
Probability Surveys
Vol. 20 (2023) 608–663
ISSN: 1549-5787
https://doi.org/10.1214/23-PS20

L2-small ball asymptotics for Gaussian
random functions: A survey∗

Dedicated to the memory of M.S. Birman and M.Z. Solomyak,
founders of St. Petersburg school of spectral theory

Alexander Nazarov
St.Petersburg Dept of Steklov Institute, Fontanka 27, St.Petersburg, 191023, Russia, and

St.Petersburg State University, Universitetskii pr. 28, St.Petersburg, 198504, Russia
e-mail: al.il.nazarov@gmail.com

and

Yulia Petrova
Pontifícia Universidade Católica do Rio de Janeiro (PUC-Rio)

R. Marquês de São Vicente, 124, Gávea, Rio de Janeiro, 22451-040, Brazil
e-mail: yu.pe.petrova@yandex.ru

url: https://yulia-petrova.github.io/

Abstract: This article is a survey of the results on asymptotic behav-
ior of small ball probabilities in L2-norm. Recent progress in this field is
mainly based on the methods of spectral theory of differential and integral
operators.

MSC2020 subject classifications: Primary 60-02; secondary 60G15,
47G10, 34L05.
Keywords and phrases: Small ball probabilities, Gaussian processes,
Hilbertian norm, spectral asymptotics.

Received May 2023.

Contents

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 609
2 First works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 611
3 Second wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 613
4 Exact asymptotics: Green Gaussian processes and beyond . . . . . . . 616

4.1 Green Gaussian processes and their properties . . . . . . . . . . . 616
4.2 Exact L2-small ball asymptotics for the Green Gaussian processes 619
4.3 Finite-dimensional perturbations of Gaussian random vectors . . 623

4.3.1 Perturbations from the kernel of the original Gaussian
random vector . . . . . . . . . . . . . . . . . . . . . . . . 624

4.3.2 Detrended Green Gaussian processes . . . . . . . . . . . . 626
∗The work was supported by Russian Science Foundation, Grant 21-11-00047. The most

part of this paper was written while Yu.P. was a postdoctoral fellow at IMPA. She thanks
IMPA for creating excellent working conditions.

608

https://imstat.org/journals-and-publications/probability-surveys/
https://doi.org/10.1214/23-PS20
mailto:al.il.nazarov@gmail.com
mailto:yu.pe.petrova@yandex.ru
https://yulia-petrova.github.io/
https://mathscinet.ams.org/mathscinet/msc/msc2020.html


L2-small ball asymptotics: a survey 609

4.4 Fractional Gaussian noise and related processes . . . . . . . . . . 627
4.5 Tensor products . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

5 Logarithmic asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 631
5.1 General assertions . . . . . . . . . . . . . . . . . . . . . . . . . . 631
5.2 Power asymptotics . . . . . . . . . . . . . . . . . . . . . . . . . . 633
5.3 Regularly varying asymptotics . . . . . . . . . . . . . . . . . . . . 635
5.4 Almost regular asymptotics . . . . . . . . . . . . . . . . . . . . . 640
5.5 Slowly varying asymptotics . . . . . . . . . . . . . . . . . . . . . 645

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 649
Appendix. L2-small ball asymptotics for concrete processes . . . . . . . . 650
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 651

1. Introduction

The theory of small ball probabilities (also called small deviation probabilities)
is extensively studied in recent decades (see the surveys by M.A. Lifshits [97],
W.V. Li and Q.-M. Shao [94] and V.R. Fatalov [51]; for the extensive up-to-
date bibliography see [99]). Given a random vector X in a Banach space B, the
relation

P {‖X‖B ≤ ε} ∼ f(ε), ε → 0, (1)

(here and later on f(ε) ∼ g(ε) as ε → 0 means limε→0 f(ε)/g(ε) = 1) is called
an exact asymptotics of small deviations. Typically, this probability is expo-
nentially small, and often the logarithmic asymptotics is studied, that is the
relation

log
(
P{‖X‖B ≤ ε}

)
∼ f(ε), ε → 0.

Theory of small deviations has numerous applications including complexity
problems [135], the quantization problem [64], [106], evaluation of the metric
entropy for functional sets [97, Section 3], functional data analysis [52], non-
parametric Bayesian estimation [170], machine learning [150] (more applications
and references can be found in [94, Chapter 7]).

The discussed topic is almost boundless, so in this paper we focus on the most
elaborated (and may be the simplest) case, where X is Gaussian and the norm
is Hilbertian. Let X be a Gaussian random vector in a (real, separable) Hilbert
space H (the basic example is a Gaussian random function in L2(O), where O
is a domain in R

d). We always assume that EX = 0 and denote by GX the
corresponding covariance operator (it is a compact non-negative operator in H).

Let (μk) be the non-increasing sequence of positive eigenvalues of GX , counted
with their multiplicities, and denote by (ϕk) a complete orthonormal system of
the corresponding eigenvectors.1 It is well known (see, e.g., [98, Chapter 2]) that

1If GX has non-trivial null space then ϕk form a complete system in its orthogonal com-
plement.
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if ξk are i.i.d. standard normal random variables, then we have the following
distributional equality2

X
d=

∞∑
k=1

√
μk ϕk ξk,

which is usually called the Karhunen–Loève expansion.3 By the orthonor-
mality of the system (ϕk) this implies

‖X‖2
H

d=
∞∑
k=1

μkξ
2
k. (2)

Therefore the small ball asymptotics for X in the Hilbertian case is completely
determined by the eigenvalues μk.

Notice that if
∑∞

k=1 μk < ∞ then the series in (2) converges almost surely
(a.s.), otherwise it diverges a.s. The latter is impossible for X ∈ H, so, in what
follows we always assume that the eigenvalues series converges (GX is a trace
class operator).

Remark 1. Formula (2) shows that if the covariance operators of two Gaussian
random vectors X and Y have equal spectra (excluding maybe zero eigenvalues),
then their Hilbertian norms coincide in distribution.4 In this case X and Y are
called spectrally equivalent. Trivially, such Gaussian random vectors have the
same L2-small ball asymptotics.

Concrete examples of spectrally equivalent Gaussian processes are well known,
see, e.g., [47], [85, Example 4], [145], [114, Theorem 4.1], [104]. Some multivariate
generalizations can be found in [44], [136], [41].

Recently A.I. Nazarov and Ya.Yu. Nikitin [124] (see also [123]) developed a
general operator approach to the problem of spectral equivalence and obtained
a number of new examples.

Our paper is organized as follows. In Section 2 we describe the first results on
small ball probabilities in Hilbertian norm. In Section 3 we formulate two cru-
cial results: the Wenbo Li comparison principle and the Dunker–Lifshits–Linde
formula. These results formed the base for the systematic attack of the problem.

Further progress in the field is mainly based on the methods of spectral
theory. In Section 4 we give an overview of the results on exact asymptotics.
These results are mostly related to the spectral theory of differential operators.
Section 5 is devoted to the logarithmic asymptotics, the corresponding results
are related to the spectral theory of integral operators.

In Appendix we provide the history (up to our knowledge) of the results on
L2-small ball asymptotics for concrete processes.

2For the special choice ξk = 1√
μk

(X,ϕk)H this equality holds almost surely.
3Up to our knowledge stochastic functions given by similar series were first introduced by

D.D. Kosambi [87]. However, K. Karhunen [73], [74] and M. Loève [105] were the first who
proved the optimality in terms of the total mean square error resulting from the truncation of
the series. An analogous formula for stationary Gaussian processes was introduced by M. Kac
and A.J.F. Siegert in [72].

4In fact, the converse statement is also true.
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Let us introduce some notation.
For O ⊂ R

d, ‖ · ‖2,O stands for the norm in L2(O):

‖X‖2
2,O =

∫
O

|X(x)|2 dx.

The Sobolev space Wm
p [0, 1] is the space of functions u having continuous

derivatives up to (m− 1)-th order, u(m−1) being absolutely continuous on [0, 1]
and u(m) ∈ Lp[0, 1]. For p = 2, it is a Hilbert space.

A measurable function f(x) is called regularly varying at infinity (see, e.g.
[160, Chapter 1]), if it is of constant sign on [A,∞), for some A > 0, and there
exists α ∈ R such that for arbitrary ρ > 0 we have

lim
x→∞

f(ρx)
f(x) = ρα.

Such α is called the index of the regularly varying function. Regularly varying
function of index ρ = 0 is called slowly varying function (SVF). For instance,
the functions logσ(x), σ ∈ R, are slowly varying at infinity.

A function f(x) is called regularly varying at zero, if f( 1
x ) is regularly varying

at infinity. We say that a sequence (ak) has regular behavior if ak = f(k), where
f(x) is regularly varying at infinity.

2. First works

The oldest results about L2-small ball probabilities concern classical Gaussian
processes on the interval [0, 1]. R. Cameron and W. Martin [28] proved the
relation for the Wiener process W (t)

P
{
‖W‖2,[0,1] ≤ ε

}
∼ 4ε√

π
exp

(
−1

8 ε−2),
while T. Anderson and D. Darling [5] established the corresponding asymptotics
for the Brownian bridge B(t)

P
{
‖B‖2,[0,1] ≤ ε

}
∼

√
8√
π

exp
(
−1

8 ε−2). (3)

The latter formula describes the lower tails of the famous Cramer–von Mises–
Smirnov ω2-statistic.

One should notice that a minor difference (rank one process) between Wiener
process and Brownian bridge influences the power term in the asymptotics but
not the exponential one.

In general case the problem of L2-small ball asymptotics was solved by
G. Sytaya [166], but in an implicit way. The main ingredient was the Laplace
transform and the saddle point technique. The general formulation of result by
Sytaya in terms of operator theory states as follows.
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Theorem 1 ([166, Theorem 1]). As ε → 0, we have

P

{
‖X‖H ≤ ε

}
∼

(
4γ2πTr(GXRγ(GX))2

)− 1
2×

× exp
(
−

γ∫
0

Tr(GX [Ru(GX) −Rγ(GX)]) du
)
.

Here Tr(G) is the trace of operator G; Ru(G) is the resolvent operator defined
by the formula

Ru(G) = (I + 2uG)−1,

and γ = γ(ε) satisfies the equation ε2 = Tr(GXRγ(GX)).

In terms of eigenvalues μk of the covariance operator GX , this result reads as
follows:

Theorem 2 ([166, formula (20)]). If μk > 0 and
∑∞

k=1 μk < ∞, then, as ε → 0,

P

{ ∞∑
k=1

μkξ
2
k ≤ ε2

}
∼

(
−2πγ2h′′(γ)

)− 1
2 exp

(
γh′(γ) − h(γ)

)
, (4)

where h(γ) = 1
2
∑∞

k=1 log(1 + 2μkγ) and γ is uniquely determined by equation
ε2 = h′(γ) for ε > 0 small enough.

As a particular case the formula (3) for the Brownian bridge was also ob-
tained. However, these theorems are not convenient to use for concrete compu-
tations and applications. For example, finding expressions for the function h(γ)
and solving the implicit equation for γ = γ(ε) are two difficulties that arise.
The significant simplification was done only in 1997 by T. Dunker, W. Linde
and M. Lifshits [49]. We describe it in detail in Section 3.

The results of [166] were not widely known. J. Hoffmann-Jørgensen [65] in
1976 obtained two-sided estimates for L2-small ball probabilities. Later the re-
sult of Sytaya was rediscovered by I.A. Ibragimov [69].5 Cf. also [110], [38], [108],
[45], [4].

In 1984 V.M. Zolotarev [181] suggested an explicit description of the small
deviations in the case μk = φ(k) with a decreasing and logarithmically con-
vex function φ on [1,∞). His method was based on application of the Euler-
Maclaurin formula to the sums in the right hand side of (4). Unfortunately, no
proofs were presented in [181], and, as was shown in [49], this result is not valid
without additional assumptions about the function φ (in particular, the final
formula in [181, Example 2] is not correct, see the end of Section 3 below).

In 1989 A.A. Borovkov and A.A. Mogul’skii [22] investigated small devia-
tions of several Gaussian processes in various norms. However, as noted in [97,
Section 1], the result of Theorem 3 in [22] contains an algebraic error.6

5We notice that formula (23) in [69] contains several misprints. Apparently, this was first
mentioned in [51, p. 745].

6On the other hand, the statement in [51, p. 745] that this erroneous result was reprinted
in [95, p. 206] is in turn erroneous.
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One of the natural extensions of the problem under consideration is to find
asymptotics (1) for shifted small balls. It was shown in [166, Theorem 1] that
if the shift a belongs to the reproducing kernel Hilbert space7 (RKHS) of the
Gaussian vector X, then

P{‖X − a‖H ≤ ε} ∼ P{‖X‖H ≤ ε} · exp
(
−
∥∥G− 1

2
X a

∥∥2
H
/2

)
, (5)

where ‖G− 1
2

X a‖H is in fact the norm of a in RKHS of X. See also some relations
between the probabilities of centered and shifted balls in [66] by J. Hoffmann-
Jørgensen, L.A. Shepp and R.M. Dudley, [103] by W. Linde and J. Rosinski,
and [46] by S. Dereich. A generalized version of equivalence (5) for Gaussian
Radon measures on locally convex vector spaces was proved by Ch. Borell [21].

