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1. Introduction

1.1. Intention and scope of this text

The goal of this article is to give a digestible yet concise introduction to random
matrix theory. We focus on the tools and concepts that allow us to comprehend
the results which marked the very beginnings of this theory: The semicircle law
discovered in [58, 59] and the Marchenko-Pastur law established in [37]. These
are statements pertaining to probabilistic weak convergence – namely weak con-
vergence in expectation resp. in probability resp. almost surely – which is a
framework also encountered in probability theory when studying the Glivenko-
Cantelli theorem, for example. We thoroughly investigate the subtleties of prob-
abilistic weak convergence in Chapter 2 of this text.

Statements about weak convergence – such as the central limit theorem – may
be proved in numerous ways, two of them being the analysis of the moments
of the distributions or the analysis of certain transforms of the distributions in-
volved. Concerning the proof of the central limit theorem, see Chapter 30 in [10]
for the use of moments, and Chapter 27 in [10] for the use of transforms. When
studying statements of probabilistic weak convergence in random matrix theory,
it turns out that again, moments and transforms can be employed with great
success and in numerous settings. Therefore, we carefully develop the method of
moments in Chapter 3 and the Stieltjes transform method in Chapter 5. We em-
ploy these methods to show both the semicircle law and the Marchenko-Pastur
law in Chapters 4 and 6.

During the past decades, random matrix theory has evolved into a huge
field of study. Both the results and the techniques to derive them have become
rather sophisticated, making an entry into this field cumbersome. This text
aims to alleviate this barrier of entry and can be followed after completing a
basic course of measure-theoretic probability theory. It is based on the works
[25, 26] of the first author, but has also benefitted greatly from the research
endeavors of both authors. Further, the techniques presented are employed in
many contemporary research articles and are thus highly relevant for researchers
aiming to contribute to random matrix theory.
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1.2. Cornerstones, recent developments and further reading

Before we begin with the development of the theory in Chapter 2 of this text,
we would like to give pointers to other monographs and lecture notes on random
matrices, and sketch a picture of recent and important developments in the last
decades. The area of research on random matrices is vast. It is the goal here to
discuss certain cornerstones of the theory.

To begin with, there exists a number of seminal monographs on random ma-
trices, including [4, 5, 38, 41, 53] for general expositions, [22, 39] for expositions
with an emphasis on specialized areas within random matrix theory, and [42]
with an emphasis on the applications. Valuable lecture notes and surveys on
random matrices are given by [33, 51] for general expositions and [13, 7] with
an emphasis on specialized areas.

The general interest of study concerns the spectrum of random matrices, to be
precise, the location of their eigenvalues and the structure of their eigenvectors.
Herewith connected is the question of their invertibility, see [56]. Three main
models of random matrices regularly studied are self-adjoint random matrices,
sample covariance matrices and non-selfadjoint random matrices. Their respec-
tive special cases with Gaussian entries are called Gaussian Orthogonal/Unitary
Ensemble (GOE/GUE), Wishart matrix and Ginibre ensemble. The restriction
to the Gaussian case has many advantages. For example, there exists an explicit
expression for the joint density of the eigenvalues (see [51] for details in all three
cases). In these models, classical results on the behavior of the spectrum were
obtained under the assumption that entries be standardized and independent,
the latter up the structural constraint imposed by the matrix model. For the
self-adjoint case, this led to the development of the semicircle law, pioneered
by [58, 59], employing the method of moments. For the case of sample covari-
ance matrices, the analysis led to the Marchenko-Pastur law in [37], employing
a Stieltjes transform method. Lastly, in the case of non-selfadjoint random ma-
trices, the limit distribution is known as the circular law, which was derived in
[54] by use of a transform called the logarithmic potential, see [13] for a detailed
exposition.

Apart from the global analysis of the eigenvalues of the aforementioned mod-
els, the local behavior of the eigenvalues also gained a lot of attention. For
example, for self-adjoint and sample covariance matrices – having real-valued
eigenvalues only – it would be natural to analyze the behavior of the largest
eigenvalue. To be precise, does the largest eigenvalue converge (almost surely,
say) to the edge of the support of the respective limiting spectral distribution,
and what is its fluctuation after appropriate rescaling? The questions about
almost sure convergence were answered in [6] and [29]. The fluctuations of the
largest eigenvalue are given by the famous Tracy-Widom Law derived in [57, 50]
for self-adjoint matrices. For the Tracy-Widom law for sample covariance ma-
trices, see the recent paper [46] and references therein for earlier achievements.
But the analysis of the local behavior of the eigenvalues of random matrices did
not stop with the largest eigenvalue, but rather was succeeded by sophisticated
analyses known as local laws. Local laws answer the question about whether
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eigenvalue distributions are also well-approximated by the target distribution
when restricting the analysis to smaller and smaller intervals. The technique to
answer this question involves an extensive generalization of the Stieltjes trans-
form method, namely the analysis of the resolvents of the random matrices,
leading to matrix-valued limit laws, see [7, 22, 21] for didactical expositions,
[23, 55] and references therein for original research, and [31, 30] for improve-
ments thereupon. With these techniques, it was also shown that the random
eigenvectors (of self-adjoint random matrices with independent entries, for ex-
ample) are delocalized, meaning roughly that all vector entries are of the same
order. In addition, the technical framework of the local law was used to resolve
the Wigner-Dyson-Mehta (WDM) universality conjecture. For a description of
this conjecture, see [21] and references therein.

The techniques to derive the limiting results mentioned so far all benefitted
greatly from the independence of the matrix entries. A natural question to ask
is to what extent this condition may be relaxed without jeopardizing classical
limit laws. For works in this area, see [15] and [28] and references therein.

Another area of study is the spectrum of sums and products of random matri-
ces. One possible framework to tackle these questions is called free probability,
see [39]. Other techniques and results are included in [42], an extensive part
of which is devoted to this topic. Further, in [2] a direct generalization of the
method of moments is given for the case of a product of random matrices, and
a generalization of the Marchenko-Pastur law is obtained.

2. Weak convergence

2.1. Spaces of continuous functions

On the set R of real numbers we will always consider the standard topology and
the associated Borel σ-algebra B. To study convergence of probability measures
on (R,B), it is useful to get acquainted with certain spaces of functions R→ R

first. If f : R→ R is a function, we define the support of f as

supp(f) := {x ∈ R : f(x) �= 0}.

Note that by definition, the support of f is always a closed subset of R, and it
is immediate that a point x ∈ R lies in the support of f if and only if for any
ε > 0 there is a y ∈ Bε(x), such that f(y) �= 0. Here and later, Bδ(z) denotes
the open δ-ball around the element z in a metric space which is clear from the
context.

We say that a function f : R→ R vanishes at infinity, if

lim
x→±∞

f(x) = 0.

Denote by C(R) the vector space of continuous functions R → R. We define
the three subspaces

1. Cb(R) := {f : R→ R | f is continuous and bounded},
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2. C0(R) := {f : R→ R | f is continuous and vanishes at infinity} and
3. Cc(R) := {f : R→ R | f is continuous with compact support}.

It is clear that
Cc(R) � C0(R) � Cb(R) � C(R),

since the function x �→ min(1, 1/|x|) lies in C0(R)\Cc(R), the function x �→ 1R(x)
lies in Cb(R)\C0(R) and the function x �→ x lies in C(R)\Cb(R). Since all functions
in Cc(R), C0(R) and Cb(R) are bounded, we can equip these spaces with the
supremum norm ‖ · ‖∞ defined by

‖f‖∞ := sup
x∈R

|f(x)|.

From now on, we will always consider the spaces Cb(R), C0(R) and Cc(R) as
vector spaces normed by the supremum norm. Convergence with respect to this
norm is also called uniform convergence. To analyze properties of these normed
spaces, we introduce continuous cutoff-functions as in [34, p. 8]:

Definition 2.1. For any real numbers u > � ≥ 0 we define the function φu
� :

R→ [0, 1] by

φu
� (x) :=

⎧⎪⎨⎪⎩
1 if |x| ≤ �,
u−|x|
u−� if � < |x| < u,

0 if |x| ≥ u.

Note that for any u > � ≥ 0, φu
� is continuous with compact support [−u, u].

The following theorem will summarize important properties of Cb(R), C0(R) and
Cc(R).

Theorem 2.2. The following statements hold:

i) Cb(R) is complete, but not separable.
ii) C0(R) is complete and separable.
iii) Cc(R) is not complete, but separable.
iv) Cc(R) is dense in C0(R).

Proof. i) If (fn)n is Cauchy in Cb(R) and x ∈ R, then fn(x) is Cauchy in R,
thus converges to a limit f(x) ∈ R. Further, we can pick an m ∈ N such that
fm is uniformly ε-close to all fn for n large enough, from which it follows that
fn → f uniformly. From this, it easily follows that f is bounded. It remains
to show that f is continuous for which we again choose an fm as above and
utilize a standard 3ε-argument. To see that Cb(R) is not separable, we construct
an uncountable subset F ⊆ Cb, such that for all f, g ∈ F with f �= g we have
‖f−g‖∞ = 1. To this end, denote by Z the set of 0-1-sequences, so Z = {0, 1}N.
Note that Z is uncountable. For any sequence z ∈ Z we define

∀x ∈ R : Fz(x) :=
∑
i∈N

zi · φ0.2
0.1(x− i)

and F := {Fz | z ∈ Z}. Now F is as desired.
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iii)/iv) To show that Cc(R) is not complete, we show that it is not closed in the
strict superset C0(R). In fact, we show even more, that is, that Cc(R) is dense
in C0(R) (then since Cc(R) � C0(R), Cc(R) cannot be closed). This fact is also
needed for statements ii) and iv). So let f ∈ C0(R) be arbitrary. Now consider
the sequence of functions (fn)n, where

∀n ∈ N : ∀x ∈ R : fn(x) := φn+1
n (x)f(x).

Then (fn)n is a sequence in Cc(R) which converges uniformly to f . Hence, Cc(R)
is dense in C0(R). Next, we will show that Cc(R) is separable. To this end, denote
by P the countable set of all polynomials with rational coefficients and set

Q := {p · φn+1
n | p ∈ P, n ∈ N}.

Then Q is easily identified as a dense countable subset of Cc(R).
ii) To show that C0(R) is complete, let (fn)n be an arbitrary Cauchy sequence
in C0(R). This is also a Cauchy sequence in Cb(R), so with i) we know that there
is an f ∈ Cb(R) such that fn → f uniformly. It is easily seen that f vanishes
at infinity, so that f ∈ C0(R). To see that C0(R) is separable, note that we have
already seen that Cc(R) is separable and dense in C0(R).

2.2. Convergence of probability measures

We will denote the set of measures on (R,B) byM(R), the set of finite measures
by Mf (R), the set of probability measures by M1(R), and the set of sub-
probability measures by M≤1(R). Here, a measure μ on (R,B) is called sub-
probability measure, if μ(R) ∈ [0, 1]. Note that

M1(R) �M≤1(R) �Mf (R) �M(R).

As a shorthand notation, if μ ∈M(R) and f : R→ R is measurable, we write

〈μ, f〉 :=
∫

f dμ

with the convention that when in doubt, x is the variable of integration:〈
μ, xk

〉
=

∫
xkμ(dx).

Definition 2.3. Let F ⊆ Cb(R) be a linear subspace, then a positive linear
bounded functional I on F is a bounded R-linear map F → R with I(f) ≥ 0
for all f ∈ F with f ≥ 0.

Lemma 2.4. Let F ⊆ Cb(R) be a linear subspace with Cc(R) ⊆ F . Then for
any μ ∈Mf (R), the map

Iμ : F −→ R

f �−→ Iμ(f) := 〈μ, f〉

defines a positive linear bounded functional on F with operator norm μ(R).
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Proof. We only need to show that the operator norm is indeed μ(R). To see
this, note that for any k > 0, we have φk+1

k ∈ F , φk+1
k ≥ 0 and ‖φk+1

k ‖∞ = 1.
Further,

Iμ(φk+1
k ) =

〈
μ, φk+1

k

〉
≥ μ([−k, k]).

Thus, the operator norm of Iμ is at least μ([−k, k]) for all k > 0, hence at least
μ(R). On the other hand, the operator norm is at most μ(R), since for any
f ∈ F we find |〈μ, f〉| ≤ 〈μ, |f |〉 ≤ μ(R) · ‖f‖∞.

The representation theorem of Riesz now states that any positive linear
bounded functional I on a linear space F with Cc(R) ⊆ F ⊆ C0(R) has the
form I = Iμ as in Lemma 2.4.

Theorem 2.5. Let F be a linear space with Cc(R) ⊆ F ⊆ C0(R) and equipped
with the supremum norm. Then for any positive linear bounded functional I on
F , there exists exactly one μ ∈Mf (R) with I = Iμ. It then holds ‖I‖op = μ(R).

Proof. The statement is well-known, see e.g. [17] or [19].

The next lemma will help us infer equality of two finite measures. Notation-
ally, if A is a subset of a topological space, we denote its boundary by ∂A.

Lemma 2.6. Let μ and ν be two finite measures on (R,B) and let F ⊆ Cc(R)
be a dense subset. Then

i) μ = ν ⇔ μ(I) = ν(I) for all bounded intervals I with μ(∂I) = ν(∂I) =
0,

ii) μ = ν ⇔ ∀ f ∈ Cc(R) : 〈μ, f〉 = 〈ν, f〉 ⇔ ∀ f ∈ F : 〈μ, f〉 = 〈ν, f〉.

Proof. i) “⇒” is clear, and for “⇐” we show that μ and ν agree on all finite
open intervals. To this end, note that for any finite measure ρ ∈Mf (R), the set
of atoms Aρ := {x ∈ R | ρ(x) > 0} is at most countable. As a result R\(Aμ∪Aν)
is dense in R. For arbitrary a < b in R, we find sequences (an)n and (bn)n in
R\(Aμ∪Aν) with an ↘ a and bn ↗ b as n→∞ and an < bn for all n ∈ N. Then
we obtain with continuity of measures from below (note that μ and ν agree on
all intervals (an, bn)):

μ((a, b)) = lim
n→∞

μ((an, bn)) = lim
n→∞

ν((an, bn)) = ν((a, b)).

ii) This follows immediately with Theorem 2.5.

We are especially interested in convergence behavior of sequences in M1(R),
where the limit may lie in M≤1(R).

Definition 2.7. Let (μn)n∈N be a sequence in in M1(R).

i) The sequence (μn)n∈N is said to converge weakly to an element μ ∈M1(R),
if

∀f ∈ Cb(R) : lim
n→∞

〈μn, f〉 = 〈μ, f〉 . (2.1)
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ii) The sequence (μn)n∈N is said to converge vaguely to an element μ ∈M≤1(R),
if

∀f ∈ Cc(R) : lim
n→∞

〈μn, f〉 = 〈μ, f〉 . (2.2)

Remark 2.8. We would like to shed light on the seemingly innocent Defini-
tion 2.7:

1. Weak convergence clearly implies vague convergence. Further, due to
Lemma 2.6, weak and vague limits are unique.

2. In light of Theorem 2.2, it is appropriate to say that the set of test functions
for weak convergence is considerably larger than the set of test functions
for vague convergence. As a result, weak limits are much more restrictive
than vague limits, as clarified by the next two points.

3. The target measures μ ∈ M(R), for which (2.1) can be satisfied for some
sequence (μn)n of probability measures are exactly all μ ∈M1(R). To see
this, if (2.1) holds for some μ ∈ M(R) and a sequence (μn)n in M1(R),
then we must have μ(R) = 1, since 1R ∈ Cb(R). On the other hand, if
μ ∈ M1(R) is arbitrary, then (2.1) is satisfied for the sequence (μn)n,
where μn = μ for all n ∈ N.

4. The measures μ ∈ M(R), for which (2.2) can be satisfied for some se-
quence (μn)n of probability measures are (somewhat surprisingly) exactly
all μ ∈M≤1(R). To see this, if (2.2) holds for some μ ∈M(R) and a se-
quence (μn)n in M1(R), then we have for any m ∈ N that

〈
μn, φ

m+1
m

〉
→n〈

μ, φm+1
m

〉
, so

〈
μ, φm+1

m

〉
≤ 1, which entails μ([−m,m]) ≤ 1 for all m ∈ N.

Since measures are continous from below, we conclude that also μ(R) ≤ 1,
so μ is a sub-probability measure. On the other hand, if μ ∈M≤1(R) is ar-
bitrary, then define α := 1−μ(R) ∈ [0, 1] and for all n ∈ N : μn := μ+αδn.
Then (μn)n is a sequence of probability measures and (2.2) is satisfied for
the sequence (μn)n. To see this, let f ∈ Cc(R) be arbitrary and N ∈ N

be so large that supp(f) ⊆ [−N,N ]. Then it holds for all n ≥ N that
〈μn, f〉 = 〈μ, f〉+ αf(n) = 〈μ, f〉.

5. As a result of points 3. and 4., the limit domains for weak and vague con-
vergence in Definition 2.7 are exact. The probability measures lie vaguely
dense in the sub-probability measures.

Lemma 2.9. Let (μn)n∈N be a sequence of probability measures and μ a sub-
probability measure on (R,B). Then (μn)n∈N converges vaguely (resp. weakly) to
μ if and only if every subsequence (μn)n∈J , J ⊆ N, has a subsequence (μn)n∈I ,
I ⊆ J , that converges vaguely (resp. weakly) to μ.

Proof. Of course, we only need to show “⇐”. We assume the statement to be
false, that is, that it is not true that (μn)n∈N converges vaguely (resp. weakly)
to μ. Then we find a continuous function f : R→ R which has compact support
(resp. which is bounded) and an ε > 0 such that |〈μn, f〉 − 〈μ, f〉| ≥ ε for all
n ∈ J , where J ⊆ N is an infinite subset. But now we find a subsequence
(μn)n∈I , I ⊆ J that converges vaguely (resp. weakly) to μ. In particular, we
find an n ∈ I ⊆ J such that |〈μn, f〉 − 〈μ, f〉| < ε, which leads to a contradiction
to our assumption that the statement is false.



Proof methods in RMT 299

Vague convergence of probability measures can also be characterized by con-
vergence of the integrals 〈μn, f〉 for all f ∈ C0(R).

Lemma 2.10. A sequence (μn)n in M1(R) converges vaguely to an element
μ ∈M≤1(R), if and only if

∀f ∈ C0(R) : lim
n→∞

〈μn, f〉 = 〈μ, f〉 .

Proof. This follows easily with the fact that Cc(R) ⊆ C0(R) is dense.

If μn → μ weakly, we know that 〈μn, f〉 → 〈μ, f〉 for all f ∈ Cb(R). Often, we
would like to be able to conclude 〈μn, f〉 → 〈μ, f〉 for more general functions f .
The next lemma will be of great use in this respect, see also [18, p. 107].

Lemma 2.11. Let (μn)n and μ be probability measures such that μn → μ weakly
as n→∞. Let h : R→ R be continuous. Then to show

〈μn, h〉 −−−−→
n→∞

〈μ, h〉 ,

it is sufficient to show that there is a strictly positive continuous function g :
R→ (0,∞) such that supn∈N 〈μn, g〉 <∞ and h/g vanishes at infinity.

Proof. The proof follows from elementary calculations and is left to the reader,
see also Exercise 3.2.5 in [18, p. 107].

As we just saw in Remark 2.8, vague convergence allows the escape of prob-
ability mass. The concept of tightness prevents this from happening:

Definition 2.12. A sequence of probability measures (μn)n on (R,B) is called
tight, if for all ε > 0 there exists a compact subset K ⊆ R such that

∀n ∈ N : μn(Kc) ≤ ε.

A sufficient condition for tightness is given in the next Lemma, which we
adopted from [18, p. 106]:

Lemma 2.13. Let (μn)n be a sequence of probability measures on (R,B). If
there exists a measurable non-negative function φ : R → R with φ(x) → ∞ for
x→ ±∞ and

sup
n
〈μn, φ〉 <∞,

then (μn)n is tight. In particular, this holds true if

sup
n

〈
μn, x

2〉 <∞.

Proof. Let C := supn 〈μn, φ〉 <∞. Then it holds for any n ∈ N and k > 0 that

C ≥ 〈μn, φ〉 ≥
〈
μn,1[−k,k]c · inf

|x|>k
φ(x)

〉
=

〈
μn,1[−k,k]c

〉
· inf
|x|>k

φ(x).

Since inf |x|>k φ(x) →∞ as k →∞, the statement follows.
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Lemma 2.14. Let (μn)n be a sequence in M1(R) and μ ∈ M≤1(R) such that
μn → μ vaguely as n→∞, then the following statements are equivalent:

i) (μn)n is tight.
ii) μ is a probability measure.
iii) μn converges weakly to μ.

Proof. i) ⇒ iii) Let f ∈ Cb(R) be arbitrary and set s := max(‖f‖∞, 1). Let
ε > 0 be arbitrary, then due to tightness of (μn)n and continuity from below of
μ, we find a k > 0 such that μn([−k, k]c) ≤ ε

2s and μ([−k, k]c) ≤ ε
2s . Now for

n ∈ N arbitrary we find

|〈μn, f〉 − 〈μ, f〉|
≤ |〈μn, f〉 −

〈
μn, fφ

k+1
k

〉
|+ |

〈
μn, fφ

k+1
k

〉
−

〈
μ, fφk+1

k

〉
|+ |

〈
μ, fφk+1

k

〉
− 〈μ, f〉|

≤
〈
μn, |f | · |1− φk+1

k |
〉

+ |
〈
μn, fφ

k+1
k

〉
−

〈
μ, fφk+1

k

〉
|+

〈
μ, |f | · |φk+1

k − 1|
〉

≤ s · ε

2s + |
〈
μn, fφ

k+1
k

〉
−

〈
μ, fφk+1

k

〉
|+ s · ε

2s

It follows that lim supn |〈μn, f〉 − 〈μ, f〉| ≤ ε.
iii)⇒ ii) This statement is obvious. Consider 1R ∈ Cb(R).
ii)⇒ i). Let ε > 0 be arbitrary. Then for k > 0 we find

μn([−(k + 1), k + 1]) ≥
〈
μn, φ

k+1
k

〉
≥

〈
μ, φk+1

k

〉
− |

〈
μ, φk+1

k

〉
−

〈
μn, φ

k+1
k

〉
|

Now first choose k large enough such that the first summand on the r.h.s. is
larger than 1 − ε/2, then choose N ∈ N large enough such that for all n > N
the absolute value on the r.h.s. is at most ε/2. Then we obtain for all n > N
that μn([−(k + 1), k + 1]) ≥ 1 − ε. On the other hand, we find k1, . . . , kN > 0
such that

∀ i ∈ {1, . . . , N} : μi([−ki, ki]) ≥ 1− ε.

Let k∗ := max{k+1, k1, . . . , kN}, then we obtain for all n ∈ N that μn([−k∗, k∗]) ≥
1− ε. Therefore, (μn)n is tight.

Lemma 2.15. Let (μn)n be a sequence inM1(R), then the following statements
hold:

i) (μn)n has a subsequence converging vaguely to some μ ∈M≤1(R).
ii) If (μn)n is tight, it has a subsequence converging weakly to some μ ∈
M1(R).

Proof. i) Let (gm)m be a dense sequence in Cc(R), then for all m ∈ N, (〈μn, gm〉)n
is a sequence in R whose absolute value is bounded by ‖gm‖∞ < ∞, thus has
a convergent subsequence by Bolzano-Weierstrass. By a diagonal argument, we
can find a subsequence J ⊆ N, such that for all m ∈ N, (〈μn, gm〉)n∈J converges.
But since (gm)m is dense in Cc(R), limn∈J 〈μn, f〉 exists for all f ∈ Cc(R) (it can
be shown that (〈μn, f〉)n is Cauchy). The function

I : Cc(R) −→ R
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f �−→ I(f) := lim
n∈J

〈μn, f〉

is a linear bounded positive functional on Cc(R) with operator norm at most 1,
since |〈μn, f〉| ≤ ‖f‖∞ for all n ∈ N and f ∈ Cc(R). With Theorem 2.5, we find
an element μ ∈ M≤1(R) such that I = Iμ, which entails μn → μ vaguely for
n ∈ J .
ii) With i) we find a subsequence J ⊆ N and a μ ∈M≤1(R) such that (μn)n∈J

converges to μ vaguely. But Lemma 2.14 yields that μ ∈ M1(R) and μn → μ
weakly for n ∈ J .

Note that statement i) of Lemma 2.15 is the well-known Helly’s selection
theorem contained in most standard books on probability theory, see [18] or
[35], for example. However, we give a new proof here that differs completely
from the standard proofs which utilize distribution functions.

So far we have discussed the intricacies of weak and vague convergence of
probability measures. Our next goal is to better understand the topology of
weak convergence onM1(R), which will deepen our understanding of stochastic
weak convergence to be discussed in the next section. Our first goal will be to
reduce the number of test functions for weak convergence to a countable subset
of Cb(R). However, (Cb(R), ‖ · ‖∞) is large; it is not even separable. But there
is no reason for despair, since the following theorem holds, which we adopted
from our previous work [25].

Theorem 2.16. Fix a sequence (gk)k∈N in Cc(R) which lies dense in Cc(R).
Then the following statements hold:

i) Let μ, (μn)n ∈M1(R), then the following statements are equivalent:
a) μn → μ weakly.
b) ∀ k ∈ N : 〈μn, gk〉 −−−−→

n→∞
〈μ, gk〉.

ii) Define for all μ, ν ∈M1(R):

dM (μ, ν) :=
∑
k∈N

|〈μ, gk〉 − 〈ν, gk〉|
2k · (1 + |〈μ, gk〉 − 〈ν, gk〉|)

.

Then dM forms a metric on M1(R) which metrizes weak convergence.
That is, a sequence (μn)n∈N in M1(R) converges weakly to μ ∈ M1(R)
iff dM (μn, μ) → 0 as n→∞.

iii) (M1(R), dM ) is a separable, but not complete, metric space.

Proof. i) Let (μn)n∈N and μ be probability measures. If μn → μ weakly, then
surely we have for all k ∈ N that 〈μn, gk〉 → 〈μ, gk〉 as n → ∞. If on the other
hand we have for all k ∈ N that 〈μn, gk〉 → 〈μ, gk〉 as n → ∞, then one easily
sees that μn converges vaguely to μ, and then also weakly by Lemma 2.14.

ii) and iii): From Lemma 2.6, we find for any μ, ν ∈M1(R) that

μ = ν ⇔ ∀ k ∈ N : 〈μ, gk〉 = 〈ν, gk〉 .
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Next, we will inspect the space RN endowed with the product topology. With
respect to this topology, a sequence (zn)n in RN converges to a z ∈ RN iff for
all i ∈ N the coordinates zn(i) in R converge to z(i) as n → ∞. Further, it is
well-known that the topology on RN is metrizable through the metric ρ with

∀x, y ∈ RN : ρ(x, y) :=
∑
k∈N

|x(k)− y(k)|
2k · (1 + |x(k)− y(k)|) .

This follows (for example) with 3.5.7 in [48, p. 121] in combination with Theorem
4.2.2 in [20, p. 259]. Further, (RN, ρ) is a separable metric space (Theorem 16.4
in [60, p. 109]).

