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David S. Robertson, Kim May Lee, Boryana C. López-Kolkovska and Sofía S. Villar

We are very grateful to the editors of Statistical Sci-
ence and the discussants for the opportunity to mark the
finish line of our paper (Robertson et al., 2023c) with
such a high note of clarity and optimism toward the fu-
ture. Each discussant takes aspects briefly mentioned in
our paper and expands on them with deeply insightful and
thought-provoking comments. The combination of paper,
discussions and rejoinder helps give the broad, balanced
and fresh resource we were longing for in the response-
adaptive randomization (RAR) literature.

RAR as One of Many Elements of an Adaptive Design

An important assumption we made in our paper was
that RAR was the only adaptation used in an experiment,
reflecting our main goal of identifying the effects of RAR
on different aspects of clinical trial design and analysis.
Hence, we did not address the use of RAR in combina-
tion with other forms of adaptation like early stopping or
population enrichment. However, when the objective is to
obtain an overall “best” trial design (rather than quantify-
ing effects of individual components) then a combination
of adaptive elements is likely to be the most effective way
to achieve this, as illustrated by three of the discussants.

Jennison describes a procedure to define RAR, first in-
troduced in Jennison and Turnbull (2000), in which the
optimal sampling ratio (n1/n2) is aθ̂/2δ where θ̂ is the
current treatment effect estimate, δ is the anticipated treat-
ment effect and a is a chosen constant. Jennison quantifies
the potential advantages of such a procedure to reduce the
expected number of patients receiving the inferior treat-
ment, with the results in Tables 1 and 2 corresponding to
RAR without early stopping. In the same setting, Jennison
elegantly addresses other major issues we discussed in our
paper, such as valid inference and the effects of temporal
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trends and delayed responses. Jennison also shows how
early stopping (using a group sequential approach to de-
fine stopping boundaries) in combination with RAR can
be more effective in minimizing the expected number of
patients on inferior arms (and also reducing the total ex-
pected sample size). Similarly, the examples in practice
presented by Berry and Viele and the future perspective
of Trippa and Xu illustrate this idea that the design as a
whole is greater than the sum of its parts.

RAR procedures defined as in Jennison require the pre-
specification of a, which controls the level of imbalance.
As well, by using a 1 : 1 ratio for the first block, such
procedures include a burn-in period before adaptive sam-
pling is used. These are caveats to consider when compar-
ing designs like this to RAR with no burn-in or no control
over the maximum level of imbalance (as these can impact
operating characteristics). More generally, when compar-
ing different types of trial adaptations, the distinction be-
tween comparing candidate designs against an objective
versus identifying the effects of individual adaptive ele-
ments may be important. In Jennison’s example, with a
normal endpoint and common variance, the use of RAR
as the single adaptation to reduce the number of patients
treated with an inferior arm requires a larger total sample
size to achieve the same power as equal randomization.
However, trade-offs also exist even when considering the
inclusion of early stopping for a fixed 1 : 1 randomization
ratio, which achieves reductions in expected sample size
but requires a larger maximum sample size.

Duan, Müller and Jin ask us: “Do the authors recom-
mend practitioners to use RAR? In which cases?” Given
that RAR considered in isolation may not give the “best”
trial design, the answer depends on whether the superior
trial design (according to the goals of the study) includes
RAR as one component. This suggests the question of
practical importance is determining when the “price” of
a design element is worthwhile overall. Jennison alludes
to this when pointing out that using a simpler fixed 3:2
ratio in a group sequential design may be comparable to
a design with RAR and early stopping. We expand on our
answers to these questions in the section after the next
one.

RAR as Nonmyopic Solutions to Sequential Designs

We welcome the presentation by Duan, Müller and Jin
of RAR as a computationally feasible solution to an op-
timal sequential problem, though we note that not all
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RAR may be suitably described as such. We appreciate
their recognition of the challenges associated with deriv-
ing good approximations to solve such problems, as well
as their proposal to reduce computational cost by replac-
ing these problems with a simpler nonsequential one of
finding a “near-optimal” boundary. As they point out, the
RAR literature heavily focuses on myopic approaches be-
cause of the “curse of dimensionality” of optimal solu-
tions. For example, setting c2 = c3 = 0, K2 = 1, K3 = 0
in equation (2) in Duan, Müller and Jin and allowing
At = {0,1} to be a (binary) treatment decision variable
for just two doses and cohorts of 1 patient recovers the
classical two-armed bandit problem as in Berry (1978).
Press (2009, Figure 1) shows the topology of this prob-
lem to be well approximated by a boundary defined by
two metrics corresponding to statistical significance and
sample size imbalance.

