
Statistical Science
2023, Vol. 38, No. 4, 655–671
https://doi.org/10.1214/23-STS899
© Institute of Mathematical Statistics, 2023

Tracking Truth Through Measurement and
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Abstract. The measurement of a quantity is reproducible when mutually in-
dependent, multiple measurements made of it yield mutually consistent mea-
surement results, that is, when the measured values, after due allowance for
their associated uncertainties, do not differ significantly from one another. In-
terlaboratory comparisons organized deliberately for the purpose, and meta-
analyses that are structured so as to be fit for the same purpose, are procedures
of choice to ascertain measurement reproducibility.

The realistic evaluation of measurement uncertainty is a key preliminary
to the assessment of reproducibility because lack of reproducibility mani-
fests itself as dispersion or variability of measured values in excess of what
their associated uncertainties suggest that they should exhibit. For this reason,
we review the distinctive traits of measurement in the physical sciences and
technologies, including medicine, and discuss the meaning and expression of
measurement uncertainty.

This contribution illustrates the application of statistical models and meth-
ods to quantify measurement uncertainty and to assess reproducibility in
four concrete, real-life examples, in the process revealing that lack of re-
producibility can be a consequence of one or more of the following: intrinsic
differences between laboratories making measurements; choice of statistical
model and of procedure for data reduction or of causes yet to be identified.

Despite the instances of lack of reproducibility that we review, and many
others like them, the outlook is optimistic. First, because “lack of repro-
ducibility is not necessarily bad news; it may herald new discoveries and
signal scientific progress” (Nat. Phys. 16 (2020) 117–119). Second, and as
the example about the measurement of the Newtonian constant of gravitation,
G, illustrates, when faced with a reproducibility crisis the scientific commu-
nity often engages in cooperative efforts to understand the root causes of the
lack of reproducibility, leading to advances in scientific knowledge.

Key words and phrases: Avandia, common mean, fixed effect, COVID-19,
Newtonian constant of gravitation, Rosiglitazone, dark uncertainty, hetero-
geneity, interlaboratory study, meta-analysis, random effects, repeatability,
replicability, reproducibility, reproduction number, W boson.

1. INTRODUCTION

This contribution reviews how organized comparisons
(interlaboratory studies), and meta-analyses of measure-
ment results obtained in different studies or experiments,
and the evaluation of measurement uncertainty that un-
derlies them, can contribute to gauge and improve repro-
ducibility in the physical sciences and in medicine. The
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nature and role of measurement in the social and behav-
ioral sciences, including the education sciences, and at-
tendant issues of reproducibility, lie beyond the scope of
this review.

The use of statistical models and of methods of statis-
tical data analysis are illustrated in several examples in-
volving uncertainty evaluations and the intercomparison
of measurement results, highlighting the characterization
of reproducibility and indicating the role that the evalua-
tion of measurement uncertainty plays in the process.

The article is intended for statisticians concerned with
the assessment of reproducibility in measurement as prac-
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ticed in national metrology institutes like the National In-
stitute of Standards and Technology (NIST) of the U.S.,
as well as in many other laboratories where measure-
ments are made that support the practice of medicine, en-
gineering, environmental studies, forensic investigations
and that ensure the quality of food, therapies and indus-
trial products.

The article is also intended for physical scientists, med-
ical doctors, engineers, laboratory technicians and others
who make measurements and employ statistical methods
to assess reproducibility via interlaboratory studies and
meta-analyses, and who also wish to gain some appreci-
ation for how the evaluation of measurement uncertainty
underlies the assessment of reproducibility.

Section 2 uses the Newtonian constant of gravita-
tion as an example to explain the meaning of notational
conventions that are widely used in metrology but that
statisticians may be unfamiliar with, and which are used
throughout this contribution.

Since measurement plays a key role in science and tech-
nology, both the credibility of scientific results and the
reliability of technologies hinge on measurement quality,
which is the topic of Section 3.

Section 4 discusses the meaning of “reproducibility”
and of related concepts. Section 5 presents a reanalysis,
employing contemporary techniques, of a historical data
set that John Mandel used to illustrate his pioneering ap-
proach to characterize measurement reproducibility and
repeatability.

Sections 6 (assessment of the risks of a particular
therapy), 7 (estimation of the reproduction number of
COVID-19) and 8 (measurement of the Newtonian con-
stant of gravitation) provide additional illustrations of
how the statistical intercomparison of measurement re-
sults contributes to the assessment of reproducibility.

Section 9 gathers some lessons learned about how the
application of statistical models and methods can quantify
the reproducibility of the conclusions of scientific studies,
and in the process increase their trustworthiness, thereby
advancing scientific knowledge.

The title chosen for this contribution alludes to the
tracking theory of knowledge developed by Nozick [64]
and by Roush [79], at the same time as it evokes the dy-
namic nature of exploratory and confirmatory statistical
data analysis, as they “track” the scent of truth in empir-
ical data, thus fulfilling the allegorical role of a spyglass
that delivers reliable knowledge built upon reproducible
findings.

2. NOTATIONAL CONVENTIONS

The term standard uncertainty, and the notation used
to denote it, occur repeatedly throughout this contribu-
tion, as in u(G) = 0.000122 m3kg−1s−2, which Schlam-
minger et al. [84] reported as the standard uncertainty as-
sociated with a measurement of the Newtonian constant

of gravitation made at the University of Zürich, Switzer-
land, G = (6.674252 ± 0.000122) m3kg−1s−2 (this is the
result labeled UZur-06 in Figure 8). There are three differ-
ent conventions in play here:

• Since the true value of G is unknown, G is modeled as
a random variable whose probability distribution char-
acterizes the uncertainty surrounding its true value, yet
without impugning the fact that, according to current
understanding, G has had a unique, essentially invari-
ant true value throughout most of the history of the uni-
verse [59, 25].

• The standard uncertainty, u(G), is the standard devia-
tion of G’s distribution. However, since this distribu-
tion also comprises uncertainty contributions that are
not expressed in the data, for example, uncertainty in
the calibration of measuring instruments; metrology
uses a term conceived to be more inclusive than “stan-
dard error.”

• The expression for the value of G includes the paren-
thetic notation “6.674252(122),” which is shorthand for
“6.674252 ± 0.000122,” indicating that the digits be-
tween parentheses express the standard uncertainty and
affect the same number of trailing digits of the value of
G while disregarding the location of the decimal point.
This parenthetic notation is commonly employed to re-
port measurement results concisely in the scientific lit-
erature, as well as in Sections 4, 7 and 8 of this contri-
bution.

3. MEASUREMENT AND MEASUREMENT QUALITY

3.1 Measurement

Measurement, the same as science generally, aims “to
find out something” ([34], p. 287) based on empirical
evidence and employing methods that peer-review deter-
mines to be sound and enable empirically verifiable pre-
dictions, to obtain this evidence and to analyze it, yielding
results that can be essentially reproduced by others.

In practice, our measured values are approximations to
the true values of the properties that we intend to mea-
sure. These estimates, alone, are of little value because
they provide no assurances about their quality. For this
reason, a bona fide measurement result comprises both a
measured value and an evaluation of measurement uncer-
tainty.

Broadly conceived, measurement is an experimental or
computational process that produces an estimate of the
true value of a property of a material or virtual object or
collection of objects, or of a process, event or series of
events, and satisfies these requirements [93, 70]:

(a) The estimate (measured value) is based on a compar-
ison of the property of interest with a property of the
same kind realized in a standard that is recognized as a
common reference by the community of producers and
users of the measurement result;
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(b) The measured value is qualified with an evaluation of
measurement uncertainty;

(c) The measurement result (measured value together
with its associated measurement uncertainty) is used
to inform an action or decision.

