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Motivated by the need to assess consistency in the outcomes of aquatic
toxicity tests conducted by different labs at different time points, we propose a
clustering of variance method in linear mixed models. The proposed method,
referred as CVM, is able to identify the cluster structure of the variances and
estimate model parameters simultaneously. In our proposed method, a penal-
ized approach based on pairwise penalties is proposed to identify the cluster
structure. We construct an optimization problem and develop an algorithm
based on the alternating direction method of multipliers. Simulation studies
show that the proposed approach can identify the cluster structure well and
outperforms traditional methods based on k-means. In the end, the proposed
approach is applied to the aquatic toxicity assessment data, which gives a
more reasonable cluster structure than the traditional methods.

1. Introduction. In aquatic toxicity tests, organisms are exposed to the chemical of
interest and various biological endpoints, for example, hatching, survival, reproduction, or
growth, are observed. These test outcomes are used to evaluate the potential negative impact
of chemicals on different life stages of organisms (Bailer and Oris (1993)). The C. dubia
reproduction test is a standard tool to assess the chronic impact of effluents discharged into
freshwater systems (Amato et al. (1993), Bailey et al. (1996)). In a C. dubia reproduction test,
organisms are randomly assigned to one of a few different concentration groups, including
a zero-concentration control group. The number of young produced in a certain number of
broods (usually three broods) or a specified study duration (typically, seven to eight days) is
recorded. Multiple organisms (replicates) are observed at each concentration level. To con-
duct the whole effluent toxicity (WET) tests, a group exposed to the toxicant will be compared
to the control group. In order to assess the negative impact of chemicals with different con-
centration levels, the number of young of each organism is then modeled as a function of the
concentration via a generalized linear regression model (Bailer and Oris (1997), Dobson and
Barnett (2018)). The estimated regression coefficients can be used to estimate the concen-
tration level associated with a specific level of reproduction inhibition (RIp) relative to the
control group (Bailer and Oris (1997)), which is a popular analysis endpoint used in the com-
parison across different chemicals for toxicity assessment and policy making. For example,
Safer Choice is the EPA’s label for products with safer chemical ingredients. Safer Choice
products meet strict human health and environmental criteria, including safer chemical crite-
ria for ingredients like surfactants, solvents, and chelants, and it requires toxicity test results
as supporting facts.

High consistency in control group observations increases the probability that unacceptable
toxicant is identified in a WET test. The precision of RIp estimation also relies highly on
the variability of control group observations (Zhang et al. (2022)). Therefore, in order to
assess the toxicity of a chemical, it is essential to improve the consistency of control group
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observations. This would help ensure that the potency estimates are comparable when they are
produced in different batches of experiments conducted by different labs. When the control
observations are highly variable and not comparable from batch to batch or from lab to lab,
the resulting potency estimates or WET test findings would be misleading. Therefore, the
consistency of the control observations plays an important role in toxicity assessment using
the C. dubia reproduction tests.

1.1. The C. dubia reproduction test data. In this work we consider a study evaluating the
consistency in C. dubia reproduction tests participated by 17 labs in California from August
2013 to July 2021. Due to the delay of experiments in one lab, the data set we study consists
of C. dubia reproduction test outcomes from 16 labs. In the raw data, there are 1013 batches
of experiments, among which 551 batches were control-only tests. In a single batch of control
tests, 10 organisms (replicates) were exposed to the lab water and monitored for seven to eight
days until the third brood of young was reproduced. The resulting total number of young was
the experimental outcome of interest.

In addition to the C. dubia reproduction outcomes, water chemistry, and other experiment
condition measurements were also collected, including alkalinity, conductivity, dissolved
oxygen (unit: mg/L), hardness and pH of the water used in the tests, air temperature, light
intensity, age of organisms when the tests started, etc. The objective of analyzing these test
information altogether is to identify factors that impact the consistency of C. dubia repro-
duction test outcomes. As part of the early phase effort in the process, we are interested
in grouping labs according to the variability of their experimental outcomes. In particular,
the number of young produced in three broods in the control group is the response of inter-
est; the water chemistry and experimental condition variables serve as covariates. The water
chemistry variables impact the living environment of the organisms and hence are likely im-
portant factors that affect their reproduction. In addition, other covariates that could impact
reproduction are also considered, including air temperature, light intensity as well as the age
of organisms when these tests began. Due to the high percentage of missing information in
many of these variables, we only considered a few water chemistry variables (conductivity,
dissolved oxygen, and pH) and the air temperature of the labs as candidate covariates in the
present study.

How the consistency of control observations are impacted by the water, light, and other ex-
perimental conditions can be evaluated through the proposed method, which utilizes a model
that relates these control observations with the water chemistry measures and other experi-
mental conditions. Grouping the variability or consistency of the control observations from
different labs would allow us to evaluate the reliability of their potency estimates and conduct
a quality check of the tests conducted in these labs.

The experimental outcomes were summarized for each batch as the average number of
young of the 10 replicates used in the test. Let yih be the logarithm of the average number
of young in the hth batch conducted by the ith lab, and xih be the corresponding vector of
covariates, including the intercept, for h = 1, . . . ,mi and i = 1, . . . , n. In this data set, n = 16,
and mi ’s take values from 7 to 80. In Figure 1 the distributions of the response variable are
shown. The x-axis is the lab name along with the number of observations in the parenthesis.
Different labs have different mean of the logarithm of the average number of young and
different variabilities.

