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Gaussian deterministic approximations are routinely employed in Bayes-
ian statistics to ease inference when the target posterior is intractable. While
these approximations are justified, in asymptotic regimes, by Bernstein–von
Mises type results, in practice the expected Gaussian behavior might poorly
represent the actual shape of the target posterior, thus affecting approxima-
tion accuracy. Motivated by these considerations, we derive an improved class
of closed-form and valid deterministic approximations of posterior distribu-
tions that arise from a novel treatment of a third-order version of the Laplace
method yielding approximations within a tractable family of skew-symmetric
distributions. Under general assumptions accounting for misspecified models
and non-i.i.d. settings, such a family of approximations is shown to have a
total variation distance from the target posterior whose convergence rate im-
proves by at least one order of magnitude the one achieved by the Gaussian
from the classical Bernstein–von Mises theorem. Specializing this result to
the case of regular parametric models shows that the same accuracy improve-
ment can be also established for the posterior expectation of polynomially
bounded functions. Unlike available higher-order approximations based on,
for example, Edgeworth expansions, our results prove that it is possible to de-
rive closed-form and valid densities which provide a more accurate, yet simi-
larly tractable, alternative to Gaussian approximations of the target posterior,
while inheriting its limiting frequentist properties. We strengthen these argu-
ments by developing a practical skew-modal approximation for both joint and
marginal posteriors which preserves the guarantees of its theoretical coun-
terpart by replacing the unknown model parameters with the corresponding
maximum a posteriori estimate. Simulation studies and real-data applications
confirm that our theoretical results closely match the empirical gains observed
in practice.

1. Introduction. Modern Bayesian statistics often relies on deterministic approxima-
tions in order to facilitate inference in those challenging, yet routine, situations where the
target posterior is intractable (e.g., Tierney and Kadane (1986), Minka (2001), Rue, Martino
and Chopin (2009), Blei, Kucukelbir and McAuliffe (2017)). A natural option to enforce
the desired tractability is to constrain the approximating distribution within a suitable family
which facilitates the evaluation of functionals of interest for inference. To this end, both clas-
sical solutions, such as the approximation of posterior distributions induced by the Laplace
method (e.g., Bishop ((2006), Chapter 4.4)), and state-of-the-art strategies, including, for
example, Gaussian variational Bayes (Opper and Archambeau (2009)) and standard imple-
mentations of expectation-propagation (Minka (2001)), employ Gaussian approximations.
These further appear, either as the final solution or as a key building-block, also in several
routinely implemented alternatives, such as mean-field variational Bayes (Blei, Kucukelbir
and McAuliffe (2017)) and integrated nested Laplace approximation (INLA) (Rue, Martino
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and Chopin (2009)). See also Wang and Blei (2013), Chopin and Ridgway (2017), Durante
and Rigon (2019), Ray and Szabó (2022) and Vehtari et al. (2020), among others, for further
examples illustrating the relevance of Gaussian approximations.

From a theoretical perspective, the choice of the Gaussian family to approximate the pos-
terior distribution is justified, in asymptotic regimes, by Bernstein–von Mises type results. In
its classical formulation (e.g., Laplace (1810), Bernstein (1917), Von Mises (1931), LeCam
(1953), Le Cam and Yang (1990), van der Vaart (1998)), the Bernstein–von Mises theorem
states that, in sufficiently regular parametric models, the posterior distribution converges in
total variation (TV) distance, with probability tending to one under the law of the data, to a
Gaussian distribution. The expectation of this limiting Gaussian is a known function of the
true data-generative parameter, or any efficient estimator of this quantity, such as the max-
imum likelihood estimator, while the variance is the inverse of the Fisher information. Ex-
tensions of the Bernstein–von Mises theorem to more complex settings have also been made
in recent years. Relevant contributions along these directions include, among others, gener-
alizations to high-dimensional regimes (Boucheron and Gassiat (2009), Spokoiny and Panov
(2021)), along with in-depth treatments of misspecified (Kleijn and van der Vaart (2012))
and irregular (Bochkina and Green (2014)) models. Semiparametric settings have also been
addressed (Bickel and Kleijn (2012), Castillo and Rousseau (2015)). In the nonparametric
context, Bernstein–von Mises type results do not hold in general, but the asymptotic Gaus-
sianity can be proved for weak Sobolev spaces via a multiscale analysis (Castillo and Nickl
(2014)).

Besides providing crucial advances in the understanding of the limiting frequentist prop-
erties of posterior distributions, the above Bernstein–von Mises type results have also sub-
stantial implications in the design and in the theoretical justification of practical Gaussian
deterministic approximations for intractable posterior distributions from, for example, the
Laplace method (Kasprzak, Giordano and Broderick (2022)), variational Bayes (VB) (Wang
and Blei (2019), Katsevich and Rigollet (2024)) and expectation-propagation (EP) (Dehaene
and Barthelmé (2018)). Such a direction has led to important results. Nonetheless, in practi-
cal situations the Gaussian approximation may lack the required flexibility to closely match
the actual shape of the target posterior of interest, thereby undermining accuracy when infer-
ence is based on such an approximation. In fact, as illustrated via two representative real-data
clinical applications (see Section 5.2, and Appendices E5–E6 in the Supplementary Material,
Durante, Pozza and Szabo (2024)), the error in posterior mean estimation of the Gaussian
approximation supported by the classical Bernstein–von Mises theorem is nonnegligible not
only in a study with a low sample size n = 27 and d = 3 parameters, but also in a higher-
dimensional application with n = 333 and d ≈ n/2.5. Both regimes often occur in routine
implementations. These results further clarify that the issues encountered by the Gaussian
approximation are mainly due to the inability of capturing the nonnegligible skewness often
displayed by the actual posterior in these settings. Such an asymmetric shape is inherent to
routinely studied posterior distributions. For example, Durante (2019), Fasano and Durante
(2022) and Anceschi et al. (2023) have recently proved that, under a broad class of priors
which includes multivariate normals, the posterior distribution induced by probit, multino-
mial probit and tobit models belongs to a skewed generalization of the Gaussian distribution
known as unified skew-normal (SUN) (Arellano-Valle and Azzalini (2006)). More generally,
available extensions of Gaussian deterministic approximations which account, either explic-
itly or implicitly, for skewness (see, e.g., Rue, Martino and Chopin (2009), Challis and Barber
(2012), Fasano, Durante and Zanella (2022)) have shown evidence of improved empirical ac-
curacy relative to their Gaussian counterparts. Nonetheless, these approximations are often
model-specific and general justifications relying on Bernstein–von Mises type results are not
available yet. In fact, in-depth theory and methods for skewed approximations are either lack-
ing or are tailored to specific models and priors (Fasano, Durante and Zanella (2022)).
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In this article, we address the above gaps by deriving an improved class of closed-form,
valid and theoretically supported skewed approximations of generic posterior distributions.
Such a class arises from a novel treatment of a higher-order version of the Laplace method
which replaces the third-order term with a suitable univariate cumulative distribution func-
tion (cdf) satisfying mild regularity conditions. As clarified in Section 2.1, this perspective
yields tractable approximations that crucially belong to the broad and known skew-symmetric
family (e.g., Ma and Genton (2004)). More specifically, these approximations can be readily
obtained by direct perturbation of the density of a multivariate Gaussian via a suitably defined
univariate cdf evaluated at a cubic function of the parameter. This implies that the proposed
class of approximations admits straightforward i.i.d. sampling schemes which facilitate direct
Monte Carlo evaluation of any functional of interest for posterior inference. These are cru-
cial advancements relative to other higher-order studies relying on Edgeworth-type, or other,
representations (see, e.g., Johnson (1970), Weng (2010), Kolassa and Kuffner (2020), and
references therein), which consider arbitrarily truncated versions of infinite expansions that
do not necessarily correspond to closed-form and valid densities, even after normalization—
for example, the density approximation is not guaranteed to be nonnegative (e.g., Kolassa and
Kuffner ((2020), Remark 11)). This undermines the methodological and practical impact of
current higher-order results which still fail to provide a natural, valid and general alternative
to Gaussian deterministic approximations that can be readily employed in practice. In con-
trast, our novel results prove that a previously unexplored treatment of specific higher-order
expansions can actually lead to valid, practical and theoretically supported approximations,
thereby opening the avenues to extend such a perspective to orders even higher than the third
one; see also our final discussion in Section 6.

Section 2.2 clarifies that the proposed class of skew-symmetric approximations has also a
strong theoretical support in terms of accuracy improvements relative to its Gaussian coun-
terpart. More specifically, in Theorem 2.1 we prove that such a newly proposed class has a
TV distance from the target posterior distribution whose rate of convergence improves by at
least one order of magnitude the one attained by the Gaussian from the classical Bernstein–
von Mises theorem. Crucially, this result is derived under general assumptions which account
for both misspecified models and non-i.i.d. settings. This yields an important refinement of
standard Bernstein–von Mises type results clarifying that it is possible to derive closed-form
and valid densities which are expected to provide, in practice, a more accurate, yet similarly
tractable, alternative to Gaussian approximations of the target posterior of interest, while
inheriting its limiting frequentist properties. In Section 2.3 these general results are further
specialized to, possibly non-i.i.d. and misspecified, regular parametric models, where n → ∞
and the dimension d of the parameter space is fixed. Under this practically relevant setting, we
show that the proposed skew-symmetric approximation can be explicitly derived as a func-
tion of the log-prior and log-likelihood derivatives. Moreover, we prove that by replacing the
Gaussian approximation from the Bernstein–von Mises theorem with such a newly derived
alternative yields a remarkable improvement in the rates of order

√
n, up to a poly-log term.

This gain is shown to hold not only for the TV distance from the target posterior, but also for
the error in approximating the posterior expectation of polynomially bounded functions (e.g.,
posterior moments).

