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Sparse Bayesian Factor Analysis When the
Number of Factors Is Unknown

Sylvia Frühwirth-Schnatter∗, Darjus Hosszejni† and Hedibert Freitas Lopes‡

Abstract. There has been increased research interest in the subfield of sparse
Bayesian factor analysis with shrinkage priors, which achieve additional sparsity
beyond the natural parsimonity of factor models. In this spirit, we estimate the
number of common factors in the widely applied sparse latent factor model with
spike-and-slab priors on the factor loadings matrix. Our framework leads to a
natural, efficient and simultaneous coupling of model estimation and selection on
one hand and model identification and rank estimation (number of factors) on the
other hand. More precisely, by embedding the unordered generalised lower trian-
gular loadings representation into overfitting sparse factor modelling, we obtain
posterior summaries regarding factor loadings, common factors as well as the fac-
tor dimension via postprocessing draws from our efficient and customized Markov
chain Monte Carlo scheme.
Keywords: hierarchical model, identifiability, point-mass mixture priors,
marginal data augmentation, reversible jump MCMC, prior distribution,
sparsity, Heywood problem, rotational invariance, ancillarity-sufficiency
interweaving strategy, fractional priors.
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1 Introduction
Factor analysis aims at identifying common variation in multivariate observations and
relating it to hidden causes, the so-called common factors, see Thurstone (1947) and,
more recently, Anderson (2003). The common setup consists of a sample y = {y1, . . . ,yT }
of T multivariate observations yt = (y1t, . . . , ymt)′ of dimension m. For a given factor
dimension r, the basic factor model is defined as a latent variable model, involving the
common factors ft = (f1t · · · frt)′:

ft ∼ Nr (0, Ir) , yt = Λft + εt, εt ∼ Nm (0,Σ0) , Σ0 = Diag (σ2
1 , . . . , σ

2
m), (1.1)

where the covariance matrix Σ0 of the idiosyncratic errors εt is a diagonal matrix and Λ
is the m×r matrix of factor loadings Λij with a specific structure that facilitates econo-
metric identification of this model; details follow. Model (1.1) implies that conditional
on ft the m elements of yt are independent and all dependence among these variables
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is explained through the common factors. Assuming independence of ft and εt implies
that, marginally, yt arises from a multivariate normal distribution, yt ∼ Nm (0,Ω),
with zero mean and a covariance matrix Ω with the following structure:

Ω = ΛΛ′ + Σ0. (1.2)

Since r typically is (much) smaller than m, factor models yield a parsimonious repre-
sentation of Ω with (at most) m(r + 1) instead of the m(m + 1)/2 parameters of an
unconstrained covariance matrix. Hence, factor models proved to be very useful for co-
variance estimation, especially if m is large; see Fan et al. (2008), Forni et al. (2009),
Bhattacharya and Dunson (2011) and Kastner (2019), among others.

The zero-mean assumption in model (1.1) can be alleviated. For data with a non-zero
mean μ, the covariance matrix of ut = yt − μ exhibits a factor structure as in (1.2).
In a factor-augmented model with conditional mean μt, the zero-mean innovations
ut = yt − μt (rather than yt) follow model (1.1), while μt is modelled separately.
Examples include factor augmented mixed-outcome regression analysis (Conti et al.,
2014), factor-augmented treatment effect models (Wagner et al., 2023), and mixtures of
factor analyser models (Grushanina and Frühwirth-Schnatter, 2023), among others.

The recent years have seen many contributions in the field of sparse Bayesian factor
analysis (BFA) which achieve additional sparsity beyond the natural parsimonity of
factor models. Shrinkage priors are employed that resolve two major challenges in factor
analysis: First, by introducing column sparsity in an overfitting factor model, they lead
to an automatic selection of the number of factors in situations where the true factor
dimension r is unknown. Second, by introducing row sparsity they allow us to identify
“simple structures” in the sense specified by Thurstone (1947) where in each row only
a few non-zero loadings are present.

Choosing the factor dimension is in general a challenging problem, see Owen and
Wang (2016) for a review. Often, the information criteria introduced by Bai and Ng
(2002) are used also in a Bayesian context (Aßmann et al., 2016; Chan et al., 2018),
other authors employ marginal likelihoods (Lee and Song, 2002; Lopes and West, 2004).
Learning about the factor dimension is intrinsic in sparse BFA under priors that impose
column sparsity in the overfitting model

yt = βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) , (1.3)

where βH is an m×H loading matrix with elements βij and ΣH is a diagonal matrix
with strictly positive diagonal elements.

Bayesian approaches with H = ∞ apriori allow infinitely many columns in βH

which are increasingly pulled toward zero as the column index increases using priors
such as the Indian buffet process prior (Griffiths and Ghahramani, 2006; Ročková and
George, 2017), the multiplicative gamma process prior (Bhattacharya and Dunson, 2011;
Durante, 2017; De Vito et al., 2021), or cumulative shrinkage process priors (Legramanti
et al., 2020; Kowal and Canale, 2023). These prior choices ensure that the number k
of non-zero columns in model (1.3), denoted by βk, is random apriori and takes finite
values smaller than H with probability one.
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Other authors allow H to be a finite number, assumed to be larger than the true
number of factors r (Frühwirth-Schnatter and Lopes, 2010; Conti et al., 2014; Kaufmann
and Schuhmacher, 2019) and we use such an overfitting BFA model in the present paper.
To achieve column sparsity, we exploit a finite version of the two-parameter Beta prior to
define a shrinkage process prior on βH that induces increasing shrinkage of the factor
loadings toward zero as the column index increases (Frühwirth-Schnatter, 2023). We
employ spike-and-slab priors, where the elements βij of βH are allowed to be exactly
zero. Many authors considered spike-and-slab priors, where the identification of the non-
zero factor loadings is treated as a variable selection problem, not only for basic factor
models (West, 2003; Carvalho et al., 2008; Frühwirth-Schnatter and Lopes, 2010) but
also for dedicated factor models with correlated factors (Conti et al., 2014) and dynamic
factor models (Kaufmann and Schuhmacher, 2019). As opposed to continuous shrinkage
priors on βij that are applied often in sparse BFA, spike-and-slab priors allow an explicit
assessment of row sparsity in the loading matrix and identification of irrelevant variables
yit which are uncorrelated with the remaining variables in yt, since the entire row of the
factor loading matrix is zero for these variables (Kaufmann and Schuhmacher, 2017).

A further challenge in sparse BFA is post-processing the posterior draws of βH to
obtain final estimates of the unknown factor dimension r and a unique rotation Λ of the
unknown loading matrix. There is a growing literature in machine learning, statistics,
and applied econometrics where more or less heuristic post-processing procedures are
applied for this purpose (Aßmann et al., 2016; Kaufmann and Schuhmacher, 2019;
Poworoznek et al., 2021; Papastamoulis and Ntzoufras, 2022). Often no constraints are
imposed on βH during sampling; however, leaving βH unconstrained makes it difficult
to recover the true number of factors and to estimate Λ.

In the present paper, we pursue a more mathematical approach which relies on rigor-
ous econometric identification in sparse BFA and also allows uncertainty quantification
by deriving posterior distributions both for r and Λ. Econometric identification yields
a unique decomposition of the covariance matrix Ω in (1.2) into the cross-covariance
matrix ΛΛ′ and the covariance matrix Σ0 of the uncorrelated idiosyncratic errors and
identifies a unique factor loading matrix Λ from ΛΛ′. Even if the decomposition is
unique (which need not be the case), it is well-known that Λ is identified only up to a
rotation. Following the pioneering work of Anderson and Rubin (1956), identification is
achieved by imposing additional conditions (Reiersøl, 1950; Neudecker, 1990; Geweke
and Zhou, 1996; Bai and Ng, 2013). The most popular condition requires Λ to be a
lower triangular matrix with positive diagonal elements; however, such a PLT structure
is rather restrictive (Jöreskog, 1969; Carvalho et al., 2008).

Recently, a new identification strategy based on unordered generalized lower trian-
gular (UGLT) structures (Frühwirth-Schnatter and Lopes, 2018; Frühwirth-Schnatter
et al., 2023) was introduced that addresses not only rotational invariance but also vari-
ance identification to ensure a unique decomposition of Ω into ΛΛ′ and Σ0; a problem
of which the literature is still less aware. By imposing such a UGLT structure on the
non-zero columns of the loading matrix βH in model (1.3), we achieve identification
in the present paper. The UGLT structure only requires the top non-zero elements in
each non-zero column of βH to lie in arbitrary but distinct rows, and is a much weaker
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condition than a PLT structure. As shown in Frühwirth-Schnatter et al. (2023), on
the one hand it is weak enough to ensure that any loading matrix can be rotated into
a UGLT representation, on the other hand it is strong enough to ensure “controlled
unidentifiability” up to column and sign switching which can be easily resolved.

For practical Bayesian inference, we develop a new and efficient Markov chain Monte
Carlo (MCMC) procedure that delivers posterior draws from model (1.3) under point
mass mixture priors, which is known to be particularly challenging (Pati et al., 2014).
As part of our algorithm, we design a (simple) reversible jump MCMC sampler to
navigate through the space of UGLT loading matrices of varying factor dimension.
We achieve mathematically rigorous identification through post-processing the poste-
rior draws and ensuring variance identification through the algorithm of Hosszejni and
Frühwirth-Schnatter (2022). In this way, we recover the factor dimension r, the idiosyn-
cratic variances Σ0 and an ordered GLT representation Λ of the loading matrix from
the posterior draws. Our sampling as well as our identification strategy works under
arbitrary choices for the slab distribution of βij , including fractional priors (Frühwirth-
Schnatter and Lopes, 2010), the horseshoe prior (Zhao et al., 2016) and the Lasso prior
(Ročková and George, 2017). In high-dimensional models, we work with structured
priors with column-specific shrinkage (Legramanti et al., 2020) and employ the triple
gamma prior (Cadonna et al., 2020) to achieve local separation of signal and noise.

The rest of the paper is organized as follows. Section 2 introduces sparse Bayesian
exploratory factor analysis models with UGLT structures, while prior choices are dis-
cussed in Section 3. Section 4 introduces our innovative MCMC sampler for this model
class and discusses post-processing to achieve identification. Section 5 illustrates the
usefulness of the proposed methodology in various simulation settings and considers
applications to exchange rate data and NYSE100 returns. Section 6 concludes.

2 Sparse Bayesian EFA models with UGLT structures
2.1 Model definition

Throughout the paper, we work with the exploratory factor analysis (EFA) model (1.3)
with finite (H < ∞) potential common factors, i.e.

yt = βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) . (2.1)

We impose an exchangeable shrinkage process prior on the columns of βH to achieve
column sparsity with k < H non-zero columns, collected in the m×k submatrix βk, see
Section 3.1 for details. We summarize sparsity by the so-called sparsity matrix δH which
is a binary indicator matrix of 0s and 1s of the same dimension as βH and contains
the information which elements of a factor loading matrix are equal to zero and which
elements are unconstrained, i.e. if δij = 0, then βij = 0, while βij ∈ R if δij = 1.

Let δk be the sparsity matrix corresponding to the non-zero columns βk of βH .
To achieve identification in a sparse EFA model, we assume that δk exhibits a UGLT
structure (Frühwirth-Schnatter et al., 2023). Compared to the common literature, where
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all elements of δH are left unspecified, this imposes the constraint on δH that the
top non-zero element in all non-zero columns δk lie in different rows, see Figure 1 for
examples of such matrices. More formally, let lj denote the row index (also called pivot)
of the top non-zero entry in the jth column of δk (i.e. δij = 0,∀ i < lj). δk is said to be a
UGLT structure, if the pivot elements lk = (l1, . . . , lk) lie in different rows. As discussed
in Frühwirth-Schnatter et al. (2023), this rather weak condition on δH is sufficient for
a mathematically rigorous identification of the parameters (r,Λ,Σ0) in the underlying
basic factor model (1.1) from the overfitting BFA model (2.1).

First, Frühwirth-Schnatter et al. (2023) prove that the so-called 3579 counting rule
is sufficient for variance identification which is easily violated for sparse Bayesian factor
models. A sparsity matrix δk satisfies the 3579 counting rule if the following condition is
satisfied: for each q = 1, . . . , k and for each submatrix consisting of q columns of δk, the
number of nonzero rows in this sub-matrix is at least equal to 2q+1. The 3579 counting
rule states that every column of δk should have at least 3, every pair of columns at least
5, every subset of 3 columns at least 7 elements and so forth. Hosszejni and Frühwirth-
Schnatter (2022) provide an efficient algorithm to verify this rule. If the sparsity matrix
δk obeys the 3579 counting rule, then this implies that Σk and βkβ

′
k are uniquely

identified from the covariance matrix Ω = βkβ
′
k +Σk implied by the non-zero columns

βk of βH and by Σk = ΣH . Since variance identification implies that ΛΛ′ = βkβ
′
k, it

follows that r = k and βr = ΛP for some orthogonal matrix P (Anderson and Rubin,
1956, Lemma 5.1).

Second, Frühwirth-Schnatter et al. (2023) show that imposing a UGLT structure on
βk and Λ leads to rotational identification up to signed permutations βkP±Pρ, where
the permutation matrix Pρ corresponds to one of k! possible column permutations in
βk and the reflection matrix P± = Diag (±1, . . . ,±1) to one of the 2k possibilities
to reverse the signs in a subset of columns. Provided that βk is variance identified,
r = k and Λ is uniquely recovered by reordering the columns of βr such that the pivots
l1 < . . . < lr are increasing, while Σ0 = Σr. These insights are exploited in Section 4.4,
where the posterior draws from a sparse EFA model with UGLT structure are screened
in a post-processing manner to ensure full identification and to learn about the unknown
factor dimension r, the loading matrix Λ as well as Σ0 from the data.