Formula (5) was later generalized by J. Kuelbs, W.V. Li and W. Linde [89]
and W.V. Li, W. Linde [93], who handled the asymptotics of probability

P{‖X − f(t)a‖H ≤ R(t)}, t → ∞,

for various combinations of f and R, including the case R(t) → ∞ as t → ∞.

3. Second wave

The main difficulty in using Theorem 2 is that the explicit formulae for the
eigenvalues of the covariance operators are rarely known. It was partially sur-
mounted by the celebrated Wenbo Li comparison principle.8

Theorem 3 ([92, 59]). Let ξk be i.i.d. standard normal random variables, and
let (μk) and (μ̃k) be two positive non-increasing summable sequences such that∏

μk/μ̃k < ∞. Then

P

{ ∞∑
k=1

μ̃kξ
2
k ≤ ε2

}
∼ P

{ ∞∑
k=1

μkξ
2
k ≤ ε2

}
·
( ∞∏

k=1

μk

μ̃k

) 1
2
, ε → 0. (6)

So, if we know sufficiently sharp (and sufficiently simple!) asymptotic approx-
imations μ̃k for the eigenvalues μk of GX , then formula (6) provides the L2-small
ball asymptotics for X up to a constant. Of course, in order to use this idea
efficiently, we need explicit expressions of L2-small ball asymptotics for “model”
sequences (μ̃k).

An important step in solving the latter problem was made by M.A. Lifshits
in [96] who considered the small ball problem for more general series:

S :=
∞∑
k=1

φ(k)Zk, (7)

7This space is often called the kernel of the distribution of the Gaussian vector X, see,
e.g., [98, Section 4.3].

8W.V. Li [92] proved this statement provided
∑

|1 − μk/μ̃k| < ∞ and conjectured that
this assumption can be relaxed to the natural one

∏
μk/μ̃k < ∞. Later this conjecture was

confirmed by F. Gao, J. Hannig, T.-Y. Lee and F. Torcaso [59].
W. Linde [102] generalized W.V. Li’s assertion for the case of shifted balls. In [60] Theo-

rem 3 was extended to the sums
∑

μk|ξk|p, p > 0, and even to some more general ones.
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where (φ(k)) is a non-increasing summable sequence of positive numbers, and
Zk are independent copies of a positive random variable Z with finite variance
and absolutely continuous distribution. The main restriction imposed in [96] on
the distribution function F (·) of Z is

c1F (τ) ≤ F (bτ) ≤ c2F (τ) (8)

for some b, c1, c2 ∈ (0, 1) and for all sufficiently small τ . This assumption implies
a polynomial (but not necessarily regular) lower tail behavior of the distribu-
tion. For the special case Zk = ξ2

k the sum in (7) corresponds to L2-small ball
probabilities (2).

Using the idea of R.A. Davis and S.I. Resnick [40], Lifshits expressed the
exact small ball behavior of (7) in terms of the Laplace transform of S. If Z has
finite third moment, then a quantitative estimate of the remainder term was
also given.

The next important step was done by T. Dunker, M.A. Lifshits and W. Linde
in [49]. The result is based on the following assumption on the sequence (φ(k)):

Condition DLL. The sequence (φ(k)) admits a positive, logarithmically con-
vex, twice differentiable and integrable extension on the interval [1,+∞).

Under some additional assumptions9 on the distribution function F the au-
thors significantly simplified the expressions from [96] for the small ball behavior
of S. By using Euler–Maclaurin’s summation formula, they succedeed to express
the small ball probabilities in terms of three integrals:

I0(γ) : =
∞∫
1

(log f)(γφ(t)) dt,

I1(γ) : =
∞∫
1

γφ(t)(log f)′(γφ(t)) dt,

I2(γ) : =
∞∫
1

(γφ(t))2(log f)′′(γφ(t)) dt.

Here f(γ) is the Laplace transform of Z,

f(γ) :=
∞∫
0

exp(−γτ) dF (τ). (9)

9The results in [49] heavily depend on the finiteness of the total variation
V[0,∞)(γf ′(γ)/f(γ)), where f is defined in (9). This condition together with restriction (8)
implies that the distribution function F is regularly varying at zero with some index α < 0.
This condition also holds for the case Zk = |ξk|p, p > 0. Some relaxations are discussed in [49,
Section 5] and in the later papers of F. Aurzada [6], A.A. Borovkov, P.S. Ruzankin [23, 24],
L.V. Rozovsky (see [155] and references therein).
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The main result (Theorem 3.1 in [49]) reads as follows:

P

{
S ≤ r

}
∼

√
f(γφ(1))
2πI2(γ) exp(I0(γ) + ρ(γ) + γr)), r → 0, (10)

where γ = γ(r) is any function satisfying

lim
r→0

I1(γ) + γr√
I2(γ)

= 0, (11)

and ρ(γ) is a bounded function that represents the remainder terms in Euler–
Maclaurin formula and can be written explicitly via infinite sums.

At a first glance, formula (10) and condition (11) do not seem to be more
explicit than Theorem 2. Hovewer, for Zk = ξ2

k (in this case f(γ) = (1+2γ)− 1
2 )

the result of [49] turned out to be much more computationally tractable and
became the base for derivation of the exact asymptopics for many “model”
sequences of eigenvalues (φ(k)).

In particular, the following asymptotics were obtained in [49, Section 4].

1. Let p > 1. Then, as ε → 0,

P

{ ∞∑
k=1

k−pξ2
k ≤ ε2

}
∼ C · εγ exp

(
− Dε−

2
p−1

)
, (12)

where the constants D and γ depend on p as follows:

D = p− 1
2

( π

p sin π
p

) p
p−1

, γ = 2 − p

2(p− 1) ,

while the constant C is given by the following expression:

C =
(2π) p

4
(
sin π

p

) 1+γ
2

(p− 1) 1
2
(
π
p

)1+ γ
2
.

Notice that this example was first considered in [181].10
2. The second result shows that the general asymptotic formula in [181] is

not true. Namely, we have as ε → 0

P

{ ∞∑
k=0

exp(−k) ξ2
k ≤ ε2

}

∼
exp

(
−π2

12 − 1
4 (log( 1

ε2 log 1
ε2 ))2 + ψ0(log( 1

ε2 log 1
ε2 ))

)
π

1
2 ε

1
2 (log 1

ε2 ) 3
4

,

10However, as was first mentioned in [51, p. 743], the constants C and D in [181, Example 1]
were calculated erroneously: they contain the Euler constant that does not appear in the
correct answer. This error was reproduced in [92, formula (3.2)].
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where ψ0 is an explicitly given (though complicated) 1-periodic and boun-
ded function. It is shown in [49] that ψ0 is non-constant while such term
is absent in [181, Example 2].11

4. Exact asymptotics: Green Gaussian processes and beyond

4.1. Green Gaussian processes and their properties

As was mentioned above, the results of [92], [59] and [49] allow to obtain the
exact (at least up to a constant) small ball asymptotics for Gaussian random
vectors from sufficiently sharp eigenvalues asymptotics of the corresponding
covariance operators. The first significant progress in this direction was made
for a special important class of Gaussian functions on an interval.

A Green Gaussian process is a zero mean Gaussian process X on an
interval (say, [0, 1]) such that its covariance function GX is the (generalized)
Green function of an ordinary differential operator (ODO) on [0, 1] with proper
boundary conditions. This class of processes is very important as it includes the
Wiener process, the Brownian bridge, the Ornstein-Uhlenbeck process, their
(multiply) integrated counterparts etc.

First, we recall some definitions. Let L be an ODO given by the differential
expression

Lu := (−1)�
(
p�u

(�)
)(�)

+
(
p�−1u

(�−1)
)(�−1)

+ · · · + p0u, (13)

(here pj , j = 0, . . . , �, are functions on [0, 1], and p�(t) > 0) and by 2� boundary
conditions

Uν(u) := Uν0(u) + Uν1(u) = 0, ν = 1, . . . , 2�, (14)

where

Uν0(u) := ανu
(kν)(0) +

kν−1∑
j=0

ανju
(j)(0),

Uν1(u) := γνu
(kν)(1) +

kν−1∑
j=0

γνju
(j)(1),

and for any index ν at least one of the coefficients αν and γν is not equal to
zero.

For simplicity we assume pj ∈ W j
∞[0, 1], j = 0, . . . , �. Then the domain D(L)

consists of the functions u ∈ W 2�
2 [0, 1] satisfying boundary conditions (14).

Remark 2. It is well known, see, e.g., [111, §4], [48, Chap. XIX], that the system
of boundary conditions can be reduced to the normalized form by equivalent
transformations. In what follows we always assume that this reduction is re-
alized. This form is specified by the minimal sum of orders of all boundary
conditions κ =

∑2�
ν=1 kν .

11This error in [181] was also reproduced in [92, formula (3.3)].
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The Green function of the boundary value problem

Lu = λu on [0, 1], u ∈ D(L), (15)

is the function G(t, s) such that it satisfies the equation LG(t, s) = δ(s−t) in the
sense of distributions and satisfies the boundary conditions (14).12 The existence
of the Green function is equivalent to the invertibility of the operator L with
given boundary conditions, and G(t, s) is the kernel of the integral operator L−1.

If the problem (15) has a zero eigenvalue corresponding to the eigenfunction
ϕ0 (without loss of generality, it can be assumed to be normalized in L2[0, 1]),
then the Green function obviously does not exist. If ϕ0 is unique up to a constant
multiplier, then the function G(t, s) is called the generalized Green function
if it satisfies the equation LG(t, s) = δ(t− s)−ϕ0(t)ϕ0(s) in the sense of distri-
butions, subject to the boundary conditions and the orthogonality condition

1∫
0

G(t, s)ϕ0(s) ds = 0, 0 ≤ t ≤ 1.

The generalized Green function is the kernel of the integral operator which is
inverse to L on the subspace of functions orthogonal to ϕ0 in L2[0, 1]. In a
similar way, one can consider the case of multiple zero eigenvalue.

Thus, (non-zero) eigenvalues μk of the covariance operator of a Green Gaus-
sian process are inverse to the (non-zero) eigenvalues λk of the correspond-
ing boundary value problem (15): μk = λ−1

k . Therefore, to obtain rather good
asymptotics of the eigenvalues μk one can use the powerful methods of spectral
theory of ODOs, originated from the classical works of G. Birkhoff [13], [14] and
J.D. Tamarkin [167], [168].

Notice that the basic operations on random processes – integration and cen-
tering – transform a Green Gaussian process to a Green one. It is easy to see that
if G(t, s) is the covariance function of a random process X then the covariance
functions of the integrated and the centered (demeaned) process

X1(t) =
t∫

0

X(s) ds, X(t) = X(t) −
1∫

0

X(s) ds (16)

are, respectively,

G1(t, s) =
t∫

0

s∫
0

G(x, y) dydx, (17)

G(t, s) = G(t, s) −
1∫

0

G(t, y) dy −
1∫

0

G(x, s) dx +
1∫

0

1∫
0

G(x, y) dydx. (18)

12Notice that if G is the covariance function of a random process then G(t, s) ≡ G(s, t),
and therefore the problem (15) is always self-adjoint.
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Theorem 4. 1 ([120, Theorem 2.1]). Let the kernel G(t, s) be the Green func-
tion for the boundary value problem (15). Then the integrated kernel (17) is the
Green function for the boundary value problem

L1u := −(Lu′)′ = λu on [0, 1], u ∈ D(L1), (19)

where the domain D(L1) consists of functions u ∈ W 2�+2
2 [0, 1] satisfying the

boundary conditions

u(0) = 0; u′ ∈ D(L); (Lu′)(1) = 0.

2 ([114, Theorem 3.1]). Let the boundary value problem (15) have a zero
eigenvalue with constant eigenfunction ϕ0(t) ≡ 1, and let the kernel G(t, s)
be the generalized Green function of the problem (15). Then the integrated ker-
nel (17) is the (conventional) Green function of the boundary value problem (19)
where the domain D(L1) consists of functions u ∈ W 2�+2

2 [0, 1] satisfying the
boundary conditions

u(0) = 0; u(1) = 0; u′ ∈ D(L). (20)

3 ([126, Theorem 1]).13 Let the kernel G(t, s) be the Green function of the
problem (15), and let the corresponding differential expression L have no zero
order term14 (p0 ≡ 0). Then the centered kernel (18) is the generalized Green
function for the boundary value problem Lu := Lu = λu with explicitly given
boundary conditions.

