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This paper studies how to construct confidence regions for principal
component analysis (PCA) in high dimension, a problem that has been
vastly underexplored. While computing measures of uncertainty for nonlin-
ear/nonconvex estimators is in general difficult in high dimension, the chal-
lenge is further compounded by the prevalent presence of missing data and
heteroskedastic noise. We propose a novel approach to performing valid infer-
ence on the principal subspace, on the basis of an estimator called HeteroPCA
(Ann. Statist. 50 (2022b) 53–80). We develop nonasymptotic distributional
guarantees for HeteroPCA, and demonstrate how these can be invoked to
compute both confidence regions for the principal subspace and entrywise
confidence intervals for the spiked covariance matrix. Our inference proce-
dures are fully data-driven and adaptive to heteroskedastic random noise,
without requiring prior knowledge about the noise levels.

1. Introduction. The applications of modern data science frequently ask for succinct
representations of high-dimensional data. At the core of this pursuit lies principal component
analysis (PCA), which serves as an effective means of dimension reduction and has been
deployed across a broad range of domains (Fan et al. (2021), Johnstone and Paul (2018),
Jolliffe (1986), Vaswani, Chi and Bouwmans (2018)). In reality, data collection could often
be far from ideal—for instance, the acquired data might be subject to random contamination
and contain incomplete observations—which inevitably affects the fidelity of PCA and calls
for additional care when interpreting the results. To enable informative assessment of the in-
fluence of imperfect data acquisition, it would be desirable to accompany the PCA estimators
in use with valid measures of uncertainty or “confidence.”

1.1. Problem formulation. To allow for concrete and precise studies, the present paper
concentrates on a tractable model that captures the effects of random heteroskedastic noise
and missing data in PCA. In what follows, we start by formulating the problem, in the hope
of facilitating more precise discussions.

Model. Imagine we are interested in n independent random vectors xj = [x1,j , . . . ,

xd,j ]� ∈ R
d drawn from the following distribution:1

(1.1) xj
ind.∼ N

(
0,S�), 1 ≤ j ≤ n,

where the unknown covariance matrix S� ∈ R
d×d is assumed to be rank-r (r < n) with eigen-

decomposition

(1.2) S� = U ���U ��.
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Here, the orthonormal columns of U � ∈ R
d×r constitute the r leading eigenvectors of S�,

whereas �� ∈ R
r×r is a diagonal matrix whose diagonal entries are composed of the nonzero

eigenvalues of S�. In other words, these vectors {xj }1≤j≤n are randomly drawn from a low-
dimensional subspace when r is small. What we have available are partial and randomly
corrupted observations of the entries of the above vectors. Specifically, suppose that we only
get to observe

(1.3) yl,j = xl,j + ηl,j for all (l, j) ∈ �

over a subsampled index set � ⊆ [d] × [n] (with [n] := {1, . . . , n}), where ηl,j represents the
noise that contaminates the observation in this location. Throughout this paper, we focus on
the following random sampling and random noise models.

• Random sampling: each index (l, j) is contained in � independently with probability p;
• Heteroskedastic random noise with unknown variance: the noise components {ηl,j } are

independently generated sub-Gaussian random variables obeying

E[ηl,j ] = 0, E
[
η2

l,j

]= ω�2
l , and ‖ηl,j‖ψ2 = O

(
ω�

l

)
,

where {ω�
l }1≤l≤d denote the standard deviations that are a priori unknown, and ‖ · ‖ψ2

stands for the sub-Gaussian norm of a random variable (Vershynin (2018)). The noise
levels {ω�

l }1≤l≤d are allowed to vary across locations, so as to model the so-called het-
eroskedasticity of noise.

This model can be viewed as a generalization of the spiked covariance model (Baik, Ben
Arous and Péché (2005), Bao et al. (2022a), Cai et al. (2021), Donoho, Gavish and Johnstone
(2018), Johnstone (2001), Nadler (2008), Paul (2007)) to account for missing data and het-
eroskedastic noise. With the observed data {yl,j |(l, j) ∈ �} in hand, can we perform statistical
inference on the orthonormal matrix U �—which embodies the ground-truth r-dimensional
principal subspace underlying the vectors {xj }1≤j≤n—and make inference on the underlying
covariance matrix S�. Mathematically, the task can often be phrased as constructing valid
confidence intervals/regions for both U � and S� based on the incomplete and corrupted ob-
servations {yl,j |(l, j) ∈ �}. Noteworthily, this model is frequently studied in econometrics
and financial modeling under the name of factor models (Bai and Wang (2016), Fan, Li and
Liao (2021), Fan et al. (2021), Fan and Yao (2017), Gagliardini, Ossola and Scaillet (2020)),
and is closely related to the noisy matrix completion problem where we also quantify uncer-
tainty of missing entries (Candès and Plan (2010), Candès and Recht (2009), Chi, Lu and
Chen (2019), Keshavan, Montanari and Oh (2010a)).

Inadequacy of prior works. While methods for estimating principal subspace are certainly
not in shortage (e.g., Balzano, Chi and Lu (2018), Cai et al. (2021), Cai and Zhang (2018), Li
et al. (2021), Lounici (2014), Zhang, Cai and Wu (2022b), Zhu, Wang and Samworth (2022)),
methods for constructing confidence regions for principal subspace remain vastly underex-
plored. The fact that the estimators in use for PCA are typically nonlinear and nonconvex
presents a substantial challenge in the development of a distributional theory, let alone uncer-
tainty quantification. As some representative recent attempts, Bao, Ding and Wang (2021),
Xia (2021) established normal approximations of the distance between the true subspace and
its estimate for the matrix denoising setting, while Koltchinskii, Löffler and Nickl (2020)
further established asymptotic normality of some debiased estimator for linear functions of
principal components. These distributional guarantees pave the way for the development of
statistical inference procedures for PCA. However, it is noteworthy that these results required
the noise components to either be i.i.d. Gaussian or at least exhibit matching moments (up
to the 4th order), which fell short of accommodating heteroskedastic noise. The challenge is
further compounded when statistical inference needs to be conducted in the face of missing
data, a scenario that is beyond the reach of these prior works.
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1.2. Our contributions. In light of the insufficiency of prior results, this paper takes a step
toward developing data-driven inference and uncertainty quantification procedures for PCA,
in the hope of accommodating both heteroskedastic noise and missing data. Our inference
procedures are built on an estimator called HeteroPCA recently proposed by Zhang, Cai and
Wu (2022b), which is an iterative algorithm in nature and will be detailed in Section 2. The
main contributions of this paper are summarized as follows.

• Distributional theory for PCA and covariance estimation. We derive, in a nonasymptotic
manner, rowwise distributional characterizations of the principal subspace estimate re-
turned by HeteroPCA (see Theorem 1), as well as entrywise distributional guarantees of
the estimate for the covariance matrix estimate of {xl}1≤l≤n (see Theorem 3). These distri-
butional characterizations take the form of tractable Gaussian approximations centered at
the ground truth.

• Fine-grained confidence regions and intervals. Our distributional theory in turns allows for
construction of rowwise confidence region for the subspace U � (see Algorithm 3 and The-
orem 2) as well as entrywise confidence intervals for the matrix S� (see Algorithm 4 and
Theorem 4). The proposed inference procedures are fully data-driven and do not require
prior knowledge of the noise levels.

Along the way, we have significantly strengthened the estimation guarantees for HeteroPCA
in the presence of missing data. It is noteworthy that all of our theory allows the observed data
to be highly incomplete and covers heteroskedastic noise, which is previously unavailable.

1.3. Paper organization. The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce the estimation algorithms available in prior literature. Section 3 de-
velops a suite of distributional theory for HeteroPCA and demonstrates how to use it to con-
struct fine-grained confidence regions and confidence intervals for the unknowns; the detailed
proofs of our theorems are deferred to the Appendices. In Section 4, we carry out a series of
numerical experiments to confirm the validity and applicability of our theoretical findings.
Section 5 gives an overview of several related works. Section 6 takes a detour to analyze two
intimately related problems, which will then be utilized to establish our main results. We con-
clude the paper with a discussion of future directions in Section 7. Most of the proof details
are deferred to the Appendices.

1.4. Notation. Before proceeding, we introduce several notation that will be useful
throughout. We let f (n) � g(n) or f (n) = O(g(n)) represent the condition that |f (n)| ≤
Cg(n) for some constant C > 0 when n is sufficiently large; we use f (n) � g(n) to denote
f (n) ≥ C|g(n)| for some constant C > 0 when n is sufficiently large; and we let f (n) 	 g(n)

indicate that f (n) � g(n) and f (n) � g(n) hold simultaneously. The notation f (n) 
 g(n)

(resp., f (n) � g(n)) means that there exists some sufficiently large (resp., small) con-
stant c1 > 0 (resp., c2 > 0) such that f (n) ≥ c1g(n) (resp., f (n) ≤ c2g(n)). We also let
f (n) = o(g(n)) indicate that limn→∞ f (n)/g(n) = 0. For any real number a, b ∈ R, we
shall define a ∧ b := min{a, b} and a ∨ b := max{a, b}.