As example of the comparison mentioned in (a), con-
sider the Eiffel Tower: saying that it is 330 m tall means
that its height is 330 times the length of the meter, which
is the unit of length in the International System of Units
(SI) [6].

The property that is measured (measurand) can be qual-
itative or quantitative. The species of the plant in NIST
Standard Reference Material (SRM) 3246, Ginkgo biloba
(Leaves), is a qualitative property. The mass fraction of
tin in NIST SRM 3161a, Tin Standard Solution (Lot No.
140917), is a quantitative property whose certified value
is 10.011 mg/g.

To satisfy requirement (b), the aforementioned estimate
of the mass fraction of tin is qualified with an expression
of measurement uncertainty, in the form of a confidence
interval ranging from 9.986 mg/g to 10.036 mg/g.

Requirement (c) is exemplified by the decision to ac-
cept or reject a shipment of boxes of breakfast cereal,
which depends on a measurement result for the mass of
cereal in the boxes. This can be the average mass of ce-
real per box, for example, qualified with an evaluation of
the associated measurement uncertainty.

3.2 Measurement Quality

Measurement quality is its trustworthiness: the extent
to which measured values approximate the corresponding
true values sufficiently closely for the purpose they are in-
tended to serve, and do so with assuredly high confidence
[71].

Such trustworthiness requires that measurement results
be metrologically traceable to appropriate, widely recog-
nized standards of reference, and that the associated un-
certainty be small enough to warrant using the measured
value in practice as a proxy for the corresponding true
value.

Traceability is a property of a measurement result con-
sisting of a documented series of comparisons that relate
the measured value to a standard of reference, with each
comparison being qualified by an evaluation of the as-
sociated measurement uncertainty [73]. Traceability thus
guarantees that 1 kg of coffee weighed and sold in a su-
permarket in Cali, Colombia, has the same mass as 1 kg of
coffee bought in Coimbra, Portugal, up to their respective,
associated uncertainties.

Measurement uncertainty is the doubt about the true
value of the measurand that remains after making a mea-
surement ([75], p. 14). Bell [5] points out that to charac-
terize the margin of this doubt, we need to answer two
questions: “How big is the margin?” and “How bad is the

doubt?” For NIST SRM 3161a, the size of the margin is
gauged by half the length of the confidence interval afore-
mentioned, and the severity of the doubt is expressed by
the probability (5% in this case) that said interval does not
include the true value of that mass fraction.

Confidence in measurement results can be strengthened
by introducing known measurands in the measurement
workflow that are indistinguishable from the materials or
products that are being measured. Such check standards
([63], 2.1.2) were first used in mass measurement [69].
In general, they can be reference materials or calibrated
devices delivering certified values whose associated un-
certainty has been evaluated reliably.

The convergence toward a particular value as the same
measurand is measured repeatedly over time, in indepen-
dent experiments, is another indication that knowledge
about it is solidifying. The history of the measurements
of the speed of light and of the Planck constant are no-
table examples of such convergence [52, 61].

Confidence in a measurement result is bolstered appre-
ciably if one or several so-called primary methods of mea-
surement are employed, and they produce measurement
results that are essentially in agreement with one another.
A primary measurement procedure is such that it does not
require calibration with a reference that delivers the same
property that one intends to measure. Digital polymerase
chain reaction (dPCR) is a primary measurement method
for viral loads in samples of bodily fluids [85], and for
many other measurements in molecular biology [67].

Coulometry ([35], Section 17-3) can be a primary
method for determining the amount of a substance in a
solution, which involves counting the number of electrons
consumed in a chemical reaction involving that substance.
This measurement method involves reference to standards
of time and electrical current, but not to standards for the
concentration of the substance [4], 2.9.5.

In summary, measurement provides estimates of values
of properties of interest to science and technology using
recognized standards as references. Both measurement
uncertainty and traceability, which characterize measure-
ment’s reliability and validity, are attributes of measure-
ment quality. The demonstration of mutual consistency
between measurement results for the same measurand ob-
tained independently of one another, that is, reproducibil-
ity (which we turn to next), is another quality attribute of
measurement that bolsters the trustworthiness of measure-
ment results.

4. REPRODUCIBILITY

A search for articles listed in the Web of Science that
were published between January 1, 2020, and January 31,
2023, and that include the word “reproducibility” in their
titles yielded 2524 results (retrieved on February 2, 2023).
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These articles are from a very wide range of fields of sci-
ence and technology, with the largest numbers relating to
medical ethics and brain imaging, which together account
for almost 14% of the total.

The epistemic value of reproducibility has long been
recognized. Referring to measurement standards, Her-
schel [36] suggested that they ought to possess the “qual-
ities of invariability, indestructibility and identical repro-
ducibility,” as well as “some obvious claim to general ac-
ceptation as of common interest to all mankind.”

Viewing the issue from a different angle, Munafò et al.
[60] argue that the debate around reproducibility, rather
than a crisis, is an opportunity “to reflect on which aspects
of relevant working practices continue to be effective,
which can be improved, and which new ways of work-
ing can beneficially be introduced.” Similarly, Milton and
Possolo [52] point out that “lack of reproducibility is not
necessarily bad news; it may herald new discoveries and
signal scientific progress.”

For example, the CDF Collaboration’s reanalysis of ob-
servations made at Fermilab’s Tevatron collider yielded
80 433(9) MeV/c2 [19] as an estimate of the mass of the
W boson, while the corresponding, previous result based
on observations made at CERN’s Large Hadron Collider
had yielded 80 370(19) MeV/c2 [18]: their standardized
difference is 3σ , which suggests a significant difference.

However, an even more dramatic difference is obtained
when the latest measurement result obtained by the CDF
Collaboration is compared against the prediction that the
Standard Model of particle physics makes for the mass of
the W boson, 80 357(6) MeV/c2 [32]: once standardized,
this difference amounts to 7σ , and Science declared it to
be “an upset to the standard model” [15].

4.1 Terminology

The Oxford English Dictionary defines reproducibility
as “the extent to which consistent results are obtained
when an experiment is repeated.” The meaning of “re-
peated,” or the sense in which repetition suffices to war-
rant reproducibility, requires clarification because it can
have different flavors, and also because it encompasses a
very wide spectrum of modalities.

Concerning its flavors: “repeating” can mean obtaining
the same results again and again, or it can mean obtaining
essentially the same results, even if not necessarily ex-
actly the same results, where “essentially” means that the
results from different repetitions cannot be distinguished
once their respective uncertainties are taken into account.

This jigs with the understanding of replicability ex-
pressed by Fineberg et al. ([30], p. 3): “Two studies may
be considered to have replicated if they obtain consistent
results given the level of uncertainty inherent in the sys-
tem under study.”

For example, the DELPHI Collaboration et al. [27] de-
termined the mass of the W boson as 80 336(67) MeV/c2,

FIG. 1. Mutually consistent set of three measurement results for the
universal gas constant, R, obtained using different measurement meth-
ods, from the National Institute of Standards and Technology (NIST)
of the United States (NIST-88), the Physikalisch-Technische Bunde-
sanstalt of Germany (PTB-17) and jointly by the National Institute of
Metrology of China and NIST (NIST/NMI-17). The diamonds indicate
the measured values, and each vertical line segment represents a mea-
sured value plus or minus the reported standard uncertainty (1σ ).

while the corresponding determination made by the L3
Collaboration [20] was 80 270(55) MeV/c2. These mea-
surement results are not identical but their difference is
not significantly different, either statistically (their stan-
dardized difference is 0.8σ ) or substantively.