We provide three examples of transformations of Green Gaussian processes
generating somewhat more complicated boundary value problems:

1. Multiplication by a deterministic function ψ;
2. The so-called online-centering [85]:

X̂(t) = X(t) − 1
t

t∫
0

X(s) ds;

3. Linear combination of two Green Gaussian processes.

Theorem 5. 1 ([127, Lemma 2.1]).15 Let X(t) be a Green Gaussian process,
corresponding to the boundary value problem (15), and let ψ ∈ W �

∞[0, 1], ψ > 0
on (0, 1). Then the covariance function of the process ψ(t)X(t) is the Green
function of the problem

Lψu := ψ−1L(ψ−1u) = λu on [0, 1], ψ−1u ∈ D(L).
13For the problem (19)–(20) this statement was proved in [114].
14The case p0 �≡ 0 is much more complicated. In this case the centered process X is in

general not a Green Gaussian process.
15For X = W and X = B this fact was obtained earlier in [43, Theorems 1.1 and 1.2].

Some interesting examples can be found in [147].
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2 ([124, Theorem 2]). Let X(t) be a Green Gaussian process, corresponding
to the boundary value problem (15). Then the covariance function of the online-
centered integrated process X̂1(t) is the Green function of the problem

L̂1u := t(t−1L(t−1(tu)′))′ = λu on [0, 1], u ∈ D(L̂1),

where the domain D(L̂1) is defined by 2� + 2 boundary conditions

u(0) = 0, t−1(tu)′ ∈ D(L), L(t−1(tu)′)(1) = 0.

3 ([122, Section 2]). Let X1(t) and X2(t) be independent Green Gaussian
processes, corresponding to the boundary value problems of the form (15) with
the same operator L and different boundary conditions. Then for any α1, α2 > 0
such that α2

1 + α2
2 = 1, the mixed process

X(t) = α1X1(t) + α2X2(t)

is a Green Gaussian process, corresponding to the boundary value problem of
the form (15) with the same operator L subject to some (in general, more com-
plicated) boundary conditions.

4.2. Exact L2-small ball asymptotics for the Green Gaussian
processes

Apparently, the papers [11] by L. Beghin, Ya.Yu. Nikitin and E. Orsingher
and [43] by P. Deheuvels and G. Martynov were the first where the eigenvalues
asymptotics for covariance operators was obtained by the passage to the cor-
responding boundary value problem. The small deviation asymptotics up to a
constant was derived for several concrete Green Gaussian processes, including
some integrated ones [11] and weighted ones [43].

To formulate the general result, first, we describe the asymptotic behavior of
the eigenvalues of the boundary value problem (15).

It is well known, see, e.g., [111, §4], [48, Chap. XIX], that eigenvalues λk of
Birkhoff-regular (in particular, self-adjoint) boundary value problem for ODO
with smooth coefficients can be expanded into asymptotic series in powers of k
(analogous results under more general hypotheses, as well as some additional
references, can be found in [163], [164]). Taking into account the Li comparison
principle (Theorem 3), it is easy to show that the L2-small ball asymptotics up
to a constant for the Green Gaussian process requires just two-term spectral
asymptotics for the corresponding boundary value problem (with a remainder
estimate). This asymptotics is given by the following assertion.

Theorem 6 ([111, §4, Theorem 2]). Let p� ≡ 1. Then the eigenvalues of the
problem (15) counted according to their multiplicities can be split into two sub-
sequences (λ′

j), (λ′′
j ), j ∈ N, such that, as j → ∞,

λ′
j =

(
2πj + ρ′ + O(j− 1

2 )
)2�

, λ′′
j =

(
2πj + ρ′′ + O(j− 1

2 )
)2�

. (21)
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The first term of this expansion is completely determined by the principal
coefficient of the operator,16 whereas the formulae for other terms (in particular,
for ρ′ and ρ′′) are rather complicated. However, it turns out that the exact L2-
small ball asymptotics (up to a constant) for the Green Gaussian processes
depends only on the sum ρ′ + ρ′′, which is completely determined by κ, the
sum of orders of the boundary conditions, see Remark 2. So we arrive at the
following result.

Theorem 7 ([120, Theorem 7.2]; [114, Theorem 1.2]). Let the covariance func-
tion GX(t, s) of a zero mean Gaussian process X(t), 0 ≤ t ≤ 1, be the Green
function of the boundary value problem (15) generated by differential expres-
sion (13) and by boundary conditions (14). Let κ < 2�2. Then, as ε → 0,

P{‖X‖2,[0,1] ≤ ε} ∼ C(X) · εγ exp
(
−D�ε

− 2
2�−1

)
. (22)

Here we denote

D� = 2�− 1
2

(
θ�

2� sin π
2�

) 2�
2�−1

, γ = −� + κ + 1
2�− 1 , θ� =

1∫
0

p
− 1

2�
� (t) dt, (23)

and the constant C(X) is given by

C(X) = Cdist(X) ·
(2π) �

2
(
π
θ�

)�γ (sin π
2�
) 1+γ

2

(2�− 1) 1
2
(
π
2�
)1+ γ

2 Γ� (
�− κ

2�
) , (24)

where Cdist(X) is the so-called distortion constant (cf. formula (6))

Cdist(X) :=
∞∏
k=1

λ
1
2
k(

π
θ�

·
[
k + �− 1 − κ

2�
])� , (25)

and λk are the eigenvalues of the problem (15) taken in non-decreasing order
and counted with their multiplicities.

Remark 3. If GX(t, s) is the generalized Green function of the problem (15)
then formula (22) should be corrected. Namely, if, say, one of eigenvalues λk

vanishes, the exponent γ in (23) increases by 2�
2�−1 , and λk in the product (25)

should be properly renumbered.
On the other hand, if, say, κ = 2�2 then formulae (24) and (25) cannot be

applied directly. The correct result can be obtained if we substitute κ → κ − ε
and then push ε → 0 in (24).

The first step towards a general result was made by F. Gao, J. Hannig
and F. Torcaso [61]. They considered m-times integrated Wiener processes

16In general case the problem (15) can be reduced to the case p� ≡ 1 by the independent
variable transform, see [111, §4]. The expressions in brackets in (21) should be divided by∫ 1
0 p

− 1
2�

� (t) dt.
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W
[β1,...,βm]
m (t). Here and later on, for a random process X(t) on [0, 1] we de-

note

X [β1,...,βm]
m (t) = (−1)β1+...+βm

t∫
βm

tm−1∫
βm−1

. . .

t1∫
β1

X(s) dsdt1 . . . dtm−1 (26)

(here 0 ≤ t ≤ 1, and any βj equals either zero or one; the usual m-times
integrated process corresponds to β1 = · · · = βm = 0).

From Theorem 4 it follows that the covariance function of W [β1,...,βm]
m is the

Green function of the boundary value problem

(−1)m+1u(2m+2) = λu on [0, 1],

with boundary conditions depending on parameters βj , j = 1, . . . ,m. The spe-
cial case W

[1,0,1,...]
m is called in [61] the Euler-integrated Brownian motion, since

its covariance function can be expressed in terms of Euler polynomials.
By particular fine analysis, the authors of [61] obtained the formula

P{‖W [β1,...,βm]
m ‖2,[0,1] ≤ ε} ∼ C · ε

1−k0(2m+2)
2m+1 exp

(
−Dmε−

2
2m+1

)
. (27)

Here Dm is equal to the corresponding coefficient in (22) for � = m + 1 and
k0 is an unknown integer. It was also conjectured in [61] that k0 = 0 for all
m ∈ N and for any choice of βj (for m ≤ 10 this was checked numerically). This
conjecture was verified in [59].

Simultaneously, A.I. Nazarov and Ya.Yu. Nikitin [120] obtained the result
of Theorem 7 for arbitrary Green Gaussian process under assumption that the
boundary conditions (14) are separated:

Uν0(u) = 0, ν = 1, . . . , �; Uν1(u) = 0, ν = � + 1, . . . , 2�. (28)

For general self-adjoint boundary value problems, Theorem 7 was established
later in [114].

Theorem 7 provides the exact L2-small ball asymptotics up to a constant.
The methods of derivation of this constant were proposed simultaneously and
independently in [112] and [58]. Although slightly different, both methods are
based on complex variables techniques (the Hadamard factorization and the
Jensen theorem).

Remark 4. As an auxiliary result, the following generalization of (12) was
obtained in [120, Theorem 6.2]:17

Let ϑ > 0, δ > −1, p > 1. Then, as ε → 0,

P

{ ∞∑
k=1

(ϑ(k + δ))−pξ2
k ≤ ε2

}
∼ C(ϑ, p, δ) · εγ exp

(
−Dε−

2
p−1

)
, (29)

17For p = 2 this formula was established earlier in [92].
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where

D = p− 1
2

( π

ϑp sin π
p

) p
p−1

, γ = 2 − p− 2δp
2(p− 1) , (30)

while

C(ϑ, d, δ) =
(2π) p

4 ϑ
dγ
2
(
sin π

p

) 1+γ
2

(p− 1) 1
2
(
π
p

)1+ γ
2 Γ p

2 (1 + δ)
.

Formula (29), together with Theorem 3 and the results of [112], gave an op-
portunity to derive ([130], [158]) the exact L2-small ball asymptotics for Gaus-
sian processes satisfying the following condition on the eigenvalues μk of the
covariance operator:

μk =
(
P1(k)

)ν1(
P2(k)

)ν2 ,

where P1 and P2 are polynomials, ν1, ν2 > 0.18 Several examples of such pro-
cesses can be found in [145] (see also [144], [146]).

Now we give an important corollary from Theorem 7 and Part 1 of Theorem 4.

Corollary 1 ([120, Theorem 4.1]). Given a Green Gaussian process X on [0, 1],
the parameter κ (the sum of orders of boundary conditions) for the boundary
value problem (15) corresponding to any m-times integrated process X

[β1,...,βm]
m

does not depend on βj, j = 1, . . . ,m. Thus, the L2-small ball asymptotics for
various processes X

[β1,...,βm]
m can differ only by a constant.

This corollary generates a natural question: which choices of parameters βj

give the extremal (maximal/minimal) constant in L2-small ball asymptotics
among all m-times integrated processes?

For X = W the answer was given independently in [59, Remark 2] and [112,
Theorem 4.1]. It turns out that the usual integrated Wiener process W

[0,0,0,...]
m

has the biggest multiplicative constant, while the Euler-integrated Wiener pro-
cess W

[1,0,1,...]
m has the smallest one. The same extremal properties of the pro-

cesses X
[0,0,0,...]
m and X

[1,0,1,...]
m for the Green Gaussian processes X under some

symmetry assumptions19 were obtained in [112, Proposition 4.4], [119].
The methods established in [120], [59], [114] and [112], [58] were widely used to

obtain exact small ball asymptotics for many concrete Green Gaussian processes.
Several examples were considered even in the pioneer papers [112], [58]. Much
more results can be found in [131], [41], [114], [142], [143], [9].20

18A particular case μk = 1
(k−a)(k−b) was considered earlier in [51, Theorem 3.7].

19In particular, these assumptions are fulfilled for a symmetric process, for instance, for
the Brownian bridge and the Ornstein–Uhlenbeck process.

20The thesis [70] is of particular interest. Besides several known examples, the Slepian
process S(t) = W (t + a) − W (t) on [0, 1] was considered there. It turns out that for a < 1
the eigenproblem for corresponding covariance operator is equivalent to the boundary value
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The L2-small ball asymptotics of the weighted Green Gaussian processes are
of particular interest. The first results on exact asymptotics were obtained in
[43], [112], [58].

Numerous examples were considered in [127]. Also it was noticed in this paper
that if the weight is sufficiently smooth and non-degenerate (i.e. bounded and
bounded away from zero) then the formula (22) holds with the exponent γ
independent of the weight.21 However, if the weight degenerates (vanishes or
blows up) at least at one point of the segment, generally speaking, this is not
the case.

In fact, the following comparison theorem holds for the Green Gaussian pro-
cesses with non-degenerate weights. For simplicity we give it here for the case
of separated boundary conditions, a more general result can be found in [128,
Corollary 1].

Theorem 8 ([128, Theorem 2]).22 Let X(t) be a Green Gaussian process on
[0, 1]. Suppose that the boundary conditions of the corresponding boundary value
problem are separated (see (28)).

Suppose that the weight functions ψ1, ψ2 ∈ W �
∞[0, 1] are bounded away from

zero, and
1∫

0

ψ
1
�
1 (t) dt =

1∫
0

ψ
1
�
2 (t) dt.

Denote by κ0 and κ1 sums of orders of boundary conditions at zero and one,
respectively: κ0 =

∑�
ν=1 kν , κ1 =

∑2�
ν=�+1 kν . Then, as ε → 0,

P
{
‖ψ1X‖2,[0,1] ≤ ε

}
∼ P

{
‖ψ2X‖2,[0,1] ≤ ε

}
·
(ψ2(0)
ψ1(0)

)− �
2+ 1

4+κ0
2�
(ψ2(1)
ψ1(1)

)− �
2+ 1

4+κ1
2�
.