A key point about the computational complexity of
optimal solutions is that two-armed sequential problems
have become increasingly tractable over the years. For ex-
ample, Berry (1978, Table 2) reports optimal value func-
tions for a two-armed bandit problem with a maximum
size of N = 100 (i.e., 100 treatment decisions) while four
decades later Jacko (2019, Table 2) reports N = 4440 ob-
tained on a computer with 32 GB RAM.1 More practi-
cally, Jacko (2019, Figure 1) shows finding the next opti-
mal treatment decision for N = 1200 only requires 1 GB
RAM and 10 min to run. For the multiarm setting, where
the potential of RAR is the largest (as agreed by Trippa
and Xu, Ivanova and Rosenberger and illustrated by the
examples in practice of Berry and Viele), the computa-
tional bottleneck remains pressing. A recent approach to
the design of nonmyopic RAR that remains computation-
ally tractable was introduced by Villar, Wason and Bow-
den (2015) and noted by Ivanova and Rosenberger. The
computational advantage of such approaches relies on the
use of Gittins (or Whittle) indices which deal with compu-
tational barriers via a ‘divide and conquer’ approach (see
Villar, Bowden and Wason, 2015, Figure 1).

We see many advantages of optimal designs such as the
one presented by Duan, Müller and Jin. Adding restric-
tions directly into the formulation, as they do in their ex-
ample, is one of them. The approach in Cheng and Berry
(2007) and Williamson et al. (2017) illustrates the addi-
tion of a restriction on the minimal sample size per arm
(which may be a preferable way to indirectly reduce un-
desirable imbalances while increasing power). While it is
possible to enforce a restriction to prevent sample size im-
balance (as Duan, Müller and Jin say, forcing it to be less
than 10%) this also implies a strict limit to the sample

1When the optimal decisions and not just the final value function are
needed (i.e., an offline implementation), a similar computer is able to
solve the problem for N = 1440.

size in the best arm (e.g., to never be larger than 90%).
The reason for the zeroes (for imbalance in the wrong di-
rection beyond 10%) in Table 1 of our paper is not caused
by the inclusion of such a constraint but rather linked to
two points we could have emphasized more, as noted by
Giovagnoli: (i) the distinction between deriving an opti-
mal target and determining how to effectively target it and
(ii) the degree of randomness of RAR procedures used to
target an optimal ratio (linking to metrics of the “amount
of randomness”).

ERADE is the fastest converging implementation algo-
rithm for a given target ratio (e.g., the one given by equa-
tion (6) in our paper). In Table 1 of our paper, this corre-
sponds to a final ratio of N1/n ≈ 0.54. If by the end of
the trial ERADE attains an overall allocation very close
to that ratio, then N1 −N0 ≈ 0.08n and imbalances larger
than 10% in the wrong direction (i.e., N0 − N1 > 0.1n)
will be almost impossible. This also illustrates the arbi-
trariness of such metrics for imbalance: if the threshold
was set to be smaller than 10%, there would be fewer ze-
roes in Table 1.2 An additional point is that these zeroes
suggest high predictability of the randomization sequence
as well as fast convergence (Berger et al., 2021). Such
trade-offs are common between different objectives and
metrics, as we discuss next.

RAR: Objectives, Metrics and Benchmarking Designs

Perhaps the largest advantage of optimal designs is the
formal incorporation of a study’s objective(s) into the
problem formulation. As Duan, Müller and Jin illustrate,
optimal designs naturally allow explicitly linking phase
II with phase III trial considerations (in their example,
through the pD variable). The challenge of suitably link-
ing phases to increase overall success in the drug develop-
ment process means the phase II trial design choice may
need to go beyond the aims of this phase in isolation, as
echoed by Trippa and Xu. When a study has multiple key
objectives, an optimal design (which may or may not in-
clude RAR as part of it) can find solutions to best balance
these. However, this relies on the specification of an ap-
propriate objective function. For example, Duan, Müller
and Jin’s equation (2) represents a utility function that
when optimized returns a design minimizing recruitment
costs and maximizing the expected number of patients
in the best arm during the phase II trial as well as the
probability of a successful confirmatory phase III trial. In
our experience, we have witnessed the difficulty of both
articulating objectives and agreeing on to how to weigh
them appropriately. How would we determine at the de-
sign stage how large K2 (in Duan, Müller and Jin) or a (in