We now define the following map (see [40, p. 43]):

T : M1(R) −→ RN

μ �−→ (〈μ, g1〉 , 〈μ, g2〉 , . . .)
Then surely, T is injective, since if T (μ) = T (ν), then also for all k ∈ N :
〈μ, gk〉 = 〈ν, gk〉 and then μ = ν. Additionally, we have for all μ, ν ∈ M1(R)
that

dM (μ, ν) =
∑
k∈N

|〈μ, gk〉 − 〈ν, gk〉|
2k · (1 + |〈μ, gk〉 − 〈ν, gk〉|)

= ρ(T (μ), T (ν)). (2.3)

Since T injective and ρ is a metric, dM is a metric as well, so that (M1(R), dM )
is a metric space. With equation (2.3) we see that T : (M1(X, d), dM ) −→ RN

is not only injective, but even isometric, especially continuous and a homeomor-
phism onto its image. Surely, the image is separable as a subspace of a separable
metric space. Thus, (M1(R), dM ), being homeomorphic to a separable space, is
also separable (Corollary 1.4.11 in [20, p. 31]).

With what we have shown so far we obtain for arbitrary (μn)n∈N, μ ∈M1(R):

μn converges weakly to μ

⇔ ∀ k ∈ N : 〈μn, gk〉 −−−−→
n→∞

〈μ, gk〉

⇔ T (μn) −−−−→
n→∞

T (μ) in RN

⇔ ρ(T (μn), T (μ)) −−−−→
n→∞

0

⇔ dM (μn, μ) −−−−→
n→∞

0.

We showed the first equivalence in the first part of this proof, the second equiv-
alence holds per definition of T and the above mentioned characterization of
convergence in RN, the third equivalence follows with the metrizability of RN

through ρ, and the last equivalence follows from above equation (2.3). What is
left to show is that (M1(R), dM ) is not complete. To this end, let (μn)n be any
sequence inM1(R) which converges vaguely to a sub-probability measure ν with
ν(R) < 1. Then for all k ∈ N, 〈μn, gk〉 → 〈ν, gk〉 as n→∞. Thus, dM (μn, ν) → 0
as n→∞ (the function dM makes sense even with sub-probability measures as
arguments). Since for any n,m ∈ N, dM (μn, μm) ≤ dM (μn, ν) + dM (μm, ν), we
find that (μn)n is a Cauchy sequence in (M1(R), dM ) that does not converge
weakly to an element in M1(R).
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2.3. Random probability measures on (R,B)

As we saw in Theorem 2.16, the set M1(R) can be metrized in such a way that
the resulting convergence is exactly “weak convergence of probability measures.”
This shows that Definition 2.7 was adequate in the sense that it defined weak
convergence for sequences of probability measures rather than for nets. The
reason is that in metric spaces (or more generally, in spaces which satisfy the first
axiom of countability, which means that any point has a countable neighborhood
basis), the topology can be reconstructed from the knowledge of convergent
sequences rather than nets. This is due to the fact that a set in such a space is
closed iff any limit of a convergent sequence in the set is an element of the set.

From now on, we will always view M1(R) as equipped with the topology of
weak convergence and the associated Borel σ-algebra. We know that M1(R) is
separable and that dM as in Theorem 2.16 is a metric yielding the topology of
weak convergence. It is then a triviality that for any f ∈ Cb(R), the function

If : M1(R) −→ R

μ �−→ If (μ) := 〈μ, f〉

is continuous on M1(R).
Since M1(R) is now considered also as a measurable space, we can study

M1(R)-valued random variables, which is the subject of this section.

Definition 2.17. Let (Ω,A,P) be a probability space.

i) A random probability measure on (R,B) is a measurable map μ : Ω →
M1(R), ω �→ μ(ω, ·).

ii) A stochastic kernel from (Ω,A) to (R,B) is a map μ : Ω×B −→ R, so that
the following holds:
a) For all ω ∈ Ω, μ(ω, ·) is a probability measure on (R,B).
b) For all B ∈ B, μ(·, B) is A-B-measurable.

Lemma 2.18. Let (Ω,A,P) be a probability space.

i) A map μ : Ω×B −→ R is a random probability measure iff it is a stochastic
kernel.

ii) If μ is a stochastic kernel from (Ω,A) to (R,B) and f : R→ R is measurable
and bounded, then ω �→ 〈μ(ω), f〉 is measurable and bounded by ‖f‖∞.

Proof. We first show ii): Surely, the indicated map is bounded by ‖f‖∞, since
we have for all ω ∈ Ω:

|〈μ(ω), f〉| ≤ 〈μ(ω), |f |〉 ≤ 〈μ(ω), ‖f‖∞〉 ≤ ‖f‖∞.

To show measurability, we employ a standard extension argument: ω �→ μ(ω,B)
is measurable for all B ∈ B. Let f be a simple function on (R,B), that is,
f =

∑n
i=1 αi · 1Bi for some n ∈ N, αi ∈ [0,∞) and Bi ∈ B, i = 1, . . . , n,

then also ω �→ 〈μ(ω), f〉 =
∑n

i=1 αi · μ(ω,Bi) is measurable as a linear com-
bination of finitely many measurable functions. Now let f ≥ 0 be measurable
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and bounded, then there exists sequence of simple functions (fn)n∈N such that
fn ↗n f pointwise. For ω ∈ Ω arbitrary it follows per monotone convergence
that 〈μ(ω), fn〉 ↗n 〈μ(ω), f〉, so also ω �→ 〈μ(ω), f〉 is measurable as a pointwise
limit of measurable functions. Now if f : R −→ R is measurable and bounded,
then also the positive and negative parts f+ and f− (then f+, f− ≥ 0 with
f = f+ − f−). Then ω �→ 〈μ(ω), f〉 = 〈μ(ω), f+〉 − 〈μ(ω), f−〉 is measurable as
a difference of measurable functions.

We now show i):
“⇐” We have just shown that for all f ∈ Cb(R) the map ω �→ 〈μ(ω), f〉 is
measurable. Then we obtain for all ν ∈ M1(R) that the map ω �→ dM (μ(ω), ν)
is measurable as a limit of measurable functions, since

dM (μ(ω), ν) =
∑
k∈N

|〈μ(ω), gk〉 − 〈ν, gk〉|
2k · (1 + |〈μ(ω), gk〉 − 〈ν, gk〉|)

.

To show the measurability of ω �→ μ(ω, ·), it suffices to show that preimages of
open balls from (M1(R), dM ) are measurable, since the σ-algebra on M1(R) is
generated by the topology which is generated by the metric dM , and the space
M1(R) is separable with respect to the topology of weak convergence. So let
ν ∈ M1(R) and ε > 0 be arbitrary, then it holds with B

M1(R)
ε (ν) := {ν′ ∈

M1(R) : dM (ν′, ν) < ε}:

μ−1
(
BM1(R)

ε (ν)
)

= {ω ∈ Ω : dM (μ(ω), ν) < ε} = dM (μ(·), ν)−1([0, ε)) ∈ A,

since above we already recognized dM (μ(·), ν) as measurable.
“⇒” If μ is a random probability measure, then for all ω ∈ Ω, μ(ω, ·) is a

probability measure on (R,B). We now argue that for any B ∈ B, ω �→ μ(ω,B)
is measurable. We first prove this for all open bounded intervals in R, since
these intervals generate B. So let a < b ∈ R be arbitrary and define ε :=
(b− a)/4. Then define for all n ∈ N the function φn : R→ R so that φn ≡ 1 on
[a+ 1

nε, b−
1
nε], φn ≡ 0 on (a, b)c and φn is affine on the intervals [a, a+ 1

nε] and
[b− 1

na, b] in such a way that it is continuous. Then φn is bounded, continuous and
φn(x) ↗n 1(a,b)(x) for all x ∈ R. We know that for all n ∈ N, ω �→ 〈μ(ω), φn〉 is
measurable as a composition of a measurable and a continuous map (see remark
before Definition 2.17). Now for any ω ∈ Ω:

lim
n→∞

〈μ(ω), φn〉 =
〈
μ(ω),1(a,b)

〉
= μ(ω, (a, b)),

by monotone convergence. As a result, μ(·, (a, b)) is A-B-measurable as the
pointwise limit of measurable functions. Now define the set

G := {B ∈ B |ω �→ μ(ω,B) is measurable}.

Surely, all open intervals lie in G as we have just shown. If we can show that
G is a Dynkin system we can conclude that G = B, which is our goal. First
of all, ∅, R ∈ G, since constant functions are always measurable. Second, since
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μ(·, Bc) = 1 − μ(·, B), we have that Bc ∈ G whenever B ∈ G. Third, if (Bn)n
is a sequence of pairwise disjoint sets in G, then μ(·,∪nBn) =

∑
n μ(·, Bn), so

since all μ(·, Bn) are measurable, then so is μ(·,∪nBn) as a pointwise limit of
a sequence of measurable functions. This shows that ∪nBn ∈ G so that G is
indeed a Dynkin system.

Random probability measures are not so uncommon in probability theory.
Consider the next example:

Example 2.19. Let Y1, . . . , Yn be real-valued random variables on a probability
space (Ω,A,P). Then

ρ := 1
n

n∑
i=1

δYi

is a random probability measure on (R,B), which we call empirical distribution
(of the Yi). Indeed, for any ω ∈ Ω,

ρ(ω) = 1
n

n∑
i=1

δYi(ω)

is a convex combination of probability measures and thus again a probability
measure on (R,B). On the other hand, if B ∈ B is arbitrary, then

ω �→ ρ(ω,B) = 1
n

n∑
i=1

δYi(ω)(B) = 1
n

n∑
i=1

1B(Yi(ω))

is certainly measurable. Thus, we recognize the empirical distribution ρ as a
random probability measure on (R,B) via Lemma 2.18. For any measurable set
B, ρ(B) yields the proportion of the Yi’s that fall into the set B. Connected
to the empirical distribution ρ is its empirical distribution function Fρ(x) :=
ρ((−∞, x]) defined for all x ∈ R. This is a random distribution function and
the protagonist of the famous Glivenko-Cantelli theorem and the Dvoretzky–
Kiefer–Wolfowitz inequality, see [47, p. 321] or [61, p. 553].

Now, let us resume our study. If μ is a random probability measure and
B ∈ B, then μ(B) is a bounded random variable. It is natural to consider its
expectation Eμ(B) as the expected mass that μ prescribes to the set B. But as
it turns out, B �→ Eμ(B) is yet another (deterministic) probability measure:

Theorem 2.20. Let (Ω,B,P) be a probability space and μ be a random proba-
bility measure on (R,B). Then the following statements hold:

i) The map

μ̄ : B −→ [0, 1]

B �−→ μ̄(B) :=
∫

Ω
μ(ω,B)P(dω) = Eμ(B)

is an element of M1(R), the so called expected measure of μ.
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ii) Any non-negative measurable function f : R −→ R+ is μ̄-integrable iff 〈μ, f〉
is P-integrable, and in this case it holds

〈μ̄, f〉 =
∫
R

f(x) μ̄(dx) =
∫

Ω

∫
R

f(x)μ(ω, dx)P(dω) = E 〈μ, f〉 .

In particular, this equation is valid for any bounded measurable function
f : R→ R.

iii) If f : R → R is μ̄-integrable, then 〈μ, f〉 is P-integrable and 〈μ̄, f〉 =
E 〈μ, f〉.

iv) Heed must be taken: If f : R → R is measurable and such that 〈μ, f〉 is
P-integrable so that E 〈μ, f〉 is well-defined, f need not be μ̄-integrable, so
that it is not true that 〈μ̄, f〉 = E 〈μ, f〉 whenever one of the two exists.
In particular, statement ii) cannot be generalized to arbitrary measurable
functions f : R→ R.

Due to these interrelations we will also write Eμ instead of μ̄, and with what
we have seen so far it holds for all function f with E 〈μ, |f |〉 < ∞ that f is
Eμ-integrable with

〈Eμ, f〉 = 〈μ̄, f〉 = E 〈μ, f〉 .
Proof. i) Clearly, Eμ(∅) = 0 and Eμ(R) = 1. Now if (Bn)n is a sequence of
pairwise disjoint elements in B, then

Eμ(∪nBn) = E
∑
n

μ(Bn) =
∑
n

Eμ(Bn),

where in the last step we used dominated convergence. This shows that μ̄ is
indeed a probability measure.
ii) Let f : R → R be a simple function, that is, f =

∑n
i=1 αi · 1Bi for some

n ∈ N, αi ∈ [0,∞) and Bi ∈ B, i = 1, . . . , n. Then

〈μ̄, f〉 =
n∑

i=1
αi · μ̄(Bi) = E

n∑
i=1

αi · μ(Bi) = E 〈μ, f〉 .

Now let f : R→ R be non-negative and measurable witnessed by a sequence of
simple functions (fn)n with fn ↗n f pointwise, then clearly

〈μ̄, f〉 = lim
n→∞

〈μ̄, fn〉 = lim
n→∞

E 〈μ, fn〉 = E 〈μ, f〉 ,

where in the first and the last step we used monotone convergence. In particular,
the non-negative f is μ̄-integrable iff 〈μ, f〉 is P-integrable and in this case it
holds 〈μ̄, f〉 = E 〈μ, f〉. Now if f : R→ R is bounded, then there exists a C ∈ R

such that f + C is non-negative (and of course, it remains bounded, thus inte-
grable). Then we immediately obtain 〈μ̄, f〉 = 〈μ̄, f + C〉 − C = E 〈μ, f + C〉 −
C = E 〈μ, f〉.
iii) If now f : R → R is μ̄-integrable, then f = f+ − f− where f+, f− ≥ 0
are μ̄-integrable. By ii), the non-negative random variables 〈μ, f+〉 and 〈μ, f−〉
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are both P-integrable. Then their difference 〈μ, f+〉 − 〈μ, f−〉 = 〈μ, f〉 is also
P-integrable and we obtain with ii):

〈μ̄, f〉 = 〈μ̄, f+〉 − 〈μ̄, f−〉 = E 〈μ̄, f+〉 − E 〈μ̄, f−〉 = E 〈μ̄, f〉 .

iv) Unfortunately, this point appears to be overlooked in the literature. We need
to construct a counter-example to show what we state. To this end, consider
the random probability measure μ on (R,B) with

∀n ∈ N : P
(
μ = 1

2δ−n + 1
2δn

)
= 1

cn2 ,

where c :=
∑

n
1
n2 < ∞. Further, let f be the identity on R, that is, f(x) = x

for all x ∈ R. Then surely, f is measurable, and since almost all realizations
of μ are symmetric measures, we have 〈μ, f〉 = 0 almost surely, which is P-
integrable with E 〈μ, f〉 = 0. We now assume that f is μ̄-integrable and lead
this to a contradiction: If f were μ̄-integrable, then so would |f | and by ii) we
would have 〈μ̄, |f |〉 = E 〈μ, |f |〉 < ∞. But with probability 1

cn2 , μ takes the
value 1

2δ−n + 1
2δn, so 〈μ, |f |〉 takes the value n, leading to the calculation

E 〈μ, |f |〉 =
∑
n∈N

n

cn2 =∞,

which is a contradiction.

In the remainder of this section, we will derive and discuss three notions of
convergence of random probability measures on (R,B), namely weak conver-
gence in expectation, weak convergence in probability and weak convergence
almost surely.

Definition 2.21. Let (μn)n∈N and μ be random probability measures on (R,B),
then we say that (μn)n converges weakly in expectation to μ, if the sequence of
expected measures (Eμn)n∈N converges weakly to the expected measure Eμ, so
if:

∀ f ∈ Cb(R) : 〈Eμn, f〉 −−−−→
n→∞

〈Eμ, f〉 ,

which is equivalent to (see Theorem 2.20)

∀ f ∈ Cb(R) : E 〈μn, f〉 −−−−→
n→∞

E 〈μ, f〉 .

The concept of weak convergence in expectation is extremely important for
investigations in the field of random matrix theory, since it lies the foundation
for stronger convergence types. This is due to the fact that weak convergence P-
almost surely or in probability will also imply weak convergence in expectation,
so the latter convergence type is a necessary condition for stronger convergence
types (see also Theorem 3.9). The exact interrelations between the three con-
cepts of convergence for random probability measures are summarized in the
end of this section in Theorem 2.29.
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Before turning to the next convergence types, we wish to remind the reader
what convergence in probability and almost surely means for random variables
in separable metric spaces, which we implicitly assume to be equipped with
Borel-σ-algebras:

Definition 2.22. Let (Yn)n∈N and Y be random variables defined on a proba-
bility space (Ω,A,P), which take values in a separable metric space (X , d).

i) We say that (Yn)n∈N converges to Y in probability, if d(Yn, Y ) converges to
0 in probability.

ii) We say that (Yn)n∈N converges to Y almost surely, if d(Yn, Y ) converges to
0 almost surely.

Let us collect a quick lemma:

Lemma 2.23. Let (Yn)n∈N and Y be random variables defined on a probability
space (Ω,A,P), which take values in a separable metric space (X , d). If (Yn)n∈N

converges to Y almost surely, then also in probability.

Proof. Let (Yn)n∈N converge to Y almost surely. This means that the sequence
of real-valued random variables (d(Yn, Y ))n converges to 0 almost surely. But
this implies that (d(Yn, Y ))n converges to 0 in probability, which is precisely
what it means for (Yn)n to converge to Y in probability.

Now let us define and analyze what it means for random probability measures
to converge in probability and almost surely. Since random probability measures
are nothing but random variables into the separable metric space M1(R), we
know what to do:

Definition 2.24. Let (Ω,A,P) be a probability space, μ and (μn)n∈N be random
probability measures on (R,B).

i) We say that (μn)n converges weakly to μ in probability, if dM (μn, μ) con-
verges to 0 in probability.

ii) We say that (μn)n converges weakly to μ almost surely, if dM (μn, μ) con-
verges to 0 almost surely.

Although stochastic types of weak convergence can be defined solidly as in
Definition 2.24, this definition is not convenient to work with in practice. In
addition, we would like to see that these convergence concepts do not depend
on the choice of the metric that metrizes weak convergence on M1(R).

Theorem 2.25. Let (Ω,A,P) be a probability space, μ and (μn)n∈N be random
probability measures on (R,B).

i) The following statements are equivalent:
a) (μn)n converges weakly to μ in probability, that is, dM (μn, μ) → 0 in

probability.
b) If d is any metric on M1(R) that metrizes weak convergence, then

d(μn, μ) → 0 in probability.
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c) For all f ∈ Cb(R), the sequence of bounded real-valued random variables
(〈μn, f〉)n converges in probability to 〈μ, f〉, so

∀ f ∈ Cb(R) : ∀ ε > 0 : P(|〈μn, f〉 − 〈μ, f〉| > ε) −−−−→
n→∞

0.

ii) The following statements are equivalent:
a) (μn)n converges weakly to μ almost surely, that is, dM (μn, μ) → 0 almost

surely.
b) For P-almost all ω ∈ Ω, μn(ω) converges weakly to μ(ω).
c) If d is any metric on M1(R) that metrizes weak convergence, then

d(μn, μ) → 0 almost surely.
d) For all f ∈ Cb(R), 〈μn, f〉 converges almost surely to 〈μ, f〉, that is,

∀ f ∈ Cb(R) :
[
〈μn, f〉 −−−−→

n→∞
〈μ, f〉 almost surely

]
.

e) Almost surely we find that for all f ∈ Cb(R), 〈μn, f〉 converges to 〈μ, f〉,
that is, [

∀ f ∈ Cb(R) : 〈μn, f〉 −−−−→
n→∞

〈μ, f〉
]

almost surely.

Remark 2.26. 1. Note that in Theorem 2.25 ii) d) and e) we used careful
bracketing [. . .] when it comes to almost sure convergence of multiple ob-
jects. This is done to avoid ambiguity. For example, questions could arise
whether we find a set of measure 1 on which all objects converge (as in
e)), or if for each object, we find a set of measure 1, possibly depending
on that object, on which the considered object converges (as in d)).

2. We consider Theorem 2.25 i) as equivalent definitions for the concept
“weak convergence in probability”, and ii) as equivalent definitions for
“weak convergence almost surely.” After the proof of the theorem, we will
keep on working with this characterization without always referring to The-
orem 2.25.

Before we begin with the proof of Theorem 2.25, we will introduce two tools
which we will make use of. For later use, we will formulate the lemmas in greater
generality, that is, for complex-valued random variables.

Lemma 2.27. Let (Xn)n and X be complex-valued random variables defined on
a probability space (Ω,A,P). Then (Xn)n∈N converges to X in probability iff any
subsequence J ⊆ N has another subsequence I ⊆ J so that (Xn)n∈I converges
to X almost surely.

Proof. The proof can be found in [18, p. 58].

The next extremely useful lemma generalizes the previous one by finding a
simultaneous almost surely convergent subsequence for a countable number of
sequences of random variables.
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Lemma 2.28. Let (Ω,A,P) be a probability space and for all k ∈ N let X(k) and
(X(k)

n )n∈N be complex-valued random variables. Then the following statements
are equivalent:

i) For all k ∈ N, (X(k)
n )n converges to X(k) in probability.

ii) For any subsequence J ⊆ N, we find a subsequence I ⊆ J and a set N ∈ A
with P(N) = 0 such that

∀ω ∈ Ω\N : ∀ k ∈ N : X(k)
n (ω) −−→

n∈I
X(k)(ω).

Proof. The part ii) ⇒ i) follows immediately with Lemma 2.27. So we only need
to show i) ⇒ ii): For k = 1 we find that (X(1)

n )n∈J converges in probability to
X(1). Therefore, we find a subsequence I1 ⊆ J such that

X(1)
n −−−→

n∈I1
X(1) P-a.s. witnessed by a set of measure zero N1.

Since (X(2)
n )n∈I1 converges to X(2) in probability, we find a subsequence I2 ⊆ I1

with min(I2) > min(I1) such that

X(2)
n −−−→

n∈I2
X(2) P-a.s. witnessed by a set of measure zero N2.

We continue this approach for all k ∈ N and obtain subsequences

N ⊇ J ⊇ I1 ⊇ I2 ⊇ . . . ⊇ Ik ⊇ . . .

such that for all k ∈ N we have min(Ik+1) > min(Ik) and

X(k)
n −−−→

n∈Ik
X(k) P-a.s. witnessed by a set of measure zero Nk.

We set N := ∪k∈NNk and for all k ∈ N : ik := min(Ik), then we obtain that
(ik)k∈N is strictly increasing in N and

∀ω ∈ Ω\N : ∀ l ∈ N : X(l)
ik

(ω) −−−→
k∈N

X(l)(ω).

To see this, let ω ∈ Ω\N and l ∈ N be arbitrary. Then we have that ω ∈ Ω\Nl

and ik = min(Ik) ∈ Il for all k ≥ l, so that indeed

X
(l)
ik

(ω) −−−→
k∈N

X(l)(ω).

The proof is completed by setting I := {ik | k ∈ N}.
Now we are ready to prove Theorem 2.25:

Proof of Theorem 2.25. We show ii) first.
Clearly, a), b) and c) are equivalent, since the metrics metrize weak conver-

gence. Also, e) is just a reformulation of b), thus equivalent. In addition, d)
follows immediately from e), so we have

a) ⇔ b) ⇔ c) ⇔ e) ⇒ d)
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We now show d) ⇒ b): For each k ∈ N we have that 〈μn, gk〉 converges to
〈μ, gk〉 almost surely on a set Ak of measure 1 (the functions (gk)k are as in
Theorem 2.16). Then the set Ω1 := ∩kAk has measure 1 and for all ω ∈ Ω1 we
find that

∀ k ∈ N : 〈μn(ω), gk〉 −−−−→
n→∞

〈μ(ω), gk〉 .

Therefore, with Theorem 2.16, we have for all ω ∈ Ω1 that μn(ω) → μ(ω) weakly
as n→∞ and hence b).

We now show i):
a) ⇔ b) By exact symmetry in the argument, we will only argue a) ⇒ b): Let
μn → μ weakly in probability, that is, (dM (μn, μ))n∈N converges to 0 in prob-
ability. We want to show that also (d(μn, μ))n∈N converges to 0 in probability.
To use Lemma 2.27, let J ⊆ N be an arbitrary subsequence. Then we find a
subsequence I ⊆ J such that (dM (μn, μ))n∈I converges to 0 almost surely. With
part ii) this means that also (d(μn, μ))n∈I converges to 0 almost surely. But
then (d(μn, μ))n∈N converges to 0 in probability.
a) ⇒ c) If (μn)n converges weakly to μ in probability, then this means that
dM (μn, μ) converges to 0 in probability. Let f ∈ Cb(R) be arbitrary. We must
show that 〈μn, f〉 converges to 〈μ, f〉 in probability. To this end, let J ⊆ N

be an arbitrary subsequence. Then there is a subsequence I ⊆ J such that
(dM (μn, μ))n∈I converges to 0 almost surely on a measurable subset Ω1 ⊆ Ω
with measure 1. Then it holds in particular for any ω ∈ Ω1 that (〈μn(ω), f〉)n∈I

converges to 〈μ(ω), f〉, so (〈μn, f〉)n∈I converges to 〈μ, f〉 almost surely. The
statement follows with Lemma 2.27.
c) ⇒ a) We find that for all k ∈ N, (〈μn, gk〉)n∈N converges to 〈μ, gk〉 in proba-
bility. We must show that dM (μn, μ) converges to zero in probability. Let J ⊆ N

be any subsequence. With Lemma 2.28, we find a subsequence I ⊆ J and a
measurable set Ω1 ⊆ Ω of measure 1, such that

∀ω ∈ Ω1 : ∀ k ∈ N : 〈μn(ω), gk〉 −−→
n∈I

〈μ(ω), gk〉

With Theorem 2.16, this entails that for all ω ∈ Ω1, (dM (μn(ω), μ(ω)))n∈I

converges to 0. With Lemma 2.27, this means that (dM (μn, μ))n∈N converges to
zero in probability.

So, what we have seen so far is that random probability measures can converge
in three different ways, namely weakly in expectation, weakly in probability
and weakly almost surely. We have solidly defined and then characterized these
convergence concepts. At last, we point out a hierarchy among them:

Theorem 2.29. Let (Ω,A,P) be a probability space, (μn)n∈N and μ be random
probability measures on (R,B).

i) If μn → μ weakly almost surely, then also weakly in probability.
ii) If μn → μ weakly in probability, then also weakly in expectation.

Proof. i) This follows directly with Lemma 2.23.
ii) If μn → μ weakly in probability, per Theorem 2.25 this means that for all
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f ∈ Cb(R) we find 〈μn, f〉 → 〈μ, f〉 in probability, thus E 〈μn, f〉 → E 〈μ, f〉 by
the following Lemma 2.30, since |〈μn, f〉| ≤ ‖f‖∞ and |〈μ, f〉| ≤ ‖f‖∞.

Lemma 2.30. Let (Xn)n∈N and X be complex-valued random variables on a
probability space (Ω,A,P) and C ∈ R such that |Xn| ≤ C for all n ∈ N and
|X| ≤ C. Then Xn → X in probability implies E|Xn −X| → 0, in particular
EXn → EX.