The methodological impact of the theory in Section 2 is strengthened in Section 4 through
the development of a readily applicable plug-in version for the newly proposed class of skew-
symmetric approximations derived in Section 2.3. This is obtained by replacing the unknown
true data-generating parameter in the theoretical construction with the corresponding maxi-
mum a posteriori estimate, or any other efficient estimator. The resulting solution is named
skew-modal approximation and, under mild conditions, is shown to achieve the same im-
proved rates of its theoretical counterpart, both in terms of the TV distance from the target
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posterior, and with respect to the error in approximating the posterior expectation of polyno-
mially bounded functions. In such a practically relevant setting, we further refine the theoret-
ical analysis through the derivation of nonasymptotic bounds for the TV distance among the
skew-modal approximation and the target posterior. These bounds are guaranteed to vanish
also when the dimension d grows with n, as long as d � n1/3, up to a poly-log term. Inter-
estingly, such a condition is related to those required either for d (e.g., Panov and Spokoiny
(2015)) or for the notion of effective dimension d̃ (Spokoiny and Panov (2021), Spokoiny
(2025)) in recent high-dimensional analyses of the Gaussian Laplace approximation. How-
ever, unlike these studies, the bounds we derive vanish with n, up to a poly-log term, rather
than

√
n, for any given dimension. These advancements enable also the derivation of a novel

lower bound for the TV distance among the Gaussian Laplace approximation and the poste-
rior. This bound still vanishes with

√
n, under suitable conditions. Such a result strengthens

the proposed skew-modal solution whose upper bound vanishes with n, up to a poly-log term.
When the focus is not on the joint posterior but rather on its marginals, we further derive in
Section 4.2 skew-modal approximations for such marginals that inherit the same theoretical
guarantees, while scaling up computation.

The superior empirical performance of the proposed class of skew-symmetric approxima-
tions and the practical consequences of our theoretical results on the improved rates are illus-
trated through simulation studies and two real-data applications in Sections 3 and 5, and in
Appendix E of the Supplementary Material. These analyses demonstrate that the remarkable
theoretical improvements encoded in the asymptotic rates we derive closely match the em-
pirical behavior observed in practice even in finite, possibly small, sample size regimes. This
gain translates into noticeable empirical accuracy improvements relative to the Gaussian-
modal approximation from the Laplace method. Even more, in the real-data applications the
proposed skew-modal approximation displays a competitive performance also with respect
to more sophisticated state-of-the-art Gaussian and non-Gaussian approximations from both
VB and EP (e.g., Minka (2001), Blei, Kucukelbir and McAuliffe (2017), Chopin and Ridgway
(2017), Durante and Rigon (2019), Fasano, Durante and Zanella (2022)).

As discussed in the concluding remarks within Section 6, the above results stimulate future
advancements for refining the accuracy of other popular Gaussian approximations from, for
example, VB and EP, via the inclusion of skewness. To this end, our contribution provides
the foundations to achieve such a goal, and suggests that a natural and tractable class where
to search for these improved approximations would be still the skew-symmetric family. Ex-
tensions to higher-order expansions beyond the third term are also discussed as directions
of future research. Finally, notice that although the nonasymptotic bounds we derive for the
skew-modal approximation in Section 4 yield refined theoretical results that can be readily
proved for the general skew-symmetric class within Section 2, the practical consequences of
nonasymptotic bounds and the associated constants is an ongoing area of research even for
basic Gaussian approximations (see, e.g., Kasprzak, Giordano and Broderick (2022), and the
references therein).

Proofs, technical lemmas and additional results can be found in the Supplementary Mate-
rial (Durante, Pozza and Szabo (2024)).

1.1. Notation. Let Xn = {Xi}ni=1, n ∈N denote a sequence of random variables with true
unknown distribution P n

0 . Moreover, let P� = {P n
θ , θ ∈ �}, with � ⊆ R

d , be a parametric
family of distributions. In the following, we will assume that there exists a common σ -finite
measure μn which dominates P n

0 as well as all the measures P n
θ , and we denote by pn

0 and
pn

θ the two corresponding density functions. The Kullback–Leibler (KL) projection P n
θ∗ of

P n
0 on P� is defined as P n

θ∗ = argminP n
θ ∈P�

KL(P n
0 ‖P n

θ ), where KL(P n
0 ‖P n

θ ) denotes the KL

divergence between P n
0 and P n

θ . The log-likelihood of the, possibly misspecified, model is
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ℓ(θ) = ℓ(θ,Xn) = logpn
θ (Xn). The prior and posterior distributions are denoted by �(·) and

�n(·), whereas the corresponding densities are indicated with π(·) and πn(·), respectively.
As mentioned in Section 1, our results rely on higher-order expansions and derivatives. To

this end, we characterize operations among vectors, matrices and arrays in a compact manner
by adopting the index notation along with the Einstein’s summation convention (e.g., Pace
and Salvan ((1997), p. 335)). More specifically, the inner product Zᵀa between the generic
random vector Z ∈ R

d , with components Zs for s = 1, . . . , d , and the vector of coefficients
a ∈R

d having elements as for s = 1, . . . , d , is expressed as asZs , with the sum being implicit
in the repetition of the indexes. Similarly, if B is a d × d matrix with entries bst for s, t =
1, . . . , d , the quadratic form ZᵀBZ is expressed as bstZsZt . The generalization to operations
involving arrays with higher dimensions is obtained under the same reasoning.

Leveraging the above notation, the score vector evaluated at θ∗ is defined as

ℓ
(1)
θ∗ = [

ℓ(1)
s (θ)

]
|θ=θ∗ = [

(∂/∂θs)ℓ(θ)
]
|θ=θ∗ ∈ R

d,

whereas, the second, third and fourth order derivatives of ℓ(θ), still evaluated at θ∗, are

ℓ
(2)
θ∗ = [

ℓ
(2)
st (θ)

]
|θ=θ∗ = [

∂/(∂θs∂θt )ℓ(θ)
]
|θ=θ∗ ∈ R

d×d,

ℓ
(3)
θ∗ = [

ℓ
(3)
st l (θ)

]
|θ=θ∗ = [

∂/(∂θs∂θt∂θl)ℓ(θ)
]
|θ=θ∗ ∈ R

d×d×d,

ℓ
(4)
θ∗ = [

ℓ
(4)
st lk(θ)

]
|θ=θ∗ = [

∂/(∂θs∂θt∂θl∂θk)ℓ(θ)
]
|θ=θ∗ ∈ R

d×d×d×d,

where all the above indexes and those in the subsequent definitions go from 1 to d . Moreover,
denote by Jθ∗ = [jst ] = −[ℓ(2)

θ∗,st ] ∈ R
d×d and Iθ∗ = [ist ] = [En

0jst ] ∈ R
d×d , the observed and

expected Fisher information, respectively, where E
n
0 is the expectation with respect to P n

0 . In
addition, let

logπ
(1)
θ∗ = [

logπ(θ)(1)
s

]
|θ=θ∗ = [

∂/(∂θs) logπ(θ)
]
|θ=θ∗ ∈ R

d,

logπ
(2)
θ∗ = [

logπ(θ)
(2)
st

]
|θ=θ∗ = [

∂/(∂θs∂θt ) logπ(θ)
]
|θ=θ∗ ∈ R

d×d,

be the first two derivatives of the log-prior density, evaluated at θ∗.
The Euclidean norm of the vector a ∈ R

d is denoted by ‖a‖, whereas, for a generic d × d

matrix B , the notation |B| indicates its determinant, while λMIN(B) and λMAX(B) its min-
imum and maximum eigenvalue, respectively. Furthermore, u ∧ v and u ∨ v correspond to
min{u, v} and max{u, v}, respectively. For two positive sequences un, vn we employ un � vn

if there exists a universal positive constant C such that un ≤ Cvn. When un � vn and vn � un

are satisfied simultaneously, we write un � vn. Finally, un � vn means that un/vn = o(1).

2. The skewed Bernstein–von Mises theorem. This section presents our first important
contribution. In particular, Section 2.1 shows that, for Bayesian models satisfying a refined
version of the local asymptotic normality (LAN) condition (e.g., van der Vaart (1998), Kleijn
and van der Vaart (2012)), a previously unexplored treatment of a third-order version of the
Laplace method yields a novel, closed-form and valid approximation of the target posterior
distribution. Crucially, this approximation is shown to belong to the tractable skew-symmetric
(SKS) family (e.g., Ma and Genton (2004)). Focusing on such a novel class of SKS approx-
imations, we prove in Section 2.2 that the n-indexed sequence of TV distances between this
class and the target posterior has a rate which improves by at least one order of magnitude the
one achieved under the classical Bernstein–von Mises theorem based on Gaussian approxi-
mations. This skewed Bernstein–von Mises type result is proved under general assumptions
that account for misspecified models and non-i.i.d. settings. Section 2.3 then specializes this
result to the relevant context of regular parametric models with n → ∞ and fixed d . In this
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setting we prove that the improvement in rates over the Bernstein–von Mises theorem is by a
factor of order

√
n, up to a poly-log term. Such a result is shown to hold not only for the TV

distance from the posterior, but also for the error in approximating the posterior expectation
of polynomially bounded functions.

Let δn → 0 be a generic norming rate governing the posterior contraction toward θ∗. Con-
sistent with standard Bernstein–von Mises type theory (see, e.g., van der Vaart (1998), Kleijn
and van der Vaart (2012)), consider the re-parametrization h = δ−1

n (θ − θ∗) ∈ R
d . Moreover,

let F(·) : R → [0,1] denote any univariate cumulative distribution function (cdf) which sat-
isfies F(−x) = 1 − F(x) and F(x) = 1/2 + ηx + O(x2), x → 0, for some η ∈ R. Then, the
class of SKS approximating densities pn

SKS(h) we derive and study has the general form

(1) pn
SKS(h) = 2φd(h; ξ,�)w(h − ξ) = 2φd(h; ξ,�)F

(
αη(h − ξ)

)
,

with P n
SKS(S) = ∫

S pn
SKS(h) dh denoting the associated cdf. In (1), φd(·; ξ,�) corresponds to

the density of a d-variate Gaussian having mean vector ξ and covariance matrix �, while the
function w(h − ξ) ∈ (0,1) is responsible for inducing skewness, and takes form w(h − ξ) =
F(αη(h − ξ)), where αη(·) : Rd → R denotes a third order odd polynomial depending on the
parameter that regulates the expansion of F(·), that is, η.