For illustration, we show in Figure 1 three posteriors draws of δk for a sparse EFA
factor analysis with H = 14 for artificial data with m = 30 that are part of an extensive
simulation study in Section 5.1. All posterior draws exhibit k < H non-zero columns as a
result of imposing prior column sparsity. For the posterior draw δk on the left, the num-
ber of non-zero columns k = 5 can be considered a posterior draw of the factor dimension
r, since δk obeys the 3579 counting rule. The pivots (l1, l2, l3, l4, l5) = (24, 6, 12, 18, 1)
can be used to obtain a uniquely rotated posterior draw of Λ, by reordering the columns
of βk such that the pivots (1,6,12,18,24) are increasing. The posterior draw δk in the
middle contains six non-zero columns which violate the 3579 counting rule, since the
12th column has only two non-zero elements. Such posterior draws are rejected during
post-processing, as they do not allow unique identification of Λ from βk. The poste-
rior draw δk on the right also contains six non-zero columns with the 11th column
being a so-called spurious column with a single non-zero factor loading. Such posterior
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Figure 1: Posteriors draws of δk from sparse BFA with m = 30 and H = 14 (zero loadings
are left blank). Left: δk with k = 5 obeying the 3579 counting rule with the pivot rows
(l1, l2, l3, l4, l5) = (24, 6, 12, 18, 1) (marked red); center: δk with k = 6 violating the 3579
counting rule due to a column with only two non-zero elements (marked red); right: δk
with k = 6 containing a spurious column (marked red).

draws obviously violate the 3579 counting rule, nevertheless they carry useful informa-
tion about the factor dimension r and Λ. More specifically, Frühwirth-Schnatter et al.
(2023, Theorem 4) show as a third contribution that imposing a UGLT structure on the
non-zero columns βk of βH in an EFA model favors posterior draws with such spurious
columns, if the number of non-zero columns k overfits the true factor dimension r. For
instance, if k = r + 1, then mathematically βk and Σk take the following form:

βk =
(
Λ Ξ

)
P±Pρ, Ξ =

⎛
⎝ 0

Ξlsp

0

⎞
⎠, Σk = Diag (σ2

1 , . . . , σ
2
lsp − Ξ2

lsp , . . . , σ
2
m), (2.2)

with a single non-zero factor loading Ξlsp satisfying 0 < Ξ2
lsp

< σ2
lsp

which lies in a pivot
row lsp different from the pivot rows lr = (l1, . . . , lr) in Λ. A similar representation
holds for higher degrees k > r of overfitting, with Ξ containing s = k − r spurious
columns that obey a UGLT structure, i.e. the pivots lΞ of Ξ lie in different rows and
are distinct from the pivots lr of Λ.

Hence, if a posterior draw βk from the EFA model (2.1) contains s spurious columns
Ξ, then they can be absorbed into the idiosyncratic errors by defining their covariance
matrix as Σr = Σk +ΞΞ′. This leaves r = k−s active columns βr (i.e. columns with at
least two non-zero loadings) in βH , which are extracted and postprocessed as above: if
βr obeys the 3579 counting rule, then Λ is identified up to a signed permutation from
βr = ΛP±Pρ, while Σ0 = Σr, and the number of active columns r provides a posterior
draw of the unknown factor dimension. Otherwise, βr is rejected.



S. Frühwirth-Schnatter, D. Hosszejni, and H. F. Lopes 7

2.2 Relating exploratory to confirmatory Bayesian factor analysis
The sparsity matrix δH of the loading matrix βH in the EFA model (2.1) allows us to
classify factors into active (the corresponding column of δH has at least two non-zero
loadings), spurious (the corresponding column of δH has a single non-zero loading) and
inactive ones (the corresponding column of δH is zero). This allows us to split δH and
βH into m × r submatrices δr and βr with r active columns, m × rsp submatrices δΞ
and Ξ with rsp spurious columns, and submatrices with j0 = H − r− rsp zero columns,
while the factors fHt are split into f rt , fΞ

t and f0
t .

Exploiting representation (2.2), we extract the following model of factor dimension
r which is embedded in any EFA model with UGLT structure,

f rt ∼ Nr (0, Ir) , yt = βrf rt + εt, εt ∼ Nm (0,Σr) , Σr = ΣH + ΞΞ′, (2.3)

by absorbing the rsp spurious columns Ξ into the idiosyncratic error term. We call (2.3)
the confirmatory factor analysis (CFA) model induced by the active columns βr in the
EFA model. The likelihood function is invariant to moving from the EFA model (2.1) to
the CFA model (2.3), since the implied covariance matrix Ω = βHβ′

H+ΣH = βrβ
′
r+Σr

remains the same. On the other hand, we can move from the CFA model (2.3) to the
EFA model (2.1) without changing the likelihood function by adding rsp ∈ {1, . . . , k−r}
spurious columns δΞ to δr. Moving forth and back between the EFA model (2.1) and
the CFA model (2.3) is the cornerstone of an efficient MCMC algorithm developed in
Section 4. In Section 3, priors are defined that are (largely) invariant to these moves.

For rsp = 1, for instance, a single spurious column δΞ and H − r − 1 zero columns
are added to δr to define an EFA model with H columns. The only non-zero indicator
in δΞ can lie in any row lsp that is different from the pivots lr in δr. A spurious column
Ξ is added to βr to define βH , while the covariance matrix of the idiosyncratic errors
in the EFA model is defined as ΣH = Σr − ΞΞ′. The only non-zero loading Ξlsp in
Ξ can take any value such that the lsp-th diagonal element of ΣH remains positive,
i.e. ΣH,lsp,lsp = σ2

lsp
− (Ξlsp)2 > 0. This entire move only affects the lsp-th row βr,lsp,· of

βr. More specifically, for t = 1, . . . , T :

ylsp,t = βr,lsp,·f
r
t + εlsp,t, εlsp,t ∼ N

(
0, σ2

lsp

)
,

ylsp,t = βr,lsp,·f
r
t + Ξlspf

Ξ
t + ε̃lsp,t, ε̃lsp,t ∼ N

(
0, σ2

lsp − (Ξlsp)2
)
. (2.4)

By integrating model (2.4) with respect to the spurious factor fΞ
t , it can be verified that

both models imply the same distribution p(ylsp,t|βr,lsp,·, f
r
t , σ

2
lsp

), independently of Ξlsp .

3 Prior specifications
3.1 Column sparsity through exchangeable shrinkage process priors

Bayesian inference is performed in the EFA model (2.1) with a finite number H of
potential factors. We start with the description of an unconstrained model and below
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we introduce the UGLT structure as a constraint. Our starting point is the following
Dirac-spike-and-slab prior for the factor loadings βij in βH ,

βij |τj ∼ (1 − τj)Δ0 + τjPslab(βij), (3.1)

where Δ0 is a Dirac-spike at zero and Pslab is a continuous slab distribution. Cumulative
shrinkage where the columns of the loading matrix are increasingly pulled toward zero
can be achieved in a factor model with H < ∞ by placing an exchangeable shrinkage
process (ESP) prior on the slab probabilities τ1, . . . , τH :

τj |H ∼ B (aH , bH) , j = 1, . . . , H. (3.2)

The ESP prior turns model (2.1) into a sparse EFA model, where the number k of
non-zero columns in δH is random apriori, taking values smaller than H with high
probability. As shown by Frühwirth-Schnatter (2023), prior (3.2) has a representation
as a finite cumulative shrinkage process (CUSP) prior (Legramanti et al., 2020). A
prominent example of such an ESP prior is the finite two-parameter-beta (2PB) prior,

τj |H ∼ B
(
γ
α

H
, γ

)
, j = 1, . . . , H, (3.3)

which converges to the 2PB prior (Ghahramani et al., 2007) for H → ∞. For γ = 1,
the finite one-parameter-beta (1PB) prior results which converges to the Indian buffet
process prior (Teh et al., 2007) for H → ∞ and has been employed by Ročková and
George (2017) in sparse Bayesian factor analysis.

To adapt the ESP prior to the data at hand, the hyperparameters α and γ are
equipped with the hyperpriors α ∼ G (aα, bα) and γ ∼ G (aγ , bγ), since they are in-
strumental in controlling prior column sparsity. For the 1PB prior, for instance, the
decreasing order statistics τ(1) > . . . > τ(H) of the slab probabilities can be expressed
by the following stick-breaking representation in terms of independent beta random
variables for j = 1, . . . , H (Frühwirth-Schnatter, 2023):

τ(j) =
j∏

�=1

ν�, ν� ∼ B
(
α
H − 
 + 1

H
, 1
)
, 
 = 1, . . . , H. (3.4)

With the largest slab probability following τ(1) ∼ B (α, 1), subsequent slab probabilities
τ(j) = τ(j−1)νj are increasingly pulled toward zero as j increases and the 1PB prior
induces considerable column sparsity, especially if α < H.

Imposing a UGLT structure For given numbers r and rsp of, respectively, active
and spurious columns in βH , we define a prior p(lΞ|lr, rsp)p(lr|r) on the pivots lr =
(l1, . . . , lr) and lΞ = (lΞ,1, . . . , lΞ,rsp) such that the non-zero columns δk of the sparsity
matrix δH exhibit a UGLT structure. The prior p(lr|r) is defined as follows. Let L(l) =
{i ∈ {1, 2, . . . ,m} : i /∈ l} be the set of all rows that are not used as pivots. Condition
UGLT implies that each lj has to be different from the pivots lr,−j outside of column j
and we assume a uniform prior distribution over all admissible pivots lj ∈ L(lr,−j):

p(lj |lr,−j) = 1
|L(lr,−j)|

= 1
m− r + 1 . (3.5)
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The conditional prior p(lΞ|lr, rsp) is uniform over all admissible values, i.e. lΞ,1|lr is
uniform over L(lr); lΞ,2|lΞ,1, lr is uniform over L(lr ∪ {lΞ,1}), and so forth. Given the
pivots lj in all active columns δr, by definition δlj ,j = 1 and δij = 0 for i < lj , while
the m− lj indicators δij below lj are subject to variable selection,

Pr(δij = 1|lj , τj) =

⎧⎨
⎩

0, i < lj ,
1, i = lj ,
τj , i = lj + 1, . . . ,m,

(3.6)

with column-specific probability τj following the ESP prior (3.2). With dj − 1 successes
and m− lj − dj + 1 failures in the experiment defined in (3.6), where dj =

∑m
i=1 δij is

the number of non-zero indicators in columns j, the prior for the jth column δr·,j of δr
can be expressed both conditionally as well as marginalized w.r.t. τj :

Pr(δr·,j |lj , τj) = τ
dj−1
j (1 − τj)m−lj−dj+1, (3.7)

Pr(δr·,j |lj) = B(aH + dj − 1, bH + m− lj − dj + 1)
B(aH , bH) . (3.8)

3.2 Choosing the slab distribution
To define a prior on the loading matrix βH given δH , we first define a prior p(βr|Σr, δr)
on the loading matrix βr in the CFA model (2.3) containing the active columns of βH ,
conditional on Σr = Diag (σ2

1 , . . . , σ
2
m) and δr. When expanding the CFA model to an

EFA model with rsp columns, we define a prior p(Ξ|βr,Σr, lΞ) on the spurious loadings
conditional on βr, Σr, and lΞ. The spurious factor loadings are assigned a uniform prior
over all values that lead to a positive definite matrix Σk = Σr−ΞΞ′ in the EFA model:

Ξ2
lsp |σ

2
lsp ∼ U

[
0, σ2

lsp

]
. (3.9)

This ensures for all lsp ∈ lΞ that Σk,lsp,lsp = σ2
lsp

−Ξ2
lsp

> 0. By this definition, both the
likelihood and the prior are invariant to moving between the EFA and the CFA model
for a given number of spurious columns rsp, regardless of the chosen slab distribution.1

The Dirac-spike-and-slab prior (3.1) is formulated for the factor loading matrix βr

in the CFA model. A broad range of slab distributions Pslab (which are briefly reviewed
below) has been considered for sparse Bayesian factor analysis and can be combined with
the reversible jump MCMC sampler we introduce in Section 4. Since the conditional
likelihood function factors into a product over all rows of βr, prior independence of all
rows i with qi =

∑
j δij > 0 nonzero elements is assumed. A hierarchical Gaussian prior

for the vector βδ
i· of unconstrained elements takes the form βδ

i·|σ2
i ∼ Nqi

(
0,Bδ

i0σ
2
i

)
,

where Bδ
i0 is a diagonal matrix. The variance of this prior is assumed to depend on the

idiosyncratic variance σ2
i , because this allows joint drawing of βr and σ2

1 , . . . , σ
2
m and,

even more importantly, sampling the sparsity matrix δr without conditioning on the
model parameters during MCMC estimation, see Algorithm 1 in Section 4.

1Note that this is a major improvement compared to Frühwirth-Schnatter and Lopes (2018).
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A common choice for Pslab is to introduce a global shrinkage parameter κ,

βij |δij = 1, κ ∼ N
(
0, κσ2

i

)
, (3.10)

which is either fixed or random with hyperprior κ ∼ G−1 (cκ, bκ) or κ ∼ F (2aκ, 2cκ). A
popular extension are slab distributions with a column specific shrinkage parameter θj ,

βij |δij = 1, θj , σ2
i , κ ∼ N

(
0, κθjσ2

i

)
, (3.11)

where θj ∼ G−1 (cθ, bθ) either follows an inverse gamma prior (Legramanti et al., 2020)
or a triple gamma prior, θj ∼ F

(
2aθ, 2cθ

)
(Cadonna et al., 2020; Frühwirth-Schnatter,

2023). This prior acts as a variance selection prior which pulls all factors fjt, t = 1, . . . , T ,
toward 0 for small values of θj . To achieve additional shrinkage for individual factor
loadings, local shrinkage parameters ωij arising from an F-distribution can be intro-
duced:

βij |δij = 1, ωij , θj , σ
2
i , κ ∼ N

(
0, κθjσ2

i ωij

)
, ωij ∼ F (2aω, 2cω) . (3.12)

Related structured priors are employed in (Zhao et al., 2016; Schiavon et al., 2022),
among others. As an alternative shrinkage prior, Frühwirth-Schnatter and Lopes (2010)
introduced a conditionally conjugate fractional prior p(βδ

i·|σ2
i , b, fr) ∝ p(ỹi|fr,βδ

i·, σ
2
i )b

in the spirit of O’Hagan (1995), see Appendix C.1 for details (Frühwirth-Schnatter et al.
(2024)).

3.3 The prior on the idiosyncratic variances

Finally, we define a prior on the idiosyncratic variances σ2
1 , . . . , σ

2
m in the CFA model

(2.3), taking two aspects into considerations. The first aspect in choosing this prior
is whether the data are standardized, as often is recommended (Schiavon and Canale,
2020). For each variable yit, the loadings βi1, . . . , βir together with σ2

i determine the
communalities R2

i as the proportion of variance explained by the common factors:

R2
i =

∑r
�=1 β

2
i�

Ωii
⇔ σ2

i = (1 −R2
i )Ωii, (3.13)

where Ωii =
∑r

�=1 β
2
i�+σ2

i is the ith diagonal element of Ω. For standardized data, where
Ωii = 1, σ2

i = 1 − R2
i is a scale-free parameter and the popular exchangeable inverse

gamma prior, σ2
i ∼ G−1 (cσ, C0), with constant scale C0 is a sensible choice. However, for

data that are not standardized, scale dependence of σ2
i = (1−R2

i )Ωii is to be expected,
in particular in the presence of strong heterogeneity in the variances Ω11, . . . ,Ωmm. In
this case, it is preferable to use an inverse gamma prior with heterogenous scales C0i:

σ2
i ∼ G−1 (cσ, Ci0) . (3.14)

We may assume that Ci0 = bσi are fixed hyperparameters. Alternatively, assuming
random hyperparameters Ci0 ∼ G (aσ, aσ/bσi ) with E(Ci0) = bσi leads to a more general
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prior which can be expressed as a rescaled F-distribution with the same prior expectation
E(σ2

i ) = bσi /(cσ − 1) as (3.14), provided that cσ > 1:

σ2
i ∼ bσi

cσ
F (2aσ, 2cσ) . (3.15)

Second, a difficulty known as Heywood problem should be considered when choosing this
prior. This problem frequently occurs in ML estimation, with one or more estimators
σ̂2
i s of the idiosyncratic variances being negative, see e.g. (Bartholomew, 1987). Putting

a prior on the idiosyncratic variances within a Bayesian framework naturally avoids
negative values for σ2

i . Nevertheless, there exists a Bayesian analogue of the Heywood
problem which takes the form of multi-modality of the posterior of σ2

i with one mode
lying at 0. Heywood problems typically occur if the constraint 1/σ2

i ≥ (Ω−1)ii is violated
for the covariance matrix of yt (Bartholomew, 1987, p. 54). It is clear from this inequality
that the prior of 1/σ2

i has to be bounded away from 0. For this reason, Heywood
problems might be an issue under improper priors such as p(σ2

i ) ∝ 1/σ2
i (Martin and

McDonald, 1975; Akaike, 1987) and proper priors with cσ > 0 are preferable.

