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Kidney transplantation is the most effective renal replacement therapy
for end stage renal disease patients. With the severe shortage of kidney sup-
plies and for the clinical effectiveness of transplantation, patient’s life ex-
pectancy posttransplantation is used to prioritize patients for transplantation;
however, severe comorbidity conditions and old age are the most dominant
factors that negatively impact posttransplantation life expectancy, effectively
precluding sick or old patients from receiving transplants. It would be cru-
cial to design objective measures to quantify the transplantation benefit by
comparing the mean residual life with and without a transplant, after adjust-
ing for comorbidity and demographic conditions. To address this urgent need,
we propose a new class of semiparametric covariate-dependent mean residual
life models. Our method estimates covariate effects semiparametrically effi-
ciently and the mean residual life function nonparametrically, enabling us to
predict the residual life increment potential for any given patient. Our method
potentially leads to a more fair system that prioritizes patients who would
have the largest residual life gains. Our analysis of the kidney transplant data
from the U.S. Scientific Registry of Transplant Recipients also suggests that a
single index of covariates summarize well the impacts of multiple covariates,
which may facilitate interpretations of each covariate’s effect. Our subgroup
analysis further disclosed inequalities in survival gains across groups defined
by race, gender and insurance type (reflecting socioeconomic status).

1. Introduction. About 15% of American adults have chronic kidney disease (Saran
et al. (2016)), suffering worsened kidney functions, with less fluid filtrated by the glomerular,
and losing kidney functions gradually but permanently over the cause of months or years.
According to the glomerular filtration rate (GFR), chronic kidney disease is classified into
five stages, where stage four (GFR between 15 and 29 ml/min/1.73m?) and stage five (GFR
less than 15 ml/min/1.73m?) kidney diseases are considered to be end-stage renal disease
(ESRD), one of the most lethal diseases globally (Feng et al. (2019), Ferri (2017)). In the
U.S., more than 600,000 individuals are living with ESRD, about 100,000 new ESRD cases
are diagnosed and 50,000 deaths occur each year (Salerno et al. (2021)).

The most common treatment for ESRD is renal replacement therapy, including dialysis and
kidney transplant. As dialysis only provides partial kidney functions, dialysis patients tend
to have shorter survival than those receiving kidney transplants, which often lead to a longer
and a better quality of life (Evans et al. (1985), Liem et al. (2007), Wolfe et al. (1999)). Due
to severe shortages in kidney supplies, however, there are far more ESRD patients who need
kidney transplants than donors available in the U.S. (Tonelli et al. (2011)). For example, the
U.S. Scientific Registry of Transplant Recipients (SRTR) reports that among 247,123 patients
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awaiting kidney transplants during 2011-2018, only 139,270 patients actually received one,
leaving the remaining 107,853 still waiting (Hart et al. (2021)).

Currently, decisions on patients’ priority of receiving kidney transplants are based on the
estimated posttransplant survival (EPTS) score, which predicts a patient’s life expectancy
post transplantation by using a Cox model with age, diabetes status, prior solid organ trans-
plant and time on dialysis as predictors (Time (2012)). Preexisting conditions, such as di-
abetes, prior solid organ transplants and long dialysis vintage, are associated with shorter
survival (Cosio et al. (1998), Kasiske et al. (2001), Meier-Kriesche et al. (2000)); thus, pa-
tients with these conditions tend to have a lower priority for transplantation (Cosio et al.
(1998), Molnar et al. (2011)). On the other hand, younger age is found to be associated with
better outcomes and younger patients are likely to have a higher priority for transplantation.
Thus, age and severe comorbidity conditions have effectively become the most dominant
factors when deciding on who to receive transplants, which may preclude older and sicker
patients from benefiting from transplantation (Gore et al. (2009), Jassal, Schaubel and Fenton
(2005), Weng et al. (2010)). A more comprehensive system, however, should give a higher
priority to those who would benefit more from transplantation among patients with similar
conditions, and in the meantime, triage candidates may gain little or even suffer a loss in life
expectancy. We propose to quantify the transplant benefit by comparing the improvement of
the patient’s expected residual life with and without transplantation. The expected residual
life characterizes the mean of the remaining survival time, given that a patient has survived
up to a certain time (Hall and Wellner (1981)). Compared to overall survival, the residual life
expectancy provides a real time assessment of transplant benefits at any given time when a
kidney becomes available (Lin, Fei and Li (2016)). As demographic and clinical conditions
may be confounders affecting survival and should be adjusted for when assessing transplant
benefits (Carrero et al. (2018), Cosio et al. (1998)), we aim at modeling and evaluating a
patient’s potential residual life expectancy, with or without transplant, based on the patient’s
covariate profile.

Much work on mean residual life models has been sparked by Oakes and Dasu (1990).
For example, Maguluri and Zhang (1994) proposed a univariate proportional mean residual
life model; Oakes and Dasu (2003) established the theoretical properties of the methods in
Oakes and Dasu (1990); Chen and Cheng (2005) estimated the coefficients of covariates in a
proportional mean residual life model by a partial-score approach, analogous to the partial-
likelihood approach; Chen et al. (2005) employed the inverse probability weighting approach
for inference; Miiller and Zhang (2005) extended the mean residual life model to incorporate
time-varying covariates; Chen and Cheng (2006) proposed an extended Buckley—James esti-
mator to estimate a linear residual life model, and Chen (2007) further proposed an additive
mean residual life model. These works inspired median and quantile residual life models; see,
for example, Jeong, Jung and Costantino (2008), Jung, Jeong and Bandos (2009), Ma and Yin
(2010) and Ma and Wei (2012). However, all these works imposed parametric dependency
of residual life on covariates as well as how long the patient has lived up to transplantation
(or “alive time” hereafter). Violations of the model assumptions will lead to biased estimates
and incorrect inferences (Chen (2007), Chen et al. (2005)). Our preliminary analysis of the
kidney transplant data from SRTR indicates that the mean residual life depends on alive time
and patients’ other covariates, such as treatment history, commorbidty conditions and demo-
graphics, through a complicated form which is challenging to model parametrically.

We propose a new class of semiparametric mean residual life models, with the goal of
detecting the effects of patients’ covariates on the residual life and identifying the patients
who may benefit most from transplantation. Our model does not impose any parametric as-
sumptions on the mean residual life function and, thus, the hazard function, and extends the
model in Ma and Zhu (2012) and Ma and Zhu (2013) to accommodate censoring in response.
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Moreover, given multiple covariates, we also propose a flexible dimension reduction method
to achieve a parsimonious model for efficiency and interpretability. To derive the estimators,
we employ a semiparametric method in combination with a martingale treatment, as in Zhao,
Ma and Lu (2022), to derive a semiparametrically efficient estimator (Bickel et al. (1993)) for
the effects of covariates and an asymptotically normally distributed nonparametric estimator
of the mean residual life function. We apply the proposed method to analyze the SRTR kidney
transplant data and quantify transplantation gains by using the residual life expectancy. Our
analysis suggested that a single index of covariates summarize well the impacts of multiple
covariates, which may facilitate interpretations of each covariate’s effect. Our subgroup anal-
ysis further disclosed inequalities in survival gains across groups defined by race, gender and
insurance type (reflecting socioeconomic status). The results may inform the priority rules
for kidney transplantation.

This paper is organized as follows. Section 2 proposes the mean residual life model, and
Section 3 derives the estimators for the proposed model and discusses their properties. We
assess the finite sample properties of the methods by simulation studies in Section 5 and
apply it to analyze the kidney transplant data in Section 6. We conclude the paper with some
discussions in Section 7. We defer the regularity conditions and technical properties to the
Supplementary Material (Zhao et al. (2024)).

2. Semiparametric regression of mean residual life. Denote by T the potential time
lag from being waitlisted for transplantation (i.e., became eligible) to death in the absence of
censoring and by X € R? the baseline covariates, such as age, diabetes status, and prior solid
organ transplant, measured at the waitlisting time. Denote by W the time lag from waitlisting
to hypothetical transplant time that would have occurred in the absence of censoring. Our
focus is to model the difference of the mean residual life, with and without transplant, at any
time point ¢, given X and W observed up to ¢.

Let the indicator function /(W < ¢) describe the time-dependent transplant status, with
I(W <t)=0 and 1 corresponding to “Nontransplant” and “Transplant™ at time ¢, respec-
tively. Following the missing data literature, we use W1 (W <) to indicate the value of W
only when the transplant occurs before 7. Given the history of transplantation status up to
time ¢, that is, {/(W <t), WI(W <1t)}, we specify that the conditional hazard at ¢ depends
only on the transplantation information at ¢, that is,

lim h_lP{t <T<t+h|T>t,X, I(W=<1), WI(W <1)}

h—0t
(D =M X, I(W <), WI(W <1)}
=t =W, X, W)I(W <0) + An (@, X){1 — [(W < 1)},

where the subscripts “7” and “y,” respectively, stand for “Transplant” and “Nontransplant.”
Within the nontransplant group by time ¢, that is, W > ¢, the hazard function depends on the
time and covariates only; at and after transplantation, that is, W < ¢, the hazard function is to
be reset and is a function of t — W (the time lag since transplantation) because of immediate
surgical risks (Hernandez et al. (2006), Humar and Matas (2005)) and long term benefits of
receiving functional organs (Lin, Fei and Li (2016)). Additionally, W is considered as an
influential factor in A7 because, for example, there is a clear survival advantage in favor of
preemptive kidney transplantation (Liem and Weimar (2009)).

A naive mean residual life (Maguluri and Zhang (1994)) would have been computed as
E(T —t|T = t,X, W). However, the conditioning part of this expectation looks beyond ¢
for a prospective W > ¢, which is problematic as a patient would be guaranteed to survive
at least up to W when W > ¢, coinciding with the notion that one cannot directly use time
dependent treatment or, more broadly, “internal” time dependent covariates to predict survival
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(Kalbfleisch and Prentice (1980)). Instead, at each time 7, we compute the mean residual life
based on the hazard (1) that strictly conditions on the information available by then, that is,

E(T—t|T >, X, I(W<t), WI(W <1))

e8]
:eAT(th,X,W)/ e ATEXW) g T (W < p) 4 ANVEX)
=W

(2)
X /ooe_AN(S’X) ds{1—I(W <n)},
t

and will draw inference based on this valid model. Here Ay (¢,X) = fé An(s,X)ds and
A, X, W)= fé A1 (s, X, W)ds are the two cumulative hazard functions. This model uses
the “baseline” information at time ¢ only (i.e., no look beyond ¢) to project future survival;
see details in Section 1 of the Supplementary Material (Zhao et al. (2024)).