Concerning the spectrum of modalities: at one end, we
have repetition of the same experiment involving the same
materials, apparatuses, methods and procedures, experi-
menters and place of execution; at the other end, the in-
tended repetition is not of the experiment itself, but of
reaching essentially the same conclusions that the origi-
nal experiment had reached.

This second option in the spectrum of modalities in-
volves measuring the same property, or more generally
studying the same phenomenon, but using altogether dif-
ferent approaches, methods and procedures, applied by
different experimenters working independently of the
original ones, in different laboratories. It is generally
agreed that this form of replication has greater epistemic
value than the former, because it widens the realm of con-
ditions under which essentially the same conclusions are
reached.

For example, Figure 1 shows three measurement re-
sults for the universal gas constant, R = kNA, obtained
independently of one another and using different mea-
surement methods: k denotes the Boltzmann constant and
NA denotes the Avogadro constant. Two of these mea-
surements were made shortly before the values of k and
NA were fixed as part of the 2019 redefinition of the in-
ternational system of units [6]. The result labeled PTB-17
was obtained using a dielectric-constant gas thermome-
ter [31], and NIST/NIM-17 was obtained using a Johnson
noise thermometer [76]. The result labeled NIST-88 was
obtained much earlier, via acoustic gas thermometry [57].
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The meaning of reproducibility varies considerably
across the scientific literature. Gundersen ([33], Table 1)
mentions no fewer than sixteen published, different def-
initions of reproducibility, recognizes that there are dif-
ferent types and levels of reproducibility, and proposes
this definition: “the ability of independent investigators
to draw the same conclusions from an experiment by fol-
lowing the documentation shared by the original investi-
gators.”

The National Academies of Science, Engineering and
Medicine (NASEM) use reproducibility as synonymous
with computational reproducibility ([30], p. 4) and define
it as “obtaining consistent results using the same input
data, computational steps, methods and code, and con-
ditions of analysis.” In this sense, reproducibility is less
demanding than replicability, which NASEM defines as
“obtaining consistent results across studies aimed at an-
swering the same scientific question, each of which has
obtained its own data.”

Plesser [68] emphasizes the terminology prevailing in
chemistry and in measurement science, which inspired the
understanding of repeatability, reproducibility and repli-
cability originally adopted by the Association for Com-
puting Machinery (ACM).

5. QUANTIFYING REPRODUCIBILITY AND
REPEATABILITY

Well before the reproducibility “crisis” became a topic
of conversation, for example, in a briefing entitled “Trou-
ble at the lab,” which The Economist published on Oc-
tober 18, 2013, John Mandel [46], a statistician working
at the National Bureau of Standards (which became the
National Institute of Standards and Technology in 1988),
defined repeatability as “the variability (or rather small-
ness of variability) between replicate results obtained on
the same material within a single laboratory,” and repro-
ducibility as “the (smallness of) variability between re-
sults obtained on the same material in different laborato-
ries,” adding that “more exact definitions are needed.”

We will review Mandel’s concept of these “more exact
definitions” in a reanalysis of the results of an interlabora-
tory study employing contemporary models and methods
of statistical data analysis. The study produced 364 de-
terminations of the stress at 600% elongation, of I = 7
different specimens of natural rubber, obtained by J = 13
laboratories, each of which made K = 4 replicated deter-
minations for each specimen ([46], Table 1). These deter-
minations, and the R code used to analyze them, are listed
in the Supplementary Material for this article [72].

The model we shall adopt for these determinations is a
linear, mixed-effects model,

(1) yijk = μi + λj + εijk,

where μi denotes the true mean value of the stress for
material i, the {λj } denote laboratory (“random”) effects

FIG. 2. Left panel: Boxplots for the raw values of stress at 600%
elongation of the 7 rubber specimens (A, . . . , G), determined by 13
laboratories. Each boxplot summarizes 13 × 4 = 52 determinations of
stress. Right panel: Corresponding boxplots of the residuals from the
linear, Gaussian mixed effects model fitted to the determinations using
R function lmer defined in package lme4 [3].

with mean 0 and standard deviation τ and the {εijk} de-
note measurement errors with mean 0 and standard devia-
tion σ , for material i = 1, . . . , I , laboratory j = 1, . . . , J

and replicate k = 1, . . . ,K . Owing to the marked het-
eroscedasticity of the raw values of stress (Figure 2), we
will conduct all the analyses using the logarithms of the
observed values of stress.

Discussing the presence of apparently outlying obser-
vations in interlaboratory studies, Mandel ([47], p. 111),
points out that “There is a great temptation to reject such
outliers, that is, to discard them from the data prior to cal-
culating precision or accuracy parameters,” and adds: “We
do not recommend rejection on the basis of purely statis-
tical considerations. Our main reason is that while such
rejection procedures always improve the appearance of
the data, for example, by drastically reducing the standard
deviations, they do nothing in terms of avoiding future in-
stances of outlying results. They have simply sharply re-
duced the field to which the inferences from the study ap-
ply. [. . . ] It is our opinion that the blind application of tests
of significance to interlaboratory data for the purpose of
rejecting outliers is logically invalid and practically harm-
ful.”

We have expressed similar reservations about rejecting
measurement results based on “purely statistical consid-
erations” [41, 74]. The Analytical Methods Committee of
the Royal Society of Chemistry considered the issue at
length more than 30 years ago, and issued recommenda-
tions for how not to reject outliers [21, 22].

For the experiment concerned with rubber elongation,
in the absence of a substantive reason to reject any of the
observations under consideration, we will replace the as-
sumption that the measurement errors {εijk} are Gaussian,
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FIG. 3. Left panel: Boxplots of the residuals from fitting a Bayesian
linear mixed-effects model to the logarithms of stress, with Gaus-
sian laboratory effects and Student’s t-measurement errors, using R
function brm defined in package brms. Right panel: QQ-plot of the
posterior means for the laboratory effects in the Bayesian mixed ef-
fects model with Gaussian random laboratory effects and Student’s
t-measurement errors.

with the assumption that they are a sample from a Stu-
dent’s t-distribution whose number of degrees of freedom
will be estimated in the course of fitting the model to the
data, in the version of the model where the {yijk} in equa-
tion (1) denote the logarithms of the observed values of
stress.

Figure 3 shows boxplots of the residuals and a QQ-
plot for the posterior means of the laboratory effects cor-
responding to the aforementioned mixed effects model
fitted using a Bayesian procedure implemented using R
function brm defined in package brms [13, 14], with the
student family specification, using Stan [16, 87] and R
[86] codes listed in the Supplementary Material [72].

The prior distributions for the (fixed) effects attributable
to differences between rubber specimens were essentially
noninformative Gaussian distributions. The priors for τ

and σ were half-Cauchy distributions. A single σ as stan-
dard deviation for all the measurement errors seems justi-
fied by the sufficient homoscedasticity apparent in the left
panel of Figure 3, and the assumption of Gaussian labora-
tory effects is justified by the QQ-plot in the right panel of
the same figure. The prior distribution for the number of
degrees of freedom, ν, of the Student’s t-distribution for
the {εijk} was gamma such that with 95% prior probabil-
ity, 1 < ν < 45.