3.4 Choice of hyperparameters
For applications, we reduce the complex structure of the above priors to five hyperpa-
rameters. We summarize our choices in Table 1 and provide details in this section.

A necessary condition for δk to satisfy the 3579 counting rule discussed in Section 2.1
is the following upper bound for k:

k ≤ �(m− 1)/2
, (3.16)

Prior distributions Parameters Values
Prior for τj , j = 1, . . . , H
τj |α, γ,H ∼ B

(
γ α
H , γ

)
, aα, bα, H aα = n0, bα = aα(H − Eq)/H/Eq

α ∼ G (aα, bα) , γ ∼ G (aγ , bγ) aγ , bγ aγ = bγ = n0
Priors for σ2

i , i = 1, . . . ,m
σ2
i ∼ G−1 (c0, C0) c0, C0 c0 = 1, C0 = 0.3

σ2
i ∼ G−1 (cσ, bσi ) cσ, bσi bσi = (cσ − 1)(1 − ER)Ω̄ii

σ2
i ∼ (bσi /cσ) F (2aσ, 2cσ) cσ, bσi , a

σ aσ = n0
Slab priors for βij

Fractional prior b b = 1/(mT )
βij |σ2

i , κ ∼ N
(
0, κσ2

i

)
, cκ, bκ cκ = n0

κ ∼ G−1 (cκ, bκ) bκ = cκER/(1 − ER)/Eq

βij |θj , σ2
i , κ ∼ N

(
0, κθjσ2

i

)
, cκ, bκ

κ ∼ G−1 (cκ, bκ), θj ∼ F
(
2aθ, 2cθ

)
aθ, cθ aθ = n0, cθ = 2.5

βij |ωij , θj , σ
2
i , κ ∼ N

(
0, κθjσ2

i ωij

)
, cκ, bκ

κ ∼ G−1 (cκ, bκ), θj ∼ F
(
2aθ, 2cθ

)
, aθ, cθ aω = cω = 0.5 (horseshoe)

ωij ∼ F (2aω, 2cω) aω, cω aω = cω = 0.2 (triple gamma)
Table 1: Prior choices depending on five hyperparameters with default values H =
�(m− 1)/2
, Eq = 2, ER = 2/3, cσ = 2.5 and n0 = 6.
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which we use as default for H. As discussed, this choice encourages spurious and zero
columns in δH which are essential for our strategy of recovering the factor dimension
from the EFA model (2.1). If m is large, than choosing H below the upper bound (3.16)
is sensible from a computational viewpoint.

In the vein of Thurstone (1947), we impose a simple structure on βH by assuming
that in each row the number of non-zero loadings qi =

∑H
j=1 δij is much smaller than

H and choosing the hyperparameters in α ∼ G (aα, bα) accordingly. The choice of α
strongly impacts the expected row sparsity Eq = E(qi|α,H), given by

Eq = α

1 + α/H
,

independently of γ. To match a prior guess of Eq with the prior expectation Eα =
E(α|H) = H · Eq/(H − Eq) of α, we bind a given value of aα to the scale parameter
bα = aα/Eα. For large H, this yields Eα ≈ Eq apriori, whereas Eα is larger than Eq

to achieve the same level of row sparsity for smaller values of H. A sensible choice in
the spirit of Thurstone (1947) is Eq = 2. To center the 2PB prior at the 1PB prior
(corresponding to γ = 1), we choose bγ = aγ for a given value of aγ .

For the exchangeable prior σ2
i ∼ G−1 (cσ, C0), a popular choice is cσ = 1 and C0 =

0.3 (Bhattacharya and Dunson, 2011). Following Frühwirth-Schnatter and Lopes (2010,
2018), we select cσ in prior (3.14) and (3.15) large enough to bound the prior of 1/σ2

away from 0. Depending on the data, cσ can be increased if any of the posteriors p(σ2
i |y)

has a second mode at 0. For a given cσ > 1, Frühwirth-Schnatter and Lopes (2018) select
the scale parameter in (3.14) as bσi = (cσ−1)/(Ω̂−1)ii. Alternatively, we choose bσi both
in (3.14) and (3.15) such that (3.13) holds on average, i.e. E(σ2

i ) = E(1 − R2
i ) E(Ωii).

Based on a prior guess ER of the average amount of explained variance, this yields
bσi = (cσ − 1)(1−ER)Ω̄ii, where Ω̄ii = 1 for standardized data and otherwise Ω̄ii = Ω̂ii.
See Appendix C.1 for details on estimating Ω̂−1 and Ω̂.

Regarding the hyperparameters used for the prior βij |δij = 1 in the slab, we choose
b = 1/(mT ) for the fractional prior (C.4) in the spirit of Foster and George (1994). We
use the same prior on the global shrinkage parameter κ for all hierarchical shrinkage
priors and bind a given value of cκ to the scale parameter bκ = cκEκ, where

Eκ = ER

(1 − ER)Eq
(3.17)

takes the prior information Eq and ER used in the previous two priors into account.
This choice is motivated for prior (3.10) by rewriting the coefficient of determination R2

i

given in (3.13) in terms of δij and the standardized loadings β

ij = βij/

√
σ2
i κ ∼ N (0, 1):

R2
i =

κ
∑r

j=1(β

ij)2δij

κ
∑r

j=1(β

ij)2δij + 1

⇒ R2
i = κ(1 −R2

i )χ2
qi .

Using that the sum follows a χ2
qi-distribution, and taking the expectation of both sides

of the second equation yields (3.17). Various priors for the column specific shrinkage
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parameters θj have been suggested, such as aθ = cθ = 0.5 (Zhao et al., 2016) or
(aθ = 2.5, cθ = 0.5) (Kowal and Canale, 2023). Following Frühwirth-Schnatter (2023),
we choose cθ = 2.5 to fix the prior expectation of θj at around 1 and to impose a finite
prior variance. Finally, regarding local shrinkage, for aω = cω = 0.5 the horseshoe prior
employed by Zhao et al. (2016) results; choosing aω = cω < 0.5 yields a triple gamma
(Cadonna et al., 2020) which imposes more aggressive shrinkage than the horseshoe.

This reduces the choice of hyperparameters to cσ controlling Heywood problems, the
prior expectation Eq of row sparsity, the prior expected fraction of explained variance
ER and the hyperparameters aα, aγ , cκ, aθ and, for the rescaled F-prior (3.15), also aσ.
Increasing these latter hyperparameters increases prior concentration around the chosen
prior expectations. In our simulations and applications, we assume the same amount of
prior information n0 for any of these priors, i.e. aα = aγ = cκ = aθ = aσ = n0. We
analyze prior sensitivity in Section 5 by comparing multiple priors.

4 MCMC estimation
MCMC estimation for sparse Bayesian factor models is notoriously difficult, since sam-
pling the sparsity matrix δH corresponds to navigating through an extremely high di-
mensional model space. In the present paper, we develop an innovative MCMC scheme
for sparse Bayesian factor models where the factor dimension is unknown, summarized
in Algorithm 1. To learn the number of factors, we sample from the posterior distri-
bution of the EFA model (2.1), given the priors introduced in Section 3. As opposed
to Carvalho et al. (2008), who operate under a PLT condition on the sparsity ma-
trix δH , and Kaufmann and Schuhmacher (2019), who sample δH without imposing
any constraint, we impose a UGLT structure on δH during MCMC sampling. As dis-
cussed in Section 2.1, this allows us to address identification of the factor model in a
post-processing manner, see Section 4.4. Based on appropriate initial values (see Ap-
pendix A for details), we iterate M times through the various steps of Algorithm 1 and
discard the first M0 draws as burn-in.

Algorithm 1 consists of two main blocks. Block (CFA) operates in the confirmatory fac-
tor analysis model (2.3) corresponding to δr. Due to the prior specification in Section 3,
the number rsp of spurious columns is a sufficient statistic for the remaining columns in
δH and no further information is needed to update the parameters in the CFA model. To
ensure that the loading matrix exhibits a UGLT structure, Step (L) performs MH steps
that navigate through the space of all admissible δr where the pivots lr = (l1, . . . , lr) lie
in different rows, see Section 4.2. Given lr, the hyperparameters aH and bH in the ESP
prior (3.2) are updated in Step (H) using an MH step, see Appendix B. Both Step (L)
and (H) are performed marginalized w.r.t. the slab probabilities τ r = (τ1, . . . , τr). To
sample τj for all columns j, the ESP prior (3.2) is combined with the likelihood (3.7).
In Step (D), variable selection is performed in each column j for all indicators δij below
the pivot row lj . This step potentially turns an active factor into a spurious one and
in this way decreases the number of active factors r, while increasing rsp. All moves in
Step (D) are implemented conditionally on τj (and all shrinkage parameters for hier-
archical Gaussian priors), as this allows efficient multimove sampling of all indicators
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Algorithm 1 MCMC for sparse Bayesian factor models with UGLT structures.
(CFA) Update all unknowns in the CFA model (2.3) corresponding to δr:

(H) Update any unknown hyperparameters in the ESP prior (3.2) without conditioning on the
slab probabilities τ r = (τ1, . . . , τr). For j = 1, . . . , r, sample τj |lj , dj ∼ B(aH + dj − 1, bH
+ m− lj − dj + 1), where dj =

∑m
i=1 δij .

(D) Loop over all columns of the sparsity matrix δr in a random order:
(a) Sample all indicators δij below the pivot lj from p(δij |lj , δr·,−j , fr, τj ,y) conditional

on the remaining columns δr·,−j , the factors fr = (fr1 , . . . , frT ) and τj , without condi-
tioning on βr and σ2

1 , . . . , σ
2
m.

(b) If column δr·,j is spurious after this update, increase rsp by one. Remove the jth
column from δr, the factors fjt, t = 1, . . . , T from fr and τj from τ r to define,
respectively, δr−1, fr−1 and τ r−1 and decrease r by one.

(L) Loop over all columns j of δr in a random order and sample a new pivot row lj from
p(lj |δr·,−j , fr,y) without conditioning on βr, σ2

1 , . . . , σ
2
m and the slab probabilities τ r. If

column δr·,j is spurious after this update, proceed as in Step (D-b).
(P) Sample the model parameters βr and σ2

1 , . . . , σ
2
m jointly conditional on the sparsity matrix

δr and the factors fr = (fr1 , . . . , frT ) from p(βr, σ
2
1 , . . . , σ

2
m|δr, fr,y).

(F) Sample the latent factors fr = (fr1 , . . . , frT ) conditional on the model parameters βr and
σ2
1 , . . . , σ

2
m from p(fr1 , . . . , frT |βr, σ

2
1 , . . . , σ

2
m,y).

(S) For hierarchical Gaussian priors, update the global shrinkage parameter κ, the column-
specific shrinkage parameters θ1, . . . , θr and all local shrinkage parameters ωij (if any) and
recover C01, . . . , C0m for the F-prior (3.15) on σ2

1 , . . . , σ
2
m.

(A) Perform a boosting step to enhance mixing.
(EFA) Move from the current CFA model to an EFA model with rsp spurious columns and try to

change rsp, while holding the number of active factors r fixed:

(R-S) Perform an RJMCMC step to change the number rsp of spurious columns through a split
move on a zero column or a merge move on a spurious column in δH .

(R-L) Given rsp, sample the pivot rows lΞ|lr of all rsp spurious columns sequentially from the
set L(lr), where lr are the pivot rows of the active factors δr. Order the spurious columns
such that lΞ,1 < . . . < lΞ,rsp .

(R-F) Loop over all spurious columns jsp and sample the spurious factors fjsp =
(fjsp,1, . . . , fjsp,T ) independently for all t = 1, . . . , T from fjsp,t|frt ,βr, σ

2
lsp

, ylsp,t ∼
N

(
Ejsp,t, Vjsp

)
, where Ujsp is a draw from a uniform distribution on [−1,1] and

Vjsp = 1 − U2
jsp , Ejsp,t = Ujsp (ylsp,t − βr,lsp,·f

r
t )/

√
σ

2
lsp . (4.1)

(R-H) Sample τjsp |lsp ∼ B (aH , bH + m− lsp) for all spurious columns jsp.
(R-D) Update all spurious columns from the last (with the largest pivot row) to the first (with the

smallest pivot row): sample all (δi,jsp , i ∈ {lsp +1, . . . ,m}) below the pivot lsp conditional
on τjsp , δr, fr and fjsp without conditioning on βr, Ξ and σ2

1 , . . . , σ
2
m. If a spurious column

jsp is turned into an active one, then decrease rsp by 1, increase r by 1, add δ·,jsp to δr
and fjsp to fr. Otherwise, remove δ·,jsp from δΞ and fjsp from fΞ.

Move from the current EFA model back to the CFA model and preserve rsp.

{δij , i ∈ {lj + 1, . . . ,m}}, using Algorithm 2 in Appendix D.2. The remaining steps
are quite standard in Bayesian factor analysis (Geweke and Singleton, 1980; Lopes
and West, 2004). In Step (P), we use an efficient algorithm for multi-move sampling
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of all unknown model parameters βr, and σ2
1 , . . . , σ

2
m, see Appendix C.3. In Step (F),

the conditional posterior p(f r1 , . . . , f rT |βr, σ
2
1 , . . . , σ

2
m,y) factors into independent normal

distributions given by:

f rt |yt,βr,Σr ∼ Nr

(
(Ir + β′

rΣ−1
r βr)−1β′

rΣ−1
r yt, (Ir + β′

rΣ−1
r βr)−1) , (4.2)

where Σr = Diag (σ2
1 , . . . , σ

2
m). For the hierarchical Gaussian priors (3.11) and (3.12),

all unknown shrinkage parameters and, for the rescaled F-prior (3.15) on σ2
1 , . . . , σ

2
m,

also the scaling parameters C01, . . . , C0m are updated in Step (S) (see Appendix E),
since Step (P) is performed conditional on these values. Finally, the boosting Step (A)
is added to improve the mixing of the MCMC scheme, see Section 4.3.

In Block (EFA), the sampler moves from the current CFA model to an EFA model
with rsp spurious columns and performs dimension changing moves in the much larger
space underlying this model. The sampler finally returns to a CFA model with a poten-
tially larger number of active factors r, see Section 4.1 for more details.