For ease of notation, we rewrite (2) as m{t, X, I(W <1t), WI(W <)} =mpr(t —
W. X, WI(W <t)+mpy(,X){1 — (W <t)}, where

o0
mr(t, X, W):eAT(t,X,W)/ o ATGXW) g
t
and
X o0 X
my(t,X) = e >/ e ANGEX) g
t

which may facilitate evaluation of the benefits of transplant at any given time. Particularly,
mr(t — W, X, W) —my (¢, X) quantifies the gain (or loss) of life expectancy of patients at ¢
with a transplant given at W < t compared with those who would never receive a transplant;
candidates with close to zero or a negative value of mr(t — W, X, W) — mpy (¢, X) would
benefit little from organ transplantation and would have lower priorities in the waiting list
(Chadban et al. (2020)). This formulation suits the organ transplant setting: the severe short-
age of organs restricts the sources of donations and obliges us to compare the situation where
an immediate donation is received with the situation where donation is impossible at all.

To ensure estimability, we make a complete follow-up assumption (Chen and Cheng
(2005), Chen et al. (2005), Sun and Zhang (2009), Tsiatis (1990)), that is, the failure time
T is supported on a finite range (0, t) with T < co, where, in practice, T is the maximum
follow-up time; we relax this assumption in Supplementary Material 5 (Zhao et al. (2024)).
We further assume the covariates X affect 7' via index 8, where B € RP*¢ is the coefficient
matrix with d < p. Then (1) and (2) can, respectively, be expressed as

Me, X, I(W <), WI(W <1)}
3) T -
=rr(t =W, B X, W) (W <t)+an(t, B X){1 — (W <)},
m{t, X, (W <1), WI(W <1)}
4 - -
=mr(t—W, B X, W) (W=<t)+mp(t, B X){1 = (W <1)},
where A7, An, mr and my are unspecified positive functions, which need to be estimated.
The model stipulates that the conditional mean of 7 — ¢ depends on X via its d indices,
formed by projecting X to the columns of 8, and the waiting time W. When d = 1, the model
reduces to a single index model in terms of X; when 1 < d < p, it corresponds to a dimen-
sion reduction structure; when d = p, the model is completely nonparametric. Our analysis
first focuses on a fixed d, followed by selecting d in a data driven fashion, as discussed in
Section 6. Model (4) is general: it includes the proportional mean residual life model, that
is, m{t, BTX, (W <t), WI(W <1)} = mo(r) exp(BTX) (Oakes and Dasu (1990)) as a spe-
cial case by specifying my{r, BTX} = mo)eB X, mrit — W, BTX, W) = mo(r)ef XtV
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with ¢« = 0 and d = 1; it reduces to the additive model mg(¢) + ﬂTX (Chen (2007)) by
specifying my{t, BTX} = mo(t) + BTX, my{t — W, BTX, W} = mo(r) + BTX + W with
a = 0 and setting d = 1. By allowing d to be larger than 1, model (4) extends these classi-
cal models by allowing more flexible forms, such as m{t, ,BTX, I(W<t), WI(W <1)} =
mo(OIX{z, exp(BT X))} and mir, BTX, I(W < 1), WI(W < 0} = mo(t) + Li_, BIX,
where B is the kth column of B. These special cases implicitly assume that transplant
or the timing of transplantation does not impact survival.

We further assume that 7 is subject to random right censoring so that C L T|W, X, where
C is the censoring time, and we observe Z = min(7', C) and A = I (T < C). In our dataset,
W (or transplant) can only be observed while the patient is still at risk, that is, before death
or censoring occurs. We assume the observed {X;, Z;, A;, [(W; < Z;), W;I(W; < Z;)},
i =1,...,n be independently and identically distributed realizations of {X, Z, A, (W <
Z), WI(W < Z)}. This notation stipulates that W is subject to censoring, due to Z, with an
indicator of I (W < Z). To make (4) identifiable and estimable, we fix the upper d x d block
of B to be I; and estimate the lower (p — d) x d block of B. Corresponding to the upper and
lower parts of 8, we write X = (XE, XIT)T, where X, € R¢ and X; e RP 4.

3. A semiparametrically efficient estimator. Denote the conditional survival function,
cumulative hazard function, hazard function and probability density function of the censor-
ing time C by S.(z, X) = pr(C > z|X), A.(z,X) = —logS.(z, X), Ac(z, X) = 0A(z, X)/0z
and f.(z,X) = —9S.(z,X)/0z with z < 7, where 0 < T < oo is the upper bound of the
follow-up time. Let p(X) = pr(C = 7|X), and it follows that S.(z, X) = f.(7, X) = p(X),
and A.(t, X) = 1. Here A.(z, X) and f.(z, X) are absolutely continuous on (0, ) but with a
discontinuity point at 7.

To estimate m7(r — W, BTX, W) — mn(z, BTX), which quantifies the gain (or loss) of
mean residual life after ¢ with transplant given at W < ¢, we need to estimate § and the
functionals of mr and m y for which we consider a likelihood-based approach.

Under independent censoring the joint partial probability density function [for mixed ran-
dom variables (Casella and Berger (2001))] of {X, Z, A, WI(W < Z)}, conditional on a
random variable I (W < Z), is

Xzawiw=nuw=znix z. 8, wl(w <2)|I(w <2)}

= {)MT(Z —w, ﬂTX, w)}ae_fbw A (s, BTx)ds— [ )”T(S_w’ﬂTx’w)dskc(z, X)l—ae—fé Ae(s,X)ds

®)

x fx.wiw<z & w)l (w < z)
+ (A (2, BTx) e i AN GBTdsy (o o)1= i helemds g ) (1 — T(w < 7)),

where the last equality stems from (1)—(3). We do not need to specify the distribution of
X|W > Z or the joint distribution of X, W|W < Z, as our ensuing estimation is conditional
on the observed W, X and W < Z.

We view the probability function in (5) as a semiparametric model where all unknown
components, except for 8, are infinite dimensional nuisance parameters. The parameters 8
are parameters of interest with a finite dimension. We will estimate § by using a geomet-
ric approach, which avoids decomposing A(-) to be A*(z)eﬂTX, as in a proportional hazards
model. This entails more flexibility for the model.

LetY(t) =1(Z >1t) and N(¢t) = I(Z <t)A be the at-risk and counting process, respec-
tively. Define the filtration F; = o {N (1), Y (u), X, I(W <u), WI(W <u),0 <u < t}, and
let M(t) = N(t) — fé Y (s)A{s, ﬂTX, I(W <5s), WI(W < s)}ds be the martingale with re-
spect to F;.



2408 ZHAO, MA, LIN AND LI

3.1. Construction of efficient score functions. Given the regular score by differentiating
the joint partial probability density function (5) with respect to f, an efficient score, as derived
in Supplementary Material 2.1 (Zhao et al. (2024)), is

Sett{A, Z, B"X, [(W < Z), WI(W < Z))}

_/00{ my{s, By X, I (W <s), WI(W <)}
o Umifs, BEX T(W <), WI(W <)} +1
(6) _my{s, Bo" X, I(W <5), WI(W < s)}}
m(s, Bo "X, I(W <5), WI(W <5))
[X E(X;Se(s, X)18yX)
E{Sc(s,X)|Bo X}

}dM{s, Bo"X, I(W <), WI(W <5)},

where m(s,v,-, ) = dm(s,V,-,-)/ds, mp(s,V,-,-) = dm(s,v,-,-)/dv, mp(s,V,:, ) =
omy{s, v, -, -}/ds, and X; is the lower p — d components in X.

3.2. Construction of semiparametrically efficient estimator of . A consistent estimat-
ing equation can be obtained from E[Ser{A, Z, X, [(W < Z), WI(W < Z)}|X] =0, as the
integrand in the above integral is predictable and M({s, ﬂOTX, I(W<s), WI(W <s)}isa
martingale. Hence, to preserve the mean zero property and to simplify the computation, we
can replace the part in the form of my>/(m| + 1) — my/m within the curly brackets in (6)
by an arbitrary function of s, ,BOTX, I(W <s)and WI(W <), say g{s, ,BOTX, I(W <
s), WI(W <)}, and still obtain

E(/Ooog{s,ﬂOTX, I(W <s), WI(W <)}

® [X E{X;Se(s, X)18yX)

Mis, B"X, I(W <s), WI(W < ):.
E{S.(s,X)|B,"X} ]d {s. Bo (W<s),WI(W<s)})=0

This provides a richer class of estimators than the estimator based on Scfr alone. For example,
assigning a simple g{s, ﬂOTX, I(W <s), WI(W < s)} yields a useful estimating equation
whose solution is consistent and often easy to get due to its simplicity. It is usually adopted
as an initial value for the efficient estimator proposed later to avoid local solutions in the finite
sample situations.

The fraction within the square brackets in (6) satisfies, when ¢ < 7,

E{X;S.(t.X)|By"'X}  E{X;Y(1)|Bo' X, I(W <), WI(W <1)}

(7) v = 0 ;
E(S.t.X)1Bo"X})  E{Y®IB"X.I(W <), WI(W <1))

see Supplement 2.1.2 (Zhao et al. (2024)) for further discussion at the tail when ¢t > t. We
then verify that

E(/OOO gls, Bo X, [(W <s), WI(W <5)}
(8)

o [X _EfXiSc(5,X)180 "X}

dN =0.
E{S.(s. X)18,"X] } (s))
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Note that (7) and (8), proved in Supplementary Material 2.1.2 (Zhao et al. (2024)), imply that
we can construct estimating equations that depend on the transplantation status as follows:

> AiglZi, Bo Xi, L(W; < Z0), Wil (W; < Z)))
i=1
®[X. E{XuYi(Z)B Xi, [(W; < Zi), Wil (W, <Z>}} 0
L EW(Z)IB X, T(Wi < Zi), Wil (Wi < Z;) ’

®

where g() is any nonrandom function and E{Y (Z; )|ﬂTXl, I(W; < Z), Wi [ (W; < Z;)}
and E{X;lY(Z)|ﬂ X;, I(W; < Zp), WI(W < Z;)} are given in Supplementary Ma-
terial 2.2.1 (Zhao et al. (2024)). Here E{Y(Z )|ﬂTX,,I(W, < Z)H, Wi I(\W; < Zp)} =
E{Y,- (t)|/3TX,-, I(W; <Z;), Wi I(W; < Z;)}|;=z, and similarly for the other terms.