4.3. Finite-dimensional perturbations of Gaussian random vectors

A natural class of Gaussian random vectors that often can be treated analytically
is the class of finite-dimensional perturbations of a Gaussian random vector X
for which we already know the exact small deviation asymptotics.23 In this
subsection we consider two types of such perturbations arising in applications.

problem for a system of ordinary differential equations. The analysis of this boundary value
problem is much more difficult than in the case of a single equation; in [70, Sections 2.2.10
and 3.3.7] it is performed only for 1

2 ≤ a < 1.
21In contrast, the coefficient D� depends on the weight.
22For some concrete processes this result was established earlier by Ya.Yu. Nikitin and

R.S. Pusev [132].
23Notice that the logarithmic asymptotics does not change under finite-dimensional per-

turbations, see Section 5.



624 A. Nazarov and Y. Petrova

4.3.1. Perturbations from the kernel of the original Gaussian random vector

The first example of such perturbations was considered by P. Deheuvels [42].
He introduced the following process:

YK(t) = B(t) − 6K t(1 − t)
1∫

0

B(s) ds, 0 ≤ t ≤ 1,

where B(t) is the standard Brownian bridge while K ∈ R is a constant. He
showed that the distributional equality YK(t) d= Y2−K(t) holds, and obtained
the explicit Karhunen–Loève expansion for the process Y1(t).

A general construction of one-dimensional perturbations in this class was
introduced by A.I. Nazarov [115].

Suppose that O ⊂ R
d is a bounded domain, and let X(x) be a Gaussian

random function on O. Consider the following family of “perturbed” Gaussian
random functions:

Xϕ,α(x) = X(x) − αψ(x)
∫
O

X(u)ϕ(u) du. (31)

Here α ∈ R, ϕ is a locally summable function in O, ψ = GXϕ, and

q :=
∫
O

ψ(x)ϕ(x) dx =
∫∫

O×O

GX(x, y)ϕ(x)ϕ(y) dxdy < ∞. (32)

The latter condition just means that ψ belongs to the kernel of the distribution
of X.24

Remark 5. It is easy to see that the Deheuvels process YK is a particular case
of Xϕ,α for X = B, ϕ ≡ 1 and α = 12K.

Direct calculation shows that the covariance function Gϕ,α of Xϕ,α is a one-
dimensional perturbation of the covariance function G, namely,

Gϕ,α(x, y) = GX(x, y) + Qψ(x)ψ(y),

where Q = q
(
α− 1

q

)2 − 1
q . The following statements can also be easily checked.

Lemma 1 ([115, Corollaries 1, 2]). 1. For the random functions (31), the
equality Xϕ,α(x) d= Xϕ, 2q−α(x) holds.

2. Let α̂ = 1
q . Then

a) The identity
∫
O Xϕ,α̂(x)ϕ(x) dx = 0 holds true a.s.

b) The process Xϕ,α̂(x) and the random variable
∫
O X(u)ϕ(u)du are

independent.
24In fact, the results in [115] hold in a more general setting, where X is a Gaussian vector

in a Hilbert space, ϕ is a measurable linear functional of X, and ψ = GXϕ.
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If α = 1
q then the random function (31) is called a critical perturbation of

X. Otherwise it is called a non-critical perturbation.
It turns out that in the non-critical case the L2-small ball asymptotics for

Xϕ,α(x) coincides with that of X up to a constant.

Theorem 9 ([115, Theorem 1]). Let a function ϕ satisfy (32). If α �= 1
q then,

as ε → 0,

P {‖Xϕ,α‖2,O ≤ ε} ∼ |1 − αq|−1 · P {‖X‖2,O ≤ ε} .

For the critical perturbations, a general result is substantially more compli-
cated, see [115, Theorem 2]. We restrict ourselves to the case where X is a Green
Gaussian process on [0, 1]. We stress that the assumption on ϕ here is stronger
than in Theorem 9.

Theorem 10 ([115, Theorem 3]). Let the covariance function GX be the Green
function for the boundary value problem (15), where L is an ODO (13) with
p� ≡ 1. Suppose that α̂ = 1

q and ϕ ∈ L2[0, 1]. Then, as ε → 0,

P{‖Xϕ,α̂‖2,[0,1] ≤ ε} ∼
√
q

‖ϕ‖2,[0,1]
·
(
2� sin

( π
2�

)
ε2
)− �

2�−1 · P{‖X‖2,[0,1] ≤ ε}.

Also in [115] an algorithm of derivation of Karhunen–Loève expansion for the
process Xϕ,α was given25 provided we know explicitly the fundamental system
of solutions to the equation Lu − λu = 0 for λ ∈ R. For instance, this is the
case when X is the Brownian bridge, which is very important in applications
(see below).

The results of [115] were generalized to the case of multi-dimensional pertur-
bations of Gaussian random functions by Yu.P. Petrova [140].26

Finite-dimensional perturbations of the Wiener process or the Brownian
bridge often appear in Statistics. Let us consider an ω2-type goodness-of-fit test
with parameters estimated from a sample. The corresponding limiting process in
this case (the so-called Durbin-type process, see [50]) is just a finite-dimensional
perturbation27 of the Brownian bridge.

Unfortunately, in many important cases the perturbation functions ϕ for
the Durbin-type processes do not belong to L2[0, 1], and thus Theorem 10 is
not applicable. For instance, this is the case for the Kac–Kiefer–Wolfowitz pro-
cesses [71] appearing as the limiting processes in testing normality with esti-
mated mean and/or variance.

Such processes require concrete fine analysis. For the Kac–Kiefer–Wolfowitz
processes, the exact L2-small ball asymptotics was calculated in [125], for several
other important Durbin-type processes it was handled in [138]. The main tools

25In a particular case this algorithm was invented by M. Kac, J. Kiefer and J. Wolfowitz
in [71]. Some examples can be also found in the recent paper [10].

26The problem of L2-small ball asymptotics for some concrete examples of such perturba-
tions of the Brownian bridge appearing in Statistics in a regression context was studied earlier
in [84]. Notice, however, that the power term in [84, Theorem 3.1] was calculated erroneously.

27More precisely, a critical perturbation, as it was shown in [140, Theorem 4].



626 A. Nazarov and Y. Petrova

in obtaining these results are the asymptotic expansion of oscillatory integrals
with amplitude being a slowly varying function [125, Theorems 1–3] and the
following generalization of the formula (29):

Suppose that ϑ > 0, δ > −1, p > 1. Let a function Φ be slowly varying at
infinity, monotonically tending to zero, and assume that the integral

∫∞
1

Φ(t)
t dt

diverges.28 Then, as ε → 0,

P

{ ∞∑
k=1

(ϑ(k + δ + Φ(k)))−pξ2
k ≤ ε2

}

∼ C · εγ exp
(
−Dε−

2
p−1 + p

2

ε
− 2

p−1∫
1

Φ(t)
t

dt

)
,

where D and γ are defined in (30) while C = C(ϑ, δ, d,Φ) is some (unknown)
constant.

4.3.2. Detrended Green Gaussian processes

This class of processes generalizes the notion of the demeaned process. It is
natural to view the process X(t) in (16) as the projection of X(t) in the subspace
of functions orthogonal to the constants in L2[0, 1]. In particular, this means

‖X‖2,[0,1] = min
a∈R

‖X − a‖2,[0,1].

In a similar way, we can define the n-th order detrended process X〈n〉(t) as
the projection of X(t) in the subspace of functions orthogonal in L2[0, 1] to the
set Pn of polynomials of degree up to n, that is

‖X〈n〉‖2,[0,1] = min
P∈Pn

‖X − P‖2,[0,1].

This process is given by the formula

X〈n〉(t) = X(t) −
n∑

j=0
ajt

j ,

where the random variables aj are determined by relations

1∫
0

tjX〈n〉(t) dt = 0, j = 0, . . . , n.

The first order detrended processes are simply called detrended.
28If this integral converges then the asymptotics coincides with (29) up to a constant.
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For several concrete demeaned Green Gaussian processes on [0, 1], the L2-
small ball asymptotics were obtained in [11] and [1]29; some particular detrended
processes were handled in [3] (up to a constant) and [84].

Yu.P. Petrova [139] considered this problem in a more general setting. Let
X be a Green Gaussian process on [0, 1] corresponding to the boundary value
problem (15) with L = (−1)�u(2�). It turns out that for n ≥ 2� the covari-
ance function of the process X〈n〉 does not depend on the original boundary
conditions30 and is the generalized Green function of the problem

(−1)�u(2�)(t) = λu(t) + P (t),
1∫

0

tju(t) dt = 0, j = 0, . . . , n,

where P ∈ Pn−2� is a polynomial with unknown coefficients.
The final result in [139] reads as follows:31
Let n ≥ 2�. Then, as ε → 0,

P

{
‖X〈n〉‖2 ≤ ε

}
∼ Cεγ exp

(
−Dε−

2
2�−1

)
,

where D is defined in (23) with θ� = 1, γ = (�−1)2−2n�
2�−1 , while C = C(�, n) is an

explicit constant.

4.4. Fractional Gaussian noise and related processes

It is well known that the standard Brownian motion (the Wiener process) is a
primitive of the Gaussian white noise, that is the zero mean distribution-valued
Gaussian process with the identity covariance operator.

Now we recall that fractional Brownian motion (fBm) WH with the
Hurst index H ∈ (0, 1) is a zero mean Gaussian process with the covariance
function

GWH (t, s) = 1
2
(
s2H + t2H − |s− t|2H

)
, t, s > 0 (33)

(for H = 1
2 we obtain the conventional Wiener process).

In a similar way, the fractional Brownian motion (say, on the interval [0, 1])
can be considered as a primitive of the fractional Gaussian noise (see,
e.g., [148]) that is the zero mean distribution-valued Gaussian process with the
covariance operator K2−2H , where

(Kαu)(x) = (1 − α
2 ) d

dx

1∫
0

sign(x− y)|x− y|1−αu(y) dy.

29Notice that the power term in [1, Proposition 2] was calculated erroneously.
30Notice that the notation X〈n〉 in [139] corresponds to X〈n−1〉 here.
31For X = W and X = B, the eigenvalues of GX〈n〉 were found earlier in [2]. However,

the power term in L2-small ball asymptotics was calculated erroneously in this paper.
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It is easy to check that K1 = Id, as required.
The logarithmic L2-small ball asymptotics for the fBm and similar processes

was extensively studied at the beginning of XXI century (see Section 5). In
contrast, corresponding exact L2-small ball asymptotics was a challenge until
recently. This is related to the fact that WH is not a Green Gaussian process
for H �= 1

2 .
The breakthrough step in this problem was done by P. Chigansky and M. Kle-

ptsyna [32]. Using the substitution u(t) =
∫ 1
t
ϕ(τ) dτ , the equation

1∫
0

GWH (t, s)ϕ(s) ds = μϕ(t), 0 ≤ t ≤ 1,

for eigenvalues of the covariance operator of fBm was reduced to the generalized
eigenproblem for the second order ODO (here λ = μ−1)

−u′′ = λKαu on [0, 1]; u′(0) = u(1) = 0. (34)

By the Laplace transform the problem (34) was converted to the Riemann–
Hilbert problem which, in turn, was solved asymptotically using the idea of
S. Ukai [169] and B.V. Pal’tsev [133], [134]. In this way the two-term asymptotics
of the eigenvalues with a remainder estimate was obtained for the fBm in the full
range of the Hurst index. Based on this, the exact L2-small ball asymptotics for
WH was established, along with some other applications. It should be mentioned
that the eigenfunctions asymptotics for fBm was also obtained in [32].

In later papers [35], [36], [86] similar results were obtained for some other
particular fractional Gaussian processes.

A.I. Nazarov [118] considered the problem in a more general setting. He
considered the generalized eigenproblem

−u′′ + p0u = λKαu on [0, 1] (35)

(here p0 ∈ L1[0, 1]) with general self-adjoint boundary conditions.
It turns out that the method invented in [32] goes through without substantial

changes in the general case. Moreover, the term p0u in (35) can be considered
as a weak perturbation which does not affect the two-term eigenvalues asymp-
totics.32

The final result in [118] reads as follows:
Let the equation for eigenvalues of the covariance operator of the Gaussian

process X on [0, 1] can be reduced to the generalized eigenproblem (35). If the
boundary conditions do not contain the spectral parameter 33 then, as ε → 0,

P{‖X‖2,[0,1] ≤ ε} ∼ C(X) · εγ exp
(
−D(H)ε− 1

H

)
. (36)

32The latter fact follows from the general result [117] on spectrum perturbations and careful
analysis of the eigenfunctions asymptotics based on the ideas of [32].