Proof. Let ε > 0 be arbitrary, then we calculate:

E|Xn −X| = E|Xn −X|1{|Xn−X|≤ε} + E|Xn −X|1{|Xn−X|>ε}

≤ ε + P(|Xn −X| > ε) · 2C.

Therefore, we conclude
lim sup
n→∞

E|Xn −X| ≤ ε.

2.4. Limit laws in random matrix theory

We will now introduce the types of random probability measures which we
would like to investigate, namely the empirical spectral distribution of random
matrices. To this end, let K ∈ {R,C} and denote by (Matn(K), ‖ · ‖op) the
normed K-vector space of n × n-matrices with K-valued entries, where ‖ · ‖op
denotes the operator norm with respect to the euclidian norm ‖ · ‖ on Kn, that
is,

∀X ∈ Matn(K) : ‖X‖op = sup {‖Xv‖ : v ∈ Kn, ‖v‖ = 1} .
It is immediate that (Matn(K), ‖ · ‖op) is a Banach-space, and a sequence of
matrices (Xm)m converges to a matrix X in Matn(K) iff all entries Xm(i, j)
converge to X(i, j) in K as m → ∞. If X ∈ Matn(K) we denote its adjoint by
X∗, which is just the transpose of X if K = R and the conjugate transpose of X
if K = C. A matrix X ∈ Matn(K) is called self-adjoint if X∗ = X (then X is also
called symmetric if K = R and Hermitian if K = C) and we denote the subset of
all self-adjoint matrices of Matn(K) by SMatn(K). Then SMatn(K) ⊆ Matn(K)
is a closed subset, since X �→ X∗ is continuous. Further, SMatn(K) is closed
under R-linear combinations. To introduce more notation, if λ1, . . . , λn ∈ R are
arbitrary, we denote by diag(λ1, . . . , λn) the diagonal matrix D ∈ SMatn(K)
with entries D(i, i) = λi for all i ∈ {1, . . . , n}. Further, we denote by tr the
trace functional Matn(K) −→ K, that is,

∀X ∈ Matn(K) : trX =
n∑

t=1
X(t, t).

The trace has some interesting properties, which are summarized in the following
lemma:

Lemma 2.31. The trace tr is a continuous linear functional on (Matn(K), ‖ ·
‖op). Further, if X,S ∈ Matn(K) are arbitrary, where S is invertible, then
tr(X) = tr(S−1XS).
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Proof. It is immediate that the trace is a continuous linear functional. The
equality tr(X) = tr(S−1XS) is due to the fact that X and S−1XS have the
same characteristic polynomial. The trace is the (n−1)th coefficient of the char-
acteristic polynomial (multiplied by (−1)n−1). For details we refer the reader
to [44] or [24].

The next lemma clarifies the eigenvalue structure of self-adjoint matrices:

Lemma 2.32. For any matrix X ∈ SMatn(K) we find an invertible matrix S ∈
Matn(K) and real numbers λX

1 ≤ . . . ≤ λX
n , such that S−1XS = diag(λX

1 , . . . , λX
n ).

In particular, X has exactly n real eigenvalues (counting multiplicities), and all
eigenvalues are real.

Proof. We refer the reader to [44] or [24].

In general, if Y is a self-adjoint n × n matrix, we will denote its n real
eigenvalues by λY

1 ≤ . . . ≤ λY
n . The next theorem is a very versatile tool in

random matrix theory. For example, it can be used to derive that eigenvalues
are continuous functions of the entries of the matrix (Corollary 2.34), or it can
be used to analyze asymptotic equivalence of empirical spectral distributions
via the bounded Lipschitz metric.

Theorem 2.33 (Hoffman-Wielandt). For all n ∈ N and X,Y ∈ SMatn(K) it
holds:

n∑
i=1
|λX

i − λY
i |2 ≤ tr(X − Y )∗(X − Y ) = tr(X − Y )2.

Proof. See [62, p. 320] or [32, p. 217].

We can immediately conclude that eigenvalues are continuous functions of
the matrices.

Corollary 2.34. Let n ∈ N and l ∈ {1, . . . , n} be arbitrary, then

Eigl : SMatn(K) −→ R

X �−→ λX
l

is continuous.

Proof. Let (Xm)m∈N and X in SMatn(K) so that Xm → X for m→∞ (which
means convergence in operator norm, or equivalently, entry-wise convergence).
Then we find with Theorem 2.33 and Lemma 2.31 that

|λXm

l − λX
l |2 ≤

N∑
i=1
|λXm

i − λX
i |2 ≤ tr(Xm −X)2 −−−−→

m→∞
0.

Having studied eigenvalues of self-adjoint matrices, let us turn our attention
to random matrices.
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Definition 2.35. Let (Ω,A,P) be a probability space and n ∈ N be arbitrary
then a (n × n self-adjoint) random matrix is a measurable map X : (Ω,A) →
(SMatn(K),B(n2)

s ), where B(n2)
s denotes Borel σ-algebra on SMatn(K).

From here on out, unless stated otherwise, we will always understand a ran-
dom matrix to be self-adjoint and with entries in K if the underlying field is
not further specified. It is clear that a map X : (Ω,A) → (SMatn(K),B(n2)

s ) is
measurable iff all entries X(i, j) : (Ω,A) → (K,BK) are measurable, where BK

denotes the Borel σ-algebra on K. If X is an n×n random matrix on (Ω,A,P),
then for all ω ∈ Ω, X(ω) ∈ SMatn(K), such that X(ω) possesses eigenvalues
λ
X(ω)
1 ≤ . . . ≤ λ

X(ω)
n . We wish to see that the maps ω �→ λ

X(ω)
l for l = 1, . . . , n

are measurable.

Lemma 2.36. Let X be an n×n random matrix on (Ω,A,P) and l ∈ {1, . . . , n}
be arbitrary, then

λX
l : (Ω,A) −→ (R,B)

ω �−→ λ
X(ω)
l

is measurable, thus a real-valued random variable.

Proof. We know by Corollary 2.34 that

Eigl : SMatn(K) −→ R

X �−→ λX
l

is continuous, in particular measurable. Further, X : Ω −→ SMatn(K) is mea-
surable per definition, hence the composition λX

l := Eigl ◦X is measurable as
well.

Lemma 2.36 allows us to study eigenvalues of random matrices in the context
of probability theory. One aspect which gains a lot of attention is the behavior
of the empirical distribution of the eigenvalues (see also Example 2.19).

Definition 2.37. Let X be an n × n random matrix on (Ω,A,P), then the
empirical spectral distribution (ESD) σn of X is the random probability measure
on (R,B) given by

σn : Ω× B −→ [0, 1]

(ω,B) �−→ σn(ω,B) := 1
n

n∑
l=1

δ
λ
X(ω)
l

(B)

It follows from our discussion in Example 2.19 that σn really is a random
probability measure. How is σn to be interpreted? For any interval I ⊆ R, the
random variable σn(I) tells us the proportion of the n eigenvalues that fall into
the interval I. Thus, σn carries information on the location of the eigenvalues,
and it is of particular interest where the eigenvalues are located in the limit,
that is, for n→∞.



Proof methods in RMT 315

Wigner’s semicircle law

It is a famous theorem by Wigner that allows us to conclude under fairly weak
assumptions (mainly independence of matrix entries and uniformly bounded
moments) that in the limit, eigenvalues will be spread according to the semicircle
distribution:

Definition 2.38. The semicircle distribution σ is the probability measure on
(R,B) with Lebesgue-density fσ where

fσ : R −→ R

x �−→ fσ(x) := 1
2π

√
4− x21[−2,2](x).

Here and throughout this text, we will denote the Lebesgue measure on (R,B)
by λλ. With respect to Definition 2.38, we have to prove that fσλλ is actually
a probability measure. We see immediately that the measure is finite, since
fσ is bounded and has compact support. We will postpone the proof that the
Lebesgue integral over fσ is 1 to Lemma 3.11. Since convergence to the semicircle
distribution is an important and ubiquitous concept, we make the following
definition.

Definition 2.39. If (σn)n are the ESDs of random matrices (Xn)n and σn → σ
weakly in expectation resp. in probability resp. almost surely, then we say that
the semicircle law holds for (Xn)n in expectation resp. in probability resp. almost
surely.

We now turn to Wigner’s semicircle law. Notationally, for all n ∈ N we define
the index set [n]2 := [n]× [n] = {1, 2, . . . , n} × {1, 2, . . . , n}.
Definition 2.40. Let for all n ∈ N, Xn = (Xn(i, j))(i,j)∈[n]2 be a family of
real-valued random variables, then the sequence (Xn)n is called Wigner scheme,
if the following holds:

i) All random variables have uniformly bounded absolute moments, that is:
For all q ∈ N there exists a constant Lq ∈ (0,∞) such that for all n ∈ N

and all (i, j) ∈ [n]2: E|Xn(i, j)|q ≤ Lq.
ii) All random variables are standardized, that is: For all n ∈ N and all (i, j) ∈

[n]2: EXn(i, j) = 0 and VXn(i, j) = 1.
iii) The families Xn are symmetric, that is: For all n ∈ N and (i, j) ∈ [n]2 we

have Xn(i, j) = Xn(j, i).
iv) For all n ∈ N the family (Xn(i, j))1≤i≤j≤n is independent.

Note in particular that in Definition 2.40 we do not require that the whole
family ((Xn(i, j))1≤i≤j≤n)n∈N be independent. A very simple Wigner scheme is
given in the following example:

Example 2.41. Let (X(i, j))1≤i≤j be an i.i.d. family of real-valued random
variables such that E|X(1, 1)|q <∞ for all q ∈ N, EX(1, 1) = 0 and VX(1, 1) =
1. Further, set X(i, j) := X(j, i) for all 1 ≤ j < i. Now set for all n ∈ N
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and all (i, j) ∈ [n]2: Xn(i, j) := X(i, j). Roughly speaking, Xn is the n × n
submatrix of the infinite matrix X. Then clearly, (Xn)n is a Wigner scheme as
in Definition 2.40.

The following Theorem is called “Wigner’s semicircle law.”

Theorem 2.42. Let (Xn)n be a Wigner scheme defined on a probability space
(Ω,A,P). Define for all n ∈ N the Wigner matrix Wn by

∀ (i, j) ∈ [n]2 : Wn(i, j) := 1√
n
Xn(i, j).

Then the semicircle law holds for (Wn)n almost surely.

We will prove Theorem 2.42 in various ways: In Section 4.2 we will employ
the method of moments to prove this theorem, whereas in Section 6.2 we use
the Stieltjes transform method.

The Marchenko-Pastur law

Another class of random matrix models besides the Wigner schemes fall into the
category of covariance matrices. Assume we have n observations x1, . . . , xn, each
with p real-valued covariates, where n, p ∈ N, so that xi = (xi(1), . . . , xi(p))T
for all i ∈ {1, . . . , n}. Define the p × n data matrix Xn := (x1|x2| . . . |xn). The
sample covariance matrix is then defined by

S̃n := 1
n− 1

n∑
k=1

(xk − x̄)(xk − x̄)T
(

= n

n− 1 ·
(

1
n

n∑
k=1

xkx
T
k − x̄x̄T

))
,

which is of dimension p× p. Here, the vector x̄ denotes the arithmetic mean of
the vectors xk. Assuming that the data stems from n i.i.d. realizations of an
Rp-valued random vector X with L2-entries, S̃n is an unbiased estimator for its
covariance matrix

E(X − EX)(X − EX)T =

⎛⎜⎝ VX(1) · · · Cov(X(1), X(p))
...

. . .
...

Cov(X(p), X(1)) · · · VX(p)

⎞⎟⎠ .

Many test statistics are based on the eigenvalues of the sample covariance ma-
trix. When analyzing these eigenvalues in the limit, it suffices to consider

Sn := 1
n

n∑
k=1

xkx
T
k = 1

n
XnX

T
n , (2.4)

since x̄x̄T is of rank 1. Also, we will assume that the number of covariates p
grows with the number of observations n, so p = pn. We further assume that
p/n −→ y ∈ (0,∞), that is, p grows proportionally with n. This leads to the
definition of a Marchenko-Pastur scheme.
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Definition 2.43. Let for all n ∈ N, p = pn ∈ N and (Xn(i, j))i∈[p],j∈[n] be
a family of real-valued random variables. Then the sequence (Xn)n is called
Marchenko-Pastur scheme, if the following holds:

i) All random variables have uniformly bounded absolute moments, that is:
For all q ∈ N there exists a constant Lq ∈ (0,∞) such that for all n ∈ N

and all (i, j) ∈ [p]× [n]: E|Xn(i, j)|q ≤ Lq.
ii) All random variables are standardized, that is: For all n ∈ N and all (i, j) ∈

[p]× [n]: EXn(i, j) = 0 and VXn(i, j) = 1.
iii) For all n ∈ N the family (Xn(i, j))i∈[p],j∈[n] is independent.
iv) There exists a constant y ∈ (0,∞) such that p/n→ y as n→∞.

We will see that eigenvalues of covariance matrices which are based on MP-
schemes will spread according to the Marchenko-Pastur distribution:

Definition 2.44. The (standard) MP distribution with ratio index y ∈ (0,∞)
is the probability measure μy on (R,B) given by

μy = 1
2πxy

√
((1 +√y)2 − x)(x− (1−√y)2)1(0,∞)(x)λλ(dx)+

(
1− 1

y

)
δ01y>1,

where λλ denotes the Lebesgue measure on (R,B) and δ0 denotes the Dirac mea-
sure in 0.

Definition 2.45. Let y ∈ (0,∞). If (μn)n are the ESDs of random matrices
(Vn)n and μn → μy weakly in expectation resp. in probability resp. almost surely,
then we say that the Marchenko-Pastur law holds for (Vn)n in expectation resp.
in probability resp. almost surely.

The following Theorem is called “Marchenko-Pastur law.”

Theorem 2.46. Let (Xn)n be an MP-scheme defined on a probability space
(Ω,A,P). Define for all n ∈ N the MP-matrix Vn by

Vn := 1
n
XnX

T
n .

Then the MP-law holds for (Vn)n almost surely.

We will prove Theorem 2.46 in various ways: In Section 4.3 we will employ
the method of moments to prove this theorem, whereas in Section 6.3 we use
the Stieltjes transform method.

Outlook

Of course, a valid question is how to prove Theorem 2.42 and Theorem 2.46. We
see that certain conditions are formulated for entries of these matrix models.
In order to use these conditions in our analysis, how can we relate the ESDs
σn and μn back to the entries of their respective random matrices? And lastly,
how can we conclude (stochastic) weak convergence of these ESDs? There are
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(at least) two standard ways to achieve this, namely the method of moments
and the Stieltjes transform method. These methods will be discussed in depth
in the following sections. We will also use these methods to prove the almost
sure semicircle law and the Marchenko-Pastur law.

3. The method of moments

In Chapter 2 we have studied in depth the concepts of weak convergence of
probability measures and random probability measures. In this chapter we want
to discuss a tool which helps us to infer weak convergence: The method of
moments. We will carefully develop this method for both deterministic and
random probability measures. To be able to use this method correctly, we also
need to delve into the moment problem. But let us first define what the moments
of a measure are:
Definition 3.1. Let μ be a measure on (R,B) and k ∈ N0. If

〈
μ, |xk|

〉
< ∞

(where x0 = 1∀x ∈ R) we call the real number

mk :=
〈
μ, xk

〉
the k-th moment of μ. In this case, we say that μ has a finite k-th moment. On
the other hand, if

〈
μ, |xk|

〉
=∞, we say the k-th moment of μ does not exist.

3.1. The moment problem

In numerous applications it is important to know the moments of a probability
measure or at least some properties of the moments. In the Hamburger moment
problem (see [43, p. 145] and [49], for example), the question is reversed. Given
a sequence of real numbers (mk)k∈N0 , what can be said about the existence
and uniqueness of a measure μ on (R,B) with moments (mk)k∈N0? To be more
precise, does there exist a measure μ on (R,B) with moments (mk)k∈N0 , and
if so, is it the only measure with those moments? Of course, if such a measure
exists, it is a probability measure iff m0 = 1. It is rather surprising that the
existence of such a measure can be nicely characterized:
Theorem 3.2. A sequence of real numbers (mk)k∈N0 constitutes the moments
of at least one measure on (R,B), if and only if for all N ∈ N the corresponding
Hankel matrix ⎛⎜⎜⎜⎜⎜⎝

m0 m1 m2 . . . mN

m1 m2 m3 . . . mN+1
m2 m3 m4 . . . mN+2
...

...
...

. . .
...

mN mN+1 mN+2 . . . m2N

⎞⎟⎟⎟⎟⎟⎠
is positive semi-definite, that is, if for all N ∈ N0 and all β0, . . . , βN ∈ R it
holds:

N∑
r,s=0

βrβsmr+s ≥ 0.
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Proof. See [43, p. 145] in combination with the fact that a real symmetric matrix
is positive definite in the real sense iff it is positive definite in the complex
sense.

Oftentimes it will not be of interest if a sequence of numbers (mk)k∈N0 really
belongs to a probability measure, since we automatically obtain this result when
employing the method of moments, see Theorem 3.5. Theorem 3.2 still has two
important applications: On the one hand, if the researcher is a priori assuming
the target distribution to have specific moments, Theorem 3.2 can be used to
check whether this is a plausible assumption and can spare the researcher from
trying to prove convergence to a non-existing probability measure. On the other
hand, if one has already employed the method of moments and the moments of
the target distribution have been calculated, one can a posteriori evaluate the
plausibility of the calculations via Theorem 3.2. Indeed, this is not uncommon
practice, see [14, p. 15], for example. In any case, what will be essential for the
method of moments is the knowledge about the uniqueness of a distribution
with given moments, that is, the answer to the question whether there is at
most one distribution with a given sequence of moments.

Theorem 3.3. Let (mk)k∈N be a sequence of real numbers. If one of the fol-
lowing three conditions holds, there is at most one probability measure on (R,B)
with moments (mk)k∈N:

i)
∑∞

k=1
1

2k√m2k
= ∞ (Carleman condition),

ii) lim supk→∞
2k√m2k

2k <∞,
iii) ∃C,D ≥ 1 : ∀ k ∈ N : |mk| ≤ C ·Dk · k!.

Further, it holds that iii) ⇒ ii) ⇒ i), that is, the Carleman condition is the
weakest of the three.

Proof. i): See [1, p. 85].
ii): See [18, p. 123].
iii): See [43, p. 205].
Additional statement: The additional statement also proves that ii) and iii) are
sufficient when knowing that i) is sufficient.

We assume that ii) holds. Let for all k ∈ N : αk := 2k
√
m2k ≥ 0, then we

have to show
∑∞

k=1
1
αk

=∞ under the condition that r := lim supk→∞
αk

2k <∞.
But there exists a K ∈ N such that for all k ≥ K we find αk

2k ≤ r + 1, thus
αk ≤ 2k · (r + 1). Due to divergence of the harmonic series we obtain:

∞∑
k=1

1
αk
≥

∑
k≥K

1
2k · (r + 1) =∞.

Therefore, i) follows from ii). Now if iii) holds, we find for all k ∈ N:

2k
√
m2k

2k ≤
2k
√

C ·D2k · (2k)!
2k ≤ C ·D ·

2k
√

(2k)!
2k ≤ C ·D,

since (2k)2k ≥ (2k)! yields 2k ≥ 2k
√

(2k)! for all k ∈ N. Thus, ii) holds.
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In the next corollary we will see that the moments of probability measures
with compact support possess moments of all orders, and that they are uniquely
determined by their moments.

Corollary 3.4. Let ν be a probability measure on (R,B) with compact support
which lies in [−a, a] for some a ∈ N. Then

i) ν has moments of all orders.
ii) For all k ∈ N: |

〈
ν, xk

〉
| ≤ ak.

iii) ν is uniquely determined by its moments.

Proof. We calculate for k ∈ N arbitrary:∣∣〈ν, xk
〉∣∣ =

〈
ν, |x|k

〉
=

〈
ν,1[−a,a]|x|k

〉
≤ ak.

This shows i) and ii), and iii) follows immediately with Theorem 3.3 iii).

3.2. The method of moments for probability measures

Now we are well-prepared to introduce the method of moments, which is a means
to infer weak convergence of a sequence of distributions from the convergence
of their moments.

Theorem 3.5. Let (μn)n∈N be a sequence in M1(R), so that all moments of
every μn exist. If there exists a sequence of real numbers (mk)k∈N, so that

∀ k ∈ N : lim
n→∞

〈
μn, x

k
〉

= mk, (3.1)

the following statements hold:
There exists a μ ∈ M1(R) and a subsequence of (μn)n∈N, which converges

weakly to μ. Then ∀ k ∈ N : mk =
〈
μ, xk

〉
. In particular, the (mk)k∈N are

moments of a probability measure on (R,B). Further: If μ is uniquely determined
by its moments, then the entire sequence (μn)n converges weakly to μ.

Proof. With (3.1) it follows with k = 2 and Lemma 2.13 that (μn)n∈N is tight.
Therefore, with Lemma 2.15 there exists a μ ∈ M1(R) and a subsequence
J ⊆ N such that (μn)n∈J converges weakly to μ. With Lemma 2.11, we then
obtain for all k ∈ N that (

〈
μn, x

k
〉
)n∈J converges to

〈
μ, xk

〉
, since the sequence

(
〈
μn, 1 + x2k〉)n∈J is bounded and the function x �→ xk

1+x2k vanishes at infinity.
We conclude with (3.1) that for all k ∈ N we have

〈
μ, xk

〉
= mk, so (mk)k are

indeed moments of a probability measure.
Now, if μ is uniquely determined by its moments, then the entire sequence

(μn)n∈N – and not just a subsequence – converges weakly to μ. To see this, let
(μn)n∈I be an arbitrary subsequence. By Lemma 2.9, it suffices to show that
this subsequence has another subsequence that converges weakly to μ. But as
above (with swapped roles of I and N) we find a probability measure ν on (R,B)
and a subsequence J ′ ⊆ I, such that that (μn)n∈J ′ converges weakly to ν and
the numbers (mk)k∈N are the moments of ν. Since μ is uniquely determined by
these moments, we must have μ = ν.
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Remark 3.6. A converse statement of Theorem 3.5 is not true in general, that
is, there are probability measures (μn)n and μ with

1. All moments of μ and of all μn exist.
2. μn converges weakly to μ.
3. The moments of μn do not converge to the moments of μ.

The construction is rather simple: Pick μ := δ0 and

∀n ∈ N : μn := n− 1
n

δ0 + 1
n
δen

Then surely, conditions 1. and 2. are satisfied, but 3. as well, since for all k ∈ N:〈
μn, x

k
〉

= 1
n
ekn →∞ �= 0 =

〈
μ, xk

〉
.

3.3. The method of moments for random probability measures

The next theorem will generalize the method of moments to the convergence
types of random probability measures, namely to weak convergence in expec-
tation, in probability and almost surely. Although this could be presented in
greater generality, we will restrict our attention to convergence of random prob-
ability measures to a deterministic probability measure. This is the type of
convergence we will encounter in our analyses ahead.

Theorem 3.7. Let (μn)n∈N be random probability measures on (R,B) and μ be
a deterministic probability measure on (R,B) which is uniquely determined by
its moments. Then assuming that all following expressions (random moments,
expected random moments) are well-defined and finite, we conclude:

i) If ∀ k ∈ N : E
〈
μn, x

k
〉
−−−−→
n→∞

〈
μ, xk

〉
, then μn −−−−→

n→∞
μ weakly in expecta-

tion.
ii) If ∀ k ∈ N :

〈
μn, x

k
〉
−−−−→
n→∞

〈
μ, xk

〉
in probability, then μn −−−−→

n→∞
μ weakly

in probability.
iii) If ∀ k ∈ N :

[〈
μn, x

k
〉
−−−−→
n→∞

〈
μ, xk

〉
P-a.s.

]
, then μn −−−−→

n→∞
μ weakly

almost surely.

Proof. i) With Theorem 3.5 it suffices to show that for all k ∈ N,
〈
Eμn, x

k
〉
→〈

μ, xk
〉

as n→∞. Therefore, all we must argue is that for all k ∈ N,
〈
Eμn, x

k
〉

=
E

〈
μn, x

k
〉
. But for k ∈ N arbitrary we find〈

Eμn, |xk|
〉2 ≤

〈
Eμn, x

2k〉 = E
〈
μn, x

2k〉 <∞,

where we used Theorem 2.20 ii), the fact that x �→ x2k is non-negative, and the
assumption in the statement of the theorem that all expected moments exist.
Therefore, Eμn has existing moments of all orders, so with Theorem 2.20 iii) we
obtain

〈
Eμn, x

k
〉

= E
〈
μn, x

k
〉
.



322 M. Fleermann and W. Kirsch

ii) We want to show that μn → μ weakly in probability, which means that for all
f ∈ Cb(R), 〈μn, f〉 converges to 〈μ, f〉 in probability. To this end, let f ∈ Cb(R)
be arbitrary. To show that (〈μn, f〉)n∈N converges to 〈μ, f〉 in probability we will
show that any subsequence has an almost surely convergent subsequence: Let
J ⊆ N be a subsequence. Applying Lemma 2.28 we find a subsequence I ⊆ J
and a measurable set Ω1 ⊆ Ω of measure 1, such that

∀ω ∈ Ω1 : ∀ k ∈ N :
〈
μn(ω), xk

〉
−−→
n∈I

〈
μ, xk

〉
.

In particular, with Theorem 3.5 we find that for all ω ∈ Ω1, μn(ω) converges
weakly to μ for n ∈ I, so that in particular, 〈μn(ω), f〉 → 〈μ, f〉 for n ∈ I.
Therefore, 〈μn, f〉 → 〈μ, f〉 almost surely for n ∈ I.
iii) For all k ∈ N we find a measurable set Ωk ⊆ Ω with measure 1 such that for
all ω ∈ Ωk :

〈
μn(ω), xk

〉
→

〈
μ, xk

〉
as n→∞. Then Ω′ := ∩k∈NΩk has measure

1 and for all ω ∈ Ω′ we find that
〈
μn(ω), xk

〉
→

〈
μ, xk

〉
for all k ∈ N, so that

with Theorem 3.5, for all ω ∈ Ω′ we have that μn(ω) converges weakly to μ.
Therefore, μn converges weakly to μ almost surely.

We refer the reader to Remark 2.26 for an explanation on the use of brackets
[. . .] in Theorem 3.7 iii).

Remark 3.8. The method of moments for random probability measures (The-
orem 3.7) works as follows: To show weak convergence of random probability
measures in expectation, in probability or almost surely, it suffices to show that
the random moments converge in expectation, in probability or almost surely.
This is a very useful theorem, in particular considering we do not make any
assumptions on the target measure μ except those mentioned in Theorem 3.7.
In particular, we do not require the target probability measure to have compact
support. In the literature on random matrices, this condition is often used to
justify the method of moments, see [4, p. 11], for example.

The next theorem will help us determine when the conditions for Theorem 3.7
are met, to be more precise, when we are able to confirm convergence of the
moments in probability or almost surely. Further, it does not assume a priori the
knowledge of the target measure μ ∈ M1(R). In summary, this is the theorem
that is used when applying the method of moments to random matrix theory,
see also Theorems 3.18 and 3.20.

