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1. Introduction

Fragmentation plays a fundamental role in numerous applications arising both in
natural science and in industrial processes. Most often, in these phenomena one
needs to describe how the clusters present in the process evolve in time and more
precisely how do they break into smaller clusters. This is an important topic in
physics (engine reactions), astrophysics (formation of asteroids), in geophysics
(landslide, avalanches), in the copper industry, etc.

For answering this question several issues can be concerned. We study in
this paper the fragmentation equation which describes the time evolution of a
particle system which is characterized by particle masses. We will consider here
binary fragmentation procedure, that means that at some times a particle can
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split into two particles of smaller masses. We suppose in our model that the
described phenomenon preserves the global mass of the system.

Denote by c(t, x) the concentration of particles of mass x in the system
at time t. The fragmentation equation is the following deterministic integro-
differential equation, for all x ∈ R+ and t ∈ R+:⎧⎨⎩

∂c(t, x)
∂t

= −F (x)c(t, x) +
∫ +∞

0
c(t, x + y)F (x + y)G(x + y,dy)

c(0, x) = c0(x),
(1.1)

where F is a function, called the rate, and G(x, ·) is a probability kernel with
support in (0, x).

In the first line of equation (1.1), the first term in the right hand side accounts
for the disappearance of particles of mass x after a breakage and the second term
specifies the mass of a randomly chosen fragment after the breakage.

A huge literature deals with this equation. Both deterministic and stochastic
interpretations have been considered. In some of these papers the coagulation-
fragmentation phenomenon is also treated. Existence results are obtained in
[33, 63, 64, 71, 74]. The analytic treatment of fragmentation equations is usually
dealt using the theory of semi-groups, which is sometimes difficult to handle due
to the variety of behaviors of fragmentation kernels. An extensive account may
be found in the book [9].

The main objective of this paper is to discuss and describe the various stochas-
tic approaches of these equations and to highlight possible links between the
stochastic tools that can be used. The stochastic approach is namely based on
the conservation of mass observed in the physical system which induces naturally
the construction of a random process with a distribution of the form xc(x, t) dx.
This representation leads to a natural interpretation for both discrete and con-
tinuous masses. Such analysis was started by A.N. Kolmogorov [60].

In particular, our probabilistic representations are derived one from the other,
starting from the simplest one using Continuous Time Markov Chain as in [40] to
end up with Stochastic Differential Equations with Jumps as in [44] and passing
through Random Point Processes. As all these representations are equivalent,
one may choose the most appropriate framework according to the problem to
solve, as each representation comes with different tools and viewpoints.

We focus on generic results in the sense that we do not consider particular
shapes of the kernels and their related properties. This is a wide subject. To
keep things simple and to focus on applied results, we left aside probabilistic
representations in terms of clouds of particles or in branching processes where
the states space encodes all the particles’ mass. Such representations require
higher levels of abstraction. The book of J. Bertoin [12] (see also [13]) presents
a detailed panorama on Continuous Time Markov Chain. A recent paper gives
an interpretation of the fragmentation in terms of branching processes [16].
More precisely, the paper constructs a continuous time Markov branching pro-
cess which is associated to the fragmentation equation and which lives in the
state space S↓ of all fragmentation sizes, introduced by J. Bertoin in [12]. This
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interpretation is applied further to a particular class of kernels (non smooth),
connected to the avalanches and new results are obtained for this context [17].
A numerical algorithm, based on these stochastic interpretations, is developped
in [18].

Coagulation phenomenon is usually studied with fragmentation. Yet, it leads
to more intricate results as the coagulation induces some non-linear behaviors.

Related problems

Many other approaches are connected and developed for the fragmentation equa-
tion. We focus here on some directions without being exhaustive as the literature
on this topic is very large and in particular we emphasize the probabilistic ap-
proach for these issues.

Our study concerns the integro-differential equation (1.1) and highlights
classes of stochastic processes that can be linked to it.

This is completely different with respect to the works of J. Bertoin and co-
authors where in some sense a development of the fragmentation is given by
studying partitions and associated fragmentation chains [11, 12, 13, 48]. In par-
ticular important results on the asymptotic behavior, shattering and formation
of dusts are obtained.

Many studies are devoted also to the coagulation-fragmentation equation. In
some sense the enthusiasm and growing interest of the probabilistic approach
for the Smoluchowski’s coagulation equation goes back to the seminal paper of
D. Aldous [3] which gave a rich review of the domain and its open problems. In
particular D. Aldous mentioned already that the study of general kernels keeps
difficult and gives rise to interesting mathematical questions.

The analysis of the coagulation-fragmentation model involving discrete masses
with a probabilistic approach has been considered in many works as for exam-
ple in I. Jeon [56] who considered the coagulation-fragmentation discrete model
interpreted by a sequence of finite Markov chains and formulated a criterion
on the finite chain which detect the gelation phenomena, B. Jourdain [57] who
constructed a non-linear stochastic process and gave a stochastic algorithm with
a constant number of particles in the discrete coagulation-fragmentation case.

Results on the probabilistic approach for coagulation-fragmentation processes
are obtained in [44], where the interpretation is given by the solution of a
stochastic differential equation with jumps.

Another interesting direction is given by the growth-fragmentation. In this
setting two opposite dynamics, growth and fragmentation are balanced in the
equation. This equation is a linear, partial integro-differential equation and mod-
els population dynamics in biology, physics, neurociences, etc. One of the main
challenges is here the long-time behavior. We refer to the paper of J.A. Cañizo,
P. Gabriel and H. Yoldaş [22] and the references therein for an interesting
overview of the topic. We list here some probabilistic approaches which match
our problem [15, 20, 23].

This formulation is also important as it shows that the binary fragmentation
can be seen in our context in a more general framework. As we are following
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the evolution of a typical particle the fragmentation can be interpreted as the
splitting in the size of the particle that we follow and a “second” system that
can be formed by one or more particles with smaller masses.

An important topic is also given by the homogeneous fragmentation devel-
oped for example by W. Wagner [78], that we will detail later on in the paper.

Organization of the paper After this introductory part, we derive the
Fokker-Planck equation from a microscopic description in Section 2. In Sec-
tion 3, we study the existence of the solutions of fragmentation equation using
fixed point theorems. In Section 4, we study the Kolmogorov forward and back-
ward equations, which are the keys to construct the transition probabilities of
Markov processes. In Section 5, we construct a Markov chain from the charac-
teristics of the fragmentation equations using two constructions. In Section 6,
we pass from the Markov chain to a continuous time stochastic process. For
this, we propose several approaches: embedding the Markov chain, thinning a
Poisson process, using martingale problem, using Marked Point Processes. In
Section 7, we construct a stochastic differential equation. In Section 8, we give
some results on the shattering effects. In Section 9, we study from elementary
means the binary fragmentation. Finally, in Section 10, we give a simulation
algorithm. The articles ends with three appendices recalling elementary results.

2. From a microscopic description to a Fokker-Planck equation

2.1. Standard notations

We start with notations we use through all the document.

Notation 2.1 (Borel sets). We denote by Bor(Y) the σ-algebra of Borel sets
of a topological space Y.

Notation 2.2 (Borel measures). We denote by M(Y) (resp. M+(Y)) the set of
R-valued (resp. R+-valued) Borel measures on a topological space Y, that is the
set of σ-additive measures defined on Bor(Y).

There are several ways to equip M(Y) with a metric so that it becomes a
complete, separable metric space with respect to the vague (resp. weak) topol-
ogy, i.e. a family {μn}n converges vaguely to μ if and only if

∫
f dμn converges

to
∫
f dμ for any non-negative function f with compact support (resp. any non-

negative function f uniformly bounded) [45, 46, 76].

Notation 2.3 (Space of continuous functions). Given two locally compact met-
ric spaces Y and Y

′, we denote by C(Y,Y′) (resp. Cb(Y,R); Cc(Y,Y′); C0(Y,Y′))
the space of continuous functions (resp. and bounded; with compact support;
vanishing at infinity) from Y to Y′.

Notation 2.4 (Space of bounded, measurable functions). We denote by B(Y,Y′)
the space of bounded, Bor(Y)-measurable function from Y to Y

′.
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Notation 2.5. For μ ∈ M(Y) and f : Y → R a measurable function, we set

〈μ, f〉 :=
∫
Y

f(x)μ(dx)

whenever the integral is well defined.

2.2. A microscopic description of the fragmentation process

A fragmentation is a physical phenomenon in which a particle of a given char-
acteristics x, say the mass, breaks into particles with characteristics x1, . . . , xk.
Here, the number k of fragments may be fixed or random, as well as the xi’s. A
particle of characteristics x is called a x-mer. A simple model of fragmentation
is when a x-mer breaks into two x/2-mers.

During all this article, we consider that the state-space of the characteristics
is

X := R+ and X
∗ := (0,+∞).

We refer to x as the mass, but it could correspond to other parameters, such as
the diameter of a bubble in a cavitation phenomenon (see e.g. [68]).

In this section, we give a microscopic description of the fragmentation as a
random phenomena. We follow [78] and we refer to this article for more details.

Definition 2.1 ((Probability) kernel). A kernel K on Y is a function on Y ×
Bor(Y) such that K(x, ·) ∈ M+(Y) for any x ∈ Y and x �→ K(x,Λ) is measurable
for any Λ ∈ Bor(Y). If K(x,Y) = 1 for any x ∈ Y, then we refer to K as a
probability kernel.

We describe the breakage mechanism of a x-mer as follows:

• First, the number k† of fragments is defined by a discrete probability p(x) :=
{p�(x)}�≥2 with p� ≥ 0,

∑
�≥2 p�(x) = 1, where x �→ p�(x) is measurable for

any � ≥ 2. Therefore, P[k† = �] = p�(x). Note that any x-mer breaks necessarily
into two or more fragments.

• Second, the distribution of the resulting particles is ruled by a family
of probability kernels fk on X

∗k, k ≥ 2, that is fk(x, ·) is the distribution
of (x1, . . . , xk) given the number of fragments is exactly k.

As we do not order the xi-mer after a breakage, we do not distinguished be-
tween (x1, . . . , xk) and (xσ(1), . . . , xσ(k)) whatever the permutation σ of {1, . . . , k}.
Therefore, we introduce the space X

∗k by quotienting X
∗k with the equiva-

lence relation (x1, . . . , xk) ∼ (y1, . . . , yk) whenever there exists a permutation
σ of {1, . . . , k} such that (y1, . . . , yk) = (xσ(1), . . . , xσ(k)). The kernel fk is then
transformed into

fk(x,dx1, . . . ,dxk) := 1
k!