Figure 4 shows posterior probability density estimates
of the laboratory effects, indicating that several of the lab-
oratory effects differ significantly from 0, hence that there
is significant heterogeneity (between-laboratory variabil-
ity), or dark uncertainty [89], that is, the laboratory aver-
ages, once adjusted for the effects of the different rubbers,
are more dispersed than they should be considering the

FIG. 4. Posterior probability density estimates of the laboratory ef-
fects, {λj }. Each shaded area amounts to 95% of the posterior proba-
bility.

variability of the replicated determinations that individual
laboratories made on each rubber.

Figure 5 shows estimates of the posterior densities of
the number of degrees of freedom (ν) for the Student’s
t-distribution of the measurement errors, and also of the
between-laboratory (τ ) and within-laboratory (σ ) stan-
dard deviations, which we will use next to quantify the re-
peatability and reproducibility achieved in this study. The
mean of the posterior distribution of the number of de-
grees of freedom of the Student’s t-distribution adopted
for the measurement errors, {εijk}, was 2.7(5).

Mandel ([46], p. 78) quantified repeatability in terms
of “a quantity that will be exceeded only about 5 percent
of the time by the difference, taken in absolute value, of
two randomly selected test results obtained in the same
laboratory on a given material.” Here, test result means
an average of 4 replicated determinations that a laboratory
makes for a rubber specimen. In this conformity, (lack of)
repeatability is quantified as

r = 2
√

2σ̂ /
√

K = 2
√

2(0.072)/
√

4 = 0.10,

and (lack of) reproducibility is quantified as

R = 2
√

2
(
τ̂ 2 + σ̂ 2/K

)

= 2
√

2
(
0.1852 + 0.0722/4

) = 0.53.

In the expressions for both r and R, the first “2” is the
rounded value of the 97.5th percentile of the standard
Gaussian distribution. σ̂ and τ̂ denote the medians of

FIG. 5. Posterior probability density estimates of the between-labo-
ratory (τ ) and within-laboratory (σ ) standard deviations, and of the
number of degrees of freedom (ν) for the Student’s t-distribution of the
measurement errors. The dots indicate the posterior medians.
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the respective posterior distributions; they are unitless be-
cause the analysis is being done using the logarithms of
the values of stress, and the logarithm “swallows” units
as can be seen by its series expansion presented in [65],
4.6.4.

It is important to realize that these quantifications of re-
peatability and of reproducibility are supported by differ-
ent amounts of evidence. In fact, the evaluation of repeata-
bility is based on the variability of 13 groups of 28 in-
dividual determinations of stress each (whose logarithms
have approximately constant variance), while the evalu-
ation of reproducibility is based on the variability of 91
averages (13 for each of 7 rubber specimens).

Mandel ([46], p. 79) noticed that the different amounts
of evidence that support the evaluations of repeatability
and reproducibility can be captured using the following
fact pointed out by Blackman and Tukey ([8], p. 208): if
V is a multiple of a chi-square random variable with m

degrees of freedom, for example, when V is an estimate
of a variance component, then its coefficient of variation,
CV, is

√
2/m. For this reason, Blackman and Tukey [8]

propose 2/(CV)2 as an equivalent number of degrees of
freedom (also called degrees of firmness [9], p. 290) sup-
porting V .

To compute the degrees of firmness of the repeatabil-
ity, r , and of the reproducibility, R, one can either simply
compute their respective coefficients of variation based
on the MCMC samples drawn from the posterior distri-
butions of σ and τ , or possibly better, employ an analog
of the coefficient of variation that may be less sensitive
to the asymmetry of these posterior distributions, whose
densities are depicted in Figure 5. In this particular case,
the two options produce very similar assessments of the
degrees of firmness of r and of R.

The robust version of the degree of firmness for r is
computed as the ratio between half the length of a 68%
credible interval for σ centered at the posterior median
of σ , and this posterior median. The value of this ratio
is 338. The robust version of the degree of firmness for
R, defined similarly, is 48. Hence, and not unexpectedly,
the evaluation of repeatability has about 7 times greater
firmness than the evaluation of reproducibility.

In general, repeatability depends both on the measur-
and and on the particular laboratory making the measure-
ments, while reproducibility depends on the measurand
and on the class of laboratories that the laboratories par-
ticipating in the study actually represent.

Also in this case, the logarithmic transformation of the
values of stress, together with the adjustment for differ-
ences between the rubber specimens accomplished by the
mixed effects model, achieved sufficient homoscedastic-
ity within-laboratories, and also enabled using a single τ

to quantify the between-laboratories variability, so as to
justify pooling the results and producing single evalua-
tions of repeatability and reproducibility.

This reanalysis shows that contemporary tools for sta-
tistical modeling and data analysis, which were not avail-
able in John Mandel’s time, afford great flexibility for ac-
curate modeling. For example, replacing the assumption
that measurement errors are Gaussian with the assump-
tion that they follow a Student’s t-distribution can be han-
dled easily in the context of a Bayesian model owing to
the availability of Markov chain Monte Carlo sampling.

Also, suitably chosen reexpression (which in this case
is as simple as taking logarithms) can go a long way to-
ward simplifying the analysis and increasing the adequacy
of statistical models to data ([58], Chapter 5). However,
the fundamental insights and specific proposals that John
Mandel offered 50 years ago, about how to quantify re-
peatability and reproducibility, withstood the test of time,
and continue to be valuable.

6. ROSIGLITAZONE

On July 22, 2007, The New York Times reported that Dr.
Steven Nissen’s “questioning of the safety of the Avandia
diabetes medication in late May” had “prompted a federal
safety alert and led to a sales decline of about 30 percent
for the drug,” which had earned GlaxoSmithKline (GSK)
$3.2 billion in 2006.

The basis for that questioning was a meta-analysis [62]
of 42 clinical studies of the risk of myocardial infarc-
tion and death from cardiovascular causes seemingly as-
sociated with the use of rosiglitazone, which is the ac-
tive ingredient of Avandia. The results of each of these
studies can be summarized in a 2 × 2 table, for exam-
ple, Table 1 for the ADOPT study [91, 39], which was a
randomized, double-blind, parallel-group study involving
4351 patients with recently diagnosed type 2 diabetes.

All together, the 42 studies whose results are listed
in Nissen and Wolski ([62], Table 3) involved 27 833
patients. The prevalence of myocardial infarction was
around 0.6% in both the rosiglitazone and control groups.

In four of these studies, there were no cases of my-
ocardial infarction either in the rosiglitazone group or in
the control group. These four were therefore excluded
from consideration by those methods of data reduction

TABLE 1
Results of the ADOPT study, where patients were randomized to

receive double-blinded rosiglitazone, glyburide or metformin, and
were treated for periods of 4 years median duration, as originally

reported by Kahn et al. [39], Table 2, and transcribed by Nissen and
Wolski [62], Table 3

Myocardial infarction

Yes No Total

Rosiglitazone Group 27 1429 1456
Control Group 41 2854 2895
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TABLE 2
Estimates and lower (LWR) and upper (UPR) endpoints of 95%

confidence intervals for the odds ratio (OR) comparing the effects of
rosiglitazone and control on myocardial infarction

OR LWR UPR

Peto 1.428 1.031 1.979
Mantel-Haenszel 1.427 1.029 1.978
Weighted Median 1.300 1.001 2.014
DerSimonian-Laird 1.286 0.940 1.759
REML 1.286 0.940 1.759
Bayes 1.280 0.928 1.762

which we have employed for this reanalysis that take es-
timates of log odds ratios, and their associated uncertain-
ties as inputs: DerSimonian–Laird [28], REML [81] and
a Bayesian procedure detailed below. Since neither Peto’s
[95] nor Mantel-Haenszel’s [49] procedures require the
calculation of log odds ratios, they used the results from
all 42 studies.

