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Replicability Across Multiple Studies
Marina Bogomolov iD and Ruth Heller  iD

Abstract. Meta-analysis is routinely performed in many scientific disci-
plines. This analysis is attractive since discoveries are possible even when
all the individual studies are underpowered. However, the meta-analytic dis-
coveries may be entirely driven by signal in a single study, and thus non-
replicable. Although the great majority of meta-analyses carried out to date
do not infer on the replicability of their findings, it is possible to do so. We
provide a selective overview of analyses that can be carried out towards es-
tablishing replicability of the scientific findings. We describe methods for the
setting where a single outcome is examined in multiple studies (as is com-
mon in systematic reviews of medical interventions), as well as for the set-
ting where multiple studies each examine multiple features (as in genomics
applications). We also discuss some of the current shortcomings and future
directions.

Key words and phrases: Composite null, false discovery rate, meta-
analysis, multiple hypothesis testing, replicability analysis.

1. INTRODUCTION

Meta-analysis is routinely performed in many scientific
disciplines. In the health sciences, it is common to rely on
systematic reviews and meta-analyses in order to inform
practitioners of the best standard of care. For example, the
Cochrane Collaboration carries out systematic reviews of
health care interventions (Higgins et al., 2022). In large-
scale analyses it is common to combine several indepen-
dent studies that examine the same outcome in order to
increase the discovery power. For example, in genome
wide association studies (GWAS), every study examines
many genotypes, and by combining several studies that
examine the same phenotype it is typically possible to dis-
cover more associations between genotype and phenotype
than in an individual study (see, e.g., Franke et al., 2010).
The great majority of meta-analyses carried out to date
do not infer on the replicability of their findings. Realiz-
ing that inference towards replicability of findings is pos-
sible from the studies meta-analyzed (Benjamini, Heller
and Yekutieli, 2009), there are more and more works that
target replicability from the available set of studies for
meta-analysis.

Lack of replicability of scientific findings has been of
great concern in the last two decades. In an influential

Marina Bogomolov is Associate Professor, Faculty of Data and
Decision Sciences, Technion—Israel Institute of Technology,
Haifa, Israel (e-mail: marinabo@technion.ac.il). Ruth Heller
is Professor, Department of Statistics and Operations
Research, Tel-Aviv University, Tel-Aviv, Israel (e-mail:
ruheller@gmail.com).

paper, Ioannidis (2005) claimed that the fraction of false
positive findings in many domains in science is too high.
The false positives in the published research may occur
due to publication bias, or selective reporting, or other
questionable research practices that inflate reported effect
sizes, or mere bad luck. A common practice for corrob-
orating findings is to bring forth prior findings published
that support the novel findings. This practice assumes that
there are no false positives in the published research and
may therefore be problematic, potentially causing prolif-
eration of false findings as ‘scientific’ facts. In order to
reduce the lack of fieldwise replicability, there was a sug-
gestion to lower the standard level for publication as a dis-
covery, α, from 0.05 to 0.005. This suggestion was sup-
ported by 72 researchers that are authors of the paper by
Benjamin et al. (2018), who believe that a leading cause
for published false discoveries is that the statistical stan-
dards of evidence for claiming new discoveries in many
fields of science are too low. A clear consequence of ap-
plication of their suggestion is great power loss to make
true discoveries. See Remark 4.1 for a further discussion
of this suggestion.

An alternative way of raising the standard of evidence
is to aim the analysis at replicable, rather than single,
discoveries. For example, in GWAS, the demand for es-
tablishing replicability was often enforced by funders
and journals, and GWAS findings are highly replicable
(Marigorta et al., 2018). Suppose we have at our disposal
two or more studies that examine the same (or a similar)
problem. These may be a primary and then a follow-up
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study, or a group of studies that are meta-analyzed to-
gether. Replicability analysis refers to an analysis carried
out towards identification of the replicable scientific find-
ings. The following two observations regarding replica-
bility analysis are important:

• It is more challenging than the typical analysis car-
ried out in order to identify that a signal is present in
at least one study, since replicability analysis takes
care to rule out the possibility that the finding is en-
tirely driven by a single study.

• It can always be carried out along with a meta-
analysis, adding to the meta-analytic findings a quan-
titative measure of strength of evidence towards
replicability of the findings.

When repeating a study, each repeated study necessar-
ily differs from the original study (Nosek et al., 2022).
Therefore, the efforts to corroborate true scientific find-
ings may fail because these findings are very specific to
the study, that is, they cannot be generalized to the con-
ditions of a repeated study (which differs from the orig-
inal study in many ways). Even if the innumerable dif-
ferences from the original study are believed to be irrele-
vant for obtaining the evidence about these true scientific
findings, the power may not be high enough in order to
corroborate the findings. Recognizing the statistical chal-
lenge of potentially low power, the statistical community
has developed methods specifically aimed at discovering
the replicable scientific findings (i.e., the findings that are
corroborated by multiple studies). We shall provide our
selective review of these methods. They can be useful for
practitioners, and if indeed used often then we expect that
they will lead to a reduction in the fieldwise false positive
findings.

After discussing the definition of replicability and in-
troducing our notation, we review separately the case of a
single feature (in Section 4), and of multiple features (in
Sections 5 and 6). Can replicability be established if only
a single study is available? Controlling for inflation of
false positives in the single study is the first important step
towards replicable research, and there is an abundance of
multiple comparisons methods for this purpose. However,
even with a severe multiple testing correction, one can ob-
tain findings that will not be replicable in other studies.
This may happen, for example, because of hidden biases.
Of course, it is not possible to establish replicability by
splitting the sample at random and thus creating multiple
‘studies’ examining the same problem, because the same
biases will be present in all these ‘studies.’ However, if it
is possible to split the data into subgroups based on certain
important covariates (e.g., age, gender, ethnicity), estab-
lishing replicability is possible even within a single study.
This setting is addressed in Section 7.

2. THE DEFINITION OF REPLICABILITY OF
SCIENTIFIC FINDINGS

Since studies necessarily differ, we should not expect
the same results across studies. We should not even expect
the underlying (unknown) effects to be the same, since
we cannot rule out the possibility that the sampling and
measurement variations across studies had an effect on
the underlying parameters of interest.

There is no consensus on how to quantify or mea-
sure replicability. Various definitions of replicability,
and no-replicability, were considered in Nosek et al.
(2022), Hung and Fithian (2020), Mathur and Vander-
Weele (2019), Patil, Peng and Leek (2019), Hedges and
Schauer (2019b), Goodman, Fanelli and Ioannidis (2016),
Simonsohn (2015) and references within. It is necessary
to define what replicability actually is in order to be able
to assess the extent of the evidence towards replicability
of findings. The answer should be in terms of relevant
parameters, which are the underlying quantities that rel-
evant summary statistics aim to estimate. For example,
for a single feature (or outcome) in two studies: a rea-
sonable definition is that the null hypothesis is false in
both studies (with both parameters pointing in the same
direction); a relevant summary statistic is the maximum
p-value; and a natural approach is to declare a finding
as replicable if the maximum of the two p-values is at
most α. Definitions of no-replicability include: nonnegli-
gible statistical heterogeneity of effects; mixed effect di-
rections across studies; an effect decline from an original
study to a follow-up study.

2.1 r Out of n Replicability

We consider the setting where m features are examined
in n ≥ 2 independent studies. Let θij denote the true pa-
rameter for feature i in study j . In GWAS, the parameter
θij may be a measure of association of the ith genotype
with the phenotype in the j th study. In a systematic review
that examines the effects of a health care intervention, θij

is the average treatment effect on the ith outcome in the
j th study.

The research question regarding feature i in study j is
addressed by testing the null hypothesis Hij : θij ∈ �0

ij ,

for i = 1, . . . ,m, j = 1, . . . , n, where �0
ij is a certain set

of possible values of θij . If the alternative is right sided,
then Hij : θij ≤ θ0

ij , for a certain constant θ0
ij , and Hij

is false if θij > θ0
ij . Let n+

i ∈ {0, . . . , n} be the number
of parameters for feature i for which Hij is false in this
case, that is, n+

i = |{j ∈ (1, . . . , n) : θij > θ0
ij }|. If the al-

ternative is left sided, then the inequalities above are re-
versed, and the number of false null hypotheses is defined
as n−

i = |{j ∈ (1, . . . , n) : θij < θ0
ij }|. If the alternative is

two sided, then Hij : θij = θ0
ij , and Hij is false if θij �= θ0

ij .
In this case, the number of false null hypotheses for fea-
ture i is n+

i + n−
i .
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DEFINITION 2.1 (The r out of n replicability, 2 ≤
r ≤ n). If the alternative is right sided, then we have
r/n replicability for feature i if n+

i ≥ r . The r/n no-
replicability null hypothesis is

H
r/n,+
i : n+

i ≤ r − 1,(1)

so we have r/n replicability if H
r/n,+
i is false. If the al-

ternative is two sided, then we have r/n replicability for
feature i if n+

i ≥ r or n−
i ≥ r , that is, at least r of the

parameters in the n studies addressing feature i are non-
null in the same direction. The r/n no-replicability null
hypothesis is

H
r/n
i : {

n+
i ≤ r − 1

} ∩ {
n−

i ≤ r − 1
}
,(2)

so we have r/n replicability if H
r/n
i is false.

The minimal no-replicability null hypothesis for feature
i ∈ {1, . . . ,m} is given by (1) or (2) with r = 2. The case
r = 1 reduces to the global null hypothesis which is typ-
ically tested in meta-analysis. However, rejection of the
global null hypothesis does not provide evidence towards
replicability since the rejection may be due to signal in a
single study.

For n = 2, the only possible replicability claims are
minimal replicability claims. However, for n > 2, one can
address the question whether the r/n replicability claim is
true for different values of r , specifically, r ∈ {2, . . . , n}.
Obviously, the higher is the value of r , the stronger is the
corresponding replicability claim. For example, if three
studies address the question whether a certain relationship
holds, a claim that this relationship holds in all the three
studies is stronger than a claim that it holds in at least
two of the three studies. Thus, it may be attractive to test
only the n/n no replicability null hypotheses, rejection of
which gives the strongest possible claims regarding repli-
cability. However, the power to reject the r/n no repli-
cability null hypothesis decreases as r increases (since
the composite null is larger, H

r/n
i ⊂ H

(r+1)/n
i ). There-

fore, even if the n/n no replicability null hypothesis is
false, the power may be too low to detect it in practice. It
is worth to take these power considerations into account
when making the choice of r for n > 2. In Section 4 and
Section 5 we show methods that do not require fixing r

in advance. These methods provide a lower bound on the
number of studies with signal for each selected feature,
with a confidence guarantee.