∑
σ

fk(x,dxσ(1), . . . ,dxσ(k))
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which is a kernel on X
∗k. With this kernel, the marginal distribution of one

fragment picked randomly is then

fmarg
k (x,dy) := fk(x,dy,X∗, . . . ,X∗).

Such fmarg
k (x, ·) is also a probability distribution.

Therefore, the law of a particle picked randomly after the breakage of a x-mer
is

fmarg(x,dy) =
∑
k≥2

pk(x) · fmarg
k (x,dy).

In particular, for any Λ ∈ Bor(X∗),

M(x,Λ) :=
∑
k≥2

k · pk(x) · fmarg
k (x,Λ) (2.1)

is the mean number of particles falling into Λ, since fmarg
k (x,Λ) is the probability

that a randomly picked particle falls in Λ. The mean number of fragments after
the breakage of a x-mer is M(x,X∗).

We will show in Section 2.3 just below that M summarizes the macroscopic
behavior of the fragmentation process.

Definition 2.2 (Daughter distribution). The kernel M : X∗ × Bor(X∗) → R+
is called the daughter distribution.

In spite of its name, M(x, ·) is not necessarily a distribution as its total mass
is not necessarily 1.

Up to now, we have only described the way a x-mer breaks. To turn into
an evolution phenomena, we have to describe also at what time a breakage
occurs. We assume that each of the particles breaks independently according to
an exponential random time at a given rate F (x), called the fragmentation rate.
The probability that an x-mer breaks during [t, t+ Δt] is 1− exp(−F (x)Δt) ≈
F (x) · Δt, for small Δt.

2.3. Derivation of the Fokker-Planck equation

We are now able to write the equation for the fluxes of a cloud of particles:
we consider an infinite number of particles which are distributed at time t ≥ 0
according to the distribution μ(t, ·) on X∗. Then

μ(t + Δt,dx) ≈ μ(t,dx)

+
∫

(inflow in dx of particles from y during Δt ) × μ(t,dy)

− (outflow of x-mers during Δt) × μ(t,dx). (2.2)

The inflow itself is decomposed as



Fragmentation equations 233

(inflow in dx of particles from y during Δt)
= (prob. breakage) × (mean # of created particles in dx)

≈ F (y) · Δt×M(y,dx)

while

(outflow of x-mers during Δt) = (prob. breakage) ≈ F (x) · Δt.

We thus rewrite (2.2) as

μ(t + Δt,dx) ≈ μ(t,dx) +
∫
X∗

F (y)M(y,dx)μ(t,dy) − F (x)μ(t,dx) · Δt.

Passing to the limit, we obtain

dμ(t,dx)
dt =

∫
X∗

μ(t,dy)F (y)M(y,dx) − F (x)μ(t,dx). (2.3)

Such equation is a Fokker-Planck equation, which relates the evolution of the
distribution of the x-mers from a simple balance mechanism. Although we have
given a microscopic description of the mechanism involving the rate F , the
kernels fk’s and the pk’s only the kernel M and the rate F are used in this
equation.

2.4. Mass-biased evolution and mass conservation

It could be convenient to introduce the mass-biased measure ν(t,dx), which
is the measure with Radon-Nikodym derivative x with respect to the mea-
sure μ(t,dx), that is

ν(t,dx) = x · μ(t,dx). (2.4)

Integrating (2.3) against a continuous test function φ with compact support
on X

∗ := (0,+∞), we obtain

d
dt

∫
X∗

φ(x)
x

x · μ(t,dx)

=
∫
X∗

∫
X∗

y · μ(t,dy)F (y)M(y,dx)x
y

φ(x)
x

dx−
∫
X∗

φ(x)
x

F (x)x · μ(t,dx).

With ψ(x) := φ(x)/x for x ∈ X
∗, this writes

d
dt

∫
X∗

ψ(x)ν(t,dx)=
∫
X∗

∫
X∗

ν(t,dy)F (y)M(y,dx)x
y
ψ(x)−

∫
X∗

ψ(x)F (x)ν(t,dx).

Hence, ν solves the Fokker-Planck equation

dν(t,dx)
dt =

∫
X∗

ν(t,dy)F (y)G(y,dx) − F (x)ν(t,dx) (2.5)
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with
G(y,dx) := x

y
M(y,dx).

Such approach could work with any other non-vanishing Radon-Nikodym
density, yet the choice of this ν(t,dx) is of particular interest under the addi-
tional property that the mass is conserved.

Let us consider a x-mer after its breakage into k† fragments (x1, . . . , xk†)
(here k† is random). For a measurable function φ : X∗ → R+, since we do not
distinguish between the particles,

E[φ(x1) + · · · + φ(xk†) | k† = k] = k

∫
X∗

fmarg(x,dy)φ(y)

and then, using the definition of M in (2.1),

E[φ(x1) + · · · + φ(xk†)] =
∫
X∗

M(x,dy)φ(y). (2.6)

In particular, taking φ(x) = xk, we obtain the following moments

Mk(x) :=
∫
X∗

ykM(x,dy)

and in particular

M0(x) := E[k†] and M1(x) := E[x1 + · · · + xk† ].

An important property is that of the mass conservation.
Hypothesis 2.1 (Mass conservation). We say that the mass conservation holds
when x1 + · · · + xk = x almost surely for any x-mer breaks into (x1, . . . , xk).

We note that the mass conservation implies that all the fragments have nec-
essarily a smaller mass than the initial particle. Mathematically, the support of
M(x, ·) is contained in [0, x].
Hypothesis 2.2 (Mass conservation on average). We say that the mass conser-
vation on average holds when

x =
∫
X∗

M(x,dy) · y = M1(x) for any x ∈ X
∗. (2.7)

The next results are then immediate.

Lemma 2.1. If the mass conservation holds (Hypothesis 2.1), then the mass
conservation on average holds (Hypothesis 2.2).

Lemma 2.2. If the mass conservation on average holds, then G(x,X∗) = G(x,
[0, x])=1 for any x ∈ X

∗.
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Let us now consider computing the moments

μk(t) :=
∫
X∗

μ(t,dx) · xk

of μ(t,dx), the solution to (2.3). Multiplying (2.3) by xk and integrating with
respect to the x variable, we obtain that

dμk(t)
dt =

∫
X∗

∫
X∗

μ(t,dy)F (y)M(y,dx)xk −
∫
X∗

F (x)xkμ(t,dx).

In particular, if mass conservation holds on average,

dμ1(t)
dt =

∫
X∗

μ(t,dy)F (y)y −
∫
X∗

F (x)xμ(t,dx).

However, one may not conclude that μ1(t) = ν(t,X∗) is constant unless one
ensures that

∫
X∗ μ(t,dy)F (y)y is finite.

There are actually situations, called shattering fragmentation, where particles
of mass zero are produced (See Section 8).

Under (2.7), if ν(0,X∗) ≤ 1, then one may expect to construct a X
∗-valued

stochastic process ξ such that ν(t, ·) is the distribution of ξ. If shattering occurs,
then ξ has a finite lifetime.

The goal of this paper is to summarize the various ways one may construct
such a process and to study its properties.

An alternative direction, that we do not consider here is to consider the
families {(pk, fk)}k≥2 and the rates F to describe the evolution of a cloud of
particles evolving according to the fragmentation process. This gives rise to a
class of branching processes.

2.5. A condition on the daughter distribution

We give a condition on the daughter distribution. Basically, it comes from the
fact that at most one fragment has a mass greater than half of the mass of its
parent.

Proposition 2.1 ([69] or [9, Section 8.2, p. 202]). The daughter distribution
shall satisfy∫ z

0
yM(x, y) dy ≥

∫ x

x−z

(x− y)M(x, y) dy for 0 ≤ z ≤ x

2 . (2.8)

We will see that on the case of binary fragmentation, that is when M0(x) = 2
for any x, then M is symmetric M(x + y, x) = M(x + y, y).

The condition (2.8) holds whenever y �→ M(x, y) is non-increasing.
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2.6. Classical examples of daughter distribution

Let us give some classical examples of the daughter distribution.
Example 2.1 (Binary fragmentation, [78, Sect. 2.3]). Let p2 = 1 and

f2(x,dx1,dx2) := ρ(x,dx1)δx−x1(dx2)

for a probability kernel ρ. Define ρ� by∫
X∗

φ(y)ρ�(x,dy) = 1
2

∫
X∗

(φ(y) + φ(x− y))ρ(x,dy).

We note that ρ�(x,Sx(·)) = ρ�(x, ·) with Sx(Λ) = {y | x − y ∈ Λ} for Λ ∈
Bor(X∗). Then

f2(x,dx1,dx2) = ρ�(x,dx1)δx−x1(dx2) and M(x,dy) = 2ρ�(x,dy).

With Sx above,
M(x,dy) = M(x,Sx(dy)), ∀x ∈ X

∗. (2.9)

If M(x,dy) = m(x, y)dy has a density, (2.9) becomes

m(x + y, x) = m(x + y, y) for all x, y ∈ X
∗. (2.10)

We develop the specific case of the binary fragmentation in Section 9. In par-
ticular, we show it could be summarized by a single function from X

∗2 to R+ in
one-to-one correspondence with the daughter distribution M and the rate F .
Example 2.2 (Binary fragmentation: equi-partition). With the Example 2.1,
set ρ(x, ·) := δx/2, in which case

ρ�(x, ·) = δx/2, M(x, ·) = 2δx/2 and G(x, ·) = δx/2.

Example 2.3 (Binary fragmentation: fixed size). With the Example 2.1, set
ρ(x, ·) := δλx for some λ ∈ (0, 1). Hence

ρ�(x, ·) = 1
2δλx + 1

2δ(1−λ)x, M(x, ·) = δλx + δ(1−λ)x

and G(x, dy) = λδλx + (1 − λ)δ(1−λ)x.

Example 2.4 (Binary fragmentation: proportional splitting). With the Exam-
ple 2.1, set ρ(x,dy) := x−11[0,x](y) dx, in which case

ρ�(x,dy) = ρ(x,dy), M(x, dy) = 2ρ(x,dy) and G(x, dy) = 2y
x21[0,x](y) dy.

Example 2.5 (Homogeneous fragmentation, [78, Sect. 2.4]). Let ρ(ds) be a prob-
ability measures on the set of partitions

S := {s1, . . . , sk > 0 | s1 + · · · + sk = 1, k ≥ 2}.
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A fragmentation kernel is homogeneous if

f(x,dz) =
∑
k≥2

pk(x)fk(x,dx1, . . . ,dxk) =
∫
S

δs1x,...,skx(dz)ρ(ds).

In this case (see the details in [78]),

M(x,dy) =
∫ 1

0
δux(dy)M(1,du)

and the mass conservation condition is∫ 1

0
uM(1,du) = 1.