We first consider a linear mixed model (Stroup (2013)) relating the mean number of young
and the covariates as follows:

(1) yih = xT
ihβ + vi + εih,

where vi
iid∼ N(0, σ 2

v ) is the random effect of lab i, and εih
iid∼ N(0, σ 2

ε ) is the random error
for h = 1, . . . ,mi and i = 1, . . . , n. The covariates are conductivity, dissolved oxygen, pH of
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FIG. 1. Boxplots of the logarithm of the average number of young in all 16 labs. The number of batches in each
lab is in parentheses at x-axis. Dots represent the raw values of the observations.

water used in the experiments, and the air temperature when the experiments were conducted.
Based on this model, the density plot of raw conditional residuals for observations in each
lab is shown in Figure 2, where these residuals are conditional on the random effects. It can
be seen that some labs have higher consistency (lab N ) in these residuals, while a few labs
appear to have quite different spreads in the residuals. This indicates that the assumption of a
constant variance of εih in a regular linear mixed model is not reasonable, or equivalently, the
reproduction outcomes from these labs are not of the same consistency. From the preliminary
exploratory data analysis, we can see that lab N has smaller variability than other labs. From
the residuals plot in Figure 2, after fitting the linear mixed model, lab B potentially has the
largest variability.

A natural follow-up question is how these labs differ in terms of the consistency of these
reproduction outcomes. Given that the control group outcomes are used as the baseline of
toxicity assessment, labs that produce more consistent reproduction outcomes in their con-
trol group of the toxicology tests will estimate toxicity test endpoints with higher accuracy
and precision. Thus, our statistical problem becomes finding clusters of labs based on the
variability of random errors.

FIG. 2. Density of raw conditional residuals based on the linear mixed model in (1) for each lab. Different lines
represent different labs.
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1.2. Literature review. Clustering analysis is one of the most fundamental problems of
understanding data sets (Jain (2010)); k-means and hierarchical clustering are the two most
commonly used clustering methods. These two methods are model free, and they can only
be used for clustering observations directly. If we want to find clusters of labs according
to their variances in the test outcomes using k-means, we would need to have estimates of
the lab-specific variances first. However, the accuracy of such variance estimates depends
on the number of observations in these labs, and hence the accuracy varies as the number
of tests available differs among labs, making the clustering results sensitive to the number
of tests available from these labs. Also, it does not use any candidate covariates in the pro-
cess and could not quantify the consistency of test outcomes after adjusting for the impact of
the covariates on the responses. Thus, we are motivated to develop a new approach that can
identify the clusters of observations based on their variances while simultaneously estimating
regression coefficients and random effects. A popular model-based clustering method is the
Gaussian finite mixture model (Fraley and Raftery (2002)). However, Gaussian finite mixture
models often suffer from the convergence issue brought by outliers in the data (Archambeau,
Lee and Verleysen (2003)). Moreover, when component likelihoods are misspecified, finite
mixture models tend to overestimate the number of clusters and lead to unreliable conclu-
sions (Cai, Campbell and Broderick (2021)). Frühwirth-Schnatter, Malsiner-Walli and Grün
(2021) and Malsiner-Walli, Frühwirth-Schnatter and Grün (2016) proposed sparse finite mix-
ture models using sparse priors for multivariate observations. However, these approaches
assumed that different observations have the same dimension, which is different from our
situation. Besides these, if the heterogeneity is due to the variability instead of the mean
structure, including heterogeneity of the mean structure in the model will lead to bias. We
applied the finite mixture model to our motivated data in Section 4, which shows that the
heterogeneity of the variances is not identified properly.

Recently, there has been some work using optimization approaches and penalty functions
to find clusters. In these approaches, penalty functions are imposed on the differences of re-
gression coefficients, and optimization algorithms are developed to estimate parameters and
find cluster structures simultaneously. For example, Ma and Huang (2017) used a concave fu-
sion approach to find clustered intercepts in linear regression models. Wang, Zhu and Zhang
(2023) considered finding clustered regression coefficients for spatial areal data with repeated
measures based on pairwise penalties. These ideas were also applied to different nonlinear
models (Hu et al. (2021), Miljkovic and Wang (2021), Wang, Zhang and Zhu (2023)). How-
ever, these models did not consider random effects. Wang and Zhu (2019) considered linear
mixed models in small area estimation using pairwise penalties to find clusters of regression
coefficients. Wang (2024) used linear mixed models and B-spline models to find clusters of
functional data based on pairwise penalties. Zhou et al. (2022) used the approach based on
pairwise penalties in linear mixed models to improve the initial values in their EM algorithm.
All these models considered clustering means of different models rather than variances and
cannot be applied directly to our motivating data set, which desires clustering outcomes ac-
cording to variances.

In this work we propose a clustered variance model (CVM) with clusters of variances in
linear mixed models. We construct an optimization problem based on the likelihood function
and pairwise penalty functions on variances. An efficient algorithm is developed based on the
alternating direction method of multipliers (ADMM) (Boyd et al. (2011)) to estimate regres-
sion coefficients, random effects, and the cluster structure of variances together. Simulation
studies are conducted to compare our proposed approach with k-means based methods and
finite mixture models. The results show that CVM recovers the cluster structure better than
the traditional k-means based methods and finite mixture models.

This article is organized as follows. In Section 2 the proposed clustered variance model and
the proposed algorithm are described in detail. The simulation study is conducted in Section 3
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under several scenarios to compare the performances of our proposed method with competing
approaches. We apply the proposed approach to the motivating dataset in Section 4. Finally,
some discussions are given in Section 5.