As such, we obtain the efficient estimator of 8 by solving

- A, mi{Zi, B7Xi, I(Wi < Zi), Wi (Wi < Zi)}

; [ml{Zz,,B TX:, I(W; <Z), Wi l(W; <Z)}+ 1

mo{Z;, B7X;, [(W; < Z;), Wil (W; < Z;)}
Az, BX, (Wi < Zi), Wil (Wi < Zp) ]
®[X._ E(X; Y (Z0) 1B, 1(W; < Zi), W [(W; <Z)}} 0
OB Z)IBTX, LW < Zy), Wil (W; < Z))) ’

(10)

where im (¢, v, -, ), mp(z, v, -, ), M2 (¢, v, -, -) are estimators for the derivatives of m(z, v, -, -)
with respect to the first two elements given in Supplementary Material 2.2.1 (Zhao et al.
(2024)). The results on efficiency are given in Theorem 2.

3.3. Nonparametric estimation of mean residual life functions. We estimate m{t, BTX,
I(W < t), WI(W < t)} nonparametrically via Ar{t — W, BTX, W} (W < 1) + An{t,
BTX}{1 — I(W < 1)}, based on a kernel smoothed version of the Nelson—Aalen estimator
(Ramlau-Hansen (1983), Andersen et al. (1993)). For any ¢, W (such that W < ¢) and ﬂTX,
the estimators, Xr{t, ﬂTX, W} and KN{t, ﬂTX}, have the forms of

I(W; <)Kn(BTX; — BTX, W, — W
( ﬂTX W / (Wi <s)Kn(BX Tﬂ ,; ) dN; (s).
i YiIW <)Kp(B'X; — B X, W; = W)
- L(W; > )K,(BTX; — BTX
AN ﬂTX / (Wi > s)Kn(B"X; Tﬂ ) . dNi(s),
Z 1 Yi&)I(W;>s)Kp(B X; — B X)
with a multivariate kernel function Kj(uy,uz,...,uy) = l.q:] K(u;i/hi)/ h;, where h =
(h1, ..., hy) is a bandwidth vector and K (-) is a standard univariate kernel function satis-

fying K (u) > 0 and [°) K (u) du =1 (Wand (1994)).
Following Maguluri and Zhang (1994), we obtain

-~ o0 -~
mr(t, ﬂTX, W)= eAT(t’ﬂTX’W)f e_AT(S’ﬂTX’W) ds when W <1,
t

(11)
iy (t, BTX) = AN AT /oo e ANGBTX g when W > 1.
t
It is worth noting that when computing AT(t ﬂ X, W) or mT(t ,B X, W), we use only the
transplanted observations, whereas when computing A N (t, B X) or m y (¢, ﬂ X), we use the
full data but censor those who have received the transplant at the transplantation time.
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4. Asymptotic properties and semiparametric efficiency. We develop a series of the-
orems and establish that the estimators of B are ,/n-consistent, asymptotically normally dis-
tributed and semiparametrically efficient, and the nonparametric estimators, i (¢, 87X, W)
and My (¢, BTX) in (11), are asymptotically normally distributed. We defer the required con-
ditions, lemmas and all the proofs to the Supplementary Material (Zhao et al. (2024)):

THEOREM 1.  Under the regularity conditions in Supplementary Material 4.1 (Zhao et al.
(2024)), ﬂ the estimator obtained by solving (9) or (10), is consistent, that is, ﬂ B—0in
probability when n — oo.

THEOREM 2. Under the regularity conditions in Supplementary Material 4.1 (Zhao
et al. (2024)), the estimator, ﬂ obtained by solving (9) or (10), satisfies /n (,B B) —

N@O,A™ BA-!1" ) in distribution when n — 0o, where A and B are given in Supplementary
Material 4.4 (Zhao et al. (4)24)).

Further, the estimator, B, obtained by solving (10), is semiparametrically efficient and
satisfies

Jn(B —B)— N{0, (E[SC{A, Z,X, (W< Z), WI(W < Z)})"'}
in distribution, where Seg{Z, ﬂTX, I(W<Z), WI(W < Z)} is given in (6).

THEOREM 3. Under the regularity conditions in Supplementary Material 4.1 (Zhao et al.
(2024)), the nonparametric estimators m y (t, ﬁTX) and mr(t, ﬁTX, W) satisfy

nh{iiy(t, B X) —my(t, B7X)} > N{0, 0% (¢, B7X)},
nh{ir(t, B X, W) —mr(t, BTX, W)} > N{0,02(t, BTX, W))

in distribution for all t, W (such that W < t) and X, where 01%, (t, ﬁTX) and O’% (t, ﬂTX, W)
are given in Supplementary Material 4.5 (Zhao et al. (2024)).

5. Simulation. The section features four simulation studies for evaluating the finite sam-
ple performance of our method. For comparisons, we additionally implement a semiparamet-
ric proportional mean residual life model, denoted as “PM” (Chen and Cheng (2005)), which
implicitly assumes d = 1:

Tx

Study I: We generate event times with hazard functions of Ay (z, ﬂTX) = teP X and

BTX+W . e
Ar(t, ,BTX, W)= %71“ so that the true mean residual life is

t2
—r t
¥ BTX) = e o - )V,
JeB™
t+1

T —
mT(tsﬂ X’ W) - IOe‘BTX_'_Wa

where @ is the cumulative distribution function of the standard normal distribution. Each
component of X is generated independently from the standard normal distribution, and W is
generated independently from a uniform distribution over [0, 10]. We considerd =1, p =9
and set the true parameters to be g = (1, —0.6,0.0, —0.3, —0.1,0.0, 0.1, 0.3, —0.5)T. The
sample size is n = 300, and we randomly assign one-third of samples to take the transplant.

Study 2: We generate event times with hazard functions of Ay (¢, ,BTX) = BTi:_ > and
e t

Ar(t, BTX, W) = ¢{In(t) —3 — W/100 + 0.1(1 — V2BTX)2}/t[®{—In(r) + 3 + W /100 —
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0.1(1 — «/iﬂTX)z}] so that the true mean residual life is

my (1, BTX) = (1 + e;ix){% —tan—l(eﬂtTX)},

mr (1, BTX, W) = ®{—1In() + 3+ W/100 — 0.1(1 — v/287X)?}
o0 1
d
x /; ®{3 + W/100 — In(s) — 0.1(1 — v/287X)2}

s,

where ¢ is the probability density function of the standard normal distribution. Each compo-
nent of X is generated independently from the standard normal distribution, and W is gener-
ated independently from uniform distribution over [0, 200]. We consider d = 1, p =9 and set
the true parameters to be 8 = (1, —0.6,0, —0.3, —0.1, 0, 0.1, 0.3, —0.5)T. The sample size is
n = 1000, and we randomly assign one-third of samples to take the transplant.

Study 3: The hazard functions are Ay(r, BTX) = 12/ Zidzl eAi"X and Ar(t, BTX, W) =

T . . . .
t’"Pw Z?:l eBi" X with the corresponding mean residual lives of

El

5,7/55d o BiTX [ _s755d B TX
mN(t, ,BTX) —e7! Byl ebi / e 7S $5yd | efi ds
t

5 12/5 v~d Tx o0 5 12/5v~d Tx
mr(t, BTX, W) = 12 Py e W/ LD ST
t

Each component of X is generated independently from the standard normal distribution.
The waiting time W is generated independently from a uniform distribution over (0, 1).
We consider d =2, p = 6 and set the true parameters to be g = (8.1, .,) = ((1, 0, —0.65,
—0.5,-0.25,0.25)T, (0,1, -0.5,0.5, —0.4,0.25)T)T. The sample size is n = 2000, and we
randomly assign around one-third of samples to take the transplant.

Study 4: This setting mimics the real data application. The hazards are set to be

1 1
AN(t, 'BTX) _ o0 et/200+arctan(ﬁTX)+7r/2 - 500

and

1 1
)\T(t, ,BTX, W) — %et/300+arctan(ﬂTX—W/5+10)+n/2 . ﬁ’

with the corresponding mean residual lives of

my (t, BTX) = 200e~"/200—arctan(8™X) /2,

mT(t, ﬂTX’ W) _ 30067t/3007arctan(ﬁTXfW/5+10)77r/2'

We consider d = 1, p =9 and set the true parameters to be g = (0.4, 1, —0.4, —1.50,
—1.1,1.4, —-0.1, —O.7)T. The transplantation time W is generated from the uniform distribu-
tion on (0, max(7y)). The sample size is n = 2000 with a censoring rate of 26%, and about
half of the samples receive the transplantation during followup. Study 4 mimics the features
of real data that the mean residual life functions are decreasing gradually as ¢ increases. The
transplant group accounts for W: the improvement mr (t — W, X, W) —my (¢, X) is negative,
when W is close to 0, and approaches O positively as W increases.

The results for the estimation of # under Study 1 are given in Table 1 with three censoring
rates, 0%, 20% and 40%. The proposed method has much smaller biases and standard devia-
tions, whereas “PM” is biased with larger standard deviations. The performances of all of the
estimators deteriorate when the censoring rate increases, though our method still outperforms
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TABLE 1
Results of Study 1, based on 1000 simulations with sample size 300. “Prop.” is the semiparametric method,
“PM” is the proportional mean residual life method. “emp sd” is the sample standard deviation of the
corresponding estimators; “est sd” is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals

B2 B3 B4 Bs Be B7 Bs Bo
Truth —-0.6 0.0 —-0.3 —0.1 0.0 0.1 0.3 —-0.5

No censoring
Prop. point estimate —0.597 0.002 —0.290 —0.096 0.000 0.073 0.302 —0.504

emp sd 0.229 0.442 0.180 0.438 0.437 0.437 0.171 0.206
est sd 0.164 0.474 0.166 0.470 0.474 0.469 0.166 0.165
CP(%) 88.8 96.2 94.4 96.0 95.8 96.1 94.9 91.2
PM point estimate 0442 —0.978 5.697 —20.47 0.986 —13.60 5.893 —3.780
emp sd 57.8 95.11 155.9 583.0 36.7 352.5 212.5 156.5

20% censoring
Prop. pointestimate —0.590 —0.003 —0.289 —0.086 0.007 0.101 0.289  —0.486

emp sd 0.178 0.379 0.153 0.373 0.379 0.368 0.148 0.165
est sd 0.156 0.406 0.146 0.404 0.407 0.406 0.145 0.152
CP(%) 92.8 96.7 94.1 96.7 97.1 96.9 95.6 94.8
PM point estimate =~ —0.774 0.067 —0.236  —0.027 0.150 0.176 0.339  —-0.577
emp sd 2.235 3.794 1.380 3.693 5.911 3.563 1.570 3.981

40% censoring
Prop. pointestimate —0.518 0.020 —-0.260 —0.079 0.020 0.088 0.266 —0.434

emp sd 0.168 0.368 0.136 0.368 0.387 0.362 0.142 0.159
est sd 0.149 0.392 0.140 0.396 0.391 0.389 0.140 0.144
CP(%) 89.0 96.9 94.7 97.4 96.0 96.2 94.9 89.9
PM point estimate 7493 —7.316 —1.349 9.838 —21.588 —19.11 2.057 5.720
emp sd 262.6 160.8 116.7 367.1 570.9 762.8 63.4 185.9

the others. We also demonstrate the true and error plots in Supplementary Material Figure S1—
S3 (Zhao et al. (2024)) and show that our method fares well for estimating m (z, ﬂTx) when
¢ and BTx are not too extreme. The contour plots reveal that bias increases as censoring rate
increases and the estimation deteriorates when ¢ is large. These results show an overall sat-
isfactory performance of our semiparametric method. Figures S1-S3 in the Supplementary
Material (Zhao et al. (2024)) reveal that the performance of our method is better when ¢ is in
the interior of the range because more observations are available for the local estimation, as
opposed to a larger + with fewer observations available. In contrast, regardless of the magni-
tude of ¢, the mean residual life function, estimated by “PM,” is severely biased, as shown in
the last two rows from Figures S1-S3 (Supplementary Material (Zhao et al. (2024))). This is
because this model assume a predetermined functional form of the mean residual life, which
in this case is misspecified.