Crucially, equation (1) not only ensures that pn
SKS(h) is a valid and closed-form density, but

also that such a density belongs to the tractable and known skew-symmetric class (Azzalini
and Capitanio (2003), Ma and Genton (2004)). This follows directly by the definition of SKS

densities, after noticing that αη(·) is an odd function, and φd(·; ξ,�) is symmetric about ξ

(e.g., Azzalini and Capitanio ((2003), Proposition 1)). Therefore, in contrast to higher-order
studies of posterior distributions based on Edgeworth or other type of expansions (e.g., John-
son (1970), Weng (2010), Kolassa and Kuffner (2020)), our theoretical and methodological
results focus on a family of closed-form and valid approximating densities that are essentially
as tractable as multivariate Gaussians, both in terms of evaluation of the corresponding den-
sity, and i.i.d. sampling. More specifically, let z0 ∈ R

d and z1 ∈ [0,1] denote samples from
a d-variate Gaussian having density φd(z0;0,�) and from a uniform with support [0,1], re-
spectively. Then, adapting results in, for example, Wang, Boyer and Genton (2004), a sample
from the SKS distribution with density as in (1) can be readily obtained via

ξ + sgn
(
F

(
αη(z0)

) − z1
)
z0.

Therefore, sampling from the proposed SKS approximation is essentially as tractable as sim-
ulating realizations from a d-variate Gaussian.

As clarified within Sections 2.3 and 4, the SKS approximation in equation (1) is not only
interesting from a theoretical perspective, but has also relevant methodological consequences
and direct applicability. This is because, when specializing the general theory in Section 2.2
to, possibly misspecified and non-i.i.d., regular parametric models where n → ∞, d is fixed
and δ−1

n = √
n, we can show that the quantities defining pn

SKS(h) in (1) can be expressed as
closed-form functions of the log-prior and log-likelihood derivatives at θ∗.

In particular, let ut = (ℓ
(1)
θ∗ + logπ

(1)
θ∗ )t/

√
n for t = 1, . . . , d , then, as it will be clarified in

Section 2.3, we have

ξ = [n(J−1
θ∗ )stut ], �−1 = [jst/n − (ξlℓ

(3)
θ∗,st l/n)/

√
n],

αη(h − ξ) = {1/(12η
√

n)}(ℓ(3)
θ∗,st l/n){(h − ξ)s(h − ξ)t (h − ξ)l + 3(h − ξ)sξt ξl}.

(2)

Interestingly, in this case, the first factor on the right hand side of equation (1) closely resem-
bles the limiting Gaussian density with mean vector ℓ

(1)
θ∗ /

√
n and covariance matrix (Iθ∗/n)−1

from the classical Bernstein–von Mises theorem which, however, fails to incorporate skew-
ness. To this end, the symmetric component in (1) is perturbed through a skewness-inducing
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mechanism regulated by F(αη(h − ξ)) to obtain a valid asymmetric density having tractable
normalizing constant. As shown in Section 4, this solution admits a directly applicable prac-
tical counterpart, which can be obtained by replacing F(·) and θ∗ in (1)–(2), with routine-use
univariate cdfs such as, for instance, �(·), and with the maximum a posteriori estimate of
θ , respectively. This results in a practical and novel skew-modal approximation that can be
shown to preserve the same guarantees of improved accuracy of its theoretical counterpart.

2.1. Constructive derivation of the skew-symmetric approximating density. Prior to stat-
ing in Section 2.2 the general skewed Bernstein–von Mises theorem that supports the pro-
posed class of SKS approximations, let us first focus on providing a constructive derivation of
such a class through a novel treatment of a third-order extension of the Laplace method. To
simplify notation, we consider the univariate case with d = 1 and δ−1

n = √
n. The extension

of these derivations to d > 1 and to the general setting we consider in Theorem 2.1 follow as
a direct adaptation of the reasoning for the univariate case; see Sections 2.2–2.3.

As a first step towards deriving the approximating density pn
SKS(h), notice that the posterior

for h = √
n(θ − θ∗) can be expressed as

(3) πn(h) ∝
pn

θ∗+h/
√

n

pn
θ∗

(
Xn)π(θ∗ + h/

√
n)

π(θ∗)
,

since pn
θ∗(X

n) and π(θ∗) do not depend on h, and θ = θ∗ + h/
√

n.
Let jθ∗ be the scalar counterpart of Jθ∗ defined in Section 1.1, then, under suitable regular-

ity conditions discussed in Sections 2.2–2.3 below, the third-order Taylor expansion for the
logarithm of the likelihood ratio in equation (3) is

(4) log
pn

θ∗+h/
√

n

pn
θ∗

(
Xn) = ℓ

(1)
θ∗√
n

h − 1

2

jθ∗
n

h2 + 1

6
√

n

ℓ
(3)
θ∗
n

h3 + OP n
0

(
n−1)

,

whereas the first-order Taylor expansion of the log-prior ratio is

(5) log
π(θ∗ + h/

√
n)

π(θ∗)
= logπ

(1)
θ∗√
n

h + O
(
n−1)

.

Combining (4) and (5) it is possible to reformulate the right hand side of equation (3) as

(6)
pn

θ∗+h/
√

n

pn
θ∗

(
Xn)π(θ∗ + h/

√
n)

π(θ∗)
= exp

(
uh − 1

2

jθ∗
n

h2 + 1

6
√

n

ℓ
(3)
θ∗
n

h3
)

+ OP n
0

(
n−1)

,

where u = (ℓ
(1)
θ∗ + logπ

(1)
θ∗ )/

√
n.

Notice that, up to a multiplicative constant, the Gaussian density arising from the classical
Bernstein–von Mises theorem can be obtained by neglecting all terms in (4)–(5) which con-
verge to zero in probability. These correspond to the contribution of the prior, the difference
between the observed and expected Fisher information, and the term associated to the third-
order log-likelihood derivative. Maintaining these quantities would surely yield an improved
accuracy, but it is unclear whether a valid and similarly tractable density can be still identi-
fied. In fact, current solutions (e.g., Johnson (1970)) consider approximations based on the
sum among a Gaussian density and additional terms in the Taylor expansion. However, as for
related alternatives arising from Edgeworth-type expansions (e.g., Weng (2010), Kolassa and
Kuffner (2020)), there is no guarantee that these constructions provide valid densities.

As a first result we prove below that a valid and tractable approximating density can be, in
fact, derived from the above expansions and belongs to the SKS class. To this end, let ω = 1/v



SKEWED BERNSTEIN–VON MISES THEOREM AND SKEW-MODAL APPROXIMATIONS 2721

with v = jθ∗/n− (ξℓ
(3)
θ∗ /n)/

√
n and ξ = n(jθ∗)

−1u, and note that, by replacing h3 in the right
hand side of (6) with (h − ξ + ξ)3, the exponential term can be rewritten as proportional to

(7) φ(h; ξ,ω) exp
({

1/(6
√

n)
}(

ℓ
(3)
θ∗ /n

){
(h − ξ)3 + 3(h − ξ)ξ2})

.

At this point, recall that, for x → 0, we can write exp(x) = 1 + x + O(x2) and 2F(x) = 1 +
2ηx + O(x2), for some η ∈ R, where F(·) is the univariate cdf introduced in (1). Therefore,
leveraging the similarity among these two expansions and the fact that the exponent in (7) is
an odd function of (h − ξ) about 0, of order OP n

0
(n−1/2), it follows that (7) is equal to

2φ(h; ξ,ω)F
(
αη(h − ξ)

) + OP n
0

(
n−1)

,

with αη(h− ξ) defined as in (2) for a univariate setting. The above expression coincides with
the univariate case of the SKS density in (1), up to an OP n

0
(n−1) term. The extension of the

above derivations to the multivariate case yields the general pn
SKS(h) in (1) with parameters

as in (2). Section 2.2 extends, and supports theoretically, this construction in general settings.

2.2. The general theorem. Section 2.1 shows that a suitable treatment of the cubic terms
in the Taylor expansion of the log-posterior can yield a higher-order, yet valid, SKS approx-
imating density. This solution is expected to improve the accuracy of the classical second-
order Gaussian approximation, while avoiding known issues of polynomial approximations,
such as regions with negative mass (see, e.g., McCullagh ((2018), p. 154)). In this section,
we clarify that the derivations in Section 2.1 can be applied generally to obtain provably ac-
curate SKS approximations in a variety of settings, provided that the posterior contraction is
governed by a generic norming rate δn → 0, and that some reasonable regularity conditions
are met. In particular, Theorem 2.1 requires Assumptions 1–4 below. For convenience, let us
also introduce the notation Mn = √

c0 log(1/δn), with c0 > 0 a constant to be specified later.

ASSUMPTION 1. The Kullback–Leibler projection θ∗ ∈ � is unique.

ASSUMPTION 2. There exists a sequence of d × 1 random vectors �n
θ∗ = OP n

0
(1), a

sequence of d × d random matrices V n
θ∗ = [vn

st ] with vn
st = OP n

0
(1), and also a sequence of

d × d × d random arrays a
(3),n
θ∗ = [a(3),n

θ∗,st l] with a
(3),n
θ∗,st l = OP n

0
(1), so that

log
pn

θ∗+δnh

pn
θ∗

(
Xn) − hsv

n
st�

n
θ∗,t + 1

2
vn
sthsht − δn

6
a

(3),n
θ∗,st lhshthl = rn,1(h),

with rn,1 := suph∈Kn
|rn,1(h)| = OP n

0
(δ2

nM
c1
n ), for some positive constant c1, where Kn =

{h : ‖h‖ < Mn}. In addition, there are two positive constants η∗
1 and η∗

2 such that the event
An,0 = {λMIN(V n

θ∗) > η∗
1} ∩ {λMAX(V n

θ∗) < η∗
2}, holds with P n

0 An,0 = 1 − o(1).

ASSUMPTION 3. There exists a d-dimensional vector logπ(1) = [logπ
(1)
s ] such that

log
[
π(θ∗ + δnh)/π(θ∗)

] − δnhs logπ(1)
s = rn,2(h),

with logπ
(1)
s = O(1) and rn,2 := suph∈Kn

|rn,2(h)| = O(δ2
nM

c2
n ) for some constant c2 > 0.

ASSUMPTION 4. It holds limδn→0 P n
0 {�n(‖θ − θ∗‖ > Mnδn) < δ2

n} = 1.

