices of summary
statistics), it is still interesting to test their performance with such feature. The main
take away is that guided and non-guided SMC-ABC are able to deal with such large
dimensionalities, whereas for summaries of size 289 (and larger), the Bayesian synthetic
likelihood MCMC sampler of Price et al. (2018) (the original version, we did not con-
sider more recent developments) was unable to mix even for starting parameters set
at the ground truth values. With guided and non-guided SMC-ABC, we managed to
perform inference using summaries with up to dimension 433, with the former requiring
many fewer model simulations (when using 145 summaries, we required 117,496 model
calls with our guided hybrid with Gaussian proposal, versus the 132,963 of non-guided
olcm; when using 433 summaries, we required 213,984 model calls for hybrid vs 241,57
for olcm) and a lower running time than the latter (in particular, for a single run, 6.1
vs 8.1 minutes with 145 summaries and 25.2 vs 32.4 minutes with 433 summaries).

5 Discussion
We introduced a range of multivariate Gaussian and copula-based (both Gaussian and t
copulas, with six considered distributions of the marginals of the copula) proposal sam-
plers to accelerate inference when using sequential ABC methods, notably sequential
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importance sampling (SIS-ABC) and sequential Monte Carlo (SMC-ABC). The accel-
eration is implied by the construction of proposal samplers that are made conditional to
the summary statistics of the data (which is why we called them “guided”), such that
the proposed draws rapidly converge to the bulk of the posterior distribution. We chal-
lenged our samplers by considering posteriors with multimodal surfaces (two-moons,
Section 4.1), highly non-Gaussian summary statistics (two-moons, Section 4.1 and re-
cruitment boom-and-bust, Section 4.4), high dimensional parameter space (hierarchical
g-and-k, Section 4.3), high dimensional summaries with hundreds of components (hier-
archical g-and-k, Section 4.3 and cell motility model, Section 4.6), and highly correlated
posteriors (twisted model, Section 4.2). In all these case studies, on the one hand, our
methods obtained satisfactory ABC inference, similar, if not better, to non-guided se-
quential ABC schemes, in particular compared to the most commonly implemented
proposal sampler (found in all the most used ABC software packages and papers con-
sidering SMC-ABC), which in fact we named standard (Beaumont et al., 2009, but we
also extensively compared with the olcm sampler of Filippi et al., 2013). On the other
hand, thanks to being guided, they returned inference much more rapidly than the non-
guided proposal samplers. In particular, for a fast to simulate generative model with a
low-dimensional parameter space (two-moons, Section 4.1), our methods were already
4–6 times faster than customary non-guided SMC-ABC schemes, suggesting the possi-
bility of even higher accelerations for more expensive simulators and/or higher dimen-
sional parameter/summary statistics spaces. This was indeed observed in a challenging
case study (hierarchical g-and-k model, Section 4.3), where the non-guided SMC-ABC
sampler standard, which is the typical default option in most software implementing
SMC-ABC, was at least fourteen times slower than our guided ABC samplers in ap-
proaching a gold-standard ABC posterior. For guided methods showing an ESS lower
than standard and olcm, the corresponding “optimised” version managed to consider-
ably increase the ESS values.

Among the introduced guided samplers, the copula-based samplers are general and
flexible. Among them, those based on Gaussian copulas may be preferred, yielding higher
ESS values (for some marginals higher than the non-copula guided samplers) and being
slightly faster than the t copulas, while yielding similar performances. However guided
non-copula Gaussian samplers are also competitive, and perform notably better than
the non-guided samplers. Overall, the best copula-based sampler is the cop-blocked
with triangular or mixed marginal distributions, followed by either cop-blockedopt or
cop-hybrid with uniform marginals. However, copula-based samplers involve more op-
erations to produce a proposal and may use less optimized numerical libraries compared
to multivariate Gaussian samplers. This difference is negligible if the model simulator
is expensive, as in this case the computational bottleneck will be the forward model
simulation, but may be less so for particularly simple simulators (e.g. the two-moons),
for which the copula-based samplers may then be slower than the guided multivariate
Gaussians. This is not a disadvantage if the geometry of the posterior is such that the
copula-model better adapts to its exploration, as it happens for the twisted model (for
cop-blocked with triangular marginals).

The proposed approach opens to a number of possible avenues of investigation, e.g.
guided copula-based SMC-ABC samplers, non-parametric guided copula-based sam-
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plers, where the copula and the marginals are fitted non-parametrically from the avail-
able data, or “fully” copula-based sequential samplers, where a copula is placed on (θ, s)
instead of θ|s. Embedding our guided proposals into ensemble Kalman inversion (EKI,
see Chada, 2022 for a recent review) would also be of interest. Overall, our guided pro-
posals are easy to construct and are rapidly computed from accepted parameters and
summary statistics, thus not introducing any substantial overhead. For example, there
is no need to construct and train a deep neural network (unlike in the guided method
of Chen and Gutmann, 2019), or perform a high-dimensional non-parametric optimiza-
tion. We believe that the simplicity, and effectiveness, of our proposal samplers makes
them appealing and easy to incorporate into the user’s toolbox.
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