2This reasoning is consistent with DBCD being slower to converge
to the target allocation than ERADE, which is noticeable for n = 200,
but for n = 654, DBCD has essentially converged.
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Jennison) should be? Such difficulties may explain why it
is common to enforce restrictions to existing designs (to
limit undesirable properties) instead of formulating de-
signs based on utility/loss functions. Pitt (2021) discusses
this in the context of Phase I dose-finding studies.

Similar considerations apply to the choice of metrics
to accurately match the design objectives. For example,
what should the threshold level be for the imbalance met-
rics in Section 3.1 of our paper? More importantly, ex-
actly what objective is this metric trying to capture and
is it the best reflection of that aim? And how would this
objective interact with others? Perhaps agreeing on met-
rics is easier than making objectives explicit; nonetheless,
those metrics that will drive design choice deserve careful
consideration. The latter point is nicely illustrated in dose-
finding studies where a typical metric is the proportion of
correct selections of doses. In that context, benchmarking
is presented as a way to compare designs using an optimal
benchmark corresponding to a (theoretical) upper bound
on the performance of a design under a given scenario.
This promotes a more accurate evaluation of dose-finding
designs (Mozgunov, Jaki and Paoletti, 2020, 2022).

Duan, Müller and Jin refer to benchmarking as evaluat-
ing the performance of a simpler RAR procedure against
a relevant (upper or lower) performance bound from an
optimal RAR design under a given scenario. Jennison’s
comparison of a simpler group sequential design to the
full RAR + group sequential approach (Tables 3–5) rep-
resents a similar form of benchmarking to find simpler
designs with a similar performance on the key objectives.
Meanwhile, Trippa and Xu mention the need for “new
and improved methods for accurate, comprehensive and
context-specific assessments of candidate designs.” Our
view of benchmarking3 is perhaps more aligned with that
of Trippa and Xu, in the sense that given the key objec-
tives of the study (which are context dependent, e.g., the
phase of the trial, prevalence of the disease) and suitable
metrics to measure these across designs (including sim-
plicity of the design), then all candidate designs can be
fairly and accurately assessed against each other. Those
assessments would involve well-performed simulations to
guide design choice (as one of many aspects that may re-
quire simulations, as we discuss below). Our view is that
such benchmarking holds the answer to the question by
Duan, Müller and Jin on when RAR (as part of a design)
may fit well with a trial’s context and goals.

Aside from the choice of objectives and metrics, the
choice of the set of candidate designs to consider is also
not necessarily straightforward. The set would naturally
include optimal (or near-optimal) designs if these are

3The term “benchmarking” has a different interpretation in machine
learning applications. There, benchmarking refers to comparing com-
peting methods/algorithms on a common, “gold-standard” data set.

known or can be derived. The set would also include sim-
pler (e.g., nonadaptive) designs as feasible comparators,
such as a fixed randomization design. The comparators
will crucially depend on the trial context. For example,
in the phase II setting, nonrandomized single-arm trials
are commonplace and could be reasonably included as a
comparator. We note in passing that while RAR may be
criticized in the phase III context for moving away from
the (arguable) equipoise of fixed equal randomization, in
the phase II setting, the fact that RAR allows for random-
ization at all is already a major statistical advantage when
compared with single-arm trials.