Theorem 3.9. Let (μn)n∈N be random probability measures on (R,B) and
(mk)k∈N be a sequence of real numbers, so that there is at most one probability
measure on (R,B) with moments (mk)k∈N. We formulate the following condi-
tions, where we assume that all expressions (random moments, expectations and
variances) are finite:

(M1) For all k ∈ N,
E

〈
μn, x

k
〉
−−−−→
n→∞

mk.
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For the following assumptions we assume that for all k ∈ N we can find a
finite decomposition 〈

μn, x
k
〉

= D(k,1)
n + . . . + D(k,�k)

n ,

such that for all k ∈ N and all i ∈ [�k], ED
(k,i)
n converges to a constant as

n→∞.

(M2) For all k ∈ N and i ∈ [�k],

∃ z ∈ N : E

∣∣∣D(k,i)
n − ED(k,i)

n

∣∣∣z −−−−→
n→∞

0,

(M3) For all k ∈ N and i ∈ [�k],

∃ z ∈ N : E

∣∣∣D(k,i)
n − ED(k,i)

n

∣∣∣z −−−−→
n→∞

0 summably fast.

Then we conclude:

i) If (M1) holds, then there is a μ ∈ M1(R) with moments (mk)k∈N, so that
Eμn → μ weakly (that is, μn → μ weakly in expectation). In particular, the
numbers (mk)k∈N are the moments of a probability measure.

ii) If (M1) and (M2) hold, we conclude

∀ k ∈ N :
〈
μn, x

k
〉
−−−−→
n→∞

〈
μ, xk

〉
in probability

and thus μn → μ weakly in probability via Theorem 3.7.
iii) If (M1) and (M3) hold, we conclude

∀ k ∈ N :
[〈
μn, x

k
〉
−−−−→
n→∞

〈
μ, xk

〉
P-a.s.

]
and thus μn → μ weakly almost surely via Theorem 3.7.

Proof. i) As we saw in the proof of Theorem 3.7, we find that for all n ∈ N,
the expected measure Eμn has moments of all orders and that for all k ∈ N :〈
Eμn, x

k
〉

= E
〈
μn, x

k
〉
. Now given (M1), statement i) follows directly with

Theorem 3.5.
ii)/iii) If (M1) holds, then (M2) (resp. (M3)) together with Lemma 3.10 shows
that for all k ∈ N and i ∈ [�k], D(k,i)

n converges to a constant in probability
(resp. almost surely) as n→∞, so that by (M1),〈

μn, x
k
〉

= D(k,1)
n + . . . + D(k,�k)

n −−−−→
n→∞

mk

in probability (resp. almost surely).

Lemma 3.10. Let z ∈ N and (Yn)n be random variables with E|Yn|z < ∞ for
all n ∈ N. If EYn → y and E|Yn − EYn|z → 0, then Yn → y in probability. If in
addition, E|Yn − EYn|z is summable, then Yn → y almost surely.
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Proof. Using Markov’s inequality, we calculate for ε > 0 arbitrary:

P(|Yn − y| > ε) ≤ P
(
|Yn − EYn| >

ε

2

)
+ P

(
|EYn − y| > ε

2

)
≤ 2z

εz
E|Yn − EYn|z + P

(
|EYn − y| > ε

2

)
.

The statement follows (also using Borel-Cantelli), since the very last summand
vanishes for all n large enough.

3.4. The moments of the semicircle distribution

In random matrix theory, the probability measure that appears as the limit
of the empirical spectral distribution is typically the semicircle distribution as
defined in Definition 2.38. What we mean by typically is that it appears in
Wigner’s semicircle law, Theorem 2.42, which is the simplest non-trivial random
matrix ensemble, for it has standardized entries which are independent up to the
symmetry constraint. It is safe to say that the role of the semicircle distribution
in random matrix theory resembles the role of the standard normal distribution
in probability theory. To remind the reader, the semicircle distribution σ is the
probability measure on (R,B) with Lebesgue-density fσ where

fσ : R −→ R

x �−→ fσ(x) := 1
2π

√
4− x21[−2,2](x).

Since we would like to apply the method of moments to random matrix
theory, we will proceed to derive the moments of the semicircle distribution.
As it turns out, we will obtain that

〈
σ, x0〉 = 1, so that σ is identified as a

probability measure, which we still owed to the reader.

Lemma 3.11. The moments of the semicircle distribution σ are given by

For all k ∈ N0 : mσ
2k = (2k)!

k!(k + 1)! and mσ
2k+1 = 0 (3.2)

Proof. We follow the short proof in [5, p. 16]. To this end, note that the integrand
is compactly supported and bounded. Further, for odd moments the integrand
is odd, so the statement follows for odd moments. For even moments, we obtain
the statement by the following calculation:

mσ
2k = 1

2π

∫ 2

−2
x2k

√
4− x2dx = 1

π

∫ 2

0
x2k

√
4− x2dx

= 22k+1

π

∫ 1

0
yk−1/2(1− y)1/2dy = 22k+1

π
B(k + 1/2, 3/2)

= 22k+1

π

Γ(k + 1/2)Γ(3/2)
Γ(k + 2) = 1

k + 1

(
2k
k

)
,
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where in the second step, we used that the integrand is even, in the third step we
substituted x by 2√y, in the fourth step we used the definition of the beta func-
tion B, in the fifth step, we used that for all x, y > 0: B(x, y) = Γ(x)Γ(y)/Γ(x+
y), where Γ is the gamma function, and in the last step we used that for all
n ∈ N: Γ(n) = (n− 1)!, and for all n ∈ N0: Γ(n + 1/2) = (2n)!

√
π/(n!4n).

To use the method of moments to prove weak convergence to the semicircle
distribution, we need the following corollary:

Corollary 3.12. The semicircle distribution σ is uniquely determined by its
moments.

Proof. Since the support of σ is compact, the statement follows with Lemma 3.4.

The values of the even moments of the semicircle distribution bear a special
name:

Definition 3.13. The Catalan numbers are elements of the sequence of natural
numbers (Ck)k∈N0 , where

∀ k ∈ N0 : Ck := (2k)!
k!(k + 1)! .

Combining the results of Lemma 3.11 with the definition of the Catalan
numbers, we obtain for the sequence (mσ

k)k∈N0 of the moments of the semicircle
distribution:

mσ
k =

{
Ck/2 for k even,
0 for k odd.

(3.3)

But the Catalan numbers are not only the (even) moments of the semicircle
distribution. They also appear as the solution to various combinatorial problems,
see [36] or [52], for example.

3.5. The moments of the Marchenko-Pastur distribution

For sample covariance matrices, the canonical limit is not Wigner’s semicircle
distribution, but the Marchenko-Pastur distribution μy with ratio index y ∈
(0,∞). As a reminder to the reader, μy is the sum of the point mass (1−y−1)1y>1
in zero and a Lebesgue-continuous part given by the density fμ (where the
parameter y is suppressed) as

fμ : R −→ R

x �−→ fμ(x) := 1
2πxy

√
(y+ − x)(x− y−)1(y−,y+)(x),

where y+ := (1 +√y)2 and y− := (1 − √y)2. In order to apply the method of
moments to prove the Marchenko-Pastur law, we need to know the moments of
μy, which is the content of the following lemma:
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Lemma 3.14. For all y ∈ (0,∞) and k ∈ N, it holds

〈
μy, xk

〉
=

k−1∑
r=0

yr

r + 1

(
k

r

)(
k − 1
r

)
.

Proof. The proof is rather lengthy and can be found in [5, p. 40].

Corollary 3.15. For every y > 0, the Marchenko-Pastur distribution μy is
uniquely determined by its moments.

Proof. Since the support of μy is compact, the statement follows with Lemma 3.4.

3.6. Application of the method of moments to RMT

So far, we have pointed out what the method of moments is and how it works
in deterministic and stochastic settings. Now we want to build the bridge to
random matrix theory. To this end, we need the following observation, where as
before, K ∈ {R,C}:
Lemma 3.16. Let n ∈ N and X ∈ SMatn(K), then we obtain for all k ∈ N:

n∑
i=1

(λX
i )k = trXk =

n∑
t1,...,tk=1

X(t1, t2)X(t2, t3) · · ·X(tk, t1).

Proof. The second equality is clear. For the first equality, note that since X ∈
SMatn(K), by Lemma 2.32, there exists an invertible matrix S ∈ Matn(K) so
that X = S−1DS, where D = diag(λX

1 , . . . , λX
n ). Then

Xk = S−1DS · S−1DS · . . . · S−1DS︸ ︷︷ ︸
k factors

=S−1DkS=S−1 diag
(
(λX

1 )k, . . . , (λX
n )k

)
S.

With Lemma 2.31, we obtain

tr(Xk) = tr diag
(
(λX

1 )k, . . . , (λX
n )k

)
=

n∑
i=1

(λX
i )k.

Corollary 3.17. Let (Xn)n be a sequence of random matrices with correspond-
ing ESDs (σn)n. Then for all k ∈ N we find

〈
σn, x

k
〉

= 1
n

trXk
n = 1

n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1). (3.4)

Proof. Using Lemma 3.16, we calculate:

〈
σn, x

k
〉
= 1

n

n∑
i=1

(λXn
i )k = 1

n
trXk

n = 1
n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1).
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The next theorem will be of use in explorative settings where the target
distribution is not known or assumed yet. This is the very first step in showing
that the ESDs of random matrices converge to a probability measure. To clarify
terminology that we use, if Y is a K-valued random variable, where K ∈ {R,C},
and if p ∈ N0, then we call E|Y |p the p-th absolute moment of Y . Further, we
say that Y has absolute moments of all orders, if E|Y |p < ∞ for all p ∈ N0.
Note that Y is integrable iff its first absolute moment exists.

Theorem 3.18. Let (σn)n be the empirical spectral distributions of random
matrices (Xn)n, whose (K-valued) entries have absolute moments of all orders.
Then if

∀ k ∈ N : E
〈
σn, x

k
〉
−−−−→
n→∞

mk,

where (mk)k is a sequence of real numbers that satisfy the Carleman condition
(cf. Theorem 3.3), then (σn)n converges weakly in expectation to a probability
measure μ on (R,B) with moments (mk)k.

Proof. This follows with Theorem 3.9, since by Corollary 3.17, for each k ∈ N0,
the k-th random moment is given by

〈
σn, x

k
〉

= 1
n

n∑
t1,...,tk=1

Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1),

which is a real-valued random variable whose expectation is finite, see the fol-
lowing Lemma 3.19.

Lemma 3.19. Let Y1, . . . , Yk be K-valued random variables such that E|Yi|k <
∞ for all i ∈ {1, . . . , k}, then

E|Y1Y2 · · ·Yk| ≤
(
E|Y1|k

) 1
k · · ·

(
E|Yk|k

) 1
k ≤ max

i=1,...,k
E|Yi|k

Proof. The second inequality is clear, so we only need to show the first one,
which can be regarded as a generalization of the Cauchy-Schwarz inequality.
We proceed by induction. The cases k = 1 and k = 2 are already known. By
Hölder’s inequality,

E|Y1 · · ·Yk| ≤
(
E|Y1 · · ·Yk−1|

k
k−1

) k−1
k (

E|Yk|k
) 1

k .

Using the induction hypothesis, we calculate

E|Y1|
k

k−1 · · · |Yk−1|
k

k−1 ≤
(
E|Y1|k

) 1
k−1 · · ·

(
E|Yk−1|k

) 1
k−1 ,

from which the statement follows.

We remind the reader that convergence in expectation is a necessity for
stronger convergence types, see Theorem 2.29. Therefore, Theorem 3.18 is really
the basis for any explorative analysis. The next theorem will be of use either af-
ter Theorem 3.18 has been applied or if a priori, one has the target distribution
of the ESDs in mind, for example if one wants to show a semicircle law.
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Theorem 3.20. Let (σn)n be the empirical spectral distributions of random
matrices (Xn)n, whose entries have absolute moments of all orders. Denote
by μ a probability measure which is uniquely determined by its moments (cf.
Theorem 3.3). Then

i) σn converges to μ weakly in expectation, if for all k ∈ N,

E
〈
σn, x

k
〉
−−−−→
n→∞

mk.

We assume that for all k ∈ N we find a finite decomposition〈
σn, x

k
〉

= D(k,1)
n + . . . + D(k,�k)

n

such that for all k ∈ N and all i ∈ [�k], ED
(k,i)
n converges to a constant as

n → ∞. (This decomposition will become clear from the analysis, for example
when showing that i) holds.) Then

ii) σn converges to μ weakly in probability, if i) holds and for all k ∈ N and
i ∈ [�k],

∃ z ∈ N : E

∣∣∣D(k,i)
n − ED(k,i)

n

∣∣∣z −−−−→
n→∞

0,

iii) σn converges to μ weakly almost surely, if i) holds and for all k ∈ N and
i ∈ [�k],

∃ z ∈ N : E

∣∣∣D(k,i)
n − ED(k,i)

n

∣∣∣z −−−−→
n→∞

0 summably fast.

Proof. This is a direct consequence of Theorem 3.9, considering that since ma-
trix entries have moments of all orders, Corollary 3.17 and Lemma 3.19 imply
that expected random moments and all other expectations are well-defined and
finite.

Next, as an application, let us discuss the proof strategy behind Wigner’s
semicircle law, Theorem 2.42, where we restrict our attention to convergence in
probability:

Example 3.21. Consider the setup of Theorem 2.42. Let (mσ
k)k∈N denote the

moments of the semicircle distribution, then we can use Theorem 3.20 and show
that

1. For all k ∈ N:

E
〈
σn, x

k
〉

= 1
n1+k/2

n∑
t1,...,tk=1

Ea(t1, t2)a(t2, t3) · · · a(tk, t1) −−−−→
n→∞

mσ
k .

2. For all k ∈ N:
E

(〈
σn, x

k
〉2) −−−−→

n→∞
(mσ

k)2.

This will imply statements i) and ii) from the preceding theorem with z = 2,
thus the semicircle law in probability.
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4. The Semicircle and MP Laws by the Moment Method

4.1. General strategy and combinatorial structures

Assume that (σn)n is a sequence of ESDs of Wigner matrices Wn as in Theo-
rem 2.42 and (μn)n is a sequence of ESDs of MP matrices Vn as in Theorem 2.46.
We would like to argue that σn → σ and μn → μy weakly for some y > 0, and
in some stochastic sense, for example in probability or almost surely. Here, σ
denotes the semicircle distribution and μy denotes the Marchenko-Pastur dis-
tribution on the real line. To show these convergence results, we carry out the
following two steps, where notationally, either ρn = σn and ρ = σ, or ρn = μn

and ρ = μy:

1. We show that for each fixed k ∈ N, the expected moments E
〈
ρn, x

k
〉

of
the ESDs ρn converge to the deterministic moments

〈
ρ, xk

〉
of the limit

measure ρ, as n → ∞. By Theorem 3.20, this will ensure that the limit
law holds in expectation.

2. For each fixed k ∈ N, we find a finite decomposition of the random mo-
ments,

〈
ρn, x

k
〉

= D
(k,1)
n + . . .+D

(k,�k)
n , such that for each k ∈ N and each

i ∈ [�k], D(k,i)
n converges in expectation to a constant as n → ∞. This

decomposition becomes clear from the analysis, for example from the first
step, and. Then we show that for each k ∈ N and i ∈ [�k], there is a z ∈ N

such that
E

∣∣∣D(k,i)
n − ED(k,i)

n

∣∣∣z −−−−→
n→∞

0. (4.1)

Oftentimes, but not always, z = 2 or z = 4 will suffice. If (4.1) holds
(resp. holds almost surely), then this will show that the D

(k,i)
n converge in

probability (resp. almost surely) to a constant so that with the first step,
we obtain that for all k ∈ N,

〈
ρn, x

k
〉

=
�k∑
i=1

D(k,i)
n −−−−→

n→∞

〈
ρ, xk

〉
in probability (resp./ almost surely).

For our analysis, we introduce some combinatorial concepts.

Definition 4.1. Let k ∈ N be arbitrary, then

i) A coloring is a tuple c ∈ [k]k with the property that c1 = 1 and

∀ a ∈ {1, . . . , k − 1} : ca+1 ≤ 1 + max
�∈[a]

c�.

Entries in a coloring will be called colors.
ii) If t ∈ [n]k is a tuple and c is a coloring, then we say that t matches the

coloring c (and write t ∼ c), if

∀ i, j ∈ [k] : ti = tj ⇔ ci = cj .

In this case, we also call c the coloring of t and write c = c(t).
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A coloring is used to indicate at which places in a tuple there are equal
or different entries. It is clear that each tuple t ∈ [n]k matches exactly one
(that is, its) coloring, which is constructed inductively as follows. Set c1 := 1,
and for � ∈ {1, . . . , k − 1}, if there is no m ∈ [�] with t�+1 = tm, set c�+1 =
max{c1, . . . , c�} + 1, whereas if t�+1 = tm for some m ∈ [�], set c�+1 := cm. As
an example, the coloring of the tuple (5, 1, 4, 13, 4) is given by (1, 2, 3, 4, 3).

Lemma 4.2. Let n, k ∈ N with n ≥ k.

i) There are at most k! colorings in [k]k.
ii) Let c ∈ [k]k be a coloring with � colors, then

#{t ∈ [n]k : t ∼ c} = (n)� := n · (n− 1) · · · (n− � + 1) (4.2)

In addition, it always holds that c ∼ c.
iii) For a tuple t ∈ [n]k denote by V (t) := {t1, . . . , tk}. Then c(t) has #V (t)

colors, hence
#{t′ ∈ [n]k : t′ ∼ c(t)} = (n)#V (t). (4.3)

Proof. To prove i), note that always c1 = 1 and c�+1 ∈ {c1, . . . , c�, c� + 1}. But
#{c1, . . . , c�, c� + 1} ≤ � + 1. For ii), in order to construct a tuple t ∈ [n]k
matching the coloring c we have n choices for t1. Then if c2 = c1 this indicates
that t2

!= t1 so we are left with only one choice for t2. If c2 �= c1, however, we
have (n−1) choices for t2. Proceeding this way, if cm = ca for some a < m then
tm

!= ta so we are left with only one choice for tm. Otherwise, if cm is new color,
we have n−#{c1, . . . , cm−1} choices for tm. Now since there exactly � different
colors in c, we will encounter a new color exactly � − 1 times. Statement iii)
follows directly from ii).

4.2. The semicircle law

Let Wn = n−1/2Xn be a sequence of Wigner matrices with ESDs σn. In order
to show σn → σ weakly almost surely, we follow the general strategy as outlined
in Section 4.1. To utilize this method, we need the moments of σn and σ. By
Lemma 3.11, the moments of σ are given by

∀ k ∈ N :
〈
σ, xk

〉
=

{
1

k
2 +1

(
k
k
2

)
if k is even,

0 if k is odd,
(4.4)

whereas the moments of σn are given by (cf. Corollary 3.17)

〈
σn, x

k
〉

= 1
n

tr
[(

1√
n
Xn

)k
]

= 1
n1+ k

2

∑
t∈[n]k

Xn(t), (4.5)

where for all t ∈ [n]k we define

Xn(t) := Xn(t1, t2)Xn(t2, t3) · · ·Xn(tk, t1). (4.6)
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Fig 1. Eurlerian graph G(t).

Combinatorial preparations and graph theory

As we saw above in (4.5), the random moments
〈
σn, x

k
〉

expand into elaborate
sums. In order to be able to analyze these sums, we sort them with the language
of graph theory and then establish basic combinatorial facts.

Recall (4.6), then we adopt the view that each tuple t ∈ [n]k spans a Eule-
rian graph as in Figure 1. To be precise, we obtain the (multi-)graph G(t) =
(V (t), E(t), φt), with vertex set V (t) = {t1, . . . , tk}, edge set E(t) = {e1, . . . , ek}
and incidence function φt(ei) = {ti, ti+1}, where k + 1 ≡ 1. Each tuple t also
denotes a Eulerian cycle of length k through its graph G(t) by

t1, e1, t2, e2, t3, . . . , tk−1, ek−1, tk, ek, t1. (4.7)

Note that G(t) may contain loops and multi-edges. The language of graph
theory allows us to express

〈
σn, x

k
〉

in a different way. For any tuple t ∈ [n]k,
we define its profile

ρ(t) = (ρ1(t), . . . , ρk(t)),
where for all � ∈ [k]:

ρ�(t) := #{φt(e) | e ∈ E(t) is an �-fold edge}.

Here, an �-fold edge in E(t) is any element e ∈ E(t) for which there are exactly
� − 1 distinct other elements e′2, . . . , e

′
� ∈ E(t) so that φt(e) = φt(e′j) for j ∈

{2, . . . , �}.
Then for all � ∈ [k], the Eulerian cycle t traverses exactly φ�(t) distinct �-fold

edges. As a result, the following trivial but useful equality holds:

k =
k∑

�=1

� · ρ�(t). (4.8)

Now for all k ∈ N we define the following set of profiles:

Π(k) =
{
ρ ∈ {0, . . . , k}k | ρ profile of some t ∈ [n]k

}
.
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Now we achieve a finite decomposition〈
σn, x

k
〉

=
∑

ρ∈Π(k)

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t), (4.9)

where
T n(ρ) :=

{
t ∈ [n]k | ρ(t) = ρ

}
.

The transition from (4.5) to (4.9) allows us to identify exactly which components
of the random moment contribute to the limit.

The next fundamental lemma will give an upper bound on the number of
tuples t with at most � ∈ [k] vertices. Notationally, we set V (u) := {u1, . . . , uk}
for any u ∈ Nk, even if we do not interpret u as a graph. Further, if M is a set,
#M ∈ N ∪ {∞} denotes the number of elements in M

Lemma 4.3. Let n, k ∈ N and � ∈ {1, 2, . . . , k} be arbitrary. Then

#
{
t ∈ [n]k |#V (t) ≤ �

}
≤ kk · n�.

Proof. We first pick a coloring c ∈ [k]k with at most � colors for which we have
at most kk choices by Lemma 4.2 i). Since c has at most � colors, the number of
tuples t matching the coloring is bounded by (n)� by Lemma 4.2 ii). Therefore,
we have at most kk(n)� choices to pick an element from

{
t ∈ [n]k |#V (t) ≤ �

}
.

Step 1: Convergence of expected moments

We proceed to analyze the expectation of〈
σn, x

k
〉

=
∑

ρ∈Π(k)

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t). (4.10)

To this end, it suffices to analyze the expectation of each of the finitely many
terms

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t) (4.11)

for ρ ∈ Π(k) separately. We make two trivial observations: If ρ ∈ Π(k) with
ρ1 > 0, then for all t ∈ T n(ρ) it holds EXn(t) = 0 due to independence and
centeredness. Further, since (Xn)n is a Wigner scheme as in Definition 2.40, we
can always apply the trivial bound

|EXn(t)| ≤ Lk (4.12)

for any t ∈ [n]k, where we also used Lemma 3.19.
For the bounds on #T n(ρ), we formulate the next lemma, which we take

from [26].

Lemma 4.4. Let k ∈ N be arbitrary. Then it holds:
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i) #Π(k) ≤ 4k.
ii) Let n ∈ N and ρ ∈ Π(k) be arbitrary, then

a) For any t ∈ T n(ρ) it holds

#V (t) ≤ 1 + ρ1 + . . . + ρk − L(t),

where L(t) denotes the number of loops in t. In particular,

#T n(ρ) ≤ kk · n1+ρ1+...+ρk .

b) If ρ contains an odd edge, then for any t ∈ T n(ρ) it holds

#V (t) ≤ ρ1 + . . . + ρk.

In particular,
#T n(ρ) ≤ kk · nρ1+...+ρk .

Proof. i) Each ρ ∈ Π(k) is a k-tuple in which for all � ∈ {1, . . . , k} the entry ρ�
lies in the set {0, 1, . . . , �k/��}, which follows directly from (4.8). Therefore,

#Π(k) ≤
k∏

�=1

(
k

�
+ 1

)
= (2k)!

k! · k! =
(

2k
k

)
� 4k√

2kπ
≤ 4k,

where the fourth step is a well-known fact about the central binomial coefficient.
ii) It suffices to establish the upper bounds for #V (t), since the bounds on
#T n(ρ) then follow directly with Lemma 4.3. Now to prove upper bounds for
#V (t), the idea is to travel the Eulerian cycle generated by t:

t1, e1, t2, e2, t2, e3, t3, . . . , tk, ek, t1 (4.13)

by picking an initial node ti and then traversing the edges in increasing cyclic
order until reaching the starting point again. On the way, we count the number
of different vertices that were discovered. Whenever we pass an �-fold edge, only
the first instance of that edge may discover a new vertex, and only if the edge
is not a loop.
a) We write L(t) := L1(t) + . . . + Lk(t) where Li(t) denotes the number of
different i-fold loops in t. We start our tour at t1 and observe this very vertex.
Then, as we travel along the cycle, for each � ∈ {1, . . . , k} we will pass � · (ρ� −
L�(t)) proper �-fold edges out of which only the first instance may discover a
new node, and there are ρ�−L�(t) of these first instances. Considering the initial
node, we arrive at #V (t) ≤ 1 + ρ1 − L1(t) + . . . + ρk − Lk(t), which yields the
desired inequality.
b) In presence of an odd edge, we can start the tour at a specific vertex such
that the odd edge cannot contribute to the newly discovered vertices. To this
end, fix an arbitrary �-fold edge in t with � odd. Let ei1 , . . . , ei� , i1 < . . . < i�, be
the instances of the �-fold edges in question in the cycle (4.13). Since � is odd,
we must find a k ∈ {1, . . . , �} such that eik and eik+1 are traversed in the same
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direction, since we are on a cycle. We then start our tour at tik and observe this
vertex. However, now none of the edges ei1 , . . . , ei� may discover a new vertex,
since if our �-fold edge is not a loop, the vertex tik+1 must have been already
discovered by some other edge. Therefore, the roundtrip leads to the discovery
of at most ρ1+· · ·+(ρ�−1)+. . .+ρk new nodes in addition to the first node.

We proceed to analyze (4.11) for all possible types of ρ ∈ Π(k).
Case 1: ρ1 = 0 and ρ� > 0 for some � ≥ 3.
Using Lemma 4.4 we obtain

#T n(ρ) ≤
{

kk · nρ1+...+ρk

kk · n1+ρ1+...+ρk

}
≤ kkn

k
2 ,

where the upper case is valid in presence of an odd edge (then ρ1 + . . . + ρk ≤
(k − 3)/2 + 1), and the lower case is valid if no odd edges are present (then
1 + ρ1 + . . .+ ρk ≤ 1 + (k − 4)/2 + 1). Therefore, by (4.12), (4.11) converges to
zero in expectation.
Case 2: ρ1 > 0.
Then by centeredness and independence, the expectation of the term in (4.11)
is zero.
Case 3: ρ2 = k/2.
Returning to the random moment in (4.10), we have seen in Cases 1 and 2 that
for all ρ ∈ Π(k) with ρ2 �= k/2,

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t) −−−−→
n→∞

0 in expectation.