Searching for replicated effects across studies has been
considered in several application fields, where different
terms have been used for what we call r/n replicabil-
ity. This is referred to as generalizability in Nosek et al.
(2022), Sofer et al. (2017), who consider generalization of
effects to different ethnic groups. In the GWAS literature,
it is referred to as pleiotropy when the phenotypes stud-
ied are distinct. For example, the single nucleotide poly-
morphisms (SNPs) that are associated with more than one

psychiatric disorder are pleiotropic SNPs (e.g., the SNPs
associated with both Scizophrenia and bipolar disorder,
Andreassen et al., 2013). It is referred to as consistency or
external validation when the different studies correspond
to different environments (Li et al., 2022).

Assessing replicability can be useful for increasing the
evidence for causality of effects. For example, higher rates
of leukemia among radiologists and among survivors
of Hiroshima and Negasaki provide replicable evidence
of the increased risk of leukemia caused by radiation
(Rosenbaum (2001), see more examples in Rosenbaum
(2022)). For assessing causality in etiological epidemiol-
ogy, Lawlor, Tilling and Davey Smith (2017) have shown
the usefulness of identifying that an effect is replicated in
studies with different biases, some of which are, desirably,
in different directions. Lawlor, Tilling and Davey Smith
(2017) use the term triangulation to describe obtaining
more reliable or accurate answers to research questions
by comparing results in studies from two or more differ-
ent epidemiological approaches. Since triangulation will
mostly provide a qualitative assessment of the strength of
evidence regarding causality (Lawlor, Tilling and Davey
Smith, 2017), the methods reviewed in this paper could be
used in order to complement this assessment with quanti-
tative measures regarding replicability strength across the
different studies.

Definition 2.1 is useful when methods of measurements
differ and may not be on the same scale from one study to
the next, since θ0

i1 need not equal θ0
i2. Moreover, it is use-

ful when only the qualitative conclusion matters, so it is
enough to know that the association/phenomenon exists in
at least r of the studies. Simonsohn (2015) argues that this
is the case for many studies in psychology. As an exam-
ple, he discusses the (hypothetical) phenomenon of levita-
tion: if one experiment concludes that people can levitate
on average 9 inches above ground, and another concludes
that the average is 0 inches, then the meta-analytic aver-
age is 4.5 inches but there is no replicated evidence for
the phenomenon. There would have been 2/2 replicability
only if both experiments concluded that people can levi-
tate on average a positive amount above ground (and this
positive amount may differ across the studies).

REMARK 2.1. According to our definition, a true r/n

replicability claim is made if at least r ≥ 2 of the param-
eters in the n studies are nonnull (in the same direction),
even if the nonnull parameters differ across studies. We
realize that this definition of replicability may seem unsat-
isfying for some purposes. Hedges and Schauer (2019a)
argue that if effects are in the same direction but vary in
several orders of magnitude, the result may not be consid-
ered replicated. If the primary study has a positive effect,
and a follow-up study has a positive yet much smaller ef-
fect, they would like to define it as nonreplicated. This is
in contrast with our definition which, with enough data,
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will consider it replicated. One way to alleviate their con-
cern, when the hypothesis testing problems are one sided,
is to define a feature as replicated if the effect is at least of
a meaningful (predefined) magnitude in at least r studies
(Mathur and VanderWeele, 2019, Jaljuli et al., 2022).

REMARK 2.2. We concentrate on identification of
the replicated signals. For assessing fieldwise replicabil-
ity measures we refer the reader to Hung and Fithian
(2020) and references within. These measures are impor-
tant when focusing on the reliability of a field of science.
This is not the focus of this review, though it is related in
the sense that by routinely applying the procedures dis-
cussed in this review, which aim to detect replicated sig-
nals while controlling for false replicability claims, the
reliability of the field may increase. Specifically, the frac-
tion of published replicable relationships that are false is
expected to be smaller than the fraction of published rela-
tionships that are false.

REMARK 2.3. One of the settings addressed in Sec-
tion 5.3 considers the null hypothesis Hij to be condi-
tional independence between an outcome and a predictor
i, given all other predictors, in study j (Li et al., 2022).
With some abuse of notation, the r out of n replicability
in this case is that n+

i ≥ r , where n+
i represents the num-

ber of studies in which predictor i and the outcome are
conditionally dependent.

2.2 Reasons for Lack of Replicability

Since there is unavoidable heterogeneity across studies,
it can happen that the effect is present in exactly one of
the studies, and therefore it is clearly not a replicated ef-
fect. Formally, H

r/n,+
i may be true for r ≥ 2, even though

n+
i = 1. This explains why rejecting the global null hy-

pothesis, n+
i = 0, is not enough in order to make a repli-

cability claim. For r/n replicability with r > 2, even re-
jecting H

(r−1)/n,+
i is not enough—it is necessary to reject

H
r/n,+
i .
For example, in GWAS, an association between geno-

type and phenotype may be particular to a single study
and thus nonreplicable. We provide the following doc-
umented case regarding Crohn’s disease. Franke et al.
(2010) has successfully detected more than 70 genomic
regions which are susceptible for association with Crohn’s
disease in populations of European ancestry, but only a
few have been confirmed in the East Asian population
(Marigorta et al., 2018, Nakagome et al., 2012). As sug-
gested by Nakagome et al. (2012), the lack of any associ-
ation with Crohn’s disease in a specific region NOD2 in
East Asians could be due to the specificity of the causal
association to the population of European ancestry due to
natural selection. Another possible explanation is the lack
of representation of causal variants, see Section 5.2 of Li
et al. (2022). Briefly, the genome has block-like patterns

of linkage disequilibrium, so that the alleles are dependent
within each block, and are approximately independent
across the blocks. For certain noncausal SNPs, the null
hypothesis of conditional independence may be false just
because they belong to the same block as the unmeasured
causal SNP. The block-like patterns of linkage disequi-
librium vary across populations with different ancestries
(Kidd et al., 2004). Therefore, a noncausal SNP may be in
the same block as the unmeasured causal SNP in the pop-
ulation addressed by study one, implying the falsehood of
its null hypothesis in study one, but in a block containing
no causal SNPs in a population addressed by study two,
implying the truth of its null hypothesis in study two.

Additional examples of cases where a null hypothesis
may be false in one study and true in the other study
can be found in Wang et al. (2022), who search for repli-
cated signals across different platforms or ethnic groups.
Of course it may be that the signal is present only in a
single study, which is carried out on a specific platform or
on a specific ethnic group.

Another reason for a finding to fail to replicate is that
the finding may be due to bias: the null hypothesis of no
treatment effect is true, but its p-value is stochastically
smaller than uniform, so it behaves as a p-value of a false
null hypothesis. This is certainly a danger in observational
studies. If hidden bias is present, then differing outcomes
in treated and control groups may not actually be effects
caused by the treatment. Suppose that this is the case in
a single study, and that there is no treatment effect. Sup-
pose also that the other studies considered do not replicate
the same hidden bias. Then the prospect of replicating the
finding (a ‘treatment effect’) in the single study by the
other studies is reduced (Rosenbaum, 2001). This may
be the case in Hughes et al. (2020), Panagiotou, Jaljuli
and Heller (2020), where it is found that blood pressure
lowering with antihypertensive agents is associated with
a lower risk of incident dementia or cognitive impairment
in at least one study, but possibly only in one study.

3. ERROR RATES FOR CONTROLLING ERRONEOUS
REPLICABILITY CLAIMS

Let us first consider the case where the alternatives are
right sided. In general, our goal is to identify features
with effects in at least r studies, for r ∈ {2, . . . , n}. This
goal can be achieved by testing the family {Hr/n,+

i , i =
1, . . . ,m}. Rejection of H

r/n,+
i leads to claiming that an

effect for feature i exists in at least r studies. This replica-
bility claim is false if H

r/n,+
i is true, that is, if the number

of studies with effects for feature i is smaller than r . Let
V r/n and Rr/n be the number of false replicability claims
and the total number of replicability claims, respectively.
The familywise error rate (FWER) for replicability analy-
sis is the probability that one or more replicability claims



606 M. BOGOMOLOV AND R. HELLER

that were made are false, that is,

FWERr/n = P
(
V r/n > 0

)
.

Similarly, the false discovery rate (FDR, Benjamini and
Hochberg, 1995) for replicability claims is

FDRr/n = E

[
V r/n

max(Rr/n,1)

]
.

Rather than identifying the features with effects in at least
r studies, one can obtain a lower confidence bound for the
number of such features (or equivalently, an upper confi-
dence bound on the number of features that have an effect
in at most r − 1 studies), in any selected set of features,
with a predefined simultaneous coverage guarantee, see
Goeman and Solari (2011) and Blanchard, Neuvial and
Roquain (2020), among others, for methods addressing
this goal.

For two-sided alternatives it is of interest to identify
features with effects in the same direction in at least r

studies, and to declare the common direction of effects.
Let R

r/n,L
i and R

r/n,R
i be the indicators of whether the

r/n replicability claim for feature i was made in the
left and right directions, respectively. Define Rr/n,D =∑m

i=1 R
r/n,L
i + ∑m

i=1 R
r/n,R
i as the total number of r/n

replicability claims. The directional replicability frame-
work accounts for type III errors (Tukey, 1991, Jones and
Tukey, 2000), which occur when the declared common
direction of effects is wrong. Specifically, the numbers
of false and true directional r/n replicability claims are
V r/n,D and Sr/n,D , respectively, where

Sr/n,D

= ∑
i:n+

i ≥r

R
r/n,R
i + ∑

i:n−
i ≥r

R
r/n,L
i ,

and V r/n,D = Rr/n,D − Sr/n,D . The FWER and FDR for
directional r/n replicability analysis are defined with re-
spect to the above definitions of true and false discoveries,
that is,

FWERr/n,D = P
(
V r/n,D > 0

)
,

and

FDRr/n,D = E

[
V r/n,D

max(Rr/n,D,1)

]
.