The Role of Simulations and Data Sharing

One key aspect featured by all the discussants is the use
of simulations for designing and evaluating complex trial
designs, including (but not limited to) those that use RAR.
Giovagnoli discusses the lack of formalization and guide-
lines to conduct simulation studies, which leads to con-
cerns around reproducibility and selection bias, as well
as inconclusive and potentially contradictory simulation
studies. Similarly, Ivanova and Rosenberger point out it is
possible to find specific simulation scenarios that show a
RAR procedure does not work well (or indeed, does work
well), which echoes concerns raised by Pawel, Kook and
Reeve (2023). Duan, Müller and Jin discuss using “bench-
marks” for simulation studies evaluating RAR, while Jen-
nison uses simulations with group sequential designs as
comparators. Berry and Viele discuss how calibrating and
understanding the properties of complex Bayesian de-
signs require “proper exploration and simulation,” which
were used to “extensively hone” the designs of their ex-
ample RAR trials in practice. Trippa and Xu agree on
the importance of comprehensive simulations to compare
candidate designs and note how methodological and com-
putational advances have made this task much easier. Cru-
cially, they add the dimension of data sharing as a key
component of rigorous and context-specific simulation
comparisons. They envision prospectively planned sim-
ulation studies of candidate designs using data generated
from multiple randomized trials, including evaluating the
use of adaptive designs such as RAR in early phases of
the drug development process on later phases.

We share the general concerns raised by the discussants
around the need for specific guidelines and structured ap-
proaches around conducting simulation studies for evalu-
ating trial designs, and agree that the current state of the
debate around RAR is partially explained by the some-
times inadequate reporting of simulation studies of RAR
designs. However, this issue is not unique to RAR as
noted by recent relevant work. One example is Morris,
White and Crowther (2019), also mentioned in the Dis-
cussion of our paper and by Giovagnoli. This may ap-
pear to be focused on simulations of statistical methods
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for data analysis, but the principles can be applied more
broadly to simulations for trial designs (personal commu-
nication with the author), as evidenced by Section 3.4:
“The term “method” is generic. Most often it refers to a
model for analysis, but might refer to a design or some
procedure (such as a decision rule).” Another useful ref-
erence is Mayer et al. (2019), which provides insights
from industry on simulations for adaptive designs. More
broadly, simulations form a key part of a recently pro-
posed framework for the phases of methodological re-
search in biostatistics (Heinze et al., 2022).

The challenges of conducting simulation studies be-
come evident in Section 3.1 of the paper. This was a re-
sponse to the lack of reporting of imbalance metrics in
simulation studies for RAR other than for Thompson sam-
pling (and its variants), and we aimed to investigate this
for other types of RAR. We focused on a few scenar-
ios, but (contrary to the comment by Giovagnoli) we did
not only report results for p0 = 0.25 and p1 = 0.35 (see
Figure 2 and Table A2). For the Randomized Play-the-
Winner rule in particular, as pointed out by Giovagnoli,
the performance looks different for other points in the pa-
rameter space (namely, where p0 + p1 > 3/2). For exam-
ple, when n = 200, p0 = 0.75 and p1 = 0.85, the imbal-
ance metric P(N0 > N1 + 0.1n) = 0.142. This highlights
the importance of exploring a wide range of the parame-
ter space, as well as Ivanova and Rosenberger’s point on
how a design may look good or bad for a given metric by
underreporting of scenarios.

Looking to the future, we agree with Trippa and Xu that
continued computational and methodological advances
will greatly aid the systematic evaluation of complex trial
designs such as RAR. One such example is the recent in-
novative methodological work by Sklar (2022), who pro-
poses a rigorous framework for simulation-based verifi-
cation of adaptive design properties, including type I er-
ror rate control. We also echo the point by Trippa and
Xu about the importance of data sharing of clinical tri-
als, which has many benefits including allowing the eval-
uation of candidate designs on multiple real-world data
sources; see, for example, the commentary by Law et al.
(2022).

RAR in Current Practice

We thank Berry and Viele for providing a detailed sum-
mary of six successful examples of RAR trials in practice
(some of which are still ongoing). This valuable snapshot
of RAR provides a practical view that uniquely comple-
ments our paper’s methodological focus, illustrating how
with careful choice of the design elements and for the
right trial context, RAR can be operationally feasible and
greatly beneficial in meeting trial objectives. Nonetheless,
Berry and Viele also note that RAR is no panacea and that
they have been involved with more equally randomized
trials than those with RAR. Some common features of the
RAR examples include:

• Phase II trials evaluating multiple treatments/doses,
with the selected dose(s) then evaluated in phase III

• A goal of identifying the single best active arm
• A “burn-in” stage using fixed (but not necessarily

equal) randomization to the treatments and control
• Combination of RAR with early stopping rules
• RAR probabilities being updated in groups
• Maintaining or even increasing the allocation to the

control compared with equal randomization
• Bayesian RAR that goes far beyond the vanilla Thomp-

son sampling implementation

As Berry and Viele point out, these trials have additional
innovative features besides RAR, such as the ability to add
treatment arms seamlessly during the trial. The common
features above give concrete examples of when RAR may
be used by practitioners, as asked by Duan, Müller and
Jin.