Tables 2 and 3 report the results of Studies 2 and 3 related to ﬁ, respectively. We also
provide the error plots of 7i(¢, B1x) — m(z, BTx) in Study 2 using a contour plot in Sup-
plementary Material Figures S4-S6 (Zhao et al. (2024)). The proposed method performs
better than the competitor. For Study 3 we provide the error plots of (¢, ﬂlTx, ﬂzTX) —
m(t, B, x, B,"x) fixed at B;Tx = 0 and B,"x = 0 in Supplementary Material Figures S7
and S8 (Zhao et al. (2024)). Similar to the conclusion in the first simulation study, the per-
formance of estimating 8 by our proposed estimator is satisfactory. The performance of the
mean residual life estimation is better when 7 is smaller, deteriorates when ¢ and BTx becomes
extreme and is better for smaller censoring rates.
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TABLE 2
Results of Study 2, based on 1000 simulations with sample size 1000. “Prop.” is the semiparametric method,
“PM” is the proportional mean residual life method. “emp sd” is the sample standard deviation of the
corresponding estimators; “est sd” is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals
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B2 B3 B4 Bs Be B7 Bs Bo
Truth —0.60 0.00 —0.30 —0.10 0.00 0.10 0.30 —0.50
No censoring
Prop.  point estimate = —0.611 0.002 —-0.308 —0.101 —0.005 0.101 0.310 —0.505
emp sd 0.140 0.106 0.114 0.104 0.106 0.104 0.114 0.127
est sd 0.135 0.118 0.122 0.118 0.118 0.118 0.122 0.129
CP(%) 95.0 97.4 97.5 98.1 97.4 97.6 97.3 95.8
PM point estimate  —0.601 0.003 —0.301 —0.099 0.006 0.096 0.300 —0.506
emp sd 0.069 0.083 0.073 0.074 0.083 0.088 0.097 0.084
20% censoring
Prop.  pointestimate  —0.596 0.003 —0.306 —0.100 0.001 0.094 0.303 —0.499
emp sd 0.140 0.116 0.126 0.113 0.109 0.110 0.123 0.137
est sd 0.135 0.119 0.123 0.119 0.119 0.119 0.123 0.130
CP(%) 94.7 95.8 94.4 96.5 97.0 96.1 96.0 94.5
PM point estimate ~ —0.604 0.000 -0.305 -0.114 —0.023 0.092 0.299 —-0.501
emp sd 0.146 0.380 0.121 0.355 0.373 0.384 0.132 0.133
40% censoring
Prop.  point estimate  —0.596 0.001 —0.300 —0.098 —0.004 0.098 0.295 —0.498
emp sd 0.156 0.129 0.136 0.131 0.125 0.127 0.140 0.148
est sd 0.147 0.129 0.134 0.130 0.129 0.130 0.134 0.142
CP(%) 95.1 95.0 95.4 94.8 95.9 95.6 93.5 93.9
PM point estimate ~ —0.553 0.495 —0.242 0.220 0.114 —-0.216 0.379 —0.565
emp sd 1.805  15.895 2.105  10.373 4706  10.316 2.535 1.833
TABLE 3

Results of Study 3, based on 1000 simulations with sample size 2000. “emp sd” is the sample standard deviation
of the corresponding estimators; “est sd” is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals

B31 B4t Bst Be1 B32 Baz Bs2 Be2
Truth —0.65 —0.50 —0.25 0.25 —0.50 0.40 —0.40 0.25
No censoring
point estimate —0.662 —0.551 —0.237 0.253 —0.492 0.465 —0.407 0.251
emp sd 0.152 0.117 0.136 0.129 0.169 0.121 0.137 0.129
est sd 0.139 0.125 0.145 0.146 0.147 0.131 0.152 0.154
CP(%) 91.3 93.4 95.5 96.1 89.9 93.5 96.6 97.8
20% censoring
point estimate —0.608 —0.401 —0.252 0.238 —0.480 0.301 —0.363 0.236
emp sd 0.105 0.097 0.097 0.091 0.110 0.098 0.098 0.090
est sd 0.103 0.094 0.107 0.107 0.108 0.098 0.111 0.112
CP(%) 934 81.2 94.9 96.1 93.1 81.8 95.9 98.0
40% censoring
point estimate —0.587 —0.420 —0.234 0.227 —0.456 0.316 —0.357 0.228
emp sd 0.084 0.071 0.080 0.073 0.089 0.082 0.078 0.074
est sd 0.092 0.083 0.092 0.093 0.098 0.087 0.097 0.098
CP(%) 93.3 87.3 97.5 97.7 95.2 85.4 97.3 98.1
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TABLE 4
Results of Study 4, based on 1000 simulations with sample size 2000. “emp sd” is the sample standard deviation
of the corresponding estimators; “est sd” is the estimated standard deviation; “CP” is the estimated coverage
probability of confidence intervals

B2 B3 Ba Bs Be B7 Bs Bo
0.4 1 —0.4 —-1.50 —-1.1 1.4 —0.1 —-0.7

Prop.  point estimate 0.409 0912 -039 —1.263 —0.945 1.344 —-0.109 —0.606

emp sd 0.300 0.638 0.427 1.191 0.647 0.647 0.312 0.478
est sd 0.279 0.776 0.473 1.225 0.769 0.763 0.467 0.519
CP(%) 90.3 96.5 97.5 94.8 95.7 97.4 97.6 92.0
PM point estimate 0.646 0.950 0.205 -0.776  —0.303 0.790 1.557 —0.090
emp sd 22.847 6.882 2.545 3.545 1.879 4.259 8.725 1.556

The results for Study 4 are presented in Table 4, which displays the estimated vector B for
both methods. Notably, the PM method exhibits a significantly larger bias compared to our
method. We also assess the error of mi7 (f — w, ,BTX, w) —my(, ﬂTx) using a contour plot in
Supplementary Material Figure S9 (Zhao et al. (2024)). Our proposed method outperforms
the competitor across various scenarios. This difference in performance is particularly evident
when BTX > 0, where the PM method struggles to accurately estimate the mean residual life
function of the transplanted objects. This discrepancy can be attributed to the PM method’s
limited ability to handle the nonlinear structure inherent in the mean residual life function.

Finally, we have assessed the use of the validated information criterion (VIC) (Ma and
Zhang (2015)) for determining the number of indices, d, of the dimension reduction model in
these four study settings; the d with the smallest VIC value would be selected. In Study 1, VIC
selects d with an accuracy of 100% under all three censoring rates, whereas the accuracies
of selecting d via VIC are 97.1%, 100% and 100% in Study 2 and are 100%, 99.8% and
99.8% in Study 3, respectively, corresponding to the censoring rates of 0%, 20% and 40%.
Moreover, the accuracy of determining d via VIC in Study 4 is 97.8%. These high accuracies
validate the utility of using VIC to select d across the examined settings.

6. Analysis of the kidney transplant data. We apply the proposed method to analyze a
kidney transplant data set from the U.S. Scientific Registry of Transplant Recipients (SRTR)
mentioned in the Introduction. Briefly, the registry is maintained by the United Network
for Organ Sharing and Organ Procurement and Transplantation Network (UNOS/OPTN)
and includes all waitlisted kidney transplant candidates and transplant recipients in the U.S.
(https://unos.org/). For assessing possible benefits of transplantation, we use the residual life
to estimate how much longer a patient can survive if she or he receives a transplant than
otherwise.

To avoid confounding cohort effects and also to have a sufficiently long follow-up, we fo-
cus on the patients who were waitlisted in the same year of 2011. There were 43,140 patients
in this cohort with an average follow-up of 907 days after waitlisting. During the follow-up, a
total of 22,183 patients received kidney transplants. The response variable is the survival time
in days (7;) starting from waitlisting. Among patients who got a transplantation, 5.86% of the
observations were censored, and the censoring rate was 26.43% among those without a trans-
plantation. The covariates X included in our analysis were gender (X 1), race (X3), max cold
ischemia time (X3), insurance coverage (X4), body mass index (X5), diagnosis type (Xe),
peak PRA/CPRA (X7), previous malignancy status (Xg) and diabetes indicator (X9), all of
which were used for computing the EPTS score (Time (2012)). The waiting time W is also
considered in our model, as proposed in (1) and (2). Our analytical goal was to use model (2)
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TABLE 5
Parameter estimation of the kidney transplant data. “est.” is the estimation of parameter; “s.d.” is the estimated
standard deviation of B

B> B3 Ba Bs Bs B Bs By
est. —0.097 —0.003 —0.174 —0.029 —0.119 0.030 —0.162 0.004
s.d. 0.011 0.007 0.010 0.007 0.009 0.005 0.016 0.011
p-value 0.000 0.866 0.000 0.073 0.000 0.000 0.000 0.008

to quantify the potential residual life increment if a patient receives a kidney transplant, given
the covariate profile. The model mimics a real waitlisting to transplantation process by stipu-
lating that all of the patients started by belonging in the nontransplant group, while those who
got a transplantation were viewed as censored at transplantation; once transplanted, a patient
would switch his or her membership to join the transplant group.

To proceed, we first determine the number of indices d using VIC (Ma and Zhang (2015)).
In our analysis, d = 1 is chosen with the smallest VIC = 143.66, indicating a single index is
sufficiently informative; see Table 5. Subsequently, we normalize the index vector by fixing
the first component (gender) at 1, and report eight coefficient estimates. All of the covariates,
except for the max cold ischemia time (X3) and the body mass index (X5), have significant
effects on the mean residual life, which agrees with the previous studies (Friedman et al.
(2003), Webster et al. (2017)).