Albeit general, Assumptions 1–4 provide reasonable conditions that extend those com-
monly considered to derive classical Bernstein–von Mises type results. Moreover, as clarified
in Section 2.3, these assumptions translate, under regular parametric models, into natural and
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explicit conditions on the behavior of the log-likelihood and log-prior. In particular, Assump-
tion 1 is mild and can also be found, for example, in Kleijn and van der Vaart (2012). Together
with Assumption 4, it guarantees that, asymptotically, the posterior distribution concentrates
in the region where the two expansions in Assumptions 2 and 3 hold with negligible remain-
ders. Notice that Assumptions 2 and 4 naturally extend those found in theoretical studies of
Bernstein–von Mises type results (e.g., Kleijn and van der Vaart (2012)) to a third-order con-
struction, which further requires quantification of rates. Assumption 3 provides, instead, an
additional condition relative to those found in the classical theory. This is because, unlike for
second-order Gaussian approximations, the log-prior enters the SKS construction through its
first derivative; see Section 2.1. To this end, Assumption 3 imposes natural regularity con-
ditions on the prior. Interestingly, such a need to include a careful study for the behavior of
the prior density is also useful in forming the bases to naturally extend our proofs and the-
ory to the general high-dimensional settings considered in Spokoiny and Panov (2021) and
Spokoiny (2025) for the classical Gaussian Laplace approximation, where the prior effect
has a critical role in controlling the behavior of the third and fourth-order components of the
log-posterior. Motivated by these results, Section 4 further derives nonasymptotic bounds for
the practical skew-modal approximation, which are guaranteed to vanish also when d grows
with n, as long as this growth in the dimension is such that d � n1/3 up to a poly-log term.
See Remark 4.2 for a detailed discussion.

Under the above assumptions, Theorem 2.1 supports theoretically the proposed SKS ap-
proximation by stating a novel skewed Bernstein–von Mises type result. This result estab-
lishes that in general contexts, covering also misspecified models and non-i.i.d. settings, it is
possible to derive a SKS approximation, with density as in (1), whose TV distance from the
target posterior has a rate that improves by at least one order of magnitude the one achieved by
the classical Gaussian counterpart from the Bernstein–von Mises theorem. By approaching
the posterior at a provably faster rate, the proposed solution is therefore expected to provide,
in practice, a more accurate alternative to Gaussian approximations of such a posterior, while
inheriting its limiting frequentist properties. To this end, Theorem 2.1 shall not be interpreted
as a theoretical result aimed at providing novel or alternative frequentist support to Bayesian
inference. Rather, it represents an important refinement of the classical Bernstein–von Mises
theorem which guides and supports the derivation of improved deterministic approximations
to be used in practice as tractable, yet accurate, alternatives to the intractable posterior. The
practical impact of these results is illustrated in the empirical studies within Sections 3 and
5. Such studies clarify that the theoretical improvements encoded in the rates we derive di-
rectly translate into remarkable accuracy gains of the proposed class of SKS approximations
in finite-sample studies.

THEOREM 2.1. Let h = δ−1
n (θ − θ∗), and define Mn =

√
c0 log δ−1

n , with c0 > 0. Then,
under Assumptions 1–4, it holds

(8)
∥∥�n(·) − P n

SKS(·)
∥∥

TV = OP n
0

(
Mc3

n δ2
n

)
,

where c3 > 0, and P n
SKS(·) is the cdf of the SKS density pn

SKS(h) in (1) with parameters

ξ = [
�n

θ∗,s + δn

((
V n

θ∗
)−1)

st logπ
(1)
t

]
, �−1 = [

vn
st − δna

(3),n
θ∗,st lξl

]
,

αη(h − ξ) = (δn/12η)a
(3),n
θ∗,st l

{
(h − ξ)s(h − ξ)t (h − ξ)l + 3(h − ξ)sξt ξl

}
.

The function F(·) entering the definition of pn
SKS(h) in (1) is any univariate cdf which satisfies

F(−x) = 1 − F(x) and F(x) = 1/2 + ηx + O(x2), for some η ∈ R, when x → 0.
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REMARK 2.2. Under related assumptions and a simpler proof, it is possible to show that
the order of convergence for the Bernstein–von Mises theorem based on limiting Gaussians
is OP n

0
(M

c4
n δn), for some c4 > 0. Thus, Theorem 2.1 guarantees that by relying on suitably

derived SKS approximations with density as in (1), it is possible to improve the rates of the
classical Bernstein–von Mises result by a multiplicative factor of δn. This follows directly
from the fact that the SKS approximation is able to include terms of order δn that are present
in the Taylor expansion of the log-posterior but are neglected in the Gaussian limit. This
allows an improved redistribution of the mass in the high posterior probability region, thereby
yielding increased accuracy in characterizing the shape of the target posterior. As illustrated
in Sections 3 and 5, this correction yields remarkable accuracy improvements in practice.

REMARK 2.3. Theorem 2.1 holds for a broad class of SKS approximating distributions as
long as the univariate cdf F(·) entering the skewing factor in (1) satisfies F(−x) = 1 − F(x)

and F(x) = 1/2 + ηx + O(x2) for some η ∈ R, when x → 0. These conditions are mild and
add flexibility in the selection of F(·). Relevant and practical examples of possibile choices
for F(·) are the cdf of the standard Gaussian distribution, �(·), and the inverse logit func-
tion, g(·) = exp(·)/{1 + exp(·)}. Both satisfy F(−x) = 1 − F(x), and the associated Taylor
expansions are �(x) = 1/2 + x/

√
2π +O(x3) and g(x) = 1/2 + x/4 +O(x3), respectively,

for x → 0. Interestingly, when F(·) = �(·), the resulting skew-symmetric approximation be-
longs to the well-studied sub-class of generalized skew-normal (GSN) distributions (Ma and
Genton (2004)), which provide the most natural extension of multivariate skew-normals (Az-
zalini and Capitanio (2003)) to more flexible skew-symmetric representations. Due to this,
Sections 3 and 5 focus on assessing the empirical performance of such a noticeable example.

Before discussing the proof of Theorem 2.1, let us highlight an interesting aspect regard-
ing the interplay between skew-symmetric and Gaussian approximations that can be deduced
from our theoretical studies. In particular, notice that Theorem 2.1 states results in terms of
approximation of the whole posterior distribution under the TV distance. This implies, as a
direct consequence of the definition of such a distance, that the same rates hold also for the
absolute error in approximating the posterior expectation of any bounded function. As shown
later in Corollary 2.5, such an improvement can also be proved, under mild additional condi-
tions, for the approximation of the posterior expectation of any function bounded by a poly-
nomial (e.g., posterior moments). According to Remark 2.2 these rates cannot be achieved in
general under a Gaussian approximation. Nonetheless, as stated in Lemma 2.4, for some spe-
cific functionals the classical Gaussian approximation can actually attain the same rates of its
skewed version. This result follows from the skew-symmetric distributional invariance with
respect to even functions (Wang, Boyer and Genton (2004)). Such a property implies that the
SKS approximation 2φd(h; ξ,�)F (αη(h− ξ)) and its Gaussian component φd(h; ξ,�) yield
the same level of accuracy in estimating the posterior expected value of functions that are
symmetric with respect to the location parameter ξ . Thus, our results provide also a novel ex-
planation of the phenomenon observed in Spokoiny and Panov (2021) and Spokoiny (2025),
where the quality of the Gaussian approximation, in high-dimensional models, increases by
one order of magnitude when evaluated on Borel sets which are centrally symmetric with re-
spect to the location ξ (see, e.g., Spokoiny ((2025), Theorem 3.4)). Nonetheless, as clarified
in Theorem 2.1 and Remark 2.2, Gaussian approximations remain still unable to attain the
same rates of the SKS counterparts in the estimation of generic functionals. Relevant exam-
ples are highest posterior density intervals which are often of interest in practice and will be
nonsymmetric by definition whenever the posterior is skewed.
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LEMMA 2.4. Let 2φd(h; ξ,�)F (αη(h − ξ)), with ξ ∈ R
d and � ∈ R

d×d , denote a skew-
symmetric approximation of πn(h) and let G :Rd → R be an even function. If both

∫
G(h −

ξ)πn(h) dh and
∫

G(h − ξ)2φd(h; ξ,�)F (αη(h − ξ)) dh are finite, it holds∫
G(h − ξ)

{
πn(h) − 2φd(h; ξ,�)F

(
αη(h − ξ)

)}
dh=

∫
G(h − ξ)

{
πn(h) − φd(h; ξ,�)

}
dh.

As clarified in the Supplementary Material, Lemma 2.4 follows as a direct consequence of
Proposition 6 in Wang, Boyer and Genton (2004).

The proof of Theorem 2.1 is reported in the Supplementary Material and extends to SKS

approximating distributions the reasoning behind the derivation of general Bernstein–von
Mises type results (e.g., Kleijn and van der Vaart (2012)). Nonetheless, as mentioned before,
the need to derive sharper rates which establish a higher approximation accuracy, relative to
Gaussian limiting distributions, requires a number of additional technical lemmas and refined
arguments ensuring a tighter control of the error terms in the expansions behind Theorem 2.1.
Notice also that, in addressing these aspects, it is not sufficient to rely on standard theory
for higher-order approximations. In fact, unlike for current results, Theorem 2.1 establishes
improved rates for a valid class of approximating densities. This means that, beside replacing
the second-order expansion of the log-posterior with a third-order one, it is also necessary to
carefully control the difference between such an expansion and the class of SKS distributions.

2.3. Skew-symmetric approximations in regular parametric models. Theorem 2.1 states
a general result under broad assumptions. In this section we strengthen the methodological
and practical impact of such a result by specializing the analysis to the context of, possibly
misspecified and non-i.i.d., regular parametric models with d fixed and δn = n−1/2. The fo-
cus on this practically relevant setting clarifies that Assumptions 1–4 can be readily verified
under standard explicit conditions on the log-likelihood and log-prior derivatives, which in
turn enter the definition of the SKS parameters ξ , � and αη(h − ξ). This allows direct and
closed-form derivation of pn

SKS(h) in routine implementations of deterministic approxima-
tions for intractable posteriors induced by broad classes of parametric models. As stated in
Corollary 2.5, in this setting the resulting SKS approximating density achieves a remarkable
improvement in the rates by a

√
n factor, up to a poly-log term, relative to the classical Gaus-

sian approximation. This accuracy gain can be proved both for the TV distance from the target
posterior and also for the absolute error in the approximation for the posterior expectation of
general polynomially bounded functions (e.g., moments), with finite prior expectation.