2. Methodology.

2.1. The model. Recall the linear mixed model in (1). Instead of assuming a common
variance for random error εih, we assume that the model has unit-specific random error vari-

ances σ 2
i,ε , that is, εih

iid∼ N(0, σ 2
i,ε) for h = 1, . . . ,mi and i = 1, . . . , n. Assume that there

are K heterogeneous variance groups, that is, the n units can be partitioned into K groups
based on their values of variances. We denote the partition as G = {G1, . . . ,GK} such that
σ 2

i,ε = σ 2
j,ε = e2

k,ε if i, j ∈ Gk , where e2
k,ε is the random error variance of group k. However,

neither the group structure G nor the number of groups K is known. The goal is to cluster
units (labs) based on their variances, while accounting for the intrabatch and interbatch un-
certainty, and get the number of groups K̂ and the estimates of variances based on observed
data. To achieve the goal, we will construct an optimization problem based on log-likelihood
function and pairwise functions. We consider the following log-likelihood of the linear mixed
model in (1) with unit-specific random error variances,

(2) l
(
β, σ 2

v , σ 2
1,ε, . . . , σ

2
n,ε

) = 1

2

n∑
i=1

log |�i | + 1

2

n∑
i=1

(
yi − xT

i β
)T

�−1
i

(
yi − xT

i β
)
,

where yi = (y1, . . . , ymi
)T and xi = (xi1, . . . ,xi,mi

)T . The covariance matrix �i and its
inverse, �−1

i , have the following forms:

�i = 1mi
1T
mi

σ 2
v + Imi

σ 2
i,ε,

�−1
i = (

1mi
1T
mi

σ 2
v + Imi

σ 2
i,ε

)−1 = 1

σ 2
i,ε

(
Imi

− 1mi
1T
mi

σ 2
v

σ 2
i,ε + miσ 2

v

)
.

In order to find group structure of σ 2
i,ε , we impose pairwise penalties on the difference

between σ 2
i,ε and σ 2

j,ε . Similar approaches are used to find clusters of regression coeffi-
cients in the literature (Ma and Huang (2017), Wang, Zhu and Zhang (2023)). However,
if the penalty functions are imposed to variances directly, extra constraints of the parameters
are needed such that σ 2

i,ε > 0. To get rid of the positive constraints of σ 2
i,ε , we implement

the following reparameterizations. Let τi = log(
σ 2

v

σ 2
i,ε

) for i = 1,2, . . . , n; then we know that

(σ 2
v , τ1, . . . , τn) and (σ 2

v , σ 2
1,ε, . . . , σ

2
n,ε) has a one-to-one mapping. This implies that estimat-

ing (σ 2
v , τ1, . . . , τn) is equivalent to estimating (σ 2

v , σ 2
1,ε, . . . , σ

2
n,ε). Then we can write the

log-likelihood function in (2) as a function of β , σ 2
v and τ = (τ1, . . . , τn)

T as below:

l
(
β, σ 2

v ,τ
) = 1

2

n∑
i=1

mi logσ 2
v − 1

2

n∑
i=1

miτi + 1

2

n∑
i=1

log
(
1 + mi exp(τi)

)

+ 1

2

n∑
i=1

exp(τi)

σ 2
v

(
yi − xT

i β
)T (

yi − xT
i β

)

− 1

2

n∑
i=1

1

σ 2
v

exp(2τi)

1 + mi exp(τi)

(
yi − xT

i β
)T 1mi

1T
mi

(
yi − xT

i β
)
.

(3)
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In (3), each unit has its own unit-specific variance, which is represented by τi . To obtain the
cluster structure, we apply a pairwise penalty on the difference between τi and τj , and con-
struct the following optimization problem: minimize the loglikelihood subject to a pairwise
penalty,

(4) Q
(
β, σ 2

v ,τ
) = l

(
β, σ 2

v ,τ
) + ∑

1≤i<j≤n

p
(|τi − τj |;γ,λ

)
,

where p(·;γ,λ) is a penalty function, λ ≥ 0 is tuning parameter, and γ > 0 is a built-in con-
stant in the penalty function. L1 penalty (Tibshirani, Walther and Hastie (2001)), smoothly
clipped absolute deviation penalty (SCAD) (Fan and Li (2012)), and the minimax concave
penalty (MCP) (Zhang (2010)) are three popular used penalty functions. Ma and Huang
(2017) explored the properties of these three penalties when using pairwise penalties for clus-
tering intercepts in linear regression models. They showed that L1 tended to result in more
groups in the simulation, while SCAD and MCP performed similarly. In this work we use
MCP. SCAD can be implemented in a similar way. λ will be selected based on data-driven
criteria, and γ is fixed at 3, as in Ma and Huang (2017). The MCP is defined as follows:

p(t;γ,λ) =

⎧⎪⎪⎨
⎪⎪⎩

λ|t | − t2

2γ
|t | ≤ γ λ,

1

2
γ λ2 |t | > γλ.

As λ increases, some pairs of τi − τj will be shrunk to zeros, then the corresponding group
structure will be found.

2.2. The algorithm. To solve the minimization problem based on the objective function

in (4) to obtain estimates β̂ , τ̂ and σ̂ 2
v , an algorithm based on the ADMM algorithm is devel-

oped.
First, slack variables are introduced for all pairs, δij = τi − τj for 1 ≤ 1 < j ≤ n. Then

the problem is equivalent to minimizing the following objective function with regard to
(β, σ 2

v ,τ , δ), as in the ADMM algorithm:

L0
(
β, σ 2

v ,τ , δ
) = l

(
β, σ 2

v ,τ
) + ∑

1≤i<j≤n

p
(|δij |;γ,λ

)
,

subject to τi − τj − δij = 0,

where δ = (δij ,1 ≤ i < j ≤ n). In the ADMM algorithm, the augmented Lagrangian is con-
sidered below:

L
(
β, σ 2

v ,τ , δ,v
) = L0

(
β, σ 2

v ,τ , δ
) + ∑

i<j

vij (τi − τj − δij ) + ρ

2

∑
i<j

|τi − τj − δij |2,

where v = (vij ,1 ≤ i < j ≤ n) are Lagrange multipliers and ρ > 0 is the penalty parameter.
We fix it as ρ = 1 as in the references (Ma and Huang (2017), Wang, Zhu and Zhang (2023)).