The average number of fragments is
∫ 1
0 M(1,du) and does not depend on x.

Besides,

G(x,dy) =
∫ 1

0
δux(dy)uM(1,du).

If M(x, ·) has a density m(x, ·), then G(x, ·) has a density g(x, ·). These densities
satisfy

m(x, y) = 1
x
ϑ
(y
x

)
and g(x, y) = y

x2ϑ
(y
x

)
with ϑ := m(1, ·).

Example 2.6. We easily see see that Examples 2.1-2.4 also describe homogeneous
fragmentation.
Example 2.7 (Homogeneous fragmentation: Power law). In the homogeneous
fragmentation, the daughter distribution is characterized by a function ϑ : X∗ →
R+. A classical case is that of a power law, that is ϑ(x) = xν(ν + 2) for some
ν > −2. For ν = 0, the fragmentation corresponds to the one of Example 2.2.

The (ν + 2)-factor ensures the mass conservation, that is
∫ 1
0 uϑ(u) du = 1.

The condition of Proposition 2.1 implies that ν ≤ 0 [9, Lemma 8.2, p. 202].
The mean number M0(x) of particles M(x,X∗) after a breakage of an x-mer

does not depend on x then is equal to

M0(x) =
∫ 1

0
ϑ(z) dz =

⎧⎨⎩
ν + 2
ν + 1 if − 1 < ν ≤ 0,

+∞ if − 2 < ν ≤ −1.

We give more insight on this example below in Example 2.10.
Examples of such functions ϑ, their characteristics, inference and applications

may be found in [31].
Example 2.8 (Separable fragmentation). We follow [9, Section 8.2.3, p. 204].
The separable fragmentation is when the daughter distribution has a density of
the form m(x, y) = β(y)γ(x). In this case, the mean number M0(x) of particles
M(x,X∗) after a breakage of an x-mer is

M0(x) =
x
∫ x

0 β(z) dz∫ x

0 zβ(z) dz
and therefore may vary with the mass x.
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2.7. Some pathologies of the Fokker-Planck equation

We consider that the daughter distribution has a density m.
Assuming that the solution μ(t,dx) has a density c(t, x), we rewrite the

Fokker-Planck equation (2.3) as

dc(t, x)
dt =

∫
X∗

c(t, y)F (y)m(y, x) − F (x)c(t, x)

and (2.5) as

dp(t, x)
dt =

∫
X∗

p(t, y)F (y)m(y, x) − F (x)c(t, x)

with p(t, x) = x·c(t, x), which is the density of ν(t,dx), where ν is given by (2.4).
Although these equations seem to be a simple first-order equation, we recall

classical examples which are based on analytical computations.
Example 2.9 (Non uniqueness, [9, Section 8.2, p 201]). With F (x) = x and
m(x, y) = 2/x (See Example 2.3), then

c1(t, x) = et

(1 + x)3 ,

c2(t, x) = e−xt

(
1

(1 + x)3 +
∫ +∞

x

2t + t2(y − x)
(1 + x)3 dy

)
are both solutions to (2.3) with the initial condition c(0, x) = 1/(1 + x)3. Note
that c1 does not conserve the mass, while c2 does.
Example 2.10 (Shattering fragmentation, [69]). With

m(x, y) = (ν + 2) yν

xν+1 and F (x) = xβ+1,

explicit expressions for the solution may be found in [69]. Such expressions
involve special functions. This example shows a phase transition: when β ≥ −1,
the mass is conserved that is μ1(t) :=

∫
X∗ p(t, x) dx. If β < −1, then μ1(t) is

time dependent. More precisely, if the mass is initially concentrated at x = �,

μ1(t) = � exp
(
− t

�1+ν/2

)(
1 + t

�1+ν/2 + t2

2�ν+2

)
.

The loss of mass is due to infinitesimally small particles (dust).

3. Existence of solutions to the fragmentation equation

3.1. A perturbation principle

We will make use of the following lemma.
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Lemma 3.1 (A perturbation lemma). Let us consider B and D be bounded
operators on a Banach space U. For some T > 0, we also consider A from
Y := C1([0, T ],U) to itself1. We assume that for any f ∈ Y,

∂tA f(t) = Bf(t) + DA f(t), t ∈ [0, T ] (3.1)

and A f(0) = 0. We assume that there exists a solution g ∈ Y to

∂tg(t) := Dg(t), t ∈ [0, T ] (3.2)

as well as a solution f ∈ Y to

(Id − A )f = g. (3.3)

Then f solves
∂tf(t) = (B − D)f(t), t ∈ [0, T ]. (3.4)

In addition, f(0) = g(0).

Proof. First, using (3.1) and (3.3),

∂t(Id − A )f(t) = ∂tf(t) − Bf(t) + DA f(t)
= ∂tf(t)−Bf(t)−D(Id−A )f(t)+Df(t) = ∂tf(t)−Bf(t)−Dgf(t)+Df(t).

On the other hand, with (3.2),

∂t(Id − A )f(t) − Df(t) = ∂tg(t) = Dg(t).

Substracting these two equations leads to (3.4). The equality f(0) = g(0) follows
immediately from (3.3).

Remark 3.1 (Duhamel principle). If {T D(t)}t≥0 is the semi-group generated
by D , then the solution of (3.2) is given by g(t) = T D(t)g(0). Lemma 3.1
corresponds to the Duhamel formula (or a perturbation principle [9, Chapter 4]
or [36]), by setting

A f(t) :=
∫ t

0
T D(t− s)Bf(s) ds

which satisfies (3.1). Therefore,

f(t) = T D(t)g(0) +
∫ t

0
T D(t− s)Bf(s) ds.

Remark 3.2 (Solving (3.3)). Assume ‖A ‖Y→Y < 1. Eq. (3.3) is easy to solve
through a Picard principle by setting

f (0) = g, f (n+1) = A f (n) and f :=
∑
n≥0

f (n).

The bound ‖A ‖Y→Y < 1 ensures the convergence of the series defining f in Y.
1We may replace C1 by the space of absolutely continuous functions.
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Remark 3.3 (Preservation of some properties). Let us assume that D is such
that if g(0) satisfies a given property (P), then for any t ∈ [0, T ], g(t) given
by (3.2) also satisfies (P). We also assume that for any t ∈ [0, T ], A f(t) also
satisfies (P) whenever f(t) satisfies (P). For a function k, such a property (P)
could be “k(x) ≥ 0 for any x”, “k(x) ≤ M for any x” or “k(x) = 0 for any
x ≥ K”. From the construction of Remark 3.2, if g(0) satisfies (P), then f(t)
satisfies (P) for any t ≥ 0.

3.2. The fragmentation equation with absolutely continuous
fragmentation kernel

In a first time, we solve the Fokker-Planck equation (2.5) when the fragmentation
kernel is absolutely continuous with respect to the Lebesgue measure. We follow
the approach of [71].
Hypothesis 3.1 (Boundedness of the rate). We consider F : X → R+, measurable
with F (x) ≤ B, x ∈ X, for some B > 0. This function is the rate.
Hypothesis 3.2 (Kernel). We consider a kernel G with a density g with respect
to the Lebesgue measure that satisfies

0 ≤ g(x, y) ≤ C, g(x, y) = 0 if y ≥ x,∫ x

0

y

x
g(x, y) dy ≤ 1 and

∫ x

0
F (x)g(x, y) dy ≤ E,

for some constants C and E.

Notation 3.1. We define

g(x, y) := F (x)g(x, y) for x, y ∈ X

so that
∫ x

0 g(x, y) dy ≤ E.

We also define for any measurable function f : X → R the following operators:

G �f(x) :=
∫ +∞

x

g(y, x)f(y) dy, M �f(x) := F (x)f(x),

F �f(x) :=
∫ +∞

x

g(y, x)f(y) dy − F (x)f(x) = (G � − M �)f(x)

for x ∈ X.

Notation 3.2 (Space of integrable functions). We denote by L1(X) the space
of measurable, integrable functions from X to R. The corresponding norm is
‖f‖L1 :=

∫ +∞
0 |f(x)|dx. With this norm, L1(X) is a Banach space.

Lemma 3.2. The operators G �, M � and F � are bounded from L1(X) to L1(X)
respectively with

‖G �‖L1→L1 ≤ E, ‖M �‖L1→L1 ≤ B and ‖F �‖L1→L1 ≤ E + B.
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Proof. Interverting integrals thanks to the Fubini’s theorem leads to,

‖G �f‖L1 ≤
∫ +∞

0
|G �f(x)|dx ≤

∫ +∞

0

∫ ∞

x

g(y, x)|f(y)|dy dx

≤
∫ +∞

0
|f(x)|

∫ x

0
g(y, x) dxdy ≤ E‖f‖L1 .

The bounds on the norm of M � and F � are immediate.

In a first time, we consider the equation

∂f(t, x)
∂t

= F �f(t, x) with f(0, x) = a0(x) (3.5)

where a0 ∈ L1(X) is given.
Using Lemma 3.2, we then look at solutions in the Banach space Y :=

C([0, T ],L1(X)) with the norm ‖f‖Y := supt∈[0,T ]‖f(t, ·)‖L1 .

Proposition 3.1. For T > 0, there exists a unique solution f of (3.5) in Y

which could be written as

f(t, x) =
∑
k≥0

ak(x)tk with ak ∈ L1(X).

Besides, if a0 is non-negative, then f is non-negative. If a0 has a support con-
tained in [0, x0], then f(t, ·) has also a support contained in [0, x0].

Proof. If f ∈ Y solves (3.5), then

‖f(t, ·)‖L1 ≤ (B + E)
∫ t

0
‖f(s, ·)‖L1 ds + ‖a0‖L1 .

Using the Grönwall lemma, for t ≤ T ,

‖f‖Y ≤ ‖a0‖L1 exp(T (B + E)).

Since (3.5) is linear, we see that the solution of (3.5), if any, is necessarily unique.
Define from a0 ∈ L1(X) the sequence

ak+1(x) := 1
k + 1F �ak(x), for k ≥ 0. (3.6)

Using Lemma 3.2, ‖ak+1‖L1 ≤ (B +E)k+1/(k+ 1)!. Therefore, {
∑k

i=0 ai}k≥0 is
a Cauchy sequence in L1(X). From this, {

∑k
i=0 ai(x)ti}k≥0 is a Cauchy sequence

in Y. We define for any t > 0,

f(t, x) :=
+∞∑
k=0

ak(x)tk =
+∞∑
k=0

1
k! (F

�)ka0(x)tk. (3.7)
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This function is such that t �→ f(t, ·) is analytic around 0 in L1(X). Moreover,
using (3.6),

∂�f(t, x)
∂t�

= (F �)�f(t, x) x-a.e., t ∈ [0, T ] for any � ≥ 1 (3.8)

so that in particular, f solves (3.5) in Y.
The solution to ∂g(t, x) = −M g(t, x) = −F (x)g(t, x) is given by g(t, x) =

exp(−tF (x))g0(x). The results of Section 3.1, in particular Remark 3.1 suggests
to introduce the operator

A �f(t, x) :=
∫ t

0
e−(t−s)F (x)G �f(s, x) ds, (3.9)

which is continuous from Y to itself with a norm smaller than TE. Hence, for
T < E, A � is contractive. With Lemma 3.1, the unique fixed point f in Y to
f = exp(−tF )a0 + A �f solves (3.5).