Prior to stating Corollary 2.5, let us introduce a number of explicit assumptions that allow
to specialize the general theory in Section 2.2 to the setting with d fixed and δn = n−1/2.
As discussed in the following, Assumptions 5–8 provide natural and verifiable conditions
which ensure that the general Assumptions 2–4 are met, thereby allowing Theorem 2.1 to be
applied, and specialized, to the regular parametric models setting.

ASSUMPTION 5. Define ℓ
(4)
θ∗,st lk(h) := ℓ

(4)
st lk(θ∗ +h/

√
n). Then, the log-likelihood of the,

possibly misspecified, model is four times differentiable at θ∗ with

ℓ
(1)
θ∗,s = OP n

0

(
n1/2)

, ℓ
(2)
θ∗,st = OP n

0
(n), ℓ

(3)
θ∗,st l = OP n

0
(n) for s, t, l = 1, . . . , d,

and suph∈Kn
|ℓ(4)

θ∗,st lk(h)| = OP n
0
(n), for s, t, l, k = 1, . . . , d .

ASSUMPTION 6. All the entries of the expected Fisher information matrix satisfy ist =
O(n) while jst/n − ist /n = OP n

0
(n−1/2), for s, t = 1, . . . , d . Moreover, there exist two posi-

tive constants η1 and η2 such that λMIN(Iθ∗/n) > η1 and λMAX(Iθ∗/n) < η2.
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ASSUMPTION 7. The log-prior density logπ(θ) is two times continuously differentiable
in a neighborhood of θ∗, and 0 < π(θ∗) < ∞.

ASSUMPTION 8. For every sequence Mn → ∞ there exists a positive constant c5 > 0
such that limn→∞ P n

0 {sup‖θ−θ∗‖>Mn/
√

n{(ℓ(θ) − ℓ(θ∗))/n} < −c5M
2
n/n} = 1.

Assumptions 5–6 are mild and considered standard in classical frequentist theory (e.g.,
Pace and Salvan ((1997), p. 347)). In the Supplementary Material (Lemma A.1) we show that
these conditions allow to control with precision the error in the Taylor approximation of the
log-likelihood. Assumption 7 is also mild and is satisfied by several routinely used priors.
This condition allows to consider a first-order Taylor expansion for the log-prior of the form

(9) logπ(θ) = logπ(θ∗) + logπ
(1)
θ∗,shs/

√
n + rn,2(h),

with rn,2 := suph∈Kn
|rn,2(h)| = O(M2

n/n). Finally, Assumption 8 is required to control the
rate of contraction of the, possibly misspecified, posterior inside Kn. In other versions of
Bernstein–Von Mises type results, such an assumption is usually replaced by conditions on
the existence of a suitable sequence of tests. Sufficient conditions for the correctly specified
case can be found in van der Vaart (1998). In the misspecified setting, assumptions ensuring
the existence of these tests have been derived by Kleijn and van der Vaart (2012). Another
possible option is to assume, for every δ > 0, the presence of a constant cδ > 0 such that

(10) lim
n→∞P n

0

{
sup

‖θ−θ∗‖>δ

{(
ℓ(θ) − ℓ(θ∗)

)
/n

}
< −cδ

}
= 1.

In the misspecified setting, (10) is considered by Koers, Szabo and van der Vaart (2023).
Assumption 8 is a slightly more restrictive version of (10). In fact, Lemma A.3 in the Supple-
mentary Material shows that it is implied by mild and readily verifiable sufficient conditions.

Under Assumption 1 and 5–8, Corollary 2.5 clarifies that Theorem 2.1 holds for a general
class of SKS distributions yielding TV rates in approximating the exact posterior of order
OP n

0
(M

c6
n /n), with c6 > 0 and Mn = √

c0 logn. Furthermore, the SKS parameters are defined
as explicit functions of the log-prior and log-likelihood derivatives. As stated in equation (12)
of Corollary 2.5, the same rates can be derived also for the absolute error in approximating
the posterior expectation of general polynomially bounded functions (e.g., moments).

COROLLARY 2.5. Let h = √
n(θ − θ∗), and define Mn = √

c0 logn, with c0 > 0. Then,
under Assumptions 1 and 5–8, it holds

(11)
∥∥�n(·) − P n

SKS(·)
∥∥

TV = OP n
0

(
Mc6

n /n
)
,

where c6 > 0, and P n
SKS(·) is the cdf of the SKS density pn

SKS(h) in (1) with parameters

ξ = [
n
(
J−1

θ∗
)
stut

]
, �−1 = [

jst/n − (
ξlℓ

(3)
θ∗,st l/n

)
/
√

n
]
,

αη(h − ξ) = {
1/(12η

√
n)

}(
ℓ
(3)
θ∗,st l/n

){
(h − ξ)s(h − ξ)t (h − ξ)l + 3(h − ξ)sξt ξl

}
,

where ut = (ℓ
(1)
θ∗ + logπ

(1)
θ∗ )t/

√
n for t = 1, . . . , d . The function F(·) entering the definition

of pn
SKS(h) in (1) denotes any univariate cdf which satisfies F(−x) = 1 − F(x) and F(x) =

1/2 + ηx + O(x2), for some η ∈ R, when x → 0. In addition, let G :Rd → R be a function
satisfying |G(h)| � ‖h‖r . If the prior is such that

∫ ‖h‖rπ(θ∗ + h/
√

n)dh < ∞ then

(12)
∫

G(h)
∣∣πn(h) − pn

SKS(h)
∣∣dh = OP n

0

(
Mc6+r

n /n
)
,

with pn
SKS(h) denoting the skew-symmetric approximating density defined above.
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REMARK 2.6. As for Theorem 2.1, under conditions similar to those required by Corol-
lary 2.5, it is possible to show that the TV distance between the posterior and the Gaussian
approximation studied in the classical Bernstein–von Mises theorem is OP n

0
(M

c7
n /

√
n) for

some fixed c7 > 0. Therefore, the improvement in rates achieved by the proposed SKS ap-
proximation is by a

√
n factor, up to a poly-log term. As illustrated in Figure E.1 of the Sup-

plementary Material, this implies that the SKS solution is expected to substantially improve,
in practice, the accuracy of the classical Gaussian in approximating the target posterior, while
inheriting its limiting frequentist properties. Intuitively, the rates we derive suggest that the
proposed SKS approximation can possibly attain with a n ≈ √

n̄ sample size the same accu-
racy obtained by its Gaussian counterpart with a sample size of n̄. The empirical studies in
Sections 3 and 5 confirm such an intuition, which is further strengthened in Section 4 through
the derivation of nonasymptotic upper bounds for the practical skew-modal approximation,
along with novel lower bounds for the classical Gaussian from the Laplace method.

REMARK 2.7. Equation (12) confirms that the improved rates hold also when the focus
is on the error in approximating the posterior expectation of generic polynomially bounded
functions. More specifically, notice that, by direct application of standard properties of inte-
grals, the proof of equation (12) in the Supplementary Material, implies

(13)
∣∣∣∣
∫

G(h)πn(h)dh −
∫

G(h)pn
SKS(h) dh

∣∣∣∣ = OP n
0

(
Mc6+r

n /n
)
.

This clarifies that the skewed Bernstein–von Mises type result in (11) has important method-
ological and practical consequences that point toward remarkable improvements in the ap-
proximation of posterior functionals of direct interest for inference (e.g., moments).

The proof of equation (12) can be found in the Supplementary Material. As for the main
result in (11), it is sufficient to apply Theorem 2.1, after ensuring that its Assumptions 1–4 are
implied by 1 and 5–8. Appendix A.1 in the Supplementary Material presents two key results
(see Lemmas A.1 and A.2) which address this point. Appendix A.2 introduces instead simple
and verifiable conditions which ensure the validity of Assumption 8.

3. Empirical results. Here we provide empirical evidence for the improved accuracy of
the proposed SKS approximation in Corollary 2.5 (S-BVM), relative to its Gaussian counter-
part (BVM) from the classical Bernstein–von Mises theorem in regular parametric models.
In Section 3.1 we consider, in particular, a correctly specified setting and defer to Appendix
E.2.1 in the Supplementary Material the analysis of a misspecified case. In both studies the
focus is not only on assessing the superior performance of the new SKS approximation, with
F(·) = �(·), but also on quantifying whether the improvements encoded in the rates we de-
rived under asymptotic arguments find empirical evidence also in finite samples. To this end,
S-BVM and BVM are compared both in terms of the TV distance from the posterior and also
with respect to the absolute error in approximating the posterior mean. These two measures
illustrate the practical implications of the rates derived in (11) and (12). Since for the illustra-
tive studies we consider the target posterior can be derived in closed form, the TV distances
TVn

BVM = (1/2)
∫
R |πn(h) − pn

GAUSS(h)|dh and TVn
S-BVM = (1/2)

∫
R |πn(h) − pn

SKS(h)|dh

can be evaluated numerically, for every size n, via standard routines in R. The same holds also
for the errors in posterior mean approximation FMAEn

BVM = | ∫R h{πn(h) − pn
GAUSS(h)}dh|

and FMAEn
S-BVM = | ∫R h{πn(h) − pn

SKS(h)}dh|.
Notice that, as for other versions of the Bernstein–von Mises theorem, also our theoreti-

cal results in Sections 2.2 and 2.3 require knowledge of the KL minimizer between the true
data-generating process and the parametric family P�. Since θ∗ is unknown in practice, in
Section 4 we address this point via a plug-in version of the SKS approximation in Corol-
lary 2.5, which replaces θ∗ with its maximum a posteriori estimate. This yields a readily
applicable skew-modal approximation with similar theoretical and empirical support.
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TABLE 1
Empirical comparison, averaged over 50 replicated studies, between the classical (BVM) and skewed (S-BVM)
Bernstein–von Mises theorem in the correctly specified exponential example. The first table shows, for different
sample sizes ranging from n = 10 to n = 1500, the log-TV distances (TV) and log-approximation errors for the
posterior mean (FMAE) under BVM and S-BVM. The bold values indicate the best performance for each n. The
second table shows, for different sample sizes ranging from n = 10 to n = 100, the sample size n̄ required by the

classical Gaussian BVM to achieve the same TV and FMAE attained by the SKS approximation with that n

n = 10 n = 50 n = 100 n = 500 n = 1000 n = 1500

log TVn
BVM −1.67 −2.50 −2.82 −3.59 −3.98 −4.18

log TVn
S-BVM −2.53 −3.86 −4.41 −5.76 −5.58 −6.58

log FMAEn
BVM −0.90 −1.77 −1.97 −2.85 −3.21 −3.33

log FMAEn
S-BVM −1.07 −2.81 −3.74 −6.14 −7.09 −7.42

n = 10 n = 15 n = 20 n = 25 n = 50 n = 75 n = 100

n̄ : TVn̄
BVM = TVn

S-BVM 55 120 250 350 820 1690 2470
n̄ : FMAEn̄

BVM = FMAEn
S-BVM 15 25 70 110 380 1050 2280

3.1. Exponential model. Let Xi
iid∼ EXP(θ0), for i = 1, . . . , n, where EXP(θ0) denotes the

exponential distribution with rate parameter θ0 = 2. In the following, we consider a correctly
specified model having exponential likelihood and an EXP(1) prior for θ . As clarified in Ap-
pendix E.2 of the Supplementary Material, such a Bayesian model verifies all the conditions
of Corollary 2.5, and hence, the induced posterior admits a SKS approximation with parame-
ters ξ = θ2

0 (n/θ0 − ∑n
i=1 xi − 1)/

√
n, � = 1/(θ−2

0 − 2θ−1
0 {1/θ0 − (

∑n
i=1 xi)/n − 1/n}) and

αη(h − ξ) = {√2π/(6
√

nθ3
0 )}{(h − ξ)3 + 3(h − ξ)ξ2}.