As a result, the only asymptotic contribution from the expectation in (4.10) may
stem from cycles t containing only double edges. Their analysis is the content
of this Case 3. Setting ρ(k) as the profile in Π(k) with ρ

(k)
2 = k/2 and ρ

(k)
� = 0

for all � �= 2, then it is our goal to show

1
n1+ k

2

∑
t∈T n(ρ(k))

Xn(t) −−−−→
n→∞

C k
2

in expectation. (4.14)

To this end, we observe

1
n1+ k

2

∑
t∈T n(ρ(k))

EXn(t) = 1
n1+ k

2
#T n(ρ(k)). (4.15)

Next, we note that any t ∈ T n(ρ(k)) has at most k/2 + 1 vertices, so we may
subdivide this set further by defining

T n
≤k/2(ρ(k)) :=

{
t ∈ T n(ρ(k)) : #V (t) ≤ k/2

}
,

T n
k/2+1(ρ(k)) :=

{
t ∈ T n(ρ(k)) : #V (t) = k/2 + 1

}
.
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Note that by Lemma 4.3, #T n
≤k/2(ρ(k)) ≤ kknk/2, so that (4.15) can be refined

to
1

n1+ k
2

∑
t∈T n(ρ(k))

EXn(t) = 1
n1+ k

2
#T n

k/2+1(ρ(k)) + o(1). (4.16)

It is thus our task to show

1
n1+ k

2
#T n

k/2+1 −−−−→n→∞
C k

2
. (4.17)

The main tool is to count all possible colorings of tuples in T n
k/2+1(ρ(k)), and

then apply Lemma 4.2. It turns out that these colorings can be associated with
a path difference sequence (pds) of the following form, where we may focus on
even k, since otherwise, the set T n

k/2+1(ρ(k)) is empty:

Definition 4.5. A Wigner path difference sequence (Wigner-pds) of length 2k
is a tuple (D1, D2, . . . , D2k) which satifies the following conditions:

1) For all i ∈ [2k]: Di ∈ {−1,+1}
2)

∑
i∈[2k] Di = 0,

3) ∀ � ∈ [2k] :
∑�

i=1 Di ≥ 0.

We denote by W(2k) the set of all Wigner-pds of length 2k.

Lemma 4.6. For all k ∈ N we find #W(2k) = 1
k+1

(2k
k

)
= Ck.

Proof. We prove the lemma with a reflection principle. To this end, due property
2), a Wigner-pds must contain as many “+1”-entries as “−1”-entries. To arrange
k “+1”-entries and k “−1”-entries, we have(

2k
k

)
choices. But since these choices do not in general respect condition 3) we have
to subtract the number of tuples (D1, . . . , D2k) that lead to a violation of
3). We show that these violating tuples are in bijective correspondence to all
(D′

1, . . . , D
′
2k) with

1’) D′
i ∈ {−1,+1},

2’)
∑

i∈[2k] D
′
i = −2.

The number of these (D′
1, . . . , D

′
k) is clearly given by(

2k
k + 1

)
so that the number of (D1, . . . , D2k) that do satisfy 1), 2) and 3) is given by(

2k
k

)
−

(
2k

k + 1

)
= 1

k + 1

(
2k
k

)
.
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For the bijection, let (D1, . . . , D2k) be arbitrary with k “+1”s and k “−1”s so
that 3) is violated. Then there is an index t such that

∑t
i=1 Di = −1 for the

first time. Then (Dt+1, . . . , D2k) is a vector which contains one more “+1” than
“−1” entry. We define the vector (D′

t+1, . . . , D
′
2k) := (−Dt+1, . . . ,−D2k). Then

(D′
t+1, . . . , D

′
2k) contains one more “−1” than “+1”. Defining (D′

1, . . . , D
′
t) :=

(D1, . . . , Dt) we thus have created a vector (D′
1, . . . , D

′
2k) satisfying 1’) and 2’).

On the other hand, any vector (D′
1, . . . , D

′
2k) satisfying 1) and 2) has a first

hitting time t of −1. Applying exactly the same transformation as before, we
will then obtain a vector (D1, . . . , D2k) satisfying 1) and 2), but violating 3).

Now the clou is that all D ∈ W(2k) can be associated canonically with a
specific Eulerian cycle t(D) ∈ T n

k+1(ρ(2k)). To see how this is done, let us first
analyze simple properties a Eulerian cycle t ∈ T n

k+1(ρ(2k)). First, the graph G(t)
is a double edged tree, that is, it consists of k distinct double edges and has k+1
vertices, therefore is a tree in the regular sense after eliminating one of each of
the double edges (it also follows that all doubles edges are proper). Thus, the
Eulerian cycle t crosses each edge twice, once in each direction, since a tree does
not contain circles. We recall the representation of the cycle as in (4.7). Now
given a D ∈ W(2k), we set t1 = 1, and whenever D� = +1, this means that a
new vertex shall be discovered, so we set t�+1 := max(t1, . . . , t�)+1. On the other
hand, if D� = −1 then we shall backtrack, that is, t�+1 shall be equal to one of
the t1, . . . , t�, and so it must be equal to the ti with i ∈ {1, . . . , �} from which t�
was visited, since otherwise, the cycle t would contain a circle. This completes
the construction of t(D). It is clear by construction that t(D) ∈ T n

k+1(ρ(2k)).
We observe that c(t(D)) = t(D), that is t(D) is its own coloring, since vertex
numbers were always chosen as small as possible. Now if t′ ∼ c(t(D)), we must
have t′ ∈ T n

k+1(ρ(2k)), since t′ is then only an injective relabeling of vertices in
t.

We formulate the following Lemma from which (4.17) follows immediately.

Lemma 4.7. The set T n
k+1(ρ(2k)) has a decomposition as follows:

T n
k+1(ρ(2k)) =

⋃̇
D∈W(2k)

{
t′ ∈ T n

k+1(ρ(2k)) | t′ ∼ c(t(D))
}

(4.18)

In particular,

#T n
k+1(ρ(2k)) = 1

k + 1

(
2k
k

)
· (n)k+1 . (4.19)

Proof. Before the statement of Lemma 4.7, we have already argued “⊇” in (4.18).
To show “⊆”, let t′ ∈ T n

k+1(ρ(2k)) be arbitrary and recall the representation of
the cycle as in (4.7). We encode this cycle into a Wigner-pds D(t′) and show
that t′ ∼ c(t(D(t′)). To this end, start a tour at t′1 and move along the cycle.
For � ∈ {1, . . . , 2k}, if e� leads to a new vertex, we set D� = 1 and if e� back-
tracks to an old vertex, we set D� = −1. For example, we always have D1 = 1,
since each edge in t is proper, and Dk = −1, since this edge leads back to the –
already seen – vertex t′1. Let us argue that the tuple D(t′) := (D1, D2, . . . , D2k)
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we just constructed satisfies conditions 1), 2) and 3) as above. Condition 1) is
clearly satisfied. For condition 2), note that t′ has k+ 1 vertices, out of which k
– all except the vertex t′1 – were considered new while traversing t′, so we must
have k “+1”-entries and k “−1”-entries in (D1, D2, . . . , D2k). For condition 3)
we realize that each vertex in t′ is visited exactly twice by the cycle t′, and that
the first visit corresponds to a “+1”-entry while the second visit corresponds to
a “−1”-entry in (D1, D2, . . . , D2k). Then 3) must be satisfied, since by nature
of things, the “first” comes before the “second”. The relation t′ ∼ c(t(D(t′))
follows with the construction of t(D(t′)) above the formulation of Lemma 4.7.

The equality (4.19) follows from Lemma 4.6, (4.18) and Lemma 4.2 iii),
since for all D ∈ W(2k) we have #V (t(D)) = k+ 1 and all tuples matching the
coloring c(t(D)) lie in T n

k+1(ρ(2k)).

Step 2: Decay of central moments

In Step 1, we have seen that for fixed k ∈ N, the expectation of〈
σn, x

k
〉

=
∑

ρ∈Π(k)

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t) (4.20)

converges to the k-th moment of the semicircle distribution. In particular, we
have seen that each of the finitely many summands

1
n1+ k

2

∑
t∈T n(ρ)

Xn(t) (4.21)

converges to a constant in expectation. To show that the random moments
in (4.20) converge almost surely to the moments of the semicircle distribution,
it thus suffices – by Lemma 3.10 – to show that for all ρ ∈ Π(k), the variance
of each term in (4.21) decays summably fast. The variance of (4.21) is given by

1
nk+2

∑
t,t′∈T n(ρ(k))

[EXn(t)Xn(t′)− EXn(t)EXn(t′)] . (4.22)

We observe that for all t, t′ ∈ T n(ρ(k)) which are edge-disjoint, the corre-
sponding summand in (4.22) vanishes. Thus it suffices to consider those t, t′ ∈
T n(ρ) which have at least one edge in common. To this end, denote for all
� ∈ [k]:

T n
c(�)(ρ) :=

{
(t, t′) ∈ (T n(ρ))2 | t and t′ have exactly � edges in common

}
.

Our goal now is to evaluate for each � ∈ [k] the term

1
nk+2

∑
(t,t′)∈T n

c(�)(ρ)

[EXn(t)Xn(t′)− EXn(t)EXn(t′)] . (4.23)

To this end, we need to establish bounds on #T n
c(�)(ρ).
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Lemma 4.8. Let ρ ∈ Π(k) and � ∈ [k], then the following statements hold:

i) For all t, t′ ∈ T n(ρ) with at least � common edges, it holds

#(V (t) ∪ V (t′)) ≤ 1 + 2
k∑

i=1
ρi − �

In particular,
#T n

c(�)(ρ) ≤ (2k)2kn1+2
∑k

i=1 ρi−�

ii) If there is an m ∈ [k] odd with ρm ≥ 1, then for all t, t′ ∈ T n(ρ) with at
least � common edges, it holds

#(V (t) ∪ V (t′)) ≤ 2
k∑

i=1
ρi − �.

In particular,
#T n

c(�)(ρ) ≤ (2k)2kn2
∑k

i=1 ρi−�.

Proof. For statement ii) we assume w.l.o.g. that t has an odd edge. Since the
graphs spanned by t and t′ share � ≥ 1 common edges, we may take a tour
around the joint Eulerian cycle, starting before a common edge, traveling first
all edges of t and then all edges of t′. While walking the edges of t, we can
see at most ρ1 + . . . + ρk different nodes by Lemma 4.4. Next, traveling all
edges of t′, at most all the single edges and first instances of m-fold edges with
m ∈ {2, . . . , k} of t′ may discover a new node, but only if they have not been
traversed before during the walk along t. Since we have � common edges, we
can see at most ρ′1 + . . . + ρ′k − � new nodes. We established the bounds on
the number of vertices in ii). The second statement in ii) follows immediately
with Lemma 4.3 i) by concatenating (t, t′) ∈ [n]2k. For statement i) we proceed
exactly in the same manner: Traveling t we can see at most 1+ρ1 +ρ2 + . . .+ρk
nodes by Lemma 4.4, then traveling t′ we can see at most ρ′1 + . . .+ ρ′k − � new
nodes. Now apply Lemma 4.3 again.

Case 1: ρ1 ≥ 1
In this case, the term in (4.23) simplifies and we must argue that for each � ∈ [k],

1
nk+2

∑
(t,t′)∈T n

c(�)(ρ)

EXn(t)Xn(t′) (4.24)

decays summably fast to zero. But we note that if t and t′ have 1 ≤ � <
ρ1 common edges, EXn(t)Xn(t′) vanishes, since not all single edges can be
eliminated due to overlapping. Thus, it suffices to consider those t, t′ ∈ T n(ρ)
which have � ≥ ρ1 edges in common. Now if ρ ∈ Π(k) with � ≥ ρ1 ≥ 1, then

2
k∑

i=1
ρi − � ≤ 2

(
ρ1 + k − ρ1

2

)
− ρ1 ≤ k,
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so Lemma 4.8 ii) yields

#T n
c(�)(ρ) ≤ (2k)2kn2

∑k
i=1 ρi−� ≤ (2k)2knk.

Since every summand in (4.24) is bounded by L2k, it follows that (4.24) is
O(n−2), thus converges to zero summably fast.
Case 2: ρ1 = 0
In this case, each summand in (4.23) is bounded by L2k+L2

k. Further, we obtain
for all ρ ∈ Π(k) with ρ1 = 0 and � ≥ 1 that

1 + 2
k∑

i=1
ρi − � ≤ 1 + 2 · k2 − 1 = k,

so that by Lemma 4.8 i) we find

#T n
c(�)(ρ) ≤ (2k)2kn1+2

∑k
i=1 ρi−� ≤ (2k)2knk,

so that the sum in (4.23) is O(n−2), hence converges to zero summably fast.

4.3. The Marchenko-Pastur law

Let (Xn)n be an MP scheme as in Definition 2.43, Vn := n−1XnX
T
n , and μn be

the ESDs of Vn. Denote y := limn p/n. In order to show μn → μy weakly almost
surely, we follow the general strategy as outlined in Section 4.1. To utilize this
method, we need the moments of μn and μy. By Lemma 3.14, the moments of
μy are given by

∀ k ∈ N :
〈
μy, xk

〉
=

k−1∑
r=0

yr

r + 1

(
k

r

)(
k − 1
r

)
, (4.25)

whereas the moments of μn are given by (cf. Corollary 3.17) and (4.5))

〈
μn, x

k
〉

= = 1
p

tr
[(

1
n
XnX

T
n

)k
]

= 1
pnk

∑
s∈[p]

(XnX
T
n )k(s, s)

= 1
pnk

∑
s1,...,sk∈[p]

(XnX
T
n )(s1, s2)(XnX

T
n )(s2, s3) . . . (XnX

T
n )(sk, s1)

= 1
pnk

∑
s1,...,sk∈[p]

∑
t1,...,tk∈[n]

Xn(s1, t1)Xn(s2, t1)Xn(s2, t2)Xn(s3, t2) . . .

×Xn(sk, tk)Xn(s1, tk)

= 1
pnk

∑
s∈[p]k

∑
t∈[n]k

Xn(s, t), (4.26)

where for all s ∈ [p]k and t ∈ [n]k we define

Xn(s, t) := Xn(s1, t1)Xn(s2, t1)Xn(s2, t2)Xn(s3, t2) . . . Xn(sk, tk)Xn(s1, tk).
(4.27)
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Fig 2. Eurlerian bipartite graph G(s, t).

Combinatorial preparations and graph theory

As we saw above in (4.26), the random moments
〈
μn, x

k
〉

expand into elaborate
sums. In order to be able to analyze these sums, we sort them with the language
of graph theory and then establish basic combinatorial facts.

Recall (4.27), then we adopt the view that each pair (s, t) ∈ [p]k× [n]k spans
a Eulerian bipartite graph as follows:

Here, elements in the set {s1, . . . , sk} resp. {t1, . . . , tk} are called S-nodes
resp. T-nodes. S and T-nodes are considered different even if their value is
the same and are thus placed on separate lines – called S-line and T-line –
which are drawn horizontally beneath each other. Then we draw an undirected
edge {si, tj} between si and tj , i ∈ [p], j ∈ [n], whenever (si, tj) or (tj , si)
appears in (4.27), where we allow for multi-edges. This yields the (multi-)graph
G(s, t) = (V (s, t), E(s, t), φs,t), where

V (s, t) = {s1, . . . , sk} ∪̇ {t1, . . . , tk} (disjoint union)
E(s, t) = {d1, . . . , dk} ∪̇ {u1, . . . , uk} (down edges, up edges)

= {e1, e2, . . . , e2k} (e2l−1 = dl, e2l = ul, l = 1, . . . , k)
φs,t(di) = {si, ti}
φs,t(ui) = {si+1, ti}

Each (s, t) also denotes a Eulerian cycle of length 2k through its graph G(s, t)
by

s1, d1, t1, u1, s2, d2, t2, . . . , uk−1, sk, dk, tk, uk, s1 (4.28)

Figure 2 contains a visualisation of the graph G(s, t). Note that by construction,
G(s, t) contains no loops, but may contain multi-edges. The language of graph
theory allows us to express

〈
μn, x

k
〉

in a different fashion. For any pair of tuples
(s, t) ∈ [p]k × [n]k, we define its profile

ρ(s, t) = (ρ1(s, t), . . . , ρ2k(s, t)),
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where for all � ∈ [2k]:

ρ�(s, t) = #{φs,t(e) | e ∈ E(s, t) is an �-fold edge}.

Here, an �-fold edge in E(s, t) is any element e ∈ E(s, t) for which there are
exactly �−1 distinct other elements e′2, . . . , e′� ∈ E(s, t) so that φs,t(e) = φs,t(e′j)
for j ∈ {2, . . . , �}.

Then for all � ∈ [2k], the Eulerian circuit (s, t) traverses exactly φ�(s, t)
distinct �-fold edges. As a result, the following trivial but useful equality holds:

2k =
2k∑
�=1

� · ρ�(s, t). (4.29)

Now for all k ∈ {1, . . . , 2k} we define the following set of profiles:

Π(2k) =
{
ρ ∈ {0, . . . , 2k}2k | ρ profile of some (s, t) ∈ [p]k × [n]k

}
.

Now we construct the finite decomposition〈
μn, x

k
〉

=
∑

ρ∈Π(2k)

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t), (4.30)

where
T p,n(ρ) :=

{
(s, t) ∈ [p]k × [n]k | ρ(s, t) = ρ

}
.

The transition from (4.26) to (4.30) allows us to analyze the contribution of
paths that match certain profiles, and to identify the profiles the paths of which
contribute to the limit.

The next fundamental lemma will give an upper bound on the number of tuple
pairs (s, t) with at most � ∈ [2k] vertices. Note that there are always at least
two vertices present, since S-nodes and T-nodes are disjoint. Notationally, we set
V (u) := {u1, . . . , uk} for any u ∈ Nk and V (u, v) := {u1, . . . , uk} ∪̇ {v1, . . . , vk}
for any u, v ∈ Nk, even if we do not view (u, v) as a graph.

Lemma 4.9. Let p, n, k ∈ N, a, b ∈ {1, . . . , k} and � ∈ {2, 3, . . . , 2k} be arbi-
trary. Then

i) #
{
(s, t) ∈ [p]k × [n]k |#V (s) = a,#V (t) = b

}
≤ k2k · panb

ii) #
{
(s, t) ∈ [p]k × [n]k |#V (s, t) ≤ �

}
≤ k2k+2 · (p ∨ n)�.

Proof. For i) we first fix the colorings for s with a colors and t with b colors,
for which be have at most k2k choices (Lemma 4.2). After fixing the colorings,
we are left with at most pa choices for the tuple s ∈ [p]k and at most nb choices
for the tuple t ∈ [n]k, which yields the desired inequality. For ii) we first decide
on the number a ≤ k of different vertices in s and the number b ≤ k of different
vertices in t such that a+ b ≤ �. This choice of (a, b) admits at most k2 choices.
Then with i), the statement follows.
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Step 1: Convergence of expected moments

We proceed to analyze the expectation of〈
μn, x

k
〉

=
∑

ρ∈Π(2k)

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t). (4.31)

To this end, it suffices to analyze the expectation of each of the finitely many
terms

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t) (4.32)

for ρ ∈ Π(2k) separately. As a first observation, note that if ρ1 ≥ 1, we have
EXn(s, t) = 0 for all (s, t) ∈ T p,n(ρ) due to independence and centeredness.
Further, since (Xn)n is an MP-scheme as in Definition 2.43, we can always
apply the trivial bound

|EXn(s, t)| ≤ L2k, (4.33)

where we also used Lemma 3.19.
For the bounds on #T p,n(ρ) we formulate the next lemma. It is a modification

of similar lemmas obtained in [26].

Lemma 4.10. Let k ∈ N be arbitrary. Then it holds:

i) #Π(2k) ≤ 16k.
ii) Let p, n ∈ N and ρ ∈ Π(2k) be arbitrary, then

a) For any (s, t) ∈ T p,n(ρ) we obtain

#V (s, t) ≤ 1 + ρ1 + . . . + ρ2k.

In particular,

#T p,n(ρ) ≤ k2k+2 · (p ∨ n)1+ρ1+...+ρ2k .

b) If ρ contains an odd edge, then for any (s, t) ∈ T p,n(ρ) we obtain

#V (s, t) ≤ ρ1 + . . . + ρ2k.

In particular,

#T p,n(ρ) ≤ k2k+2 · (p ∨ n)ρ1+...+ρ2k .

Proof. i) Each ρ ∈ Π(2k) is a 2k-tuple in which for all � ∈ {1, . . . , 2k} the entry
ρ� lies in the set {0, 1, . . . , �2k/��}, which follows directly from (4.29). Therefore,

#Π(2k) ≤
2k∏
�=1

(
2k
�

+ 1
)

= (4k)!
(2k)! · (2k)! =

(
2(2k)
2k

)
� 42k
√

2kπ
≤ 16k,

where the fourth step is a well-known fact about the central binomial coefficient.
ii) It suffices to establish the upper bounds for #V (s, t), since the bounds on
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#T p,n(ρ) then follow directly with Lemma 4.9 ii). Now to prove upper bounds
for #V (s, t), the idea is to travel the Eulerian cycle generated by (s, t):

s1, e1, t1, e2, s2, e3, t2, . . . , tk, e2k, s1 (4.34)

by picking an initial node si or ti and then traversing the edges in increasing
cyclic order until reaching the starting point again. On the way, we count the
number of different nodes that were discovered. Whenever we pass an �-fold
edge, only the first instance of that edge may discover a new vertex.
a) We start our tour at s1 and observe this very vertex. Then, as we travel along
the cycle, for each � ∈ {1, . . . , 2k} we will pass � · ρ� �-fold edges out of which
only the first instance may discover a new node, and there are ρ� of these first
instances. Considering the initial node, we arrive at #V (s, t) ≤ 1+ρ1+. . .+ρ2k,
which yields the desired inequality.
b) In presence of an odd edge, we can start the tour at a specific vertex such that
the odd edge cannot contribute to the newly discovered vertices. To this end, fix
an �-fold edge in (s, t) with � odd. Let ei1 , . . . , ei� , i1 < . . . < i�, be the instances
of the �-fold edge in question in the cycle (4.34). Since � is odd, we must find
a k ∈ {1, . . . , �} such that eik and eik+1 are both up edges or both down edges
(where � + 1 ≡ 1), since we are on a cycle. W.l.o.g. eik is a down edge, thus
leading to tik . We start our tour at tik and observe this vertex. However, now
none of the edges ei1 , . . . , ei� may discover a new vertex, since the vertex sik+1

must be discovered by some other edge. Therefore, the roundtrip leads to the
discovery of at most ρ1 + · · ·+ (ρ� − 1) + . . .+ ρ2k new nodes in addition to the
first node.

We proceed to analyze (4.31) for all possible types of ρ ∈ Π(2k):
Case 1: ρ1 = 0 and ρ� > 0 for some � ≥ 3.
Using Lemma 4.10 we obtain

#T p,n(ρ) ≤ k2k+2 · (p ∨ n)1+ρ1+...+ρ2k ≤ k2k+2(p ∨ n)k,

since with ρ� > 0 for some � ≥ 3 it follows

1 + ρ1 + . . . + ρ2k ≤
{

1 + 2k−6
2 + 2

1 + 2k−4
2 + 1

}
= k,

where the upper case is valid in presence of an odd edge (so we find at least
a second odd edge), and the lower case is valid if no odd edges are present.
Therefore, by (4.33), (4.32) converges to zero in expectation.
Case 2: ρ1 > 0.
Then by centeredness and independence, the expectation in (4.32) is zero.
Case 3: ρ2 = k/2.
Returning to the random moment in (4.31), we have seen in Cases 1 and 2 that
for all ρ ∈ Π(k) with ρ2 �= k,

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t) −−−−→
n→∞

0 in expectation.
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As a result, the only asymptotic contribution in (4.10) may stem from cycles
(s, t) containing only double edges. Their analysis is the content of this Case 3.
Setting ρ(k) as the profile in Π(2k) with ρ

(k)
2 = k and ρ

(k)
� = 0 for all � �= 2, then

it is our goal to show (cf. (4.25))

1
pnk

∑
(s,t)∈T p,n(ρ(k))

Xn(s, t) −−−−→
n→∞

k−1∑
r=0

yr

r + 1

(
k

r

)(
k − 1
r

)
in expectation.

(4.35)
To this end, we observe

1
pnk

∑
(s,t)∈T p,n(ρ(k))

EXn(s, t) = 1
pnk

#T p,n(ρ(k)). (4.36)

We note that any (s, t) ∈ T p,n(ρ(k)) has at most k + 1 vertices, so we may
subdivide this set further: We define

T p,n
≤k (ρ(k)) :=

{
(s, t) ∈ T p,n(ρ(k)) : #V (s, t) ≤ k

}
,

T p,n
k+1(ρ

(k)) :=
{

(s, t) ∈ T p,n(ρ(k)) : #V (s, t) = k + 1
}
,

and note that by Lemma 4.9, #T p,n
≤k (ρ(k)) ≤ k2k+2(p ∨ n)k, so that (4.36) can

be refined to
1

pnk

∑
(s,t)∈T p,n(ρ(k))

EXn(s, t) = 1
pnk

#T p,n
k+1(ρ

(k)) + o(1). (4.37)

It is thus our task to show

1
pnk

#T p,n
k+1(ρ

(k)) −−−−→
n→∞

k−1∑
r=0

yr

r + 1

(
k

r

)(
k − 1
r

)
. (4.38)

To this end, for all (s, t) ∈ T p,n
k+1(ρ(k)) we track the number of vertices in s

and the number vertices in t that the cycle visits. Thus, for all a, b ∈ N with
a + b = k + 1 we define

T p,n
a,b (ρ(k)) :=

{
(s, t) ∈ [p]k × [n]k | ρ(s, t) = ρ(k),#V (s) = a,#V (t) = b

}
.

Then we obtain a partition

T p,n
k+1(ρ

(k)) =
k−1⋃
r=0

T p,n
r+1,k−r(ρ

(k)).

As a result, to show (4.38) it suffices to show that for all r ∈ {0, . . . , k − 1},

1
pnk

#T p,n
r+1,k−r(ρ

(k)) −−−−→
n→∞

yr

r + 1

(
k

r

)(
k − 1
r

)
. (4.39)



Proof methods in RMT 345

It remains to evaluate #T p,n
r+1,k−r(ρ(k)) for all r ∈ {0, . . . , k − 1}. This is

done by identifying the number of different color structures that an (s, t) ∈
T p,n
r+1,k−r(ρ(k)) may assume and then by multiplying this number with the num-

ber of possible colorings, which is a trivial task. The main tool to count all
possible color structures is to associate with each (s, t) ∈ T p,n

r+1,k−r(ρ(k)) a path
difference sequence (pds) of the following form:

Definition 4.11. A Marcenko-Pastur path difference sequence (MP-pds) of
length 2k and weight r ∈ {0, . . . , k−1} is a tuple (D1, U1, D2, U2, . . . , Dk, Uk) =
(M1, . . . ,M2k) which satifies the following conditions:

1) Di ∈ {−1, 0} and Ui ∈ {0, 1}.
2)

∑
i∈[k] Ui = r and

∑
i∈[k] Di = −r.