For any matrix M = [Mi,j ]1≤i≤n1,1≤j≤n2 , we let M i,· and M ·,j stand for the ith row and
the j th column of M , respectively. We shall also let ‖M‖, ‖M‖F, ‖M‖2,∞ and ‖M‖∞ denote
the spectral norm, the Frobenius norm, the �2,∞ norm (i.e., ‖M‖2,∞ := maxi ‖M i,·‖2) and
the entrywise �∞ norm (‖M‖∞ := maxi,j |Mi,j |) of M , respectively. For any index set �,
the notation P�(M) represents the Euclidean projection of a matrix M onto the subspace of
matrices supported on �, and define P�c(M) := M −P�(M) as well. In addition, we denote
by Pdiag(G) the Euclidean projection of a square matrix G onto the subspace of matrices
that vanish outside the diagonal, and define Poff-diag(G) := G −Pdiag(G). For a nonsingular
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matrix H ∈ R
k×k with SVD UH�HV �

H , we denote by sgn(H ) the following orthogonal
matrix:

(1.4) sgn(H ) := UHV �
H .

Finally, we denote by C d the set of all convex sets in R
d . For any Lebesgue measurable

set A ⊆ R
d , we adopt the shorthand notation N (μ,�){A} := P(z ∈A), where z ∼ N (μ,�).

Throughout this paper, we let �(·) (resp., φ(·)) represent the cumulative distribution function
(resp., probability distribution function) of the standard Gaussian distribution. We also denote
by χ2

k the chi-square distribution with k degrees of freedom.

2. Background: The estimation algorithm HeteroPCA. In order to conduct statisti-
cal inference for PCA, the first step lies in selecting an algorithm to estimate the principal
subspace and the covariance matrix of interest, which we discuss in this section. Before con-
tinuing, we introduce several useful matrix notation as follows:

X := [x1, . . . ,xn] ∈ R
d×n,(2.1a)

Y := P�(X + N) ∈ R
d×n,(2.1b)

where P� has been defined in Section 1.4, and N ∈ R
d×n represents the noise matrix such

that the (l, j)-th entry of N is given by ηl,j . In other words, Y encapsulates all the observed
data {yl,j |(l, j) ∈ �}, with any entry outside � taken to be zero. If one has full access to the
noiseless data matrix X, then a natural strategy to estimate U � would be to return the top-r
eigenspace of the sample covariance matrix n−1XX�, or equivalently, the top-r left singular
subspace of X. In practice, however, one needs to extract information from the corrupted and
incomplete data matrix Y .

A vanilla SVD-based approach. Given that p−1Y = p−1P�(X+N) is an unbiased estimate
of X (conditional on X), a natural idea that comes into mind is to resort to the top-r left
singular subspace of p−1Y when estimating U �. This simple procedure is summarized in
Algorithm 1.

An improved iterative estimator: HeteroPCA. While Algorithm 1 returns reliable estimates
of U � and S� in the regime of moderate-to-high signal-to-noise ratio (SNR), it might fail to
be effective if either the missing rate 1 − p or the noise levels are too large. To offer a high-
level explanation, we find it helpful to compute the expectation of a properly rescaled sample
covariance matrix:

(2.2)
1

p2E
[
YY� |X]= XX� +

(
1

p
− 1

)
Pdiag

(
XX�)+ n

p
diag

{[
ω�2

l

]
1≤l≤d

}
,

where for any vector z = [zl]1≤l≤d we denote by diag(z) ∈ R
d×d a diagonal matrix whose

(l, l)-th entry equals zl . Here, we rescale the sample covariance matrix by p−2 on the left-
hand side, given that p−1Y is an unbiased estimate for X and, therefore, we expect p−2YY�
to be close to XX�. If the sampling rate p is overly small and/or if the noise is of large

Algorithm 1 A vanilla SVD-based approach
Input: data matrix Y (cf. (2.1b)), sampling rate p, rank r .
Compute the truncated rank-r SVD U�V � of p−1Y/

√
n, where U ∈ R

d×r , � ∈ R
r×r

and V ∈ R
n×r .

Output: U as the subspace estimate, � as an estimate of (��)1/2, and S = U�2U� as the
covariance matrix estimate of x.
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Algorithm 2 HeteroPCA (by Zhang, Cai and Wu (2022b))
Input: data matrix Y (cf. (2.1b)), sampling rate p, rank r , maximum number of iterations
t0.
Initialization: set G0 = 1

np2Poff-diag(YY�).
Updates: for t = 0,1, . . . , t0 do(

U t ,�t )= eigs
(
Gt , r

)
,

Gt+1 = Poff-diag
(
Gt )+Pdiag

(
U t�tU t�)= 1

np2Poff-diag
(
YY�)+Pdiag

(
U t�tU t�).

Here, for any symmetric matrix G ∈ R
d×d and 1 ≤ r ≤ d , eigs(G, r) returns (U ,�), where

U�U� is the top-r eigendecomposition of G.
Output: U = U t0 as the subspace estimate, � = (�t0)1/2 as an estimate of (��)1/2 and
S = U t0�t0U t0� as the covariance matrix estimate.

size but heteroskedastic, then the second and the third terms on the right-hand side of (2.2)
might result in significant bias on the diagonal of the matrix E[YY� |X], thus hampering the
statistical accuracy of the eigenspace of p−2YY� (or equivalently, the left singular space of
p−1Y ) when employed to estimate U �. Viewed in this light, a more effective estimator would
include procedures that properly handle the diagonal components of p−2YY�.

To remedy this issue, several previous works (e.g., Cai et al. (2021), Florescu and Perkins
(2016)) adopted a spectral method with diagonal deletion, which essentially discards any di-
agonal entry of p−2YY� before computing its top-r eigenspace. However, diagonal deletion
comes at a price: while this operation mitigates the significant bias due to heteroskedasticity
and missing data, it introduces another type of bias that might be nonnegligible if the goal
is to enable efficient fine-grained inference. To address this bias issue, Zhang, Cai and Wu
(2022b) proposed an iterative refinement scheme—termed HeteroPCA—that copes with the
diagonal entries in a more refined manner. Informally, HeteroPCA starts by computing the
rank-r eigenspace of the diagonal-deleted version of p−2YY�, and then alternates between
imputing the diagonal entries of XX� and estimating the eigenspace of p−2YY� with the
aid of the imputed diagonal. A precise description of this procedure is summarized in Algo-
rithm 2; here, Poff-diag and Pdiag have been defined in Section 1.4.

3. Distributional theory and inference procedures. In this section, we augment the
HeteroPCA estimator introduced in Section 2 by a suite of distributional theory, and demon-
strate how to employ our distributional characterizations to perform inference on both the
principal subspace represented by U � and the covariance matrix S�.

3.1. Key quantities and assumptions. Before continuing, we introduce several additional
notation and assumptions that play a key role in our theoretical development. Recall that
the eigendecomposition of the covariance matrix S� ∈ R

d×d (see (1.2)) is assumed to be
U ���U ��. We assume the diagonal matrix �� to be �� = diag{λ�

1, . . . , λ
�
r}, where the diag-

onal entries are given by the nonzero eigenvalues of S� obeying

λ�
1 ≥ · · · ≥ λ�

r > 0.

The condition number of S� is denoted by

(3.1) κ := λ�
1/λ

�
r .

We also find it helpful to introduce the square root of �� as follows:

(3.2) �� = diag
{
σ�

1 , . . . , σ �
r

}= (
��)1/2

, where σ�
i = (

λ�
i

)1/2
, 1 ≤ i ≤ r.
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Furthermore, we introduce an incoherence parameter commonly employed in prior literature
(Candès (2014), Chi, Lu and Chen (2019)).

DEFINITION 1 (Incoherence). The rank-r matrix S� ∈ R
d×d defined in (1.2) is said to be

μ-incoherent if the following condition holds:

∥∥U �
∥∥

2,∞ ≤
√

μr

d
.(3.3)

Here, we recall that ‖U �‖2,∞ denotes the largest �2 norm of all rows of the matrix U �.

REMARK 1. When μ is small (e.g., μ 	 1), this condition essentially ensures that the
energy of U � is nearly evenly dispersed across all of its rows. As a worthy note, the theory
developed herein allows the incoherence parameter μ to grow with the problem dimension.

In light of a global rotational ambiguity issue (i.e., for any r × r rotation matrix R, the
matrices U ∈ R

d×r and UR ∈ R
d×r share the same column space), in general we can only

hope to estimate U � up to global rotation (unless additional eigenvalue separation conditions
are imposed). Consequently, our theoretical development focuses on characterizing the error
distribution UR − U � of an estimator U when accounting for a proper rotation matrix R. In
particular, we shall pay particular attention to a specific way of rotation as follows:

Usgn
(
U�U �)− U �,

where we recall that for any nonsingular matrix H ∈R
k×k with SVD UH�HV �

H , the matrix
sgn(H ) is defined to be the rotation matrix UHV �

H . This particular choice aligns U and U �

in the following sense:

sgn
(
U�U �)= arg min

R∈Or×r

∥∥UR − U �
∥∥

F,

where Or×r indicates the set of all r × r rotation matrices; see Ma et al. ((2020), Appendix
D.2.1). This is often referred to as Whaba’s problem (Wahba (1965)) or the orthogonal Pro-
crustes problem (Schönemann (1966)).

The last assumption is concerned with the noise levels, which are allowed to vary across
different locations.