The Bayesian RAR used in practice is more complex
than a simple application of Thompson sampling, which
(as noted by Giovagnoli) may not have sensible proper-
ties. As discussed by both Ivanova and Rosenberger and
Giovagnoli, other types of Bayesian RAR (distinct from
Thompson sampling and its generalizations) have been
developed, for example, the Bayesian biased coin design
of Xiao, Liu and Hu (2017). Berry and Viele note that the
use of (Bayesian) RAR typically reduces the type I error
rate. In our experience, this feature depends on the pri-
mary outcome type (e.g., binary or continuous), the hy-
pothesis testing procedure and the stopping rules used.
For example, Smith and Villar (2018) find that RAR pro-
cedures including Bayesian RAR can inflate the type I er-
ror rate. More generally, the interplay between RAR, arm
selection and early stopping can be complex; see, for ex-
ample, Shin, Ramdas and Rinaldo (2019).

Finally, a notable feature of the AWARD-5 example re-
ported by Berry and Viele is the rigor in terms of blind-
ing and the logistical ease of the automatic updates to the
randomization probabilities. Such an algorithmic blinded
implementation gives an insight into how “experienced
groups may seamlessly update RAR probabilities quickly
. . . without interrupting other trial processes.” Clearly, ex-
perience and capacity are key to realizing this, which nat-
urally brings us to the future outlook for RAR designs.

The Future to Come for RAR

We share the optimism of Trippa and Xu around the
bright outlook for RAR designs (and adaptive trials more
generally) to be further developed and increasingly used
in practice in the future. First, as Trippa and Xu point out,
and as seen in the trial examples already used in prac-
tice by Berry and Viele, the growing use of multiarm and
platform trials provide new opportunities for RAR to be
applied successfully. An interesting feature of such de-
signs is that in some trial settings, there may not be a
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natural “control” arm to include (e.g., where no standard
of care currently exists). Second, Trippa and Xu point
to the advancement in methods for rigorously evaluating
candidate trial designs in the appropriate context, which
we feel is a key part of the “benchmarking” idea dis-
cussed earlier. Third, Trippa and Xu point to the rapid
advancement of the use of biomarkers (e.g., genomic in-
formation) to inform precision medicine trials, including
adaptive enrichment designs. These trials aim to match
the best-suited treatments to patient subgroups defined by
biomarkers. Ivanova and Rosenberger ask us if the addi-
tion of RAR can enhance the individualized ethical con-
siderations of such trials. Our answer is that enrichment
or biomarker-stratified designs using RAR could enable
more efficient and timely decision-making as well as a
larger expected number of patients treated with their best
responding arm. Implementing RAR in such designs is
likely to be paired with features such as early stopping
rules for enrichment and Bayesian hierarchical models to
account for between-subgroup heterogeneity. For exam-
ple, Ventz et al. (2017) present a class of Bayesian RAR
procedures and report the allocation to a superior arm
per cancer type increases from that of balanced random-
ization by 10–32%. We envisage that the potential effi-
ciency gains brought by RAR, when combined with prin-
cipled information borrowing (Zheng and Wason, 2022,
Ouma et al., 2022) or enrichment strategies, can help de-
liver the full potential of precision medicine trials evaluat-
ing multiple treatment arms in multiple patient subgroups.
Such trial settings, as well as multiarm and platform trials,
provide contexts where RAR may be increasingly used
in the future, again helping answer the question asked by
Duan, Müller and Jin.