33We do not know examples of conventional Green Gaussian processes corresponding to a
boundary value problem with the spectral parameter in the boundary conditions. In contrast,
some natural fractional Gaussian processes arrive at the problem (35) with λ in boundary
conditions, see [118, Section 4]. In this case the exponent γ in (36) differs from (37) and
should be derived separately though the general method [118] still works.
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where

D(H) = H

(2H+1) sin
(

π
2H+1

)( sin(πH)Γ(2H+1)
(2H+1) sin

(
π

2H+1

)) 1
2H

, γ =
(H − 1

2 )2 + κ

2H , (37)

(recall that κ is the sum of orders of normalized boundary conditions in (35))
and C(X) is some (unknown) constant. If the problem (35) has a zero eigenvalue
then formula (36) should be corrected as described to Remark 3.

The result of [118] encompasses some previous results and covers several more
examples of fractional Gaussian processes.34

It is worth to mention the paper [33], where the two-term eigenvalues asymp-
totics for the Riemann–Liouville process and the Riemann–Liouville bridge on
[0, 1] was derived by reduction to the generalized eigenproblem for fractional
differential operators

Dα
1−D

α
0+u = λu and cDα

1−
cDα

0+u = λu

with proper boundary conditions (here Dα
0+, Dα

1−, and cDα
0+, cDα

1− are the
left/right Riemann–Liouville and Caputo fractional derivatives, respectively, see
[83, Chapter 2]).

The next natural task is to transfer the result of [32] to the (multiply) in-
tegrated fractional processes. The first step here was made by P. Chigansky,
M. Kleptsyna and D. Marushkevych [34] who derived the two-term eigenval-
ues asymptotics and the L2-small ball asymptotics up to a constant for the
integrated fBm (WH)1 on [0, 1].

A unified approach similar to [118] reduces the problem for m-times inte-
grated fBm and related processes to the generalized eigenproblem

Lu = λKαu on [0, 1], u ∈ D(L), (38)

where L is an ODO of the form (13) with � = m + 1 and p� ≡ 1, whereas the
domain D(L) is defined by the boundary conditions (14) of a special form. More
generally, if the equation for eigenvalues of the covariance operator of the Gaus-
sian process X on [0, 1] can be reduced to the generalized eigenproblem (38),
we call X the fractional-Green Gaussian process.

Conjecture. Let X be a fractional-Green Gaussian process on [0, 1]. If the
boundary conditions do not contain the spectral parameter then, as ε → 0,

P{‖X‖2,[0,1] ≤ ε} ∼ C(X) · εγ exp
(
−D�(H)ε−

1
�−1+H

)
, (39)

where

D�(H) = �−1+H

(2(�+H)−1) sin
(

π
2(�+H)−1

) ·
(

Γ(2H+1) sin(πH)
(2(�+H)−1) sin

(
π

2(�+H)−1

)) 1
2(�−1+H)

, (40)

34Notice that there exist various fractional analogs of classical Gaussian processes (Brown-
ian bridge, Ornstein–Uhlenbeck process etc.). Only for some of them the L2-small ball asymp-
totics up to a constant can be handled by the considered method. In contrast, the algorithm
of derivation of logarithmic asymptotics considered in Section 5 covers all this variety.
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γ = − (�− 1)(2� + 1)
2(H + �− 1) +

(H − 1
2 )2 + κ

2(H + �− 1) , (41)

κ is the sum of orders of normalized boundary conditions in (38), and C(X)
is some (unknown) constant. If the problem (35) has zero eigenvalues then for-
mula (36) should be corrected as described in Remark 3.

At the moment, this conjecture is proved for operators L with separated
boundary conditions [37]. Notice that the problem of finding the exact con-
stant CX in L2-small ball asymptotics for the fractional Gaussian processes is
completely open.

Formulae (39)–(41) imply that, as for the Green Gaussian processes (see
Corollary 1), for any given fractional-Green Gaussian process X on [0, 1], the
L2-small ball asymptotics for various integrated processes X

[β1,...,βm]
m can differ

only by a constant. To find a more general class of Gaussian processes with such
property is an interesting open problem.

4.5. Tensor products

In this subsection we consider multiparameter Gaussian functions (Gaussian
random fields) of “tensor product” type. It means that the covariance function
of this random field is a product of “marginal” covariances depending on differ-
ent arguments. The classical examples of such fields are the Brownian sheet, the
Brownian pillow and the Brownian pillow-slip (the Kiefer field), see, e.g., [171].
Less known examples can be found in [80] and [101]. The notion of tensor prod-
ucts of Gaussian processes or Gaussian measures was known long ago, see [29]
and [30] for a more general approach. Such Gaussian fields are also studied in
related domains of mathematics, see, e.g., [135], [154], [64], [106] and [79].

Suppose we have two Gaussian random functions X(x), x ∈ R
m, and Y (y),

y ∈ R
n, with zero means and covariance functions GX(x, u), x, u ∈ R

m, and
GY (y, v), y, v ∈ R

n, respectively. Consider the new Gaussian function Z(x, y),
x ∈ R

m, y ∈ R
n, which has zero mean and the covariance function

GZ((x, y), (u, v)) = GX(x, u)GY (y, v).

Such Gaussian function obviously exists, and the corresponding covariance op-
erator GZ is the tensor product of two “marginal” covariance operators, that
is GZ = GX ⊗ GY . Therefore, we use in the sequel the notation Z = X ⊗ Y
and we call the Gaussian field Z the tensor product of the fields X and Y
using sometimes for shortness the term “field-product”. The generalization to
the multivariate case when obtaining the fields

d
⊗
j=1

Xj is straightforward. It is

easy to see that the tensor products

W
d(x1, . . . , xd) =

d
⊗
j=1

W (xj) and B
d(x1, . . . , xd) =

d
⊗
j=1

B(xj),

are, respectively, just the d-dimensional Brownian sheet and the d-dimensional
Brownian pillow.
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Remark 6. We stress that the eigenvalues of the operator K1⊗K2 are just pair-
wise products of the eigenvalues of the marginal operators K1 and K2. Therefore,
formula (2) for the fields-products deals in fact with multiple sums.

The logarithmic small ball asymptotics for fields-products are well investi-
gated (see Subsection 5.3), whereas examples on exact L2-small ball asymptotics
for fields-products are not numerous. The first results were obtained by J. Fill
and F. Torcaso [53], who considered multiply integrated Brownian sheets

W
d
m1,...,md

(x1, . . . , xd) =
d
⊗
j=1

W [0,...,0]
mj

(xj)

(see formula (26)) on the unit cube Qd = [0, 1]d. Using the Mellin transform,
they succeeded to obtain the full asymptotic expansion of the logarithm of the
small ball probability as ε → 0.

It turns out that to extract from this expansion the exact small ball asymp-
totics, say, for the conventional Brownian sheet Wd, one needs infinite number of
terms. However, in some cases a finite number is sufficient. We restrict ourselves
to only one such example:35

P{‖W2
0,m‖2,Q2 ≤ ε} ∼ Cε exp

(
−D1ε

−2 −D2ε
− 2

m+1
)
, ε → 0,

where C, D1, D2 are explicit (though complicated) constants.
Another technique based on direct inversion of the Laplace transform was

used by L.V. Rozovsky [156], [157]. He obtained the exact L2-small ball asymp-
totics for double sums (cf. Remark 6)

S(2) := a2
∞∑
j=1

∞∑
k=1

(j + δ1)−p1(k + δ2)−p2ξjk, (42)

where p1 > 1, p2 = 2, δ1, δ2 > −1, and ξjk are i.i.d. standard normal random
variables.36

5. Logarithmic asymptotics

5.1. General assertions

The first general result on logarithmic L2-small ball asymptotics was obtained
by W.V. Li [92] who proved that for arbitrary N ∈ N we have, as ε → 0,

logP
{ ∞∑

k=1

μkξ
2
k ≤ ε2

}
∼ logP

{ ∞∑
k=N

μkξ
2
k ≤ ε2

}
.

35Notice that in [53, Example 5.9] the minus sign is lost under the exponent.
36In [156] the author deals with the case p1 �= 2, in [157] — with the case p1 = 2.
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This relation, in particular, implies that the logarithmic asymptotics does not
change under any finite-dimensional perturbation of a Gaussian random func-
tion.37

An important development of this result is the so-called log-level compari-
son principle. Roughly speaking, it means that if the eigenvalues of covariance
operators for two Gaussian vectors have the same one-term asymptotics then
the logarithmic L2-small ball asymptotics for these vectors coincide. In partic-
ular, the power (regularly varying) eigenvalues asymptotics yields the power
(respectively, regularly varying) logarithmic L2-small ball asymptotics.

For concrete behavior of eigenvalues (power decay, regular decay, etc.) such
statements were proved in various papers, see, e.g., [121], [78], [113]. In the
general case the result was established independently by F. Gao and W.V. Li [62]
and A.I. Nazarov [116].38

We recall the notion of the counting function of the sequence (μk):

N (τ) := #{k : μk > τ}.

This notion is common in spectral theory. Notice that the functions k �→ μk

and τ �→ N (τ) are in essence mutually inverse. So, if μk decay not faster than a
power of k and have “not too wild” behavior39 then the one-term asymptotics
of N (τ) as τ → 0 provides the one-term asymptotics of μk as k → ∞, and vice
versa.40 However, for the super-power decay of μk finding the asymptotics of
the counting function is much simpler than that of the eigenvalues.

Now we are ready to formulate the log-level comparison principle in the form
of [116].

Theorem 11 ([116, Theorem 1]). Let (μk) and (μ̃k) be positive summable se-
quences with counting functions N (τ) and Ñ (τ), respectively. Suppose that func-
tion N satisfies

lim inf
x→0

hx∫
0
N (τ) dτ

x∫
0
N (τ) dτ

> 1 for any h > 1. (43)

If
N (τ) ∼ Ñ (τ), τ → 0,

37This follows from the fact that by the minimax principle (see, e.g., [20, Section 9.2]) the
eigenvalues μ̃k of the perturbed operator satisfy the two-sided estimate

μk+N ≤ μ̃k ≤ μk−N ,

where μk are the eigenvalues of the original (compact, self-adjoint, positive) operator, and N
is the rank of perturbation.

38The statement in [62] is more general than in [116] but the assumptions on the eigenvalues
behavior are somewhat more restrictive.

39For instance, this is true for regular behavior of μk. Moreover, a sequence (μk) is regularly
varying with index ρ < 0 if and only if its counting function is regularly varying at zero with
index 1

ρ
.

40The latter is not true if μk decay slower than any power of k but in our case it is
impossible since μk are summable.
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then, as ε → 0,

logP
{ ∞∑

k=1

μ̃kξ
2
k ≤ ε2

}
∼ logP

{ ∞∑
k=1

μkξ
2
k ≤ ε2

}
. (44)

Remark 7. The assumption (43) is satisfied, for instance, for N (τ) regularly
varying at zero with index ρ ∈ (−1, 0]. However, if N (τ) = Cτ−1 log−σ(τ−1),
σ > 1, then the relation (44) in general fails as it is shown in [78, Section 4].41
Thus, the assumption (43) cannot be removed.

Theorem 11 allows to use numerous results from the spectral theory of inte-
gral operators, where the counting functions for eigenvalues and their asymp-
totics are widely investigated. In the following subsections we provide the results
related to various behavior of N (τ) as τ → 0.

Remark 8. It is of great importance that the one-term eigenvalues asymp-
totics is quite stable under perturbations. We provide here two assertions for
the additive perturbations of a compact operator or of its inverse.

For the operators with power eigenvalues asymptotics, the first assertion was
established by H. Weyl [179]; see also [18, Lemmata 1.16 and 1.17].

Theorem 12. Let K be a compact self-adjoint positive operator, and let the
counting function of its eigenvalues NK(τ) have the following asymptotics:

NK(τ) ∼ Φ(τ), τ → 0,

where the function Φ is regularly varying with index ρ < 0 at zero.
1 ([19, Lemma 3.1]). Assume that K1 is another compact self-adjoint positive

operator, and that NK1(τ) = o(Φ(τ)) as τ → 0. Then

NK+K1(τ) ∼ NK−K1(τ) ∼ NK(τ), τ → 0.

2 ([129, Lemma 5.1]).42 Assume that B is a self-adjoint operator such that
KB is compact, and K−1 + B is positive definite. Then

N(K−1+B)−1(τ) ∼ NK(τ), τ → 0.

5.2. Power asymptotics

Some explicit formulae of power logarithmic asymptotics for concrete (Green)
Gaussian processes were derived in [92], [81] and [31].43

41For this case, the double logarithmic asymptotics was derived in [78, Proposition 4.4]:

log
∣∣∣log P

{ ∞∑
k=1

μkξ
2
k ≤ ε2

}∣∣∣ ∼ (
C

σ − 1

) 1
σ−1

ε
− 2

σ−1 , ε → 0.