ASSUMPTION 1 (Noise levels). The noise levels {ω�
i }1≤i≤d obey

(3.4)
ω2

max

ω2
min

≤ κω with ωmax := max
1≤i≤d

ω�
i and ωmin := min

1≤i≤d
ω�

i .

3.2. Inferential procedure and theory for HeteroPCA. We are now positioned to investi-
gate how to assess the uncertainty of the estimator HeteroPCA. For simplicity of presentation,
we shall abuse some notation (e.g., ��

U,l and v�
i,j ) whenever it is clear from the context.

3.2.1. Distributional theory and inference for the principal subspace U �. In this subsec-
tion, we shall begin by establishing a distributional theory for the subspace estimate U re-
turned by HeteroPCA (see Theorem 1), followed by a data-driven and provably valid method
to construct fine-grained confidence regions for U � (see Algorithm 3 and Theorem 2). We
shall also briefly discuss how our results improve upon prior estimation guarantees for Het-
eroPCA in the presence of missing data.
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Distributional guarantees. As it turns out, the subspace estimate returned by Algorithm 2
is approximately unbiased and Gaussian under milder conditions, as posited in the following
theorem. The general result beyond the case with κ , μ, r , κω 	 1 is postponed to Theorem 11
in Appendix B in the Supplementary Material (Yan, Chen and Fan (2024)).

THEOREM 1. Assume that each column of the ground truth X (cf. (2.1a)) is indepen-
dently generated from N (0,S�), and that the sampling set � follows the random sampling
model in Section 1.1. Suppose that p < 1− δ for some arbitrary constant 0 < δ < 1 or p = 1,
and κ , μ, r , κω 	 1. Assume that Assumption 1 holds and d � log5 n,

ω2
max

pσ�2
r

√
d

n
� 1

log7/2(n + d)
,

ωmax

σ�
r

√
d

np
� 1

log3(n + d)
,(3.5a)

ndp2 � log9(n + d), np � log7(n + d).(3.5b)

Suppose, in addition, that the number of iterations exceeds

t0 � log
[(

log2(n + d)√
ndp

+ ω2
max

pσ�2
r

√
d

n
log(n + d) + log(n + d)√

np

+ ωmax

σ�
r

√
d log(n + d)

np

)−1]
.

(3.6)

Let R be the r × r rotation matrix R = sgn(U�U �). Then the estimate U returned by Algo-
rithm 2 obeys: for all 1 ≤ l ≤ d ,

sup
C∈C r

∣∣P([UR − U �]
l,· ∈ C

)−N
(
0,��

U,l

){C}∣∣= o(1),

where C r represents the set of all convex sets in R
r , and

��
U,l :=

(
1 − p

np

∥∥U �
l,·��

∥∥2
2 + ω�2

l

np

)(
��)−2 + 2(1 − p)

np
U ��

l,· U �
l,·

+ (
��)−2

U ��diag
{[

d�
l,i

]
1≤i≤d

}
U �(��)−2

(3.7)

with

d�
l,i := 1

np2

[
ω�2

l + (1 − p)
∥∥U �

l,·��
∥∥2

2

][
ω�2

i + (1 − p)
∥∥U �

i,·��
∥∥2

2

]+ 2(1 − p)2

np2 S�2
l,i .

Theorem 1 asserts that each row of the estimate U returned by HeteroPCA is nearly un-
biased and admits a nearly tight Gaussian approximation, whose covariance matrix can be
determined via the closed-form expression (3.7). Given that UR and U represent the same
subspace, this theorem delivers a fine-grained rowwise distributional characterization for the
estimator HeteroPCA.

Let us briefly mention the key error decomposition behind this theorem, which might help
illuminate how Gaussian approximation emerges. Letting E := n−1/2(p−1Y − X) (which
captures the randomness from both the noise and random subsampling), we can decompose

(3.8) UR − U � = [
EX� +Poff-diag

(
EE�)]U �(��)−2︸ ︷︷ ︸

=:Z (first- and second-order approximation)

+ [
UR − U � − Z

]︸ ︷︷ ︸
=:� (residual term)

.

Here, Z contains not only a linear mapping of E but also a certain quadratic mapping, the
latter of which is crucial when coping with the regime n 
 d . As a consequence of the
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central limit theorem (which will be solidified in the proof), Z admits the following Gaussian
approximation:

(3.9) Zl,·
d≈ N

(
0,��

U,l

)
, 1 ≤ l ≤ d.

At the same time, the �2 norm of the residual term � l,· is well controlled and provably
negligible compared to the corresponding component in Zl,·, thus ascertaining the tightness
of the advertised Gaussian approximation.

REMARK 2. The decomposition (3.8) also sheds light on why our current theory assumes
a finite κω (cf. (3.4)) when conducting statistical inference (which is unnecessary for the
task of estimation). Consider, for example, a simple case when (i) there is no missing data
(p = 1) and (ii) for some 1 ≤ l ≤ d , one has ω�

l = 0 (and hence κω = ∞) and ‖U �
l,·‖2 > 0.

In this case, Zl,· = 0 since ��
U,l = 0, although [UR − U �]l,· is in general nonzero. This

implies that our Gaussian approximation—and the inference procedure developed based on
this approximation—might fall short of efficacy when κω = ∞.

Construction of confidence regions for the principal subspace. With the above distribu-
tional theory in place, we are well equipped to construct fine-grained confidence regions for
U �, provided that the covariance matrix ��

U,l can be estimated in a faithful manner. In Algo-
rithm 3, we propose a procedure to estimate ��

U,l , which in turn allows us to build confidence
regions. As before, our estimator for ��

U,l can be viewed as a sort of “plug-in” method in ac-
cordance with the expression (3.7).

The following theorem confirms the validity of the proposed inference procedure when κ ,
μ, r , κω 	 1. The more general case will be studied in Theorem 12 in Appendix B in the
Supplementary Material (Yan, Chen and Fan (2024)).

Algorithm 3 Confidence regions for U �
l,· (1 ≤ l ≤ d) based on HeteroPCA

Input: output (U ,�,S) of Algorithm 2, sampling rate p, coverage level 1 − α.
Compute estimates of the noise levels {ω�

l }1≤l≤d as follows:

ω2
l :=

∑n
j=1 y2

l,j 1(l,j)∈�∑n
j=1 1(l,j)∈�

− Sl,l for all 1 ≤ l ≤ d.

Compute an estimate of ��
U,l (cf. (3.7)) as follows:

�U,l :=
(

1 − p

np
‖U l,·�‖2

2 + ω2
l

np

)
�−2 + 2(1 − p)

np
U�

l,·U l,·

+ (�)−2U�diag
{[dl,i]1≤i≤d

}
U(�)−2,

where

dl,i := 1

np2

[
ω2

l + (1 − p)‖U l,·�‖2
2
][

ω2
i + (1 − p)‖U i,·�‖2

2
]+ 2(1 − p)2

np2 S2
l,i .

Compute the (1 − α)-quantile τ1−α of χ2
r and construct a Euclidean ball:

B1−α := {
z ∈R

r : ‖z‖2
2 ≤ τ1−α

}
.

Output the (1 − α)-confidence region

CR1−α
U,l := U l,· + (�U,l)

1/2B1−α = {
U l,· + (�U,l)

1/2z : z ∈ B1−α

}
.
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THEOREM 2. Suppose that the conditions of Theorem 1 hold. Then there exists a r × r

rotation matrix R = sgn(U�U �) such that the confidence regions CR1−α
U,l (1 ≤ l ≤ d) com-

puted in Algorithm 3 obey

sup
1≤l≤d

∣∣P(U �
l,·R� ∈ CR1−α

U,l

)− (1 − α)
∣∣= o(1).

In words, Theorem 2 uncovers that: a valid ground-truth subspace representation is
contained—in a rowwise reliable manner—within the confidence regions CR1−α

U,l (1 ≤ l ≤ d)
we construct. In the special case with r = 1, this result leads to valid entrywise confidence
intervals for the principal component.

Interpretations and implications. We now take a moment to interpret the conditions required
in Theorem 1 and Theorem 2, and discuss some appealing attributes of our methods. As
before, the discussion below focuses on the scenario where μ, κ , r , κω 	 1 for the sake of
simplicity.

• Missing data. Both theorems accommodate the case when a large fraction of data are miss-
ing, namely they cover the range

p ≥ �̃

(
1

n ∧ √
nd

)
for both distributional characterizations and confidence region construction using Het-
eroPCA. In particular, if n 
 d , then the sampling rate p only needs to exceed

p ≥ �̃

(
1√
nd

)
;

this range can include some sampling rate much smaller than 1/d (with d the ambient
dimension of each sample vector), and cannot be improved in general according to (Cai
et al. ((2021), Theorem 3.4)).

• Tolerable noise levels. The noise condition required in both Theorem 1 and Theorem 2 is
given by

ω2
max ≤ Õ

((
n

d
∧
√

n

d

)
pσ�2

r

)
.

Note that when κ , μ, r 	 1, the variance obeys

max
(l,j)∈�

var(xl,j ) = max
l∈[d] S

�
l,l 	 max

l∈[d]
∥∥U �

l,·
∥∥2

2σ
�2
1 	 1

d
σ�2

1 .