Then parameters β , σ 2
v , τ , δ, v will be updated iteratively. At the (m + 1)th iteration,

given their current values (β(m), σ
2(m)
v ,τ (m),v(m)), the updates of β , σ 2

v , τ , v are given by as
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follows:

β(m+1) = arg min
β

L
(
β, σ 2(m)

v ,τ (m), δ(m),v(m)),
σ 2(m+1)

v = arg min
σ 2

v

L
(
β(m+1), σ 2

v ,τ (m), δ(m),v(m)),
τ (m+1) = arg min

τ
L

(
β(m+1), σ 2(m+1)

v ,τ , δ(m),v(m)),
δm+1 = arg min

δ
L

(
β(m+1), σ 2(m+1)

v ,τ (m+1), δ,v(m)),
v

(m+1)
ij = v

(m)
ij + ρ

(
τ

(m+1)
i − τ

(m+1)
j − δ

(m+1)
ij

)
.

(5)

The detailed algorithm in each update is provided in Supplement A in the Supplementary
Material (Wang and Zhang (2024)). R code is provided in Supplementary Material (Wang and
Zhang (2024)), which is also the available on Github https://github.com/wangx23/CluRER/.

REMARK 1. β(0) are obtained by fitting a linear mixed model in (1). Based on the re-
sult of the linear mixed model, the conditional residuals can be calculated, that is, ei =
yi − xT

i β(0) − v̂i , where v̂i is the best linear unbiased prediction (BLUP) of the ran-
dom effect. Then we can calculate and ēi = 1

mi

∑mi

j=1 eij . Based on ei , σ 2
i,ε can be initial-

ized as σ
2(0)
i,ε = 1

mi−1
∑mi

j=1(eij − ēi )
2. σ

2(0)
v can be initialized from the fitted model. Then

τ (0) = log(σ
2(0)
v /σ

2(0)
i,ε ), and δ

(0)
ij = τ

(0)
i − τ

(0)
j . And v(0) = 0.

REMARK 2. The convergence criterion used is the same as Ma and Huang (2017), which
is based on the primal residual r(m+1) = Dτ (m+1) − δ(m+1). The algorithm is stopped if
|rm+1‖ ≤ ε, where ε is a small positive value. Here we use ε = 0.001.

We need to select the tuning parameter λ in the proposed algorithm. In this paper we use
the modified Bayes Information Criterion (BIC) (Ma and Huang (2017), Wang, Li and Tsai
(2007)) to determine the best tuning parameter, which is used in other works using pairwise
penalties, such as Ma and Huang (2017), Ma et al. (2020), and Wang, Zhu and Zhang (2023).
In particular, we have

(6) BICλ = −2l
(
β̂, σ̂ 2

v , τ̂
) + log

(
log(n)

)
log(N)K̂,

where l(·) is the log-likelihood function, K̂ is the estimated number of groups, and N =∑n
i=1 mi . In real data analysis, we can also explore different group sizes, which is used in

Miljkovic and Wang (2021).

3. Simulation. In this section we use several examples to evaluate the performance of
the proposed CVM approach. In Section 3.1 and Section 3.2, we consider scenarios with
multiple groups in the variances and compare it to k-means based methods and the finite
mixture model. In Section 3.3 we consider a scenario without clustered variance structure
to evaluate the performance of the proposed method when subgrouping does not exist. In
Section 3.4 we discussed the initial values of the proposed algorithm.

k-means is the most widely used clustering approach to cluster observations directly. We
will compare our proposed approach to k-means based approaches. Recall that we calcu-
late initial values σ

2(0)
i,ε and σ

2(0)
v and construct the initial values of τ 0

i , as log(σ
2(0)
v /σ

2(0)
i,ε ).

σ
2(0)
v /σ

2(0)
i,ε represents the variabilities in different labs. Thus, we will use σ

2(0)
v /σ

2(0)
i,ε as ob-

servations in k-means. Besides these, we also consider τ 0
i = log(σ

2(0)
v /σ

2(0)
i,ε ) as observations

https://github.com/wangx23/CluRER/
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in k-means since τi’s are used as parameters to represent labs variabilities in our algorithm. In
k-means, Gap statistic is widely used to select the number of clusters. Here we consider two
Gaps statistics; one is proposed in Tibshirani, Walther and Hastie (2001), and the other one
is proposed in Dudoit and Fridlyand (2021). Thus there are four k-means based approaches.
In particular, “k-meansGap1” and “k-meansGap2” represent approaches using σ

2(0)
v /σ

2(0)
i,ε and

two Gap statistics, respectively. “k-meanslog
Gap1” and “k-meanslog

Gap2” represent approaches us-

ing τ 0
i = log(σ

2(0)
v /σ

2(0)
i,ε ) based on two Gap statistics, respectively. Besides these, we also

consider the finite mixture model, denoted as “FMM.” We use R package flexmix (Leisch
(2004)) for fitting the finite mixture model, allowing differences both in the mean structure
and the variances. BIC is used to select the number of clusters in FMM. And “CVM” repre-
sents our proposed method. We use modified BIC to select tuning parameters in (6).