The max cold ischemia time (X3) that refers to the tolerable amount of time from when a
kidney is removed from the donor to the time it is transplanted into the recipient. Although
the max cold ischemia time reflects the patient’s physiological conditions indirectly, it is not
as significant as the real cold ischemia time in determining the postoperative risk (lida et al.
(2008), Kayler et al. (2011)). BMI (X5) is commonly suggested as a “paradox” risk factor in
the literature (Ahmadi et al. (2016), Kalantar-Zadeh et al. (2005)). A popular explanation is
that the BMI cannot differentiate between fat and muscle; thus, high BMI patients may gain
a survival advantage (Beddhu (2004), Mafra, Guebre-Egziabher and Fouque (2008)).

On the other hand, race (X7) and insurance coverage (X4) have significant impacts on sur-
vival. It has been widely accepted that race and insurance coverage are highly correlated with
patients’ socioeconomic status, which plays an crucial role in the choice of chronic kidney
disease treatment, especially for the end-stage patients (Lewis et al. (2010), Muntner et al.
(2012), Nicholas, Kalantar-Zadeh and Norris (2013), Webster et al. (2017)). The other signif-
icant variables are also known risk factors for the ESRD mortality in the literature (Kauffman
et al. (2005), Kayler et al. (2011), Lim, Chapman and Wong (2015), Mehdi and Toto (2009),
Pyram et al. (2012)).

Given a patient with characteristics x, alive at time ¢ and waiting time w, iy —

~T . ~T . . L . o
w, B x,w) —mpy(t, B X) provides an estimate of the patient’s mean residual life improve-

. . . . . T
ment after receiving a kidney transplant at w. Because the difference is a function of ¢, 8 x
and w, we present the difference using various plots. Figure 1 plots contours that change with

t and ETX at several fixed w values.

Several important observations can be made. First, with the waiting time being close to 0 in
each panel of Figure 1, kidney transplant led to less survival gains compared to dialysis treat-
ment, possibly because patients transplanted without waiting were likely to be high-risk pa-
tients and postoperative complications, such as cardiovascular and urological complications,
increase mortality risk among them (den Dekker et al. (2020), Rahnemai-Azar, Gilchrist and
Kayler (2015)). Second, as the waiting time w increases, kidney transplant could result in a
reasonably larger improvement compared to dialysis. This is because these patients tended
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FIG. 1. Mean residual life improvement from UNOS/OPTN data. Panels from left to right: BTx=-0.8,0,0.8.

to be more stable, allowing kidney transplant to provide a notable survival advantage (Bui,
Kilambi and Mehrotra (2019), Ingsathit et al. (2013), Schold et al. (2014)). Moreover, with
t and w fixed, complex relationships existed between the patient’s index value 8Tx and the
survival improvement. The improvement is larger at 8Tx = 0 than that at 87x = —0.8,0.8.
It is very likely that large or small values of 8Tx were resulted by extreme health conditions
which led to the worse improvement. Thus, this index in general measured patients’ overall
health condition.

Figures 2—4 further reveal the mean residual life improvement stratified by gender (X1),
race (X7) and insurance coverage (X4) at different values of ﬁTX. Several inequalities are
noteworthy. First, patients with private insurance performed better than those with public
insurance in most of cases, possibly due to socioeconomic status differences and the afford-
ability for disease maintenance and treatment (Goldfarb-Rumyantzev et al. (2006), Nicholas,
Kalantar-Zadeh and Norris (2015)). Second, the life gains were not very similar across male
and female patients, especially the patterns differed between them. Females tended to have

Female,Public Female,Private

p'X=-2.4, Sample = 3621 B'X=-2.4, Sample = 1984
1200 [pavvavy 1200

£ 900 900
2
=
o
=]
<
=2 600 2 600 |
3 4
2 =
& =)
<
300 300
o
IS
\ R
-
//\ o
pnaa 0
0 500 1000 1500 0 500 1000 1500
Time t Time t
B'X=-0.2, Sample = 3309 B'X=-0.4, Sample =4110
1200 1200
<
3
3
964
900 \ 900 )
8 > B
k= > 3 K
= \\ o 9.
=2 600 ‘ ™  z e00 \ 75
Iy \ I~
S
\ 18
300 : 300 s,
& 5.
Z ES o\ | \
g 1 g g ]
o / L & / il
0 500 1000 1500 0 500 1000 1500
Time t Time t

FI1G. 2. Mean residual life improvement from UNOS/OPTN data. Representative strata by race, gender and
insurance status with minimum ﬂTx per stratum.
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insurance status with median ﬂTX per stratum.

life gains positively related to the index; in contrast, males tended to have higher residual
life gains at small absolute index. It is likely that heterogeneous kidney disease progression
rates and lifestyles might lead to the pattern discrepancy (Baylis (2009), Okada et al. (2014),
Pscheidt et al. (2015)), though the negligible difference in quantity between genders exempli-
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fied the “canceled survival advantage between genders” phenomenon (Carrero (2010), Cobo
etal. (2016), Gien et al. (2006)). More detailed illustrations can be found in Figures S10-S12,
Supplementary Material (Zhao et al. (2024)).

Survival gains of African Americans with public insurance were not monotonically related
to the index regardless of gender, given ¢; further, it was observed that African—American
females experienced greater life expansion compared to their male counterparts. Interest-
ingly, we found the survival gains of African Americans were comparable with those of non-
Hispanic Whites, even though these two racial groups had very different mortality among
the general population (Lewis et al. (2010)). However, the African—American groups exhib-
ited markedly different indices, compared to the non-Hispanic white groups, possibly due to
lifestyles and lack of access to healthcare among those groups (Fedewa et al. (2014), Kasiske,
London and Ellison (1998), Nicholas, Kalantar-Zadeh and Norris (2013)).

The Hispanic patients displayed consistent patterns in relation to their insurance type.
Notably, there was minimal improvement in life gains when w was less than 500 and when
BTx > —1.2. However, at BTx = —1.8, life gains showed a notable increase as w increased.
The most significant decrease in life gains was observed under specific conditions: when
¢ and w were small, and BTx < —1.5. These trends held true for both genders and across
different insurance types.

Among the Asian patients, a distinct pattern emerged in life gains with respect to ¢ and w.
Initially, life gains exhibited a rising trend, followed by a subsequent decline, with fluctua-
tions observed along these dimensions. However, when ﬂTx < 0, the alterations in life gains
were less pronounced. Remarkably, the impact of insurance type on survival outcomes varied
between genders. For the female patients, the choice between private and public insurance did
not yield significantly divergent survival gains. Conversely, among the male patients, private
insurance demonstrated a better outcomes when compared to public insurance.

7. Discussion. Addressing a severe shortage of organs that are needed to sustain ESRD
patients’ life, this work aims to design a feasible strategy to increase the potential efficiency
brought by each available kidney. Instead of evaluating the patients’ expected survival time,
as is done in the literature, we consider the potential residual life prolonged by kidney trans-
plant. By comparing patients’ expected residual life with and without transplant, we use their
difference to gauge the potential benefit gained from the transplant; patients with larger differ-
ences may have a higher priority for organ allocations than those with smaller values. As the
primary purpose of the project is to improve the donor distribution strategy by assessing the
posttransplantation performance, particularly with very limited organ donations, rendering
the measurement of the entire lifespan is likely to be more pertinent (Assfalg et al. (2020))
than focusing solely on a limited portion of future life, which the restricted mean survival
time (RMST) is designed for. In addition, the choice of the length of the follow-up window
may complicate the organ distribution strategy. Therefore, we opt for the proposed model,
which is established on the premise of improving the overall residual life.

A natural extension of our model is to compute the causal effect between two groups.
In the absence of a strong confounder “age,” it is impossible to draw causal conclusion in
this study. However, our comparison between two groups has a capability to analyze the
causality as long as all confounders are included. On the other hand, our model compares the
transplant cohort to a special case of the nontransplant cohort in which the transplantation
would never happen in the future. A more general model will be studied in the future that
transplant occurred at any time. Therefore, excepting comparing the mean residual life, many
other quantities such as all-cause survivals and hazard ratio will be considered (Aalen, Cook
and Rgysland (2015), Andersen, Syriopoulou and Parner (2017), Syriopoulou, Rutherford
and Lambert (2020)).
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Our semiparametric regression model of mean residual life relaxes the parametric assump-
tions on the dependence of mean residual life on covariates and how long a patient has lived.
To strike a balance between interpretation and flexibility, our procedure enables one to reduce
the covariate dimensions from p to d: when d = 1, the model falls to the single index model,
while d = p corresponds to a completely nonparametric model. We suggest to use the vali-
dated information criterion (Ma and Zhang (2015)) to choose d, which seems to fare well in
practice.

In our model, both the transplant and nontransplant groups are characterized by the same
set of indices, denoted as B, throughout the study. An alternative would be to conduct sepa-
rate estimation processes to distinguish the effects of these indices on different transplantation
statuses. While our method can accommodate this suggestion by applying the model sepa-
rately to each group, this separation approach may imply independent progressions for the
same patient before and after the transplant. This may be beyond the scope of our primary ob-
jective of consistently quantifying survival improvements. To estimate the mean residual life
enhancement attributable to inherent factors which reflect patient functional status, we intend
to treat each patient’s progression as a cohesive whole. This seems reasonable in the realm of
kidney transplantation, as studies showed that transplant does not interact significantly with
patients’ pre-operative functional status and is “associated with substantial improvement in
all stages of functional capacity” (Ali et al. (2021)).

To ensure estimability, we have assumed the complete follow-up condition, which is rea-
sonable in clinical studies with high event rates and long follow-up (Sun, Song and Zhang
(2012)), such as in studies with advanced stage cancer patients (Chen et al. (2005)) and ESRD
patients (Mansourvar, Martinussen and Scheike (2016)). Our data example features renal fail-
ure patients with a long follow-up, which may satisfy the assumption. We also acknowledge
that, while the complete follow-up condition is a common assumption (Chen and Cheng
(2005), Chen et al. (2005), Sun and Zhang (2009), Tsiatis (1990)), it incurs some limitations.
For example, Ying (1993) pointed out that this assumption implies that the knowledge of the
support is obtained in advance to assure a reasonable maximum follow-up time 7. Sun, Song
and Zhang (2012), Chen and Cheng (2006) and Mansourvar, Martinussen and Scheike (2015)
proposed various ways of selecting a reasonable 7, all requiring certain preknowledge. Due
to these limitations, in Supplementary Material 5 (Zhao et al. (2024)), we further relax the
complete follow-up condition, where we allow an unbounded support for the event time and
only require a tail condition on the distribution similar to but weaker than the sub-Gaussian
type. Finally, we are aware that the kidney transplant data from the U.S. SRTR may represent
a biased sample; that is, the included patients were those with access to transplantation. In
order to make results generalizable to a more general population, it is vital to take the prob-
ability of accessing transplantation into account. Estimation of this probability, however, is
challenging because of many tangible and intangible factors involved in the process (Axelrod
et al. (2008), Carrero et al. (2018), Kucirka, Purnell and Segev (2015), Weng et al. (2010)).
More research is warranted.