This implies that: when p ≥ �̃(1/(n ∧ √
nd)), our tolerable entrywise noise level ω2

max is

allowed to be significantly (i.e., �̃(np ∧
√

ndp2) times) larger than the largest variance of
xl,j for all (l, j) ∈ �, thereby accommodating a wide range of noise levels.

• Adaptivity to heteroskedasticity and unknown noise levels. Our proposed inferential pro-
cedure is fully data-driven: it is automatically adaptive to unknown heteroskedastic noise,
without requiring prior knowledge of the noise levels.

Comparison with prior estimation theory. While the main purpose of the current paper is
to enable efficient statistical inference for the principal subspace, our theory (see Lemmas 18
and 19 in the Supplementary Material (Yan, Chen and Fan (2024))) also enables improved
estimation guarantees compared to prior works.
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• Recall that the estimation algorithm HeteroPCA was originally proposed and studied by
Zhang, Cai and Wu (2022b). Our results broaden the sample size range supported by
their theory. More specifically, note that Zhang, Cai and Wu ((2022b), Theorem 6 and
Remark 10) requires the sampling rate p to satisfy

ndp � max
{
d1/3n2/3, d

}
polylog(n, d)

in order to guarantee consistent estimation, while our theoretical guarantees only require

ndp � max{√nd, d}polylog(n, d).

When n 
 d , the sample size requirement in Zhang, Cai and Wu (2022b) is (n/d)1/6 times
more stringent than the one imposed in our theory.

• Let us discuss the advantage of HeteroPCA compared to the diagonal-deleted spectral
method studied in Cai et al. ((2021, Algorithms 1 and 3). Due to diagonal deletion, there is
an additional bias term (see the last term μceκcer/d in equation (4.16) in Cai et al. (2021)),
which turns out to negatively affect our capability of performing inference. In contrast,
HeteroPCA eliminates this bias term by means of successive refining, thus facilitating the
subsequent inference stage.

3.2.2. Distributional theory and inference for the covariance matrix S�. As it turns out,
the above distributional theory for U � further hints at how to perform statistical inference
for the covariance matrix S�. In the sequel, we shall first develop an entrywise distributional
theory for the estimate S returned by HeteroPCA (see Theorem 3), followed by a data-driven
inference procedure to conduct entrywise confidence intervals for S� (see Algorithm 4 and
Theorem 4).

Entrywise distributional guarantees. We now focus attention on characterizing the distri-
bution of the (i, j)-th entry of S returned by Algorithm 2, which in turn suggests how to
construct entrywise confidence intervals for S�. Before proceeding, let us define a set of vari-
ance parameters {v�

i,j }1≤i,j≤d which, as we shall demonstrate momentarily, correspond to the
(approximate) variance of the entries of S.

• For any 1 ≤ i, j ≤ d obeying i �= j , we define

v�
i,j := 2 − p

np
S�

i,iS
�
j,j + 4 − 3p

np
S�2

i,j + 1

np

(
ω�2

i S�
j,j + ω�2

j S�
i,i

)
+ 1

np2

d∑
k=1

{[
ω�2

i + (1 − p)S�
i,i

][
ω�2

k + (1 − p)S�
k,k

]
+ 2(1 − p)2S�2

i,k

}(
U �

k,·U ��
j,·
)2

+ 1

np2

d∑
k=1

{[
ω�2

j + (1 − p)S�
j,j

][
ω�2

k + (1 − p)S�
k,k

]
+ 2(1 − p)2S�2

j,k

}(
U �

k,·U ��
i,·
)2

.

(3.10)

• For any 1 ≤ i ≤ d , we set

v�
i,i := 12 − 9p

np
S�2

i,i + 4

np
ω�2

i S�
i,i

+ 4

np2

d∑
k=1

{[
ω�2

i + (1 − p)S�
i,i

][
ω�2

k + (1 − p)S�
k,k

]
+ 2(1 − p)2S�2

i,k

}(
U �

k,·U ��
i,·
)2

.

(3.11)
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We are now positioned to present our distributional theory for the scenario where κ , μ, r ,
κω 	 1, with the more general version deferred to Theorem 13 in Appendix B in the Sup-
plementary Material (Yan, Chen and Fan (2024)). Here and throughout, Si,j (resp., S�

i,j )
represents the (i, j)-th entry of the matrix S (resp., S�).

THEOREM 3. Suppose that p < 1 − δ for some arbitrary constant 0 < δ < 1 or p = 1,
and κ , μ, r , κω 	 1. Consider any 1 ≤ i, j ≤ d . Assume that U � is μ-incoherent and satisfies
the following condition:∥∥U �

i,·
∥∥

2 + ∥∥U �
j,·
∥∥

2

�
[
ωmax

σ�
r

√√√√d log5(n + d)

np
+ ω2

max

pσ�2
r

√
d log5(n + d)

n
+
√

log7(n + d)

ndp2

]√
1

d
.

(3.12)

In addition, suppose that Assumption 1 holds, and

d � log5 n, np � log7(n + d), ndp2 � log7(n + d),

ωmax

σ�
r

√
d

np
� 1

log3(n + d)
,

ω2
max

pσ�2
r

√
d

n
� 1

log7/2(n + d)
.

Assume that the number of iterations satisfies (3.6). Then the matrix S computed by Algo-
rithm 2 obeys

sup
t∈R

∣∣∣∣P(Si,j − S�
i,j√

v�
i,j

≤ t

)
− �(t)

∣∣∣∣= o(1),

where �(·) denotes the CDF of the standard Gaussian distribution.

In words, the above theorem indicates that under the conditions in Theorem 1, if the sum
of the �2 norm of the rows U �

i,· and U �
j,· are not exceedingly small, then the estimation error

Si,j − S�
i,j of HeteroPCA is approximately a zero-mean Gaussian with variance v�

i,j .

REMARK 3. When it comes to inference for S�
i,j , our theorems impose the following

condition (cf. (3.12)):

∥∥U �
i,·
∥∥

2 + ∥∥U �
j,·
∥∥

2 ≥ �̃

(
1√

ndp2
+ ωmax

σ�
r

√
d

np
+ ω2

max

pσ�2
r

√
d

n

)
·
√

1

d

∥∥U �
∥∥

F.

Note that the typical �2 norm of a row of U � is ‖U �‖F/
√

d when the energy is uniformly
spread out across all rows. This means that under our sampling rate condition, our results
allow ‖U �

i,·‖2 + ‖U �
j,·‖2 to be much smaller than its typical size. As it turns out, a lower

bound on ‖U �
i,·‖2 +‖U �

j,·‖2 might be necessary for Si,j −S�
i,j to be approximately Gaussian.

Consider, for example, the case when ‖U i,·‖2 = ‖U j,·‖2 = 0. It can be seen from our analysis
that

Si,j − S�
i,j ≈ Zi,·��2Z�

j,· + Ai,j ,

where Zi,·, Zj,· and Ai,j are all (approximately) Gaussian. This means that Si,j − S�
i,j might

not follow the (approximate) Gaussian distribution claimed in Theorem 3 if ‖U �
i,·‖2 +‖U �

j,·‖2
is too small.
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Algorithm 4 Confidence intervals for S�
i,j (1 ≤ i, j ≤ d) based on HeteroPCA

Input: output (U ,�,S) of Algorithm 2, sampling rate p, coverage level 1 − α.
Compute estimates of the noise level ω�

l as follows:

ω2
l :=

∑n
j=1 y2

l,j 1(l,j)∈�∑n
j=1 1(l,j)∈�

− Sl,l .

Compute an estimate of v�
i,j (cf. (3.10) or (3.11))as follows: if i �= j , then

vi,j := 2 − p

np
Si,iSj,j + 4 − 3p

np
S2

i,j + 1

np

(
ω2

i S
�
j,j + ω2

jSi,i

)
+ 1

np2

d∑
k=1

{[
ω2

i + (1 − p)Si,i

][
ω2

k + (1 − p)Sk,k

]+ 2(1 − p)2S2
i,k

}(
U k,·U�

j,·
)2

+ 1

np2

d∑
k=1

{[
ω2

j + (1 − p)Sj,j

][
ω2

k + (1 − p)Sk,k

]+ 2(1 − p)2S2
j,k

}(
U k,·U�

i,·
)2

.

If i = j , then

vi,i := 12 − 9p

np
S2

i,i + 4

np
ω2

i Si,i

+ 4

np2

d∑
k=1

{[
ω2

i + (1 − p)Si,i

][
ω2

k + (1 − p)Sk,k

]+ 2(1 − p)2S2
i,k

}(
U k,·U�

i,·
)2

.

Output the (1 − α)-confidence interval

CI1−α
i,j := [

Si,j ± �−1(1 − α/2)
√

vi,j

]
.

Construction of entrywise confidence intervals. The distributional characterization in The-
orem 3 enables valid construction of entrywise confidence intervals for S�, as long as we can
obtain reliable estimate of the variance v�

i,j . In what follows, we come up with an algorithm—
as summarized in Algorithm 4—that attempts to estimate v�

i,j and build confidence intervals
in a data-driven manner, as confirmed by the following theorem for the scenario with κ , μ,
r , κω 	 1. The more general result is postponed to Theorem 14 in Appendix B in the Supple-
mentary Material (Yan, Chen and Fan (2024)).