If a0 ≥ 0, since G � and M � preserve positivity, then A � preserves positivity
and then f(t, ·) ≥ 0 for any t ∈ [0, T ] by Remark 3.3.

Finally, assume that for f ∈ L1(X), f(x) = 0 when x ≥ x0 for some x0. Then
G �f(x) =

∫ +∞
x

f(y)F (y)g(y, x) dy = 0 and M �f(x) = 0 for any x ≥ x0. Hence,
if a0(x) = 0 for x ≥ x0, ak shares this property for any k ≥ 0 by construction
and so is f(t, ·) for any t ≥ 0.

Clearly, variants of Proposition 3.1 hold whenever L1(X) is replaced by a
Banach space U such that G � and M � are bounded operators from U to U.
Hypothesis 3.3 (Continuous kernel and rate). Assume in addition to Hypothe-
sis 3.2 that (x, y) �→ g(x, y) and x �→ F (x) are continuous.

To prove the proposition below, one has just to replace U := L1(X) by U :=
L1(X) ∩ C(X) with the norm ‖f‖U := ‖f‖L1 + ‖f‖∞.

Proposition 3.2 ([71]). Under Hypotheses 3.1 and 3.3, the solution given by
Proposition 3.1 is such that x �→ f(t, x) is continuous for any t ∈ [0, T ].

We could also see Proposition 3.1 from the point of view of functional analysis.
The key point behind the proof of this proposition is the construction of the
family of operators

T �(t) :=
+∞∑
k=0

tk

k! (F
�)k, t ∈ R+.

This family {T �(t)}t∈R+ is a semi-group, that is T �(t)T �(t′) = T �(t + t′) for
any t, t′ ∈ R+, T �(0) = Id. Hence, f(t, x) = T �(t)a0(x). The construction (3.9)
is obtained by a perturbation argument from the two semi-groups generated
respectively by G � and M �. This functional analysis point of view is extensively
developed in the work of J. Banasiak and his co-authors (see e.g. [9]). Other
conditions using functional analysis may be found for example in [70, 75] and
many other papers.
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As pointed out in Section 2.7, despite its apparent simplicity, the fragmenta-
tion equation is not that simple.

The condition of boundedness of the coefficients may be relaxed (see e.g., [9,
64, 74]) to grant uniqueness. Note that however, when the rate is not bounded,
the situation may become intricate: the solution may not be unique or the mass
conservation may be lost [9, Chapter 8], due either to the rate, but also to the
kernel [9, Remark 8.14].

3.3. The fragmentation equation in the space of measures

We now come back to the Fokker-Planck equation (2.5), which we consider
solving in some space of measures. For considerations on measures and their
norms, we refer to [1, 19, 34].

Notation 3.3 (Space of Radon measures). Let us denote by Mfr(X) ⊂ M(X)
the space of finite Radon measures over X, and M

+
fr(X) the cone of positive

measures. Radon measures acts linearly on the space Cc(X,R) of continuous
functions with compact support.

For a probability kernel G : X → M
+
fr(X) and a rate F : X → R+, we define

G(x,dy) = F (x)G(x,dy), for x ∈ X

as well as the operators acting on the left by

μG (dy) :=
∫
R+

μ(dx)G(x,dy) and μM (dy) := F (y)μ(dy).

We use the action on the left as we also define G and M as acting on Cc(X,R)
by

Gφ(x) :=
∫
X

G(x,dy)φ(y) and Mφ(x) := F (x)φ(x).

Notation 3.4. We define F := G − M , so that

Fφ(x) =
∫
X

(φ(y) − φ(x))G(x,dy) = F (x)
∫
X

(φ(y) − φ(x))G(x,dy)

for φ ∈ Cb(X,R), whenever the integral is well defined.

We rewrite (2.5) as

∂μ(t,dx)
∂t

= μ(t, ·)F (dx)

with μ(0, ·) = μ0 ∈ M
+
fr(R+)

(3.10)

for a given μ0.
Remark 3.4. If μ is a measure with a Radon-Nikodym density m with respect to
the Lebesgue measure, then μG (dy) = G �m(y)dy and μM (dy) = M �m(y)dy.
Thus, (3.10) is a natural expansion of (3.5) in the context of measures.
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In a first time, we apply a strategy similar to the one of Section 3.2 to
solve (3.10). For this, we follow the approach from e.g. [1, 2]. It is however more
cumbersome as the space of measures has to be properly identified.

Below, in Section 4.1, we consider again solving simultaneously this prob-
lem for μ0 = δx for any x. This way, we construct a transition probability by
following W. Feller [40]. The latter construction requires less regularity and is
naturally related to a probabilistic interpretation. Yet, the approach proposed
here easily extends to a wider class of equations including coagulation, growth,
and so on [1].

Definition 3.1 (Bounded-Lipschitz and total variation norms). On Mfr(R+),
we define the Bounded-Lipschitz norm2 by

‖μ‖BL := sup
φ∈W1,∞(X,R)
‖φ‖W1,∞≤1

∫
X

φ(x)μ(dx),

where W1,∞(X,R) is the Sobolev space of measurable, bounded functions with
generalized bounded first order derivative3 equipped with the norm ‖φ‖W1,∞ :=
‖φ‖∞ + ‖φ′‖∞. We also define the total variation norm by

‖μ‖TV := sup
f∈Cc(X,R)
‖f‖∞≤1

∫
R+

f(x)μ(dx).

These norms are obviously related by ‖·‖BL ≤ ‖·‖TV.

Proposition 3.3. The space (Mfr(X), ‖·‖TV) is complete.

With the total variation norm, the continuity properties are difficult to deal
with4, while the Bounded-Lipschitz norm is more adapted to this task. Unfor-
tunately, (Mfr(X), ‖·‖BL) is not complete.

We fix a radius R > 0 and we define

BBL(R) := {μ ∈ Mfr(X) | ‖μ‖BL ≤ R}
and BTV(R) := {μ ∈ Mfr(X) | ‖μ‖TV ≤ R}.

Proposition 3.4. The set YT,R := Cb([0, T ), BTV(R)) is a complete metric
space when equipped with the norm

‖μ‖YT,R
:= sup

t∈[0,T )
‖μ(t)‖BL.

Under Hypothesis 3.1, M is a bounded endomorphism on (Mfr(X), ‖·‖TV).
Hypothesis 3.4. The rate F belongs to W1,∞(X).

2or flat norm, Dudley norm, Fortet-Mourier norm [1, p. 2475].
3Since X ⊂ R, every function in W1,∞(X,R) has a continuous version, which we always

consider.
4A classical example is that if {xn}n converges to x, xn �= x, then ‖δxn − δx‖TV = 2

whatever n.
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Under Hypothesis 3.4, M is a bounded endomorphism on (Mfr(X), ‖·‖BL).
Hypothesis 3.5. The kernel G is such that G(x, ·) has support in [0, x], G(x,X) ≤
E for any x ∈ R+, G is a bounded endomorphism on (Mfr(X), ‖·‖TV) and on
(Mfr(X), ‖·‖BL).

Proposition 3.5. Assume Hypothesis 3.1 and 3.5. Assume that μ0 ∈ BTV(r)
for some r ≥ 0. Then for any T > 0, there exists R such that (3.10) has a
unique solution in YT,R.

The Fokker-Planck equation may be written

∂〈μ(t), f〉
∂t

= 〈μ(t)L, f〉

for any f ∈ Cc(X,R), as Mfr(X) is the dual space of Cc(X,R).
We are then led to define G and M as acting on continuous functions as

G f(x) =
∫
X

G(x, dy)f(y) and M f(x) = F (x)f(x) for f ∈ Cc(X,R+).

Again with Notation 2.5,

〈μG , f〉 = 〈μ,G f〉 and 〈μM , f〉 = 〈μ,M f〉.

The conditions on G and M as acting on measures may then be transformed
as conditions on G and M as acting on W1,∞(X,R). In particular, if these
operators should be bounded endomorphisms on W1,∞(X,R), then they are
bounded endomorphisms on Mfr(X).

4. The Kolmogorov forward and backward equations

We intend in this part to come closer to a stochastic description as we construct
a transition probability. For this, we follow the work of W. Feller [40]. This also
allows one to consider the well-posedness and uniqueness of the fragmentation
equation under mild hypotheses on the kernel F .

4.1. The Kolmogorov forward equations

We now consider solving (3.10) with the family of initial conditions δx. We are
then led to consider

∂P (t, x,Λ)
∂t

=
∫
X

P (t, x,dy)G(y,Λ) −
∫
X

P (t, x,dy)F (y)1Λ(y) (4.1)

with P (0, x,Λ) = 1Λ(x) (4.2)

for any t ∈ R+, x ∈ X and Λ ∈ Bor(X). The system (4.1)-(4.2) is stronger
than (9.10) as we are concerned with solving a family of equations, one per
starting point.



246 M. Deaconu and A. Lejay

Hypothesis 4.1. The rate is a measurable function F : X → R+.
Hypothesis 4.2. The kernel G : X → M

+(X) is a probability kernel on X and for
any x ∈ X, G(x, {x}) = 0.

Notation 4.1. We denote by Mtr(R+ × X) the space of parametric measures
(t, x) �→ μ(t, x, ·) such that

(i) μ(t, x, ·) ∈ M+(X) for any t ∈ R+, x ∈ X.
(ii) t �→ μ(t, x,Λ) is continuous for any x ∈ X and Λ ∈ Bor(X).
(iii) x �→ μ(t, x,Λ) is Bor(X)-measurable for any t ≥ 0 and Λ ∈ Bor(X).

Definition 4.1 (Transition probability). A transition probability is a family
P = {P (t, x,Λ)}t≥0,x∈X,Λ∈Bor(X) such that

(i) P belongs to Mtr(R+ × X).
(ii) 0 ≤ P (t, x,Λ) ≤ 1 for any t ≥ 0, x ∈ X and Λ ∈ Bor(X). If P (t, x,X) = 1

for any t ≥ 0, x ∈ X, then P is stochastic. Otherwise, it is substochastic.
(iii) For any x ∈ X, Λ ∈ Bor(X),

lim
t→0+

P (t, x,Λ) = 1Λ(x).