3) ∀ � ∈ {1, . . . , 2k} :
∑�

i=1 Mi ≥ 0.

We denote by M(k, r) the set of all MP-pds of length 2k and weight r.

Lemma 4.12. For all k ∈ N and r ∈ {0, . . . , k − 1} we find #M(k, r) =
1

r+1
(
k−1
r

)(
k
r

)
.

Proof. We assume r ≥ 1 since for r = 0 the statement is clear. We prove the
lemma with a reflection principle. First note that M1 = D1 = 0 and M2k =
Uk = 0 so that we are interested in all sequences (M2, . . . ,M2k−1) where

1) Mi ∈ {−1, 0} for i odd and Mi ∈ {0, 1} for i even.
2)

∑
i odd Mi = −r and

∑
i even Di = r.

3) ∀ � ∈ {2, . . . , 2k − 1} :
∑�

i=2 Mi ≥ 0.

To this end, we have (
k − 1
r

)
·
(
k − 1
r

)
choices to allocate r “+1”s to k−1 places r “−1”s to k−1 places. But since these
choices do not in general respect condition 3) we have to subtract the number
of tuples (M2, . . . ,M2k−1) that lead to a violation of 3). We show that these
violating tuples are in bijective correspondence to all (M ′

2, . . . ,M
′
2k−1) with

1’) M ′
i ∈ {−1, 0} for i odd and M ′

i ∈ {0, 1} for i even.
2’)

∑
i odd M

′
i = −(r + 1) and

∑
i even M

′
i = r − 1.

The number of these (M ′
2, . . . ,M

′
2k−1) is clearly given by(

k − 1
r + 1

)
·
(
k − 1
r − 1

)
so that the number of (M2, . . . ,M2k−1) that do satisfy 1), 2) and 3) is given by(

k − 1
r

)
·
(
k − 1
r

)
−

(
k − 1
r + 1

)
·
(
k − 1
r − 1

)
= 1

r + 1

(
k − 1
r

)(
k

r

)
For the bijection, let (M2, . . . ,M2k−1) be arbitrary with r “+1”s and r “−1”s
so that 3) is violated. Then there is an odd index t such that

∑t
i=2 Mi = −1
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for the first time. Then (Mt+1, . . . ,M2k−1) is a vector of even length which con-
tains one more “+1” than “−1” entry. We will transform this vector to a vector
(M ′

t+1, . . . ,M
′
2k−1) by transforming the pairs (Mt+1,Mt+2), . . . , (M2k−2,M2k−1)

as follows: If the pair is (+1,−1) or (0, 0), we leave it unchanged. A pair (1, 0)
will be changed to (0,−1) and a pair (0,−1) will be changed to (1, 0). Then
(M ′

t+1, . . . ,M
′
2k−1) contains one more “−1” than “+1”. Defining (M ′

2, . . . ,M
′
t) :=

(M2, . . . ,Mt) we thus have created a vector (M ′
2, . . . ,M

′
2k−1) satisfying 1’) and

2’). On the other hand, any vector (M ′
2, . . . ,M

′
2k−1) satisfying 1) and 2) has a

first hitting time t of −1. Applying exactly the same transformation as before,
we will then obtain a vector (M2, . . . ,M2k−1) satisfying 1) and 2), but violating
3).

Now to each (s, t) ∈ T p,n
r+1,k−r(ρ(k)) we can associate an M ∈ M(k, r), and

this association completely determines the color structure of (s, t). To see how
this is done, let us first analyze simple properties of a Eulerian cycle (s, t) ∈
T p,n
r+1,k−r(ρ(k)). First, the graph G(s, t) is a double edged tree, that is, it consists

of k distinct double edges and has k+1 vertices, therefore is a tree in the regular
sense after eliminating one of each of the double edges. Thus, the Eulerian cycle
(s, t) crosses each edge twice, once in each direction, since a tree does not have
circles. Further, (s, t) starts at the S-vertex s1 and then alternates between S-
and T-vertices until reaching s1 again. We recall the representation of the cycle
as in (4.28). Now we will record two crucial pieces of information into the MP-
pds M . We start a tour at s1 and move along the cycle. Whenever a down edge
d� leaves the S-vertex s� for the last time along the walk, we set D� = −1,
otherwise D� = 0. For example, we always have D1 = 0, since s1 is the last stop
of the cycle. Additionally, whenever an up edge u� visits a new S-vertex s�+1,
which has not been visited before, we set U� = 1 and otherwise U� = 0. For
example, we will always have Uk = 0, since this edge leads to the starting point
s1 again.

Let us argue that the tuple (D1, U1, D2, . . . , Uk) we just constructed satisfies
conditions 1), 2) and 3) as above. Condition 1) is clearly satisfied. For condition
2), note that (s, t) has r + 1 S-nodes, out of which r – all except the vertex s1
– were considered new, so that

∑
Ui = r. Since the last edge uk leads back to

the vertex s1, we must have left each of the r new S-vertices for a last time
while on the cycle, so

∑
Di = −r. For condition 3) we realize only the r new

nodes are left for a last time along the cycle, and before they can be left a last
time (leading to a summand −1) they must have been discovered (leading to a
summand +1). Thus, condition 3) holds.

Let us now see that each MP-pds M ∈ M(k, r) completely determines the
color structure of an (s, t) ∈ T p,n

r+1,k−r(ρ(k)) by constructing a canonical (s, t)
(that is, one with lowest vertex numbers possible) from M , and showing that
we have only one choice for this construction. We set s1 = 1 = t1. Then
whenever U� = +1, this means that a new S-node is discovered, so we set
s�+1 := max(s1, . . . , s�) + 1. On the other hand, if U� = 0 then this means that
s�+1 shall be equal to one of the s1, . . . , s�, and so it must be equal to the si
with i ∈ {1, . . . , �} maximal from which t� was visited, since otherwise, the cycle
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(s, t) would contain a circle.
Now for � ≥ 2, whenever D� = 0, this means that s� is not visited the

last time. But then t� must be different from t1, . . . , t�−1 since otherwise the
cycle (s, t) would contain a circle. Therefore, for � ≥ 2, if D� = 0 we set t� :=
max(t1, . . . , t�−1) + 1. Otherwise, if D� = −1, this means that s� was visited
for the last time by the cycle. But then t� must be equal to some element in
{t1, . . . , t�−1}, since if t� were new, the edge {s�, t�} would be new and there
would then have to be a second edge traveling back from t� to s�, which would
entail yet another visit of s�. So if D� = −1, t� must be equal to some vertex
in {t1, . . . , t�−1}, and then it must be equal to the last vertex with the highest
index number in the set, from which s� was visited, since otherwise, again, the
cycle {s�, t�} would contain a circle.

As we saw, an (s, t) ∈ T p,n
r+1,k−r(ρ(k)) is compatible with exactly one M ∈

M(k, r), and we then write (s, t) ∼ M . On the other hand, given an M ∈
M(k, r) we could create exactly one canonical (s∗, t∗) ∈ T p,n

r+1,k−r(ρ(k)) compat-
ible with M , which determines the color structure. All other (s, t) compatible
with M are then obtained by picking different vertex names for the r + 1 ver-
tices in s and k − r vertices in t, which yields a total of (p)r+1 · (n)k−r tuples
in T p,n

r+1,k−r(ρ(k)) compatible with each M ∈M(k, r), where for any � ≤ m ∈ N,
we set (m)� := m · (m − 1) · · · (m − � + 1). This analysis yields the following
lemma:

Lemma 4.13. The set T p,n
r+1,k−r(ρ(k)) has a decomposition as follows:

T p,n
r+1,k−r(ρ

(k)) =
⋃̇

M∈M(k,r)

{
(s, t) ∈ T p,n

r+1,k−r | (s, t) ∼M
}

(4.40)

Further, for all M ∈M(k, r),

#
{

(s, t) ∈ T p,n
r+1,k−r | (s, t) ∼M

}
= (p)r+1(n)k−r , (4.41)

such that by Lemma 4.12, (4.40) and (4.41), we obtain

#T p,n
r+1,k−r(ρ

(k)) = 1
r + 1

(
k − 1
r

)(
k

r

)
· (p)r+1(n)k−r .

Proof. See the discussion before Lemma 4.13.

Now since
(p)r+1(n)k−r = p · (p− 1)r

nr︸ ︷︷ ︸
→yr

·nr · (n)k−r︸ ︷︷ ︸
∼nk

,

we find by Lemma 4.13 that

1
pnk

#T p,n
r+1,k−r(ρ

(k)) −−−−→
n→∞

yr

r + 1

(
k

r

)(
k − 1
r

)
,

which is (4.39). Therefore, we have shown (4.38) which entails (4.35).
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Step 2: Decay of central moments

In Step 1 we have seen that for fixed k ∈ N, the expectation of〈
μn, x

k
〉

=
∑

ρ∈Π(2k)

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t) (4.42)

converges to the k-th moment of the MP distribution. In particular, we have
seen that each of the finitely many summands

1
pnk

∑
(s,t)∈T p,n(ρ)

Xn(s, t) (4.43)

converges to a constant in expectation. To show that the random moments
in (4.42) converge almost surely to the moments of the MP distribution, it thus
suffices – by Lemma 3.10 – to show that for all ρ ∈ Π(2k), the variance of (4.43)
decays summably fast. The variance of (4.43) is given by

1
p2n2k

∑
(s,t),(s′,t′)∈T p,n(ρ)

[EXn(s, t)Xn(s′, t′)− EXn(s, t)EXn(s′, t′)] . (4.44)

We see that whenever the Eulerian cycles (s, t) and (s′, t′) are edge-disjoint,
the term in (4.44) vanishes due to independence. Therefore, it suffices to consider
those cycles (s, t) and (s′, t′) which have at least one edge in common. To this
end, denote for all � ∈ {1, . . . , 2k}:

T p,n
c(�) (ρ) :=

{
((s, t), (s′, t′)) ∈ (T p,n(ρ))2 |

(s, t) and (s′, t′) have exactly � edges in common} .

Then it is now our goal to show that for each ρ ∈ Π(2k),

1
p2n2k

∑
((s,t),(s′,t′))∈T p,n

c(�) (ρ)

[EXn(s, t)Xn(s′, t′)− EXn(s, t)EXn(s′, t′)] (4.45)

converges to zero summably fast. Before proceeding, we need to establish bounds
on #T p,n

c(�) (ρ).

Lemma 4.14. Let ρ ∈ Π(2k) and � ∈ [2k], then the following statements hold:

i) For all (s, t), (s′, t′) ∈ T p,n(ρ) with at least � common edges, it holds

#(V (s, t) ∪ V (s′, t′)) ≤ 1 + 2
2k∑
i=1

ρi − �

In particular,

#T p,n
c(�) (ρ, ρ

′) ≤ (2k)4k+2(n ∨ p)1+2
∑2k

i=1 ρi−�
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ii) If there is an � ∈ [2k] odd with ρ� ≥ 1, then for all (s, t), (s′, t′) ∈ T p,n(ρ)
with at least � common edges, it holds

#(V (s, t) ∪ V (s′, t′)) ≤ 2
2k∑
i=1

ρi − �.

In particular,

#T p,n
c(�) (ρ, ρ

′) ≤ (2k)4k+2(n ∨ p)2
∑2k

i=1 ρi−�.

Proof. For statement ii) we assume w.l.o.g. that (s, t) has an odd edge. Since
the graphs spanned by (s, t) and (s′, t′) share l ≥ 1 common edges, we may take
a tour around the joint Eulerian cycle, starting before a common edge, traveling
first all edges of (s, t) and then all edges of (s′, t′). While walking the edges of
(s, t), we can see at most ρ1 + . . . + ρ2k different nodes by Lemma 4.10. Next,
traveling all edges of (s′, t′), at most all the single edges and first instances of
m-fold edges with m ∈ {2, . . . , 2k} of (s′, t′) may discover a new node, but only
if they have not been traversed before during the walk along (s, t). Since we
have � common edges, we can see at most ρ′1 + . . . + ρ′2k − � new nodes. We
established the bounds on the number of vertices in ii). The second statement
in ii) follows immediately with Lemma 4.9 ii) by concatenating (s, s′) ∈ [p]2k
and (t, t′) ∈ [n]2k. For statement i) we proceed exactly in the same manner:
Traveling (s, t) we can see at most 1+ρ1 +ρ2 + . . .+ρ2k nodes by Lemma 4.10,
then traveling (s′, t′) we can see at most ρ′1 + . . .+ρ′2k−� new nodes. Now apply
Lemma 4.9 ii) again.

Returning to (4.45), we distinguish the following cases:
Case 1: ρ1 ≥ 1
In this case, the term in (4.45) simplifies and we must argue that for each
� ∈ [2k],

1
p2n2k

∑
((s,t),(s′,t′))∈T p,n

c(�) (ρ)

EXn(s, t)Xn(s′, t′) (4.46)

converges to zero summably fast. If (s, t) and (s′, t′) have 1 ≤ � < ρ1 common
edges, EXn(s, t)Xn(s′, t′) vanishes, since not all single edges can be eliminated
due to overlapping. Thus, it suffices to consider those (s, t), (s′, t′) ∈ T p,n(ρ)
which have � ≥ ρ1 edges in common. Then

2
2k∑
i=1

ρi − � ≤ 2
(
ρ1 + 2k − ρ1

2

)
− ρ1 ≤ 2k,

so Lemma 4.14 ii) yields

#T p,n
c(�) (ρ) ≤ (2k)4k+2(n ∨ p)2

∑2k
i=1 ρi−� ≤ (2k)4k+2(n ∨ p)2k,

Since every summand in (4.46) is bounded by L4k, it follows that (4.46) is
O(n−2), thus converges to zero summably fast.
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Case 2: ρ1 = 0
In this case, each summand in (4.45) is bounded by L4k + L2

2k. Further, we
obtain for all ρ ∈ Π(2k) with ρ1 = 0 and � ≥ 1 that

1 + 2
2k∑
i=1

ρi − � ≤ 1 + 2 · 2k
2 − 1 = 2k

so that by Lemma 4.14 i),

#T p,n
c(�) (ρ) ≤ (2k)4k+2(n ∨ p)1+2

∑2k
i=1 ρi−� ≤ (2k)4k+2(n ∨ p)2k,

so that the sum in (4.45) is O(n−2), hence converges to zero summably fast.

5. The Stieltjes transform method

5.1. Motivation and basic properties

In order to analyze properties of random variables and their distributions, it
is a common technique to use transforms of these distributions which make
analysis more accessible due to their favorable algebraic structure. For example,
a common and short proof of the central limit theorem is conducted by using
the Fourier transform of the random variables involved, owing to the property
that Fourier transforms handle convolutions particularly well, and the central
limit theorem is about a sum of independent random variables.

In random matrix theory, however, when analyzing empirical spectral distri-
butions of diverse matrix ensembles, it is desirable to use a tool for analysis
that relates the behavior of the empirical spectral distribution back to the level
of the entries of the matrices. For example, using the method of moments, one
sees in equation (3.4) that the moments of the ESD σn of a random matrix Xn

can be calculated through:

∀ k ∈ N :
〈
σn, x

k
〉

= 1
n

tr(Xk
n) = 1

n

n∑
i1,...,ik=1

Xn(i1, i2)Xn(i2, i3) · · ·Xn(ik, i1).

In other words, instead trying to work with an ESD directly, we can analyze its
moments which allows us to work on the level of the matrix entries.

A tool that combines both worlds, that is, that provides the structure of a
transform with favorable algebraic properties and that allows us to work on the
level of the matrix entries is the so called Stieltjes transform:

Definition 5.1. Let μ be a finite measure on (R,B). Then we define the Stieltjes
transform Sμ of μ as the map

Sμ : C\R −→ C

z �−→
∫
R

1
x− z

μ(dx).
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We note that the Stieltjes transform is defined via a measure-theoretical
integral over a complex-valued function. We assume the reader to be acquainted
with measure-theoretical integration of real-valued functions on measure spaces
and give a very short introduction to complex-valued integration in the form of
one definition and two lemmata.

Definition 5.2. Let (Ω,A, μ) be a measure space, f : (Ω,A) → C measurable,
then f is called μ-integrable, if the real-valued functions Re f and Im f both are
μ- integrable. In this case, we define∫

Ω
fdμ :=

∫
Ω

Re fdμ + i

∫
Ω

Im fdμ.

We will denote the space of C-valued integrable functions as L1(μ,C).

It is worth noting the following lemma about the properties of the integral:

Lemma 5.3. Let (Ω,A, μ) be a measure space, then the following statements
hold:

1. The map L1(μ,C) → C, f �→
∫
fdμ is C-linear.

2. ∀ f ∈ L1(μ,C) :
∫
fdμ =

∫
fdμ.

3. ∀ f ∈ L1(μ,C) :
∣∣∫ fdμ

∣∣ ≤ ∫
|f |dμ.

Proof. 1) follows by elementary calculations and 2) holds by the definition of
the integral. To see 3), let z ∈ C with |z| = 1, such that z

∫
fdμ =

∣∣∫ fdμ
∣∣, then

it follows∣∣∣∣∫ fdμ
∣∣∣∣ = z

∫
fdμ =

∫
Re(zf)dμ+ i

∫
Im(zf)dμ︸ ︷︷ ︸

=0

≤
∫
|zf |dμ =

∫
|f |dμ.

Lemma 5.4 (Lebesgue’s Dominated Convergence Theorem). Let (Ω,A, μ) be
a measure space, (fn)n, f : Ω → C be measurable with fn → f μ-almost every-
where. If there exists a μ-integrable g : Ω → R with |fn| ≤ g μ-almost everywhere
for all n, then f is μ-integrable and it holds

lim
n→∞

∫
|f − fn|dμ = 0,

so that in particular
lim
n→∞

∫
fndμ =

∫
fdμ.

Proof. Certainly, |Re fn|, |Im fn| ≤ |fn| ≤ |g| and Re fn → Re f , Im fn → Im f
μ-almost everywhere. Also, |f − fn| ≤ |Re f − Re fn|+ |Im f − Im fn|. Now for
real-valued measurable functions, the theorem is assumed to be known. See [35,
p. 158] for a reference.

The following lemma studies the Stieltjes transform Sμ(z) =
∫
R

1
x−zμ(dx).

Note that we do not have to consider the trivial case where μ ≡ 0, since in this
case, Sμ ≡ 0. Notationally, we set C+ := {z ∈ C | Im(z) > 0}.
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Lemma 5.5. Let μ be a finite measure on (R,B) with μ(R) > 0 and Sμ be its
Stieltjes transform. Further, let E ∈ R, η ∈ R\{0} and z := E + iη, then we
obtain:

i) For any x ∈ R we find: 1
x−z = x−E

(x−E)2+η2 + i η
(x−E)2+η2 .

ii) ReSμ(z) =
∫

x−E
(x−E)2+η2μ(dx) and ImSμ(z) =

∫
η

(x−E)2+η2μ(dx).
iii) Im(z) ≷ 0 ⇔ ImSμ(z) ≷ 0.
iv) Sμ(z) = Sμ(z).
v) Sμ is uniquely determined by its restriction Sμ : C+ → C+.
vi) |Sμ(z)| ≤ μ(R)

|Im(z)|
vii) Sμ is holomorphic.
viii) In particular, Sμ is continuous, can be represented by a power series around

any z0 ∈ C\R, and is infinitely often differentiable.

Proof. Statement i) is obvious, ii) follows from i) by definition of the complex-
valued integral, iii) follows directly from ii) and so does iv) in combination with
the construction of the integral. Statement v) follows directly from iii) and iv),
and vi) follows from∣∣∣∣ 1

x− z

∣∣∣∣ = 1
|x− z| ≤

1
|Im(x− z)| = 1

|Im(z)| .

To show statement vii), let (zn)n and z ∈ C\R with zn → z, but zn �= z be
arbitrary, then:

Sμ(zn)− Sμ(z)
zn − z

= 1
zn − z

∫ 1
x− zn

− 1
x− z

μ(dx)

= 1
zn − z

∫
zn − z

(x− zn)(x− z)μ(dx) −−−−→
n→∞

∫ 1
(x− z)2μ(dx)

by dominated convergence, since for some C > 0 and all n ∈ N,∣∣∣∣ 1
(x− zn)(x− z)

∣∣∣∣ ≤ 1
|Im(zn)||Im(z)| ≤ C,

for convergent sequences are bounded.

Theorem 5.6 (Retrieval of Measure). For any bounded interval I ⊆ R with
end points α < β, we obtain the following:

μ((α, β)) + 1
2(μ({α}) + μ({β})) = lim

η↘0

1
π

∫
I

ImSμ(E + iη)λλ(dE).

Proof. Let I be an interval with end points α < β and η > 0. Then we obtain
via Fubini:

1
π

∫
I

ImSμ(E + iη)λλ(dE) = 1
π

∫
I

∫
R

η

(x− E)2 + η2μ(dx)λλ(dE)

= 1
π

∫
R

∫
I

η

(x− E)2 + η2λλ(dE)μ(dx)
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= 1
π

∫
R

∫ β

α

η

(x− E)2 + η2 dEμ(dx).

Now since∫ β

α

η

(x−E)2 + η2 dE = 1
η

∫ β

α

1
(E−x

η )2 + 1
dE

=
∫ β−x

η

α−x
η

1
E2 + 1dE

= arctan
(
β − x

η

)
− arctan

(
α− x

η

)
,

and arctan : R → (−π
2 ,+

π
2 ) is strictly increasing with limx→±∞ arctan(x) =

±π
2 , we obtain

lim
η↘0

[
arctan

(
β − x

η

)
− arctan

(
α− x

η

)]
=

⎧⎪⎨⎪⎩
π if x ∈ (α, β)
0 if x /∈ [α, β]
π
2 if x = α ∨ x = β.

Thus, by dominated convergence we find

lim
η↘0

1
π

∫
I

ImSμ(E + iη)λλ(dE)

= lim
η↘0

1
π

∫
R

arctan
(
β − x

η

)
− arctan

(
α− x

η

)
μ(dx)

=
∫
R

1(α,β)(x) + 1
21{α,β}(x)μ(dx)

= μ((α, β)) + 1
2(μ({α}) + μ({β}))

The previous theorem and the following corollary are similar to Theorem
2.4.3 in [4]. As usual, for a subset I of a topological space, we denote by ∂I its
boundary, which is a concept we assume to be known to the reader.

Corollary 5.7. For any bounded interval I ⊆ R with μ(∂I) = 0, we find:

μ(I) = lim
η↘0

1
π

∫
I

ImSμ(E + iη)λλ(dE).

Thus, any finite measure μ on (R,B) is uniquely determined by Sμ. In other
words, μ �→ Sμ is injective.

Proof. The convergence statement follows from Theorem 5.6. In particular, if
μ and ν are finite measures on (R,B) with Sμ = Sν , then for any bounded
interval I ⊆ R with μ(∂I) = 0 = ν(∂I), we have μ(I) = ν(I). Therefore, μ = ν
by Lemma 2.6.
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The last theorem and its corollary suggest that for any finite measure μ on
(R,B) and η > 0 small, E �→ 1

π ImSμ(E + iη) acts as a Lebesgue density for
(a measure approximating) μ. In particular, even measures that do not possess
a Lebesgue density (for example, all empirical measures) can be approximated
in this way by using the Stieltjes transform. In Section 5.3 we will see how this
can be made precise.

5.2. The Stieltjes transform and weak convergence

For any finite measure μ, Sμ carries all the information of μ (cf. Corollary 5.7).
Therefore, it is not surprising that this tool can be used particularly well to
analyze weak convergence of probability measures. The following theorem gen-
eralizes Theorem 2.4.4 in [4].

Theorem 5.8 (Convergence Theorem). Let Z ⊆ C\R be a subset that has an
accumulation point in C\R (which is not necessarily an element of Z itself).
Then the following statements hold:

1. Let (μn)n in M1(R), such that for all z ∈ Z we find that S(z) :=
limn→∞ Sμn(z) exists. Then there is a sub-probability measure μ with
μn → μ vaguely and Sμ = S.

2. Let (μn)n and μ in M1(R), then we find:

μn → μ weakly ⇔ Sμn(z) → Sμ(z) for all z ∈ Z.

3. Let (μn)n be random probability measures and μ be a deterministic prob-
ability measure, then:

a) μn → μ weakly in expectation ⇔ ESμn(z) → Sμ(z) for all z ∈ Z.
b) μn → μ weakly in probability ⇔ Sμn(z) → Sμ(z) in probability for all

z ∈ Z.
c) μn → μ weakly almost surely ⇔ [Sμn(z) → Sμ(z) almost surely] for

all z ∈ Z.

Proof. 1. Let (μn)n∈J be an arbitrary subsequence of (μn)n∈N. Due to
Lemma 2.15, there exists a subsequence (μn)n∈I , I ⊆ J , such that μn → μ
vaguely for n ∈ I and a sub-probability measure μ. Since x �→ 1

x−z vanishes at
±∞, it follows Sμn(z) → Sμ(z) for n ∈ I for all z ∈ Z (cf. Lemma 2.10). There-
fore, S(z) = Sμ(z) for all z ∈ Z. If ν is another subsequential limit of (μn)n∈J ,
we find by the same argument that Sμ(z) = S(z) = Sν(z) for all z ∈ Z. This
implies Sμ = Sν , since Stieltjes transforms are holomorphic. Therefore, μ = ν
by Theorem 5.6. By Lemma 2.9, we find μn → μ vaguely for n ∈ N.
2. Since x �→ 1

x−z is continuous, “⇒” is obvious. To show “⇐”, statement 1
yields that μn → μ vaguely, thus μn → μ weakly, since all measures involved
are probability measures (cf. Lemma 2.14).
3.a) This follows directly from statement 2, considering

ESμn(z) = E

∫ 1
x− z

μn(dx) =
∫ 1

x− z
Eμn(dx) = SEμn(z),
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where we used Theorem 2.20.
3.c) If μn → μ weakly on a measurable set A with P(A) = 1, then we have on A
that for all z ∈ Z we find Sμn(z) → Sμ(z) (by statement 2). This shows “⇒”, and
to show “⇐”, fix a sequence (zk)k in Z that converges to some z ∈ C\R. For all
k ∈ N we find a measurable set Ak with P(Ak) = 1 on which Sμn(zk) → Sμ(zk)
as n → ∞. Then A := ∩k∈NAk is measurable with P(A) = 1, and on A we
find that for all z ∈ Z ′ := {zk|k ∈ N} we have Sμn(z) → Sμ(z). Since Z ′ has
an accumulation point in C\R, we find on the set A that μn → μ weakly by
statement 2.
3.b) The direction “⇒” is trivial since x �→ x−E

(x−E)2+η2 and x �→ η
(x−E)2+η2

are bounded and continuous (cf. Theorem 2.25). For “⇐” we let f ∈ Cb(R) be
arbitrary. Then we need to show that 〈μn, f〉 → 〈μ, f〉 in probability. Let J ⊆ N

be a subsequence, then by Lemma 2.28, we find a subsequence I ⊆ J and a
measurable set N with P(N) = 0, such that for (zk)k fixed as in the proof of
3.c):

∀ω ∈ Ω\N : ∀ k ∈ N : Sμn(ω)(zk) −−→
n∈I

Sμ(ω)(zk).