4.1 Split and merge moves for overfitting models

Step (EFA) in Algorithm 1 is based on moving from the CFA model (2.3) to an EFA
model (2.1) with rsp spurious factors in βH . Exploiting the results of Section 2.2, spu-
rious columns in δH are added and deleted in Step (R-S) by reversible jump MCMC
(RJMCMC). Very conveniently, this step is independent of the pivots lΞ and the load-
ings Ξ in the spurious columns, since the prior p(δH ,βH ,ΣH |rsp) is invariant to the
specific choice of lΞ and Ξ, given rsp. However, the prior odds that a zero column in
δH can be turned into an additional spurious column are equal to:

Osp(r, rsp) = aH(m− r − rsp)
bH − 1 + m− r − rsp

. (4.3)

For bH = 1, the prior odds (4.3) depend only on aH , independently of the current
number of active and spurious columns. But even in this case, simply adding or deleting
spurious columns would lead to an invalid MCMC procedure and an RJMCMC step that
incorporates Osp(r, rsp) is performed in Step (R-S). As opposed to other applications of
RJMCMC, the acceptance rate is extremely easy to compute, see (4.4) and (4.5).

At each sweep of the sampler, a split or a merge move is performed with, respectively,
probability psplit(r, rsp) or pmerge(r, rsp). A symmetric proposal is applied for all 0 ≤
rsp < H − r with psplit(r, rsp) = pmerge(r, rsp + 1) = ps, where ps ≤ 0.5 is a tuning
parameter, while pmerge(r, rsp) = 0 for rsp = 0 and psplit(r, rsp) = 0 for rsp = H − r. A
split move turns one of the H−(r+rsp) zero columns in δH into a spurious column, with
proposal density qsplit(δnew

H |δH) = ps/(H−r−rsp). A merge move turns one of the rsp >
0 spurious columns in δH into a zero column, with proposal density qmerge(δnew

H |δH) =
ps/rsp. A split move is accepted with probability min(1, Asplit(r, rsp)), where:

Asplit(r, rsp) = qmerge(δH |δnew
H )

qsplit(δnew
H |δH) Osp(r, rsp) = aH(m− r − rsp)(H − r − rsp)

(rsp + 1)(bH + m− r − rsp − 1) , (4.4)
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whereas a merge move is accepted with probability min(1, Amerge(r, rsp)), where

Amerge(r, rsp) = 1
Asplit(r, rsp − 1) = rsp(bH + m− r − rsp)

aH(m− r − rsp + 1)(H − r − rsp + 1) . (4.5)

There is a dynamic feature underlying this RJMCMC algorithm, with acceptance de-
pending on the number of spurious columns rsp. For bH = 1, for instance, Asplit(r, rsp)
is monotonically decreasing and Amerge(r, rsp) is monotonically increasing in rsp.

Once rsp has been updated, Step (R-L) is trying to turn each spurious column into
an active one. Since the likelihood is non-informative about spurious columns, pivots
lsp are sampled uniformly from the prior lΞ|lr, while the spurious factor loadings Ξlsp

are sampled from the prior (3.9). Given lsp, the idiosyncratic variance σ2
lsp

in the CFA
model is split, with the help of a random variable Ujsp ∼ U [−1, 1], between Ξlsp and an
updated idiosyncratic variance σ2,new

lsp
. More specifically:

Ξlsp = Ujsp

√
σ2
lsp

, σ2,new
lsp

= (1 − U2
jsp)σ2

lsp . (4.6)

Given Ξlsp and σ2,new
lsp

, factors fjsp,t are proposed in Step (R-F) for each t = 1, . . . , T from
the conditional density p(fjsp,t|f rt ,βr, σ

2
lsp

, ylsp,t) given in (4.1). The slab probabilities
τjsp are sampled in Step (R-H) as in Algorithm 1, Step (H), using that djsp = 1. Finally,
in Step (R-D) variable selection is performed in each spurious column on all indicators
below lsp as in Step (D) of Algorithm 1, conditional on fjsp,t. Any spurious column that
is turned into an active one is integrated into the CFA model, increasing in this way the
number of active columns r. Further details and proofs are provided in Appendix F.

4.2 Special MCMC moves for unordered GLT structures
Step (L) in Algorithm 1 implements MH-moves to change the current position of the
pivot rows lr = (l1, . . . , lr) in the r columns of the UGLT indicator matrix δr. To change
lj |lr,−j given the remaining pivot rows lr,−j , we use several moves, namely shifting the
pivot, adding a new pivot, deleting a pivot and switching the pivots (and additional
indicators) between column j and a randomly selected column j′; see Figure G.1 for
illustration. All moves are performed marginalized w.r.t. τ r. Changing the pivot from
lj to lnew

j changes the number of unconstrained indicators, whereas the prior ratio
p(lnew

j |lr,−j)/p(lj |lr,−j) = 1. With dnew
j being the new number of non-zero elements in

column j, the prior ratio Rmove can be derived from (3.8):

Rmove =
Pr(δnew

·,j |lnew
j )

Pr(δ·,j |lj)
=

B(aH + dnew
j − 1, bH + m− lnew

j − dnew
j + 1)

B(aH + dj − 1, bH + m− lj − dj + 1) . (4.7)

Further details are provided in Appendix G.

4.3 Boosting MCMC
Step (F) and Step (P) in Algorithm 1 sample the factors (f r1 , . . . , f rT ) conditional on
(βr,Σr) and (βr,Σr) conditional on (f r1 , . . . , f rT ). Depending on the signal-to-noise ratio,
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such full conditional Gibbs sampling tends to be poorly mixing. In a factor model where
f rt ∼ Nr (0, Ir), the information in the data (the “signal”) can be quantified by the
matrix β′

rΣ−1
r βr in comparison to the identity matrix Ir (the “noise”) in the filter for

f rt |yt,βr,Σr, see (4.2). One would expect that factor models with many measurements
contain ample information to estimate the factors, however, this is true only if the
information matrix β′

rΣ−1
r βr increases with m and most of the factor loadings are

nonzero. Sparse factor models contain many columns with only a few non-zero loadings,
leading to a low signal-to-noise ratio and, consequently, to a poorly mixing sampler. For
such models, boosting steps are essential to obtain efficient MCMC schemes. Several
papers (Ghosh and Dunson, 2009; Frühwirth-Schnatter and Lopes, 2010; Conti et al.,
2014) apply marginal data augmentation (MDA) in the spirit of van Dyk and Meng
(2001); others (Kastner et al., 2017; Frühwirth-Schnatter and Lopes, 2018) exploit the
ancillarity-suffiency interweaving strategy (ASIS) introduced by Yu and Meng (2011).

Boosting is based on moving from the CFA model (2.3) where f rt ∼ Nr (0, Ir) to an
expanded model with a more general prior:

yt = β̃r f̃ rt + εt, εt ∼ Nm (0,Σr) , f̃ rt ∼ Nr (0,Ψ) , (4.8)

where Ψ = Diag (Ψ1, . . . ,Ψr) is diagonal. The two systems are related by the transfor-
mations f̃ rt = (Ψ)1/2f rt and β̃r = βr(Ψ)−1/2, where the nonzero elements in β̃r have the
same position as the nonzero elements in βr and the sparsity matrix δr is not affected
by the transformation. The main difference between MDA and ASIS lies in the choice of
Ψ. While Ψj is sampled from a working prior for MDA, Ψj is chosen in a deterministic
fashion for ASIS. For illustration, Figure 2 shows posterior draws of tr(β′

rΣ−1
r βr) for

the exchange rate data to be discussed in Section 5.2 without boosting (left-hand panel)
and illustrates the considerable efficiency gain when a boosting strategy such as ASIS
(middle panel) or MDA (right-hand panel) is applied in Step (A).

For the hierarchical priors (3.11) and (3.12) we found it particularly useful to apply
column boosting and interweave the column specific shrinkage parameter θj into the
state equation by choosing Ψj = θj . For the F-prior (3.15) on σ2

1 , . . . , σ
2
m, another

useful strategy is row boosting, based on moving the random scales C0i from the prior
σ2
i to the observation equation in all rows of the basic factor model. Full details for all

boosting steps are provided in Appendix H.

Figure 2: Exchange rate data (standardized, fractional prior and prior (3.14) for σ2
i );

posterior draws of tr(β′
rΣ−1

r βr) without boosting (left-hand side), boosting through
ASIS with

√
Ψj equal to the largest loading (in absolute values) (middle) and through

MDA based on the working prior Ψj ∼ G−1 (1.5, 1.5) (right-hand side).
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4.4 Post-processing posterior draws

Algorithm 1 delivers posterior draws (δr,βr,Σr) in a CFA model with a varying number
r of active columns. Our sampler imposes the (mild) condition that the pivots (the first
non-zero loading in each column) lie in different rows, ensuring that all posterior draws
of the loading matrix exhibit a UGLT structure. As discussed in Section 2.1, this allows
identification during post-processing.

We use the 3579 counting rule and the algorithm of Hosszejni and Frühwirth-
Schnatter (2022) to check for each draw δr whether the variance decomposition is
unique, and remove all draws that are not variance identified. Quantities that can be
inferred from variance identified posteriors draws with varying factor dimension r in-
clude the covariance matrix Ω = βrβ

T
r + Σr, the idiosyncratic variances σ2

1 , . . . , σ
2
m,

the modelsize d =
∑

i,j δij , and the communalities R2
1, . . . , R

2
m defined in (3.13). Most

importantly, variance identified posterior draws are instrumental for identifying the
number of factors and the factor loading matrix. The number of nonzero columns of
all variance identified draws δr can be regarded as posterior draws of the unknown
factor dimension r. The posterior distribution p(r|y) derived from these draws yields
uncertainty quantification and the posterior mode r̃ serves as an estimator of r.

Due to the UGLT structure imposed on βr, rotational invariance reduces to sign
and column switching. βr is rotated into a loading matrix Λ with GLT structure by
ordering the columns such that the pivots are increasing, and the sign is reversed in
all columns with a negative leading factor loading. The GLT draws Λ still exhibit a
varying factor dimension r and posterior variation in l1, . . . , lr. To estimate the factor
loading matrix, further inference is performed conditionally on the posterior mode r̃
and an estimator l̂r̃ = (l̂1, . . . , l̂r̃) of the pivots given by the sequence visited most often
across all draws with factor dimension r = r̃. Bayesian model averaging over all GLT
draws Λ with pivot l̂r̃ yields the posterior mean E(Λ|y, l̂r̃). The marginal posterior
p(Λij |y, l̂r̃) and the marginal inclusion probability Pr(δΛ

ij = 1|y, l̂r̃) allow uncertainty
quantification for individual elements Λij and δΛ

ij in Λ and corresponding the sparsity
matrix δΛ. Alternative estimators such as the sequence of pivots l
 visited most often
among all variance identified draws and more details are provided in Appendix I.

5 Applications
We discuss applications both to simulated as well as real data sets. For each data set,
whether simulated or real, Algorithm 1 is used to generate and post-process M posterior
draws after a burn-in of M0 draws.2 We choose a 2PB prior to ensure column sparsity,
combine various slab distributions for βij with various priors on σ2

i , and use the default
hyperparameters introduced in Table 1, namely H = �(m− 1)/2
, cσ = 2.5, ER = 2/3,
Eq = 2 and aα = aγ = cκ = aθ = aσ = n0 = 6.

2Tuning in Step (R) and Step (L) relies on ps = 0.5, pshift = pswitch = 1/3 and pa = 0.5. Boosting
in Step (A) relies on ASIS with

√
Ψj being the largest loading (in absolute value) in column j.
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5.1 Simulation study
We perform an extensive simulation study and summarize the main findings in this
section. Full details on the simulation settings, the performance measures and additional
results are provided in Appendix K. We assume m = 30, T = 100, and rtrue = 5 factors
and consider six sparsity patterns Λ, namely a dedicated factor model, a dedicated factor
model with overlap, a two-block factor model, a sparse factor model with 50% overall
sparsity, a model with a market factor that loads on all measurements and exhibits 60%
sparsity in the remaining columns and a dense factor model with no zero loadings. 50
data sets are generated for each scenario from the basic factor model (1.1) under Σ0 = I.
Note that H = 14. Prior (3.14) for σ2

i is combined with the following slab distributions
Pslab for βij : a fractional prior (F), prior (3.10) with global shrinkage (G), prior (3.11)
with column shrinkage (C), and prior (3.12), where local shrinkage with aω = cω = 0.5
relies on the horseshoe (H) and on a triple gamma with aω = cω = 0.2 (T). MCMC is
performed with M0 = M = 4,000 for all 300 data sets under each of these five priors,
starting either with r = 3 or r = 8 active and rsp = 2 spurious factors.

For each simulated data set, the variance identified posterior draws under a specific
prior yield estimates of the posterior mode r̃, the posterior ordinate Ptrue = Pr(r̃ =
rtrue|y), the posterior risk measures RΩ = E(L(Ωr,Ω0)|y), RΣ = E(L(Σr,Σ0)|y) and
RΩ−1 = E(L(Ω−1

r ,Ω−1
0 )|y) in recovering the true matrices Ω0, Σ0, and Ω−1

0 , where
L is the entropy (or Stein) loss (Yang and Berger, 1994), the true positive rate TPΩ
for non-zero and the false positive rate FPΩ for zero correlations in Ω0, the bias Bd =
E(dr|y) − dtrue in model size, and the true positive rate TPδ and the false positive
rate FPδ for the true sparsity pattern δΛ. Tables 2 and K.1 report the average and
Figures K.2 to K.7 the entire sampling distribution for these performance measures for
all sparsity patterns and slab distributions Pslab.

In general, sparse UGLT Bayesian factor analysis has a high hit rate and correctly
recovers the true number of factors through the posterior mode for most of the 1500 runs
of our sampler, with 76 and, respectively, 14 under- and overfittings occurring mainly
for the block and the market sparsity patterns. The choice of Pslab has considerable
impact on recovering the true sparsity pattern δΛ in Λ and Ω0. The fractional prior has
the smallest false positive rates FPδ and FPΩ both for δΛ and Ω0 which is considerably
smaller than for hierarchical shrinkage priors for all sparsity patterns. At the risk of
higher false positive rates, the true positive rates TPδ and TPΩ both for δΛ and Ω0
are larger for hierarchical shrinkage priors than for the fractional prior, for which they
are still high with a few exceptions. Overall, the fractional prior leads to the sparsest
solutions with the smallest model size d, resulting in strong underfitting of d for the
dense pattern but also in the smallest bias in d for other sparsity patterns. Regarding
the estimates for Ω0, Ω−1

0 and Σ0, hierarchical shrinkage priors have a smaller average
loss L than the fractional prior, even if the differences are significant only for the dense
sparsity pattern.