The next section addresses the case where there is a sin-
gle feature examined in each study (m = 1), in which the
error rates above reduce to the probability of making a
false r/n replicability claim, or at least one false direc-
tional r/n replicability claim. In Section 5, we address
the case of multiple features, and review several methods
for controlling the error rates above. In Section 6, we ad-
dress the control of the Bayesian counterpart of the FDR
on replicability claims, for high dimensional studies.

4. THE CASE OF A SINGLE FEATURE PER STUDY

4.1 Parametric and Naive Approaches

Systematic reviews attempt to assemble all the studies
that are relevant to specific research questions. They are
important for advancing good standards of care in the field
of medicine, where the questions are about medical in-
terventions. In particular, the Cochrane collaboration rou-
tinely conducts systematic reviews in order to assess the
effects of health care interventions (Higgins et al., 2022).

The systematic review may carry out one, or several,
meta-analyses. Each meta-analysis carried out examines
a single intervention. For a meta-analysis of a specific
(e.g., primary) outcome in the systematic review, let θ1 =
(θ11, . . . , θ1n) denote the (unknown) effects of the inter-
vention in the n studies meta-analysed. The meta-analysis
is used to infer on whether the effect of the intervention
is present in at least one study (by rejecting the test of the
global null hypothesis that there is no effect in all the stud-
ies). In addition, the meta-analysis typically provides con-
fidence intervals assuming that the effect is common to all
studies (the ‘fixed effect’ model, where it is assumed that
θ11 = · · · = θ1n) or that the effects underlying the studies
follow some distribution, the ‘random effects’ model.

For the ‘random effects’ model, the assumed underly-
ing distribution is typically Gaussian, so it is assumed that

θ1j
iid∼ N(μ, τ 2). With this strong assumption on the dis-

tribution of the θ1j s, it is possible to infer on the overall
effect (Higgins et al., 2022), as well as provide 1−α level
prediction intervals for the θ1j ’s. Saad et al. (2019) view
the intervention effect in a new study as independently
sampled from the random effects model. By projecting
the estimates and confidence regions for the population
mean and standard deviation, they produce pointwise es-
timates and confidence intervals for the cumulative distri-
bution function of the random effects model, which pro-
vide a quantitative method for clinical decision-making
that takes into consideration the heterogeneity of the inter-
vention effect. Replicability can also be addressed within
this model: Mathur and VanderWeele (2019) suggest sev-
eral metrics for inference, including the fraction of effects
that exceed a predefined threshold.

The assumption that the true (unobserved) treatment
effects come from a known distribution can have a detri-
mental impact on inference if it is false. This is so espe-
cially when the number of studies is small so the assump-
tion cannot be verified using diagnostic tools. In partic-
ular, in systematic reviews of medical interventions, the
number of studies is typically small, and there is no rea-
son to believe that the unobserved treatment effects in
a few different cohorts (or subgroups, or environments)
have a bell-shaped histogram that concurs with the model
assumption. Therefore, we would like to provide tools for
assessing the extent of the evidence towards replicability,
that do no rely on any parametric assumptions.
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An intuitive way of declaring n/n replicability, which
is also statistically valid, is if the p-values from all n > 1
studies are at most α (the predefined probability of a type
I error). For n = 2, the probability of a false replicabil-
ity claim is then at most α, and this bound is tight since
it occurs when the p-value in one study is almost surely
zero (i.e., a very strong association is detected), yet in the
other study the p-value is uniform. However, for n > 2
the requirement that all p-values be at most α is too strin-
gent, at least when it is enough to establish that there is
signal in at least two studies—the minimal replicability
requirement.

A naive approach is to declare minimal replicability if
at least two studies have p-values at most α. However, the
naive approach is not valid, since the probability that the
replicability claim is false can be far greater than α. To
see this, consider the common setting in which p-values
corresponding to true null hypotheses are uniformly dis-
tributed, so the probability that each of these p-values is
at most α is α. If at most one study is nonnull, then there
is no replicability. However, the probability that at least
two studies will have p-value at most α is lower bounded
by the probability that a binomial random variable with
n trials and success probability α is at least two, that is,
1 − (1 − α)n − n(1 − α)n−1α. For example, for n = 10
and α = 0.05, it is 0.09. This lower bound is the probabil-
ity of a false replicability claim (i.e., of rejecting H

2/n
1 ,

even though H
2/n
1 is true), only when all the p-values

are uniformly distributed. However, if a single study has
p-value less than 0.05 with probability one, and the re-
maining n − 1 = 9 p-values are uniformly distributed,
then the probability of a false replicability claim increases
to 1 − (1 − α)n−1 = 1 − 0.959 = 0.37. The naive ap-
proach should not be used for establishing replicability,
since the probability of falsely declaring minimal replica-
bility is nonnegligible even for n small, and increases to
one rapidly.

In Section 4.2, we briefly describe the approach in
Jaljuli et al. (2022), which is completely nonparametric,
and therefore it can be used for replicability analysis when
n is small or large.

REMARK 4.1. Decreasing the rejection threshold
from α = 0.05 to α = 0.005, following Benjamin et al.
(2018), indeed decreases the probability of making a
false replicability claim with the naive approach. How-
ever, when the number of studies n is large enough, this
probability can still be close to one. In Section 4.2, we
suggest a method that guarantees control of the proba-
bility of making a false replicability claim at the desired
level α. Of course, as α decreases the power to detect a
false no-replicability null hypothesis decreases, and the
power deterioration may be large when moving from an
α = 0.05 to α = 0.005. The suggestion to reduce α by

Benjamin et al. (2018) was motivated by the need to have
a stricter statistical standard for claiming new discoveries.
Since the claim of replicability is stronger than the claim
of a single new discovery, it may not be necessary to raise
the standards even higher by reducing α.

4.2 Replicability Analysis with Partial Conjunction
p-Values

For a general method for obtaining a valid p-value for
the r/n no-replicability null hypothesis (1), see Benjamini
and Heller (2008), Wang and Owen (2019), where this
null hypothesis and its p-value are referred to as r/n par-
tial conjunction (PC) null hypothesis and p-value, respec-
tively. One example for a PC p-value is the following.
Let p1j be the right-sided p-value associated with H1j ,
in study j , for j = 1, . . . , n. The n p-values are mutu-
ally independent, since we address the setting of n inde-
pendent studies. Let p1(1) ≤ p1(2) ≤ · · · ≤ p1(n) be the or-
dered sequence of right-sided p-values. The PC p-value
motivated by Fisher’s p-value combining method (Fisher,
1934) for H

r/n,+
1 is

p
r/n
1 = P

[
χ2

2(n−r+1) ≥ −2
n∑

j=r

logp1(j)

]
.(3)

Jaljuli et al. (2022) use the PC p-values in order to
establish replicability in systematic reviews from the
Cochrane library. The r/n PC p-value is a p-value for
the r/n no replicability null hypothesis, so the smaller it
is the greater the evidence towards r/n replicability. It is
thus an informative quantitative measure of the extent of
evidence towards replicability, just as the p-value is infor-
mative for reporting in individual studies. This measure is
attractive for assessing replicability for the following rea-
sons:

• Even if all studies are underpowered, it may con-
vey that there is evidence towards replicability (this
property is similar to the attractive property in meta-
analysis of pooling evidence across the studies in
order to discover that there is signal in at least one
study). In particular, even if the p-values in all indi-
vidual studies are larger than α = 0.05, the PC p-
value may be smaller than 0.05. For example, for
n = 3 p-values with value 0.090, p

2/3
1 = 0.047 with

Fisher’s combining method.
• Even if r − 1 studies have tiny p-values, it may con-

vey that there is no evidence for r/n replicability. For
example, for n = 3 p-values with values 0.00001,
0.2, and 0.4, p

2/3
1 = 0.28 with Fisher’s combining

method; the global null p-value is p
1/n
1 = 9 × 10−5.

So in this example we can conclude that there is sig-
nal in at least one study, but we cannot rule out that
the signal may be present only in one study (since we
fail to establish minimal replicability at α = 0.05, or
any level α < 0.28).
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In addition, a 1 − α confidence lower bound on the
number of studies with effect is provided by testing the
PC hypotheses in order starting from r = 1, following
Benjamini, Heller and Yekutieli (2009). Specifically, this
lower bound is given by

lα = max
{
l ∈ {0, . . . , n} : pr/n

1 ≤ α for r = 0, . . . , l
}
,(4)

where p
0/n
1 is defined as 0 (see Jaljuli et al., 2022 for de-

tails).
For directional inference, one-sided p-values are com-

bined in each direction in Jaljuli et al. (2022), follow-
ing Owen (2009). For example, the PC p-value for H

r/n
1

using Fisher’s combining method is 2 min{qr/n
1 ,p

r/n
1 },

where p
r/n
1 is defined in (3) and

q
r/n
1 = P

[
χ2

2(n−r+1) ≥ −2
n∑

j=r

logq1(j)

]
,

where q1(1) ≤ q1(2) ≤ · · · ≤ q1(n) is the ordered sequence
of left-sided p-values (for continuous test statistics, q1j =
1 − p1j , j = 1, . . . , n). If the PC p-value above is below
α, the common direction of effects is declared to be right
sided if p

r/n
1 < q

r/n
1 , and left sided otherwise.

REMARK 4.2. The methodology we describe takes
care to control the probability of declaring replicability
falsely in the case that exactly one study has an associ-
ation, that is, n+

1 = 1 when testing right-sided alterna-
tives.We believe it is important to apply replicability anal-
ysis methods that are valid even when n+

1 = 1, since such
methods guard against claiming replicability due to evi-
dence coming only from a single study, which is a real-
istic setting that cannot be ruled out, as explained in Sec-
tion 2. Of course, if it is a priori somehow known that
n+

i = 1 cannot be true, then it is possible to device more
powerful criteria for replication success. The potential in-
crease in power is due to the fact that in this case the no-
replicability null hypothesis, n+

1 = 0, is much narrower
than (1). Specifically, for testing the 2/2 no replicability
null hypothesis we require that max(p11,p12) ≤ α in or-
der to declare replicability. The least favorable configu-
ration, for which the probability that max(p11,p12) ≤ α

is exactly α, is that n+
1 = 1, and that this study has a p-

value of zero (almost surely), and the other study has a
p-value that is uniformly distributed. However, if it is as-
sumed that n+

1 ∈ {0,2}, then if there is no replicability,
the global null is assumed to be true and so the probability
that max(p11,p12) ≤ α is α2 (i.e., the test is too conserva-
tive). Under this strong assumption, where no replicability
means that the global null is true, Pawel and Held (2022),
Held, Micheloud and Balabdaoui (2022) suggested less
conservative tests for replication success.