Therefore, it follows with statement 3.c) that μn −−→
n∈I

μ almost surely, so in par-
ticular 〈μn, f〉 −−→

n∈I
〈μ, f〉 almost surely. Then 〈μn, f〉 −−−→

n∈N

〈μ, f〉 in probability
by Lemma 2.27.

We refer the reader to Remark 2.26 for an explanation on the use of brackets
[. . .] in Theorem 5.8 3. c). Also, due to Lemma 5.5 iv), it would have been enough
to restrict one’s attention to the set {z ∈ C | Im(z) > 0} in Theorem 5.8.

5.3. The imaginary part of the Stieltjes transform

In Corollary 5.7 we saw that if μ ∈M1(R), then for a small η > 0, the function
E �→ 1

π ImSμ(E + iη) should be the Lebesgue density of a probability measure
on (R,B) that approximates μ well. But so far, we do not even know whether
E �→ 1

π ImSμ(E+iη) yields a density of a probability measure at all. How can this
intuition be portrayed in the right context, and is there a connection to the weak
convergence results of Section 5.2? This section aims to shed light onto these
aspects. First, we will rigorously delve into convolution of probability measures,
for a reference see [12] or [3]. Second, we will introduce kernel density estimators,
which motivate further the use of the Stieltjes transform when analyzing ESDs
of random matrices. We begin by making the following definition:

Definition 5.9. Let μ and ν be probability measures on (R,B) and f, g : R→ R

Lebesgue-density functions (i.e. h ≥ 0 and
∫
hdλλ = 1, h ∈ {f, g}).

i) The convolution of the probability measures μ and ν is defined as μ ∗ ν :=
(μ ⊗ ν)+. Here, μ ⊗ ν is the product measure on (R2,B2), + : R2 → R is
the addition map, and (μ⊗ ν)+ is the push-forward of the product measure
under the addition map.
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ii) The convolution of the density f and the probability measure ν is defined
as the function f ∗ ν : R→ R with

∀x ∈ R : (f ∗ ν)(x) :=
∫
R

f(x− y)ν(dy).

iii) The convolution of the densities f and g is the function f ∗ g : R→ R with

∀x ∈ R : (f ∗ g)(x) :=
∫
R

f(x− y)g(y)λλ(dy).

Note that in ii) and iii) above, the definitions of the convolution are to be
understood for λλ-almost all x ∈ R, since the respective integrals are well-defined
only for λλ-almost all x ∈ R, which can be observed via Fubini/Tonelli. The
convolutions are understood to equal zero on the respective sets of measure
zero.

Lemma 5.10. In the situation of Definition 5.9, we make the following observa-
tions (point x here is with respect to point x in Definition 5.9, x ∈ {i), ii), iii)}):

i) The convolution is a commutative binary operation on the space of proba-
bility measures. The neutral element is given by δ0, the Dirac measure in
0. Further, the following formula holds:

∀B ∈ B : (μ ∗ ν)(B) =
∫
R

μ(B − y)ν(dy).

ii) f ∗ ν is a Lebesgue-density for the convolution (fλλ) ∗ ν, that is, (fλλ) ∗ ν =
(f ∗ ν)λλ.

iii) f ∗ g is a Lebesgue-density for the convolution (fλλ) ∗ (gλλ), that is, (fλλ) ∗
(gλλ) = (f ∗ g)λλ.

Proof. The proof follows from elementary considerations and is left to the reader,
see also [12].

The following lemma will capture a very important property of the convolu-
tion:

Lemma 5.11. The convolution of probability measures on (R,B) is continous
with respect to weak convergence. That is, if (μn)n, (νn)n, μ and ν are probability
measures on (R,B) with μn → μ and νn → ν weakly, then μn∗νn → μ∗ν weakly.

Proof. With [11, p. 23] it follows that μn ⊗ νn → μ ⊗ ν. Now if f ∈ Cb(R) is
arbitrary, then we also have that (x, y) �→ f(x+y) is a continuous and bounded
function on R2, so∫
R

fd(μn ∗νn) =
∫
R2

(f ◦+)d(μn⊗νn) −−−−→
n→∞

∫
R2

(f ◦+)d(μ⊗ν) =
∫
R

fd(μ∗ν).

Now, we will bring the Stieltjes transform into play:
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Definition 5.12. For all η > 0, we define the Cauchy kernel Pη : R → R as
the function with

∀x ∈ R : Pη(x) := 1
π

η

x2 + η2 ,

which is the λλ-density function of the Cauchy distribution with scale parameter
η.

We will collect a quick lemma before proceeding:

Lemma 5.13. As η ↘ 0, we find (Pηλλ)→ δ0 weakly.

Proof. The characteristic function of the measure Pηλλ is given by t �→ e−η|t|,
see [35, p. 337] or [45, p. 208]. Fixing t ∈ R and letting η → 0 will yield the
statement, since e0 is the characteristic function of δ0.

Now, as we see, for any probability measure μ on (R, B), we have

1
π

ImSμ(E + iη) =
∫
R

1
π

η

(E − x)2 + η2μ(dx) = (Pη ∗ μ)(E)

Therefore, 1/π ImSμ(· + iη) is the convolution of the density Pη with μ and
thus a Lebesgue-density for the probability measure (Pηλλ) ∗μ. In particular, as
η ↘ 0 we have that

1
π

ImSμ(·+ iη)λλ = (Pηλλ) ∗ μ −→ δ0 ∗ μ = μ weakly.

This immediately proves Corollary 5.7 again (using the Portmanteau theorem).
But due to continuity of the convolution, we can say much more:

Assume that (σn)n is a sequence of ESDs of random matrices, so that σn

converges almost surely to the semicircle distribution σ. We assume this con-
vergence takes place on a measurable set A with P(A) = 1. Then we find on A
that the following commutative diagram holds, where all arrows indicate weak
convergence:

(Pη ∗ σn)λλ (Pη ∗ σ)λλ

δ0 ∗ σn = σn σ

η ↘ 0

n→∞

n→∞

η ↘ 0
n→∞
η↘0

In particular, the diagonal arrow says that we obtain weak convergence (Pηn ∗
σn)λλ→ σ as n→∞ for any sequence ηn ↘ 0. This is an interesting result, but
it does not tell us if also densities align. More concretely, write σ = fσλλ, then
from (Pη ∗ σn)λλ→ fσλλ weakly we cannot infer that also Pη ∗ σn → fσ in some
sense, for example in ‖ · ‖∞ over a specified compact interval. This is desirable
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since it allows conclusion about local estimation of σn by σ. If η = ηn drops
too quickly to zero as n → ∞, then (Pηn ∗ σn) will have steep peaks at each
eigenvalue, thus will not approximate the density of the semicircle distribution
uniformly. This “problem” is typical for kernel density estimators in general (see
[9], in particular their Section 11.2.1, or [45], especially their Remark 11.2.10),
which we will introduce next.

Definition 5.14. A kernel K is a Lebesgue-probability-density function R→ R,
that is, K is non-negative and∫

R

K(y)λλ(dy) = 1.

Further, if K is a kernel and h > 0, we define Kh as the kernel with Kh(x) =
1
hK(xh ) for all x ∈ R and call Kh the kernel K at bandwidth h. In particular,
K = K1.

In above definition, it is clear that Kh is a kernel if K is a kernel and h > 0.
An example of a kernel is the Cauchy kernel P1 from Definition 5.12, which
yields the standard Cauchy distribution. We have for all x ∈ R and η > 0:

P1(x) = 1
π

1
x2 + 1 and Pη(x) = 1

πη

1(
x
η

)2
+ 1

= 1
π

η

x2 + η2 .

Now given a vector v = (v1, . . . , vn) of real-valued observations, we are in-
terested in constructing a Lebesgue-density that describes the experiment of
drawing uniformly at random from these observations, in other words that ap-
proximates the empirical probability measure

νn := 1
n

n∑
i=1

δvi . (5.1)

This can be done with help of a kernel K, which is oftentimes chosen to be
unimodal and symmetric around 0, just as the Cauchy kernel P1.

Definition 5.15. The kernel density estimator with kernel K and bandwidth
h > 0 for an empirical measure ν as in (5.1) is the Lebesgue-density given by
the convolution Kh ∗ ν, thus

Kh ∗ ν : R −→ R

x �−→ (Kh ∗ ν)(x) = 1
n

n∑
i=1

Kh(x− vi) = 1
nh

n∑
i=1

K1

(
x− vi

h

)
Heuristically speaking, the concept works in the following way: The center

of the kernel is placed upon each observation, whose influence (i.e. probability
mass of 1/n) is smoothed over its neighborhood. The size of this neighborhood
is governed by the bandwidth h: A small h will restrain the probability mass
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Fig 3. Red line: fσ. Blue line: 1
π

ImSσ100 (·+iη1) = Pη1∗σ100. Grey bars: eigenvalue locations.

of 1/n to be closer to its observation, whereas a larger h will result in a wider
spread of probability mass. Therefore, a smaller h will result in a peaky density
function (with steep peaks at the observation), whereas a larger h will result in
a smoother density function.

We now assume we are given an empirical spectral distribution σN from an
n × n random matrix Xn. The kernel density estimator at location E ∈ R for
σn with kernel P1 at bandwidth η > 0 is then given by

(Pη ∗ σn)(E) = 1
nη

n∑
i=1

1
π

1(
E−λXn

i

η

)2
+ 1

= 1
π

ImSσn(E + iη).

This gives the imaginary part of the Stieltjes transform the new role of a ker-
nel density estimator for the empirical spectral distribution. Let us conduct
a simulation study for n = 100. Let A100 be a symmetric 100 × 100 random
matrix with independent Rademacher distributed variables in the upper half
triangle, including the main diagonal. Let X100 := 1√

100A100. Denote by σ100
the empirical spectral distribution of X100. Further, we define the bandwidths
η1 := n−1/2 = 1/10 and η2 := n−1 = 1/100. With respect to the commutative
diagram after Lemma 5.13 and the discussion below it, let us analyze how well
Pη1 ∗ σ100 and Pη2 ∗ σ100 can be approximated by the density of the semicircle
distribution, fσ, in Figures 3 and 4, which are based on the same simulation
outcome.

As we see, considering that we are in the case of a very low n = 100, we
already obtain a decent approximation by the semicircle density in Figure 3.
Reducing the scale from η1 to η2 we obtain the result in Figure 4. There we
observe that for the smaller bandwidth parameter η2, we do not obtain a useful
approximation by the semicircle density anymore. Indeed, the scale n−1 is too
fast to obtain uniform convergence of the estimated density to the target density,
whereas a scale of nγ−1 for any γ ∈ (0, 1) would be sufficient. Nevertheless,
Figure 4 displays nicely how the kernel density estimator works: A closer look –
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Fig 4. Red line: fσ. Blue line: 1
π

ImSσ100 (· + iη2) = Pη2 ∗ σ100. Grey bars: Eigenvalue
locations.

in particular to the edges of the bulk – shows how the probability mass of each
individual eigenvalue is spread around its neighborhood.

5.4. The Stieltjes transform of ESDs of random matrices

As we motivated the Stieltjes transform in the beginning of this chapter, it is
possible to relate the Stieltjes transform of an ESD of a random matrix to the
entries of the random matrix. We will now see how this is done. Notationally, as
the Stieltjes transform of the semicircle distribution received the special letter
s := Sσ, the Stieltjes transform of an ESD σn of an n × n random matrix Xn

is denoted by sn := Sσn . The following theorem summarizes the findings of this
section (see also [5, p. 470–472]).

Theorem 5.16. Let Xn be a random n× n matrix with ESD σn.

i) For all z ∈ C\R we find:

sn(z) = Sσn(z) = 1
n

tr(Xn−z)−1 = 1
n

n∑
k=1

1
Xn(k, k)− z − x∗

k(X
(k)
n − z)−1xk

.

ii) For z = E + iη, where E ∈ R and η > 0, we obtain for all k ∈ {1, . . . , n}:∣∣∣tr (Xn − z)−1 − tr (X(k)
n − z)−1

∣∣∣ ≤ 1
η
.

Here, X(k)
n denotes the k-th principal minor of Xn (thus an (n − 1) × (n − 1)

matrix) and xk the k-th column of Xn without the k-th entry (thus an (n− 1)-
vector).
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Proof. i) The first equality is just a notational convention. For the second equal-
ity, let λ1, . . . , λn be the eigenvalues of Xn, then by the spectral theorem for
normal operators, 1

λ1−z , . . . ,
1

λn−z are the eigenvalues of (Xn − z)−1. Since for
normal matrices, the trace yields the sum of the eigenvalues, we conclude

Sσn(z) =
∫
R

1
x− z

σn(dx) = 1
n

n∑
i=1

1
λi − z

= 1
n

tr(Xn − z)−1.

It remains to prove the last equality of statement i) of Theorem 5.16: Xn and
all X(k)

n are self-adjoint, thus Xn − z and X
(k)
n − z = (Xn − z)(k) are invertible

for all k. We also know that the k-th column (resp. row) of Xn without the k-th
entry is also the k-th column (resp. row) of (Xn − z) without the k-th entry.
Therefore, the statement follows directly with Lemma 5.18 below.

ii) By Lemma 5.19 below, we know that

∣∣∣tr(Xn − z)−1 − tr(X(k)
n − z)−1

∣∣∣ =

∣∣∣∣∣ 1 + x∗
k(X

(k)
n − z)−2xk

Xn(k, k)− z − x∗
k(X

(k)
n − z)−1xk

∣∣∣∣∣
≤ 1 + |x∗

k(X
(k)
n − z)−2xk|

|−η − Im(x∗
k(X

(k)
n − z)−1xk)|

(5.2)

where xk denotes the k-th column of Xn without the k-th entry. We also used
that Xn(k, k) ∈ R, since Xn is self-adjoint. We proceed by inspecting the numer-
ator and the denominator separately. For the numerator, Let U be unitary such
that UX

(k)
n U∗ = diag(λ1, . . . , λn−1) =: D, where λ1, . . . , λn−1 are the eigenval-

ues of X(k)
n . Since X

(k)
n is self-adjoint, these eigenvalues are real, and such a U

actually exists. Set x∗
kU

∗ = (y1, . . . , yn−1), then we get

x∗
k(X(k)

n − z)−2xk = x∗
k(U∗(D − z)U)−2xk = x∗

kU
∗(D − z)−2Uxk

=
n−1∑
�=1

|y�|2
(λ� − z)2 ≤

|...|

n−1∑
�=1

|y�|2
(λ� −E)2 + η2

= x∗
k[(X(k)

n −EIn−1)2 + v2In−1]−1xk,

where the last equality follows with

[(X(k)
n −EIn−1)2 + v2In−1]−1 = [U∗[(D −EIn−1)2 + η2In−1]U ]−1

= U∗[(D − EIn−1)2 + η2In−1]−1U.

With the exact arguments we just used, we further obtain for the denominator
in (5.2) that

x∗
k(X(k)

n − z)−1xk =
n−1∑
�=1

|y�|2
λ� − z

=
n−1∑
�=1

|y�|2
(λ� −E)2 + η2 (λ� − E) + i

n−1∑
�=1

|y�|2
(λ� −E)2 + η2 η,
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so that

−η − Im(x∗
k(X(k)

n − z)−1xk) = −η(1 + x∗
k[(X(k)

n −EIn−1)2 + v2In−1]−1xk).

Note that Theorem 5.16 i) also allows us to work with the Stieltjes transform
SEσn of the expected ESD Eσn, since as in the proof of Theorem 5.8 we have
SEσn = ESσn = Esn.

The remainder of this section will be devoted to the proof of Theorem 5.16,
for which we follow the roadmap as in [5]. In the following Lemma, the Schur
complement is defined and studied (see also [62]).

Lemma 5.17. Let
A =

(
A11 A12
A21 A22

)
be a quadratic block matrix with A11 invertible. Then the Schur complement of
A11 in A is defined as

B := A22 −A21A
−1
11 A12

and has the following properties, where I resp. 0 are identity matrices resp.
0-matrices of appropriate dimension:

i) We obtain the Schur complement formula(
I 0

−A21A
−1
11 I

)(
A11 A12
A21 A22

)(
I −A−1

11 A12
0 I

)
=

(
A11 0
0 B

)
.

ii) We find the Schur complement determinant formula

det(A) = det(A11) det(B) = det(A11) det(A22 −A21A
−1
11 A12)

iii) If A is invertible, so is B = A22 −A21A
−1
11 A12.

iv) In case A is invertible, we find the Schur complement inversion formula

A−1 =
(
I −A−1

11 A12
0 I

)(
A−1

11 0
0 B−1

)(
I 0

−A21A
−1
11 I

)
=

(
A−1

11 + A−1
11 A12B

−1A21A
−1
11 −A−1

11 A12B
−1

−B−1A21A
−1
11 B−1

)
.

Proof. Statement i) requires mere verification by multiplication of the matrices,
ii) follows directly from i) and iii) follows directly from ii). The first equality of
statement iv) follows directly by inverting the Schur complement formula and
multiplying from the left and right with the appropriate matrices. The second
equality is again verified through simple multiplication of the matrices.

Lemma 5.18. Let A be an invertible n×n matrix. If A(k) is invertible for some
k ∈ {1, . . . , n}, then

A−1(k, k) = 1
A(k, k)− rkA(k)−1ck

,

where rk is the k-th row of A without the k-th entry and ck is the k-th column
of A without the k-th entry.
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Proof. We first prove the statement for k = n. We write

A =
(
A(n) cn
rn A(n, n)

)
and set B := A(n, n) − rnA

(n)−1cn. Then by the Schur complement inversion
formula, A−1(n, n) = B−1, which shows the statement for k = n. Next, we
assume k < n. Then define a permutation matrix column-wise as

V := (e1|e2| . . . |êk| . . . |en|ek)

where the ei are the standard n-dimensional basis vectors, and the hat over ek
indicates that this vector is left out. In other words, V is obtained through the
identity matrix by erasing its k-th column ek and appending it at the end of the
matrix. We obtain immediately that V T = V = V −1. Then AV is the matrix
A with erased and then appended k-th column and V A is the matrix A with
erased and then appended k-th row. Therefore, (V AV )(n) = A(k) and by the
case above

A−1(k, k)=(V A−1V )(n, n)=(V AV )−1(n, n)= 1
(V AV )(n, n)− r′n(V AV )(n)−1c′n

,

where r′n denotes the n-th row of V AV and c′n denotes the n-th column of
V AV , both without their n-th entry. But r′n = rk, c′n = ck and (V AV )(n, n) =
A(k, k).

Lemma 5.19. Let A be an invertible n × n matrix and k ∈ {1, . . . , n}, such
that A(k) is invertible. Then we obtain:

trA−1 − trA(k)−1 = 1 + rkA
(k)−2ck

A(k, k)− rkA(k)−1ck
,

where rk denotes the k-th row of A without the k-th entry and ck denotes the
k-th column of A without the k-th entry.

Proof. We first prove the statement for k = n. The Schur complement inversion
formula for

A =
(
A(n) cn
rn A(n, n)

)
yields with B := A(n, n)− rnA

(n)−1cn ∈ C, that

A−1 =
(
A(n)−1 + A(n)−1cnB

−1rnA
(n)−1 −A(n)−1cnB

−1

−B−1rnA
(n)−1 B−1

)
.

Therefore, since the trace is linear and only depends on the diagonal block
matrices, we find

trA−1 − trA(n)−1 = tr
(
A(n)−1cnB

−1rnA
(n)−1 0

0 B−1

)
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= 1
B

tr
(
A(n)−1cnrnA

(n)−1 0
0 1

)
= 1

B

(
1 + rnA

(n)−2cn

)
,

where we used the cyclic property of the trace in the last step. This concludes
the statement for k = n. Now if k < n, let V be the permutation matrix as in
the proof of Lemma 5.18, then since A(k) = (V AV )(n), we obtain with first part
that

trA−1 − trA(k)−1 = trV A−1V − tr(V AV )(n)−1

= tr(V AV )−1 − tr(V AV )(n)−1

= 1 + r′n(V AV )(n)−2c′n
(V AV )(n, n)− r′n(V AV )(n)−2c′n

where r′n (resp. c′n) is the n-th row (resp. column) of V AV without the n-th
entry. This concludes the statement, since r′n = rk, c′n = ck, and (V AV )(n, n) =
A(k, k).

6. The semicircle and MP laws by the Stieltjes transform method

6.1. General strategy and quadradic form estimates

In this very short section we introduce a general strategy behind the proofs
of limit laws in random matrix theory utilizing Stieltjes transforms. We also
introduce some versatile quadratic form estimates which allow us to carry out
smooth proofs of the semicircle law and Marchenko-Pastur law in the following
sections. Assume that (σn)n is a sequence of ESDs of Wigner matrices and (μn)n
is a sequence of ESDs of MP matrices. We would like to argue that σn → σ or
μn → μy weakly for some y > 0, and in some stochastic sense, for example in
probability or almost surely. To this end, we carry out the following three steps,
where notationally, either ρn = σn and ρ = σ, or ρn = μn and ρ = μy:

1. We show that the Stieltjes transform Sρ of the limit measure ρ satisfies a
self-consistent quadratic equation and that the solutions can be separated
so that if some Sν solves the equation for some probability measure ν on
R (if ρ = σ) or on R+ (if ρ = μy), then necessarily Sν = Sρ.

2. Applying the Schur complement formula, the Stieltjes transforms of the
ESDs ρn can be written as a sum of inverses of complex numbers. We
decompose each summand into a part pertaining to the self-consistent
equation (the wanted part w) and an error term (the remainder r), using

1
w + r

= 1
w
− r

w(w + r) . (6.1)

We establish that if the error term converges to zero in probability resp.
almost surely, the limit law holds in probability resp. almost surely.
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3. We establish that the error term converges to zero almost surely by em-
ploying quadratic form estimates in combination with an estimate on the
difference of Stieltjes transforms of the ESD of a random matrix and its
minors. Quadratic form estimates are elementary yet very powerful. They
belong to the main ingredients to prove some of the most fruitful results
in contemporary random matrix theory – namely the so-called local laws,
see [8] or [22].

For the third step, we use quadratic form estimates which can later be applied
to Wigner and Marchenko-Pastur matrices. In the following, for p ≥ 1 the
norm ‖ · ‖p shall denote the Lp(P)-seminorm, so for any random variable Y :
(Ω,A,P) −→ C, ‖Y ‖p = (E|Y |p)1/p.
Theorem 6.1 (Marcinkiewicz-Zygmund Inequality). If Y1, . . . , Yn are indepen-
dent, centered and complex-valued random variables with existing absolute mo-
ments, then for every p ≥ 1 there exists a positive constant Ap which depends
only on p, such that ∥∥∥∥∥

n∑
i=1

Yi

∥∥∥∥∥
p

≤ Ap

∥∥∥∥∥∥
(

n∑
i=1
|Yi|2

) 1
2
∥∥∥∥∥∥
p

Proof. In [16, p. 386], the statement is proved for independent real-valued ran-
dom variables. The statement is extended to the complex valued case in [5,
p. 33].

We now formulate an important lemma, which is mainly based on Theo-
rem 6.1.

Lemma 6.2. Let Y1, . . . , Yn be independent, centered and complex-valued ran-
dom variables which are uniformly ‖ · ‖p-bounded for all p ≥ 2. Then it holds
for any complex numbers (bi)i∈[n] and (ai,j)i,j∈[n]

i) ∀ p ≥ 2 :

∥∥∥∥∥
n∑

i=1
biYi

∥∥∥∥∥
p

≤ Ap

(
n∑

i=1
|bi|2

) 1
2

,

ii) ∀ p ≥ 2 :

∥∥∥∥∥∥
n∑

i �=j=1
ai,jYiYj

∥∥∥∥∥∥
p

≤ Ap

⎛⎝ n∑
i �=j=1

|ai,j |2
⎞⎠

1
2

,

where Ap is a constant depending only on p and the uniform ‖ · ‖p-bound.

Proof. The proofs of the two statements can be found in [8].

The following theorem establishes deviation bounds for the expressions in
Lemma 6.2, when the constants bi and ai,j are replaced by functions of random
variables.

Theorem 6.3. Let for all n ∈ N, Y and W be n-dependent objects (Y =
Y (n),W = W (n)) that satisfy the following for all n ∈ N:
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• W = W (n) is a finite index set.
• YW = (Yi)i∈W = (Y (n)

i )i∈W (n) = Y
(n)
W (n) is a family of independent, real-

valued and centered random variables, so that for all p ≥ 2, the family
(Y (n)

i : i ∈W (n), n ∈ N) is uniformly Lp-bounded.

Further, denote for all subsets K ⊆ W by FW (RK) the set of tuples C =
(Ci)i∈W , where for each i ∈ W , Ci : RK → C is a complex-valued measurable
function. Analogously, define for all subsets K ⊆ W by FW×W (RK) the set of
tuples C = (Ci,j)i,j∈W , where for all i, j ∈ W , Ci,j : RK → C is a complex-
valued measurable function. Then we obtain the following probability bounds:

i) For all ε,D > 0 there is a constant Cε,D ≥ 0, such that for all n ∈ N,
all disjoint subsets I,K ⊆ W and all function tuples B ∈ FW (RK) the
following holds:

P

⎛⎝∣∣∣∣∣∑
i∈I

Bi[YK ]Yi

∣∣∣∣∣ > nε ·
√∑

i∈I

|Bi[YK ]|2
⎞⎠ ≤ Cε,D

nD
.

ii) For all ε,D > 0 there is a constant Cε,D ≥ 0, such that for all n ∈ N,
all disjoint subsets I,K ⊆W , and all function tuples A ∈ FW×W (RK) the
following holds:

P

⎛⎝∣∣∣∣∣∣
∑

i,j∈I,i �=j

YiAi,j [YK ]Yj

∣∣∣∣∣∣ > nε ·
√ ∑

i,j∈I,i �=j

|Ai,j [YK ]|2
⎞⎠ ≤ Cε,D

nD
.

Proof. We only prove ii), since i) can be proved analogously. Let ε,D > 0 be
arbitrary and choose p ∈ N with p ≥ 2 so large that pε > D. Then we pick an
n ∈ N, disjoint subsets I,K ⊆ W (n) and a function tuple A ∈ FW×W (RK). To
avoid division by zero, we define the set:

A2 :=

⎧⎨⎩yK ∈ RK |
∑

i,j∈I,i �=j

|Ai,j [yK ]|2 > 0

⎫⎬⎭ .