Roughly speaking, a transition probability is such that P (t, ·, ·) is a sub-
probability kernel on X for any t ≥ 0, with P (0, x, ·) = δx.

Definition 4.2 (Kolmogorov forward equation). We say that the transition
probability P solves the Kolmogorov forward equation whenever for any x ∈ X,
any bounded set Λ ∈ Bor(X), ∂tP (t, x,dy) exists for almost every time t > 0
and (4.1)-(4.2) are satisfied.

Remark 4.1. The Kolmogorov forward equation is also called the Fokker-Planck
equation or the master equation.

Following the method of Section 3.1, we define the operator A + which acts
on Mtr(R+ × X) by

A +P (t, x, dz) :=
∫ t

0
P (s, x,dy)e−(t−s)F (z)G(y,dz) ds. (4.3)

A simple computation shows that for any Λ ∈ Bor(X),

∂A +P (t, x,Λ)
∂t

= (PG )(t, x,Λ) −
∫ t

0
ds

∫
X

P (s, x,dy)e−(t−s)F (z)F (z)G(y,dz)1Λ(z)

= (PG )(t, x,Λ) −
∫
X

(A +P )(t, x, dz)F (z)1Λ(z)

= PG (t, x,Λ) − (A +P )F(t, x,Λ).
(4.4)

Defining
P (0)(t, x, dy) := δx(dy) exp(−tF (y)),
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it holds that P (0)(t, x,Λ) := exp(−tF (x))1Λ(x) and

∂tP
(0)(t, x, dy) = −

∫
X

P (0)(t, x, dy)F (y)1Λ(y) = −P (0)M (t, x,dy).

The solution to

∂tP
(0)(t, x,Λ) = −

∫
X

P (0)(t, x, dy)F (y)1Λ(y) with P (t, x,Λ) = 1Λ(x)

is given by
P (0)(t, x,Λ) := 1Λ(x) exp(−tF (x)).

To solve (Id − A +)P (t, x,Λ) = P (0)(t, x,Λ), we define recursively

P (n)(t, x,Λ) := A +P (n−1)(t, x,Λ) for n ≥ 1 (4.5)

and we set

P (t, x,Λ) :=
+∞∑
n=0

P (n)(t, x,Λ) =
+∞∑
n=0

(A +)n1Λ(x) exp(−tF (x)). (4.6)

The arguments of Section 3.1 apply here, up to details that are covered in [40].

Proposition 4.1 ([39, Theorem 4.1],[40, Theorem 1]). Under Hypotheses 4.1
and 4.2, the family P given by (4.6) is a transition probability and solves the
Kolmogorov forward equation (4.1)-(4.2).

Remark 4.2. It follows from [40, Eq. (23)] that ∂tP (t, x,Λ) exists for any time
for all bounded sets Λ ∈ Bor(X).

4.2. The Kolmogorov backward equation

We now derive another equation solved by the transition probability of Propo-
sition 4.1.

Similarly to A + given by (4.3), we define for t ≥ 0, x ∈ X and Λ ∈ Bor(X),

A −P (t, x,Λ) :=
∫ t

0
ds

∫
X

e−sF (x)G(x,dz)P (t− s, z,Λ). (4.7)

Again, assuming that t �→ P (t, x,Λ) is differentiable,

∂tA
−P (t, x,Λ)=

∫
X

G(x,dz)P (t, z,Λ)+
∫ t

0
ds

∫
X

e−sF (x)G(x,dz)∂tP (t−s, z, λ).

Using an integration by parts, assuming that P (0, x,Λ) = 1Λ(x),∫ t

0
ds

∫
X

e−sF (x)G(x,dz)∂tP (t− s, z, λ)

=
[∫

X

G(x,dz)e−sF (x)P (t− s, z,Λ)
]t
0

+ F (x)A −P (t, x,Λ)

=
∫
X

G(x,dz)e−tF (x)1Λ(x) − GP (t, x,Λ) + M (A −P )(t, x,Λ).
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Therefore, whenever P (0, x,Λ) = 1Λ(x),

∂tA
−P (t, x,Λ) = GP (t, x,Λ) − M (A −P )(t, x,Λ).

We define recursively

Q(0)(t, x,Λ) := exp(−tF (x))1Λ(x) = P (0)(t, x,Λ)
and Q(n+1)(t, x,Λ) := A −Q(n)(t, x,Λ)

as well as

Q(t, x,Λ) :=
+∞∑
n=0

Q(n)(t, x,Λ). (4.8)

We see that Q(0)(t, x,Λ) solves ∂tQ
(0)(t, x,Λ) = MQ(0)(t, x,Λ). The same ar-

guments as in Section 3.1 show that Q(t, x,Λ) solves ∂tQ(t, x,Λ) = FQ(t, x,Λ).
We refer to [40] for the details. Proposition 4.2 below summarizes the results.

Lemma 4.1. For any t ≥ 0, x ∈ X and Λ ∈ Bor(X), Q(t, x,Λ) = P (t, x,Λ)
where P is given by (4.6) and Q by (4.8).

Proof. First, P (0)(t, x,dy) = δx(y) exp(−tF (y)) = Q(0)(t, x,dy). In addition,
using the Fubini-Tonelli theorem, the operators A + and A − commute so that
if P (m) = Q(m) for any 1 ≤ m ≤ n,

P (n+1) := A +P (n) = A +A −Q(n−1)

= A −A +P (n−1) = A −P (n) = A −Q(n) = Q(n+1).

This proves the result.

Definition 4.3 (Kolmogorov backward equation). A transition function P
solves the Kolmogorov backward equation5 if ∂tP (t, x,Λ) exists for any t ≥ 0,
x ∈ X, Λ ∈ Bor(X) and

∂P (t, x,Λ)
∂t

=
∫
X

G(x,dy)P (t, y,Λ) − F (x)P (t, x,Λ), (4.9)

P (0, x,Λ) = 1Λ(x). (4.10)

We introduce a new property of the transition probability.

Definition 4.4 (Chapman-Kolmogorov equation). For a transition probability,
the Chapman-Kolmogorov equation is that

P (t + s, x,Λ) =
∫
X

P (t, x,dy)P (s, y,Λ) = 〈P (t, x, ·), P (s, ·,Λ)〉 (4.11)

for any s, t ≥ 0, x ∈ X, Λ ∈ Bor(X).
5Here, backward refers to the fact that the operator acts on the value x which represents

the initial point.
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Proposition 4.2 ([40, Theorems 2-5], [41], [39, Theorem 3.1]). Under Hypothe-
ses 4.1 and 4.2, the function P given by (4.6) solves the Kolmogorov backward
equation (4.9)-(4.10). Finally, for any (t, x) ∈ R+ × X and Λ ∈ Bor(X),

P (t, x,Λ) = (1 − F (x)t)1Λ(x) + tF (x)G(x,Λ) + o(t). (4.12)

When P (t, x,X) = 1 for any t > 0, x ∈ X, then it is the unique transition
probability to do so among all the P (t, x,Λ) that solves (4.9)-(4.10) for any t.
Besides, it satisfies the Kolmogorov-Chapman equation (4.11).

As a by-product of the use of Lemma 3.1, we obtain that

P (t, x,Λ) = exp(−tF (x))1Λ(x) + A −P (t, x,Λ) (4.13)

for any (t, x,Λ) ∈ R+ × X× Bor(X), from which we deduce (4.12).

Proposition 4.3 ([42, Sect. X.3, p. 330]). Assume that F is bounded (Hypoth-
esis 3.1) and Hypothesis 4.2 holds. Then P (t, x,X) = 1 for any (t, x) ∈ R+ ×X,
and the Kolmogorov backward equation has a unique solution.

Remark 4.3. The question of non-uniqueness of the solution of the Kolmogorov
forward and backward equations is a tricky one [42, X.3, p. 330]. A solution P
to the Kolmogorov forward or backward equation is called minimal if for any
other solution Q, it holds that P (t, x,Λ) ≤ Q(t, x,Λ) for any t ∈ R+, x ∈ X and
Λ ∈ Bor(X). Actually, the solution constructed by the iterated schemes (4.6)
and (4.8) is minimal.

4.3. Comments on the Kolmogorov equations

It has to be noted that Proposition 4.2 ensures uniqueness of the solution to the
Kolmogorov backward equation, which is not the case of Proposition 4.1.

Nothing ensures that P (t, x,X) = 1 for any x > 0, t > 0, meaning that
the mass is conserved. It is always possible to extend the state-space X to get
such a condition by adding an external cemetery point. The article [40] contains
conditions ensuring mass conservations. More details are given in Section 8.

We now detail the link between the Kolmogorov forward and backward equa-
tions using operators.

With the operators G and M acting on the left on measures and on the right
of functions (see Section 3.3), the Kolmogorov forward equation (4.1) is written
using Notation 3.4 as

∂tP (t, x,dy) = P (t, x, ·)F (dy), (4.14)

while the Kolmogorov backward equation (4.9) is written as

∂tP (t, x,dy) = FP (t, ·,dy)(x). (4.15)

The relationship between (4.14) and (4.15) which follows from Lemma 4.1
may also be understood from the Chapman-Kolmogorov equation (4.11): Since

P (t + ε, x,Λ) − P (t, x,Λ)
ε

= 1
ε

∫
X

P (t, x,dz)(P (ε, z,Λ) − 1Λ(z)),
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it follows formally that letting ε → 0,

∂tP (t, x,Λ) =
∫
X

P (t, x,dz)∂tP (0, z,Λ)

=
∫
X

P (t, x,dz)(FP (0, z, λ)) =
∫
X

P (t, x,dz)(F1Λ(z)).

On the other hand, since formally P (0, x, ·) = δx, we get

P (t + ε, x,Λ) − P (t, x,Λ)
ε

= 1
ε

∫
X

(P (ε, x,dz) − δx(dz))P (t, z,Λ)

= 1
ε

∫
X

∫ ε

0
P (η, x,dz)(G − M )P (t, z,Λ) dη dz.

Letting ε converges to 0 leads to the Kolmogorov backward equation. The dif-
ficulty to apply rigorously this approach is explained in [42, Sect. X.3, p. 328].
Basically, it is due to the possible lack of uniform control in the expansion of
the Kolmogorov forward equation in short time, while such a problem does not
appear with (4.12) as the starting point is left fixed.

4.4. Construction of a semi-group

For convenience, we now use X
∗ = X\{0} as we will avoid 0 as a starting point.