4.3 Extensions and Future Directions

The difference in power between different combining
methods used for testing H

r/n
1 can be large, and the com-

bining methods differ in the settings in which they work
best. A recent comparative study (Hoang and Dickhaus,
2022) examines several combination methods of p-values
as well as of e-values. Choosing a good combination
method is important in order to have good power to estab-
lish replicability, but the choice depends on a priori un-
known characteristics of the data generation, notably the
number of studies with signal. Therefore, it can be use-
ful to have adaptive methods that let the data guide the
choice of the appropriate combination method for testing
the no-replicability null hypothesis.

Meta-analysis is prone to publication bias, where only
significant results (typically at p-value ≤0.05) are pub-
lished. If the group of studies considered may be biased, a
sensitivity analysis that takes the bias into account should
be carried out. For example, the p-values for the replica-
bility analysis may be adjusted for selection bias by com-
bining for PC testing only p-values at most 0.05, after
inflating each by multiplying it by 1/0.05 = 20 (Fithian,
Sun and Taylor, 2017, Zhao, Small and Su, 2019, Hung
and Fithian, 2020). Such an analysis is more conservative,
but also more robust to the bias that arises from publishing
only findings that are significant at the 0.05 level.

A lower confidence bound on n+
1 is of great interest for

assessing replicability. An upper confidence bound may
also be of interest, since it conveys the limit on replica-
bility, or the specificity, to a subset of studies. Heller and
Solari (2023) provides methods targeting upper (as well
as lower) confidence bounds for n+

1 .
Finally, the systematic reviews for health care inter-

ventions typically consider multiple primary and sec-
ondary outcomes. Therefore, they carry out multiple
meta-analyses that each examines a single endpoint. It can
be thus useful to develop a replicability analysis pipeline
that takes the multiplicity of the outcomes into account,
to guarantee a desired overall error rate. The setting of
multiple outcomes fits into the methods we discuss next
in its simplest form where the outcomes can be treated as
exchangeable. This is not necessarily the case for med-
ical interventions, where it may be best to use weights
or have a hierarchical structure that conveys the relative
importance of, or dependence between, the outcomes.

5. FREQUENTIST APPROACHES FOR MULTIPLE
FEATURES PER STUDY

5.1 The Shortcomings of the Naive Approach

A common practice is to corroborate the reported find-
ings from a study with reported findings in one or more
previous studies that examine the same or a similar prob-
lem. Although this is an intuitive approach for establish-
ing replicability, it is not a formal statistical approach.
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For a single feature, that is, m = 1, this approach reduces
to the naive approach of declaring minimal replicability
when the p-value is at most α in this study as well as
in at least one of the previous n − 1 studies. This ap-
proach is valid for n = 2, as discussed in Section 4, but
it is not valid for n > 2. In this section we address the
settings where m > 1, and characterize the scenarios in
which the naive approach may be problematic in the fol-
lowing two aspects: it may cause an unacceptable infla-
tion of false replicability claims; it may lack power to
discover features with replicated signals (that a nonnaive
replicability analysis procedure may have good power to
discover).

Let us first formalize the naive approach that we ad-
dress. Although the investigators often report in their pa-
pers that their findings were replicated in one or two stud-
ies examining the same features, in practice, it seems
natural that the investigators consider multiple previous
studies examining their features of interest, and pick for
claiming replicability only those which indeed corrobo-
rate their findings. Our formal simplification is that the
analyst declares as replicated the features in the set D1 ∩
(
⋃n

j=2 Dj ), where D1 is the set of features discovered in
the given study, call it study one, and Dj , j = 2, . . . , n are
the sets of features discovered in n − 1 previous studies,
where each Dj is the result of a multiple testing proce-
dure (e.g., Bonferroni). Of course in practice n may not
be fixed in advance.

We illustrate the problematic aspects of the naive ap-
proach by examples below and in the Supplementary Ma-
terial (SM) (Bogomolov and Heller, 2023). Briefly, some
key observations are as follows. First, suppose that the
proportion of nonreplicable signals in study one is non-
negligible. Suppose that the discoveries in study one are
those that pass the severe Bonferroni correction at level α

(i.e., only features with pi1 ≤ α/m are rejected). Then, for
any fixed m and n > 2, the naive approach may lead to an
inflated FWER for minimal replicability analysis, that is,
the probability of making one or more false minimal repli-
cability claims may be higher than α. The inflation may
increase, and thus be of greater concern, as (1) the number
of studies considered, n, increases, or (2) the proportion or
strength of nonreplicable signals in study one increases, or
(3) the analyst applies a multiple testing procedure within
each study that is less stringent than Bonferroni, for ex-
ample, if Bonferroni is replaced by Hommel’s procedure
(Hommel, 1988) or the Benjamini–Hochberg (BH) pro-
cedure (Benjamini and Hochberg, 1995). The naive ap-
proach with discoveries from the BH procedure may lead
to a highly inflated FDR for replicability analysis even for
n = 2. Second, consider the case when m is large and the
proportion of nonreplicable signals in study one is close
to 0, which is a typical scenario in GWA studies. Then
the naive approach with Bonferroni and with BH may be

valid in terms of FWER and FDR control, respectively.
However, in these settings their power to discover features
with replicated signals may be very low, compared to the
procedures in Section 5.2 and Section 5.3, which are de-
signed for controlling the FWER or FDR for replicability
analysis. We thus recommend using the latter procedures
and not the naive approach above, both for the sake of
replicability error control and for the sake of power for
identifying true replicated signals.

We now give more details and examples for justifying
the observations above. For simplicity, we address one-
sided hypotheses. We start by two examples which ap-
ply the Bonferroni procedure in each study. They serve
to demonstrate the validity, yet low power, the naive ap-
proach can have for n = 2 and for GWAS-like problems
with n > 2, as well as the inflation it can have in non
GWAS-like problems. We provide in the SM additional
examples that assess the naive approach when in each
study discoveries are made using FWER-controlling pro-
cedures (including those which are less conservative than
Bonferroni).

EXAMPLE 5.1. Assume one faces n = 2 studies ex-
amining m > 1 features, and the discoveries within them
are obtained using the level-α Bonferroni procedure,
which rejects a given hypothesis if its p-value is be-
low α/m. In this case, the set of indices of features
with replicability claims based on the naive approach is
D1 ∩ D2 = {i : max(pi1,pi2) ≤ α/m}, that is, the re-
jection set of Bonferroni applied on {max(pi1,pi2), i =
1, . . . ,m}. Since for any i ∈ {1, . . . ,m}, max(pi1,pi2) is
a valid p-value for H

2/2,+
i defined in (1), and the Bon-

ferroni procedure guarantees FWER control under any
dependency among the p-values, in this case the naive
approach guarantees FWER control with respect to repli-
cability claims. Although this approach is valid, it may
be much more conservative than the FWER-controlling
Procedure 5.1 with Bonferroni in Step 2, especially when
the proportion of signals within each study is small, see
Remark 2 in Bogomolov and Heller (2018).

EXAMPLE 5.2. We now address the configuration in
Table 1. For simplicity, we address the idealized set-
ting where the p-values for false null hypotheses are, al-
most surely, equal to 0. We assume that the hypotheses
within each study are tested using Bonferroni at level α.
In this case, an analyst can make false minimal repli-
cability claims for all the features except for feature m,
for which the effects are replicated in all the studies.
The probability of making a false minimal replicability
claim for feature 1 is g1(α) = 1 − (1 − α/m)n−1, and
the probability of making a false replicability claim for
a given feature with index i ∈ {2, . . . ,m − 1} is g2(α) =
(α/m)[1 − (1 − α/m)n−1]. Therefore, under indepen-
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TABLE 1
Illustration of the setting addressed in Example 5.2. The ij th entry

indicates the distribution of pij , for each i ∈ {1, . . . ,m},
j ∈ {1, . . . , n}: 0 indicates that the given p-value is 0 with probability

1, U(0,1) indicates that its distribution is uniform

Study 1 Study 2 Study 3 . . . Study n

1 0 U(0,1) U(0,1) . . . U(0,1)

2 U(0,1) U(0,1) U(0,1) . . . U(0,1)

. . . . . . . . . . . . . . . . . .

m − 1 U(0,1) U(0,1) U(0,1) . . . U(0,1)

m 0 0 0 . . . 0

dence within each study, the FWER for minimal replica-
bility analysis is equal to

P(at least one false minimal replicability claim)

= 1 − [
1 − g1(α)

][
1 − g2(α)

]m−2

= 1 − (1 − α/m)n−1

× {
1 − (α/m)

[
1 − (1 − α/m)n−1]}m−2

.

When m is large and n 	 m, so that n/m is close to 0,
the FWER for replicability analysis is close to 0. This
conclusion suggests that the naive approach is valid for
GWAS, since this setting can be viewed as a stylized
GWAS example.1 However, as will become clear in the
following sections, there are more powerful approaches
than the naive approach. For α = 0.05 and n = 10, the
FWER for replicability analysis is 5 × 10−7 for m = 106,
and it increases to 0.005 for m = 100. Moving away from
the GWAS setting, for small m and n 
 m, the FWER
for replicability analysis may approach 1. For α = 0.05,
m = 10 and n = 100, the FWER is 0.4.