For comparison, we perform for each of the sparsity patterns under each slab dis-
tribution sparse BFA under the PLT condition, assuming that the number of factors
r = 5 is known and equal to the true value. Priors are the same as under UGLT with
H = 5. MCMC is implemented by a simplification of Algorithm 1, see Appendix J.
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r̃ Ptrue RΩ RΩ−1 RΣ TPΩ FPΩ Bd TPδ FPδ

Dedicated
UGLT F 5 0.998 1.41 1.47 0.98 94.3 9.56 0.5 96.1 5.3

G 5.04(0,2) 0.933 1.49 1.62 0.94 97.3 37.9 7.48 96.2 21.6
T 5 0.962 1.48 1.58 0.94 97.1 59.4 17.3 95.4 38.3

PLT F – – 2.66 2.98 1.67 85.3 34.5 3.25 28.2 75.2
G – – 2.35 2.17 1.18 91.2 58.1 13.8 37.2 74.7
T – – 2.29 2.24 1.26 93.1 72.9 28 44.4 77.1

Overlap
UGLT F 5.02(0,1) 0.985 1.61 1.64 0.95 96.3 8.31 1.02 97.7 4.6

G 5 0.939 1.68 1.75 0.88 97.4 33.7 9.33 96.5 21.5
T 5 0.972 1.72 1.83 0.92 98.8 53.7 22.2 98.2 37.2

PLT F – – 2.56 2.49 1.29 88.8 28.6 3.83 37.5 66.1
G – – 2.55 2.43 1.12 94.4 50.7 16.3 42.6 70.2
T – – 2.83 2.62 1.4 95.9 64.9 33.4 53.6 71.5

Block
UGLT F 4.60(18,0) 0.636 3.00 2.78 1.34 88.7 7.25 −25.0 64.0 5.63

G 4.90(6,1) 0.848 2.53 2.56 1.00 95.5 24.8 −8.17 78.5 12.9
T 4.78(11,0) 0.764 2.64 2.61 1.13 97.5 42.2 3.49 82.5 23.6

PLT F – – 4.05 4.19 1.69 83.5 19.2 −23.0 42 39.6
G – – 3.04 3.85 1.18 92.7 37.2 −6.31 59.4 35.2
T – – 4.01 4.59 1.79 95.1 49.1 11.8 61.6 47.5

Sparse
UGLT F 4.84(4,0) 0.92 2.64 2.43 1 93 7.85 0.06 90.6 9.9

G 5.02(0,1) 0.94 2.32 2.44 0.88 98.6 27.5 17 94.5 26.7
T 4.8(2,0) 0.94 2.31 2.4 0.94 95.6 38.1 35.4 96.5 41.0

PLT F – – 3.67 3.59 1.33 91 18.4 3.7 56.6 47.0
G – – 2.66 2.87 0.95 98.3 32.6 20.8 74.0 45.4
T – – 2.83 2.74 1.13 98.9 42.4 41.2 82.0 52.6

Market
UGLT F 4.86(4,0) 0.919 2.78 2.43 1.03 96 0 −1.04 93.0 5.89

G 5.02(0,1) 0.951 2.28 2.39 0.87 99.6 0 10.6 95.1 17.7
T 4.84(6,1) 0.86 2.54 2.59 0.98 99.7 0 24 96.5 30.2

PLT F – – 4.5 4.48 1.38 89.3 0 0.79 61.2 40.3
G – – 2.55 2.62 0.92 99 0 14.4 76.4 38.1
T – – 3.13 2.93 1.08 98.7 0 30 78.2 46.6

Dense
UGLT F 4.98(1,0) 0.976 5.94 4.45 1.07 94.1 0 −60.8 56.7 0

G 5 0.989 3.79 3.72 0.85 98.9 0 −26.0 81.4 0
T 5 0.99 4.26 3.99 0.99 99.4 0 −14.8 89.4 0

PLT F – – 6.35 4.98 1.16 94.5 0 −58.1 58.6 0
G – – 3.84 3.71 0.87 98.9 0 −27.4 80.4 0
T – – 4.50 4.07 1.06 99.3 0 −17.1 87.8 0

For each performance measure, the average across 50 simulated data sets is reported. If r̃ �= 5, (a,b)
report, respectively, cases of under- and overfitting.

Table 2: Performance of sparse Bayesian factor analysis under a UGLT condition with
r unknown in comparison to a PLT condition with r = rtrue = 5 known for all sparsity
pattern.
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Figure 3: Comparing the true loading matrix Λ (left) with the estimated loading matrix
Λ̂ under the UGLT condition with r unknown (middle) and under the PLT condition
with r = 5 known (right-hand side) for a randomly selected data set under the dedicated
with overlap scenario (fractional prior in the slab).

Eight performance measures are determined from these draws and compared to sparse
BFA under the UGLT condition in Tables 2 and K.1 and Figures K.2 to K.7. Despite
assuming the true number of factors, PLT shows worse performance with respect to
recovering the true sparsity pattern in Λ and Ω0, but also exhibits a higher loss L in
estimating Ω0, Ω−1

0 and Σ0 with the exception of dense factor models which is the
only sparsity pattern where the PLT pivots (l1, . . . , l5) = (1, . . . , 5) coincide with the
true pivots. For all other sparsity patterns, the PLT condition imposed on Λ does not
really solve rotational invariance, but imposes an ordering on the columns of Λ that is
in conflict with the GLT ordering, see Figure 3 for illustration.

5.2 Sparse Bayesian factor analysis for exchange rate data
As a first exercise on real data, we analyze log returns spanning T = 96 months from
m = 22 exchange rates against the Euro.3 The data are demeaned and standardized.
Note that H = 10. We combine the fractional prior (C.4) with the following priors on
σ2
i : prior (3.14) (HIG) and (3.15) (HF) with default settings, prior (3.14) with bσi chosen

as in Frühwirth-Schnatter and Lopes (2018) (FSL) and σ2
i ∼ G−1 (1, 0.3) (Bhattacharya

and Dunson, 2011) (BD). Algorithm 1 is run for each prior for M = 50,000 iterations,
after a burn-in of 50,000. To verify convergence, independent MCMC chains are started
with r = 7 active and rsp = 3 spurious columns. The sampler shows good mixing across
models of different dimension, with the inefficiency factor for model size d ranging from
7 (FSL) to 22 (HF). For illustration, Figure 4 shows all posterior draws of r and d
including burn-in for the HIG prior.

3The data were obtained from the European Central Bank’s Statistical Data Warehouse and range
from January 3, 2000, to December 3, 2007. Table L.2 in Appendix L lists the 22 currencies. We derived
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Figure 4: Exchange rate data (standardized); posterior draws of the factor dimension
r (left) and model size d (right) including burn-in (fractional prior combined with the
HIG prior).

p(r|y)
Prior 0-2 3 4 5 6 7-10 100pV E(d|y) E(α|y) E(γ|y)
HF 0 0.137 0.834 0.029 ≈ 0 0 90.3 28 2.3 1.1
HIG 0 0.110 0.874 0.016 ≈ 0 0 92.5 28 2.3 1.1
FSL 0 0.033 0.954 0.013 0 0 93.5 28 2.3 1.1
BD 0 0.033 0.954 0.013 0 0 93.6 28 2.2 1.1

Note: non-zero probabilities smaller than 10−3 are indicated by ≈ 0.

Table 3: Exchange rate data (standardized); posterior distribution p(r|y) of the number
of factors, fraction 100pV of variance identified draws, posterior means of model size d
and the hyperparameters α and γ under the fractional prior and various priors for σ2

i .

Pr(qi = 0|y)
Prior on σ2

i CHF CZK MXN NZD RON RUB remaining
HF 0.88 0.74 0.81 0.47 0.61 0.61 0
HIG 0.88 0.73 0.82 0.46 0.55 0.61 0
FSL 0.88 0.75 0.81 0.49 0.61 0.61 0
BD 0.87 0.72 0.82 0.48 0.62 0.64 0

Table 4: Exchange rate data (standardized); posterior probability of the event Pr(qi =
0|y), where qi is the row sum of δr, for various currencies.

Posterior inference as summarized in Table 3 is robust to the chosen prior. The
fraction pV of variance identified draws is in general very high and the posterior distri-
bution p(r|y) is highly concentrated at four factors. The indicator matrix δr is sparse,
with an average posterior model size of 28. The variance identified draws are used to
explore if some measurements are uncorrelated with the remaining measurements. This
is investigated in Table 4 through the posterior probability Pr(qi = 0|y), where qi is the
ith row sum of δr. The Swiss franc (CHF), the Mexican peso (MXN) and the Czech
koruna (CZK) have considerable probability to be uncorrelated with the rest, while the

the returns based on the first trading day in a month.
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Figure 5: Exchange rate data (standardized); left hand side: sparsity matrix δ4 cor-
responding to the median probability model (identical for all four priors); right hand
side: estimated loading matrix E(Λ|̂l4,y) with l̂4 = (1, 2, 5, 7) for the HIG prior (nearly
identical for all four priors).

situation is less clear for the New Zealand dollar (NZD), the Romania fourth leu (RON),
and the Russian ruble (RUB). The remaining currencies are clearly correlated.

All posterior draws βr are rotated into a GLT structure Λ by ordering the pivots
such that l1 < . . . < lr. The sequence of pivots visited most often among all draws
with r = r̃ = 4 is equal to l̂4 = (1, 2, 5, 7) for all priors and coincides with the sequence
of pivots l
 visited most often among all variance identified draws. Sign switching is
resolved by imposing the constraint Λ11 > 0, Λ22 > 0, Λ53 > 0, and Λ74 > 0 on Λ. All
GLT draws where the pivots l4 coincide with l̂4 = (1, 2, 5, 7) are used to identify the GLT
representation of the factor loading matrix Λ and the marginal inclusion probabilities
Pr(δij = 1|y, l̂4). The analysis reveals a factor model with considerable sparsity, with
many factor loadings being shrunk toward zero, see Figure 5 for illustration. Factor 2
is a common factor among the correlated currencies, while the remaining factors are
three group specific, for the most part dedicated factors. Further results are reported in
Appendix L.

5.3 Sparse factor analysis for NYSE stock returns

As a second application, we consider monthly log returns from m = 63 firms from the
NYSE observed for T = 247 months from February 1999 till August 2019.4 Note that

4T = 247 monthly returns (determined on the last trading day in each month) starting from
February, 1999, of the largest 150 companies listed on the NYSE were downloaded from Bloomberg
on September 13, 2019. After removing all companies with missing data, 103 firms remained. For our
study, we consider the 63 firms belonging to the following five sectors: basic industries (1-7), non-durable
consumer goods (8-17), energy (18-27), finance (28-45) and health care (46-63).
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Figure 6: NYSE data; from left to right: posterior draws of the total number of non-zero
columns r + rsp, the number of spurious columns rsp, the extracted number of factors
r and the model dimension d.

p(r|y)
0-14 15 16 17 18 19 20 21-31 E(d|y) E(α|y) E(γ|y)

0 0.066 0.363 0.317 0.212 0.038 ≈ 0 0 269 4.4 1.1
Note: non-zero probabilities smaller than 10−2 are indicated by ≈ 0.

Table 5: NYSE data; posterior distribution p(r|y) of the number of factors; posterior
means of model size d and the hyperparameters α and γ under prior (3.12) with aω =
cω = 0.2 and the hierarchical F-prior (3.15) on σ2

i .

H = 31. Since the data are not standardized, we fit an extended EFA model

yt = μ + βHfHt + εt, εt ∼ Nm (0,ΣH) , fHt ∼ NH (0, IH) ,

with unknown mean μ, see Appendix M for details. As in the previous sections, we
tried to apply a fractional prior as slab distribution, however, the fraction of variance
identified posterior draws was extremely low (less than 1%). Instead, a hierarchically
structured Gaussian shrinkage prior (3.12) is chosen, with local scaling parameters fol-
lowing a triple gamma prior with aω = cω = 0.2, and combined with the hierarchical
F-prior (3.15) on σ2

i . The fraction pV of variance identified MCMC draws under this
prior is roughly 32%. Algorithm 1 was applied to obtain M = 50,000 posterior draws af-
ter a burn-in of 50,000 draws, starting with r = 20 factors and rsp = 3 spurious columns.
The MCMC scheme shows relatively good mixing, despite the high dimensionality, as
illustrated by Figure 6 showing posterior draws of the total number of non-zero columns,
r+ rsp, the number of spurious columns rsp, the extracted number of factors r, and the
model dimension d.

As shown in Table 5, the posterior distribution p(r|y) derived from the variance
identified draws yields a posterior mode of r̃ = 16, but also 17 or 18 factors receive
considerable posterior evidence. For further inference, all posterior draws βr are rotated
into a GLT structure Λ by ordering the pivots such that l1 < . . . < lr. The sequence
of pivots visited most often among all draws of varying dimension r is equal to l
 =
(1, 2, 3, 4, 5, 8, 9, 11, 13, 15, 18, 19, 20, 32, 46, 48) which implies that the estimator r
 = 16
is identical with the posterior mode r̃ = 16. Furthermore, the sequence of pivots l̂16
visited most often among all draws of dimension r = 16 coincides with l
.
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Figure 7: NYSE data; estimated GLT representation of the factor loading matrix Λ.

Figure 8: NYSE data; estimated marginal correlation matrix E(Ω
|y), where Ω

i� =

Corr((yit − Λi1f1t)(y�t − Λ�1f1t)).

All GLT draws where the pivots lr coincide with l
 = l̂16 are used to identify the
GLT representation of the factor loading matrix Λ, see Figure 7. The analysis reveals a
factor model with extreme sparsity. The first factor is a market factor that loads on all 63
firms. Several sector-specific factors emerge and capture industry specific correlations.
Other factors capture cross-sectional correlations between specific firms. The remaining
factors are weak factors with very sparse loadings; see also the estimated marginal
correlation matrix Ω
 that remains after extracting the first factor in Figure 8.
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6 Concluding remarks
We have estimated a fairly important and highly implemented class of sparse factor
models when the number of common factors is unknown. Our framework leads to a
natural, efficient and simultaneous coupling of model estimation and selection on one
hand and model identification and rank estimation (number of factors) on the other
hand. More precisely, by combining point-mass mixture priors with overfitting sparse
factor modelling in an unordered generalised lower triangular loadings representation
(Frühwirth-Schnatter et al., 2023), we obtain posterior summaries regarding factor load-
ings, common factors as well as the factor dimension via post-processing draws from
our highly efficient and customised MCMC scheme. The new framework is readily avail-
able for some straightforward extensions. The reversible jump MCMC algorithm, for
instance, can be applied to other factor models with minor modifications, in particular,
to structures where all elements δij in the sparsity matrix δH are left unconstrained,
see the studies in Frühwirth-Schnatter et al. (2023). The assumptions underlying the
basic factor model can be substituted by idiosyncratic errors from Student-t distri-
butions, by factors following Laplace (Grushanina and Frühwirth-Schnatter, 2021) or
more general Gaussian mixtures priors (Piatek and Papaspiliopoulos, 2018) or by con-
sidering dynamic sparse factor models with stationary common factors (Kaufmann and
Schuhmacher, 2019). A further interesting extension which is not built into the current
analysis is to design a prior on the sparsity matrix that a priori distinguishes between
pervasive factors that load on most measurements, group specific factors that load on
selected measurements and factors that capture weak cross-sectional heterogeneity. Such
approximate factor models are very popular in frequentist factor analysis (Chamberlain
and Rothschild, 1983; Bai and Ng, 2002) and would deserve more attention from the
Bayesian community. However, we leave this interesting idea for future research.