To evaluate the clustering performance of CVM, we report the average estimated group
number K̂ , average adjusted Rand index (ARI) (Rand (1971), Hubert and Arabie (1985),
Vinh, Epps and Bailey (2010)) over 200 simulations. ARI is used to measure the degree of
agreement between two partitions, with the largest value of 1. The larger the ARI value is,
the more agreement between the two partitions. We also report the standard deviation values
of different measures across 200 simulations in parentheses.

3.1. Heterogeneous groups. The data are simulated from model (1) in Section 2 with a
clustered structure in σ 2

i,ε . The covariates vector xih includes an intercept and two other com-
ponents that are drawn from the standard normal distribution. The true values of parameters
are set as follows: β = (3,0.2,−0.2), and σv = 0.18; mi ’s are randomly drawn from (10, 20),
(30, 40), (50, 60), (70, 80), and (90, 100). Motivated by the lab data, we will consider a cluster
structure that includes a cluster with a single unit. Assume there are K = 3 true groups, G1,
G2, and G3. G1 has one unit with σi,ε = 0.05. For the other two groups, τi = −0.7 if i ∈ G2

and τi = 0.5 if i ∈ G3, which correspond to σi,ε = 0.2554 and σi,ε = 0.1402. Different units
are randomly assigned to G2 and G3 with probabilities 4/5 and 1/5.

Table 1 and Table 2 show the results for ARI and the estimated number of groups K̂ when
n = 15, n = 20 and n = 30. We observe that, as local sample sizes increase, CVM can re-
cover the group structure better. Regardless of the local sample sizes, the proposed method
appears to be much more stable in terms of the classification agreement than all the k-means
based approaches. The proposed method does overestimate the number of groups a little
bit, regardless of the local sample size and the number of units in the data. It still performs
better than k-meansGap1 based on Gap statistics in Tibshirani, Walther and Hastie (2001),
which overestimates by a lot more, or k-meansGap2 based on the Gap statistics in Dudoit
and Fridlyand (2021), which underestimates severely. It arguably outperforms k-meansGap1,
which has comparable performance when the local sample size is small while overestimating
a lot more when the local sample size becomes 50 or higher. Even though the number of
groups estimated by k-meansGap2 was, on average, the closest to the true value, the ARI val-
ues suggest that this method does not achieve the same level of consistent grouping outcomes
as our proposed method. Since our data are simulated from a model with common regression
coefficients, FMM cannot identify the variance cluster structure well.

We also evaluate the estimation performance of σi,ε by calculating the root mean square

error (RMSE), which is defined as RMSE =
√

1
nB

∑B
b=1

∑n
i=1(σ̂

(b)
i,ε − σi,ε)2, where n is the

number of units (labs), σ̂
(b)
i,ε is the estimate of σi,ε for the ith unit in the bth simulation. We

compute the RMSE across 50 different group structures. The results are shown in Figure 3.
It can be seen that as mi increases, we can have better estimates of σi,ε .
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TABLE 1
Average ARI for different values of mi when n = 15,20,30 for different approaches. mi ’s are uniformly sampled

from (10, 20), (30, 40), (50, 60), (70, 80) and (90, 100)

Method 10–20 30–40 50–60 70–80 90–100

n = 15 CVM 0.60(0.28) 0.82(0.22) 0.91(0.17) 0.92(0.17) 0.95(0.14)
k-meansGap1 0.32(0.22) 0.42(0.32) 0.49(0.38) 0.49(0.37) 0.43(0.37)
k-meansGap2 0.49(0.32) 0.77(0.30) 0.84(0.28) 0.85(0.28) 0.86(0.27)

k-meanslog
Gap1 0.13(0.18) 0.26(0.25) 0.33(0.27) 0.40(0.29) 0.41(0.31)

k-meanslog
Gap2 0.01(0.10) 0.04(0.19) 0.07(0.25) 0.12(0.31) 0.19(0.38)

FMM 0.13(0.22) 0.25(0.16) 0.25(0.13) 0.25(0.12) 0.25(0.12)

n = 20 CVM 0.60(0.26) 0.83(0.19) 0.94(0.12) 0.96(0.13) 0.96(0.13)
k-meansGap1 0.32(0.20) 0.45(0.31) 0.51(0.34) 0.53(0.37) 0.56(0.37)
k-meansGap2 0.37(0.32) 0.75(0.32) 0.82(0.30) 0.87(0.28) 0.88(0.25)

k-meanslog
Gap1 0.09(0.14) 0.23(0.21) 0.36(0.26) 0.37(0.26) 0.35(0.24)

k-meanslog
Gap2 0.01(0.07) 0.03(0.18) 0.16(0.35) 0.32(0.45) 0.44(0.48)

FMM 0.11(0.18) 0.20(0.12) 0.21(0.11) 0.21(0.11) 0.22(0.10)

n = 30 CVM 0.61(0.23) 0.84(0.16) 0.96(0.07) 0.97(0.09) 0.99(0.05)
k-meansGap1 0.35(0.20) 0.46(0.29) 0.53(0.34) 0.60(0.37) 0.60(0.36)
k-meansGap2 0.30(0.32) 0.57(0.42) 0.69(0.42) 0.78(0.37) 0.78(0.38)

k-meanslog
Gap1 0.05(0.14) 0.19(0.24) 0.36(0.28) 0.37(0.28) 0.37(0.25)

k-meanslog
Gap2 0.02(0.13) 0.09(0.28) 0.30(0.45) 0.54(0.48) 0.70(0.44)

FMM 0.08(0.13) 0.19(0.11) 0.21(0.10) 0.20(0.08) 0.19(0.08)