Notation 4.2 (Semi-group). We set for any φ ∈ B(X∗,R),

Ptφ(x) :=
∫
X∗

P (t, x,dz)φ(z) = 〈P (t, x, ·), φ〉 for t ≥ 0, x ∈ X
∗.

The family {Pt}t≥0 is called a semi-group on (B(X∗,R), ‖·‖∞) as Pt(B(X∗,
R)) ⊂ B(X∗,R), Pt+s = PsPs for any s, t ≥ 0 (from the Chapman-Kolmogorov
equation (4.11)), and P0 = Id.

Since 0≤P (t, x,X∗)≤1, it is contractive on B(X∗,R), meaning that ‖Ptφ‖∞ ≤
‖φ‖∞ for any φ ∈ B(X∗,R). It is also preserves the positivity, meaning that if
φ ≥ 0 on X

∗, then Ptφ ≥ 0 on X
∗.

With φ ∈ B(X∗,R), we then rewrite (4.14) as

∂tPtφ(x) =
∫
X∗

P (t, x,dz)G(z,dy)φ(y) −
∫
X∗

P (t, x, dy)F (y)φ(y)

and (4.15) as

∂tPtφ(x) =
∫
X∗

G(x,dz)P (t, z,dy)φ(y) −
∫
X∗

F (x)P (t, x, dy)φ(y).

Integrating against a measure μ, whenever the integrals are well defined, we
obtain for the Kolmogorov forward equation

∂t〈μ, Ptφ〉 = 〈μ, PtFφ〉.
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On the other hand, with the Kolmogorov backward equation (4.15),

∂t〈μ, Ptφ〉 = 〈μ,FPtφ〉 = 〈μF , Ptφ〉.

In Notation 4.2, we consider semi-groups as acting on B(X∗,R). There are
sub-classes of semi-groups of particular interest.

Definition 4.5 (Strongly continuous semi-group). A semi-group {Tt}t≥0 on a
Banach space Y is strongly continuous on Y whenever Ttf converges to f for
any f ∈ Y as t → 0.

Definition 4.6 (Generator). Let {Tt}t≥0 be a strongly continuous semi-group
on Y. The operator (L ,Dom(L )) defined by

Dom(L ) :=
{
φ ∈ Y

∣∣∣∣∣ lim
t→0
t>0

Ttφ− φ

t
exists

}
⊂ Y,

L φ := lim
t→0
t>0

Ttφ− φ

t

is the generator of {Tt}t≥0. The space Dom(L ) is the domain of L .

When a semi-group with generator (L ,Dom(L )) is strongly continuous
on Y, then

Ptφ = φ +
∫ t

0
PsL φds, for all φ ∈ Dom(L ), (4.16)

Ptφ = φ +
∫ t

0
LPsφds, for all φ ∈ Y. (4.17)

A classical result is the following one: not only Dom(L ) is not empty, but it
is dense in Y.

Lemma 4.2. Assume that the semi-group {Tt}t≥0 is strongly continuous on Y

with generator (L ,Dom(L )). The domain Dom(L ) is dense in Y, and (L ,
Dom(L )) is a closed operator6.

Conversely, the infinitesimal generator (L ,Dom(L )) of a strongly continuous
semi-group determines the semi-group uniquely provided that (L ,Dom(L )) is
closed and densely defined [36, Theorem II.1.4, p. 53].

Unfortunately, there is no reason for the semi-group {Pt}t≥0 associated to
the couple (F,G) to be strongly continuous without further controls.

Lemma 4.3. Assume that the rate is bounded (Hypothesis 3.1). Then the semi-
group {Pt}t≥0 generated by (F ,B(X∗,R)) is strongly continuous on B(X∗,R).

Proof. Since the rate is bounded, ‖Fφ‖∞ ≤ 2‖F‖∞‖φ‖∞ for any φ ∈ B(X∗,R).
Therefore, F (B(X∗,R)) ⊂ B(X∗,R).

6This means that if φn converges to φ in Y for some sequence {φn} and L φn converges
to some ψ ∈ Y, then ψ ∈ Dom(L ) and ψ = L φ.
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Let φ(x) :=
∑n

i=1 ai1Λi
(x) be a step function. Then from the Kolmogorov

backward equation,

Ptφ(x) − φ(x) =
∫ t

0
F (x)

∫
G(x, dy)P (s, y,Λi)ai ds−

∫ t

0
F (x)P (s, x,Λi)ai ds

from which
‖Ptφ− φ‖∞ ≤ 2t‖F‖∞ sup

i=1,...,n
|ai|.

By approximating any bounded, measurable function by a step function, such in-
equality is sufficient to conclude that {Pt}t≥0 is strongly continuous on B(X∗,R).
In addition,∥∥∥∥Ptφ− φ

t
− Fφ

∥∥∥∥
∞

≤ 1
t

∫ t

0
2s‖F‖∞‖Psφ− φ‖∞ ds ≤ t‖F‖2

∞‖φ‖∞.

Hence, (F ,B(X∗,R)) is the infinitesimal generator of {Pt}t>0.

Actually, from the proof of Lemma 4.3, the semi-group {Pt}t≥0 is uniformly
continuous, that is

‖Pt − Id‖∞→∞ ≤ 2‖F‖∞.

Such inequality implies that the infinitesimal generator (L ,Dom(L )) of {Pt}t≥0
is actually bounded, that is L is a bounded linear operator and
Dom(L ) = Y [36, Corollary II.1.5, p. 52].

When using semi-groups, we could replace B(X∗,R) by particular subspaces.
Two kinds of semi-groups are of particular importance in stochastic analysis.

Definition 4.7 (Feller-Dynkin and Feller semi-group). Let {Pt}t≥0 be a strongly
continuous, positivity-preserving and contractive semi-group on Y. Then

1. If Y = (C0(X∗,R), ‖·‖∞), then {Pt}t≥0 is a Feller-Dynkin semi-group
(meaning that Pt(C0(X∗,R)) ⊂ C0(X∗,R)).

2. If Y = (Cb(X∗,R), ‖·‖∞), then {Pt}t≥0 is a Feller semi-group (meaning
that Pt(Cb(X∗,R)) ⊂ Cb(X∗,R)).

Let us give an example of the Feller semi-group.
Hypothesis 4.3. The rate F is bounded (Hypothesis 3.1) and continuous. Besides,
and x ∈ X �→ G(x, ·) ∈ M

+(X) (space of positive measures) is continuous with
respect to the weak topology of M+(X).

The proof of the next lemma is immediate.

Lemma 4.4. Under Hypothesis 4.3, (F , Cb(X∗,R)) is a bounded operator on
Cb(X∗,R) and the associated semi-group is Feller (and is continuous).

Lemma 4.5. Assume that {Pt}t≥0 is contractive and strongly continuous on a
Banach space Y ⊂ B(X∗,R) — either B(X∗,R), Cb(X∗,R), or Cc(X∗,R) — then
its generator is (L ,Dom(L )) = (F ,Dom(F )) with

Dom(F ) := {φ ∈ Y | Fφ ∈ Y}. (4.18)
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Proof. Let φ ∈ Dom(F ) ⊂ B(X∗,R). Then there exists a family of step functions
{φm}m that approximate uniformly φ, with φm ≤ φ.

Since
∫ t

0
∫
X∗ P (s, x,dy)G(y,Λ) ds and

∫ t

0
∫
X∗ P (s, x,dy)F (y)1Λ(y) ds are well

defined for any Λ ∈ Bor(R+), they are well defined in particular for Λ ∈ X
∗.

Thefore∫
X∗

G(y,dz)φm(z) ≤ ‖φ‖∞F (y)G(y,X∗) and F (y)φm(y) ≤ ‖φ‖∞F (y)1X∗(y)

and F (y) and G(y,X∗) are integrable on [0, t]×X
∗ with respect to P (s, x,dy) ds.

From the Lebesgue dominated convergence theorem, we then obtain that

Ptφ(x) = φ(x) +
∫ t

0
PsFφ(x) ds, for all t ≥ 0, x ∈ X

∗.

Since {Pt}t≥0 is contractive on Y, ‖PsFφ‖∞ ≤ ‖Fφ‖∞ and then∥∥∥∥Ptφ− φ

t
− Fφ

∥∥∥∥
∞

≤
∥∥∥∥1
t

∫ t

0
(PsFφ− Fφ) ds

∥∥∥∥
∞
.

The strong continuity of {Pt}t≥0 and the property of the Riemann integral
implies that

Ptφ− φ

t
= Fφ for any φ ∈ Dom(F ).

Hence, the generator (L ,Dom(L )) of {Pt}t≥0 extends (F ,Dom(F )) in the
sense that Dom(F ) ⊂ Dom(L ) and L φ = Fφ for any φ ∈ Dom(F ).

On the other hand, let φ ∈ Dom(L ) be such that L φ = φ. Then

Ptφ = φ +
∫ t

0
PsL φds = φ +

∫ t

0
Psφds.

Multiplying both sides by exp(−t) and performing an integration by parts,∫ +∞

0
exp(−t)Ptφdt = φ +

∫ +∞

0
exp(−t)Ptφdt

so that φ = 0. By [73, Lemma III.4.17, p. 237], this proves that (L ,Dom(L )) =
(F ,Dom(F )).

4.5. Probabilistic representation

Our main point of interest is to use the transition P as the transition proba-
bility for a stochastic process ξ defined on a probability space (Ω,H,P) with
a filtration (Ht)t≥0. The filtration is a family of σ-algebras which contains the
information up to time t. Here, for any ω ∈ Ω, t �→ ξt(ω) is a path which de-
scribes the evolution of a typical particle. Averaging over many such paths gives
the average behavior of the evolution of the mass and allows one to recover the
concentration.
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More precisely, the relation between ξ and P that solves (4.1)–(4.2) or
(4.9)–(4.10) is the following

P[ξ(t + s) ∈ Λ | Ht] = P (s, ξ(t),Λ) for any s, t ≥ 0 and Λ ∈ Bor(X).

Knowing the stochastic process contains much more information than just know-
ing its marginal distributions ξ(t) for any time t, as it encodes a dynamical
behavior.

We now focus on constructing several possible probabilistic representations
of the fragmentation equation. Each such representation underlines a different
aspect of the probability theory yet showing its unity. Besides, they have some
practical impact in term of Monte Carlo simulations as well as inference from
observed data.

5. Evolution of the mass as a stochastic process from a Markov
chain

We now present several structures that specify the dynamical evolution of the
mass of a typical fragment as a stochastic process, that is, as a random evolution
in time. The mass may only decrease, which we specify with the next hypothesis.
Hypothesis 5.1. In addition to Hypotheses 4.1 and 4.2 (mainly G(x, {x}) = 0
for any x ∈ X), for any x ∈ X, the support of G(x, ·) is contained in [0, x] that
is G(x,Λ) = 0 for any Λ ∈ Bor(X) with Λ ∩ [0, x] = ∅.