Let us now consider the case where the hypotheses
within each study are tested using the level-α BH pro-
cedure. A toy example in the SM shows that even in
the low-dimensional case where m = n = 2, the FDR for
replicability analysis may be 2α. The following example
shows that the replicability FDR of the naive approach can
be close to 1 in settings with large m and a nonnegligi-
ble proportion of features with nonreplicable effects. For
simulations showing the inflation of replicability FDR of
the naive approach with BH under more realistic settings
with n = 2 studies, see Figure 1 in Bogomolov and Heller
(2018) and Figure 3 in Bogomolov and Heller (2013). Es-
sentially, these results show that when the proportion of

1Although in GWAS the number of SNPs examined is often higher
than a million, it is commonly assumed that the effective number of
independent SNPs is a million, which leads to choosing the threshold
of 5 × 10−8, corresponding to the Bonferroni correction of the tar-
get FWER level 0.05, which accounts for the multiplicity of a million
features.

features with effects in exactly one study is small, the
FDR of the naive approach may be controlled, however
its power may be very low compared to other methods de-
signed for controlling FDR for replicability analysis (e.g.,
Procedure 5.2 of Bogomolov and Heller, 2018). When the
proportion of nonreplicable effects increases, the naive
approach loses its control of FDR for replicability claims.
Interestingly, these simulation results essentially concur
with the results shown in Figure 1 of Li et al. (2022)
with respect to the naive approach in the model-X frame-
work of Candès et al. (2018), which uses a knockoff-based
method rather than BH within each study.2

EXAMPLE 5.3. An investigator faces n = 2 stud-
ies examining m features, where m is large. Assume
that within each study j ∈ {1,2}, the following condi-
tions hold: (1) the p-values are independent, (2) the p-
values for features with an effect in study j ∈ {1,2}
have the same cumulative distribution function, denoted
by Fj , which satisfies the conditions of Theorem 1 of
Genovese and Wasserman (2002) (3) the features with
no effect have uniform p-values. Assume that replicabil-
ity claims are made for features for which the null hy-
potheses were rejected by BH at level α in both stud-
ies. Let m00, m11, m01 and m10 denote the numbers
of features with no effect in both studies, with an ef-
fect in both studies, with an effect only in study two,
and with an effect only in study one, respectively. Let
πrs = mrs/m, r, s ∈ {0,1} be the corresponding propor-
tions among all the m features. We consider the setting
where π11 = 0, while π10 and π01 are both positive.
According to Theorem 1 of Genovese and Wasserman
(2002), for large enough m, applying the BH proce-
dure at level α within each study j ∈ {1,2} is approx-
imately equivalent to rejecting the hypotheses with p-
values less than a fixed threshold u∗

j , which is the solution
to Fj (u) = βju, with β∗

1 = [1 − α(π00 + π01)]/[α(1 −
π00 − π01)], and β∗

2 = [1 − α(π00 + π10)]/[α(1 − π00 −
π10)]. In this setting any replicability claim is false,
and the numbers of false replicability claims for fea-
tures with no effects in both studies, with an effect only
in study one, and with an effect only in study two,
are approximately Bin(m00, u

∗
1u

∗
2), Bin(m10,F1(u

∗
1)u

∗
2),

and Bin(m01, u
∗
1F2(u

∗
2)) random variables, respectively.

Therefore, for replicability the FDR is equivalent to the
FWER, and is approximately

1 − (
1 − u∗

1u
∗
2
)m00

(
1 − F1

(
u∗

1
)
u∗

2
)m10

(
1 − u∗

1F2
(
u∗

2
))m01 .

2In the simulation for Figure 1 of Li et al. (2022), the naive proce-
dure declares n/n replicability for features with discoveries obtained in
all the n studies. This approach does not control FDR for n/n replica-
bility analysis when most conditional associations are inconsistent. It
retains FDR control when most conditional associations are consistent,
but in this case it is underpowered compared to knockoff-based proce-
dures tailored for replicability analysis with FDR control (described in
Procedure 5.7).



REPLICABILITY ACROSS MULTIPLE STUDIES 611

For very strong effects, corresponding to p-values which
are equal to 0 almost surely, it holds F1(u

∗
1) = F2(u

∗
2) =

1, so u∗
i = 1/β∗

i , for i = 1,2. Obviously, the expression
above may be close to 1. For example, for α = 0.05,
and (π00, π10, π01) = (0.85,0.1,0.05), we obtain u∗

1 =
0.0052, u∗

2 = 0.0026, so FDR ≈ 0.995 for m = 10,000
and FDR ≈ 0.235 for m = 500. For a more sparse set-
ting, where (π00, π10, π01) = (0.98,0.01,0.01), we ob-
tain u∗

1 = u∗
2 = 0.00053, so FDR ≈ 0.102 for m = 10,000

and FDR ≈ 0.005 for m = 500.

We review below several methods tailored for control-
ling FWER or FDR for replicability analysis, which we
recommend using instead of the naive approach discussed
above.

5.2 Targeting Minimal Replicability

The goal of replicability analysis across two indepen-
dent studies with summary statistics available for all the
features has been considered in Bogomolov and Heller
(2018), Zhao, Small and Rosenbaum (2018). Their meth-
ods are based on two steps. First, the promising features
are selected from each study separately, based on the data
from that study. Second, the features that are selected
from both studies are tested for replicability. The meth-
ods are based on the idea that replicable features will seem
to be promising in both studies if there is enough power
to detect them, so (almost) all replicable features are ex-
pected to be selected for testing, while accounting for less
features at the testing stage leads to power gain. Indeed,
the method targeting FDR control is shown to be typically
more powerful than applying the BH procedure on maxi-
mum of the two studies’ p-values (in case n = 2, the latter
is the partial conjunction approach of Benjamini, Heller
and Yekutieli, 2009). For replicability with FWER2/2,D

control at level α, the method is the following.

PROCEDURE 5.1 (Bogomolov and Heller, 2018, Zhao,
Small and Rosenbaum, 2018).

Step 1: Apply a selection rule on the set of p-values
{(pi1, qi1), i = 1, . . . ,m} to obtain the set of selected fea-
tures S1. Similarly, apply a selection rule on the set of
p-values {(pi2, qi2), i = 1, . . . ,m} to obtain the set of se-
lected features S2. If all the alternatives are two sided,
define

p′
i1 =

{
qi1 qi2 ≤ pi2

pi1 qi2 > pi2
, p′

i2 =
{
qi2 qi1 ≤ pi1,

pi2 qi1 > pi1
.

If all the alternatives are right sided, define p′
i1 = pi1, and

p′
i2 = pi2.
Step 2: Apply a FWER-controlling procedure (e.g.

Holm’s method, Holm, 1979) on the set {p′
i1, i ∈ S2} at

level α/2, and on the set {p′
i2, i ∈ S1} at level α/2. Let

Rj be the set of indices of rejected hypotheses in set Sj .

Step 3: Declare as replicated the features with indices
in the set R1 ∩R2.

For replicability with FDR2/2,D control at level α,
Bogomolov and Heller (2018) suggested the following
method. Throughout the paper, for any event A, I (A) de-
notes the indicator of A, and inequality x ≤ y for vectors
x, y ∈ R

n means that the corresponding inequality holds
coordinatewise, that is, xi ≤ yi for i = 1, . . . , n.

PROCEDURE 5.2 (Bogomolov and Heller, 2018).

Step 1: Identical to Step 1 in Procedure 5.1.
Step 2: Compute

R = max
{
r :

∑
i∈S1∩S2

I

[(
p′

i1,p
′
i2

) ≤
(

rα

2|S2| ,
rα

2|S1|
)]

= r

}
.

Step 3: Declare minimal replicability for features with
indices in the set

R =
{
i : (

p′
i1,p

′
i2

) ≤
(

Rα

2|S2| ,
Rα

2|S1|
)
, i ∈ S1 ∩ S2

}
.

Rather than fixing the target replicability error rate α in
advance, one can compute the adjusted p-value for each
feature, which quantifies its evidence for replicability. The
adjusted p-value for each feature is the minimal level of
FWER or FDR for which the feature is declared as repli-
cated by a given procedure. Therefore, for error control
at level α, replicability is established for features with ad-
justed p-values at most α.

The adjusted p-values for the FWER-controlling Pro-
cedure 5.1 depend on the choice of the FWER-controlling
procedure used in Step 2. If Bonferroni’s method is used
in Step 2, then the adjusted p-value for feature i ∈ S1 ∩S2
based on Procedure 5.1 is

pBon
i = 2 max

(|S2|p′
i1, |S1|p′

i2
)
.(5)

The adjusted p-value for feature i ∈ S1 ∩S2 based on Pro-
cedure 5.2 is

pBH
i = min

{j :pBon
j ≥pBon

i ,j∈S1∩S2}
pBon

j∑
k∈S1∩S2

I (pBon
k ≤ pBon

j )
,(6)

where pBon
i for i ∈ S1 ∩ S2 is given in (5).

See Bogomolov and Heller (2018) for theoretical guar-
antees of these procedures. A straightforward generaliza-
tion of these procedures for the case where n ≥ 2 and
the goal is identifying features with minimal replicabil-
ity is as follows. Prior to Step 1, the n studies are di-
vided into two groups, and the right-sided and left-sided
p-values within each group are combined for obtaining
global null p-values for both directions. Then the same
steps are applied, where (pi1, qi1) and (pi2, qi2) are re-
placed by the corresponding global null p-values for each
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group of studies. For both procedures, Step 3 defines the
set of features with minimal replicability claims. The the-
oretical guarantees for the generalized Procedure 5.1 and
5.2 address FWER2/n,D and FDR2/n,D , respectively. In-
terestingly, these procedures provide a partial identifica-
tion of studies with effects for features with minimal repli-
cability claims: for each such feature the global null in
each of the two groups of studies is rejected, that is, one
can claim that the feature has an effect in at least one
study in each group. The lists of global null discoveries
for each group come with an α/2-FWER control guaran-
tee for generalized Procedure 5.1, and with an α/2-FDR
control guarantee for generalized Procedure 5.2.

Variants of Procedures 5.1 and 5.2, obtained by incor-
porating plug-in estimators for the proportions of nulls
in one study among the selected in the other study, were
suggested by Bogomolov and Heller (2018) for gaining
power. Similar methods for the case where one study is
primary and the other one is a follow-up study, have been
suggested in Bogomolov and Heller (2013), Heller, Bo-
gomolov and Benjamini (2014).

5.3 General Replicability Analysis

In case where there are more than two studies, one can
address the goal of identifying features with effects in at
least r out of n studies, for r ≥ 2. For r = 2, this reduces
to minimal replicability, and the higher r is, the stronger
is the requirement for claiming replicability. Benjamini
and Heller (2008), Benjamini, Heller and Yekutieli (2009)
suggested addressing this goal by multiple testing of r/n

no replicability null hypotheses. Specifically, for FDRr/n

control, they suggested applying the BH procedure on r/n

PC p-values (see (3) for an example of a PC p-value).
In some applications it may be unclear what is the ap-
propriate choice of r in order to claim replicability. For
example, while one investigator may claim that associa-
tion of a genotype with a disease in at least two out of
six studies is enough for claiming replicability, another
investigator may claim that stronger evidence is required,
for example, association with a disease in at least half of
the studies (i.e., fixing r = 3 rather than r = 2). In order to
provide the highest (nonzero) lower bound on the number
of studies with effect for each feature, while controlling
for noncoverage, Benjamini, Heller and Yekutieli (2009)
suggested the following procedure for right-sided alterna-
tives.