Nissen and Wolski [62] chose Peto’s method for their
data reductions, which was a very reasonable choice con-
sidering the findings reported by Bradburn et al. [12]:
that, in a comparative evaluation of the performance of
12 methods for pooling rare events (with event rates be-
low 1%), Peto’s method was the least biased and most
powerful method, and provided the best confidence inter-
val coverage, provided there was no substantial imbalance
between treatment and control group sizes within trials,
and treatment effects were not exceptionally large, which
is generally the case for these trials that involved rosigli-
tazone.

Table 2 lists the estimates of log odds ratio, and corre-
sponding 95% confidence intervals, resulting from pool-
ing the results from the trials listed in Nissen and Wolski
([62], Table 3) using five different statistical procedures.
The methods of Peto, Mantel-Haenszel, DerSimonian-
Laird and REML were applied as implemented in R func-
tion rma of package metafor [92]. Figure 6 depicts the
log odds ratios for the different studies and the consensus
log odds ratio corresponding to Peto’s method.

The model used in the Bayesian procedure correspond-
ing to the last line of Table 2 modeled the log odds ra-
tios as outcomes of Gaussian random variables, with the
usual large sample approximation for their standard errors
([38], 9.2). The prior distribution for the mean log odds
ratio was centered at 0 and had a large standard devia-
tion (5), and the between-study standard deviation, τ , had
a half- Cauchy prior distribution with median 0.05. The
posterior distribution of τ had median 0.04. A 95% cred-
ible interval for τ ranged from 0.002 to 0.3. The model
was implemented using R function brm defined in pack-
age brms [13], as detailed in the Supplementary Material
[72].

FIG. 6. Forest plot showing 95% confidence intervals (thick, hori-
zontal (light blue) bars) for the log odds ratios for rosiglitazone versus
control in the 38 studies listed in Nissen and Wolski [62], Table 3, that
had at least one death in the control group.

The results for Peto’s method (first line in Table 2) re-
produce the corresponding results in Nissen and Wolski
([62], Table 4), and the results from the Mantel-Haenszel
procedure are in close agreement with Peto’s. For nei-
ther method does the 95% confidence interval straddle
1. However, the results from the last three procedures—
DerSimonian-Laird, REML and Bayes—do not unequiv-
ocally corroborate the conclusion of the first two. The
NIST Decision Tree [74] recommends that the results from
the individual studies be combined using the weighted
median, which produces the consensus value and 95%
confidence interval (based on the non-parametric boot-
strap) listed in the third line of Table 2.

The apparently increased risk of cardiovascular events
associated with the use of rosiglitazone has been reexam-
ined repeatedly since Nissen and Wolski [62] first rang the
alarm bell in 2007, both via critical reanalyses [29] of the
same data, and also considering the results of subsequent
studies, for example, the RECORD study [37].

Following a recommendation that the European
Medicines Agency made on September 23, 2010, to sus-
pend the marketing authorizations for medications con-
taining rosiglitazone, Avandia has been withdrawn from

https://decisiontree.nist.gov
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use throughout the European Union (https://www.ema.
europa.eu/en/medicines/human/EPAR/avandia). On July
2, 2012, The New York Times reported that “Glaxo-
SmithKline agreed to plead guilty to criminal charges and
pay $3 billion in fines for promoting its best-selling an-
tidepressants for unapproved uses and failing to report
safety data about a top diabetes drug” [88]—the diabetes
drug was Avandia.

The principal lesson that can be drawn from this ex-
ample is that different statistical models and methods of
data analysis, which may all be comparably adequate for
the task at hand, can lead to markedly different conclu-
sions when they are applied to the same data. In this case,
three out of the six methods whose results are summarized
in Table 2 suggest that the use of rosiglitazone induces a
significant risk of myocardial infarction, while the other
three do not corroborate such conclusion. Therefore, dif-
ferences between models and between methods of data
reduction can pose a challenge to the reproducibility of
research results impacting an issue of the greatest interest
in public health.

7. REPRODUCTION NUMBER

The British Health Security Agency (UKHSA) has
been publishing consensus values weekly, since May
2020, for the reproduction number, R, of COVID-19. The
UKHSA explains it thus: “the reproduction number (R) is
the average number of secondary infections produced by
a single infected person. An R value of 1 means that on
average every person who is infected will infect 1 other
person, meaning the total number of infections is stable.
If R is 2, on average, each infected person infects 2 more
people. If R is 0.5, then on average for each 2 infected
people, there will be only 1 new infection. If R is greater
than 1, the epidemic is growing, if R is less than 1 the
epidemic is shrinking.”

The consensus estimate results from blending esti-
mates produced by different research groups, mostly from
British universities, working independently of one an-
other and using different models. Blending is done as an
exercise in meta-analysis [45].

However, each research group reports several quantiles
of the probability distribution that expresses the uncer-
tainty surrounding R, while most procedures used for
meta-analysis expect the mean and the standard deviation
of R’s distribution as inputs. Maishman et al. ([45], Ta-
ble 1) list the 5th, 25th, 50th, 75th and 95th percentiles
for R’s distribution, as produced by each of eleven mod-
els for a particular (but unspecified) date and region of the
UK.

For model 3 in Table 1 of [45], these percentiles are
0.64, 0.70, 0.74, 0.79 and 0.87, respectively. The proce-
dure that Maishman et al. [45] use to derive estimates of

FIG. 7. Gaussian (green) and skew-normal (orange) approxima-
tions to the sample quantiles Q(0.05) = 0.64, Q(0.25) = 0.70,
Q(0.50) = 0.74, Q(0.75) = 0.79 and Q(0.95) = 0.87, which are rep-
resented by the (blue) dots. F(R) denotes the probability that the true
value of the reproduction number will be less than or equal to R.

the mean and of the standard deviation of R involves con-
sideration of an estimate of the skewness of the distribu-
tion based on these percentiles. For these particular per-
centiles, the procedure reduces to modeling R’s distribu-
tion as being Gaussian with mean R = 0.74 and standard
deviation u(R) = 0.079.

Considering that the eleven sets of percentiles listed in
Maishman et al. ([45], Table 1) exhibit fairly mild skew-
ness, we have adopted an alternative modeling approach
that approximates the sample percentiles by correspond-
ing percentiles of a skew-normal distribution [1].

The approach involves finding values of the parameters
of the skew-normal distribution—ξ (location), ω (scale)
and α (shape)—that minimize

∑5
i=1(qi − θi)

2, where the
{qi} are the aforementioned sample percentiles, the {θi =
Q(pi |ξ,ω,α)} are the corresponding skew-normal per-
centiles, and Q denotes the quantile function of the skew-
normal distribution. Once estimates of ξ , ω and α are in
hand, the mean and standard deviation are computed as
ξ + ωδ

√
2/π and ω(1 − 2δ2/π), where δ = α/

√
1 + α2.

Figure 7 shows the Gaussian cumulative distribution
function and its skew-normal counterpart fitted to the
percentiles that Maishman et al. ([45], Table 1) list for
model 3, showing that the skew-normal model is apprecia-
bly more accurate than the Gaussian model. Table 3 lists
the means and standard deviations imputed by Maishman
et al. [45] for the eleven models, and their counterparts
obtained using the skew-normal approximation.