THEOREM 4. Suppose that the conditions in Theorem 3 hold. Assume that ndp2 �
log8(n + d). Then the confidence interval computed in Algorithm 4 obeys

P
(
S�

i,j ∈ CI1−α
i,j

)= 1 − α + o(1).

Compared with Cai et al. ((2021), Corollary 2), we can see that when consistent estima-
tion is possible—namely, under the sampling rate condition p ≥ �̃((n ∧ √

nd)−1) and the
noise conditions ωmax ≤ �̃((

√
n/d ∧ 4

√
n/d)

√
pσ�

r )—it is plausible to construct fine-grained
confidence interval for S�

i,j , provided that the size of ‖U �
i,·‖2 + ‖U �

j,·‖2 is not exceedingly
small.

REMARK 4. Before concluding this subsection, we note that the sampling rate p might
be unknown a priori in practice. If this is the case, then one plausible strategy is to replace p
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in Algorithms 2, 3 and 4 with the following empirical estimate:

p̂ =
∑d

l=1
∑n

j=1 1{(l, j) ∈ �}
nd

.

In view of the standard concentration results p̂ = (1 + o(1))p, it is straightforward to verify
that all of these inference procedure and the accompanying theory remain valid. We omit the
details for the sake of brevity.

3.3. A glimpse of key technical ingredients. Let us take a moment to highlight sev-
eral technical ingredients of the current theory, which might be applicable to other high-
dimensional statistical problems beyond the analysis of HeteroPCA.

Second-order perturbation theory for principal subspace. At the core of our analysis lies
a “second-order” perturbation theory tailored to general subspace estimation problems, to
be presented in Section 6. More concretely, we establish a second-order expansion of the
subspace perturbation error (see Theorem 5) that makes explicit the following two parts: (i)
nearly tight first- and second-order terms, which can be expressed succinctly as linear and
quadratic mappings of the perturbation matrix; (ii) the remaining higher-order terms that are
provably negligible. Given that HeteroPCA is an iterative algorithm, developing such a refined
perturbation theory for HeteroPCA becomes substantially more challenging than the vanilla
SVD-based approach. Our refined perturbation theory allows us to tighten prior estimation
theory (e.g., the Davis–Kahan sin� Theorem (Davis and Kahan (1970)) or recent �2,∞-type
perturbation bounds (Abbe et al. (2020), Cai et al. (2021), Chen et al. (2021))), the latter of
which focused mainly on providing orderwise estimation error bounds.

Fine-grained distributional characterizations for the principal subspace U �. As alluded to
previously, we establish the distributional characterization for the principal subspace (i.e.,
Theorem 1) based on a key error decomposition

(3.13) UR − U� = [
EX� +Poff-diag

(
EE�)]U �(��)−2︸ ︷︷ ︸

=:Z (first- and second-order approximation)

+ [
UR − U � − Z

]︸ ︷︷ ︸
=:� (residual term)

,

where E := n−1/2(p−1Y − X). For each l ∈ [d], the multivariate Berry–Esseen theorem
reveals the approximate Gaussianity of Zl,·, while at the same time, our second-order pertur-
bation theory (cf. Theorem 5) ensures that � l,· is stochastically dominated by Zl,·. Addition-
ally, rather than providing general �2,∞ bounds (as in the prior work Cai et al. (2021)), our
proof relies crucially on more delicate row-dependent error control (so that the size of � l,· is
carefully bounded in accordance with the lth row of U � and N ).

Entrywise distributional characterizations when estimating the covariance matrix S�. Mov-
ing one step further, we derive the following key error decomposition w.r.t. the covariance
matrix S�:

(3.14)
S − S� = U ���2Z� + Z��2U �︸ ︷︷ ︸

=:W
+n−1XX� − S�︸ ︷︷ ︸

=:A
+ [

S − S� − W − A
]︸ ︷︷ ︸

=:� (residual term)

,

where Z is defined in (3.13) and approximately Gaussian. Here, W serves as the main com-
ponent as induced by the subspace estimation error, A indicates the discrepancy between the
empirical covariance (using clean and fully observed data) and the true covariance, whereas
� is some higher-order term that is provably negligible in a strong entrywise sense. This in
turn allows us to pin down tight entrywise distributional characterizations for S − S�.
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FIG. 1. The relative estimation error of U and S returned by both SVD-based approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2) over different noise level ω�. (a) Relative estimation errors of UR − U� measured
by ‖ · ‖, ‖ · ‖F and ‖ · ‖2,∞ vs. the noise level ω�; (b) Relative estimation errors of S −S� measured by ‖ · ‖, ‖ · ‖F
and ‖ · ‖∞ vs. the noise level ω�. The results are reported over 200 independent trials for r = 3 and p = 0.6.

4. Numerical experiments.

Setup. This section conducts a series of numerical experiments to validate our distributional
and inference theory developed in Section 3. Throughout this section, unless otherwise noted,
we fix the dimension to be d = 100 and the number of sample vectors to be n = 2000, and we
generate the covariance matrix as S� = U �U �� with U � ∈ R

n×r being a random orthonormal
matrix following the Haar distribution over the Grassmann manifold Gd,r (Vershynin ((2018),
Section 5.2.6)). In each Monte Carlo trial, the observed data are produced according to the
model described in Section 1.1. For the purpose of introducing heteroskedasticity, we will
introduce a parameter ω� that controls the noise level: in each independent trial, each noise
level ω�

l (1 ≤ l ≤ d) is independently drawn from Uniform[0.1ω�,2ω�]; the random noise
component ηl,j is then drawn from N (0,ω�2

l ) independently for every l ∈ [d] and j ∈ [n].
Superiority of HeteroPCA to the SVD-based approach in estimation. To begin with, we
first compare the empirical estimation accuracy of the SVD approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2). Figure 1 displays the relative estimation errors—including
the ones tailored to the principal subspace: ‖UR − U �‖/‖U �‖, ‖UR − U �‖F/‖U �‖2,∞,
‖UR − U �‖2,∞/‖U �‖2,∞, and the ones tailored to the covariance matrix: ‖S − S�‖/‖S�‖,
‖S −S�‖F/‖S�‖F, ‖S −S�‖∞/‖S�‖∞—of both algorithms as the noise level ω� varies, with
r = 3 and p = 0.6. Similarly, Figure 2 shows the relative numerical estimation errors of both
algorithms versus the sampling rate p, with r = 3 and ω� = 0.05. As we shall see from both
figures, HeteroPCA uniformly outperforms the SVD-based approach in all experiments, and
is able to achieve appealing performance for a much wider range of noise levels and sampling
rates.

Superiority of HeteroPCA to diagonal-deleted PCA in estimation. Let us also compare the
empirical estimation accuracy of the diagonal-deleted spectral method (Cai et al. (2021))
and HeteroPCA (cf. Algorithm 2). Recall from Section 3.2 that the main difference between
the estimation error bounds of these two algorithms lies in an additional bias term due to
the diagonal deletion operation (see the last term μceκcer/d in equation (4.16) in Cai et al.
(2021)). Figure 3 displays the relative estimation errors for estimating the principal subspace
‖UR−U �‖/‖U �‖ and for estimating the covariance matrix ‖S −S�‖/‖S�‖ as the dimension
d varies with r = 3, ω� = 0.05 and p = 0.6. As can be seen from the plots, HeteroPCA
uniformly outperforms the diagonal-deleted spectral method, especially when d is not too
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FIG. 2. The relative estimation error of U and S returned by both SVD-based approach (cf. Algorithm 1) and
HeteroPCA (cf. Algorithm 2) across different missing probability p. (a) Relative estimation errors of UR − U�

measured by ‖ · ‖, ‖ · ‖F and ‖ · ‖2,∞ vs. the missing rate p; (b) Relative estimation errors of S − S� measured by
‖ · ‖, ‖ · ‖F and ‖ · ‖∞ vs. the missing rate p. The results are reported over 200 independent trials for r = 3 and
ω� = 0.05.

large. This numerical evidence corroborates the efficacy of the diagonal refinement scheme
adopted in HeteroPCA.

Confidence regions for the principal subspace U �. Next, we carry out a series of experi-
ments to corroborate the practical validity of the confidence regions constructed using the
SVD-based approach (Yan, Chen and Fan ((2021), Algorithm 3)) and HeteroPCA (cf. Algo-
rithm 3). To this end, we define ĈovU(i) to be the empirical probability that the constructed
confidence interval CR0.95

U,i covers U �
i,·sgn(U ��U) over 200 Monte Carlo trials, where U

is the estimate returned by either algorithm. We also let Mean(ĈovU) (resp., std(ĈovU))
be the empirical mean (resp., standard deviation) of ĈovU(i) over i ∈ [d]. Table 1 gathers
Mean(Ĉov) and std(Ĉov) for r = 3 and different choices of (p,ω�) for both algorithms. En-
couragingly, the empirical coverage rates are all close to 95% for both methods when p is not
too small and ω� is not too large. When p becomes smaller or ω� grows larger, HeteroPCA
is still capable of performing valid statistical inference, while the SVD-based approach fails.