PROCEDURE 5.3 (Benjamini, Heller and Yekutieli,
2009).

Step 1: For each feature i = 1, . . . ,m, compute the
global null p-value p

1/n
i .

Step 2: Apply the BH procedure at level α on {p1/n
i , i =

1, . . . ,m}. Select the features for which rejections are
made. Let S be the set of indices of selected features.

Step 3: For each feature i ∈ S , test the no-replicability
null hypotheses in order at level |S|α/m, and define

li = max
{
l ∈ {0, . . . , n} : pr/n

i ≤ |S|α/m for r = 0, . . . , l
}

to be the lower bound for the number of studies where
feature i has an effect.

This procedure is a generalization of the method in (4)
for m = 1. Benjamini, Heller and Yekutieli (2009) proved
that under independence, Procedure 5.3 guarantees that
the expected proportion of features with lower bounds ex-
ceeding the true number of studies where they have ef-
fects, out of all the selected features, is upper bounded
by α. We refer to the error measure above as the false
coverage rate (FCR, Benjamini and Yekutieli, 2005) for
the selected features. This procedure was generalized in
Bogomolov (2023), allowing for different rules for select-
ing the features for which lower bounds will be obtained.
For example, the selected set S can be obtained by apply-
ing a multiple testing procedure on p-values of a given
study, defining the discoveries in that study. Suppose a re-
searcher applies Bonferroni for obtaining discoveries in
his or her study, referred to as study one, then the selected
set of features of interest regarding their replicability ex-
tent can be S = {i : pi1 ≤ α/m}. The same can be done
if the researcher’s study is primary and the other studies
are follow-up studies, examining only the features with
significant effects in the primary study. The generalized
procedure is the following.

PROCEDURE 5.4 (Bogomolov, 2023).

Step 1: Apply a certain selection rule on all the p-
values, for obtaining the selected set of features S .

Step 2: Apply Step 3 of Procedure 5.3 with respect to
the selected set of features S .

It was shown in Bogomolov (2023) that the generalized
procedure controls the FCR for the selected features under
certain forms of positive dependencies within the studies,
and under lenient conditions on the selection rule used in
Step 1 of Procedure 5.4. In addition, the procedure can be
conservatively adjusted for allowing arbitrary dependen-
cies within the studies and arbitrary selection rules.

A drawback of methods which are based on applying
a multiple testing procedure on PC p-values is their pos-
sibly low power. The power loss occurs due to the fact
that H

r/n
i is a composite null hypothesis. So when H

r/n
i

is true, the PC p-value gives an exact test only under the
least favorable configuration, where the number of false
null hypotheses for feature i is r − 1, their corresponding
p-values are all equal to 0, and the remaining n − r + 1
p-values have a uniform distribution. Under other con-
figurations, the PC p-value gives a conservative test. For
example, a very conservative, yet typically prevalent, con-
figuration among the features is that the global null is true.
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For feature i with n+
i = n−

i = 0, that is, for which the

global null is true, P(p
n/n
i ≤ x) ≤ xn.

In order to overcome the power loss induced by the
conservativeness of the PC p-values, Wang et al. (2022)
developed the AdaFilter methods for testing the family
of PC hypotheses H

r/n,+
1 , . . . ,H

r/n,+
m for any given r ∈

{2, . . . , n}. Essentially, rather than adjusting for the mul-
tiplicity of all the m features, these methods adjust only
for the number of features with evidence for effects in at
least r − 1 studies, thereby gaining power. Specifics fol-
low. Let pi(1) ≤ pi(2) . . . ≤ pi(n) be the sorted right-sided
p-values for feature i ∈ {1, . . . ,m}. For testing the family
H

r/n,+
1 , . . . ,H

r/n,+
m , the method is based on assigning the

filtering statistic Fi = (n− r +1)pi(r−1) and the selection
statistic Si = (n − r + 1)pi(r) for feature i ∈ {1, . . . ,m}.
The AdaFilter Bonferroni and AdaFilter BH, which are
a version of AdaFilter targeting FWER control and FDR
control, respectively, for the family H

r/n,+
1 , . . . ,H

r/n,+
m ,

are as follows.

PROCEDURE 5.5 (Wang et al., 2022, AdaFilter-Bon-
ferroni).

Step 1: Compute

γ Bon
0 = sup

{
γ ∈ [0, α]

∣∣∣γ m∑
i=1

I (Fi < γ ) ≤ α

}
.

Step 2: Reject H
r/n
i if Si < γ Bon

0 , for i ∈ {1, . . . ,m}.
PROCEDURE 5.6 (Wang et al., 2022, AdaFilter-BH).

Step 1: Compute

γ BH
0 = sup

{
γ ∈ [0, α]∣∣ γ

∑m
i=1 I (Fi < γ )

max(
∑m

i=1 I (Si < γ ),1)
≤ α

}
.

Step 2: Reject H
r/n
i if Si < γ BH

0 , for i ∈ {1, . . . ,m}.
For theoretical guarantees of the procedures, see Wang

et al. (2022). The AdaFilter Bonferroni adjusted p-value
for H

r/n
i is

pBon
i = Si

m∑
k=1

I (Fk ≤ Si)(7)

and AdaFilter BH adjusted p-value for H
r/n
i is

pBH
i = min

{j :pBon
j ≥pBon

i }
pBon

j∑m
k=1 I (pBon

k ≤ pBon
j )

,

where {pBon
i , i = 1, . . . ,m} are given in (7). For any level

α ∈ (0,1], the sets of rejections of AdaFilter Bonferroni
and AdaFilter BH are {i : pBon

i < α} and {i : pBH
i < α},

respectively, as shown in Proposition 3.4 of Wang et al.
(2022).

REMARK 5.1. For two-sided hypotheses and direc-
tional r/n replicability for a certain fixed r ∈ {2, . . . , n},
Wang et al. (2022) suggested using their methods as fol-
lows. Apply the given method with parameter r twice,
separately on {pij , i = 1, . . . ,m, j = 1, . . . , n} and on
{qij , i = 1, . . . ,m, j = 1, . . . , n}, each time at level α/2.
Let RR and RL be the corresponding sets of discover-
ies. Claim r/n replicability of positive effect for features
with indices in RR , and r/n replicability of negative ef-
fect for features with indices in RL. This strategy guar-
antees control of directional FWER/FDR for replicabil-
ity analysis as long as the corresponding method applied
on one-sided p-values guarantees FWER/FDR for nondi-
rectional replicability. The approach of Benjamini, Heller
and Yekutieli (2009), which amounts to applying BH on
r/n PC p-values, can be used similarly for directional r/n

replicability analysis.

All the methods above address the general case where
one has a p-value for each null hypothesis Hij , which re-
quires knowing the distribution of test statistics under the
null. Li et al. (2022) addressed the goal of replicability in
a different setting, which does not require computing p-
values. In their setting one has observations (X,Y ) con-
sisting of m variables X ∈ Xm and an outcome Y ∈ Y
sampled from n environments. For variable i and envi-
ronment j , the null hypothesis is defined as follows:

Hij : Y j ⊥⊥ X
j
i |Xj

−i ,

where Y j , X
j
i and X

j
−i , respectively, denote the outcome,

the ith variable, and the vector of all variables except
Xi in environment j . In words, Hij states that the out-
come is independent of the ith explanatory variable con-
ditional on all other explanatory variables, when consid-
ering the distribution of the data in the j th environment.
The alternative is complementary to the null, so it has no
one-sided and two-sided variants. Therefore, directional
replicability is not defined in this case. Testing the r/n

no-replicability null hypotheses for all m variables ad-
dresses the goal of identifying conditional associations
which hold in at least r environments. The method of
Li et al. (2022) controls FDR for the family of r/n no-
replicability null hypotheses. It relies on the model-X ap-
proach of Candès et al. (2018), which does not require
the model for conditional distribution of the outcome, but
requires that the distribution of X within environment j

is known, at least approximately. The latter assumption
is realistic in genetic studies, because reliable knowledge
is available regarding the distribution of the genotypes
(Sesia, Sabatti and Candès, 2019). The method relies
on multi-environment knockoff statistics defined below,
which generalize the knockoff statistics of Candès et al.
(2018).
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DEFINITION 5.1 (Li et al., 2022). We say that W ∈
R

m×n are multi-environment knockoff statistics if W has
the same distribution as W · ε, where · indicates element-
wise multiplication, and ε is a random m × n matrix with
independent entries in the set {1,−1}, satisfying εij = ±1
with probability 1/2 if Hij is true, and εij = 1 otherwise,
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}.

See Li et al. (2022) for methods which can be used
for constructing the multi-environment knockoff statis-
tics. Given a fixed r ∈ {1, . . . , n}, the method of Li et al.
(2022) for controlling the FDR for a family of r/n no-
replicability null hypotheses is given below.

PROCEDURE 5.7 (Li et al., 2022).

Step 1: Compute the multi-environment knockoff statis-
tics W . For each i ∈ {1, . . . ,m}, let t−i = ∑n

j=1 I (Wij <

0), and t0
i = ∑n

j=1 I (Wij = 0).
Step 2: For each i ∈ {1, . . . ,m}, compute

p
r/n
i = P

(
Ti ≤ t−i − 1

) + UiP
(
Ti = t−i

)
,(8)

where Ti ∼ Bin(max{n − r + 1 − t0
i ,0},1/2), and Ui is a

U(0,1) random variable which is independent of every-
thing else.

Step 3: For each i ∈ {1, . . . ,m}, consider the set of ab-
solute values of knockoff statistics for variable i in all the
environments, {|Wij |, j = 1, . . . , n}. Obtain |Wr

i |, defined
as the product of the r largest values in this set. See Li
et al. (2022) for a more general definition of |Wr

i |.
Step 4: Filter the p-values obtained in Step 2 in de-

creasing order of |Wr
i | using the level-α selective

seqStep+ procedure of Barber and Candès (2015) with
a certain choice of the tuning parameter c, and obtain the
rejected r/n no-replicability null hypotheses. Specifically,
compute

ŵ = min
{
w :

1 + |{i : |Wr
i | ≥ w,p

r/n
i > c}|

max(|{i : |Wr
i | ≥ w,p

r/n
i ≤ c}|,1)

≤ 1 − c

c
α

}
,

and reject the r/n no-replicability null hypotheses for
variables with indices in the set {i : |Wr

i | ≥ ŵ,p
r/n
i ≤ c}.