Table 4 reveals details of the differences induced by the
two different methods used to impute the mean and stan-
dard deviation based on sample percentiles, and also the
differences attributable to four different statistical models
used to reduce the data to obtain a consensus value and to
evaluate the associated uncertainty.

https://www.ema.europa.eu/en/medicines/human/EPAR/avandia
https://www.ema.europa.eu/en/medicines/human/EPAR/avandia
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TABLE 3
Estimates and standard uncertainties, {RG,j } and {u(RG,j )}, for the

values of the reproduction number listed in Maishman et al. [45],
Table 1, which are based on a Gaussian model, and their

counterparts, {RSN,j } and {u(RSN,j )}, based on the skew-normal
model, for epidemic models j = 1, ldots,12. Model 8 did not produce

results for this reporting period

j RG,j u(RG,j ) RSN,j u(RSN,j )

1 0.74 0.079 0.7435 0.0858
2 0.7045 0.0742 0.7123 0.0388
3 0.74 0.079 0.7466 0.0491
4 0.75 0.2371 0.7576 0.2068
5 0.7954 0.0028 0.7949 0.0020
6 0.8329 0.0256 0.8361 0.0136
7 0.7862 0.1233 0.7895 0.1142
9 0.9382 0.1351 0.9437 0.0899
10 0.8302 0.0077 0.8302 0.0076
11 0.9293 0.0637 0.9314 0.0570
12 0.76 0.0608 0.7572 0.0636

The results listed in Table 4 for the DerSimonian–Laird
procedure (DL) [28], the Mandel–Paule procedure (MP)
[48] and the restricted maximum likelihood procedure
(REML) [81], all were obtained using R function rma
defined in package metafor [92]. The results for the hi-
erarchical Bayesian procedure with Gaussian laboratory
effects and Gaussian errors (HGG) were obtained using
the NIST Decision Tree [74].

TABLE 4
The upper section of the table lists the results of four alternative
meta-analyses applied to the means and standard errors imputed
using the method described by Maishman et al. [45]. The lower

section lists their counterparts for the method that uses the
skew-normal distribution. The four procedures (DL, HGG, MP,

REML) used to blend the results in Table 3 are referenced in the text.
R denotes the consensus estimate of the reproduction number and

u(R) denotes the associated standard uncertainty. LWR and UPR are
the endpoints of 95% confidence or credible intervals for the true
value of R, and τ (dark uncertainty) is an estimate of the standard

deviation of the (random) effects attributable to the different models
for the epidemic

R u(R) LWR UPR τ

Pooling {(RG,j , u(RG,j ))} from Table 3
DL 0.8112 0.0135 0.7848 0.8377 0.0229
HGG 0.8092 0.0184 0.7717 0.8467 0.0334
MP 0.8114 0.0125 0.7869 0.8360 0.0206
REML 0.8114 0.0126 0.7868 0.8361 0.0207

Pooling {(RSN,j , u(RSN,j ))} from Table 3
DL 0.8088 0.0137 0.7819 0.8356 0.0269
HGG 0.8072 0.0209 0.7647 0.8497 0.0453
MP 0.8062 0.0194 0.7682 0.8442 0.0441
REML 0.8065 0.0185 0.7702 0.8427 0.0412

Even though none of the differences between the con-
sensus values derived from the {(RG,j , u(RG,j ))} or from
the {(RSN,j , u(RSN,j ))}, using the different blending pro-
cedures (DL, HGG, MP, REML), are significantly dif-
ferent from one another; Table 4 does reveal differences
worth noting from the viewpoint of reproducibility.

The estimates of the dark uncertainty, τ , in particular,
are rather sensitive to the model employed to impute the
mean and the standard deviation that correspond to a par-
ticular set of percentiles. This is not surprising because it
simply expresses the fact that the values of the standard
uncertainty, u(R), based on the skew-normal model are
generally smaller than their counterparts that are based on
the Gaussian model (Table 3).

The estimates of τ also are fairly sensitive to the statis-
tical procedure used for the purpose, for example, HGG’s
estimate of τ is 1.7 times larger than DL’s estimate (first
two lines of the lower panel of Table 4). Even though this
is not surprising either, considering that τ is a particularly
challenging estimand [44, 43], it also influences the eval-
uation of u(R) [42], thus impacting reproducibility.

The foregoing retrospective of the development of a
consensus estimate for the reproduction number of the
COVID-19 pandemic reveals that apparently minor differ-
ences between fairly simple choices about how to prepare
the data for an assessment of reproducibility, can have
their effects amplified when different procedures are then
used to blend the results in a meta-analysis. In addition,
those differences also impact the extent to which the re-
producibility of the conclusions depends on the particular
procedure employed for the meta-analysis.

8. BIG G

Newton’s law of universal gravitation states that two
massive objects attract one another with a force that is di-
rectly proportional to the product of their masses, and in-
versely proportional to the square of the distance between
their centers of mass: the constant of proportionality is
the Newtonian constant of gravitation, G, also informally
called “Big G” in contradistinction to “small g,” which
refers to g, the acceleration of a massive body in free-fall
toward the Earth.

G is believed to have the same value everywhere
throughout the universe, and figures not only in Newton’s
third law, but also in the equations of Einstein’s theory of
general relativity [53]. Big G’s lofty status notwithstand-
ing, its relative standard uncertainty, of about 22 parts per
million, is much larger than the relative uncertainties of
most other fundamental constants [90].

The uncertainty surrounding G is relatively large for
three principal reasons: (i) it is not possible to lever-
age knowledge of the values of other fundamental con-
stants to reduce the uncertainty associated with the esti-
mate of G because there is no known relation between G

https://decisiontree.nist.gov
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and the other fundamental constants; (ii) measuring G is
very challenging because it involves measuring extremely
small forces and (iii) the measured values of G are appre-
ciably more dispersed than their individual measurement
uncertainties intimate.

Reason (iii) is a manifestation of lack of reproducibil-
ity, as independent experiments, relying either on differ-
ent physical principles or on different implementations of
the same principle, have historically yielded mutually in-
consistent measurement results.

Figure 8 shows the measurement results that CODATA
(Committee on Data of the International Science Coun-
cil) took into account for the 2018 release of the rec-
ommended values of the fundamental physical constants
[90], and the results of two alternative statistical measure-
ment models and data reductions for them.

Two kinds of statistical models have been used for mea-
surement results such as these, depending on how one ad-
dresses their mutual inconsistency. The model discussed
in Section 8.1 is based on Birge’s [7] suggestion whereby
the reported uncertainties are magnified by a factor (Birge
ratio) sufficiently large to achieve mutual consistency.
The model discussed in Section 8.2, which we call the
laboratory effects model, is a conventional mixed effects
model [50], where G is the fixed effect and the experi-
ment effects are the random effects. Both models will be
fitted taking into account the three nonnull correlations
between the measured values {Gj } listed in the caption of
Table XXIX in Tiesinga et al. [90].

Baker and Jackson [2], Koepke et al. [41], Merkatas
et al. [51] all compare and discuss these two kinds of mod-
els, and point out that the preference for one or for the
other seems to be mostly cultural, with CODATA and the
Particle Data Group (pdg.lbl.gov) [32] favoring the Birge
ratio, while medical meta-analysis [23] and interlabora-
tory studies in measurement science [80] generally opting
for the additive mixed effects model.

The 16 measurement results for G are mutually incon-
sistent as judged by Cochran’s Q test [17], which yields
an exceedingly small p-value. Figure 8 also shows the
value of G recommended by CODATA in 2018 [90], and
the estimates of G obtained by application of the multi-
plicative and additive models that address such mutual in-
consistency, as detailed in the following two subsections.