TABLE 2
Average K̂ for different values of mi when n = 15,20,30 for different approaches. mi ’s are uniformly sampled

from (10, 20), (30, 40), (50, 60), (70, 80) and (90, 100)

Method 10–20 30–40 50–60 70–80 90–100

n = 15 CVM 3.95(1.12) 3.79(0.90) 3.37(0.61) 3.30(0.53) 3.25(0.52)
k-meansGap1 5.88(2.02) 5.92(2.24) 5.69(2.38) 5.61(2.39) 6.23(2.59)
k-meansGap2 2.61(1.04) 3.10(0.87) 3.23(0.74) 3.29(0.60) 3.26(0.63)

k-meanslog
Gap1 3.97(3.05) 5.31(2.76) 5.78(2.39) 5.54(2.09) 5.80(2.13)

k-meanslog
Gap2 1.02(0.12) 1.06(0.27) 1.14(0.51) 1.17(0.50) 1.30(0.63)

FMM 2.67(0.72) 4.17(0.80) 4.84(0.91) 5.16(0.82) 5.28(0.81)

n = 20 CVM 3.83(1.12) 4.06(1.04) 3.53(0.79) 3.31(0.61) 3.31(0.61)
k-meansGap1 5.77(1.94) 5.85(2.20) 5.56(2.31) 5.66(2.50) 5.49(2.52)
k-meansGap2 2.46(1.26) 3.13(0.85) 3.22(0.67) 3.25(0.62) 3.22(0.53)

k-meanslog
Gap1 3.65(3.25) 5.17(2.88) 5.43(2.17) 5.79(2.10) 6.08(2.05)

k-meanslog
Gap2 1.01(0.10) 1.04(0.22) 1.22(0.53) 1.46(0.72) 1.65(0.78)

FMM 2.56(0.62) 4.21(0.84) 4.92(0.89) 5.26(0.80) 5.40(0.80)

n = 30 CVM 3.86(0.99) 4.74(1.43) 3.66(0.85) 3.41(0.70) 3.22(0.51)
k-meansGap1 5.91(1.89) 5.83(2.06) 5.67(2.35) 5.38(2.56) 5.22(2.43)
k-meansGap2 2.26(1.32) 2.67(1.23) 2.76(0.98) 2.86(0.88) 2.89(0.83)

k-meanslog
Gap1 2.30(2.68) 4.08(3.22) 5.04(2.42) 5.83(2.40) 5.82(2.27)

k-meanslog
Gap2 1.02(0.16) 1.09(0.29) 1.32(0.50) 1.61(0.58) 1.85(0.62)

FMM 2.83(0.64) 4.40(0.80) 5.26(0.90) 5.66(0.86) 5.82(0.79)
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FIG. 3. RMSE of σ̂i,ε for different values of mi . mi ’s are uniformly generated from (10, 20),(30, 40),(50, 60),(70,
80) and (90, 100).

3.2. A different setup for mi . In this section, we consider a setup where mi has a larger
range compared to those in Section 3.1. Table 3 shows the average ARI and average K̂ when
mi ’s are uniformly sampled from (10,85), (20,85), (30,85) and (40,85) across 200 simu-
lations when n = 15. Among these cases, the case with (10,85) is very close to the range of
mi in the real data. We observe that as the lower bound of mi increases, we can expect larger
ARI and K̂ close to the true number of clusters 3. Among other approaches, k-meansGap2 also
gives reasonable results. FMM still cannot recover cluster structure since there is no mean
cluster structure in the true model.

3.3. Homogeneous groups. In this section we consider a homogeneous case; that is, all
units have the same random error variance. The overestimation in the number of groups in the
previous section motivated us to consider this new scenario and investigate the performance
of our model when there is no variance grouping structure in the data. A successful grouping
method is expected to recover the fact that there is a single group when fitted to such a data set.

TABLE 3
Average ARI and K̂ for different values of mi when n = 15 for different approaches. mi ’s are uniformly sampled

from (10,85), (20,85), (30,85) and (40,85)

Method 10–85 20–85 30–85 40–85

ARI CVM 0.71(0.25) 0.76(0.25) 0.83(0.19) 0.87(0.20)
k-meansGap1 0.42(0.32) 0.42(0.33) 0.45(0.35) 0.45(0.36)
k-meansGap2 0.74(0.30) 0.82(0.27) 0.80(0.30) 0.83(0.27)

k-meanslog
Gap1 0.30(0.28) 0.29(0.27) 0.35(0.28) 0.38(0.28)

k-meanslog
Gap2 0.04(0.18) 0.05(0.21) 0.09(0.27) 0.12(0.31)

FMM 0.21(0.15) 0.25(0.15) 0.24(0.14) 0.26(0.14)

K̂ CVM 4.32(1.18) 4.21(1.16) 3.97(0.97) 3.76(0.91)
k-meansGap1 5.91(2.35) 5.99(2.23) 5.96(2.44) 5.89(2.49)
k-meansGap2 3.32(0.83) 3.29(0.70) 3.24(0.76) 3.28(0.58)

k-meanslog
Gap1 4.91(2.51) 5.44(2.72) 5.78(2.36) 5.35(2.13)

k-meanslog
Gap2 1.06(0.31) 1.06(0.28) 1.12(0.40) 1.19(0.54)

FMM 4.30(0.96) 4.44(0.91) 4.85(0.88) 4.78(0.91)
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TABLE 4
Summary of K̂ results for different values of mi under the homogeneous setup. mi ’s are uniformly sampled from

(10,20), (30,40), (50,60), (70,80) and (40,85)