The trials reported by Berry and Viele also give a
glimpse into what the future of complex trial designs (in-
cluding RAR as a possible component) could look like as
groups gain experience and confidence in applying RAR
and other trial adaptations in practice. As complex trial
designs become more routinely used, a preference for
simplicity of a design may evolve, with design features
such as (well-understood) RAR procedures being seen
as an increasingly logistically feasible option to consider.
Hence, the difference in complexity between a group se-
quential design with a fixed 3:2 sampling ratio and a RAR
procedure updated in groups, as considered by Jennison,
may be viewed as less influential as some of the costs of
implementing complex designs decrease. This helps an-
swer the question Jennison posed around when a more
symmetric attitude to the assumed treatment effect around
zero may be justified. Depending on the trial context, an
assumption that the new treatment is at least as effective
as the control may be difficult to justify (e.g., when there
is no standard of care), and (all else being equal) using a
RAR procedure that does not depend on it may be prefer-
able.

Further Questions Increased Uptake Might Bring

As noted by many of the discussants, and with the
prospect of the increased uptake of RAR designs in the fu-
ture, there remain potential barriers and further questions
to answer. Ivanova and Rosenberger ask if there is scope
to adjust recruitment for ethical purposes. As an example
of this, Ventz et al. (2017) comment that the increased ex-
pected number of patients on the best arm is higher for
the group with the slowest accrual rate, and note that “this
gives the algorithm more time to accumulate informa-
tion.” Our view is that recruitment is challenging enough
to predict, so we cannot easily imagine manipulating this.
However, slowing down recruitment is more feasible than
speeding it up (e.g., delaying the opening of new centers
in a multicenter study). Perhaps an ideal approach would
match the adaptation to the expected pace of recruitment,
with this being a key part of the simulations performed to
choose a design. The idea of recruiting patients in groups
(as mentioned by Ivanova and Rosenberger, utilized in
practice by Berry and Viele, and methodologically de-
scribed by Jennison) is one way to help match adaptations
such as RAR to recruitment rates.

Ivanova and Rosenberger also point to the possibility of
accrual bias (patients choosing to delay consenting into a
trial) being an issue. This relates to the above point in that
while slowing recruitment may be possible, this may not
be desirable both from a sponsor and patient perspective.
If the disease is such that it is imperative to seek a po-
tential superior treatment earlier on, patients may have to
weigh these two incentives to make a decision. Also, it is
an open question as adaptive trials remain in the minority
and work is needed to understand what level of informa-
tion is given to patients at recruitment. We need evidence
to determine if this is an issue just as much as we need re-
search on how to best approach patients to enter an adap-
tive trial to minimize this and other forms of biases.

We agree with Giovagnoli that the “ground remains fer-
tile and there is ample scope” for further methodological
developments around RAR. We gave our view of some
of the key remaining open areas for methods research at
the very end of our paper. As we discussed there, one
open area is that of efficient and valid inference meth-
ods for RAR. This links to the point raised by Giovagnoli
about metrics related to “inference and estimation.” We
regard estimation as a branch of statistical inference, but
made the distinction between hypothesis testing and es-
timation metrics explicit in our paper as the two issues
can have very different considerations within the context
of adaptive designs; see, for example, Robertson et al.
(2023a, 2023b).

Meanwhile, clearly defining objectives and suitable
metrics is in our opinion one of the biggest hurdles to
overcome so that practitioners can use optimal and com-
plex designs (including those with RAR). Linked with
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this, the derivation of optimal designs for complex util-
ity functions remains a difficult methodological and com-
putational challenge. Another area mentioned by Trippa
and Xu (and discussed above) is the development of RAR
that incorporates biomarker information to be used in the
context of precision medicine. Finally, as mentioned by
Ivanova and Rosenberger there is a need for software for
RAR, so that methodology can be implemented in prac-
tice. This links to the idea from Berry and Viele of the
importance of blinded algorithmic implementations to al-
low RAR to be logistically feasible.

Concluding Remarks

When we started to write our paper, we found that (as
Trippa and Xu put it) many “are often influenced by their
experience with a single algorithm.” Our paper was an
attempt to move the debate away from that stale position.
In doing so, we did not fully answer some questions (such
as Duan, Müller and Jin’s question of when to use RAR,
or which RAR procedures have been superseded as Gio-
vanoli would like to see in a review), but we have given
our views on many others that have been part of a long-
lasting debate on the use of RAR in clinical trials. We are
delighted to see that the discussion on the topic appears to
have evolved in such a promising direction. Ivanova and
Rosenberger looked back at the Statistical Science review
by Rosenberger (1996) in relation to ours and reflected
upon what has changed. We look forward with eager ex-
pectation to the changes to come in the next 25 years.
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