Table 1 compares the accuracy of the novel S-BVM and classial BVM, under growing sam-
ple size and in replicated experiments. More specifically, we consider 50 different simulated
datasets with θ0 = 2 and sample size nTOT = 1500. Then, within each of these 50 experi-
ments, we derive the target posterior under different subsets of data x1, . . . , xn, with growing
sample size n, and then compare the accuracy of the two approximations under the TV and
FMAE measures introduced previously. The first part of Table 1 displays, for each n, these
two measures averaged across the 50 replicated experiments under both S-BVM and BVM.
The empirical results confirm that the SKS approximation yields remarkable improvements
over the Gaussian counterpart for any n. Such an empirical finding clarifies that the

√
n im-

provement encoded in the rates we derived, is visible also in finite, even small, sample size
settings. This suggests that the theory in Sections 2.2–2.3 is informative also in practice, and
motivates the adoption of the SKS approximation in place of the Gaussian one. Such a result
is strengthened in the second part of Table 1, which shows that to attain the same accuracy of
the SKS approximation with a given n, the classical Gaussian counterpart requires a sample
size n̄ higher by approximately one order of magnitude. The analysis of a misspecified expo-
nential model in the Supplementary Material (Appendix E.2.1) confirms these conclusions.

4. Skew-modal approximation. As for standard theoretical derivations of Bernstein–
von Mises type results, also our theory in Section 2 studies approximating densities whose
parameters depend on the minimizer θ∗ of KL(P n

0 ||P n
θ ) for θ ∈ �, that coincides with θ0

when the model is correctly specified. This quantity is unknown in practice. Hence, to pro-
vide an effective approximation which can be implemented in practical contexts, it is neces-
sary to replace θ∗ with a suitable estimate. To this end, in Section 4.1 we consider a simple,
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yet effective, plug-in version of the SKS density in Corollary 2.5 which replaces θ∗ with its
maximum a posteriori (MAP) estimator θ̂ = argmaxθ∈�{ℓ(θ) + logπ(θ)}, without losing the
theoretical accuracy guarantees. Note that, in general, θ∗ can be replaced by any efficient esti-
mator. However, by relying on the MAP several quantities simplify, giving raise to a tractable
and accurate solution, which is named skew-modal approximation. See Section 4.2 for a the-
oretically supported, yet more scalable, skew-modal approximation of posterior marginals.

4.1. Skew-modal approximation and theoretical guarantees. Consistent with the above
discussion, let us consider the plug-in version of pn

SKS(h) in (1), where θ∗ is replaced by the
MAP. This yields the SKS density, for the rescaled parameter ĥ = √

n(θ − θ̂ ) ∈R
d , defined as

(14) p̂n
SKS(ĥ) = 2φd(ĥ;0, �̂)ŵ(ĥ) = 2φd(ĥ;0, �̂)F

(
α̂η(ĥ)

)
,

with �̂ = (V̂ n)−1, V̂ n = [j
θ̂,st

/n] ∈ R
d×d , and α̂η(ĥ) = {1/(12η

√
n)}(ℓ(3)

θ̂ ,st l
/n)ĥs ĥt ĥl ∈ R.

Relative to the expression for pn
SKS(h) in (1), the location ξ̂ is zero in (14), since replacing

θ∗ with the MAP inside ut in Corollary 2.5 gives zero by definition of MAP. This implies also
that in the expression for �−1 in Corollary 2.5 the term including the third order derivative
disappears. Therefore, (14) does not introduce further complications in terms of positive-
definiteness and nonnegativity of the precision matrix relative to those of the classical Laplace
approximation.

Equation (14) provides a practical skewed approximation of the target posterior with sym-
metric component centered at its mode. As such, this solution is referred to as skew-modal
approximation. In order to provide theoretical guarantees for this practical version, similar to
those in Corollary 2.5, while further refining these guarantees through novel nonasymptotic
bounds, let us introduce two mild assumptions in addition to those in Section 2.3.

ASSUMPTION 9. For every Mn → ∞, the event Ân,0 = {‖θ̂ − θ∗‖ ≤ Mn

√
d/

√
n} satis-

fies P n
0 (Ân,0) > 1 − ε̂n,0 for some sequence {ε̂n,0}∞n=1 converging to zero as n → ∞.

ASSUMPTION 10. There exist two positive constants η̄1 and η̄2 such that the event

Ân,1 = {
λMIN

(
�̂−1)

> η̄1
} ∩ {

λMAX

(
�̂−1)

< η̄2
}
,

holds with a probability P n
0 (Ân,1) > 1 − ε̂n,1 for a suitable sequence {ε̂n,1}∞n=1 converging to

zero as n → ∞. Moreover, there exist positive constants δ > 0 and L3 > 0, L4 > 0, Lπ,2 > 0
such that, for Bδ(θ̂) := {θ ∈ � : ‖θ̂ − θ‖ < δ}, the event

Ân,2 =
{

sup
θ∈Bδ(θ̂)

∥∥logπ(2)(θ)
∥∥ < Lπ,2

}
∩

{
sup

θ∈Bδ(θ̂)

∥∥ℓ(3)(θ)/n
∥∥ < L3

}

∩
{

sup
θ∈Bδ(θ̂)

∥∥ℓ(4)(θ)/n
∥∥ < L4

}
,

holds with a probability P n
0 (Ân,2) > 1 − ε̂n,2, for some suitable sequence {ε̂n,2}∞n=1 converg-

ing to zero as n → ∞, where ‖ · ‖ represents the spectral norm.

Assumption 9 is mild and holds generally in regular parametric problems. This assump-
tion ensures that the MAP is in a suitably small neighborhood of θ∗, where the centering took
place in Corollary 2.5. Condition 10 is a similar and arguably not stronger version of the
assumptions for the Laplace method described in Kass, Tierney and Kadane (1990). Notice
also that under Assumption 9, condition 10 replaces Assumptions 5–6, and requires the up-
per bound to hold in a neighborhood of θ∗. These conditions ensure uniform control on the
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difference between the log-likelihood ratio and its third-order Taylor expansion. Based on
these additional conditions we provide an asymptotic result for the skew-modal approxima-
tion in (14), similar to Corollary 2.5. The proof can be found in the Supplementary Material
and follows as a direct consequence of a more refined nonasymptotic bound we derive for
‖�n(·) − P̂ n

SKS(·)‖TV; see Remark 4.2.

THEOREM 4.1. Let ĥ = √
n(θ − θ̂ ), and define Mn = √

c0 logn, with c0 > 0. If Assump-
tions 1, 7–8, and 9–10 are met, then the posterior for ĥ satisfies

(15)
∥∥�n(·) − P̂ n

SKS(·)
∥∥

TV = OP n
0

(
Mc8

n /n
)
,

for some c8 > 0, where P̂ n
SKS(S) = ∫

S p̂n
SKS(ĥ) dĥ for S ⊂Rd with p̂n

SKS(ĥ) defined as in (14).
In addition, let G :Rd →R be a function satisfying |G(ĥ)| � ‖ĥ‖r . If the prior is such that∫ ‖ĥ‖rπ(θ̂ + ĥ/

√
n)dĥ < ∞ then

(16)
∫

G(ĥ)
∣∣πn(ĥ) − p̂n

SKS(ĥ)
∣∣dĥ = OP n

0

(
Mc8+r

n /n
)
.

REMARK 4.2. As discussed above, Theorem 4.1 is a direct consequence of a more re-
fined nonasymptotic upper bound for ‖�n(·) − P̂ n

SKS(·)‖TV that we derive in Appendix D of
the Supplementary Material. In particular, as in recently derived nonasymptotic results for
the Gaussian Laplace approximation (e.g., Spokoiny and Panov (2021), Spokoiny (2025)),
it is possible to keep track of the constants and the dimension dependence also within our
derivations, to show that on an event with high probability (approaching 1), it holds

(17)
∥∥�n(·) − P̂ n

SKS(·)
∥∥

TV ≤ CMc8
n d3/n,

for some positive constant C not depending on d and n; see Theorem D.1 and Remark D.2.
Hence, the rates in (15) follow directly from (17), when d is kept fixed and n → ∞. More
importantly, the above bound vanishes also when d grows with n, as long as d � n1/3, up to a
poly-log term. Although our original focus is not specific to high-dimensional regimes, it shall
be emphasized that this growth for d is interestingly in line with those required either for d

(Panov and Spokoiny (2015)) or for the notion of effective dimension d̃ (Spokoiny and Panov
(2021), Spokoiny (2025)) in recent high-dimensional studies of the Gaussian Bernstein–von
Mises theorem and the Laplace approximation. However, unlike the bounds in these studies,
the one reported in (17) decays to zero with n, up to a poly-log term, rather than with

√
n, for

any given dimension.