10–20 30–40 50–60 70–80 90–100

n = 15 average 1.36(0.59) 1.54(0.76) 1.44(0.72) 1.39(0.65) 1.34(0.58)
per 0.70 0.62 0.68 0.70 0.71

n = 20 average 1.28(0.52) 1.35(0.74) 1.43(0.72) 1.33(0.60) 1.32(0.61)
per 0.76 0.77 0.69 0.73 0.75

n = 30 average 1.18(0.41) 1.10(0.36) 1.23(0.64) 1.28(0.64) 1.26(0.64)
per 0.83 0.93 0.85 0.80 0.82

In this simulation we set σi,ε = 0.18 for all i = 1, . . . , n. Similar to the previous section, the
average estimated number of groups (“average”) and the percentage of correctly identifying
a single group (“per”) over 200 simulations are reported in Table 4, for n = 15, n = 20, and
n = 30 under different values of local sample size mi . It can be seen that, most of the time,
by using the BIC defined in (6), we can identify the correct group structure.

3.4. Discussions on initial values. Initial values are important in the ADMM algorithm.
In the work of using the algorithm based on pairwise penalties for clustering regression coef-
ficients, most of them used fixed initial values, such as Ma et al. (2020), Zhu and Qu (2018),
Lv et al. (2020), and Fang et al. (2022). In Wang (2024), they also had a discussion on the ini-
tial values. In the discussion they used different initial values and compared the results. Our
algorithm focuses on estimating the heterogeneity of variances. In this section we conduct a
similar study to evaluate the initial values setup.

For each simulated data set in Section 3.2 with mi uniformly generally from (40,85), 50
different initial values are generated by adding random noises to the proposed initial value
τ (0). These random noises are drawn independently from a normal distribution with mean 0
and standard deviation 2. We calculate the differences of l̂ values in (2), the differences of
BIC values and ARI values between the results based on initial values generated from random
noises and the results based on the original initial values. For each simulated data set, we
calculate the minimum and maximum values of these differences across 50 different initial
values. Out of the 100 different data sets, we observe that 99 of them have zero differences,
which means that these initial values produce the same results as the results based on the
original initial values. And only one has slightly different values. Table 5 shows the minimum
and maximum of these differences for this particular data set. Among these 50 different initial
values, 39 of them have the same results as the original initial values. Others have slightly
worse ARI.

From the above results, we can see that the proposed algorithm is pretty robust to the initial
values. And the proposed initial values in Remark 1 work well.

TABLE 5
Differences of l̂, ARI, and BIC compared to the original initial values

l̂ ARI BIC

minimum difference −0.3367 −0.0781 0
maximum difference 0 0 6.0776
number of zero differences 39 39 39
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TABLE 6
Estimated group structure and estimated standard deviation values in each estimated group

Group Labs σ̂k,ε

1 A, D, E, F , G, I , J , K , L, M , O, Q 0.1808
2 B, C 0.2755
3 N 0.0519
4 P 0.1335

4. Real data analysis. In this section we apply our proposed method to the motivating
aquatic toxicity test data in Section 4.1 and compare our results to the results based on k-
means in Section 4.2 and the finite mixture model in Section 4.3. We consider the control data
only. Recall that the response variable is the logarithm of the average number of young in each
batch of the experiment, and the covariates are conductivity, dissolved oxygen level, pH of
the water samples used, and the room air temperature where the experiment was conducted.
In this data set, there are 16 labs, and the number of batches in each lab is between seven and
80.

4.1. Results based on CVM. The BIC values for two groups, three groups, four groups
and five groups are −1205.352, −1206.841, −1242.476, and −1225.143. Based on BIC
values, the selected number of groups is four. The estimated standard deviation of the lab
effect is σ̂v = 0.1921. Table 6 shows the estimated group structure, corresponding labs, and
the estimated standard deviation values. It can be seen that lab N and lab P have relatively
smaller variances compared to other labs. And lab B and lab C have relatively large variances
compared to the majority group.

Figure 4 shows the estimated density functions of raw conditional residuals for each group
(left) and each lab (right), respectively. These raw conditional residuals are defined as the
difference between the observed value yih and the predicted value xT

ihβ̂ + v̂i , where v̂i is
the BLUP for the random effects. These groups are associated with density functions of very
different shapes and hence have different variability. The group consisting of lab N only is
associated with a density plot that is clearly of the highest consistency, suggesting the lowest
variability of control outcomes from this lab. The density function of the group with lab P

FIG. 4. Estimated density functions of raw conditional residuals for four groups based on CVM.
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TABLE 7
Estimated group structure and estimated standard deviation values in each estimated group based on the data set

without lab N

Group Labs σ̂k,ε

1 A, D, E, F , G, I , J , K , L, M , O, Q 0.1809
2 B, C 0.2758
4 P 0.1332

only appears to be more variable than the one of lab N but more consistent than the other two
groups. The density function of the group with labs B and C is left skewed compared to that
of the biggest group with all the remaining labs A, D, E, F , G, I , J , K , L, M , O , Q.

From the preliminary data analysis and the results in Table 6 and Figure 4, we can see that
lab N has the smallest variability. We also explore the results when lab N is removed from
the original data set. When lab N is removed, we implement our algorithm to other 15 labs.
Table 7 shows the result. We have the same group structure for other 15 labs, which indicates
that our proposed approach is also robust.