Then we conduct the following calculation (explanations are found below the
calculation; the sums over “i �= j” are over all i, j ∈ I with i �= j):

P

⎛⎜⎝
∣∣∣∣∣∣
∑
i �=j

YiAi,j [YK ]Yj

∣∣∣∣∣∣ > nε

⎛⎝∑
i �=j

|Ai,j [YK ]|2
⎞⎠

1
2
⎞⎟⎠

= P

⎛⎜⎝
∣∣∣∣∣∣∣

∑
i �=j YiAi,j [YK ]Yj(∑
i �=j |Ai,j [YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A2(YK) > npε

⎞⎟⎠
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≤ 1
npε

E

∣∣∣∣∣∣∣
∑

i �=j YiAi,j [YK ]Yj(∑
i �=j |Ai,j [YK ]|2

) 1
2

∣∣∣∣∣∣∣
p

1A2(YK)

= 1
npε

∫
RK

∫
RI

∣∣∣∣∣∣∣
∑

i �=j yiAi,j [yK ]yj(∑
i �=j |Ai,j [yK ]|2

) 1
2

∣∣∣∣∣∣∣
p

dPYI (yI)1A2(yK)dPYK (yK)

≤ (Ap)p

npε
≤ (Ap)p

nD

where the first step follows from the fact that for∣∣∣∣∣∣
∑
i �=j

YiAi,j [YK ]Yj

∣∣∣∣∣∣ > nε

⎛⎝∑
i �=j

|Ai,j [YK ]|2
⎞⎠

1
2

to hold, not all Ai,j [YK ] may vanish, in the second step we used Markov’s
inequality, in the third step we used Fubini, in the fourth step we applied
Lemma 6.2 and in the last step we used the choice of p in the beginning of
the proof. Note that (Ap)p denotes a constant which depends only on p, which
in turn depends only on the choices of ε and D. In particular, this constant does
not depend on the choice of n ∈ N, the sets I and K or the function tuple A.
This shows ii).

6.2. The semicircle law

We follow the general strategy outlined in Section 6.1.

Step 1: Self-consistent equation and separation of solutions

The first step of the proof consists of the following lemma:

Lemma 6.4. The Stieltjes transform of the semicircle distribution σ is given
by

∀ z ∈ C+ : Sσ(z) = −z +
√
z2 − 4

2 ,

where we use the convention that
√· denotes the complex square root with non-

negative imaginary part. Consider the following equation in m ∈ C, where z ∈
C+ is fixed:

m = 1
−z −m

(6.2)

Then the following statements hold:

i) The solutions to (6.2) are given by

m+,− = −z ±
√
z2 − 4

2 .
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ii) Sσ(z) is the positive branch of the solution in (6.2), that is, Sσ(z) = m+.
iii) For the denominator in (6.2) it holds Im(−z −m−) ≥ −1

2 Im(z)
iv) If ν ∈M1(R), then for all z ∈ C+ it holds

Im(−z − Sν(z)) ≤ − Im(z).

In particular, if Sν(z) satisfies (6.2), we must have Sν(z) = Sσ(z).

Proof. The Stieltjes transform of the semicircle distribution is derived in Lemma
2.11 in [5]. Statements i) and ii) can be shown directly by solving the quadratic
equation (6.2). Statement iii) follows since

Im
(
−z − −z −

√
z2 − 4

2

)
= − Im(z) + Im(z)

2 + Im
√
z2 − 4
2 ≥ − Im(z)

2 ,

since we defined the complex square root
√· to be the square root with non-

negative imaginary part. Statement iv) follows trivially since ImSν(z) ≥ 0.

Step 2: Derivation of the error term

By Theorem 5.16 i), the Stieltjes transform sn of a Wigner matrix 1√
n
Xn is

given by

sn(z) = 1
n

∑
k∈[n]

1
1√
n
Xn(k, k)− z − 1

nx
T
k

(
1√
n
X

(k)
n − z

)−1
xk

, (6.3)

where X
(k)
n denotes the k-th principle minor of Xn and xk the k-th column of

Xn without the k-th entry. The desired denominator in each summand of (6.3)
is

−z − sn(z),

stemming from the self-consistent equation (6.2). In the k-th summand for k ∈
{1, . . . , n}, we obtain the remainder term

Ω(k)
n (z) := 1√

n
Xn(k, k) + sn(z)− 1

n
xT
k

(
1√
n
X(k)

n − z

)−1

xk. (6.4)

Using (6.1), we conclude

sn(z) = 1
−z − sn(z) − δn(z) (6.5)

with

δn(z) = 1
n

∑
k∈[n]

Ω(k)
n (z)

(−z − sn(z))(−z − sn(z) + Ω(k)
n (z))

.
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The error term δn(z) can be bounded in absolute terms as follows: By Lemma 6.4,
we find

∀n ∈ N : Im(−z − sn(z)) ≤ − Im(z).

If we assume
max

k
|Ω(k)

n (z)| ≤ 1
2 Im(z) (6.6)

we may therefore conclude

|δn(z)| =

∣∣∣∣∣∣ 1n
∑
k∈[n]

Ω(k)
n (z)

(−z − sn(z))(−z − sn(z) + Ω(k)
n (z))

∣∣∣∣∣∣
≤ 1

n

∑
k∈[n]

|Ω(k)
n |

Im(z)2/2 ≤ 2
Im(z)2 max

k
|Ω(k)

n |. (6.7)

The following lemma puts our findings into perspective:

Theorem 6.5. In above situation, the following statements hold for any fixed
z ∈ C+:

i) If in (6.5), δn(z) → 0 in probability resp. almost surely, then sn(z) → s(z)
in probability resp. almost surely.

ii) If maxk∈[n] |Ω(k)
n (z)| −−−−→

n→∞
0 in probability resp. almost surely, then δn(z) →

0 in probability resp. almost surely.

Proof. Statement ii) follows with (6.7), using (6.6). We proceed to show state-
ment i) in the almost sure sense. Fix z ∈ C+. Let A be a measurable set with
P(A) = 1, on which δn(z) → 0. Let ω ∈ A be arbitrary, and denote by sωn(z)
the realization of sn(z) at ω. To show that sωn(z) converges to s(z), we show
that any subsequence of sωn(z) contains another subsequence that converges to
s(z). To this end, let J ⊆ N be a subsequence. Then (sωn(z))n∈J is a bounded
sequence of complex numbers (with absolute bound Im(z)−1 > 0), therefore has
a convergent subsequence (sωn(z))n∈I , I ⊆ J , with some limit t ∈ C (Bolzano-
Weierstrass). Considering (6.5), t satisfies

t = 1
−z − t

.

Since Im(−z − sωn(z)) ≤ − Im(z) by Lemma 6.4, we find Im(−z − t) ≤ − Im(z),
so t = s(z) by Lemma 6.4. We have seen that any subsequence of (sωn(z))n∈N has
a subsequence which converges to s(z). Therefore, sn(z) → s(z) on A, that is,
almost surely. Statement i) in probability follows from the almost sure version
we just proved, using Lemma 2.27: To show that sn(z) → s(z) in probability, it
suffices to show that for any subsequence I ⊆ N there is a subsequence J ⊆ I
such that sn(z) → s(z) for n ∈ J . So let I ⊆ N be an arbitrary subsequence.
Since δn(z) → 0 in probability, there is a subsequence J ⊆ I with δn(z) → 0
almost surely for n ∈ J . But then sn(z) → s(z) for n ∈ J almost surely as we
just proved above. This completes the argument.
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Step 3: Analysis of the error term

By Theorem 6.5, it suffices to show that maxk∈[n] |Ω(k)
n (z)| −−−−→

n→∞
0 in probabil-

ity or almost surely, where Ω(k)
n (z) was defined in (6.4). In this subsection, we

will show almost sure convergence. Note that

Ω(k)
n (z) = 1√

n
Xn(k, k)

− 1
n

n∑
i �=j

xk(i)
(

1√
n
X(k)

n − z

)−1
(i, j)xk(j)

− 1
n

n∑
i=1

(xk(i)2 − 1)
(

1√
n
X(k)

n − z

)−1

(i, i)

− 1
n

tr
(

1√
n
X(k)

n − z

)−1

+ sn(z)

=: A(n, k) + B(n, k, z) + C(n, k, z) + D(n, k, z). (6.8)

We will analyze these four terms separately and show that their maxima
over k ∈ {1, . . . , n} converge to zero almost surely. For B and C we will use
Theorem 6.3, whereas for D we will use Theorem 5.16 ii).

Lemma 6.6. In (6.8), maxk∈[n] |A(n, k)| → 0 almost surely as n→∞.

Proof. Let C8 be an upper bound of E(Xn(i, j))8 for all n, i, j, then we find

∀n ∈ N : ∀ k ∈ [n] : P

(∣∣∣∣ 1√
n
Xn(k, k)

∣∣∣∣ > 1
n

1
8

)
= P

(
|Xn(k, k)|8 >

n4

n

)
≤ C8

n3 .

Therefore, taking the union bound, we obtain for all n ∈ N:

P

(
max
k∈[n]

∣∣∣∣ 1√
n
Xn(k, k)

∣∣∣∣ > 1
n

1
8

)
≤

∑
k∈[n]

P

(∣∣∣∣ 1√
n
Xn(k, k)

∣∣∣∣ > 1
n

1
8

)
≤ nC8

n3

which converges to zero summably fast. This concludes the proof by Borel-
Cantelli.

For B(n, k, z) we define the terms

S(n, k, z) :=
n∑

i �=j

xk(i)
(

1√
n
X(k)

n − z

)−1

(i, j)xk(j)

and

R(n, k, z) :=

√√√√ n∑
i �=j

∣∣∣∣∣
(

1√
n
X

(k)
n − z

)−1

(i, j)

∣∣∣∣∣
2

to employ Theorem 6.3 ii). To bound R(n, k, z), we use the following trivial
lemma:



Proof methods in RMT 371

Lemma 6.7. Let X be an n× n random matrix and z ∈ C+. Then√ ∑
i,j∈[n]

|(X − z)−1(i, j)|2 ≤
√
n

Im(z) .

Proof. For n × n matrices X, the general inequality ‖X‖F ≤
√
n‖X‖op holds,

where ‖·‖F is the Frobenius norm and ‖·‖op is the operator norm. On the other
hand, for any self-adjoint n×n matrix X, ‖(X−z)−1‖op ≤ Im(z)−1. Combining
these facts, we obtain√ ∑

i,j∈[n]

|(X − z)−1(i, j)|2 = ‖(X − z)−1‖F ≤
√
n‖(X − z)−1‖op ≤

√
n

Im(z) .

Lemma 6.8. In (6.8), maxk∈[n] |B(n, k, z)| → 0 almost surely as n→∞.

Proof. Using the terms S(n, k, z) and R(n, k, z) defined above, we find by
Lemma 6.7 that

|R(n, k, z)| ≤
√
n

Im(z) ,

Therefore, using Theorem 6.3 ii) with ε = 1/4 and D = 3, we obtain a constant
C 1

4 ,3 ≥ 0, such that for all n ∈ N and all k ∈ [n]:

P

(
|B(n, k, z)| > n

1
4
√
n

n Im(z)

)
≤ P

(
|S(n, k, z)| > n

1
4R(n, k, z)

)
≤

C 1
4 ,3

n3 .

Applying the union bound as in the proof of Lemma 6.6 concludes the statement.

For C(n, k, z), we define the terms

S′(n, k, z) :=
∑
i∈[n]

(xk(i)2 − 1)
(

1√
n
X(k)

n − z

)−1

(i, i)

and

R′(n, k, z) :=

√√√√√∑
i∈[n]

∣∣∣∣∣
(

1√
n
X

(k)
n − z

)−1
(i, i)

∣∣∣∣∣
2

to employ Theorem 6.3 i).

Lemma 6.9. In (6.8), maxk∈[n] |C(n, k, z)| → 0 almost surely as n→∞.

Proof. Using the terms S′(n, k, z) and R′(n, k, z) defined above, we find by
Lemma 6.7 that

|R′(n, k, z)| ≤
√
n

Im(z) ,



372 M. Fleermann and W. Kirsch

Therefore, using Theorem 6.3 i) with ε = 1/4 and D = 3, we obtain a constant
C 1

4 ,3 ≥ 0, such that for all n ∈ N and all k ∈ [n]:

P

(
|C(n, k, z)| > n

1
4
√
n

n

)
≤ P

(
|S′(n, k, z)| > n

1
4R′(n, k, z)

)
≤

C 1
4 ,3

n3 .

Applying the union bound as in the proof of Lemma 6.6 concludes the statement.

Lemma 6.10. In (6.8), maxk∈[n] |D(n, k, z)| → 0 almost surely as n→∞.

Proof. With Theorem 5.16 ii), we obtain for any n ∈ N and k ∈ [n] that
|D(n, k, z)| ≤ (n Im(z))−1, so that

max
k∈[n]

|D(n, k, z)| ≤ 1
n Im(z) −−−−→n→∞

0 almost surely.

Theorem 6.11. In above situation, we find for any fixed z ∈ C+ that

max
k∈[n]

|Ω(k)
n (z)| −−−−→

n→∞
0 almost surely.

Proof. This follows directly by the decomposition (6.8) with Lemma 6.6,
Lemma 6.8, Lemma 6.9 and Lemma 6.10.

6.3. The Marchenko-Pastur law

Again, we follow the general strategy outlined in Section 6.1.

Step 1: Self-consistent equation and separation of solutions

The first step of the proof consists of the following lemma:

Lemma 6.12. Fix y > 0. The Stieltjes transform of the Marchenko-Pastur
distribution μy is given by

∀ z ∈ C+ : Sμy (z) =
1− y − z +

√
(z − 1− y)2 − 4y
2yz .

Consider the equation in m ∈ C, where z ∈ C+ is fixed:

m = 1
1− z − y − yzm

(6.9)

Then the following statements hold:

i) The solutions to (6.9) are given by

m+,− =
1− y − z ±

√
(1− y − z)2 − 4yz
2yz .
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ii) Sμy (z) is the positive branch of the solutions to (6.9), that is, Sμy (z) = m+.
iii) For the denominator in (6.9) it holds Im(1− z − y − yzm−) ≥ −1

2 Im(z).
iv) If ν ∈M1([0,∞)), then for all z ∈ C+ we find

Im(1− z − y − yzSν(z)) ≤ − Im(z)

In particular, if Sν(z) satisfies (6.9), we must have Sν(z) = Sμy (z).

Proof. The Stieltjes transform Sμy is derived in Lemma 3.11 in [5]. Statement
i) is verified by solving the quadratic equation (6.9). For ii), we calculate (1 −
y − z)2 − 4yz = z2 − 2yz + y2 − 2y − 2z + 1 = (z − y − 1)2 − 4y. For iii), we
calculate

Im(1− z − y − yzm−)

= Im
(

1− z − y − yz
1− y − z −

√
(1− y − z)2 − 4yz
2yz

)

= Im
(

1− y − z +
√

(1− y − z)2 − 4yz
2

)

= 1
2

⎛⎜⎝− Im(z) + Im
√

(1− y − z)2 − 4yz︸ ︷︷ ︸
≥0 per definition of

√
·

⎞⎟⎠ ≥ − Im(z)
2 .

For iv), note that with z = E + iη, where E ∈ R and η > 0, we find

Im(zSν(z)) = Re(z) ImSν(z) + Im(z)ReSν(z)

= E

∫
η

(x− E)2 + η2 ν(dx) + η

∫
x−E

(x−E)2 + η2 ν(dx)

= η

∫
x

(x− E)2 + η2 ν(dx).

Therefore,

Im(1− z − y − yzSν(z)) = −η − yη

∫
[0,∞)

x

(x− E)2 + η2 ν(dx)

= −η
(

1 + y

∫
[0,∞)

x

(x−E)2 + η2 ν(dx)
)

≤ −η.

The very last statement follows with part iii).
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Step 2: Derivation of the error term

By Theorem 5.16 i), the Stieltjes transform sn of an MP matrix 1
nXnX

T
n is

given by

sn(z) = 1
p

p∑
k=1

1
1
nα

T
k αk − z − 1

n2αT
kX

(k)T
n

(
1
nX

(k)
n X

(k)T
n − z

)−1
X

(k)
n αk

, (6.10)

where αT
k is the k-th row of Xn (note that αk also depends on n, which we drop

from the notation), X(k)
n is Xn with k-th row removed (thus a (p−1)×n-matrix).

The desired denominator in each summand of (6.10) is

1− z − yn − ynzsn(z),

stemming from the self-consistent equation (6.9), where yn := p/n and it is
assumed that there exists a y ∈ (0,∞) such that yn → y. (It is favorable to
work with yn instead of y, since this leads to a cancellation within the error
term Ω(k)

n (z) we define below, see the proof of Lemma 6.18 below.) In the k-th
summand for k ∈ {1, . . . , p}, we obtain the remainder term

Ω(k)
n (z) := 1

n
αT
k αk−1− 1

n2α
T
kX

(k)T
n

(
1
n
X(k)

n X(k)T
n − z

)−1

X(k)
n αk+yn+ynzsn(z).

(6.11)
Using (6.1), we conclude

sn(z) = 1
1− z − yn − ynzsn(z) − δn(z) (6.12)

with

δn(z) = 1
p

p∑
k=1

Ω(k)
n (z)

(1− z − yn − ynzsn(z))(1− z − yn − ynzsn(z) + Ω(k)
n (z))

.

The error term δn(z) can be bounded in absolute terms as follows: By Lemma 6.12,
we find

∀n ∈ N : Im(1− z − yn − ynzsn(z)) ≤ − Im(z).
If we assume

max
k∈[p]

|Ω(k)
n (z)| ≤ 1

2 Im(z) (6.13)

we may therefore conclude

|δn(z)| =
∣∣∣∣∣1p

p∑
k=1

Ω(k)
n (z)

(1− z − yn − ynzsn(z))(1− z − yn − ynzsn(z) + Ω(k)
n (z))

∣∣∣∣∣
≤ 1

p

p∑
k=1

|Ω(k)
n |

Im(z)2/2 ≤ 2
Im(z)2 max

k∈[p]
|Ω(k)

n |. (6.14)

The following lemma puts our findings into perspective:
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Theorem 6.13. In above situation, the following statements hold for any fixed
z ∈ C+:

i) If in (6.12), δn(z) → 0 in probability resp. almost surely, then sn(z) → s(z)
in probability resp. almost surely.

ii) If maxk∈[p] |Ω(k)
n (z)| −−−−→

n→∞
0 in probability resp. almost surely, then δn(z) →

0 in probability resp. almost surely.

Proof. Statement ii) follows with (6.14), using (6.13). We proceed to show state-
ment i) in the almost sure sense. Fix z ∈ C+. Let A be a measurable set with
P(A) = 1, on which δn(z) → 0. Let ω ∈ A be arbitrary, and denote by sωn(z)
the realization of sn(z) at ω. To show that sωn(z) converges to s(z), we show
that any subsequence of sωn(z) contains another subsequence that converges to
s(z). To this end, let J ⊆ N be a subsequence. Then (sωn(z))n∈J is a bounded
sequence of complex numbers (with absolute bound Im(z)−1 > 0), therefore has
a convergent subsequence (sωn(z))n∈I , I ⊆ J , with some limit t ∈ C (Bolzano-
Weierstrass). Also, as n → ∞ we find yn → y. Therefore, considering (6.12), t
satisfies

t = 1
1− z − y − yzt

.

For all realizations of the ESDs μn of 1
nXnX

T
n , μn([0,∞)) = 1, since the matrix

has only non-negative spectrum. Therefore, by Lemma 6.12,

∀n ∈ I : Im(1− z − y − yzsωn(z)) ≤ − Im(z),

so also Im(1− z − y− yzt) ≤ − Im(z), hence t = s(z) by Lemma 6.12. We have
seen that any subsequence of (sωn(z))n∈N has a subsequence which converges
to s(z). Therefore, sn(z) → s(z) on A, that is, almost surely. The statement
about convergence in probability can be proved verbatim as in the proof of
Theorem 6.5.

Step 3: Analysis of the error term

By Theorem 6.13, it suffices to show that maxk∈[p] |Ω(k)
n (z)| −−−−→

n→∞
0 in proba-

bility or almost surely, where Ω(k)
n (z) was defined in (6.11). In this subsection,

we show almost sure convergence. Note that

Ω(k)
n (z) = 1

n
αT
k αk − 1

− 1
n2

n∑
i �=j

αk(i)
[
X(k)T

n

(
1
n
X(k)

n X(k)T
n − z

)−1

X(k)
n

]
(i, j)αk(j)

− 1
n2

n∑
i=1

(αk(i)2 − 1)
[
X(k)T

n

(
1
n
X(k)

n X(k)T
n − z

)−1

X(k)
n

]
(i, i)

− 1
n2 tr

[
X(k)T

n

(
1
n
X(k)

n X(k)T
n − z

)−1

X(k)
n

]
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+ yn + ynzsn(z) + yn + ynzsn(z)
=: A(n, k) + B(n, k, z) + C(n, k, z) + D(n, k, z). (6.15)

We will analyze these four terms separately and show that their maxima
over k ∈ {1, . . . , p} converge to zero almost surely. For A, B and C we will use
Theorem 6.3, whereas for D we will use Theorem 5.16 ii).

Lemma 6.14. In (6.15), maxk∈[p] |A(n, k)| → 0 almost surely as n→∞.

Proof. We employ Theorem 6.3 i) with Bi ≡ 1, ε = 1/4 and D = 3 to obtain a
constant C 1

4 ,3 ≥ 0 such that

∀n ∈ N : ∀ k ∈ [p] : P

⎛⎝∣∣∣∣∣∣ 1n
∑
i∈[n]

(Xn(k, i)2 − 1)

∣∣∣∣∣∣ > n1/4√n

n

⎞⎠ ≤
C 1

4 ,3

n3 .

Therefore, taking the union bound, we obtain for all n ∈ N:

P

⎛⎝max
k∈[p]

∣∣∣∣∣∣ 1n
∑
i∈[n]

(Xn(k, i)2 − 1)

∣∣∣∣∣∣ > n1/4√n

n

⎞⎠ ≤
pC1/4,3

n3

which converges to zero summably fast. This concludes the proof by Borel-
Cantelli.

For B(n, k, z), we define the terms

S(n, k, z) :=
n∑

i �=j

αk(i)
[
X(k)T

n

(
1
n
X(k)

n X(k)T
n − z

)−1

X(k)
n

]
(i, j)αk(j)

and

R(n, k, z) :=

√√√√ n∑
i �=j

∣∣∣∣∣
[
X

(k)T
n

(
1
n
X

(k)
n X

(k)T
n − z

)−1

X
(k)
n

]
(i, j)

∣∣∣∣∣
2

to employ Theorem 6.3 ii). To bound R(n, k, z), we formulate the following
lemma, which is taken from [27]:

Lemma 6.15. Let X be a p×n matrix with real-valued entries, z ∈ C+. Define

F (X) := XT

(
1
n
XXT − z

)−1

X. (6.16)

Then we obtain the following bound:√ ∑
i,j∈[n]

|Fij(X)|2 ≤ n
√
p

(
1 + |z|

Im(z)

)

Proof. We recall that
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a) Spectrum(XT (XXT − z)−1X)∪{0} = Spectrum((XXT − z)−1XXT )∪{0},
b) (XXT − z)−1XXT = I + z(XXT − z)−1,

and that ‖ · ‖F ≤ √
m‖ · ‖op for m × m matrices, where ‖ · ‖F denotes the

Frobenius norm and ‖ · ‖op denotes the operator norm. Therefore,

√ ∑
i,j∈[n]

|Fij(X)|2 = n

∥∥∥∥∥ 1
n
XT

(
1
n
XXT − z

)−1

X

∥∥∥∥∥
F

= n

∥∥∥∥∥
(

1
n
XXT − z

)−1 ( 1
n
XXT

)∥∥∥∥∥
F

= n

∥∥∥∥∥Ip + z

(
1
n
XXT − z

)−1
∥∥∥∥∥
F

≤ n
√
p

∥∥∥∥∥Ip + z

(
1
n
XXT − z

)−1
∥∥∥∥∥
op

≤ n
√
p

(
1 + |z|

Im(z)

)
.

Lemma 6.16. In (6.15), maxk∈[p] |B(n, k, z)| → 0 almost surely as n→∞.

Proof. Using the terms S(n, k, z) and R(n, k, z) defined above, we find by
Lemma 6.15 that

|R(n, k, z)| ≤ n
√
pc(z),

where c(z) = 1 + |z|/ Im(z). Therefore, using Theorem 6.3 ii) with ε = 1/8 and
D = 3, we obtain a constant C 1

8 ,3 ≥ 0, such that for all n ∈ N and all k ∈ [p]:

P

(
|B(n, k, z)| > n

1
8n
√
p

n2 c(z)
)
≤ P

(
|S(n, k, z)| > n

1
8R(n, k, z)

)
≤

C 1
8 ,3

n3 .

Using the union bound as in the proof of Lemma 6.14 concludes the statement.

For C(n, k, z), we define the terms

S′(n, k, z) :=
∑
i∈[n]

(αk(i)2 − 1)
[
X(k)T

n

(
1
n
X(k)

n X(k)T
n − z

)−1
X(k)

n

]
(i, i)

and

R′(n, k, z) :=

√√√√√∑
i∈[n]

∣∣∣∣∣
[
X

(k)T
n

(
1
n
X

(k)
n X

(k)T
n − z

)−1
X

(k)
n

]
(i, i)

∣∣∣∣∣
2

to employ Theorem 6.3 i).

Lemma 6.17. In (6.15), maxk∈[p] |C(n, k, z)| → 0 almost surely as n→∞.

Proof. Using the terms S′(n, k, z) and R′(n, k, z) defined above, we find by
Lemma 6.15 that

|R′(n, k, z)| ≤ n
√
pc(z),
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where c(z) = 1 + |z|/ Im(z). Therefore, using Theorem 6.3 i) with ε = 1/8 and
D = 3, we obtain a constant C 1

8 ,3 ≥ 0, such that for all n ∈ N and all k ∈ [p]:

P

(
|C(n, k, z)| > n

1
8n
√
p

n2 c(z)
)
≤ P

(
|S′(n, k, z)| > n

1
8R′(n, k, z)

)
≤

C 1
8 ,3

n3 .

Using the union bound as in the proof of Lemma 6.14 concludes the statement.

Lemma 6.18. In (6.15), maxk∈[p] |D(n, k, z)| → 0 almost surely as n→∞.

Proof. With the observations a) and b) in the proof of Lemma 6.15 and setting
X := X

(k)
n , we calculate

− 1
n2 tr

[
XT

(
1
n
XXT − z

)−1

X

]
= − 1

n2 tr
[(

1
n
XXT − z

)−1

XXT

]

= − 1
n

tr
[
Ip−1 + z

(
1
n
XXT − z

)−1
]

= − p

n
+ 1

n
− z

n
tr

(
1
n
XXT − z

)−1

Hence, using that yn = p/n and with Theorem 5.16 ii) (Note that our construc-
tion of X(k)

n differs from that in the theorem), we obtain

|D(n, k, z)| =
∣∣∣∣∣− p

n
+ 1

n
− z

n
tr

(
1
n
X(k)

n X(k)T
n − z

)−1

+ yn + ynz
1
p

tr
(

1
n
XnX

T
n − z

)−1
∣∣∣∣∣

≤ 1
n

+ |z|
n Im(z) .

Since this bound holds uniformly for all k ∈ {1, . . . , p}, it follows that

max
k∈[p]

|B(n, k)| ≤ 1
n

+ |z|
n Im(z) −−−−→n→∞

0 surely.

Theorem 6.19. In above situation, we find for any fixed z ∈ C+ that

max
k∈[p]

|Ω(k)
n (z)| −−−−→

n→∞
0 almost surely.

Proof. This follows directly by the decomposition (6.15) with Lemma 6.14,
Lemma 6.16, Lemma 6.17 and Lemma 6.18.
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