REMARK 4.3. Similar to Remark 2.6 our proofs can be easily modified to show that the
TV distance between the target posterior and the classical Gaussian Laplace approximation
is, up to a poly-log term, of order 1/

√
n. This upper bound is worse than those derived for the

skew-modal approximation. Theorem D.6 in the Supplementary Material further refines this
result by proving that, up to a poly-log term, this upper bound is sharp, whenever the posterior
displays local asymmetries. More specifically, under condition (D.30) in the Supplementary
Material, we prove that, on an event with high probability (approaching 1), the TV distance
between the posterior and the classical Laplace approximation (GM) is bounded from below
by Cd/

√
n + O(M

c8
n d3/n), for some constant Cd > 0, possibly depending on d . Crucially,

the proof of this lower bound implies that ‖�n(·)− P̂ n
GM(·)‖TV −‖�n(·)− P̂ n

SKS(·)‖TV is also
bounded from below by Cd/

√
n + O(M

c8
n d3/n). This result strengthens (15)–(17).
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REMARK 4.4. Since the TV distance is invariant with respect to scale and location trans-
formations, the above results can be stated also for the original parametrization θ of interest.
Focusing, in particular, on the choice F(·) = �(·), this yields the density

(18) p̂n
SKS(θ) = 2φd

(
θ; θ̂ , J−1

θ̂

)
�

(
(
√

2π/12)ℓ
(3)

θ̂ ,st l
(θ − θ̂ )s(θ − θ̂ )t (θ − θ̂ )l

)
,

which coincides with that of the generalized skew-normal (GSN) sub-class (Ma and Genton
(2004)) and is guaranteed to approximate the posterior for θ with the rate in Theorem 4.1.

Our novel skew-modal approximation provides, therefore, a similarly tractable, yet more
accurate, alternative to the classical Gaussian from the Laplace method. This is because the
closed-form skew-modal density can be evaluated at a similar computational cost as the one
for the Gaussian, when d is not too large. Moreover, it admits a straightforward i.i.d. sampling
scheme that facilitates Monte Carlo estimation of any functional of interest. Recalling Sec-
tion 2, such a scheme simply relies on sign perturbations of samples from a d-variate Gaus-
sian and, hence, can be directly implemented via standard R packages. Notice that, although
the nonasymptotic bound in (17) can be also derived for the theoretical skew-symmetric ap-
proximations in Section 2, the focus on the skew-modal is motivated by the fact that such an
approximation provides the solution implemented in practice. Section 4.2 derives and studies
an even more scalable, yet similarly accurate, approximation for posterior marginals.

4.2. Marginal skew-modal approximation and theoretical guarantees. The skew-modal
in Section 4.1 targets the joint posterior. In practice, the marginals of this posterior are often
the main object of interest (Rue, Martino and Chopin (2009)). For studying these quantities,
it is possible to simulate i.i.d. values from the joint skew-modal in (14), leveraging the strat-
egy in Section 2, and then retain only samples from the marginals of interest. This requires,
however, multiple evaluations of the cubic function in the skewness-inducing factor. Below
we derive a skew-modal approximation for posterior marginals that addresses this issue.

To accomplish the above goal, denote with C ⊆ {1, . . . , d} the set containing the indexes
for the elements of θ on which we are interested in. Let dC be the cardinality of C, and C̄ = Cc

the complement of C. Finally, write ĥ = (ĥC, ĥC̄). Accordingly, the matrix �̂ = (J
θ̂
/n)−1 can

be partitioned in two diagonal blocks �̂CC , �̂C̄C̄ , and an off-diagonal one �̂C̄C = �̂
ᵀ
CC̄ .

Under the regularity conditions stated in Sections 2.3 and 4.1, we can write, for n → ∞,

πn(θ̂ + ĥ/
√

n) ∝ exp
(−j

θ̂,st
ĥs ĥt /(2n) + (

ℓ
(3)

θ̂ ,st l
/n

)
ĥs ĥt ĥl/(6

√
n)

) + OP n
0

(
n−1)

.

Notice that the second order term in the above expression is proportional to the kernel of a
Gaussian and, therefore, can be decomposed as

exp
(−j

θ̂,st
ĥs ĥt /(2n)

) ∝ φd(ĥ;0, �̂) = φdC (ĥC;0, �̂CC)φd−dC (ĥC̄;�C ĥC, �̄),

where �C = �̂C̄C�̂
−1
CC and �̄ = �̂C̄C̄ − �̂C̄C�̂

−1
CC �̂CC̄ .

To obtain a marginal skew-modal approximation, let us leverage again the fact that the third
order term converges to zero in probability, and that ex = 1 + x + O(x2), for x → 0. With
these results, an approximation for the posterior marginal of ĥC is, therefore, proportional to∫

φdC (ĥC;0, �̂CC)φd−dC (ĥC̄;�C ĥC, �̄)
(
1 + (

ℓ
(3)

θ̂ ,st l
/n

)
ĥs ĥt ĥl/(6

√
n)

)
dĥC̄

= φdC (ĥC;0, �̂CC)
[
1 + {

(1/n)/(6
√

n)
}
E

ĥC̄ |ĥC
(
ℓ
(3)

θ̂ ,st l
ĥs ĥt ĥl

)]
,

(19)

where E
ĥC̄ |ĥC (ℓ

(3)

θ̂ ,st l
ĥs ĥt ĥl) denotes the expectation with respect to φd−dC (ĥC̄;�C ĥC, �̄).
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Leveraging standard properties of the expected value, the above expectation can be further
decomposed as

(20)
ℓ
(3)

θ̂ ,st l
ĥs ĥt ĥl + 3ℓ

(3)

θ̂ ,str
ĥs ĥtEĥC̄ |ĥC (ĥr )

+ 3ℓ
(3)

θ̂ ,srv
ĥsEĥC̄ |ĥC (ĥr ĥv) + ℓ

(3)

θ̂ ,rvk
E

ĥC̄ |ĥC (ĥr ĥvĥk),

with s, t, l ∈ C and r, v, k ∈ C̄. Therefore, the above expected values simply require the first
three noncentral moments of the multivariate Gaussian having density φd−dC (ĥC̄;�C ĥC, �̄).
These are

E
ĥC̄ |ĥC (ĥr ) = �C,rl ĥl, E

ĥC̄ |ĥC (ĥr ĥv) = �̄rv + �C,rt�C,vl ĥt ĥl,

E
ĥC̄ |ĥC (ĥr ĥvĥk) = �̄rv�C,ks ĥs + �̄rk�C,vs ĥs + �̄vk�C,rs ĥs + �C,rs�C,vt�C,kl ĥs ĥt ĥl .

Hence, letting

νn
1,s = 3ℓ

(3)

θ̂ ,srv
�̄rv + 3ℓ

(3)

θ̂ ,rvk
�̄rv�C,ks,

νn
3,st l = ℓ

(3)

θ̂ ,st l
+ 3ℓ

(3)

θ̂ ,str
�C,rl + 3ℓ

(3)

θ̂ ,srv
�C,rt�C,vl + ℓ

(3)

θ̂ ,rvk
�C,rs�C,vt�C,kl,

(21)

the summation in (20) can be written as νn
1,s ĥs + νn

3,st l ĥs ĥt ĥl , with s, t, l ∈ C. Replacing this

quantity in (19), yields 2φdC (ĥC;0, �̂CC)(1/2 + ηαη,C(ĥC)), with

(22) αη,C(ĥC) = {
1/(12η

√
n)

}
(1/n)

(
νn

1,s ĥs + νn
3,st l ĥs ĥt ĥl

)
.

Therefore, by leveraging the reasoning as in Section 2.1, we can write

2φdC (ĥC;0, �̂CC)
(
1/2 + ηαη,C(ĥC)

) = 2φdC (ĥC;0, �̂CC)F
(
αη,C(ĥC)

) + OP n
0

(
n−1)

,

where η ∈R, and F(·) :R→ [0,1] is a univariate cdf satisfying F(−x) = 1−F(x), F(0) =
1/2 and F(x) = F(0)+ηx +O(x2). As a result, the posterior marginal density for the vector
with indexes in C can be approximated by

(23) p̂n
SKS,C(ĥC) = 2φdC (ĥC;0, �̂CC)wC(ĥC) = 2φdC (ĥC;0, �̂CC)F

(
αη,C(ĥC)

)
.

Note that αη,C(ĥC) in (22) is an odd polynomial of ĥC , and that αη,C(ĥC) = E
ĥC̄ |ĥC {α̂η(ĥ)}.

Equation (23) shows that, once the quantities defining p̂n
SKS,C(ĥC) are pre-computed, then

the cost of inference under such an approximating density scales with dC , and no more with
d . As a consequence, when the focus is on univariate marginals, that is, dC = 1, the com-
putational gains over the joint approximation in (14) can be substantial, and calculation of
functionals can be readily performed via one-dimensional numerical integration methods.

Theorem 4.5 below clarifies that, besides being effective from a computational perspective,
the above solution preserves the same theoretical accuracy guarantees in approximating the
target marginal posterior density πn,C(ĥC) = ∫

πn(ĥ) dĥC̄ .

THEOREM 4.5. Let �n,C(S) = ∫
S πn,C(ĥC) dĥC for S ⊂ RdC . Then, under the assump-

tions of Theorem 4.1, we have that

(24)
∥∥�n,C(·) − P̂ n

SKS,C(·)
∥∥

TV = OP n
0

(
Mc9

n /n
)
,

for some c9 > 0, where P̂ n
SKS,C(S) = ∫

S p̂n
SKS,C(ĥC) dĥC with p̂n

SKS,C(ĥC) defined as in (23).
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REMARK 4.6. As for Remark 4.4, Theorem 4.5 holds also in the original parametrization
θ . Considering the GSN case with F(·) = �(·) and letting J−1

θ̂ ,CC = (J−1
θ̂

)CC , this implies that

(25)

p̂n
SKS,C(θC)

= 2φdC
(
θC; θ̂C, J−1

θ̂ ,CC
)
�

(√
2π

12

{
νn

1,s

n
(θ − θ̂ )s + νn

3,st l(θ − θ̂ )s(θ − θ̂ )t (θ − θ̂ )l

})
,

approximates πn,C(ĥC) with rate as in Theorem 4.5, with s, t, l ∈ C, and νn
1,s , νn

3,st l as in (21).