4.2. Results based on k-means. As a comparison, we also explore the results using k-
means to find the clusters of variance based on σ

2(0)
v /σ

2(0)
i,ε and log(σ

2(0)
v /σ

2(0)
i,ε ), as in the

simulation study. Recall that, we use Gap statistics in k-means, there will be four different
comparisons here. The approach based on σ

2(0)
v /σ

2(0)
i,ε , using the Gap statistics in Tibshirani,

Walther and Hastie (2001) (“k-meansGap1”), identifies two groups, and the approach based on

log(σ
2(0)
v /σ

2(0)
i,ε ), using the same Gap statistics (“k-meanslog

Gap1”), identifies one group. When
the Gap statistics in Dudoit and Fridlyand (2021) are used in the two k-means methods (“k-
meansGap2” and “k-meanslog

Gap2”), the same group structure with six groups is identified.
More specifically, in “k-meansGap1,” lab N is separated from the other groups, while it

grouped lab P with the remaining labs as a big group. As shown in Figure 4, based on
the proposed approach, lab P has a smaller variability than other labs in the other groups,
and hence a homogeneous variance structure is not reasonable to describe the variability
of this big group. Also, k-meanslog

Gap1 failed to find any groups in the data and ignored the
big difference in variability among these labs. On the other hand, “k-meansGap2” and “k-

meanslog
Gap2” did identify the same six groups. Table 8 shows estimated standard deviation

values using k-means when K̂ = 6. Figure 5 shows the estimated density functions of raw
conditional residuals for each group. In the group structure with six groups, labs D, J , K and
labs E, F , O are separated from the majority group. We can also observe that the shape of
the density function of the group with labs E, F , O is much similar to that with labs A, G,

TABLE 8
Estimated group structure and estimated standard deviation values in each estimated group based on k-means

Group Labs σ̂k,ε

1 A, G, I , L, M , Q 0.1833
2 B, C 0.2753
3 N 0.0518
4 P 0.1337
5 D, J , K 0.2104
6 E, F , O 0.1668
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FIG. 5. Density functions of raw conditional residuals based on k-means with six groups. Each line represents
one group.

I , L, M , Q (Figure 5). Thus, it is more reasonable to merge labs D, J , K and labs E, F , O

to the majority group, as in the grouping findings of our proposed method.
How stable are the grouping findings? As a followup comparison, we also explore the

cluster structure obtained by using k-meansGap2 and k-meanslog
Gap2 with a fixed number of

groups at four. We also find that our proposed approach gives more reasonable results. The
detailed results are provided in Supplement B in Wang and Zhang (2024).

4.3. Results based on the finite mixture model. In this section we apply the finite mixture
model to the motivated data. BIC is used to select the number of groups. In Table 9 and
Figure 6, we show the results based on the data set with lab N and the data set without lab
N . When lab N is included, lab N is grouped in the same group with other labs. However,
if we check the residuals in Figure 6, we can see that lab N has very different variability
compared to the labs in the same group. If lab N is not included in the analysis, we observe
that the residuals of some labs are shifted away from 0, and some similar curves are not in
the same group. This could be because FMM assumes that the heterogeneity of variances is
along with the mean structure differences. However, the toxicity data we analyzed here may
not have different effects of covaraites on the response. In this scenario, considering both
mean structures and variance structures together, the heterogeneity of variances may not be
identified properly.

5. Conclusion and discussions. In this work we consider a problem of clustering of
variances and develop a new method for estimating parameters and identifying the hetero-
geneity of random error variances in linear mixed models. Our simulation studies have shown

TABLE 9
Estimated group structure and estimated standard deviation values in each estimated group based on FMM

With lab N Without lab N

Group Labs σ̂k,ε Labs σ̂k,ε

1 A,C,D,G, I,K,M,N,Q 0.1890 A,B,D,E,F,G,J,K,L,Q 0.2090
2 B,E,F,J,L 0.2096 C,I,M,O,P 0.1788
3 O,P 0.1360
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FIG. 6. Density functions of raw conditional residuals based on the FMM model. Each line presents the density
function of one lab. Different line types represent different groups. The left figure shows the density functions of
residuals based on all labs. The right figure shows the density functions of residuals based on labs without lab N .

that the proposed clustered variance approach could successfully detect groups of units ac-
cording to their variability of observations while estimating the regression coefficients simul-
taneously. In the context of toxicity assessment, it allows us to find clusters of labs that are
similar in the consistency of their control experiment outcomes as well as to identify the fac-
tors that impact the control experimental outcomes. In the application study, we compared the
group structure found by the proposed method, k-means based methods and the finite mixture
model according to the variability of the observations. The proposed methods identified more
reasonable group structure compared to the k-means methods and the finite mixture model
based approach.

There are a few possible extensions of our current study. The mean number of young in
each batch of control test is used as the response in our proposed methods; it is possible to
extend the methodology to group labs according to the original test results of individual or-
ganisms rather than aggregated batch/test level results. Based upon the individual-organism
level clustering, it is also possible to extend the methodology to group labs according to the
dose-response relationship when we include the tests using water with varying concentration
levels of the reference toxicant in addition to the tests with control outcomes only. These
questions would lead us to find the best practice in toxicity tests, but it is not a trivial appli-
cation. Instead, it requires a novel statistical methodology due to the hierarchical structure of
the data.

It is also possible to consider other experiment endpoints; for example, we could possibly
cluster the labs according to both survival and reproduction test results. This leads to the
application of our approaches in other types of toxicity tests, for example, acute fish tests,
fish growth tests, etc. (Burden et al. (2017)).

Grouping the labs is the first step. The ultimate goal in the motivating data is to identify the
combination of water chemistry, temperature, and other test condition variables that would
help improve the consistency of reproduction outcomes in C. dubia tests and find an “opti-
mal” combination of experimental conditions. This would require modeling both the mean
and variability of the experimental outcomes as a function of these experimental conditions.
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