See Li et al. (2022) for another variant of the above pro-
cedure and its theoretical guarantees. A simpler method
is suggested for the case where r = n, that is, when the
goal is to find variables which are conditionally associated
with the outcome in all the environments. Specifically, in
Procedure 5.7 the definition in (8) for the PC p-value in
Step 2 is replaced by the following definition: p

n/n
i = 1/2

if min{sign(Wij )}nj=1 = +1, and p
n/n
i = 1 otherwise. The

next steps are obtained by substituting r = n in Steps 3
and 4, and choosing c = 1/2 in Step 4.

TABLE 2
Summary for the replicability analysis procedures addressed in this
section. The table addresses the generalized versions of Procedures

5.1, 5.2, which can analyze n ≥ 2 studies. The first, second, and third
column give the reference to the procedure, the possible values of r

for which r/n replicability can be assessed, and the target error rate
addressing erroneous replicability claims, respectively. The fourth

column gives the summary statistics required as input

Proc. r Target error rate Summary statistics

5.1 r = 2 FWER2/n,D p-values
5.2 r = 2 FDR2/n,D

5.3, 5.4 r is not fixed
in advance,
adaptive

FCR on the
number of studies
with signal

p-values

5.5 r ≥ 2 FWERr/n p-values
5.6 r ≥ 2 FDRr/n

5.7 r ≥ 2 FDRr/n multi-environment
knockoff statistics

5.4 Broad Guidelines and Future Directions

The properties of the replicability analysis methods ad-
dressed in this section are summarized in Table 2. Let us
address the comparison of Procedures 5.1, 5.2 with Pro-
cedures 5.5, 5.6 for the case where the goal is minimal
replicability, that is, r = 2. All these procedures test for
replicability only the features that are selected as promis-
ing for assessing minimal replicability, however the selec-
tion mechanisms are different. While Procedures 5.1, 5.2
allow the researcher to choose the selection rules within
each study, Procedures 5.5, 5.6 are based on fixed selec-
tion rules. In addition, Procedure 5.1 allows using any
FWER-controlling procedure in Step 2, on selected one-
sided p-values, while Procedure 5.5 does not have this
flexibility. The generalized versions of Procedures 5.1
and 5.2 for the case n > 2 have an additional advan-
tage over Procedures 5.5, 5.6: the former procedures al-
low partial identification of studies where the discovered
features have effects, with an appropriate error rate con-
trol. The disadvantage of generalized Procedures 5.1, 5.2
is that their results depend on the division of the n stud-
ies into two groups, which can be arbitrary. These proce-
dures aim to identify features with effects in both groups
of studies. Thus, for the case where n > 2, generalized
Procedures 5.1, 5.2 may be less powerful than Proce-
dures 5.5 and 5.6, respectively, for the case where many
features have two or more effects in only one group of
studies. However, it may be possible to overcome this lim-
itation by considering adaptively chosen groups. More-
over, it may be of great interest to further generalize Pro-
cedures 5.1, 5.2 for assessing r/n replicability across n

studies for any r ≥ 2, thus carrying over to r > 2 the flex-
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ibility and potential power gain of these procedures ob-
served for r = 2.

Procedures 5.3, 5.4 are different from the other proce-
dures, because rather than requiring to fix r in advance,
these procedures use the data for identifying what is the
strongest replicability claim that can be made for a given
feature. The replicability claims are made in terms of
lower bounds for the number of studies with effects for
the selected features, and the error rate controlled is FCR
for the selected features. As shown in Table 2, the other
methods control for erroneous r/n replicability claims for
a fixed value of r . If the adaptivity of Procedures 5.3, 5.4
is attractive, then these procedures should be chosen for
replicability analysis.

Procedures 5.3, 5.4, as well as Procedures 5.5, 5.6 are
given above for the case of one-sided hypotheses. Re-
mark 5.1 suggests a way to perform directional r/n repli-
cability using Procedures 5.5, 5.6, or using the partial
conjunction approach of Benjamini, Heller and Yekutieli
(2009), which amounts to applying the BH procedure on
r/n PC p-values. The latter procedure is equivalent to
that in Definition 7 of Benjamini and Yekutieli (2005) for
n = 1. Benjamini and Yekutieli (2005) show that the pro-
cedure that applies the BH procedure to the two-sided p-
values and further declares the sign (their Definition 6)
also controls the directional FDR, and is at least as pow-
erful as their procedure in Definition 7. This suggests that
the directional inference in Remark 5.1 may be improved
for directional FDR control on false replicability claims.
An additional potential improvement may address over-
coming the conservatism of the PC p-values used in these
procedures.

Procedure 5.7 addresses a specific setting where one is
given data for m explanatory variables and a certain out-
come in each of n environments (studies), and for each
explanatory variable one is interested in testing the null
hypothesis of conditional independence between this vari-
able and the outcome, given the other variables. This set-
ting does not require specifying the model of dependence
between the outcome and the explanatory variables. In
contrast to other procedures in Table 2, Procedure 5.7 is
based on knockoff statistics and does not require the abil-
ity to compute p-values for the tested hypotheses.

All the procedures assume that the studies are indepen-
dent. This assumption does not always hold: it is obvi-
ously violated for case-control studies if each study has
its own disease cohort, but all are compared to the same
control cohort; or if each study examines a different phe-
notype, but the same subject may be in several studies.
In these settings, it is therefore necessary to design novel
powerful replicability analysis procedures.

6. THE EMPIRICAL BAYES APPROACH FOR
REPLICABILITY IN HIGH DIMENSIONAL STUDIES

6.1 Replicability Analysis with the Local False
Discovery Rate

The two group model (Efron et al., 2001, Efron, 2010)
is popular for analyzing high dimensional studies, where
many features are simultaneously tested for association
with an outcome. It has been generalized for targeting the
discovery of features that are associated with the outcome
in at least two studies in Chung et al. (2014), Heller and
Yekutieli (2014).

The generalization of the two group model for n stud-
ies, each examining a large number m of features, is as
follows. Using GWAS as our illustrative example, the in-
dicator of the hypothesis state for feature i ∈ {1, . . . ,m}
in study j ∈ {1, . . . , n}, hij , is zero if there is no asso-
ciation, −1 if the association is negative, and one if the
association is positive. The z-score zij = �−1(pij ) has
density fj,1(·) if hij = 1, fj,0(·) if hij = 0, and fj,−1(·)
if hij = −1. The null density fj,0(·) is usually assumed
to be the standard normal distribution (following the as-
sumption that pij has a uniform null distribution). Each
feature has probability π(h) of having the vector of hy-
potheses states h ∈ {−1,0,1}n, where {−1,0,1}n denotes
the set of 3n possible vectors of length n with coordinates
in {−1,0,1}. The z-scores for each feature are assumed
to be independent across studies given the vector of hy-
potheses states, so the joint density of (zi1, . . . , zin) for
feature i given hi = (hi1, . . . , hin) is

∏n
j=1 f (zij |hij ).

The statistic that plays a central role for inference on the
hypotheses states for each feature is the local false discov-
ery rate, which is the probability that the state vector is a
null state vector given the feature’s z-scores. For repli-
cability analysis, we wish to test the r/n no-replicability
null hypothesis defined in (2), so the null state vector is
a binary vector with at most r − 1 positive entries and at
most r − 1 negative entries. We use the notation

∑
h∈H

r/n
i

to denote the summation over all state vectors h that are in
the null space of the r/n no-replicability null hypothesis.
The local false discovery rate for feature i is

Ti = ∑
h0∈H

r/n
i

P(hi = h0|zi1, . . . , zin)

=
∑

h0∈H
r/n
i

π(h0)
∏n

j=1 f (zij |h0j )∑
h∈{−1,0,1}n π(h)

∏n
j=1 f (zij |hj )

.

With these local false discovery rates, we describe next
the steps for inference on the family of the r/n no-
replicability null hypotheses, for a target α level Bayes
FDR. The Bayes FDR is the probability that the hypoth-
esis state vector is in the null space, given that the vector
of z-scores is in the rejection region. For independent z-
scores within each study, the Bayes FDR coincides with
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the positive FDR, which is the expected false discovery
proportion given that at least one discovery was made
(Storey, 2003).3 The steps for inference are as developed
for a single study in Sun and Cai (2007).

PROCEDURE 6.1 (Heller and Yekutieli, 2014).

Step 1: Compute for each i ∈ {1, . . . ,m} the local false
discovery rate Ti .

Step 2: Sort the Ti’s from smallest to largest, so T(1) ≤
· · · ≤ T(m).

Step 3: Reject the r/n no-replicability null hypothesis
for the R features with the smallest Ti’s, where

R = max
{
k :

∑k
i=1 T(i)

k
≤ α

}
.

In practice, the parameters of the model are unknown.
The empirical Bayes approach uses the data in order to
estimate the parameters that are needed in order to com-
pute the Ti ’s. Methods for estimation of the mixture com-
ponents, using the EM algorithm, have been suggested,
for example, in Chung et al. (2014), Heller and Yeku-
tieli (2014), Amar et al. (2018). These estimation meth-
ods assume that the test statistics (such as p-values) are
independent in each study, which is obviously not true for
high dimensional studies. However, if the dependence is
local (i.e., each feature’s test statistic is associated only
with a small number of other test statistics), the signal
is not too sparse, and the studies are high dimensional,
the estimation method (which uses the composite like-
lihood rather than the true likelihood) is fairly robust to
deviations from independence. See Xiang, Zhao and Cai
(2019) for another estimation method for the model pa-
rameters for n = 2; See Sun and Wei (2011), Wang and
Zhu (2019) and references within for methods that take
the dependency between hypothesis states into account.

6.2 The (Bayes) FDR of a Frequentist Approach

The no-replicability null hypothesis is a composite hy-
pothesis. The frequentist approach guards against the
worst (or least favorable) setting, while the empirical
Bayes approach discussed in Section 6.1 relies on the abil-
ity to estimate the prior probabilities for the different vec-
tors of hypotheses states.