5. Empirical analysis of skew-modal approximations. Sections 5.1–5.2 demonstrate
on both synthetic datasets and real-data applications that the join and marginal skew-modal
approximations (SKEW-M) in Section 4 achieve remarkable accuracy improvements relative
to the Gaussian-modal counterpart (GM) from the Laplace method. These improvements are
again in line with the rates we derived theoretically. Comparisons against other state-of-the-
art approximations from VB and EP are also discussed (see Appendix E in the Supplementary
Material). In the following, we focus, in particular, on assessing performance of the general-
ized skew-normal approximations in Remarks 4.4 and 4.6.

5.1. Exponential model revisited. Let us first replicate the simulation study in Section 3.1
with focus on the practical skew-modal approximation in Section 4.1, rather than its popu-
lation version which assumes knowledge of θ∗. Consistent with this focus, the performance
of the SKEW-M approximation in (18) is compared against the GM solution N(θ̂ , J−1

θ̂
) aris-

ing from the Laplace method (e.g., Gelman et al. ((2014), p. 318)). Note that the additional
Assumptions 9–10 required by Theorem 4.1 and Remark 4.4 are satisfied. In fact, θ̂ is asymp-
totically equivalent to the maximum likelihood estimator which implies that Assumption 9
is fulfilled. Moreover, in view of the expressions for the first three log-likelihood derivatives
within Appendix E.2 of the Supplementary Material, also 10 holds.

Table 2 reports the same summaries as in the second part of Table 1, but now with a focus
on comparing the SKEW-M approximation in (18) and the GM solution. Results are in line with
those in Section 3.1, and show, for example, that to achieve the same accuracy attained by the
skew-modal with n = 20, the Gaussian from the Laplace method requires a sample size of n̄ ≈
500. These results are strengthened in Appendix E.4 of the Supplementary Material which
confirms the findings of Section 3.1 and again clarifies that the theory in Theorem 4.1 closely
matches the empirical behavior observed in practice (including in misspecified settings).

5.2. Probit and logistic regression model. We consider now a real-data application on
the Cushings dataset (Venables and Ripley (2002)), openly available in the R library Mass.
In this case the true data-generative model is not known and, therefore, this analysis is useful
to evaluate again the performance in possibly misspecified contexts.

The data are obtained from a medical study on n = 27 individuals, aimed at investigating
the relationship between four different sub-types of the Cushing’s syndrome and two steroid

TABLE 2
For each n from n = 10 to n = 50, sample size n̄ required by the classical Gaussian from the Laplace method

(GM) to obtain the same TV and FMAE achieved by our skew-modal solution (SKEW-M) with sample size n

n = 10 n = 15 n = 20 n = 25 n = 50

n̄ : TVn̄
GM = TVn

SKEW-M 150 260 470 730 >2500
n̄ : FMAEn̄

GM = FMAEn
SKEW-M 190 390 650 1030 >2500
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TABLE 3
For the probit and logistic regression, comparison among the accuracy of the skew-modal approximation

(SKEW-M) and the classical Gaussian one from the Laplace method (GM). Performance is measured in terms of
(i) TV distances from the target joint posterior and its marginals, (ii) absolute error (ERR) in approximating the
posterior means and (iii) average absolute error (AVE-PR) in the approximation of the posterior probabilities of
being affected by bilateral hyperplasia for each patient. Bold values indicate best performance for each measure

TVθ TVθ0 TVθ1 TVθ2 ERRθ0 ERRθ1 ERRθ2 AVE-PR

Probit
SKEW-M 0.10 0.02 0.04 0.05 0.003 0.002 0.020 0.005
GM 0.18 0.09 0.07 0.11 0.097 0.008 0.054 0.022

Logit
SKEW-M 0.14 0.05 0.07 0.07 0.072 0.006 0.052 0.009
GM 0.22 0.10 0.09 0.14 0.183 0.016 0.112 0.033

metabolites. To simplify the analysis, we consider here the binary response Xi ∈ {0;1} which
takes value 1 if patient i is affected by bilateral hyperplasia, and 0 otherwise, for i = 1 . . . , n.
The two observed covariates zi1 and zi2 measure the urinary excretion rate for the two steroid
metabolites, respectively, of the ith patient. In the following, we focus on the two most popu-
lar regression models for binary data, namely, probit and logistic regression with mean func-
tions �(θ0 + θ1zi1 + θ2zi2) and 1/(1 + exp[−(θ0 + θ1zi1 + θ2zi2)]), respectively.

Under both regression models, Bayesian inference proceeds via independent weakly in-
formative Gaussian priors N(0,25) for the coefficients in θ = (θ0, θ1, θ2)

ᵀ. Such priors, com-
bined with the likelihoods, yield posteriors for θ which we approximate under both the joint
and marginal skew-modal approximations (SKEW-M). Table 3 compares, via different mea-
sures, the accuracy of these solutions relative to the one obtained under the classical Gaussian
approximation from the Laplace method. Notice that all these approximations can be readily
derived from the closed-form derivatives of the log-likelihood and log-prior for both the pro-
bit and logistic regression. Moreover, since the prior distribution is Gaussian, the MAP under
both models coincides with the ridge-regression estimator and therefore can be computed via
basic R functions.

Table 3 displays the Monte Carlo estimates of the TV distances from the posterior distri-
bution and its marginals, along with errors in approximating the posterior means for the three
regression parameters and the posterior probabilities of being affected by a bilateral hyper-
plasia. Under probit, the latter quantity is defined as AVE-PR = ∑n

i=1 |pri − p̂rAPP,i |/n with
pri = ∫

�(θ0 + θ1zi1 + θ2zi2)πn(θ) dθ and p̂rAPP,i = ∫
�(θ0 + θ1zi1 + θ2zi2)p̂

n
APP(θ) dθ , for

each i = 1, . . . , n, where p̂n
APP(θ) is any generic approximation for πn(θ). The logistic case

follows by replacing �(·) with the logit link. These measures and all those in Table 3 are
computed via Monte Carlo as detailed in the code at https://github.com/Francesco16p/SMA.
Samples under the target posterior are obtained via Hamiltonian Monte Carlo.

As shown in Table 3, the proposed SKEW-M solutions generally yield remarkable accuracy
improvements relative to GM, under both models. More specifically, SKEW-M almost halves,
on average, the TV distance associated with GM, while providing a much more accurate ap-
proximation for the posterior means and posterior probabilities. This is an important accuracy
gain provided that the ratio between the absolute error made by GM in posterior means ap-
proximation and the actual value of these posterior means is, on average, ≈ 0.25. These gains
are observed also when comparing the approximated 95% highest posterior density intervals
with those of the target posterior. Also in this case SKEW-M is twice more accurate than GM.

As discussed in the Supplementary Material, the SKEW-M outperforms also state-of-the-
art VB (Consonni and Marin (2008), Durante and Rigon (2019), Fasano, Durante and Zanella

https://github.com/Francesco16p/SMA
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(2022)), and is competitive with EP (Chopin and Ridgway (2017)). The latter result is particu-
larly remarkable since SKEW-M only leverages the local behavior of the posterior distribution
within a neighborhood of its mode, while EP is known to provide an accurate global solution
aimed at matching the first two moments of the target posterior. Appendix E.6 in the Supple-
mentary Material clarifies that important empirical gains are achieved also by the marginal
skew-modal approximation from Section 4.2, even when the focus is on a high-dimensional
study with n = 333 and d = 135.

6. Discussion. Through a novel treatment of a third order version of the Laplace method,
this article shows that it is possible to derive valid, closed-form and tractable SKS approxima-
tions of posterior distributions. Under general assumptions which account for both misspeci-
fied models and non-i.i.d. settings, such a novel family of approximations is shown to admit
a Bernstein–von Mises type result that establishes remarkable improvements in convergence
rates to the target posterior relative to those of the classical Gaussian limiting approximation.
The specialization of this general theory to regular parametric models yields SKS approxi-
mations with direct methodological impact and immediate applicability under a novel skew-
modal solution that is obtained by replacing the unknown θ∗ entering the theoretical version
with the MAP. The empirical studies on both simulated data and real applications confirm that
the remarkable accuracy improvements encoded in our asymptotic and nonasymptotic theory
are visible also in practice, even for small-sample regimes. This provides further support to
the superior theoretical, methodological and practical performance of the proposed skewed
approximations.

The above advancements open new avenues that stimulate research in the field of Bayesian
inference based on skewed approximations. As shown in a number of contributions appearing
after our article and referencing to our results, interesting directions include the introduction
of skewness in other deterministic approximations, such as VB (e.g., Tan (2024)), and further
refinements of the high-dimensional results implied by the nonasymptotic bounds we derive
for the proposed skew-modal approximation. Katsevich (2024) provides an interesting con-
tribution along this latter direction, which leverages a theoretical approach based on Hermite
polynomial expansions to show that d can possibly grow faster than n1/3, under suitable mod-
els. However, unlike for our results, the focus is on studying nonvalid skewed approximating
densities. The notion of effective dimension d̃ introduced by Spokoiny and Panov (2021) and
Spokoiny (2025) for the study of the Gaussian Laplace approximation in high dimensions is
also worth further investigations under our skewed extension, since d̃ can be possibly o(d).

Semiparametric settings (e.g., Bickel and Kleijn (2012), Castillo and Rousseau (2015))
are also of interest. Additionally, although the inclusion of skewness is arguably sufficient to
yield an accurate approximation of intractable posterior distributions, accounting for kurtosis
might provide additional improvements both in theory and in practice. To this end, a relevant
research direction is to seek for an alternative to the Gaussian density in the symmetric part,
possibly obtained from an extension to the fourth order of our novel treatment of the Laplace
method. Our conjecture is that such a generalization would provide an additional order-of-
magnitude improvement in the rates, while yielding an approximation still within the general
skew-symmetric family.
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SUPPLEMENTARY MATERIAL

Supplementary Material to “Skewed Bernstein–von Mises theorem and skew-modal
approximations” (DOI: 10.1214/24-AOS2429SUPPA; .pdf). This supplement contains
proofs, technical lemmas and further results.

Code for “Skewed Bernstein–von Mises theorem and skew-modal approximations”
(DOI: 10.1214/24-AOS2429SUPPB; .zip). This directory contains code to implement the
analyses in Section 5.2. For the most recent and updated version of the code, refer to https://
github.com/Francesco16p/SMA.
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