Acknowledgments. The authors deeply thank Editor Fan Li and two anonymous referees
for their insightful and detailed comments that helped substantially improve the quality of the
manuscript.

Funding. G. Zhao was supported by Faculty Development Program, Portland State Uni-
versity (FEAGXZ). H. Lin was supported by NSFC (No. 11931014 and 11829101).

SUPPLEMENTARY MATERIAL

Supplement (DOI: 10.1214/24-A0AS1887SUPP; .pdf). Regularity conditions, technical
properties, lemmas and proofs.


https://doi.org/10.1214/24-AOAS1887SUPP

2420 ZHAO, MA, LIN AND LI

REFERENCES

AALEN, O. O., CooK, R. J. and R@YSLAND, K. (2015). Does Cox analysis of a randomized survival
study yield a causal treatment effect? Lifetime Data Anal. 21 579-593. MR3397507 https://doi.org/10.1007/
$10985-015-9335-y

AHMADI, S.-F., ZAHMATKESH, G., AHMADI, E., STREJA, E., RHEE, C. M., GILLEN, D. L., DE NICOLA, L.,
MINUTOLO, R., RICARDO, A. C. et al. (2016). Association of body mass index with clinical outcomes in
non-dialysis-dependent chronic kidney disease: A systematic review and meta-analysis. Cardiorenal Med. 6
37-49.

ALI H., SOLIMAN, K., MOHAMED, M. M., RAHMAN, M., HERBERTH, J., FOULOP, T. and ELSAYED, I. (2021).
Impact of kidney transplantation on functional status. Ann. Med. 53 1303-1309.

ANDERSEN, P. K., BORGAN, @., GILL, R. D. and KEIDING, N. (1993). Statistical Models Based on
Counting Processes. Springer Series in Statistics. Springer, New York. MR1198884 https://doi.org/10.1007/
978-1-4612-4348-9

ANDERSEN, P. K., SYRIOPOULOU, E. and PARNER, E. T. (2017). Causal inference in survival analysis using
pseudo-observations. Stat. Med. 36 2669-2681. MR3670384 https://doi.org/10.1002/sim.7297

ASSFALG, V., SELIG, K., TOLKSDORF, J., VAN MEEL, M., DE VRIES, E., RAMSOEBHAG, A.-M., RAH-
MEL, A., RENDERS, L., NOVOTNY, A. et al. (2020). Repeated kidney re-transplantation—the Eurotransplant
experience: A retrospective multicenter outcome analysis. Transpl. Int. 33 617-631.

AXELROD, D. A., GUIDINGER, M. K., FINLAYSON, S., SCHAUBEL, D. E., GOODMAN, D. C., CHOBA-
NIAN, M. and MERION, R. M. (2008). Rates of solid-organ wait-listing, transplantation, and survival among
residents of rural and urban areas. JAMA 299 202-207.

BAYLIS, C. (2009). Sexual dimorphism in the aging kidney: Differences in the nitric oxide system. Nat. Rev.
Nephrol. 5 384-396. https://doi.org/10.1038/nrneph.2009.90

BEDDHU, S. (2004). Hypothesis: The body mass index paradox and an obesity, inflammation, and atherosclerosis
syndrome in chronic kidney disease. In Seminars in Dialysis 17 229-232. Wiley, New York.

BICKEL, P. J., KLAASSEN, C. A. J,, RITOV, Y. and WELLNER, J. A. (1993). Efficient and Adaptive Estimation
for Semiparametric Models. Johns Hopkins Series in the Mathematical Sciences. Johns Hopkins Univ. Press,
Baltimore, MD. MR 1245941

Bui, K., KiLAMBI, V. and MEHROTRA, S. (2019). Functional status-based risk-benefit analyses of high-KDPI
kidney transplant versus dialysis. Transplant. Int. 32 1297-1312. https://doi.org/10.1111/tri.13483

CARRERO, J. J. (2010). Gender differences in chronic kidney disease: Underpinnings and therapeutic implica-
tions. Kidney Blood Press. Res. 33 383-392. https://doi.org/10.1159/000320389

CARRERO, J. J., HECKING, M., CHESNAYE, N. C. and JAGER, K. J. (2018). Sex and gender disparities in
the epidemiology and outcomes of chronic kidney disease. Nat. Rev. Nephrol. 14 151-164. https://doi.org/10.
1038/nrneph.2017.181

CASELLA, G. and BERGER, R. L. (2001). Statistical Inference. Cengage Learning. MR1051420

CHADBAN, S.J., AHN, C., AXELROD, D. A., FOSTER, B. J., KASISKE, B. L., KHER, V., KUMAR, D., OBER-
BAUER, R., PASCUAL, J. et al. (2020). KDIGO clinical practice guideline on the evaluation and management
of candidates for kidney transplantation. Transplantation 104 S11-S103.

CHEN, Y. Q. (2007). Additive expectancy regression. J. Amer. Statist. Assoc. 102 153-166. MR2345536
https://doi.org/10.1198/016214506000000870

CHEN, Y. Q. and CHENG, S. (2005). Semiparametric regression analysis of mean residual life with censored
survival data. Biometrika 92 19-29. MR2158607 https://doi.org/10.1093/biomet/92.1.19

CHEN, Y. Q. and CHENG, S. (2006). Linear life expectancy regression with censored data. Biometrika 93 303—
313. MR2278085 https://doi.org/10.1093/biomet/93.2.303

CHEN, Y. Q., JEWELL, N. P., LEI, X. and CHENG, S. C. (2005). Semiparametric estimation of proportional
mean residual life model in presence of censoring. Biometrics 61 170-178. MR2135857 https://doi.org/10.
1111/5.0006-341X.2005.030224.x

CoBO, G., HECKING, M., PORT, F. K., EXNER, I., LINDHOLM, B., STENVINKEL, P. and CARRERO, J. J.
(2016). Sex and gender differences in chronic kidney disease: Progression to end-stage renal disease and
haemodialysis. Clin. Sci. 130 1147-1163. https://doi.org/10.1042/CS20160047

Cosio, F. G., ALAMIR, A., YIM, S., PESAVENTO, T. E., FALKENHAIN, M. E., HENRY, M. L., ELKHAM-
MAS, E. A., DAVIES, E. A., BUMGARDNER, G. L. et al. (1998). Patient survival after renal transplantation:
I. The impact of dialysis pre-transplant. Kidney Inter. 53 767-772. https://doi.org/10.1046/j.1523-1755.1998.
00787.x

DEN DEKKER, W. K., SLOT, M. C., KHO, M. M. L., GALEMA, T. W., VAN DE WETERING, J., BOERSMA, E.
and ROODNAT, J. 1. (2020). Predictors of postoperative cardiovascular complications up to 3 months after
kidney transplantation. Neth. Heart J. 28 202-2009. https://doi.org/10.1007/s12471-020-01373-6


https://mathscinet.ams.org/mathscinet-getitem?mr=3397507
https://doi.org/10.1007/s10985-015-9335-y
https://mathscinet.ams.org/mathscinet-getitem?mr=1198884
https://doi.org/10.1007/978-1-4612-4348-9
https://mathscinet.ams.org/mathscinet-getitem?mr=3670384
https://doi.org/10.1002/sim.7297
https://doi.org/10.1038/nrneph.2009.90
https://mathscinet.ams.org/mathscinet-getitem?mr=1245941
https://doi.org/10.1111/tri.13483
https://doi.org/10.1159/000320389
https://doi.org/10.1038/nrneph.2017.181
https://mathscinet.ams.org/mathscinet-getitem?mr=1051420
https://mathscinet.ams.org/mathscinet-getitem?mr=2345536
https://doi.org/10.1198/016214506000000870
https://mathscinet.ams.org/mathscinet-getitem?mr=2158607
https://doi.org/10.1093/biomet/92.1.19
https://mathscinet.ams.org/mathscinet-getitem?mr=2278085
https://doi.org/10.1093/biomet/93.2.303
https://mathscinet.ams.org/mathscinet-getitem?mr=2135857
https://doi.org/10.1111/j.0006-341X.2005.030224.x
https://doi.org/10.1042/CS20160047
https://doi.org/10.1046/j.1523-1755.1998.00787.x
https://doi.org/10.1007/s12471-020-01373-6
https://doi.org/10.1007/s10985-015-9335-y
https://doi.org/10.1007/978-1-4612-4348-9
https://doi.org/10.1038/nrneph.2017.181
https://doi.org/10.1111/j.0006-341X.2005.030224.x
https://doi.org/10.1046/j.1523-1755.1998.00787.x

EVALUATION OF TRANSPLANT BY MEAN RESIDUAL LIFE 2421

EVANS, R. W., MANNINEN, D. L., GARRISON, L. P. JR, HART, L. G., BLAGG, C. R., GUTMAN, R. A_,
HuULL, A. R. and LOWRIE, E. G. (1985). The quality of life of patients with end-stage renal disease. N. Engl.
J. Med. 312 553-559.

FEDEWA, S. A., MCCLELLAN, W. M., JUDD, S., GUTIERREZ, O. M. and CREWS, D. C. (2014). The asso-
ciation between race and income on risk of mortality in patients with moderate chronic kidney disease. BMC
Nephrol. 15 1-9.

FENG, Y., HUANG, R., KAVANAGH, J., L1, L., ZENG, X., L1, Y. and Fu, P. (2019). Efficacy and safety of dual
blockade of the renin—angiotensin—aldosterone system in diabetic kidney disease: A meta-analysis. Amer. J.
Cardiovasc. Drugs 19 259-286.

FERRI, F. F. (2017). Ferri’s Clinical Advisor 2018 e-Book: 5 Books in 1. Elsevier, MO.

FRIEDMAN, A. N., MISKULIN, D. C., ROSENBERG, I. H. and LEVEY, A. S. (2003). Demographics and trends
in overweight and obesity in patients at time of kidney transplantation. Amer. J. Kidney Dis. 41 480—487.
https://doi.org/10.1053/ajkd.2003.50059

GOLDFARB-RUMYANTZEV, A. S., KOFORD, J. K., BAIRD, B. C., CHELAMCHARLA, M., HABIB, A. N,
WANG, B.-J., LIN, S., SHIHAB, F. and ISAACS, R. B. (2006). Role of socioeconomic status in kidney trans-
plant outcome. Clin. J. Amer. Soc. Nephrol. 1 313-322. https://doi.org/10.2215/CIN.00630805

GORE, J. L., DANOVITCH, G. M., LITWIN, M. S., PHAM, P. T. and SINGER, J. S. (2009). Disparities in the
utilization of live donor renal transplantation. Amer. J. Transplant. 9 1124-1133. https://doi.org/10.1111/j.
1600-6143.2009.02620.x

HALL, W. J. and WELLNER, J. (1981). Mean residual life. In Statistics and Related Topics (Ottawa, Ont., 1980)
169-184. North-Holland, Amsterdam. MR0665274

HART, A., LENTINE, K., SMITH, J., MILLER, J., SKEANS, M., PRENTICE, M., ROBINSON, A., FouTz, J.,
BOOKER, S. etal. (2021). OPTN/SRTR 2019 annual data report: Kidney. Amer. J. Transplant. 21 21-137.