FIG. 3. The relative estimation error of U and S returned by both diagonal-deleted spectral method (Cai et al.
(2021)) and HeteroPCA (cf. Algorithm 2). (a) Relative estimation error ‖UR − U�‖/‖U�‖ vs. dimension d ; (b)
Relative estimation error ‖S − S�‖/‖S�‖ vs. the dimension d . The results are reported over 200 independent
trials for r = 3, ω� = 0.05 and p = 0.6.
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TABLE 1
Empirical coverage rates of U�sgn(U��U) for different (p,ω�)’s over 200 Monte Carlo trials

The SVD-based approach HeteroPCA

p ω� Mean(Ĉov) Std(Ĉov) Mean(Ĉov) Std(Ĉov)

0.6 0.05 0.9270 0.0292 0.9523 0.0157
0.6 0.1 0.8989 0.0521 0.9484 0.0154
0.4 0.05 0.8849 0.0501 0.9448 0.0184
0.4 0.1 0.8458 0.0853 0.9405 0.0182
0.2 0.05 0.7370 0.1196 0.9287 0.0204
0.2 0.1 0.6856 0.1569 0.9219 0.0204

This provides another empirical evidence on the advantage and broader applicability of Het-
eroPCA compared to the SVD-based approach. In addition, for the rank-1 case (r = 1), we
define Ti := [U − sign(U�U �)U�]i/√�U,i . Figure 4 displays the Q–Q (quantile–quantile)
plot of T1 := [U − sign(U�U �)U�]1/

√
�U,1 versus the standard Gaussian random variable

over 2000 Monte Carlo simulations for both algorithms (when p = 0.6 and ω� = 0.05); the
near-Gaussian empirical distribution of T1 also corroborates our distributional guarantees.

Entrywise confidence intervals for S�. Finally, we provide numerical evidence that con-
firms the validity of the confidence interval constructed on the basis of the SVD-based ap-
proach (Yan, Chen and Fan ((2021), Algorithm 4)) and HeteroPCA (cf. Algorithm 4). Define
ĈovS(i, j) to be the empirical probability that the 95% confidence interval [Si,j ± 1.96

√
vi,j ]

covers S�
i,j over 200 Monte Carlo trials, where Si,j is the (i, j)-th entry of the estimate

S returned by either algorithm. Let Mean(ĈovS) (resp., std(ĈovS)) be the empirical mean
(resp., standard deviation) of ĈovS(i, j) over all i, j ∈ [d]. Table 2 collects Mean(Ĉov)
and std(Ĉov) for r = 3 and accounts for different choices of (p,ω�) for both algorithms.
Similar to previous experiments, HeteroPCA uniformly outperforms the SVD-based ap-
proach, which again suggests that HeteroPCA is the method of choice. In addition, we de-
fine Zi,j := (Si,j − S�

i,j )/
√

vi,j . For both algorithms, Figure 5 and Figure 6 depict the Q–Q
(quantile–quantile) plot of Z1,1 and Z1,2 versus standard Gaussian distributions over 2000
Monte Carlo trials for the case with r = 3, p = 0.6 and ω� = 0.05, which again confirm the
practical validity of our distributional theory.

FIG. 4. (a) Q–Q (quantile–quantile) plot of T1 vs. the standard normal distribution for the SVD-based ap-
proach; (b) Q–Q (quantile–quantile) plot of T1 vs. the standard normal distribution for HeteroPCA. The results
are reported over 2000 independent trials for r = 1, p = 0.6 and ω� = 0.05.
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TABLE 2
Empirical coverage rates of S�

i,j for different (ω�,p)’s over 200 Monte Carlo trials

The SVD-based approach HeteroPCA

p ω� Mean(Ĉov) Std(Ĉov) Mean(Ĉov) Std(Ĉov)

0.6 0.05 0.9380 0.0244 0.9475 0.0153
0.6 0.1 0.9243 0.0425 0.9484 0.0151
0.4 0.05 0.9200 0.0509 0.9485 0.0156
0.4 0.1 0.9027 0.0713 0.9490 0.0153
0.2 0.05 0.8657 0.1031 0.9494 0.0164
0.2 0.1 0.8488 0.1186 0.9491 0.0162

FIG. 5. (a) Q–Q (quantile–quantile) plot of Z1,1 vs. the standard normal distribution for the SVD-based ap-
proach; (b) Q–Q (quantile–quantile) plot of Z1,2 vs. a standard Gaussian distribution for the SVD-based ap-
proach. The results are reported over 2000 independent trials for r = 3, p = 0.6, ω� = 0.05.

FIG. 6. (a) Q–Q (quantile–quantile) plot of Z1,1 vs. the standard normal distribution for HeteroPCA; (b) Q–Q
(quantile–quantile) plot of Z1,2 vs. a standard Gaussian distribution for HeteroPCA. The results are reported
over 2000 independent trials for r = 3, p = 0.6, ω� = 0.05.
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5. Other related works. Low-rank matrix denoising serves as a common model to study
the effectiveness of spectral methods (Chen et al. (2021)), and has been the main subject of
many prior works including Abbe et al. (2020), Agterberg, Lubberts and Priebe (2022), Bao,
Ding and Wang (2021), Cai and Zhang (2018), Cape, Tang and Priebe (2019), Chen, Cheng
and Fan (2021), Ding (2020), Lei (2019), Montanari, Ruan and Yan (2018), Xia (2021),
among others. Several recent works began to pursue a distributional theory for the eigenvec-
tor or singular vectors of the observed data matrix (Bao, Ding and Wang (2021), Cheng, Wei
and Chen (2021), Fan et al. (2022), Xia (2021)). To name a few examples, Bao et al. (2022b)
studied the limiting distribution of the inner product between an empirical singular vector
and the corresponding ground truth, assuming that the associated spectral gap is sufficient
large and that the noise components are homoskedastic; Xia (2021) established nonasymp-
totic Gaussian approximation for certain projection distance in the presence of i.i.d. Gaussian
noise. Furthermore, the presence of missing data forms another source of technical chal-
lenges, leading to a problem often dubbed as noisy low-rank matrix completion (Candès and
Plan (2010), Chen et al. (2020), Negahban and Wainwright (2012)).

Spectral methods have been successfully applied to tackle noisy matrix completion (Chen,
Liu and Li (2020), Chen and Wainwright (2015), Cho, Kim and Rohe (2017), Keshavan,
Montanari and Oh (2010b), Ma et al. (2020), Sun and Luo (2016), Zheng and Lafferty
(2016)), which commonly serve as an effective initialization scheme for nonconvex optimiza-
tion methods (Chi, Lu and Chen (2019)). While statistical inference for noisy matrix com-
pletion has been investigated recently (Chen et al. (2019b), Chernozhukov et al. (2023), Xia
and Yuan (2021)), these prior works focused on performing inference based on optimization-
based estimators. How to construct fine-grained confidence intervals based on spectral meth-
ods remains previously out of reach for noisy matrix completion. It is also noteworthy that the
inferential procedures proposed in Chen et al. (2019b), Xia and Yuan (2021) (for noisy ma-
trix completion) were developed for the regime where reliable estimation of the full low-rank
matrix is feasible. This, however, falls short of covering the most challenging regime consid-
ered herein (where one might only be able to estimate the column subspace but not the row
subspace). This crucial difference in the regimes of interest leads to substantial challenges
unaddressed by these prior works.

Additionally, the recent work (Xia (2019)) tackled the confidence regions for spectral esti-
mators tailored to the low-rank matrix regression problem, without accommodating the noisy
matrix completion context. Most importantly, while the SVD-based vanilla spectral method
often works well for the balanced case (such that the column dimension and the row dimen-
sion are on the same order), suboptimality has been well recognized when estimating the
column subspace of interest in the highly unbalanced case (so that the column dimension far
exceeds the row dimension); this issue is also present when it comes to existing optimization-
based methods like nuclear norm minimization. As a result, all prior schemes mentioned in
this paragraph failed to tackle the highly balanced case in an statistically efficient manner.

Turning to PCA or subspace estimation, there has been an enormous literature dedicated
to this topic; see Balzano, Chi and Lu (2018), Johnstone and Paul (2018) for an overview
of prior development. Noteworthily, the need to handle the diagonals of the sample covari-
ance matrix in the presence of heteroskedastic noise and/or missing data has been pointed
out in many prior works, for example, Cai et al. (2021), Florescu and Perkins (2016), Loh
and Wainwright (2012), Lounici (2014), Montanari and Sun (2018). The iterative refinement
scheme proposed by Zhang, Cai and Wu (2022b) turns out to be among the most effective and
adaptive schemes in handling the diagonals. Aimed at designing fine-grained estimators for
the principal components, Koltchinskii, Löffler and Nickl (2020), Li et al. (2021) proposed
statistically efficient debiased estimators for linear functionals of principal components, and
moreover, the estimator proposed in Koltchinskii, Löffler and Nickl (2020) has also been
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shown to exhibit asymptotic normality in the presence of i.i.d. Gaussian noise. Bloemendal
et al. (2016) also pinned down the asymptotic distributions of certain principal components
under a spiked covariance model. However, these papers fell short of presenting valid and
data-driven uncertainty quantification methods for the proposed estimators, and their results
operates under the assumptions of homoskedastic noise without any missing data, a scenario
that is remarkably more restricted than ours. Under the spiked covariance model, Bao et al.
(2022b) studied the limiting distribution of the angle between the eigenvectors of the sample
covariance matrix and any fixed vector, under the “balanced” scenario where the aspect ratio
n/d is a constant. In addition, recent years have witnessed much activity in high-dimensional
PCA in the face of missing data (Cai et al. (2021), Pavez and Ortega (2021), Zhang, Cai and
Wu (2022b), Zhu, Wang and Samworth (2022)); these works, however, focused primarily on
developing estimation guarantees, which did not provide either distributional guarantees for
the estimators or concrete procedures that allow for confidence region construction. Addi-
tionally, the HeteroPCA algorithm has been further extended by two follow-up works Zhou
and Chen (2023a), Zhou and Chen (2023b) to accommodate the scenario with large condition
numbers as well as tensor clustering in the presence of heteroskedastic noise.