42In [129] the assumptions on Φ are somewhat weaker. Notice that a much more general
statement was proved in [107, Theorem 3.2].

43Later these results were covered by the exact L2-small ball asymptotics of the Green
Gaussian processes, see Theorem 7.
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The first result on logarithmic asymptotics for a non-Green Gaussian pro-
cess (namely, for the fractional Brownian motion, see (33)) was obtained by
J. Bronski [26]. By particular fine analysis, he derived the one-term eigenvalues
asymptotics with the remainder estimate, and therefore, the relation

logP{‖WH‖2,[0,1] ≤ ε} ∼ −D(H)ε− 1
H , ε → 0, (45)

where D(H) is given in (37).
A.I. Nazarov and Ya.Yu. Nikitin [121] succeeded to handle quite general class

of Gaussian random functions (including weighted, multiparameter and vector-
valued ones). They used a particular case of the deep results by M.S. Birman
and M.Z. Solomyak [17] (see also [18, Appendix 7]) on spectral asymptotics of
integral operators. It turns out that if the covariance function has the main
singularity of power type on the diagonal then the eigenvalues μk have a power
one-term asymptotics. The argument in [121] also uses part 1 of Theorem 12, a
particular case of Theorem 11, and the following corollary of the formula (29):
for ϑ > 0 and p > 1,

logP
{ ∞∑

k=1
(ϑk)−pξ2

k ≤ ε2
}
∼ −Dε−

2
p−1 , ε → 0, (46)

where D is given in (30).
The final result of [121] reads as follows.44

Theorem 13. Let X be a zero mean Gaussian process on [0, 1], and let the
covariance function admit the representation

GX(t, s) = f(|t− s|2ρ)R(t, s) +
N∑
j=1

aj(t)aj(s), t, s ∈ [0, 1].

Assume that ρ > 0, ρ /∈ N, aj ∈ L2[0, 1], R(t, s) ≡ R(s, t) is a smooth function
on [0, 1] × [0, 1] while f is a smooth function on R+ with |f ′(0)| = 1.45

Then for any non-negative function ψ ∈ L2[0, 1] we have, as ε → 0,

logP{‖ψX‖2,[0,1] ≤ ε} ∼ − ρJρ

(2ρ+1) sin
(

π
2ρ+1

)( 2Jρ Γ(2ρ+1)| sin(πρ)|
(2ρ+1) sin

(
π

2ρ+1

) ) 1
2ρ
ε−

1
ρ , (47)

where

Jρ =
1∫

0

(
|R(t, t)|ψ2(t)

) 1
2ρ+1 dt.

For X = WH we have ρ = H, R(t, s) ≡ −1
2 , and for ψ(t) ≡ 1 formula (47)

coincides with (45).
44Here it is given in a simplified form. In particular, we restrict ourselves to the one-

parameter and scalar-valued case.
45The latter assumption can be made without loss of generality. We also notice that R(t, t)

has constant sign for t ∈ [0, 1].
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Remark 9. Theorem 13, in particular, implies that the terms more smooth than
the main (the most singular) one do not influence the logarithmic L2-small ball
asymptotics.46

If our Gaussian process is stationary, it is natural to derive its small ball
asymptotics in terms of its spectral measure. Such results were obtained by
M.A. Lifshits and A.I. Nazarov [100]. They considered weighted stationary se-
quences (for this case, see also the earlier paper [67] with S.Y. Hong) and
weighted stationary processes on the line and on the circle. Along with real
processes, the class of proper complex processes was treated.

We provide one of the results of [100].

Theorem 14 ([100, Theorem 2.2]). Let X(t) be a (real) 2π-periodic zero mean,
mean-square continuous stationary Gaussian process. Assume that its spectral
measure 47 satisfies the asymptotic condition

μk ∼ M |k|−r, |k| → ∞,

with some r > 1 and M > 0. Let ψ ∈ L2[0, 2π].
Then we have, as ε → 0,

logP
(
‖ψX‖2,[0,2π] ≤ ε

)
∼ − r − 1

2

(
(2πM) 1

r

r sin(πr )

2π∫
0

ψ
2
r (t) dt

) r
r−1

ε−
2

r−1 .

The results of [67] and [100] are based on the spectral theory of pseudo-dif-
ferential operators with homogeneous symbols developed by M.S. Birman and
M.Z. Solomyak [15], [16].

To generalize the results of [100] for stationary processes on general Abelian
groups is an interesting open problem.

5.3. Regularly varying asymptotics

We begin with the generalization of the relation (46) to the regularly varying
asymptotics:

Lemma 2 ([78, Theorem 4.2 and Proposition 4.3]). Let p > 1. Suppose that
the function Ψ(t) is slowly varying at infinity, and 48

t · (ln(Ψ))′(t) → 0, t2 · (ln(Ψ))′′(t) → 0, t → +∞. (48)

Then, as ε → 0,

logP
{ ∞∑

k=1

k−pΨ(k) ξ2
k ≤ ε2

}
∼ − ε−

2
p−1 Θ(ε−1), (49)

46This remark shows that the result in [27] is incorrect.
47Under our assumptions it is a symmetric non-negative sequence μk = μ−k, k ∈ Z.
48The relations (48) can be assumed without loss of generality, since for any SVF Φ there

is an SVF Ψ satisfying (48) such that Ψ(t) ∼ Φ(t) as t → +∞, see, e.g., [160, Chapter 1].
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where Θ is an explicit (though complicated) SVF depending on p and on Ψ. In
particular, if ϑ > 0 and σ ∈ R then

logP
{ ∞∑

k=1

(ϑk)−p logσ(k + 1) ξ2
k ≤ ε2

}
∼ −Dε−

2
p−1 log

σ
p−1 (ε−1), ε → 0,

where D =
(
p−1
2

)1− σ
p−1

(
π

ϑp sin π
p

) p
p−1 .

A simple example of Gaussian process with regular eigenvalues behavior (and
therefore regularly varying L2-small ball asymptotics) can be constructed as
follows (see, e.g., [78]). Let X(t) be a stationary Gaussian process on [0, 1] with
zero mean and covariance function

GX(t, s) = g(|t− s|),

where g is a smooth function on R+, and

g(t) − g(0) = −tαΨ(t−1) + O(tβ), t → 0+,

where 0 < α < 2, β > α, while Ψ is an SVF. Then, similarly to [18, Appendix 7],
one can show that

μk ∼
2 sin

(
πα
2
)
Γ(α + 1)

πα+1 · Ψ(k)
k1+α

, k → ∞.

The regular behavior of eigenvalues also naturally arises when considering a
Gaussian random field of the tensor product type, see Subsection 4.5. The first
result on logarithmic asymptotics for such fields was obtained by E. Csáki [39]
who investigated the Brownian sheet W

d on the unit cube Qd. His result, ob-
tained by direct application of the Sytaya theorem (Theorem 2), reads as fol-
lows:49

logP{‖Wd‖2,Qd
≤ ε} ∼ − 22d−5

π2d−2((d− 1)!)2 ε−2 log2d−2(ε−1) , ε → 0.

The result of [39] was generalized by W.V. Li [92, Example 2] on the base of
his comparison principle. Namely, he considered the double sums S(2) defined
in (42) for p1, p2 > 1 and δ1, δ2 > −1 and showed that the logarithmic L2-small

49Csáki also considered the pinned Brownian sheet
◦
W

d(x1, . . . , xd) = W
d(x1, . . . , xd) − x1 . . . xdW

d(1, . . . , 1)

and obtained the following relation

log P{‖
◦
W

d‖2,Qd
≤ ε} ∼ log P{‖Wd‖2,Qd

≤ ε}, ε → 0,

which is in concordance with the fact that the pinned Brownian sheet is a one-dimensional
perturbation of Wd.

Notice that in [51, Theorem 3.9] it is erroneously stated that Csáki considered only the
case d = 2.
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ball asymptotics for S(2) in the cases p1 = p2 and p1 �= p2 is essentially different.
Namely, we have as ε → 0

logP{S(2) ≤ ε2} ∼
{
−C1 ε

− 2
p1−1 log

p1
p1−1 (ε−1), p1 = p2;

−C2 ε
− 2

p1−1 , p1 < p2,
(50)

where C1 and C2 are explicit constants; moreover, C1 depends on p1 only,
whereas C2 depends on p1, p2 and δ2 (but not on δ1!).

In [92, Example 3], a generalization of (50) for multiple sums was given in
the case of equal marginal exponents pi.

These results show that even in the case of purely power eigenvalues asymp-
totics of marginal processes, the asymptotics for the tensor product contains a
slowly varying (logarithmic) factor.

In the paper [78] A.I. Karol’, A.I. Nazarov, and Ya.Yu. Nikitin generalized
the problem in a natural way and considered the fields-products with regu-
larly varying marginal eigenvalues asymptotics of a general form. They derived
the one-term asymptotics of the counting function N (τ) for the eigenvalues of
the tensor product, as τ → 0, in terms of spectra of marginal operators. This
provides the logarithmic L2-small ball asymptotics for the corresponding field-
product via Lemma 2.

It is sufficient to consider the case of two marginal operators. Let K1 and K2
be positive (compact, self-adjoint) operators. Suppose that

NK1(τ) ∼ τ−
1
p1 Φ1(τ−1), NK2(τ) ∼ τ−

1
p2 Φ2(τ−1), τ → 0, (51)

(recall that NK(τ) stands for the counting function of the eigenvalues of K). Here
the marginal exponents satisfy the assumption p1, p2 > 1, and the functions Φ1
and Φ2 are slowly varying at infinity. Also denote by

N⊗(τ) := NK1⊗K2(τ)

the eigenvalues counting function of the tensor product.
It turns out that in general situation, as in (50), two essentially different

cases arise. If p1 �= p2 then the order of growth of N⊗(τ) as τ → 0 is defined
by the “factor” with the slowest marginal exponent. However, the logarithmic
small ball constant in this case is expressed in terms of zeta-function of the
“factor” with fast eigenvalues decay and requires complete information about
its spectrum.

In contrast, for equal marginal exponents p1 = p2 = p, the order of growth
of N⊗(τ) as τ → 0 deeply depends on the behavior of Φ1 and Φ2 at infinity. In
this relation, the so-called Mellin convolution of two SVFs

(Φ ∗ Ψ)(s) =
s∫

1

Φ(σ)Ψ(sσ−1)σ−1dσ (52)

was investigated in [78, Section 2]. In particular, it was shown that Φ∗Ψ is also
an SVF.
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Theorem 15 ([78, Theorems 3.2 and 3.4]). Suppose that the operator K1 sat-
isfies (51).

1. Let K2 be an operator subject to

NK2(τ) = O(τ−
1
p2 ), τ → 0, p2 > p1.

Then we have
N⊗(τ) ∼ C τ−

1
p1 Φ1(τ−1), τ → 0,

where C =
∑∞

k=1 μ
1
p1
k (K2).

2. Suppose that the operator K2 satisfies (51), and let p1 = p2 = p. Then we
have

N⊗(τ) ∼ τ−
1
p Φ(τ−1), τ → 0, (53)

where Φ is an explicit (though complicated) SVF depending on the convergence
of integrals 50

∞∫
1

Φ1(σ)σ−1dσ and
∞∫
1

Φ2(σ)σ−1dσ. (54)

As an illustration to these general results, we give the exact expression for the
SVF Φ from (53) in the case where SVFs in marginal asymptotics are powers of
logarithm, see [78, Example 3]. Namely, let p1 = p2 = p, and let

Φ1(s) = logκ1(s), Φ2(s) = logκ2(s).

Then the asymptotic formula (53) holds with

Φ(s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
p · B(κ1 + 1,κ2 + 1) logκ1+κ2+1(s), κ1 > −1,κ2 > −1;
1
p · log(log(s)) logκ2(s), κ1 = −1,κ2 > −1;
2
p · log(log(s)) log−1(s), κ1 = κ2 = −1;
∞∑

k=1
μ

1
p

k (K1) · logκ2(s), κ1 < −1,κ1 < κ2;( ∞∑
k=1

μ
1
p

k (K1) +
∞∑
k=1

μ
1
p

k (K2)
)
· logκ1(s), κ1 = κ2 < −1

(here B is the Euler Beta-function).
The particular case κ1 = κ2 = 0 of this formula can be extracted from [135],

see also [106]. For κ1,κ2 ≥ 0, this result was obtained in [62, Section 3], see
also [63].

Using general results of Theorem 15 and Lemma 2, the authors of [78] con-
sidered many examples of fields-products (with equal or distinct marginal expo-
nents) and sums of such products. Moreover, marginal processes can in turn be
the multiparameter ones, and a wide class of weighted L2-norms is allowed.51

50In particular, if both integrals (54) diverge then Φ(s) = 1
p
(Φ1 ∗ Φ2)(s).