HERNANDEZ, D., RUFINO, M., ARMAS, S., GONZALEZ, A., GUTIERREZ, P., BARBERO, P., VIVANCOS, S.,
RODRIGUEZ, C., DE VERA, J. R. et al. (2006). Retrospective analysis of surgical complications following
cadaveric kidney transplantation in the modern transplant era. Nephrol. Dial. Transplant. 21 2908-2915.

HUMAR, A. and MATAS, A. J. (2005). Surgical complications after kidney transplantation. In Seminars in Dial-
ysis 18 505-510. Wiley, New York.

IiDA, S., KONDO, T., AMANO, H., NAKAZAWA, H., ITO, F., HASHIMOTO, Y. and TANABE, K. (2008). Minimal
effect of cold ischemia time on progression to late-stage chronic kidney disease observed long term after partial
nephrectomy. Urology 72 1083-1088.

INGSATHIT, A., KAMANAMOOL, N., THAKKINSTIAN, A. and SUMETHKUL, V. (2013). Survival advantage
of kidney transplantation over dialysis in patients with hepatitis C: A systematic review and meta-analysis.
Transplantation 95 943-948. https://doi.org/10.1097/TP.0b013e3182848de2

JASSAL, S. V., SCHAUBEL, D. E. and FENTON, S. S. A. (2005). Baseline comorbidity in kidney transplant
recipients: A comparison of comorbidity indices. Amer. J. Kidney Dis. 46 136—142. https://doi.org/10.1053/j.
ajkd.2005.03.006

JEONG, J.-H., JUNG, S.-H. and COSTANTINO, J. P. (2008). Nonparametric inference on median residual life
function. Biometrics 64 157-163, 323-324. MR2422830 https://doi.org/10.1111/j.1541-0420.2007.00826.x

JUNG, S.-H., JEONG, J.-H. and BANDOS, H. (2009). Regression on quantile residual life. Biometrics 65 1203—
1212. MR2756508 https://doi.org/10.1111/j.1541-0420.2009.01196.x

KALANTAR-ZADEH, K., ABBOTT, K. C., SALAHUDEEN, A. K., KILPATRICK, R. D. and HORWICH, T. B.
(2005). Survival advantages of obesity in dialysis patients. Amer. J. Clin. Nutr. 81 543-554.

KALBFLEISCH, J. D. and PRENTICE, R. L. (1980). The Statistical Analysis of Failure Time Data. Wiley Series
in Probability and Mathematical Statistics. Wiley, New York. MR0570114

KASISKE, B. L., CANGRO, C. B., HARIHARAN, S., HRICIK, D. E., KERMAN, R. H., ROTH, D., RUSH, D. N,
VAZQUEZ, M. A., WEIR, M. R. et al. (2001). The evaluation of renal transplantation candidates: Clinical
practice guidelines. Amer. J. Transplant. 1 3-95.

KASISKE, B. L., LONDON, W. and ELLISON, M. D. (1998). Race and socioeconomic factors influencing early
placement on the kidney transplant waiting list. J. Amer. Soc. Nephrol. 9 2142-2147. https://doi.org/10.1681/
ASN.V9112142

KAUFFMAN, H. M., CHERIKH, W. S., MCBRIDE, M. A., CHENG, Y. A., DELMONICO, F. L. and
HANTO, D. W. (2005). Transplant recipients with a history of a malignancy: Risk of recurrent and de novo
cancers. Transplant. Rev. 19 55-64.

KAYLER, L. K., MAGLIOCCA, J., ZENDEJAS, I., SRINIVAS, T. R. and SCHOLD, J. D. (2011). Impact of cold is-
chemia time on graft survival among ECD transplant recipients: A paired kidney analysis. Amer. J. Transplant.
11 2647-2656. https://doi.org/10.1111/j.1600-6143.2011.03741.x

KUCIRKA, L. M., PURNELL, T. S. and SEGEV, D. L. (2015). Improving access to kidney transplantation: Re-
ferral is not enough. JAMA 314 565-567.


https://doi.org/10.1053/ajkd.2003.50059
https://doi.org/10.2215/CJN.00630805
https://doi.org/10.1111/j.1600-6143.2009.02620.x
https://mathscinet.ams.org/mathscinet-getitem?mr=0665274
https://doi.org/10.1097/TP.0b013e3182848de2
https://doi.org/10.1053/j.ajkd.2005.03.006
https://mathscinet.ams.org/mathscinet-getitem?mr=2422830
https://doi.org/10.1111/j.1541-0420.2007.00826.x
https://mathscinet.ams.org/mathscinet-getitem?mr=2756508
https://doi.org/10.1111/j.1541-0420.2009.01196.x
https://mathscinet.ams.org/mathscinet-getitem?mr=0570114
https://doi.org/10.1681/ASN.V9112142
https://doi.org/10.1111/j.1600-6143.2011.03741.x
https://doi.org/10.1111/j.1600-6143.2009.02620.x
https://doi.org/10.1053/j.ajkd.2005.03.006
https://doi.org/10.1681/ASN.V9112142

2422 ZHAO, MA, LIN AND LI

LEWIS, J. et al. (2010). Racial differences in chronic kidney disease (CKD) and end-stage renal disease (ESRD)
in the United States: A social and economic dilemma. Clin. Nephrol. 74 S72-7.

LiEM, Y. S., BoscH, J. L., ARENDS, L. R., HEHENBROK-KAL, M. H. and HUNINK, M. M. (2007). Qual-
ity of life assessed with the medical outcomes study short form 36-item health survey of patients on renal
replacement therapy: A systematic review and meta-analysis. Value Health 10 390-397.

LIEM, Y. S. and WEIMAR, W. (2009). Early living-donor kidney transplantation: A review of the associated
survival benefit. Transplantation 87 317-318. https://doi.org/10.1097/TP.0b013e3181952710

LiM, W. H., CHAPMAN, J. R. and WONG, G. (2015). Peak panel reactive antibody, cancer, graft, and patient
outcomes in kidney transplant recipients. Transplantation 99 1043-1050.

LIN, H., FEI, Z. and LI, Y. (2016). A semiparametrically efficient estimator of the time-varying effects for
survival data with time-dependent treatment. Scand. J. Stat. 43 649-663. MR3543315 https://doi.org/10.1111/
8j0s.12196

MA, Y. and WEI, Y. (2012). Analysis on censored quantile residual life model via spline smoothing. Statist.
Sinica 22 47-68. MR2933167 https://doi.org/10.5705/s5.2010.161

MaA, Y. and YIN, G. (2010). Semiparametric median residual life model and inference. Canad. J. Statist. 38
665-679. MR2753008 https://doi.org/10.1002/cjs. 10076

MaA, Y. and ZHANG, X. (2015). A validated information criterion to determine the structural dimension in di-
mension reduction models. Biometrika 102 409—420. MR3371013 https://doi.org/10.1093/biomet/asv004

MA, Y. and ZHU, L. (2012). A semiparametric approach to dimension reduction. J. Amer. Statist. Assoc. 107
168-179. MR2949349 https://doi.org/10.1080/01621459.2011.646925

MA, Y. and ZHU, L. (2013). Efficient estimation in sufficient dimension reduction. Ann. Statist. 41 250-268.
MR3059417 https://doi.org/10.1214/12- AOS1072

MAFRA, D., GUEBRE-EGZIABHER, F. and FOUQUE, D. (2008). Body mass index, muscle and fat in chronic
kidney disease: Questions about survival. Nephrol. Dial. Transplant. 23 2461-2466.

MAGULURI, G. and ZHANG, C.-H. (1994). Estimation in the mean residual life regression model. J. Roy. Statist.
Soc. Ser. B 56 477-489. MR1278221

MANSOURVAR, Z., MARTINUSSEN, T. and SCHEIKE, T. H. (2015). Semiparametric regression for restricted
mean residual life under right censoring. J. Appl. Stat. 42 2597-2613. MR3428833 https://doi.org/10.1080/
02664763.2015.1043871

MANSOURVAR, Z., MARTINUSSEN, T. and SCHEIKE, T. H. (2016). An additive-multiplicative restricted mean
residual life model. Scand. J. Stat. 43 487-504. MR3503013 https://doi.org/10.1111/sjos.12187

MEHDI, U. and TOTO, R. D. (2009). Anemia, diabetes, and chronic kidney disease. Diabetes Care 32 1320-1326.
https://doi.org/10.2337/dc08-0779

MEIER-KRIESCHE, H.-U., PORT, F. K., Oj0, O. A., AKINLOLU, O., RUDICH, S. M., HANSON, J. A., CIB-
RIK, D. M., LEICHTMAN, A. B. and KAPLAN, B. (2000). Effect of waiting time on renal transplant outcome.
Kidney Inter. 58 1311-1317.

MOLNAR, M. Z., CZIRA, M. E., RUDAS, A., UISZASZI, A., HAROMSZEKI, B., KosA, J. P., LAKATOS, P.,
BEKO, G., SARVARY, E. et al. (2011). Association between the malnutrition-inflammation score and post-
transplant anaemia. Nephrol. Dial. Transplant. 26 2000-2006.

MULLER, H.-G. and ZHANG, Y. (2005). Time-varying functional regression for predicting remaining lifetime
distributions from longitudinal trajectories. Biometrics 61 1064-1075. MR2216200 https://doi.org/10.1111/j.
1541-0420.2005.00378.x

MUNTNER, P., NEWSOME, B., KRAMER, H., PERALTA, C. A., KIM, Y., JAcOBS, D. R., KIEFE, C. I. and
LEwis, C. E. (2012). Racial differences in the incidence of chronic kidney disease. Clin. J. Amer. Soc.
Nephrol. 7 101-107. https://doi.org/10.2215/CIN.06450611

NICHOLAS, S. B., KALANTAR-ZADEH, K. and NORRIS, K. C. (2013). Racial disparities in kidney disease
outcomes. In Seminars in Nephrology 33 409-415. Elsevier, Amsterdam.