We first describe the evolution of the mass as a discrete event indexed by the
number of breakages, with

• Yk, the mass after k-th breakage,
• σk, the time span between two breakages,
• τk the time at which the k-th breakage occurs.

5.1. A description by a Markov chain

Let us consider first a Markov chain {(σk, Yk)}k≥0 living in R+ × X defined by
Y0 = x, σ0 = 0 and given Yk, Yk+1 and σk are drawn independently with the
distributions

σk+1 ∼ E(F (Yk)), Yk+1 ∼ G(Yk, ·), (5.1)
where E(λ) is the exponential distribution of parameter λ. The distribution of
(σk+1, Yk+1) given Yk = x has distribution

Rx(ds,dy) = F (x) exp(−sF (x))G(x,dy) ds. (5.2)

We note that σk > 0 a.s. for any k ≥ 1. The time of the events are defined as

τk = σ0 + σ1 + · · · + σk for k ≥ 0. (5.3)

The sequence {τk}k≥0 is increasing. Since G(x,Λ) = G(x,Λ ∩ [0, x)) for any
x ∈ X and Λ ∈ Bor(X), the sequence {Yk}k≥0 is decreasing almost surely.
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The sequence {(τk, Yk)}k≥0 is also a Markov chain: it represents the typical
evolution of a fragment. At time τk, the Yk−1-mer breaks up into two new
fragments, one being a Yk-mer. The σk’s represent the time span between two
breakages.

The algorithmic construction of realizations of such a chain is easy. We detail
this in Algorithm 1 in Section 10.2 below.

5.2. An alternative description using a Poisson point process

We introduce now another construction of the above chain. With this new con-
struction, the chain depends on a single stochastic process, called a Poisson
point process, which serves as a “random generator” for all the other random
variables. Later, this construction will be helpful to understand the formulation
through stochastic differential equations.

We consider a PPP N (see Appendix B) on R
3
+ with intensity n(ds,du, dv) =

dsdu dv on a probability space (Ω,G,P).
Hypothesis 5.2. In addition to Hypothesis 5.1, for any x ∈ X, G(x, ·) has a
density g(x, ·) with respect to the Lebesgue measure on X.
Notation 5.1 (Density of G). We set g(x, y) :=F (x)g(x, ·), the density of G(x, ·).
Notation 5.2. For a point x ∈ R+, we set

Γ(x) :=
{
(u, v) ∈ R

2
+
∣∣ v ≤ g(x, u)

}
.

Proposition 5.1. Assume Hypotheses 3.1 and 4.1. Let us construct iteratively
a family {(ζk, Uk, Vk)}k≥0 with values in R

3
+ by setting ζ = 0, U0 := 0 and

defining (ζk+1, Uk+1, Vk+1) as the leftmost point of the PPP N in the subset
Ik × Γ(Uk) for an interval Ik := [θ0 + · · · + θk,+∞), for any k ≥ 0. Then
{(ζk, Uk)}k≥0 is a Markov chain with the same distribution as {(σk, Yk)}k≥0
defined in Section 5.1.
Proof. We set ν(du, dv) := du dv so that N has intensity measure ds ν(du, dv).
Hence,

ν(Γ(x)) =
∫ +∞

0

∫ +∞

0
1v≤g(x,u) du dv =

∫ +∞

0
g(x, u) du = G(x,X) = F (x).

With Lemma B.1 and Remark B.1 in Appendix B, the leftmost point (ζ, U, V )
of N in [t,+∞) × Γ(x) satisfies:

(i) (U, V ) is independent from ζ and uniform in Γ(x),
(ii) ζ ∼ E(F (x)).

With Lemma C.1, U has for density F (x)−1g(x, ·) = g(x, ·). With the rejection
principle (Lemma C.2), this proves the result.

With this construction, the probability space (Ω,H,P) of the chain is the one
supporting the PPP. There exists a measurable function Φ from Ω to R∞

+ ×X∞

such that {(σk(ω), Yk(ω))}k≥0 = Φ(ω). In Section 5.1, the probability space
has to be constructed inductively as a limit of the finite chains {(σk, Yk)}0≤k≤n

thanks to the Ionescu Tulcea theorem [52].
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6. From Markov chain to jump process

We now give three ways to embed the Markov chain to a continuous time
stochastic process:

Sect. 6.1 The embedding of a Markov chain into a jump process and the
construction of the associated transition probability, which is the
probabilistic counterpart of the construction of the solution of the
Kolmogorov forward et backward equations.

Sect. 6.2 The thinning of a Poisson process, where the associated semi-group is
constructed through the infinitesimal generator. However, this con-
struction is valid only for bounded rates.

Sect. 6.6 The construction of a marked point process. The distribution follows
from the martingale problem.

6.1. Embedding the Markov chain into a jump process

We have given two constructions of Markov chains in Sections 5.1 and 5.2.
We now denote by Ξ := {(τk, Yk)}k≥0, encoding the times {τk}k≥0 at which

the breakages occurs, and {Yk}k≥0, the mass of the fragments.

Notation 6.1 (Cemetery point and point at infinity). We append to X a ceme-
tery point †. We write X := X ∪ {†} and R+ := R+ ∪ {∞}. Actually, as we
consider only a decreasing mass, the cemetery point could also be identified
with 0. Any function φ on X are extended to functions on X by setting φ(†) = 0.

Our goal is now to construct a X-valued continuous process ξ = {ξ(t)}t≥0
indexed by the time and to identify its distribution.

Notation 6.2 (Embedding the Markov chain). From a (R+×X)-valued Markov
chain Ξ := {(τk, Yk)}k≥0, we define

ξ(t) :=
{
Yk if τk ≤ t < τk+1 and Y0 ∈ X,

† if t ≥ τ∞ := limn τn or Y0 = †.
(6.1)

Definition 6.1 (Conservative/regular process; explosive process). Let τ∞ :=
limn τn. If almost surely τ∞ = +∞, then the process is said to be conservative or
regular. This is equivalent to P (t, x,X) = 1 for any (t, x) ∈ R+ ×X

∗. Otherwise,
the process is explosive.

As we saw in Section 4.2 (See also Section 8), the process ξ is not always
conservative. This justifies the introduction of the cemetery point, which is
useless for conservative processes (for example when the rate is bounded, see
Proposition 4.3). At the end of this section, we give conditions for the process
to be conservative.

Definition 6.2 (Characteristics of a process). The process ξ defined by (6.1)
is called the (minimal7) process with characteristics (F,G).

7As we only consider minimal processes, see Remarks 4.3 and 6.1, we drop this adjective.
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Notation 6.3 (Space of càdlàg process). We set D(R+,X) the space of paths
from R+ to X which are left-continuous with right-limits at each time8.

The process ξ defined above takes its values in D(R+,X) and is piecewise
constant on [τk, τk+1). It has jumps only when breakages occur.

Notation 6.4 (Counting process). The counting process �ξ� is

�ξ�J := #{τk | τk ∈ J} for J ∈ Bor(R+),

i.e., �ξ�J is the number of events occurring in J . We also set �ξ�(τ) := �ξ�(0, τ ].

We now define properly the underlying probabilistic structure as in [39,
Sect. 2]:

• Probability space. We denote by Ω the set of all sequences {(tk, xk)}k≥0
in R+ × X such that (i) x0 ∈ X and t0 = 0; (ii) if tk < +∞, then tk < tk+1
and xk ∈ X; (iii) if tk = +∞, then tk = tk+1 and xk = †. We also set t∞ :=
limk→∞ tk and x∞ = †. This space Ω is a measurable subspace of R+ × X.

• σ-algebra. We then denote by H the σ-field of measurable subsets of Ω,
that is the set of elements of type Λ∩Ω when Λ is measurable in R+×X, where
the σ-algebra on R+ × X is the product σ-algebra.

• Filtration. For any t ≥ 0, we define Ht := σ(Bor(X),H′
t) with

H′
t := σ(1xk∈Λ1tk≤s | 0 ≤ s ≤ t, Λ ∈ Bor(X), k ≥ 0).

This filtration {Ht}t≥0 is an a.s. jumping filtration on R+ [55, Definition 1,
p. 15], i.e. Ht and Htk coincide on {tk ≤ t < tk+1} ∈ Ht.

• Stopped σ-algebra. A stopping time is a random time τ such that {τ ≤
t} ∈ Ht. For a stopping time τ , we define the stopped σ-algebra as

Hτ :=
{
A ∈ G

∣∣A ∩ {τ ≤ t} ∈ Ht for all t ∈ R+
}
.

With the above filtration, for any Λ ∈ H, Λ ∩ {tk ≤ t} ∈ Ht so that each tk is
a stopping time.

• Process. This is the process ξ defined by (6.1). Its distribution is denoted
by P. Besides, we write Px for the distribution of ξ given ξ(0) = x, x ∈ X.

Notation 6.5. For u ≥ 0, we denote respectively by Ku(ds,dy) and Hu(ds)
the regular conditional distributions of (τ�ξ�(u)+1, ξ(�ξ�(u) + 1)) given Hu and
of τ�ξ�(u)+1 given Hu. This means that we consider by Ku (resp. Hu) the dis-
tribution of the mass and time (resp. time only) of the first breakage occurring
after the time u.

We skip the technical details, especially regarding the measurability, of the
next lemma. However, thanks to the memoryless property of the exponential
distribution (see Lemma A.1), its meaning is clear.

8or continu à droite avec une limite à gauche (càdlàg).
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Lemma 6.1 ([39, Lemma 2.1]). For all t ≥ u ≥ 0,

Hu(dt) = F (ξ(u)) exp(−(t− u)F (ξ(u))) dt on {�ξ�(u) < +∞},
Ku(dt,dy) = exp(−(t− u)F (ξ(u)))G(ξ(u),dy) dt on {�ξ�(u) < +∞}.

Now, let us consider computing P[ξ(t) ∈ Λ|Hu] for 0 ≤ u ≤ t and Λ ∈ Bor(X).

Lemma 6.2. For any u < t, Λ ∈ Bor(X) and n ≥ 0,

P (n)(t− u, ξ(u),Λ) = P[ξ(t) ∈ Λ, �ξ�(u, t] = n | Hu], (6.2)

where P (n) is defined in (4.5).

Sketch of the proof. We give only the main argument of the proof. We left the
details on measurability and cite the steps in [39].

First, with the notations of Section 4,

P[ξ(t) ∈ Λ, �ξ�(u, t] = 0 | Hu] = P
[
ξ(t) ∈ Λ, τ�ξ�(u)+1 > t

∣∣Hu

]
= P

[
ξ(u) ∈ Λ, τ�ξ�(u)+1 > t

∣∣Hu

]
= 1Λ(ξ(u))Hu([t,+∞)) = P (0)(t−u, ξ(u),Λ).