From a technical viewpoint, it is worth mentioning that the �∞ and �2,∞ perturbation the-
ory has been an active research direction in recent years (Agterberg, Lubberts and Priebe
(2022), Cape, Tang and Priebe (2019), Chen, Cheng and Fan (2021), Eldridge, Belkin and
Wang (2018), Fan, Wang and Zhong (2017), Xie (2021)). Among multiple existing technical
frameworks, the leave-one-out analysis idea—which has been applied to a variety of statisti-
cal estimation problems (Cai et al. (2022), Cai, Poor and Chen (2023), Chen, Gao and Zhang
(2022), Chen et al. (2019), Chen et al. (2021), El Karoui (2018), El Karoui et al. (2013),
Ling (2022), Zhong and Boumal (2018))—provides a powerful and flexible framework that
enables �∞ and �2,∞ statistical guarantees for spectral methods (Abbe et al. (2020), Cai et al.
(2021), Chen et al. (2019a)); see (Chen et al. ((2021), Chapter 4)) for an accessible intro-
duction of this powerful framework. Our analysis for the HeteroPCA approach is influenced
by the one in Cai et al. (2021). Note, however, that Cai et al. (2021) didn’t come with any
distributional guarantees for spectral methods, which we seek to accomplish in this paper.

It is important to note that although the current version of this paper focuses primarily on
the HeteroPCA method, a preliminary version available on arXiv (Yan, Chen and Fan (2021))
includes a discussion on distributional theory and inferential procedures for PCA using the
SVD-based approach (cf. Algorithm 1). This content was subsequently omitted during the
revision phase based on editorial suggestions. Interested readers are referred to Yan, Chen
and Fan (2021) for a set of inferential results developed for the SVD-based approach, in
parallel to Theorems 1 to 4 in this paper.

Finally, we note in passing that constructing confidence intervals for sparse regression
(based on, say, the Lasso estimator or other sparsity-promoting estimator) has attracted a
flurry of research activity in the past few years (Cai and Guo (2017), Celentano, Montanari
and Wei (2023), Javanmard and Montanari (2014), Ning and Liu (2017), Ren et al. (2015),
van de Geer et al. (2014), Zhang and Zhang (2014)). The methods derived therein, however,
are not directly applicable to perform statistical inference for PCA and/or other low-rank
models.

6. A detour: Subspace estimation. We now take a detour to look at an intimately re-
lated problem, which we shall refer to as subspace estimation and will play a crucial role in
understanding the HeteroPCA approach. We will set out to develop a fine-grained statistical
theory for HeteroPCA when applied to this subspace estimation setting. The resulting theory
will be invoked in Appendix D in the Supplementary Material (Yan, Chen and Fan (2024)) to
analyze the PCA context.
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6.1. Model and algorithm.

Model and assumptions. Suppose that we are interested in a rank-r matrix M� ∈ R
n1×n2 ,

whose SVD is given by

(6.1) M� =
r∑

i=1

σ
�
i u

�
iv

��
i = U ���V �� ∈ R

n1×n2 .

Here, U � = [u�
1, . . . ,u

�
r ] (resp., V � = [v�

1, . . . ,v
�
r ]) consists of orthonormal columns that cor-

respond to the left (resp., right) singular vectors of M�, and �� = diag{σ �
1 , . . . , σ

�
r } is a diag-

onal matrix consisting of the singular values of M�. Without loss of generality, we assume
that

n = max{n1, n2}.
It is assumed that the singular values are sorted (in magnitude) in descending order, namely

(6.2) σ
�
1 ≥ · · · ≥ σ �

r ≥ 0,

with the condition number denoted by

(6.3) κ� := σ
�
1/σ �

r .

What we have observed is a noisy copy of M�, namely

(6.4) M = M� + E,

where E = [Ei,j ]1≤i,j≤n stands for a noise matrix. We focus on estimating the column sub-
space represented by U � and the singular values encapsulated in ��, but not the row space
V �. An important special scenario one should bear in mind is the highly unbalanced case
where the column dimension n2 far exceeds the row dimension n1; in this case, it is com-
mon to encounter situations where reliable estimation of M� and V � is infeasible but that of
U � shows promise. For this reason, we refer to this setting as subspace estimation in order
to differentiate it from matrix denoising, emphasizing that we are only interested in column
subspace estimation.

With the new aim in mind, we shall modify our incoherence and noise assumptions ac-
cordingly. Here, we abuse the notation with the understanding that the following set of as-
sumptions will be used only when analyzing the approach based on HeteroPCA. We shall
also denote n := max{n1, n2}.

ASSUMPTION 2 (Incoherence). The rank-r matrix M� ∈ R
n1×n2 defined in (6.1) is said

to be μ�-incoherent if the following holds:

∥∥U �
∥∥

2,∞ ≤
√

μ�r

n1
,

∥∥V �
∥∥

2,∞ ≤
√

μ�r

n2
, and

∥∥M�
∥∥∞ ≤

√
μ�

n1n2

∥∥M�
∥∥

F.

ASSUMPTION 3 (Heteroskedastic random noise). Assume that the Ei,j ’s are indepen-
dently generated, and suppose that there exist nonnegative quantities {σi}n1

i=1, {Bi}n1
i=1, σ and

B obeying

∀(i, j) ∈ [n1] × [n2] : E[Ei,j ] = 0, var
(
E2

i,j

)= σ 2
i,j ≤ σ 2

i ≤ σ 2, |Ei,j | ≤ Bi ≤ B,

where for all i ∈ [n1],

(6.5) Bi �
σi min{√n2, 4

√
n1n2}√

logn
, and B � σ min{√n2, 4

√
n1n2}√

logn
.
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Algorithm 5 HeteroPCA for general subspace estimation (HeteroPCA)

Initialization: set G0 = Poff-diag(MM�).
Updates: for t = 0,1, . . . , t0 do(

U t ,�t )= eigs
(
Gt , r

);(6.8a)

Gt+1 = Poff-diag
(
MM�)+Pdiag

(
U t�tU t�).(6.8b)

Here, eigs(G, r) returns (U ,�) where U�U� is the top-r eigendecomposition of G.
Output: U = U t0 , � = �t0 , � = (�t0)1/2, S = U t0�t0U t0�.

Algorithm: HeteroPCA for subspace estimation. The paradigm HeteroPCA can naturally be
applied to tackle the above subspace estimation task. Let us introduce the ground-truth gram
matrix as follows:

(6.6) G� := M�M��.

Given that M = M� + E is an unbiased estimate of M�, one might naturally attempt to
estimate the column space of M by looking at the eigenspace of the sample Gram matrix
MM�. It can be easily seen that

(6.7) E
[
MM�]= M�M�� + diag

{[
n2∑

j=1

σ 2
i,j

]
1≤i≤n1

}
,

where the diagonal term on the right-hand side of (6.7) might incur significant bias in the
most challenging regime. The HeteroPCA algorithm seeks to handle the diagonal part in an
iterative manner, alternating between imputing the values of the diagonal entries and eigen-
decomposition of MM� with the diagonal replaced by the imputed values. The procedure is
summarized in Algorithm 5.

6.2. Fine-grained statistical guarantees for HeteroPCA. We now move on to present our
theoretical guarantees for Algorithm 5. In order to account for the potential global rotational
ambiguity, we introduce the following rotation matrix as before:

(6.9) RU := arg min
O∈Or×r

∥∥UO − U �
∥∥2

F,

where we recall that Or×r represents the set of r × r orthonormal matrices. It is also helpful
to define the following quantities: for all m ∈ [n1],

ζop := σ 2√n1n2 logn + σσ
�
1

√
n1 logn,(6.10a)

ζop,m := σσm

√
n1n2 logn + σmσ

�
1

√
n1 logn.(6.10b)

Our result is as follows with the proof postponed to Appendix C in the Supplementary Mate-
rial (Yan, Chen and Fan (2024)).