NICHOLAS, S. B., KALANTAR-ZADEH, K. and NORRIS, K. C. (2015). Socioeconomic disparities in chronic
kidney disease. Adv. Chronic Kidney Dis. 22 6-15. https://doi.org/10.1053/j.ackd.2014.07.002

OAKES, D. and DASU, T. (1990). A note on residual life. Biometrika 77 409—410. MR1064816 https://doi.org/10.
1093/biomet/77.2.409

OAKES, D. and DAsuU, T. (2003). Inference for the proportional mean residual life model. In Crossing Bound-
aries: Statistical Essays in Honor of Jack Hall. Institute of Mathematical Statistics Lecture Notes—Monograph
Series 43 105-116. IMS, Beachwood, OH. MR2125050 https://doi.org/10.1214/l1nms/1215092393

@IEN, C. M., REISETER, A. V., Os, 1., JARDINE, A., FELLSTROM, B. and HOLDAAS, H. (2006). Gender-
associated risk factors for cardiac end points and total mortality after renal transplantation: Post hoc analysis
of the ALERT study. Clin. Transplant. 20 374-382.

OKADA, K., YANAI, M., TAKEUCHI, K., MATSUYAMA, K., NITTA, K., HAYASHI, K. and TAKAHASHI, S.
(2014). Sex differences in the prevalence, progression, and improvement of chronic kidney disease. Kidney
Blood Press. Res. 39 279-288. https://doi.org/10.1159/000355805


https://doi.org/10.1097/TP.0b013e3181952710
https://mathscinet.ams.org/mathscinet-getitem?mr=3543315
https://doi.org/10.1111/sjos.12196
https://mathscinet.ams.org/mathscinet-getitem?mr=2933167
https://doi.org/10.5705/ss.2010.161
https://mathscinet.ams.org/mathscinet-getitem?mr=2753008
https://doi.org/10.1002/cjs.10076
https://mathscinet.ams.org/mathscinet-getitem?mr=3371013
https://doi.org/10.1093/biomet/asv004
https://mathscinet.ams.org/mathscinet-getitem?mr=2949349
https://doi.org/10.1080/01621459.2011.646925
https://mathscinet.ams.org/mathscinet-getitem?mr=3059417
https://doi.org/10.1214/12-AOS1072
https://mathscinet.ams.org/mathscinet-getitem?mr=1278221
https://mathscinet.ams.org/mathscinet-getitem?mr=3428833
https://doi.org/10.1080/02664763.2015.1043871
https://mathscinet.ams.org/mathscinet-getitem?mr=3503013
https://doi.org/10.1111/sjos.12187
https://doi.org/10.2337/dc08-0779
https://mathscinet.ams.org/mathscinet-getitem?mr=2216200
https://doi.org/10.1111/j.1541-0420.2005.00378.x
https://doi.org/10.2215/CJN.06450611
https://doi.org/10.1053/j.ackd.2014.07.002
https://mathscinet.ams.org/mathscinet-getitem?mr=1064816
https://doi.org/10.1093/biomet/77.2.409
https://mathscinet.ams.org/mathscinet-getitem?mr=2125050
https://doi.org/10.1214/lnms/1215092393
https://doi.org/10.1159/000355805
https://doi.org/10.1111/sjos.12196
https://doi.org/10.1080/02664763.2015.1043871
https://doi.org/10.1111/j.1541-0420.2005.00378.x
https://doi.org/10.1093/biomet/77.2.409

EVALUATION OF TRANSPLANT BY MEAN RESIDUAL LIFE 2423

PScHEIDT, C., NAGEL, G., ZITT, E., KRAMAR, R., CONCIN, H. and LHOTTA, K. (2015). Sex- and time-
dependent patterns in risk factors of end-stage renal disease: A large Austrian cohort with up to 20 years of
follow-up. PLoS ONE 10 €0135052. https://doi.org/10.1371/journal.pone.0135052

PYRAM, R., KANSARA, A., BANERJI, M. A. and LONEY-HUTCHINSON, L. (2012). Chronic kidney disease
and diabetes. Maturitas 71 94-103. https://doi.org/10.1016/j.maturitas.2011.11.009

RAHNEMAI-AZAR, A. A., GILCHRIST, B. F. and KAYLER, L. K. (2015). Independent risk factors for early
urologic complications after kidney transplantation. Clin Transplant. 29 403—408. https://doi.org/10.1111/ctr.
12530

RAMLAU-HANSEN, H. (1983). The choice of a kernel function in the graduation of counting process intensities.
Scand. Actuar. J. 3 165-182. MR0724596 https://doi.org/10.1080/03461238.1983.10408700

SALERNO, S., MESSANA, J. M., GREMEL, G. W., DAHLERUS, C., HIRTH, R. A., HAN, P., SEGAL, J. H.,
XU, T., SHAFFER, D. et al. (2021). COVID-19 risk factors and mortality outcomes among medicare patients
receiving long-term dialysis. JAMA Netw. Open 4 €2135379-e2135379.

SARAN, R., LI, Y., ROBINSON, B., ABBOTT, K. C., AGODOA, L. Y., AYANIAN, J., BRAGG-GRESHAM, J.,
BALKRISHNAN, R., CHEN, J. L. et al. (2016). US renal data system 2015 annual data report: Epidemiology
of kidney disease in the United States. Amer. J. Kidney Dis. 67.

SCHOLD, J. D., BuccCINI, L. D., GOLDFARB, D. A., FLECHNER, S. M., POGGIO, E. D. and SEHGAL, A. R.
(2014). Association between kidney transplant center performance and the survival benefit of transplantation
versus dialysis. Clin. J. Amer. Soc. Nephrol. 9 1773-1780. https://doi.org/10.2215/CJN.02380314

SuN, L., SONG, X. and ZHANG, Z. (2012). Mean residual life models with time-dependent coefficients under
right censoring. Biometrika 99 185-197. MR2899672 https://doi.org/10.1093/biomet/asr065

SUN, L. and ZHANG, Z. (2009). A class of transformed mean residual life models with censored survival data. J.
Amer. Statist. Assoc. 104 803-815. MR2541596 https://doi.org/10.1198/jasa.2009.0130

SYRIOPOULOU, E., RUTHERFORD, M. J. and LAMBERT, P. C. (2020). Marginal measures and causal effects
using the relative survival framework. Int. J. Epidemiol. 49 619-628. https://doi.org/10.1093/ije/dyz268

TIME, P. S. (2012). A guide to calculating and interpreting the estimated post-transplant survival (EPTS) score
used in the Kidney Allocation System (KAS). Kidney 2.

TONELLI, M., WIEBE, N., KNOLL, G., BELLO, A., BROWNE, S., JADHAV, D., KLARENBACH, S. and GILL, J.
(2011). Systematic review: Kidney transplantation compared with dialysis in clinically relevant outcomes.
Amer. J. Transplant. 11 2093-21009. https://doi.org/10.1111/.1600-6143.2011.03686.x

TSIATIS, A. A. (1990). Estimating regression parameters using linear rank tests for censored data. Ann. Statist.
18 354-372. MR1041397 https://doi.org/10.1214/a0s/1176347504

WAND, M. P. (1994). Fast computation of multivariate kernel estimators. J. Comput. Graph. Statist. 3 433-445.
MR1323051 https://doi.org/10.2307/1390904

WEBSTER, A. C., NAGLER, E. V., MORTON, R. L. and MASSON, P. (2017). Chronic kidney disease. Lancet
389 1238-1252.

WENG, F. L., REESE, P. P., MULGAONKAR, S. and PATEL, A. M. (2010). Barriers to living donor kid-
ney transplantation among black or older transplant candidates. Clin. J. Amer. Soc. Nephrol. 5 2338-2347.
https://doi.org/10.2215/CIN.03040410

WOLFE, R. A., ASHBY, V. B., MILFORD, E. L., OJ0, A. O., ETTENGER, R. E., AGoDOA, L. Y., HELD, P. J.
and PORT, F. K. (1999). Comparison of mortality in all patients on dialysis, patients on dialysis awaiting trans-
plantation, and recipients of a first cadaveric transplant. N. Engl. J. Med. 341 1725-1730. https://doi.org/10.
1056/NEJM199912023412303

YING, Z. (1993). A large sample study of rank estimation for censored regression data. Ann. Statist. 21 76-99.
MR1212167 https://doi.org/10.1214/a0s/1176349016

ZHAO, G., MA, Y., LIN, H. and LI, Y. (2024). Supplement to “Evaluation of transplant benefits with the
U.S. Scientific Registry of Transplant Recipients by semiparametric regression of mean residual life.”
https://doi.org/10.1214/24- AOAS1887SUPP

ZHAO, G., MA, Y. and LU, W. (2022). Efficient estimation for dimension reduction with censored survival data.
Statist. Sinica 32 2359-2380. MR4485087 https://doi.org/10.5705/55.202020.0404


https://doi.org/10.1371/journal.pone.0135052
https://doi.org/10.1016/j.maturitas.2011.11.009
https://doi.org/10.1111/ctr.12530
https://mathscinet.ams.org/mathscinet-getitem?mr=0724596
https://doi.org/10.1080/03461238.1983.10408700
https://doi.org/10.2215/CJN.02380314
https://mathscinet.ams.org/mathscinet-getitem?mr=2899672
https://doi.org/10.1093/biomet/asr065
https://mathscinet.ams.org/mathscinet-getitem?mr=2541596
https://doi.org/10.1198/jasa.2009.0130
https://doi.org/10.1093/ije/dyz268
https://doi.org/10.1111/j.1600-6143.2011.03686.x
https://mathscinet.ams.org/mathscinet-getitem?mr=1041397
https://doi.org/10.1214/aos/1176347504
https://mathscinet.ams.org/mathscinet-getitem?mr=1323051
https://doi.org/10.2307/1390904
https://doi.org/10.2215/CJN.03040410
https://doi.org/10.1056/NEJM199912023412303
https://mathscinet.ams.org/mathscinet-getitem?mr=1212167
https://doi.org/10.1214/aos/1176349016
https://doi.org/10.1214/24-AOAS1887SUPP
https://mathscinet.ams.org/mathscinet-getitem?mr=4485087
https://doi.org/10.5705/ss.202020.0404
https://doi.org/10.1111/ctr.12530
https://doi.org/10.1056/NEJM199912023412303

	Introduction
	Semiparametric regression of mean residual life
	A semiparametrically efﬁcient estimator
	Construction of efﬁcient score functions
	Construction of semiparametrically efﬁcient estimator of beta
	Nonparametric estimation of mean residual life functions

	Asymptotic properties and semiparametric efﬁciency
	Simulation
	Analysis of the kidney transplant data
	Discussion
	Acknowledgments
	Funding
	Supplementary Material
	References