The methods in Section 5.3 do not require modeling
of the z-values (or p-values). Moreover, they provide an
FDR (or FWER) control guarantee for any number of fea-
tures m. This is in contrast with the inference based on
the (estimated) local false discovery rate, which requires
a model for the z-values, and can provide only asymptotic
FDR control (Heller and Yekutieli, 2014).

3The FDR is the positive FDR times the probability of making at
least one discovery, so the FDR and positive FDR coincide in settings
where always at least one discovery is made (Storey, 2003).

To help clarify the expected power advantage of the em-
pirical Bayes approach of Section 6.1 over the frequen-
tist approaches in Section 5.3, when the model for the
z-values approximates well the data generation mecha-
nism, we provide the following analysis for the frequentist
approach of applying BH on the PC p-values (although
all procedures in Section 5 suffer from being conserva-
tive compared to the approach of Section 6.1, showing
their conservativeness is more involved so it is outside the
scope of this paper). Consider a procedure that thresholds
the PC p-values, so that only features with p

r/n
i ≤ t are

rejected. The threshold t may be selected to be the largest
that satisfies t

P(p
r/n
i ≤t)

≤ α, where

P
(
p

r/n
i ≤ t

) = ∑
h∈{−1,0,1}n

P
(
p

r/n
i ≤ t |hi = h

)
π(h)

is the marginal cumulative distribution function of the PC
p-value. Using this threshold provides a procedure that is
a close approximation to the BH procedure on the PC p-
values, which selects the largest t so that t

|{i:pr/n
i ≤t}|/m

≤
α. The positive FDR of this procedure for the family of
r/n no-replicability nulls can be expressed in terms of any
i ∈ {1, . . . ,m} as follows:∑

h∈H
r/n
i

P(p
r/n
i ≤ t |hi = h)π(h)

P(p
r/n
i ≤ t)

≈
∑

h∈H
r/n
i

P(p
r/n
i ≤ t |hi = h)π(h)

|{k : pr/n
k ≤ t}|/m

.

The numerator is clearly at most t , but it may also be
much smaller. For example, if the probability that the
global null is true is 0.95 and that the no-replicability
null is false is 0.05 (i.e., we can only observe features
with h = 0 or features with h /∈ H

r/n
i ), then the numer-

ator is 0.95 × P(p
r/n
i ≤ t |hi = 0), which is much smaller

than t for r ≥ 2 (e.g., for r = 2 and n = 2 the numer-
ator is at most 0.95 × t2). Therefore, by choosing t so
that t

|{k:pr/n
k ≤t}|/m

≈ α, the positive FDR is in fact much

smaller than α. On the other hand, with Procedure 6.1 the
level is approximately α so it is not overly conservative
and it may provide many more replicable findings. See
Heller and Yekutieli (2014) for more comparisons of the
empirical Bayes approach versus a frequentist approach
for replicability.

6.3 Future Directions

The generalization of the two group model to n > 1
studies examining the same m features is useful for the
joint analysis of the m features as long as the individual
feature’s mixture distribution can be estimated well. This
is not possible if the unknown dependence within each
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high dimensional study is long range dependence (even
when m is in the order of 106 − 109). It is not currently
known how to develop a procedure for general (unknown)
dependence structures within each study.

Xie et al. (2011), Heller and Rosset (2021) considered
the following generalization of the two group model for a
single high dimensional study j ∈ {1, . . . , n} with known
(or well approximated) dependence between the z-scores:
the vector (z1j , . . . , zmj ) is sampled from the joint con-
ditional distribution given (h1j , . . . , hmj ), where the hij ’s
are independently and identically distributed as in the two
group model. They showed that in order to discover the
features with a false null hypothesis, the optimal statistic
for each feature is the probability that the null hypoth-
esis is true given the entire vector of z-scores, P(hij =
0|z1j , . . . , zmj ). The potential gain in power in using this
statistic rather than the marginal statistic P(hij = 0|zij )

can be very large. We thus expect the power advantage
to be large when incorporating the within study local de-
pendence in a joint analysis of n studies. Specifically,
for replicability analysis, it can be useful to incorpo-
rate known or approximate local dependence within each
study, to boost discovery power of replicable signals.

Xiang, Zhao and Cai (2019) considered for n = 2 sev-
eral inferential goals, each with a predefined level of
asymptotic FDR control: classification of features to those
that have signal in both studies, or only in the first study,
or only in the second study. Their paper inspires addi-
tional interesting formulations for replicability analysis.
For example, for n = 3 studies, consider simultaneously
the classification of features with signal (in the same di-
rection) in all three studies, as well as those with signal
(in the same direction) in exactly two studies.

7. THE CASE OF A SINGLE STUDY

Splitting the sample at random into two halves is not
useful for assessing replicability, since it results in having
two samples, each with reduced sample size, for testing
the same hypotheses Hi , i = 1, . . . ,m.

Importantly, splitting the sample according to an ob-
served binary covariate is helpful for replicability. For ex-
ample, examination of the effect of high fish consumption
in a subgroup that lives where fish are at low cost (near
the coast) and in a subgroup that lives where fish are at
high cost (say in midland, so the reason for consumption
may be health benefits) may be possible from a publicly
available database (Zhao, Small and Rosenbaum, 2018).
If an outcome (e.g., heart disease) is negatively associ-
ated with increased fish consumption in both subgroups,
the evidence that the discovered association is due to fish
consumption is more convincing and less susceptible to
bias. In this example, the covariate indicates whether the
subject lives near the sea or in midland, so it can be used

to split the sample into two subgroups in which the ef-
fect of high fish consumption is examined. Although the
same family of null hypotheses are considered in each
subgroup (as in splitting at random), the hypothesis states
need not be the same in the two resulting subgroups (un-
like with random sample splitting). For example, it may
be that there is no association between fish consumption
and heart disease for the subgroup that lives near the sea,
but there is a negative association for the subgroup that
lives in midland due to say unobserved confounding with
exercise: in midland the reason for high fish consumption
is health benefits, and those that are health conscious ex-
ercise more, and exercise reduces the risk of heart disease.

When splitting according to an observed binary covari-
ate, the aim is to identify features for which the null hy-
pothesis is false in both subgroups, and the procedures
applied should take care not to declare as replicated too
many features i ∈ {1, . . . ,m} for which the null hypoth-
esis is false in exactly one of the subgroups. The pro-
cedures in Section 5.2 may therefore be appropriate for
this purpose, see Roy et al. (2022) for an example appli-
cation. If the sample is split instead according to an ob-
served covariate with n ≥ 2 categories, the procedures in
Section 5.3 may be useful.

The procedures in Section 5.2 and Section 5.3 may also
be useful for causal inference in observational studies us-
ing evidence factors (Karmakar and Small, 2020). In order
to establish causality in observational studies, it is use-
ful to decompose the test of no treatment effect into ev-
idence factors, which are separate pieces of information
that are affected by different biases and are statistically
nearly independent (Rosenbaum, 2010). For example, in
an observational study with a matched pairs design, where
each pair has one exposed and one unexposed individual,
and the level of exposure among the exposed is measured,
then there are two pieces of evidence towards the (say
positive) effect of exposure: evidence that the exposed
have higher levels of the outcome than their unexposed
matched pairs; evidence among the exposed of a positive
association between exposure level and the outcome. See
Karmakar and Small (2020) for examples with more than
two evidence factors. Suppose there are n such pieces.
Karmakar and Small (2020) suggest testing whether there
is evidence that at least r of the n pieces of information
reject the null hypothesis of no treatment effect. This is
the test of the no-replicability null hypothesis, and the PC
p-value is used to evaluate this composite null.

8. DISCUSSION

Wang et al. (2022) point out that when complicated
large-scale experiments or observational studies are car-
ried out, they can be susceptible to many sources of bias.
Since many complicated large-scale studies are carried
out nowadays, it is crucial to have statistical methods that
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objectively evaluate the consistency of findings across the
studies, while properly accounting for the fact that the
parameters of interest may differ across studies. More
specifically, the consistency (or replicability) across stud-
ies has to be evaluated by ruling out that the finding is
particular to a single study (or more generally, to r − 1
studies). In this review, we provided various relevant pro-
cedures that may be useful.

In collaborative research, it is possible to go one step
further in terms of the flexibility of the procedures to-
wards establishing replicability. Roy et al. (2022) suggests
for n = 2 that two separate teams will engage in the de-
sign of the multiple testing, where each team has access
only to a single study, and by examining that study it de-
signs the multiple testing of the other study. As long as
the teams act independently, they have complete freedom
in design decisions. So a more flexible version of Pro-
cedure 5.1 will allow each team not only to select hy-
potheses and their direction of testing, but also to select
the test statistic for each hypothesis, possible weights for
the different hypotheses (which may reflect the prior be-
lief in the probability that they are nonnull in the other
study), and the FWER controlling procedure to apply in
the other study. For n > 2, each team may have access to a
group of studies, and the additional flexibility of choosing
how to combine the evidence from the group of studies.
If there are more than two teams, the flexibility is fur-
ther increased. Procedure 5.1 has to be generalized, and
we expect it to be a powerful and useful tool for tailoring
replicability analyses to specific applications.

The suggested procedures in this review were motivated
by the need for replicable results that are less suscep-
tible to biases. However, these methods are also useful
in additional settings. For example, in mediation analysis
(Sampson et al., 2018, Djordjilović et al., 2019, Liu et al.,
2022), where the aim is to identify the mediators that are
associated both with the exposure and with the outcome.
As another example, in a group analysis of size n, where
multiple features are examined for each subject, and the
goal is to find the features with signal in at least r/n sub-
jects. Specifically, consider the neuroimaging application
addressed by Heller et al. (2007), where the aim is to iden-
tify the brain regions that are consistently activated in a
group of subjects.

Increasingly, researchers provide access to the data
used in their studies, at least in aggregate form. For exam-
ple, in GWAS, summary statistics for each genotype are
available in various consortia, and p-values can be easily
computed from the summary level data. So the suggested
p-value based replicability analyses can include studies
from these consortia. We hope the facilitation of access to
data will increase the practice of applying a replicability
analysis to establish scientific findings.
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23-STS892SUPP; .pdf). The SM provides additional ex-
amples supporting the key observations of Section 5.1.
These examples assess the FWER control of the naive ap-
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