51Some examples can be found also in [141], [143].
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Other examples of regular eigenvalues asymptotics are generated by frac-
tional Gaussian processes with variable Hurst index. The first example of such
processes was apparently the multifractional Brownian motion. It was in-
troduced in [137], [12] and was investigated in various directions in several pa-
pers. There are some different definitions of this process equivalent up to a
multiplicative deterministic function. We give the so-called harmonizable repre-
sentation [12]

WH(·)(t) = C∗(H(t))
∞∫

−∞

exp(itξ) − 1
|ξ|H(t)+ 1

2
dW (ξ),

where W (ξ) is a conventional Wiener process and the functional Hurst param-
eter H satisfies 0 < H(t) < 1. The choice of normalizing factor

C∗(H) =
(

Γ(2H + 1) sin(πH)
2π

) 1
2

ensures that the variance of WH(·)(1) equals one.
A different process of the similar structure is the so-called multifractal

Brownian motion introduced in [149], see also [159].52
Both mentioned processes have zero mean. For H(t) ≡ H = const they both

coincide with conventional fBm.
The L2-small ball asymptotics for these processes was derived by A.I. Ka-

rol’ and A.I. Nazarov [77], [75] under some mild assumptions on the regularity
of H(t). To obtain the corresponding eigenvalues asymptotics, they used the
approximate spectral projector method in combination with the methods of
asymptotic perturbation theory.

It turns out that the asymptotic properties of the eigenvalues are determined
by the set where the function H(t) attains its minimal value Hmin. If the mea-
sure of this set is positive, the counting function N (τ) has the classical power
asymptotics. The situation where this measure vanishes is much more compli-
cated. In this case, the asymptotics is non-power (regularly varying at zero) and
is determined by the behavior of the function

V(ε) :=
∣∣{t ∈ [0, 1] : Hmin < H(t) < Hmin + ε}

∣∣,
as ε → 0.

We restrict ourselves to three examples from [77], [75]. For simplicity we
assume that Hmin = 1

2 .
1. Let H(t) = 1

2 + (t − t0)γ+, 0 < t0 ≤ 1, γ > 0. Then the minimal value set
is [0, t0], and Theorem 2 in [77] gives

logP{‖WH(·)‖2,[0,1] ≤ ε} ∼ − t20
8 ε−2, ε → 0.

52For this process the functional Hurst parameter H satisfies 1
2 < H(t) < 1.
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For t0 = 1 we deal with a standard Wiener process on [0, 1], and this result is
well known.

2. Let H(t) = 1
2 + |t− t0|γ , γ > 0. In this case we have

V(ε) =
{

2ε
1
γ , 0 < t0 < 1;

ε
1
γ , t0 = 0, 1.

Therefore, Theorem 2 in [77] gives

logP{‖WH(·)‖2,[0,1] ≤ ε} ∼ −C(t0)Γ2(1 + 1
γ

)
ε−2 log−

2
γ (ε−1), ε → 0,

where C(t0) = 2−1− 2
γ if 0 < t0 < 1 and C(t0) = 2−3− 2

γ if t0 = 0, 1.
3. Let H(t) = 1

2 +distγ(t,D), where D is the standard Cantor set. A tedious
but elementary calculation gives for small ε > 0

V(ε) = ε1−
log(2)
log(3) ζ(log(ε−1)),

where ζ is a periodic function. In this case Theorem 2 in [77] is not applicable.
However, more refined Theorem 4.4 in [75] gives

logP{‖WH(·)‖2,[0,1] ≤ ε} ∼ ε−2 log−
2
γ (ε−1)η(log(log(ε−1))), ε → 0, (55)

where η is an explicit (though complicated) continuous positive γ log(3)-periodic
function.53

It is also shown in [77], [75] that, despite the fact that the behavior of co-
variances of multifractional and multifractal Brownian motions is significantly
different, in the case H(t) > 1

2 their logarithmic L2-small ball asymptotics co-
incide.

5.4. Almost regular asymptotics

Here we consider processes with more complicated (the so-called almost regu-
lar) eigenvalues asymptotics54

μk ∼ k−pΨ(k)h(log(k)), k → ∞, (56)

where p > 1, Ψ is an SVF, and the function h satisfies the following condition:
Condition A. The function is positive, uniformly continuous on R+, bounded

and separated from zero.
53We stress that the asymptotics in (55) is still regularly varying.
54Similarly to Footnote 39, the relation (56) is equivalent to the following asymptotics of

the counting function:

N (τ) ∼ τ
− 1

p Φ(τ−1)g(log(τ−1)), τ → 0,

where Φ is an SVF and g satisfies Condition A. Moreover, g can be chosen T -periodic if h is
T
p

-periodic.
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Remark 10. In general, the above mentioned conditions do not imply the
monotonicity of the function in the right hand side of (56). In what follows we
always assume such monotonicity.

We begin with the generalization of the relation (46) for the almost regular
asymptotics:

Lemma 3 ([152, Theorem 8]).55 Let p > 1. Suppose that the function Ψ(t) is
slowly varying at infinity, and the function h satisfies Condition A. Then, as
ε → 0,

logP
{ ∞∑

k=1

k−pΨ(k)h(log(k)) ξ2
k ≤ ε2

}
∼ − ε−

2
p−1 Θ(ε−1)ζ(log(ε−1)), (57)

here Θ is the same SVF as in (49), and the function ζ satisfies Condition A.
Moreover, if h is T

p -periodic then ζ can be chosen T (p−1)
2p -periodic.

Remark 11. It was proved in [153, Theorem 5] that if Ψ ≡ 1 and h is a
non-constant periodic function then ζ in (57) is also non-constant. Apparently,
this assertion holds for an arbitrary SVF Ψ but at the moment this is an open
problem.

The spectral asymptotics of the form (56) (with Ψ ≡ 1) can arise if we
deal with a Green Gaussian process X in the space L2[0, 1; dm], where m is a
measure from a special class (see below). In this case μk are the eigenvalues of
the following integral equation:

1∫
0

GX(t, s)ϕ(s) dm(s) = μϕ(t), 0 ≤ t ≤ 1, (58)

It was shown in [17] (even in the multidimensional case) that if the measure m

contains an absolutely continuous component then its singular component does
not influence the main term of the spectral asymptotics. Therefore, the singular
component of m does not influence the logarithmic small ball asymptotics in
L2[0, 1; dm] for the corresponding processes, see Theorem 13.

The situation drastically changes when m is singular with respect to Lebesgue
measure. V.V. Borzov [25] showed that if GX is the Green function of the prob-
lem (15) for the operator Lu ≡ (−1)�u(2�) then the corresponding eigenvalues
μk obey the estimate o(k−2�) instead of the usual asymptotics μk ∼ C · k−2� in
the case of non-singular m. For some special classes of m better upper estimates
were obtained in [25].

Further improvements of these results are possible if we restrict ourselves to
the so-called self-similar measures m.

Recall the construction of a self-similar probability measure on [0, 1] (a more
general situation is described in [68]). Consider n ≥ 2 non-empty non-intersect-
ing intervals Ij ⊂ (0, 1), j = 1, . . . , n, and define a family of affine functions Sj ,

55For Ψ ≡ 1 this fact was obtained earlier in [113, Theorem 4.2].



642 A. Nazarov and Y. Petrova

Fig 1. Cantor ladder.

j = 1, . . . , n, mapping (0, 1) onto Ij . Consider also positive numbers (weights)
rj , j = 1, . . . , n, such that

∑
j rj = 1.

It is not difficult to show (see, e.g., [113, Section 2]), that there is a unique
probability measure m such that for any Lebesgue-measurable set E ⊂ [0, 1]

m(E) =
n∑

j=1
rj ·m(S−1

j (E)). (59)

The relation (59) shows the self-similarity of the measure m. Notice that m

has no atoms. Its primitive is called a generalized Cantor ladder.
When

∑
j |Ij | < 1, the support of m (minimal closed set E ⊂ [0, 1] such that

m([0, 1]\E) = 0) is called a generalized Cantor set. Its Hausdorff dimension
α ∈ (0, 1) is equal to the unique solution of the equation

n∑
j=1

|Ij |α = 1.

In the case
∑

j |Ij | = 1 the support of m is [0, 1], and α = 1. If, in addition,
rj = |Ij |, j = 1, . . . , n, then m is the conventional Lebesgue measure. However
in other cases m is singular.

In the case n = 2, I1 = (0, 1
3 ), I2 = (2

3 , 1), r1 = r2 = 1
2 , m is the standard

Cantor measure, and its primitive is the standard Cantor ladder, see Fig. 1.
Recall that we deal with a Green Gaussian process, so the integral equa-

tion (58) is equivalent to the boundary value problem56

Lu = λmu on [0, 1], u ∈ D(L), (60)

where λ = μ−1, L is defined in (13), and D(L) is determined by the boundary
conditions (14). For simplicity we assume that p� ≡ 1.

56The equation in (60) is understood in the sense of distributions.
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We list the main steps in the research on the problem (60). More references
can be found in [113].

For the simplest Sturm–Liouville operator Lu ≡ −u′′, the exact power order
p of the eigenvalues growth was obtained by T. Fujita [57]. The one-term eigen-
values asymptotics in this case was obtained independently by J. Kigami and
M.L. Lapidus [82] and by M.Z. Solomyak and E. Verbitsky [165]. A.I. Nazarov
[113] generalized their result to the operators of arbitrary order.

Theorem 16 ([113, Theorem 3.1]). Given a self-similar probability measure m,
define

cj := rj · |Ij |2�−1, j = 1, . . . , n,

and denote by p the unique solution of the equation 57

n∑
j=1

c
1
p

j = 1.

Let X be a Green Gaussian process, corresponding to the order 2� ODO.
1. If at least one ratio log(c−1

i )/ log(c−1
j ) is irrational, the self-similarity of

the measure m is called non-arithmetic. In this case the counting function of
eigenvalues to the integral equation (58) has purely power asymptotics:

N (τ) ∼ Mτ−
1
p , τ → 0,

where M is some (unknown) constant.
2. If all quantities log(c−1

j ) are mutually commensurable, the self-similarity
of m is called arithmetic. In this case

N (τ) ∼ τ−
1
p g(log(τ−1)), τ → 0, (61)

where the function g satisfies Condition A. Moreover, g is periodic, and its
period is equal to the greatest common divisor of log(c−1

j ), j = 1, . . . , n.

Remark 12. The quantity58 γ = 2�−1
p−1 is called spectral dimension of order

2�−1 of the self-similar measure m. It is shown in [113, Theorem 5.3] that γ ≤ α
(recall that α is the Hausdorff dimension of the support of m), and γ = α if
and only if rj = |Ij |α for any j = 1, . . . , n. In particular, this is the case for the
standard Cantor measure, where γ = α = log(2)

log(3) .

Remark 13. Theorem 16 was generalized in several directions. Namely, the
problem (60) was considered under the following assumptions:

1. Lu ≡ −u′′, and m is the distributional derivative of the Minkowski ques-
tion-mark function,59 see [162]. In this case m is a non-affine self-similar

57Notice that p ≥ 2�. Moreover, p = 2� only if m is the Lebesgue measure.
58Lemma 3 implies that the power order of the logarithmic L2-small ball asymptotics for

the corresponding Green Gaussian process is just 2γ
2�−1 .

59The function ?(t) introduced by H. Minkowski [109] is well known in number theory.
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measure, i.e. relation (59) holds with non-affine diffeomorphisms, namely,

n = 2, S1(t) = t

t + 1 , S2(t) = 1
2 − t

.

In [162, Theorem 3.2], two-sided estimates for the eigenvalues of counting
function were obtained:

N (τ) � τ
d

d+1 , τ → 0; d = 1
2

( 1∫
0

log2(1 + t) dm
)−1

.

2. Lu ≡ −u′′, and m is a self-conformal measure, i.e. Sj in the relation (59)
are non-affine diffeomorphisms mapping (0, 1) onto Ij , subject to some
additional assumptions, see [55], [56];

3. m is a sign-changing self-similar distribution, see [174], [175];
4. L is a so-called measure geometric Krein–Feller operator related to

two self-similar measures, see [54] and references therein.60

Up to our knowledge, the generalizations mentioned in items 3 and 4 have not
found an application in the study of small ball probabilities yet.

Using general results of Theorem 16 and Lemma 3, the logarithmic small
ball asymptotics in L2[0, 1; dm] were obtained in [113] for several classical Green
Gaussian processes.

The statement of “arithmetic” part 2 in Theorem 16 does not exclude the
“degenerate” case where the function g in (61) is a constant, i.e. N (τ) has the
classical power asymptotics. It was conjectured in [113] that it is not the case,
i.e. g �= const for any non-Lebesgue arithmetically self-similar measure m.

A.A. Vladimirov and I.A. Sheipak [175] confirmed this conjecture for the stan-
dard Cantor measure and Lu ≡ −u′′ using computer-assisted proof. Later [178]
they succeeded to give a complete characterization of the function g under as-
sumption that m is a so-called even Cantor-type measure.