Supplementary Material
Supplementary material for: “Sparse Bayesian factor analysis when the number of fac-
tors is unknown” (DOI: 10.1214/24-BA1423SUPP; .pdf).

References
Akaike, H. (1987). “Factor analysis and AIC.” Psychometrika, 52: 317–332. MR0914459.

doi: https://doi.org/10.1007/BF02294359. 11

Anderson, T. W. (2003). An introduction to multivariate statistical analysis. Chichester:
Wiley, 3rd edition. MR1990662. 1

Anderson, T. W. and Rubin, H. (1956). “Statistical inference in factor analysis.” In Pro-
ceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability,
volume V, 111–150. MR0084943. 3, 5

Aßmann, C., Boysen-Hogrefe, J., and Pape, M. (2016). “Bayesian analysis of static and
dynamic factor models: An ex-post approach toward the rotation problem.” Jour-

https://doi.org/10.1214/24-BA1423SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=0914459
https://doi.org/10.1007/BF02294359
https://mathscinet.ams.org/mathscinet-getitem?mr=1990662
https://mathscinet.ams.org/mathscinet-getitem?mr=0084943


S. Frühwirth-Schnatter, D. Hosszejni, and H. F. Lopes 27

nal of Econometrics, 192: 190–206. MR3463672. doi: https://doi.org/10.1016/j.
jeconom.2015.10.010. 2, 3

Bai, J. and Ng, S. (2002). “Determining the number of factors in approximate factor
models.” Econometrica, 70: 191–221. MR1926259. doi: https://doi.org/10.1111/
1468-0262.00273. 2, 26

Bai, J. and Ng, S. (2013). “Principal components estimation and identification of static
factors.” Journal of Econometrics, 176: 18–29. MR3067022. doi: https://doi.org/
10.1016/j.jeconom.2013.03.007. 3

Bartholomew, D. J. (1987). Latent variable models and factor analysis. London: Charles
Griffin. 11

Bhattacharya, A. and Dunson, D. (2011). “Sparse Bayesian infinite factor mod-
els.” Biometrika, 98: 291–306. MR2806429. doi: https://doi.org/10.1093/biomet/
asr013. 2, 12, 21

Cadonna, A., Frühwirth-Schnatter, S., and Knaus, P. (2020). “Triple the gamma – A
unifying shrinkage prior for variance and variable selection in sparse state space and
TVP models.” Econometrics, 8: 20. 4, 10, 12

Carvalho, C. M., Chang, J., Lucas, J. E., Nevins, J., Wang, Q., and West, M.
(2008). “High-dimensional sparse factor modeling: Applications in gene expres-
sion genomics.” Journal of the American Statistical Association, 103: 1438–1456.
MR2655722. doi: https://doi.org/10.1198/016214508000000869. 3, 13

Chamberlain, G. and Rothschild, M. (1983). “Arbitrage, factor structure, and mean-
variance analysis on large asset markets.” Econometrica, 51: 1281–1304. MR0736050.
doi: https://doi.org/10.2307/1912275. 26

Chan, J., Leon-Gonzalez, R., and Strachan, R. W. (2018). “Invariant inference and
efficient computation in the static factor model.” Journal of the American Statistical
Association, 113: 819–828. MR3832229. doi: https://doi.org/10.1080/01621459.
2017.1287080. 2

Conti, G., Frühwirth-Schnatter, S., Heckman, J. J., and Piatek, R. (2014). “Bayesian
exploratory factor analysis.” Journal of Econometrics, 183: 31–57. MR3269916.
doi: https://doi.org/10.1016/j.jeconom.2014.06.008. 2, 3, 17

De Vito, R., Bellio, R., Trippa, L., and Parmigiani, G. (2021). “Bayesian Multi-study
factor analysis for high-throughput biological data.” The Annals of Applied Statistics,
15: 1723 – 1741. MR4355073. doi: https://doi.org/10.1214/21-aoas1456. 2

Durante, D. (2017). “A note on the multiplicative gamma process.” Statistics and Prob-
ability Letters, 122: 198–204. MR3584158. doi: https://doi.org/10.1016/j.spl.
2016.11.014. 2

Fan, J., Fan, Y., and Lv, J. (2008). “High dimensional covariance matrix estima-
tion using a factor model.” Journal of Econometrics, 147: 186–197. MR2472991.
doi: https://doi.org/10.1016/j.jeconom.2008.09.017. 2

https://mathscinet.ams.org/mathscinet-getitem?mr=3463672
https://doi.org/10.1016/j.jeconom.2015.10.010
https://doi.org/10.1016/j.jeconom.2015.10.010
https://mathscinet.ams.org/mathscinet-getitem?mr=1926259
https://doi.org/10.1111/1468-0262.00273
https://doi.org/10.1111/1468-0262.00273
https://mathscinet.ams.org/mathscinet-getitem?mr=3067022
https://doi.org/10.1016/j.jeconom.2013.03.007
https://doi.org/10.1016/j.jeconom.2013.03.007
https://mathscinet.ams.org/mathscinet-getitem?mr=2806429
https://doi.org/10.1093/biomet/asr013
https://doi.org/10.1093/biomet/asr013
https://mathscinet.ams.org/mathscinet-getitem?mr=2655722
https://doi.org/10.1198/016214508000000869
https://mathscinet.ams.org/mathscinet-getitem?mr=0736050
https://doi.org/10.2307/1912275
https://mathscinet.ams.org/mathscinet-getitem?mr=3832229
https://doi.org/10.1080/01621459.2017.1287080
https://doi.org/10.1080/01621459.2017.1287080
https://mathscinet.ams.org/mathscinet-getitem?mr=3269916
https://doi.org/10.1016/j.jeconom.2014.06.008
https://mathscinet.ams.org/mathscinet-getitem?mr=4355073
https://doi.org/10.1214/21-aoas1456
https://mathscinet.ams.org/mathscinet-getitem?mr=3584158
https://doi.org/10.1016/j.spl.2016.11.014
https://doi.org/10.1016/j.spl.2016.11.014
https://mathscinet.ams.org/mathscinet-getitem?mr=2472991
https://doi.org/10.1016/j.jeconom.2008.09.017


28 Sparse Bayesian Factor Analysis

Forni, M., Giannone, D., Lippi, M., and Reichlin, L. (2009). “Opening the black
box: Structural factor models with large cross sections.” Econometric Theory, 25:
1319–1347. MR2540502. doi: https://doi.org/10.1017/S026646660809052X. 2

Foster, D. P. and George, E. I. (1994). “The risk inflation criterion for multiple regres-
sion.” The Annals of Statistics, 22: 1947–1975. MR1329177. doi: https://doi.org/
10.1214/aos/1176325766. 12

Frühwirth-Schnatter, S. (2023). “Generalized cumulative shrinkage process priors with
applications to sparse Bayesian factor analysis.” Philosophical Transactions of the
Royal Society A, 381: 20220148. MR4590506. 3, 8, 10, 12

Frühwirth-Schnatter, S., Hosszejni, D., and Lopes, H. (2023). “When it counts–
Econometric identification of factor models based on GLT structures.” Econometrics,
11(4): 26. doi: https://doi.org/10.3390/econometrics11040026. 3, 4, 5, 26

Frühwirth-Schnatter, S., Hosszejni, D., and Lopes, H. F. (2024). “Supplementary ma-
terial for: “Sparse Bayesian factor analysis when the number of factors is unknown”.”
Bayesian Analysis. doi: https://doi.org/10.1214/24-BA1423SUPP. 10

Frühwirth-Schnatter, S. and Lopes, H. (2010). “Parsimonious Bayesian factor analysis
when the number of factors is unknown.” Research report, Booth School of Business,
University of Chicago. 3, 4, 10, 12, 17

Frühwirth-Schnatter, S. and Lopes, H. (2018). “Sparse Bayesian factor analysis when
the number of factors is unknown.” arXiv:1804.04231. 3, 9, 12, 17, 21

Geweke, J. F. and Singleton, K. J. (1980). “Interpreting the likelihood ratio statis-
tic in factor models when sample size is small.” Journal of the American Statistical
Association, 75: 133–137. 13

Geweke, J. F. and Zhou, G. (1996). “Measuring the pricing error of the arbitrage pricing
theory.” Review of Financial Studies, 9: 557–587. 3

Ghahramani, Z., Griffiths, T. L., and Sollich, P. (2007). “Bayesian nonparametric latent
feature models (with discussion and rejoinder).” In Bernardo, J. M., Bayarri, M. J.,
Berger, J. O., Dawid, A. P., Heckerman, D., Smith, A. F. M., and West, M. (eds.),
Bayesian statistics 8 . Oxford: Oxford University Press. MR2433194. 8

Ghosh, J. and Dunson, D. B. (2009). “Default prior distributions and efficient poste-
rior computation in Bayesian factor analysis.” Journal of Computational and Graphi-
cal Statistics, 18: 306–320. MR2749834. doi: https://doi.org/10.1198/jcgs.2009.
07145. 17

Griffiths, T. L. and Ghahramani, Z. (2006). “Infinite latent feature models and the
Indian buffet process.” In Weiss, Y., Schölkopf, B., and Platt, J. (eds.), Advances in
neural information processing systems, volume 18, 475–482. Cambridge, MA: MIT
Press. MR2441315. 2

Grushanina, M. and Frühwirth-Schnatter, S. (2021). “Bayesian infinite factor models
with non-Gaussian factors.” In JSM Proceedings, International Society of Bayesian

https://mathscinet.ams.org/mathscinet-getitem?mr=2540502
https://doi.org/10.1017/S026646660809052X
https://mathscinet.ams.org/mathscinet-getitem?mr=1329177
https://doi.org/10.1214/aos/1176325766
https://doi.org/10.1214/aos/1176325766
https://mathscinet.ams.org/mathscinet-getitem?mr=4590506
https://doi.org/10.3390/econometrics11040026
https://doi.org/10.1214/24-BA1423SUPP
https://arxiv.org/abs/1804.04231
https://mathscinet.ams.org/mathscinet-getitem?mr=2433194
https://mathscinet.ams.org/mathscinet-getitem?mr=2749834
https://doi.org/10.1198/jcgs.2009.07145
https://doi.org/10.1198/jcgs.2009.07145
https://mathscinet.ams.org/mathscinet-getitem?mr=2441315


S. Frühwirth-Schnatter, D. Hosszejni, and H. F. Lopes 29

Analysis (ISBA) Section, 396–415. Alexandria, VA: American Statistical Association.
26

Grushanina, M. and Frühwirth-Schnatter, S. (2023). “Dynamic mixture of finite mix-
tures of factor analysers with automatic inference on the number of clusters and
factors.” arXiv:2307.07045. 2

Hosszejni, D. and Frühwirth-Schnatter, S. (2022). “Cover it up! Bipartite graphs uncover
identifiability in sparse factor analysis.” arXiv:2211.00671. 4, 5, 18

Jöreskog, K. G. (1969). “A general approach to confirmatory maximum likelihood factor
analysis.” Psychometrika, 34: 183–202. MR0221659. doi: https://doi.org/10.1007/
BF02289658. 3

Kastner, G. (2019). “Sparse Bayesian time-varying covariance estimation in many di-
mensions.” Journal of Econometrics, 210: 98–115. MR3944765. doi: https://doi.
org/10.1016/j.jeconom.2018.11.007. 2

Kastner, G., Frühwirth-Schnatter, S., and Lopes, H. F. (2017). “Efficient Bayesian in-
ference for multivariate factor stochastic volatility models.” Journal of Computational
and Graphical Statistics, 26: 905–917. MR3765354. doi: https://doi.org/10.1080/
10618600.2017.1322091. 17

Kaufmann, S. and Schuhmacher, C. (2017). “Identifying relevant and irrelevant vari-
ables in sparse factor models.” Journal of Applied Econometrics, 32: 1123–1144.
MR3714397. doi: https://doi.org/10.1002/jae.2566. 3

Kaufmann, S. and Schuhmacher, C. (2019). “Bayesian estimation of sparse dynamic fac-
tor models with order-independent and ex-post identification.” Journal of Economet-
rics, 210: 116–134. MR3944766. doi: https://doi.org/10.1016/j.jeconom.2018.
11.008. 3, 13, 26

Kowal, D. R. and Canale, A. (2023). “Semiparametric functional factor models
with Bayesian rank selection.” Bayesian Analysis, 18: 1161–1189. MR4675036.
doi: https://doi.org/10.1214/23-ba1410. 2, 12

Lee, S.-Y. and Song, X.-Y. (2002). “Bayesian selection on the number of factors in a
factor analysis model.” Behaviormetrika, 29: 23–39. MR1894459. doi: https://doi.
org/10.2333/bhmk.29.23. 2

Legramanti, S., Durante, D., and Dunson, D. B. (2020). “Bayesian cumulative shrinkage
for infinite factorizations.” Biometrika, 107: 745–752. MR4138988. doi: https://doi.
org/10.1093/biomet/asaa008. 2, 4, 8, 10

Lopes, H. F. and West, M. (2004). “Bayesian model assessment in factor analysis.”
Statistica Sinica, 14: 41–67. MR2036762. 2, 13

Martin, J. K. and McDonald, R. P. (1975). “Bayesian estimation in unrestricted factor
analysis: A treatment for Heywood cases.” Psychometrika, 40: 505–517. MR0488503.
doi: https://doi.org/10.1007/BF02291561. 11

Neudecker, H. (1990). “On the identification of restricted factor loading matrices: An

https://arxiv.org/abs/2307.07045
https://arxiv.org/abs/2211.00671
https://mathscinet.ams.org/mathscinet-getitem?mr=0221659
https://doi.org/10.1007/BF02289658
https://doi.org/10.1007/BF02289658
https://mathscinet.ams.org/mathscinet-getitem?mr=3944765
https://doi.org/10.1016/j.jeconom.2018.11.007
https://doi.org/10.1016/j.jeconom.2018.11.007
https://mathscinet.ams.org/mathscinet-getitem?mr=3765354
https://doi.org/10.1080/10618600.2017.1322091
https://doi.org/10.1080/10618600.2017.1322091
https://mathscinet.ams.org/mathscinet-getitem?mr=3714397
https://doi.org/10.1002/jae.2566
https://mathscinet.ams.org/mathscinet-getitem?mr=3944766
https://doi.org/10.1016/j.jeconom.2018.11.008
https://doi.org/10.1016/j.jeconom.2018.11.008
https://mathscinet.ams.org/mathscinet-getitem?mr=4675036
https://doi.org/10.1214/23-ba1410
https://mathscinet.ams.org/mathscinet-getitem?mr=1894459
https://doi.org/10.2333/bhmk.29.23
https://doi.org/10.2333/bhmk.29.23
https://mathscinet.ams.org/mathscinet-getitem?mr=4138988
https://doi.org/10.1093/biomet/asaa008
https://doi.org/10.1093/biomet/asaa008
https://mathscinet.ams.org/mathscinet-getitem?mr=2036762
https://mathscinet.ams.org/mathscinet-getitem?mr=0488503
https://doi.org/10.1007/BF02291561