8.1 Common Mean Model for G

The multiplicative model is a heteroscedastic, Gaus-
sian, common mean model [11] (also called “fixed effect”
model—note the singular in “effect,” hence a different
model from the conventional fixed effects model), which
amplifies the standard uncertainties multiplicatively with
the inflation factor κ > 0:

(2) Gj = G + κεj .

The measurement errors {εj } are assumed to have a
joint multivariate Gaussian distribution with mean 0
and the same units as G, whose covariance matrix has
the {u2(Gj )} along the main diagonal, and all the off-
diagonal entries are 0 except for those that involve the
correlations listed in the caption of Table XXIX of
Tiesinga et al. [90]: 0.351 between NIST-82 and LANL-97;
0.134 between HUST-05 and HUST-09 and 0.068 between
HUST-09 and HUSTT-18.

Both the 2014 [56] and 2018 [90] releases of the values
recommended by CODATA for the fundamental constants
employ an ad hoc procedure to assign a value to κ , as the
smallest positive number such that the resulting, standard-
ized residuals (which Tiesinga et al. [90] call normalized
residuals) all have absolute values no larger than 2. This
choice, which Merkatas et al. ([51], Section 3.2) show is
overly conservative, yields 3.9 as estimate of κ .

Both maximum likelihood estimation (MLE) and the
Bayesian alternative described by Bodnar and Elster [10]
are model-based alternatives preferable to the aforemen-
tioned ad hoc procedure to estimate κ .

The maximum likelihood estimates of G and κ in equa-
tion (2) are Ĝ = 6.67430(13) × 10−11 m3kg−1s−2 and
κ̂ = 3.5(6). Note that the maximum likelihood estimate
of κ is qualified with an evaluation of the associated un-
certainty, which is neither recognized nor propagated for
the ad hoc estimate used by Tiesinga et al. [90]. The corre-
sponding results are depicted in the left panel of Figure 8.

8.2 Laboratory Effects Model for G

The NIST Decision Tree [74] (which ignores the three
correlations aforementioned) recommends a Bayesian hi-
erarchical model with Gaussian random effects and Gaus-
sian measurement errors for these 16 measurement re-
sults, similar to the model in equation (1):

(3) Gj = G + λj + εj ,

where the {εj } are assumed to be independent and Gaus-
sian, all with mean zero and standard deviations equal to
the reported standard uncertainties, {u(Gj )}, all of which
are also assumed to be based on very large numbers of
degrees of freedom—likely an unrealistic assumption.

The experiment effects, {λj }, are assumed to be Gaus-
sian, centered at 0 m3kg−1s−2 and with a covariance ma-
trix all of whose elements are zero, except for τ 2 along the
main diagonal, and the same three elements in the upper
and lower triangles that correspond to the three nonnull
correlations mentioned above in Section 8.1.

This model is identifiable because the data are the pairs
{(Gj ,u(Gj))}: since the {εj } should be consistent with
the {u(Gj )}, the {Gj } being overdispersed relative to the
reported uncertainties suggests that the {λj } cannot all be
zero.

A Bayesian version of the model in equation (3), taking
the aforementioned correlations into account, was fitted to

https://codata.org/
https://codata.org/
http://pdg.lbl.gov
https://codata.org/
https://codata.org/
https://decisiontree.nist.gov
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FIG. 8. Measurement results for G, and results from two alternative statistical models and corresponding data reductions. The labels at the
bottom are the same that are used by Tiesinga et al. ([90], Table XXIX), where the corresponding references are listed. The diamonds represent the
measured values. The (green) thick vertical line segments represent the measurement results {Gj ± u(Gj )}. The (dark blue) thin horizontal line
segment, and the light blue band centered on it, represent the 2018 CODATA recommended value for G and the associated standard uncertainty [90],
Section XIX. Left panel: The (dark brown) thin horizontal line segment and the yellow band centered on it represent the consensus value computed
using the common mean model of equation (2) fitted by maximum likelihood, and taking into account the correlations between experiments listed in
the caption of Tiesinga et al. ([90], Table XXIX). The (purple) thin vertical line segments represent the {Gj ± κ̂u(Gj )}. Right panel: Counterpart
of the left panel for the mixed effects, Bayesian hierarchical model with Gaussian experiment effects and Gaussian measurement errors, also taking
into account the correlations aforementioned. The (purple) thin vertical line segments represent the {Gj ± (τ̂2 + u2(Gj ))½} where τ̂ denotes τ ’s
posterior mean.

the data listed in Table XXIX of Tiesinga et al. [90] using
Stan [16, 87] and R [86] codes listed in the Supplementary
Material [72], with the results depicted in the right panel
of Figure 8.

The prior distribution chosen for G was Gaussian with
mean set equal to the 2014 CODATA recommended value
for G [55], and with standard deviation set equal to the
corresponding standard uncertainty. The prior distribution
chosen for τ was half-Cauchy with median set equal to
the MAD (as defined in the R environment for statistical
computing and graphics [86]) of the measured values.

The posterior mean of G is 6.67399(20) × 10−11 m3 ·
kg−1s−2, which is not statistically significantly differ-
ent from the 2018 CODATA [90] recommended value
because the absolute value of their difference amounts
to 1.24 times the standard error of their difference.
The dark uncertainty, τ , had posterior mean 0.00096 ×
10−11 m3kg−1s−2, which is 3.8 times larger than the me-
dian of the standard uncertainties associated with the 16
measured values of G.

Figure 8 reveals that the laboratory effects model en-
tails generally smaller, more equitable increases to the ef-
fective uncertainties of the measured values than the com-
mon mean model, which involves multiplicative inflation

of the reported uncertainties. Note that both panels of Fig-
ure 8 have the same scale in their vertical axes.

8.3 Evaluating Reproducibility

Table 5 summarizes the estimates of G and of other rel-
evant quantities from Sections 8.1 and 8.2, alongside the
CODATA 2018 recommended value of G and associated
standard uncertainty [90]. These three estimates of G do
not differ significantly from one another once their uncer-
tainties are taken into account.

Schlamminger [82] notes that not only do “the various
measurements of G seem not to converge on a value; it
seems that the convergence gets worse with each addi-
tional data point.” He concludes that “adding more data
points from isolated experiments has not been the best
strategy to improve the situation,” and supports the idea of
“forming an international consortium to coordinate these
demanding experiments.”

Such an international consortium [54] has meanwhile
been formed, and in consequence the MARK-2 torsion
balance that Quinn et al. [77, 78] built and used at the
BIPM (International Bureau of Weights and Measures,
Sèvres, France) was disassembled and shipped to NIST,
in Gaithersburg, Maryland, U.S., where it was reassem-

https://codata.org/
https://codata.org/
https://codata.org/
https://codata.org/
https://www.nist.gov/programs-projects/newtonian-constant-gravitation-international-consortium
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TABLE 5
CODATA 2018 recommended value of G [90], maximum likelihood
estimate of G for the common mean model, and estimate of G from
the Bayesian laboratory effects model described in Section 8.2. The

corresponding standard uncertainties are listed under u(G). The
value for the dark uncertainty, τ , is the mean of its posterior

distribution. The estimates of κ , which figures in equation (2), are the
ad hoc estimate from Tiesinga et al. [90], and the maximum likelihood

estimate. Only the latter is qualified with the associated standard
uncertainty, u(κ)

G u(G) τ

/(10−11 m3kg−1s−2) κ u(κ)

CODATA 2018 6.67430 0.00015 3.9
Common Mean 6.67430 0.00013 3.5 0.6
Lab Effects 6.67399 0.00020 0.00096

bled and mounted on a coordinate measurement machine;
it became operational in August of 2016.