Theorem 17 ([178, Section 5]). Suppose that m is an even Cantor-type mea-
sure, that is, for all j = 1, . . . , n, the lengths |Ij | are equal, the gaps between the
neighbor intervals Ij are equal (and non-zero), and the weights rj are equal. Let
Lu ≡ −u′′. Then the function g in (61) satisfies the relation

g(t) = exp(− t
p )s(t), (62)

where s is some purely singular non-decreasing function (i.e. a primitive of a
singular measure).61

In [172] this result was transferred to the fourth order operator L.
N.V. Rastegaev [151], [153] obtained formula (62) for Lu ≡ −u′′ and arbitrary

arithmetically self-similar measure m under the unique assumption: all gaps
60Notice, however, that some proofs in [54] contain gaps, see [173, 2.2.3].
61Formula (62) obviously implies that g �= const.
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between neighbor intervals Ij are non-zero. Further generalization (in particular,
for the higher order operator L) is an interesting open problem.

All previous examples generate the eigenvalues asymptotics (56) with Ψ ≡ 1.
A general form of (56) arises, for instance, when considering tensor products.
We describe briefly corresponding results obtained by N.V. Rastegaev [152]. Let
K1 and K2 be positive (compact, self-adjoint) operators. Suppose that

NK1(τ) ∼ τ−
1
p1 Φ1(τ−1)g1(log(τ−1)), τ → 0, (63)

where p1 > 1, Φ1 is an SVF, and g1 is a continuous positive T1-periodic func-
tion.62

If NK2(τ) = O(τ−
1
p2 ) as τ → 0, with p2 > p1 then

N⊗(τ) ∼ τ−
1
p1 Φ1(τ−1)g∗(log(τ−1)), τ → 0,

where g∗ is a continuous positive T1-periodic function.

Remark 14. It is shown in [152, Remark 2] that in general case g∗ can degen-
erate into a constant even if g1 is not a constant. However, if g1 has the form
given in Theorem 17 then g∗ also has such a form.

Suppose now that K2 satisfies a similar relation

NK2(τ) ∼ τ−
1
p2 Φ2(τ−1)g2(log(τ−1)), τ → 0

(p2 > 1, Φ2 is an SVF, and g2 is a continuous positive T2-periodic function), and
let p1 = p2 = p. Then the asymptotics of N⊗(τ) as τ → 0 is more complicated
and depends on the convergence of integrals (54) and, if they both diverge, on
the commensurability of T1 and T2. In particular, if both integrals (54) diverge
and T1 = T2 = T then

N⊗(τ) ∼ τ−
1
p (Φ1 ∗ Φ2)(τ−1)g⊗(log(τ−1)), τ → 0,

(the Mellin convolution of SVFs is defined in (52)), where g⊗ is an explicit
(though complicated) continuous positive T -periodic function.

Remark 15. The question of non-constancy of g⊗ remains open even in the
case where both g1 and g2 have the form given in Theorem 17.

5.5. Slowly varying asymptotics

In this subsection we consider processes with super-power decay of eigenvalues.
More exactly, we assume that the counting function N (τ) is slowly varying at
zero. The corresponding analog of the relation (46) reads as follows:

62The relation (63) implies that the function g has bounded variation on [0, T1], see [152,
Lemma 6].
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Lemma 4 ([116, Theorem 2]). Let (μk), k ∈ N, be a positive sequence with
counting function N (τ), and let

N (τ) ∼ Φ(τ−1), τ → 0, (64)

where Φ is an SVF. Then, as ε → 0,

logP
{ ∞∑

k=1

μkξ
2
k ≤ ε2

}
∼ −Θ(γ)

2 := − (Φ ∗ 1)(γ)
2 ≡ −1

2

γ∫
1

Φ(σ)σ−1dσ,

where γ = γ(r) satisfies the relation

Φ(γ)
2γ ∼ ε2, ε → 0.

Remark 16. As it was mentioned in Subsection 5.3, Θ is an SVF, cf. (52).

The first examples of Gaussian processes satisfying (64) arose in [62], where
the case log(μk) ∼ −kαΨ(k) as k → ∞ with an SVF Ψ was considered.63

The relation (64) is typical for the processes with smooth covariances. In [116],
a set of smooth stationary Gaussian processes RC,α (C,α > 0) was considered.
These processes have zero mean-value and the spectral density

mC,α(ξ) = exp(−C|ξ|α), ξ ∈ R. (65)

For instance, it is well known that

GRC,1(s, t) = C

π(C2 + (s− t)2) , GRC,2(s, t) = 1
2
√
πC

exp
(
− (s− t)2

4C

)
.

The spectral asymptotics for the integral operators with kernels of this type
was treated in the remarkable paper [180]. The following relation for the count-
ing function can be extracted from [180, Theorems 1 and 2]: as τ → 0, we
have

N (τ) ∼ Φ(τ−1) ≡

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

πC
1
α
· log

1
α (τ−1), α < 1;

1
πC · log(τ−1), α = 1;

α
2α−2 · log(τ−1)

log(log(τ−1)) , α > 1.

Here
C =

K
(
sech

(
π
2C

))
K
(
tanh

(
π
2C

)) ,
63We notice that the result of [62, Theorem 2.2]

log P

{ ∞∑
k=1

μkξ
2
k ≤ ε2

}
∼ − α2

1
α

α + 1
log

1
α

+1(ε−1)
Ψ

1
α (log

1
α (ε−1))

, ε → 0,

is not true in general case. However, it holds if, say, Ψ(k) = logσ(k + 1), σ ∈ R.
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while K is the complete elliptic integral of the first kind.
Therefore, Lemma 4 yields the following relation as ε → 0:

logP
{
‖RC,α‖2,[0,1] ≤ ε

}
∼

⎧⎪⎪⎪⎨⎪⎪⎪⎩
−
( 2
C

) 1
α α

(α+1)π · log
α+1
α (ε−1), α < 1;

− 1
πC · log2(ε−1), α = 1;

− α
2α−2 · log2(ε−1)

log(log(ε−1)) , α > 1.

Remark 17. Notice that the order of the logarithmic L2-small ball asymptotics
in the latter case depends neither on C nor even on α. The same effect was found
in [8] for the sup-norm.

F. Aurzada, F. Gao, Th. Kühn, W.V. Li and Q.-M. Shao [7] investigated
the small ball behavior in L2- and sup-norms of smooth self-similar Gaussian
processes Xα,β with the covariance function

GXα,β
(t, s) = tαsα

(t + s)2β+1 . (66)

In particular, it was shown that under natural assumption α > β > −1
2 we have

logP
{
‖Xα,β‖2,[0,1] ≤ ε

}
∼ − 1

3(α− β)π2 log3(ε−1), ε → 0. (67)

Remark 18. The method of [7] is based on the estimates of entropy numbers
of a linear operator generating the process, see [88]. We notice that the spectral
asymptotics for the operator with kernel (66) was obtained many years ago by
A.A. Laptev [91]. So, formula (67) can be obtained from the result of [91] and
Lemma 4.

Another class of problems where the relation (64) appears is related to the
Green Gaussian process in the space L2[0, 1; dm] with very “poor” measure m.
We describe here (not in a full generality) the corresponding class of degenerate
self-similar measures 64 on [0, 1], see [161], [129].

Let 0 < t1 < . . . < tn < 1, n ≥ 2, be a partition of the segment [0, 1]. We
select one of intervals between these points I = (tk, tk+1) and define the affine
function S mapping (0, 1) onto I. Consider also positive numbers (weights)
aj > 0, j = 1, . . . , n, and r > 0 such that

∑
j aj + r = 1.

It is not difficult to show (see, e.g., [161]), that there is a unique probability
measure m such that for any Lebesgue-measurable set E ⊂ [0, 1]

m(E) = r ·m(S−1(E)) +
∑
tj∈E

aj . (68)

In contrast with self-similar measures considered in Subsection 5.4, the mea-
sure m, defined by relation (68), is discrete. Its support has a unique accumula-
tion point x̂. A straightforward calculation shows that

x̂ = tk
1 − |I| . (69)

64These measures are not self-similar in the sense of [68].
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The primitive of m is a piecewise constant function. Fig. 2 shows its graph for
the following values of parameters: n = 2; t1 = 0.3, t2 = 0.8; a1 = 1

3 , a2 = 1
3 ,

r = 1
3 . Formula (69) gives x̂ = 0.6.

�

�
1

10.60.3 0.8

Fig 2. The primitive of a degenerate self-similar measure.

Remark 19. Evidently, the Hausdorff dimension of the support of degenerate
self-similar measure is equal to zero. Therefore, the spectral dimension of m (see
Remark 12) is also equal to zero.

The first result on the eigenvalues asymptotics for the boundary value prob-
lem (60) with degenerate self-similar measure m was obtained by A.A. Vladi-
mirov and I.A. Sheipak [176] in the case Lu ≡ −u′′. In [129], [177] this result
was generalized for the operators of arbitrary order.65 Using these results and
Lemma 4, the logarithmic small ball asymptotics in L2[0, 1; dm] was obtained
in [129] for several classical Green Gaussian processes.

Theorem 18 ([129, Proposition 4.3]). Let m be a degenerate self-similar mea-
sure described above. Let X be a Green Gaussian process, corresponding to the

65In fact, in [176], [177] sign-changing weights were also considered. Moreover, much more
precise information on the spectrum structure was obtained in these papers. However, these
results are not sufficient to receive exact small ball asymptotics for the corresponding processes.
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order 2� ODO. Then

logP{‖X‖2,[0,1]; dm ≤ ε} ∼ − n

log(c−1) log2(ε−1), ε → 0,

where c = r · |I|2�−1.

Tensor products of Gaussian processes with eigenvalues counting functions,
slowly varying at zero, were considered by A.I. Karol’ and A.I. Nazarov [76].66

Theorem 19 ([76, Theorem 3.2]). Let K1 and K2 be positive (compact, self-
adjoint) operators. Suppose that

NK1(τ) ∼ Φ1(τ−1), NK2(τ) ∼ Φ2(τ−1), τ → 0,

where Φ1 and Φ2 are unbounded and non-decreasing SVFs. Then we have

N⊗(τ) ∼ (Φ1 � Φ2)(τ−1), τ → 0,

where

(Φ � Ψ)(s) =
s∫

1

Φ(sσ−1)dΨ(σ)

is the so-called asymptotic convolution of SVFs.67

Using general results of Theorem 19 and Lemma 4, the logarithmic L2-small
ball asymptotics were obtained in [76] for several fields-products with marginal
processes described above.
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 Ψ)(s) = (Φ ∗ Ψ1)(s), where Ψ1(s) = sΨ′(s).
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Appendix. L2-small ball asymptotics for concrete processes

Process Logarithmic
asymptotics

Asympt. up
to a constant

Exact
asymptotics

Wiener process, W [28]
Brownian bridge, B [5]
Ornstein–Uhlenbeck, U [92] [120] [112]; [58]
Centered Wiener process, W [11]
Centered Brownian bridge, B [11]
Other Green Gaussian pro-
cesses of the second order

[131]; [114];
[142]; [70]

Weighted Green Gaussian pro-
cesses of the second order [92]; [43]

[112]; [58];
[130]; [127];
[142]; [9];
[132]; [122]

m-times integrated Wiener
process, W [β1,...,βm]

m
[81]68; [31] [11]68; [61]69;

[120]
[58]; [59];

[112]
m-times integrated Brownian
bridge, B[β1,...,βm]

m
[11]68; [120] [58]; [112]

m-times integrated Ornstein–
Uhlenbeck, U [β1,...,βm]

m
[120] [112]

Other Green Gaussian pro-
cesses of the higher order [120]; [11]

[112]; [141];
[114]; [142];
[143]; [122]

Weighted Green Gaussian pro-
cesses of the higher order [127]; [128]

Detrended Green processes [3] [84]; [139]
Finite-dimensional perturba-
tions70

[115]; [125];
[138]

Fractional Brownian motion
(fBm), WH [26] [32]

m-times integrated fBm [121] [34]71; [37]
Other fractional-Green pro-
cesses

[35]; [118];
[37]

Riemann–Liouville process and
bridge [33]

Other fractional processes and
fields

[121]; [143];
[67]; [100]

Smooth processes [62]; [116];
[7]

Fractional processes with vari-
able Hurst index [77]; [75]

Processes with self-similar
measure

[113]; [129];
[56]72; [153]

Brownian sheet [39] [53]
Integrated Brownian sheet [78] [53]

Other fields-products
[78]; [62];
[63]; [76];
[90]72; [152]

[156]; [157]

68The case m = 1.
69The exponent of the power term was determined up to a constant, see (27).
70Perturbations from the kernel of the original Gaussian random vector.
71The case m = 1.
72Two-sided estimates.
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