THEOREM 5. Suppose that Assumptions 2–3 hold. Assume that

(6.11) n1 � κ�4μ�r + μ�2r log2 n, n2 � r log4 n, and ζop � σ
�2
r

κ�2 ,

and that the algorithm is run for t0 ≥ log(
σ�2

1
ζop

) iterations. With probability exceeding 1 −
O(n−10), there exist two matrices Z and � such that the estimates returned by HeteroPCA
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obey

URU − U � = Z + �,(6.12)

where

Z := EV �(��)−1 +Poff-diag
(
EE�)U �(��)−2

,(6.13a)

‖�‖2,∞ � κ�2 μ�r

n1

ζop

σ
�2
r

+ κ�2 ζ 2
op

σ
�4
r

√
μ�r

n1
.(6.13b)

In fact, for each m ∈ [n1], we further have

‖Zm,·‖2 �
ζop,m

σ
�2
r

√
μ�r

n1
+ ∥∥U �

m,·
∥∥

2

(
κ�2

√
μ�r

n1

ζop

σ
�2
r

+ κ�2 ζ 2
op

σ
�4
r

)
,(6.13c)

‖�m,·‖2 � κ�2 ζopζop,m

σ
�4
r

√
μ�r

n1
+ ∥∥U �

m,·
∥∥

2

(
κ�2

√
μ�r

n1

ζop

σ
�2
r

+ κ�2 ζ 2
op

σ
�4
r

)
.(6.13d)

REMARK 5. The interested reader might wonder why Theorem 5 is not valid for small
n1 (e.g., (6.11) does not hold when n1 = 2), and we provide some intuition here. Recall
from (6.7) that the diagonal of the sample Gram matrix can be significantly biased, and the
HeteroPCA algorithm uses the off-diagonal information to iteratively estimate and refine the
diagonal. When n1 is small, the (untrustworthy) diagonal entries account for a nonnegligible
fraction of all entries of the entire sample Gram matrix, and as a result, we cannot hope to
debias the diagonal reliably by HeteroPCA using only off-diagonal observations.

The expressions (6.12) and (6.13) make apparent a key decomposition of the estimation
error. As we shall see, the term Z is often the dominant term, which captures both the first-
order and second-order approximation (w.r.t. the noise matrix E) of the estimation error.
Unless the noise level σ is very small, we cannot simply ignore the second-order term
Poff-diag(EE�)U �(��)−2, as it is not necessarily dominated in size by the linear mapping
term EV �(��)−1. The simple and closed-form expression of Z—in conjunction with the
fact that � is well controlled—plays a crucial role when developing a nonasymptotic distri-
butional theory.

While Theorem 5 is established mainly to help derive distributional characterizations for
PCA, we remark that our analysis also delivers �2,∞ statistical guarantees in terms of esti-
mating U � (see Lemma 6 in the Supplementary Material (Yan, Chen and Fan (2024))). More
specifically, our analysis asserts that

∥∥URU − U �
∥∥

2,∞ � ζop

σ
�2
r

√
μ�r

n1
(6.14)

with high probability, under the conditions of Theorem 5. It is perhaps helpful to compare
(6.14) with prior �2,∞ theory concerning estimation of U �.

• We first compare Theorem 5 with the recent work (Agterberg, Lubberts and Priebe ((2022),
Theorem 2), which focused on the regime n2 � n1 and showed that

inf
O∈Or×r

∥∥UO − U �
∥∥

2,∞ �
(

σ 2

σ
�2
r

√
rn1n2 logn + κ� σ

σ
�
r

√
rn1 logn

)√
μ�r

n1
	 ζop

σ
�2
r

√
μ�r2

n1

under the noise condition σ
√

n2 � σ
�
r /(κ�

√
r logn) (in addition to a few other conditions

omitted here). Note that when κ�, μ�, r 	 1, their �2,∞ error bound resembles (6.14), but
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the condition σ
√

n2 � σ
�
r /

√
logn required therein is much stronger than the noise condi-

tion ζop � σ
�2
r —which is equivalent to σ 4

√
n1n2 � σ

�
r /

√
logn when n2 � n1—imposed

by our theory (see (6.11)). It is also worth emphasizing that the theory of Agterberg, Lub-
berts and Priebe (2022) is capable of accommodating dependent data (i.e., they only require
the rows of E to be independent and allow dependence within rows), which is beyond the
scope of the present paper.

• Compared with the �2,∞ estimation error guarantees for the diagonal-deleted spectral
method in Cai et al. ((2021), Theorem 1), our bound (6.14) is able to get rid of the bias
term incurred by diagonal deletion (see Cai et al. ((2021), equation (17))), thus improving
upon this prior result.

It should be noted that fine-grained perturbation results akin to Theorem 5 were also de-
veloped for the SVD algorithm in an earlier version of this paper on arXiv, as detailed in Yan,
Chen and Fan ((2021), Section 6.1). Subsequently, Yan and Wainwright (2024) presented
more refined results for cases where the entries of the noise matrix E follow a sub-Gaussian
distribution, with further information available in Appendix F therein.

Before concluding this section, it is natural to ask whether Theorem 5 can be used to
conduct subspace inference when every entry of E is allowed to have completely difference
variance. To begin with, for a broad class of E with independent and heteroskedastic com-
ponents, we can readily apply Theorem 5 to obtain a distributional theory for HeteroPCA
when estimating U �. Caution needs to be exercised, however, when it comes to confidence
interval construction. On closer inspection, evaluating Z (i.e., the first- and second-order ap-
proximation of the subspace estimation error) in Theorem 5 requires knowledge about the
right singular subspace V � of M�, which might sometimes be difficult or even infeasible to
estimate in the unbalanced regime where n2 
 n1. As a result, our theory is not guaranteed
to deliver useful inferential methods for such cases, unless additional information about V �

is available.

7. Discussion. In this paper, we have developed a suite of statistical inference procedures
to construct confidence regions for PCA in the presence of missing data and heterogeneous
corruption, which should be easy-to-use in practice due to their data-driven nature. Compared
to other prior algorithms like the SVD-based approach and the diagonal-deleted spectral
method, the solution developed based on HeteroPCA enjoys a broadened applicability range
without compromising statistical efficiency. The fine-grained distributional characterizations
we have developed are nonasymptotic, which naturally lend themselves to high-dimensional
settings.

Moving forward, there are a variety of directions that are worthy of further investigation.

• Improved dependency on κ , μ, r and κω. In our general theorems (see Theorems 11–14
in the Supplementary Material (Yan, Chen and Fan (2024))), we allow κ , μ, r and κω to
grow. However, our theoretical results scale suboptimally with these problem parameters. It
remains unclear how to sharpen the dependency on these parameters, which might require
developing more refined analysis techniques.

• Approximate low-rank structure. Our results assume exact low-rank structure of the spiked
component S� of the covariance matrix. In reality, there is no shortage of applications
where S� is at best approximately low rank. How to develop trustworthy inference proce-
dures in the presence of approximate low-rank structure? Unfortunately, our current leave-
one-out analysis framework relies heavily on the exact rank-r structure (unless σ�

r+1 is
extremely small); new analysis ideas are needed in order to tackle approximate low-rank
structure.
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• General missing pattern. Uncertainty quantification in the face of heterogeneous missing
patterns is another important topic of practical value. Consider, for example, the case where
the entries in the same row of X are sampled with the same rate (i.e., the (l, j)-th entry
of X is observed with probability pl). Then by constructing the following data matrix via
inverse probability weighting: [

diag(p1,p2, . . . , pd)
]−1

Y ,

we obtain an unbiased estimate of X, and the theory developed can be readily extended to
perform valid inference. Note that we can also replace {pl} via their empirical estimates in
the inference procedures. Nevertheless, in the more general case where the sampling rates
are allowed to vary across all locations, it is unclear how to construct an unbiased estimate
of X without knowing the per-entry sampling rates in advance; hence, our theory fails to
accommodate this general scenario. Extending our current results to such general sampling
patterns might call for new analysis tools.

• Inference for individual principal components. Moving beyond inference and uncertainty
quantification for the principal subspace and the spiked covariance matrix, it is interesting
to investigate how to conduct valid inference on individual principal components, particu-
larly when the associated eigengap is vanishingly small (Li et al. (2021)).

• Extension to unknown mean, dependent or adversarial noise. If the observed data are in-
herently biased with a priori unknown means, how to properly compensate for the bias?
What if the noise components are interdependent, and what if the observed data samples
are further corrupted by a nonnegligible fraction of adversarial outliers?

• Minimax-optimal estimation and inference. As recognized in the matrix completion liter-
ature (Chen, Liu and Li (2020), Keshavan, Montanari and Oh (2010b), Ma et al. (2020)),
spectral methods alone are in general unable to yield minimax-optimal statistical accuracy
in the presence of missing data, given that spectral methods inherently treat the missingness
effect as some sort of “noise.” The same message—namely, suboptimality of HeteroPCA
in the face of missing data—carries over to the PCA setting considered herein. We con-
jecture that a subsequent refinement procedure (e.g., gradient descent tailored to compute
the maximum likelihood estimate) is needed in order to reach minimax optimality, and we
leave this for future investigation.

• Applications in financial econometrics. In addition to applications to the uncertainty quan-
tification in the matrix completion problems in recommender system, the inferential pro-
cedure and analysis tools we have developed in this paper have applications in finance and
econometrics. For example, our analysis and results for principal subspace are useful in
testing factor structures in famous Fama–French factor models, and can also be used in
sector/industry clustering using stock returns (Porter et al. (1998)); our results on uncer-
tainty quantification for the spiked covariance matrix could also shed light on how to better
quantify the risk in portfolio optimization that takes into account on the uncertainty in the
risk estimation.
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SUPPLEMENTARY MATERIAL

Supplement to “Inference for heteroskedastic PCA with missing data” (DOI: 10.1214/
24-AOS2366SUPP; .pdf). Supplementary information.
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