During the April 2022 meeting of the American Phys-
ical Society, Schlamminger et al. [83] described the new
setup for the MARK-2 balance, explained how an inde-
pendent, blind measurement of G was performed and an-
nounced that the first reproducibility test result should be
revealed soon.

There are other avenues being explored to resolve this
reproducibility crisis. One, merely data analytical, which
in fact affords no resolution but only makes the consen-
sus building more palatable, involves the use of a model
with shades of dark uncertainty, which entertains not a
single value of τ but several, which “penalize” differ-
ent results differently [51]. Another, theoretical, employs
non-classical physics models to explain the discrepancies
between at least some of the historical results [40], and to
“adjust” the affected results, thereby reducing the level of
mutual inconsistency of the ensemble.

In brief, this review of the recent history of the measure-
ment of the Newtonian constant of gravitation, G, and the
corresponding quest for reproducibility provides yet an-
other illustration of the extent to which the choice of sta-
tistical model (here between a common effect model and
a laboratory effects model) impacts the assessment of re-
producibility.

Maybe more importantly, it also shows that a repro-
ducibility crisis can stimulate further research and en-
courage novel approaches to evaluate and improve repro-
ducibility; in this case, the disassembly, transport across
an ocean and reassembly at the destination of a delicate
measuring instrument of great electromechanical com-
plexity, as a radical and risky step taken on a wing and
a prayer, hoping to identify reasons for the lack of repro-
ducibility.

9. RECAPITULATION AND CONCLUSIONS

This contribution entertains a broad concept of repro-
ducibility that is consistent with how this term has tra-
ditionally been understood in measurement science; the
essential agreement between results when measuring the
same property, or more generally studying the same phe-
nomenon, while using different approaches, methods and
procedures, applied by different experimenters working
independently of one another in different laboratories and
possibly at different times.

The illustrative examples show the key role that the
evaluation of measurement uncertainty plays in identify-
ing the seriousness of reproducibility crises, and in flesh-
ing out, and quantifying, the impact that different causes,
or sources of uncertainty, can have upon the lack of repro-
ducibility.

The process of learning from experience through mea-
surement is best done as a collective, collaborative enter-
prise, where different participants address the same prob-
lem and not only compare their results but also blend
them into a consensus estimate. Such consensus estimate
typically has smaller uncertainty than the uncertainty of
the individual estimates taken separately, and is also sup-
ported by a richer, more varied basis of empirical evi-
dence. The consensus estimate can be of interest in itself,
as it is for the risk of rosiglitazone (Section 6) and for the
reproduction number of a pandemic (Section 7), or it can
provide a reference against which to compare individual
measurement results, as it does in the measurement of G

(Section 8).
The conclusions are most reliable when the methods

variously employed by the participants are fundamentally
different, possibly relying on different physical principles,
and also when at least some of them are primary methods,
in the sense explained in Section 3.2. In such cases, as
Milton and Possolo [52] put it, “they achieve consilience”
[94].

The precise nature of the aforementioned collective en-
terprise varies between meta-analysis in medicine and in-
terlaboratory studies in measurement science. The former
typically do not involve a preliminary agreement about
methods and materials to be used by the participants, the
onus of selecting the results to be compared and merged
falling on the researcher conducting the meta-analysis.
The latter usually are fairly structured procedures, involv-
ing a specified schedule and common protocols to be used
for measurement.

The conventional understanding of reproducibility and
repeatability in measurement science lends itself to the
quantification of these attributes via some form or another
of estimating variance components, as was illustrated for
an interlaboratory study of the stress required to achieve
a particular relative elongation of rubber samples (Sec-
tion 5).

https://codata.org/
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The examples also show that a meaningful data anal-
ysis can require a preliminary choice of reexpression for
the measurement results, in particular to facilitate and le-
gitimize the use of a statistical model that is demonstrably
adequate for the data, and that is also fit for purpose. This
was the case for the values of stress in the interlaboratory
study of rubber elongation (Section 5), where a logarith-
mic reexpression was very helpful, and also for the meta-
analysis for the effects of rosiglitazone (Section 6), with
the traditional focus on log odds.

In interlaboratory studies and meta-analyses, there of-
ten arise results that deviate markedly from the bulk of the
others; either because the measured value is rather differ-
ent from most of the others, or because the uncertainty
reported in a result is very different from the uncertainties
reported in the other results, or both.

In general, and concerning very different reported un-
certainties, it is the smallest uncertainties that are partic-
ularly influential, especially when the measurement re-
sults are mutually inconsistent, because they tend to pull
the consensus value toward their corresponding measured
values. Such unusually small uncertainties can then be
said to be influential “inliers.”

Faced with mutually inconsistent measurement results,
the temptation is great to set “discrepant” values aside,
thereby appearing to resolve the lack of reproducibility—
Cox [24] describes one manner of succumbing to such
temptation. However, unless there is a substantive, iden-
tifiable cause to do so, no “discrepant” result should be
set aside, for the simple reason that in the absence of such
cause there would be no logical basis whereon to reject
discrepant values as being invalid—the most discrepant
value can very well be the one closest to the true value of
the measurand [26].

Statistical diagnostics are most valuable aids in identi-
fying unusual measurement results, but statistical consid-
erations alone are insufficient to reject a measurement re-
sult. Faced by challenges posed by “discrepant” but cred-
ible measurement results, one should tune the model to fit
all credible results rather then set credible but “inconve-
nient” results aside. The example in Section 5 illustrated
ways of accomplishing this, including by replacing the as-
sumption that measurement errors are Gaussian with the
assumption that they follow a Student’s t-distribution with
a small number of degrees of freedom, similar to [66].

The roller coaster that has been the history of the use
of rosiglitazone as a therapy (Section 6) shows that, even
when starting from the same set of data, one can reach
rather different conclusions owing to different statistical
models and methods of data reduction; in other words,
the issue of lack of reproducibility raised its head when
the results of alternative but comparably tenable models
and data reductions were compared.

When blending independent estimates of the reproduc-
tion number for COVID-19 in the UK (Section 7), it so

turned out that the mere exercise of preparing the inputs
for analysis can be quite influential upon the level of re-
producibility of the results, above and beyond the differ-
ences between the epidemiological models that provided
those inputs, and also above and beyond the methods used
to determine a consensus value. This serves as a warning
about the fact that fairly simple matters often relegated
to routine work can impact reproducibility, or the lack
thereof, substantially.

The history of the measurements of the least accessi-
ble of the fundamental constants of nature, the Newtonian
constant of gravitation, G, shows that alternative treat-
ments of the same data, even when they produce results
that are in fair agreement, involve very different assump-
tions that effectively establish dividing lines in the inter-
ested community; in particular, and in this case, whether
one adopts the approach first proposed by Raymond Birge
and faithfully followed mostly by the physics community,
or opts instead for the approach that is prevalent in medi-
cal meta-analysis and in measurement science.

But the most important lesson one can draw from the
recent history of the measurement of G is a lesson of opti-
mism and empowerment; that, when faced with a consid-
erable, genuine reproducibility crisis, the scientific com-
munity is ready to engage in extraordinary, cooperative
efforts to understand the root causes of the lack of repro-
ducibility, and to do so with the resolve needed to move
heaven and earth, and with the creativity to match, of
which Stephan Schlamminger (NIST) and his collabora-
tors provide paradigmatic examples.
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