30 Sparse Bayesian Factor Analysis

alternative condition.” Journal of Mathematical Psychology, 34: 237–241. MR1057287.
doi: https://doi.org/10.1016/0022-2496(90)90004-S. 3

O’Hagan, A. (1995). “Fractional Bayes factors for model comparison.” Journal of the
Royal Statistical Society, Ser. B, 57: 99–138. MR1325379. 10

Owen, A. B. and Wang, J. (2016). “Bi-cross-validation for factor analysis.” Statistical
Science, 31: 119–139. MR3458596. doi: https://doi.org/10.1214/15-STS539. 2

Papastamoulis, P. and Ntzoufras, I. (2022). “On the identifiability of Bayesian factor
analytic models.” Statistics and Computing, 32: 23. MR4394853. doi: https://doi.
org/10.1007/s11222-022-10084-4. 3

Pati, D., Bhattacharya, A., Pillai, N. S., and Dunson, D. B. (2014). “Posterior con-
traction in sparse Bayesian factor models for massive covariance matrices.” Annals of
Statistics, 42: 1102–1130. MR3210997. doi: https://doi.org/10.1214/14-AOS1215.
4

Piatek, R. and Papaspiliopoulos, O. (2018). “A Bayesian nonparametric approach to
factor analysis.” Submitted. 26

Poworoznek, E., Ferrari, F., and Dunson, D. (2021). “Efficiently resolving rotational
ambiguity in Bayesian matrix sampling with matching.” arXiv:2107.13783. 3

Reiersøl, O. (1950). “On the identifiability of parameters in Thurstone’s multiple factor
analysis.” Psychometrika, 15: 121–149. MR0035966. doi: https://doi.org/10.1007/
BF02289197. 3

Ročková, V. and George, E. I. (2017). “Fast Bayesian factor analysis via automatic
rotation to sparsity.” Journal of the American Statistical Association, 111: 1608–1622.
MR3601721. doi: https://doi.org/10.1080/01621459.2015.1100620. 2, 4, 8

Schiavon, L. and Canale, A. (2020). “On the truncation criteria in infinite factor
models.” Stat, 9: e298. MR4156478. doi: https://doi.org/10.1007/s40065-018-
0218-4. 10

Schiavon, L., Canale, A., and Dunson, D. B. (2022). “Generalized infinite factorization
models.” Biometrika, 109: 817–835. MR4472850. doi: https://doi.org/10.1093/
biomet/asab056. 10

Teh, Y. W., Görür, D., and Ghahramani, Z. (2007). “Stick-breaking construction for the
Indian buffet process.” In Meila, M. and Shen, X. (eds.), Proceedings of the eleventh
international conference on artificial intelligence and statistics, volume 2 of Proceed-
ings of Machine Learning Research, 556–563. San Juan, Puerto Rico: PMLR. 8

Thurstone, L. L. (1947). Multiple factor analysis. Chicago: University of Chicago.
MR1526847. doi: https://doi.org/10.2307/2304512. 1, 2, 11, 12

van Dyk, D. and Meng, X.-L. (2001). “The art of data augmentation.” Journal of Com-
putational and Graphical Statistics, 10: 1–50. MR1936358. doi: https://doi.org/
10.1198/10618600152418584. 17

Wagner, H., Frühwirth-Schnatter, S., and Jacobi, L. (2023). “Factor-augmented

https://mathscinet.ams.org/mathscinet-getitem?mr=1057287
https://doi.org/10.1016/0022-2496(90)90004-S
https://mathscinet.ams.org/mathscinet-getitem?mr=1325379
https://mathscinet.ams.org/mathscinet-getitem?mr=3458596
https://doi.org/10.1214/15-STS539
https://mathscinet.ams.org/mathscinet-getitem?mr=4394853
https://doi.org/10.1007/s11222-022-10084-4
https://doi.org/10.1007/s11222-022-10084-4
https://mathscinet.ams.org/mathscinet-getitem?mr=3210997
https://doi.org/10.1214/14-AOS1215
https://arxiv.org/abs/2107.13783
https://mathscinet.ams.org/mathscinet-getitem?mr=0035966
https://doi.org/10.1007/BF02289197
https://doi.org/10.1007/BF02289197
https://mathscinet.ams.org/mathscinet-getitem?mr=3601721
https://doi.org/10.1080/01621459.2015.1100620
https://mathscinet.ams.org/mathscinet-getitem?mr=4156478
https://doi.org/10.1007/s40065-018-0218-4
https://doi.org/10.1007/s40065-018-0218-4
https://mathscinet.ams.org/mathscinet-getitem?mr=4472850
https://doi.org/10.1093/biomet/asab056
https://doi.org/10.1093/biomet/asab056
https://mathscinet.ams.org/mathscinet-getitem?mr=1526847
https://doi.org/10.2307/2304512
https://mathscinet.ams.org/mathscinet-getitem?mr=1936358
https://doi.org/10.1198/10618600152418584
https://doi.org/10.1198/10618600152418584


S. Frühwirth-Schnatter, D. Hosszejni, and H. F. Lopes 31

Bayesian treatment effects models for panel outcomes.” Econometrics and Statistics,
28: 63–80. MR4644292. doi: https://doi.org/10.1016/j.ecosta.2022.04.003. 2

West, M. (2003). “Bayesian factor regression models in the “large p, small n” paradigm.”
In Bernardo, J. M., Bayarri, M. J., Berger, J. O., Dawid, A. P., Heckerman, D.,
Smith, A. F. M., and West, M. (eds.), Bayesian statistics 7 , 733–742. Oxford: Oxford
University Press. MR2003537. 3

Yang, R. and Berger, J. O. (1994). “Estimation of a covariance matrix using the reference
prior.” The Annals of Statistics, 22: 1195–1211. MR1311972. doi: https://doi.org/
10.1214/aos/1176325625. 19

Yu, Y. and Meng, X.-L. (2011). “To center or not to center: That is not the ques-
tion - An ancillarity-suffiency interweaving strategy (ASIS) for boosting MCMC effi-
ciency.” Journal of Computational and Graphical Statistics, 20: 531–615. MR2878987.
doi: https://doi.org/10.1198/jcgs.2011.203main. 17

Zhao, S., Gao, C., Mukherjee, S., and Engelhardt, B. E. (2016). “Bayesian group factor
analysis with structured sparsity.” Journal of Machine Learning Research, 17: 1–47.
MR3580349. 4, 10, 12

https://mathscinet.ams.org/mathscinet-getitem?mr=4644292
https://doi.org/10.1016/j.ecosta.2022.04.003
https://mathscinet.ams.org/mathscinet-getitem?mr=2003537
https://mathscinet.ams.org/mathscinet-getitem?mr=1311972
https://doi.org/10.1214/aos/1176325625
https://doi.org/10.1214/aos/1176325625
https://mathscinet.ams.org/mathscinet-getitem?mr=2878987
https://doi.org/10.1198/jcgs.2011.203main
https://mathscinet.ams.org/mathscinet-getitem?mr=3580349


32 Invited Discussion

Invited Discussion

Gonzalo García-Donato∗

1 Introduction
A common and challenging feature of factorial models is ignorance of the number k of
latent variables. This parameter has a structural nature, with a huge effect on the final
likelihood assumed. For example, if k = 0, the number of parameters in the factor model
is m (the dimension of yt), while if k = 1, the underlying (unconstrained) factor model
doubles its complexity with 2m parameters. The scenario is that of a model selection
problem as opposed to an estimation problem where a single model (k in this context)
is treated as known.

In this paper, the uncertainty about k is treated explicitly by assuming that k is
unknown but lies in a pre-specified interval 0 ≤ k ≤ H. Once this is properly subsumed
within a Bayesian framework, the need to fix this parameter has been circumvented and
we will be able to infer a posteriori about k and any other quantity of interest. The task
is far from straightforward and poses extraordinary challenges that the authors address
with skill. The result is a thorough addition to the literature on factor models, greatly
expanding our understanding of these very popular tools in econometric applications.

A crucial aspect of this paper is the use of (Dirac) spike and slab priors (hereafter
DSS) for the factor coefficients βH = (βij)ij with 1 ≤ i ≤ m and 1 ≤ j ≤ H. The (i, j)
component of the associated binary matrix δH is zero if βij = 0 (a possible event because
of the positive – the spike – mass at zero). These special priors are the key ingredient
to substantiate the desired uncertainty about the number of factors and subsequent
relational aspects over their components. For example, k becomes the number of non-
zero columns in δH , and so on.

DSSs are one of the many priors that have emerged from the model selection lit-
erature. An unambiguous feature that reveals their model selection nature is that the
slab component (usually a Gaussian density) is proper. If such a component were im-
proper or would be a vague density, the results would be essentially arbitrary (Berger,
2006). Among the alternatives, DSS have the main distinction of assuming indepen-
dence (perhaps conditional on hyperparameters) among their components. For variable
selection, this leads to suboptimal priors (Bayarri et al., 2012), but their usefulness
in solving complex problems like the one in this paper is unquestionable. Because of
this independence, DSS obscures the existing differences between model selection and
estimation. This is because each model prior is implicitly defined by integration, but
this is not generally true for model selection priors (and the prior for a model nested
in a particular model does not coincide with the marginal of the larger model). The
surprising consequence is that the progress made in Bayesian model selection has had
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little impact on the progress made in DSS priors (and vice versa!). In a sense, the two
lines of research have evolved in isolation from each other over the past decades. In this
regard, the effort in this paper to incorporate more sophisticated model selection priors,
such as the fractional priors, is a solid step towards reconciliation.

My discussion aims to revisit aspects of this work from a model selection perspective,
trying to stimulate the possible benefits of such interactions.

2 Reconciling terms
Model selection (also called model choice or model uncertainty) is a branch of statistics
that explicitly assumes that the model generating the data is unknown. Usually, this
flexibility is limited to the assumption that the true model belongs to a fixed set of
possibilities known as model space (M); the so-called M-closed perspective. Within
the Bayesian paradigm, and given its intrinsic ability to handle all kinds of uncertainty,
many important problems in statistics have been approached through the lens of model
selection. This was the route taken by H. Jeffreys (Jeffreys, 1961) for the paradigmatic
case of testing, where each hypothesis entertained is made equivalent to a competing
model. Another very popular example is variable selection, where each subset of the
originally considered variables defines a possible model, and where we find one of the
origins of DSS priors (Mitchell and Beauchamp, 1988).

Almost automatically, Bayesian model selection procedures are parsimonious, in ac-
cordance with Occam’s razor postulate (Berger and Pericchi, 2001). In modern language,
we say that it induces sparsity, a desirable property exploited in the present work. Spar-
sity is a consequence of i) explicitly considering all models as plausible alternatives, and
ii) a proper prior over the additional parameters, which has the effect of penalizing
complexity.

The simplest model (say M0) in M occupies a relevant place in model selection –
in this work, M0 is the model with only idiosyncratic variances, σ2

i , and μ –. M0 al-
lows us to distinguish between common parameters and new parameters. For common
parameters the literature suggests (see e.g. Bayarri et al., 2012) that, under convenient
reparameterizations, we can use objective (perhaps improper) priors, justifying limiting
distributions of Eq. 3.14. This way avoids the need to manage additional hyperparame-
ters; is completely objective and would likely counteract the reported Heywood problem.
Of course, the devil is in the details and finding a reparameterization that makes all
models invariant under the same group (Berger et al., 1998) is challenging. For new
parameters – βij – the prior distribution must be a proper prior. The fact that this
prior is usually centered on zero (cf. Eqs. 3.10–3.12) is also related to the importance of
M0 and leads to the second observation about its important role. The simplest model
must be a sensible model, usually requiring an intercept (μ) that can be replaced by
standardization (as is done in this paper).

Inference under model uncertainty is a complex problem called model averaging
(MA) (which recognizes the fact that reports are the result of weighting inferences from
different models). A highly recommended recent review of the topic with an emphasis
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on economics is Steel (2020). For prediction, MA is safe, but for estimation (e.g., to
infer about βij or Λ), we must be convinced that the parameters being weighted have
a compatible meaning across models. Further, we must be prepared to aggregate pos-
terior distributions that mix discrete and continuous distributions. For this reason, the
Bayesian model selection software (García-Donato and Forte, 2018) returns MA in a
way that takes into account the idiosyncratic nature of these parameters.

In this paper, because H is fixed, we are in an M-closed problem (allowing H = ∞
has similarities to the M-open perspective). The cardinality of the model space without
restrictions is 2mH , a number that grows easily with m and H. For example, for the
application in Section 5.2, M has 2220, a number of the order of 1066. In the present
paper, a very promising MCMC scheme is proposed to study such challenging M,
which has a reversible jump engine. The design of specific algorithms able to handle
very large model spaces has been a fruitful area of research in model selection in recent
years (Zanella, 2020; Zhou et al., 2022, see for example). Broadly speaking, the idea
is to sample δij in a way that prioritizes the best models and preserves the essential
properties of an MCMC.

3 Sparsity vs. multiplicity
In model selection settings, the prior on δH usually has a large impact on the results,
especially when M has a large cardinality. In the case of factor models with an un-
known number of factors, such potential sensitivity is perhaps more worrisome given
the dependence on H, a parameter that is fixed with some degree of arbitrariness.

Without constraints, the prior adopted here assumes that δij ∼ Ber(τj) and the
probability of success, τj , follows a beta distribution that depends on two hyperparam-
eters that have independent gamma densities (Table 1). This prior induces both column
and row sparsity. For the NYSE example with H = 31 and m = 63, this choice would
lead to the prior on dimensionality k shown in Figure 1 (left) in this discussion. In
the right side, I have plotted the distribution on k obtained with the constant prior
δij ∼ Ber(.5).

There is no consensus in the literature on the exact role of the prior over model
space. As in the present paper, a large majority of authors have used this prior to
incorporate an additional sparsity effect (but recall that Bayesian model selection is
already parsimonious). Castillo et al. (2015) is a prominent example in variable selection.
Other authors have argued that such a prior should be responsible for controlling for
multiplicity: the fact that more populated dimensions artificially increase their influence
for purely combinatorial reasons (Scott and Berger, 2010). A clear message in Scott
and Berger (2010) is that the constant prior does not provide control in this sense
and should be avoided. This last hypothesis is the one assumed in García-Donato and
Paulo (2022) for the closely related case of variable selection with qualitative variables
(factors). There, the prior for δH is assigned in such a way that it adjusts for column
multiplicity – as opposed to column sparsity –, since all column dimensions receive
the same probability (it is inversely proportional to

(
H
k

)
). This prior has the attractive

additional property of being completely objective, independent of any parameter. The
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Figure 1: For m = 63 and H = 31, the prior on k induced by the prior on δH without
constraints. On the left, the authors’ proposal; on the right, the constant prior. The
dashed line shows a prior that adjusts for multiplicity.

dashed line in Figure 1 corresponds to this prior. Note that it is constant over the
dimensions.

For each of the above possibilities, it is difficult to assess what the final prior would be
once the relevant constraints in the present problem are incorporated. In the examples
in the paper, the posterior distribution of k seems to be concentrated near H

2 (the most
populated dimensions), which does not seem a strong sparse response. It also makes
me think about the issue of multiplicity (this would be a revealing symptom in variable
selection) and whether the proposed prior behaves similarly to the constant prior (as
the similarities shown in Figure 1 seem to indicate).
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Invited Discussion

Niko Hauzenberger∗ and Gary Koop†

Introduction
Conditional on knowing the number of factors, r, analysis in static and dynamic factor
models is straightforward for the Bayesian. However, inference on r is challenging. A
Bayesian could use marginal likelihoods to select the number of factors (see Geweke,
1996). But in the standard big data setups nowadays (which involve a large number of
variables/measurements m), this is computationally cumbersome, requiring the estima-
tion of a large set of models that vary in r (≤ m).

Frühwirth-Schnatter et al. (2024) address this issue using an elegant combination
of an identified factor model and a shrinkage prior which can select the number of
factors (column-wise shrinkage) and shrink the factor loadings on active factors (row-
wise shrinkage). Their strategy involves starting with an overfitting model — as is
often done in the literature on mixture models, see e.g., Malsiner-Walli et al. (2016)
and Grushanina and Frühwirth-Schnatter (2023) — then eliminating spurious factors
(columns) and introducing additional sparsity in loadings (rows) of active factors. These
additional exact zero factor loadings (achieved through row sparsification) not only make
a parsimonious factor model even more parsimonious but also facilitate identification of
the remaining active factors. In terms of computation, Frühwirth-Schnatter et al. (2024)
use a novel and efficient reversible jump Markov chain Monte Carlo (MCMC) sampler
that allows for the number of (active) factors r to vary during sampling. All in all, this
paper is a valuable addition to the Bayesian factor literature.

There are three directions that paper differs from conventional approaches to Bayesian
factor analysis: identification, prior choice and computation. We will organize our dis-
cussion around these three aspects. We will conclude with some thoughts on potential
extensions of this model.

Identification
It is well known that without further restrictions, the static factor model is unidenti-
fied. The restrictions selected by the unordered generalized lower triangular (UGLT)
structure used by the authors are estimated agnostically from the data, rather than
imposed ad hoc or a priori. As explained in Frühwirth-Schnatter et al. (2024) and also
in earlier work by the authors, Frühwirth-Schnatter et al. (2023), UGLT identification
has advantages over the conventional identification scheme which involves assuming the
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factor loading matrix to be lower triangular with positive numbers on the diagonal
(they refer to this identification scheme as PLT). UGLT is much more flexible and is
likely to be as good an identification restriction that is possible in the class of schemes
that achieve identification through zero restrictions on the factor loadings. However,
UGLT — similar to other more conventional zero restriction schemes such as PLT —
can have the drawback that it does not necessarily always guarantee order invariance.
Although, in terms of order invariance, freeing up the exact positions of the zero factor
loadings constitutes a substantial improvement upon PLT and other ad hoc zero re-
striction schemes, UGLT still requires a minimal number of zero restrictions to ensure
identifications of the r factors through r linearly independent rows in the factor loading
matrix. This can make UGLT prone to a lack of order invariance as well.

But why is order invariance relevant for a Bayesian in the first place? Order invari-
ance implies that posterior and predictive results depend on the way the variables are
ordered. In the large Bayesian Vector Autoregression (VAR) literature there is a grow-
ing recognition that standard approaches are not order invariant and that the empirical
effect of a lack of order invariance can be substantial. For instance, two different order-
ings of the variables might lead to almost identical point forecasts, but substantially
different predictive variances and thus substantially different log predictive likelihoods,
see Arias et al. (2023) and Chan et al. (2024).

As noted by Frühwirth-Schnatter et al. (2024), there are other identification schemes
used in factor models. Chan et al. (2018), referred to as CLS herafter, achieve identifica-
tion without using zero restrictions on the factor loadings. CLS consider the static factor
model directly as a reduced-rank regression and develop a fully invariant specification
of that regression model. The details of their identification scheme are not germane to
the present discussion other than to note that it leads to order invariance. However,
their empirical work suggests ordering issues are potentially important in factor mod-
els. In an empirical illustration involving six variables, CLS show how two different
orderings can lead to log marginal likelihoods that differ by about 142 when using the
PLT identification scheme. Of course, the log marginal likelihood is the same for every
possible ordering using the identification scheme they suggest. CLS therefore strongly
recommend using an order-invariant specification. Alternatively, researchers could also
estimate the variable ordering from the data, similar to Wu and Koop (2023) in the VAR
context, or average over all possible orderings. However, the latter strategy is feasible
only when working with small m.

CLS provide theoretical/formal derivations and discussion about issues that arise
when using zero restrictions on factor loadings. Let Λ1 be the r × r matrix containing
the r rows of the factor loading matrix that are restricted to ensure identification. CLS
show that the lack of order invariance arises with any identification scheme, such as
the UGLT one, which restricts Λ1 to be non-singular, imposing r linearly independent
rows in the factor loading matrix. This non-singularity rules out points where |Λ1| = 0
and this leads to a discontinuity which plays a key role in the transformation between
different orderings. CLS show how their approach, which does not rule out |Λ1| = 0,
allows for straightforward evaluation of marginal likelihoods for different choices of
r using the Savage-Dickey density ratio. Thus, choosing the number of factors using
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marginal likelihoods is easy to do unlike in conventional approaches such as PLT and
UGLT. Of course, Frühwirth-Schnatter et al. (2024) have an alternative method of
choosing the number of factors using a clever hierarchical prior. But it is worth noting
that the identification scheme of CLS has one good property that UGLT may lack
when |Λ1| → 0 (i.e., order invariance). And therefore it might be worth comparing
UGLT with the CLS approach for extreme cases where |Λ1| ≈ 0, and to investigate how
UGLT behaves in the presence of discontinuities when the ordering of variables is most
influential (as discussed in Section 3 of CLS).

Some Bayesians are happy working with unidentified models (at least when fore-
casting) since combining a proper prior with an unidentified likelihood will typically
lead to a proper posterior and predictive. This allows us to speculate that, even with-
out the UGLT identification restrictions, the model developed in Frühwirth-Schnatter
et al. (2024) could be a very interesting one. Furthermore, in the recent VAR literature,
identification can be achieved through relaxing the homoskedasticity and Normality as-
sumptions for the VAR errors. This can be done, e.g., by allowing for stochastic volatil-
ity, regime-switching, or fat-tailed errors (see Rigobon, 2003; Lewis, 2022; Bertsche and
Braun, 2022) instead of imposing exact zero restrictions on the error covariance matrix.
Relaxing some assumptions in the Normal and homoskedastic static factor model of
Frühwirth-Schnatter et al. (2024) might be one way (of many ways) forward, thereby
combining UGLT with the identification through heteroskedasticity approach proposed
by Sentana and Fiorentini (2001) for the static factor model.

In summary, the UGLT identifying structure of Frühwirth-Schnatter et al. (2024)
does have some very nice properties as outlined in their paper. This makes it a useful
addition to the Bayesian factor literature. However, other approaches exist with different
properties which may have different advantages, especially as related to order invariance.
When choosing identifying restrictions, the Bayesian must weigh the pros and cons of
each. And it may not even be necessary to make a choice of identifying restrictions on
the factor loadings if working with an unidentified model suffices or if identification is
achieved in other ways (e.g., via heteroskedasticity).

Prior
Frühwirth-Schnatter et al. (2024) propose an exchangeable shrinkage process prior that
does have many attractive properties. Specifically, this prior allows a researcher to effec-
tively let the data decide on the number of (active) factors r in an almost tuning-free,
automatic manner. In addition, it achieves row sparsity in the relevant block of the factor
loading matrix associated with the active factors. Shrinkage along these two dimensions
naturally leads to the quest of the desired/optimal level of column sparsity (which re-
lates to the overall parsimony of the factor model) and row sparsity (which relates to the
simplicity of the remaining structures according to terminology of Frühwirth-Schnatter
et al. (2024)).

When working with exploratory factor models, researchers would most likely agree
that it is desirable to obtain a column sparse specification with a small number of active
factors only (i.e., where r is rather small) and where this small set of factors may even
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be sensible to interpret. Frühwirth-Schnatter et al. (2024) achieve column sparsity by
combining a Dirac spike and slab prior on each factor loading with an exchangeable
shrinkage process on column-specific inclusion probabilities, which increasingly pushes
columns towards zero and thus automatically eliminates superfluous factors.

However, it is less obvious whether row sparsity is a generally desirable feature.
This depends of course on the specific time series data at hand, but in macroeconomics
the illusion of sparsity has recently received considerable attention (Giannone et al.,
2021; Fava and Lopes, 2021; Gruber and Kastner, 2022). Giannone et al. (2021) list
factor models as a typical dense statistical technique. But what about sparse factor
models that aggressively induce row sparsity? In some applications, it may be desirable
to have all these few factors load on many time series and thus be able to explain
most of the variation in the measurements. This would be associated with a row-dense
factor loading matrix and — according to Giannone et al. (2021) — such a row-dense
but column-sparse factor model may be indeed considered dense overall, since most
measurements load on at least one (common) factor. Frühwirth-Schnatter et al. (2024)
consider two applications: one application uses monthly exchange rate data and the
other uses monthly stock market returns. What both applications have in common is
that the factors that tend to load on many time series are easier to interpret, while the
more idiosyncratic factors (with only a very few associated non-zero factor loadings)
tend to be more difficult to interpret. For example, in the financial application using
stock market returns, the market factor (which loads (equally) on almost every single
firm return and acts like a cross-sectional average or first principal component) and the
industry-specific factors (which load on almost every firm within a given industry) can
be labelled and interpreted relatively straightforwardly.

In the VAR context, Gruber and Kastner (2022) discuss the sparsity-inducing prop-
erties of various popular shrinkage priors using a sparsity measure proposed in Hoyer
(2004). In the context of a static factor model and given a specific factor, this measure
defines the sparsest possible estimate as having only one non-zero loading, while the
densest estimate is defined as having all measurements load equally on this factor. It
could be worthwhile to use such a sparsity measure to assess the a priori imposed overall
degree of sparsity of the shrinkage prior.

Sampling and Computation
Frühwirth-Schnatter et al. (2024) propose an efficient reversible jump MCMC sam-
pler. To substantially improve the sampling efficiency of the sparse factor model, they
use MCMC boosting by considering either ancillarity-sufficiency interweaving strategy
(ASIS) or marginal data augmentation (MDA) steps. In applications of Frühwirth-
Schnatter et al. (2024), m is of moderate size (m = 22 in the exchange rate application
and m = 63 in the stock return application) and a static factor model is assumed. In
the static case, the proposed algorithm likely scales well even in higher dimensions using
hundreds of variables. But what if a researcher wishes to use a dynamic factor model,
where the state equation of the factors evolves according to a VAR. For example, in
the case of m = 201, this would amount for an upper bound for the number of factor
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r∗ = m−1
2 = 100 in their overfitting model. Is the proposed reversible jump MCMC

computationally efficient in such a case? Probably yes, but only if the true number of
dynamic factors is low.

Furthermore, Frühwirth-Schnatter et al. (2024) highlight the fact that working with
an unidentified model and leaving the factor loading matrix fully free and unrestricted
may harm posterior inference and sampling efficiency. Even in the unidentified case,
post-processing might still be a valid option, particularly relying on the methods pro-
posed in Kaufmann and Schumacher (2019), Chakraborty et al. (2020) or Bolfarine
et al. (2024). For example, Bolfarine et al. (2024) represents a straightforward yet effec-
tive approach for ex-post sparsification of the factor loading matrix. This method aims
to obtain a sparse posterior representation of posterior estimates and to decide on the
number of factors r based on a loss measure. As argued by Bolfarine et al. (2024), it
is not necessarily a competing approach but rather a complementary device and could
be used for any overfitting model equipped with hierarchical shrinkage priors, as it just
needs the posterior as input.

Potential Extensions from a Practitioner’s View
In this section, we will discuss potential extensions from a practitioner’s view, working
in the field of macroeconomics or finance. Frühwirth-Schnatter et al. (2024) is about the
Normal, homoskedastic, static factor model. Any of these assumptions could be relaxed
or changed. Our discussion will mainly center on the question of what desirable features
a factor model — used off the shelf for analyzing macroeconomic and financial time
series data — should have.

The empirical macroeconomist would probably find the dynamic factor model the
most interesting extension of the model of Frühwirth-Schnatter et al. (2024) since most
macroeconomic data exhibits dependence over time. This would be straightforward to
do although, as noted above, it could potentially cause problems for computation unless
the number of (active) factors is small.

A second extension, commonly done with both macroeconomic and financial times
series data, would involve adding stochastic volatility. This, too, would be straightfor-
ward to add. However, the recent Covid-19 pandemic, geopolitical tensions and earlier
financial and Eurozone crises, raise the issue as to whether simply adding stochastic
volatility is enough. These events caused severe economic shocks and turbulence on the
financial markets. It is possible that the fundamental relationships between the r la-
tent factors and the m observed measurements may have changed in response to these
events. Accounting for this would require a very flexible model that not only allows the
variance of the factors and/or idiosyncratic shocks to vary over time but also allows for
time-varying factor loadings. Relating this discussion to that on sparsity, such a model
would imply dynamic row sparsity and dynamic column sparsity (i.e., time-varying di-
mensions of the factor loading matrix). Such extensions would not be difficult to add
and may be necessary when working with macroeconomic or financial data sets which
include crisis periods.
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Summary and Conclusions
Frühwirth-Schnatter et al. (2024) is an exceptionally fine paper and the methods de-
scribed therein should belong in any practitioner’s toolbox. In this discussion, we have
offered some thoughts about identification in their model, highlighting the issue of or-
der invariance. We have also discussed the prior and computational issues. The prior of
Frühwirth-Schnatter et al. (2024) has attractive properties and, as their title empha-
sizes, their approach is about “sparse” Bayesian factor models. But the title of another
paper we cite, Gruber and Kastner (2022), ends with the “Sparse or dense? It depends!”
and we offer some thoughts on their prior in light of the sparse versus dense debate.
The methods of Frühwirth-Schnatter et al. (2024) could be adapted to allow for row
density instead of sparsity.

On computation, our comments relate to computational efficiency with larger m or
r. We speculate that their methods would work well in the static factor model of any
dimension, and in the dynamic factor model if r is small. But there may be worries with
large r or in more complicated models. Furthermore, we offer some additional thoughts
on the use of post-processing methods.

There are a myriad of interesting extensions of the static factor model and we dis-
cuss a few of them likely to be of most interest to the practitioners and argue that
extending the methods of Frühwirth-Schnatter et al. (2024) to handle them would be
straightforward.
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