Now, for some n ≥ 0, our aim is to show by induction that (6.2) holds at level n.
Then

P[ξ(t) ∈ Λ, �ξ�(u, t] = n + 1 | Hu]

=
∫ t

u

∫
X

P
[
ξ(t) ∈ Λ, �ξ�(τ�ξ�(u)+1, t] = n

∣∣Hu, τ�ξ�(u)+1 = s, Y�ξ�(u)+1 = y
]

× Ku(ds,dy)

=
∫ t

u

∫
X

P
[
ξ(t) ∈ Λ, �ξ�(s, t] = n

∣∣Hτ�ξ�(u)+1 , τ�ξ�(u)+1 = s, Y�ξ�(u)+1 = y
]

× Ku(ds,dy).

Using the induction hypothesis and the definition of A + in (4.3) as well as the
expression of Ku in Lemma 6.1, we obtain

P[ξ(t) ∈ Λ, �ξ�(u, t] = n + 1 | Hu] =
∫ t

u

∫
X

P (n)(t− s, y,Λ)Ku(ds,dy)

= A +P (n)(t− u, ξ(u),Λ) = P (n+1)(t− u, ξ(u),Λ). (6.3)

Hence we get the result.

Proposition 6.1. The process ξ with characteristics (F,G) (Definition 6.2) is
a Markov process whose probability transition P satisfies the Kolmogorov for-
ward and backward equations, and is given by (4.6) or (4.8). In particular, P is
minimal.
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Proof. From Lemma 6.2, by decomposition over the possible values in �ξ�(u, t],

P[ξ(t) ∈ Λ | Hu] =
∑
n≥0

P[ξ(t) ∈ Λ, �ξ�(u, t] = n | Hu]

=
∑
n≥0

P (n)(t− u, ξ(u),Λ) = P (t− u, ξ(u),Λ).

The result follows from Propositions 4.1 and 4.2.

Proposition 6.1 shows that the process ξ with characteristics (F,G) is easy to
simulate thanks to Algorithm 1. See Section 4.5 for some comments on practical
applications.

This process is not only Markov but also strongly Markov, i.e. the indepen-
dence with respect to the σ-algebra Hτ for any suitable stopping time τ can be
assessed also when a fixed time is replaced by a stopping time.

Proposition 6.2 ([29, 37, 55]). The process ξ with characteristics (F,G) is a
strong Markov process.

Such a process ξ is a Pure Jump Markov Process. This class of stochastic
processes was introduced by W. Feller in [40] under the name Purely Discontin-
uous Markov Process. This class of processes is included in the class of Piecewise
Deterministic Markov Process (PDMP) [29]. itself included in the class of Jump
Markov Process [55] (see also the work [37]). Heuristically, this process is Markov
as a consequence of the memoryless property of the exponential distribution.

Lemma 6.3 ([55, Theorem 9]). Let ξ be a strong Markov process on a filtered
probability space (Ω,H, (Px)x∈X

, (H)t≥0) which is piecewise constant. Assume
that the distribution of (τ,Δτ ξ), where τ is the time of its first jump and Δtξ =
ξ(t) − ξ(t−), is E(F (x)) ⊗ G(x, ·). Then its probability transition function P
satisfies the Kolmogorov backward equation. Besides, if ξ is such that ξ(t) =
† whenever t > limk≥0 τk, where τk are the successive jumps of t, then P is
minimal and thus corresponds to the one constructed in Section 4.2.

Proof. Fix t > 0, Λ ∈ Bor(X). By the strong Markov property,

P (t, x,Λ) = Px[ξ(t) ∈ Λ] = Px[ξ(t) ∈ Λ | τ > t]

+
∫ t

0

∫
X

Px[ξ(t) ∈ Λ | (τ,Δτ ξ) = (s, y)]F (x) exp(−F (x)s)G(x, dy) ds

= 1Λ(x) exp(−F (x)t) +
∫ t

0

∫
X

Py[ξ(t− s) ∈ Λ]F (x) exp(−F (x)s)G(x, dy) ds

=
∫ t

0

∫
X

P (t− s, y,Λ) exp(−F (x)s)G(x, dy)

= 1Λ(x) exp(−F (x)t) +
∫ t

0

∫
X

P (t− s, y,Λ) exp(−F (x)s)G(x, dy).

This is (4.13), so that P also satisfies (4.9)-(4.10).
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Remark 6.1. Using (6.2), we see that since P (t, x,X∗) =
∑

n≥0 P
(n)(t, x,X∗),

P (t, x,X∗) = 1 − Px[�ξ�(0, t] = +∞].

Therefore, the probability transition function is substochastic if and only if (as
we consider here only processes which are minimal in the sense of Lemma 6.3)
their probability transition functions are also the minimal ones solving the Kol-
mogorov forward and backward equations (See Remark 4.3).

We give a necessary and sufficient condition for the process to be conserva-
tive/regular. A thoughtful discussion may be found in [77] (More references are
given in Section 8).

Proposition 6.3 (See e.g., [58, Proposition 13.5, p. 281]). Under Px, τ∞ = +∞
almost surely if and only if

∑+∞
k=1 1/F (Yk) = +∞ almost surely.

From this proposition, it is easily seen that if F is bounded (Hypothesis 3.1),
then the process is conservative (See Proposition 4.3).

6.2. Thinning Poisson processes

Following [38, Section 4.2, p. 163], we now give another way to embed a Markov
chain into a jump process. This leads naturally to the martingale problem, yet
in a restrictive setting. We assume Hypothesis 3.1 (boundedness of the rate)
and we set

Ĝ(x, dy) :=
(

1 − F (x)
κ

)
δx + F (x)

κ
G(x, dy), F̂ (x) := κ := ‖F‖∞.

We define ξ̂ as the process with characteristics (F̂ , Ĝ). The difference with ξ is
that ξ̂ may stay on the same position. Actually, if a “jump” occurs at time τ̂ ,
there is a probability F (ξ(τ−))/κ that ξ̂(τ̂) �= ξ̂(τ̂−). Note that this was ex-
cluded in Hypothesis 4.2. The jump times τ̂k are all distributed as E(κ).

Lemma 6.4. [38, Section 4.2, p. 163] Let {Zk}k≥0 be a Markov chain with
transition kernel Ĝ and N be an independent Poisson process with rate κ. Then
ξ′ := {ZN(t)}t≥0, ξ̂ and ξ have the same finite dimensional distributions.

On the topic, see also Corollary 6.3 and Theorem 6.1 in Section 6.4 on the
martingale problem. In particular, ξ′, ξ and ξ̂ are actually equal in distribution.

We define
Pf(x) :=

∫
X

f(y)Ĝ(x, dy).

Clearly, P is a bounded linear operator on B(X∗,R) with norm 1. In addition,

Ff(x) = F (x)
∫
X

(f(y) − f(x))G(x, dy) = κ

∫
X

(f(y) − f(x))Ĝ(x, dy)

= κ(P − Id)f(x).
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The (unique) strongly continuous semi-group generated by (F ,B(X∗,R)) of
Lemma 4.3 may be written

Pt :=
∑
k≥0

e−κt (κt)k

k! Pk, t ≥ 0.

This follows from the fact that formally,

Pt = exp(tκP − tκId) = exp(tκP) exp(−tκId)

since the operators κP and κId commute.

Lemma 6.5 ([38, Section 4.2, p. 163]). Let {H′
t}t≥0 be the filtration generated

by the Poisson process N and the Markov chain {Zk}k≥0 in Lemma 6.4. Then
for any φ ∈ Cc(X∗,R),

E[φ(ξ′(s + t)) | H′
s] = Ptφ(ξ′(s)) for any s, t ≥ 0, (6.4)

where ξ′ := {ZN(t)}t≥0. Therefore, ξ′ satisfies the Markov property and {Pt}t≥0
is its associated semi-group.

Thinning algorithm The above construction also gives rise to the thinning
algorithm, which is a simplified version of the Ogata algorithm [72, 66]. To sim-
ulate ξ, one has to simulate ξ̂ or ξ′. For this, we simulate first a Poisson process
with rate κ, with successive times {τk}. At each time τk, ξ̂ jumps according
to the distribution G(ξ̂(τk−), ·), with probability F (ξ̂(τk−)), otherwise does not
change. Algorithm 1 is simpler here. Yet this thinning algorithm is useful in
presence of growth or abrasion.

6.3. The extended generator

We have defined the notion of generator associated to the semi-group. However,
this notion requires the semi-group to be strongly continuous and thus refers to
an ambient Banach space. In a probabilistic context, it is natural to consider it as
the space of continuous or bounded functions. On the other hand, in functional
analysis approaches, the ambient space is that of integrable functions.

We now present another notion of generator, called the extended genera-
tor [26, 29].

Through all this chapter, we work under the following hypothesis, which is
stronger than Hypothesis 4.1, yet weaker than Hypothesis 3.1.
Hypothesis 6.1. The rate F is bounded on any compact subset of X∗ = (0,+∞).

Notation 6.6. Let ξ be the process with characteristics (F,G). Let φ be a
measurable function. We denote by

Mφ
t := φ(ξ(t)) − φ(ξ(0)) −

∫ t

0
F �φ(ξ(s)) ds, t ≥ 0. (6.5)
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Definition 6.3 (Extended generator). Let ξ be the process with characteristics
(F,G). Let (F �,Dom(F �)) be an operator that satisfies

(i) Dom(F �) contains measurable functions.
(ii) For any φ ∈ Dom(F �), s �→ F �φ(ξ(s)) is Lebesgue integrable almost

surely on [0, t] for any t > 0, and {Mφ
t }t≥0 defined by (6.5) is a local

martingale.

Lemma 6.6. Let Λ ∈ Bor(X∗). Then 1Λ ∈ Dom(F �) where F � is the extended
generator of ξ, F �1Λ(x) = F1Λ(x) = G(x,Λ) − F (x)1Λ(x), and {M1Λ

t }t≥0 is
a martingale.

Proof. First, for any x ∈ X
∗ and t ≥ 0,

E

[∫ t

0
F (ξ(s))1Λ(ξ(s)) ds

]
=

∫ t

0
P (s, x,dy)F (y)1Λ(y) < +∞

as well as

E

[∫ t

0
G(ξ(s),Λ) ds

]
=

∫ t

0
P (s, x,dy)G(y,Λ) < +∞

from the existence of the solution to the Kolmogorov forward equation. Hence,
(ω, t) �→ F1Λ(ξ(t, ω)) is Lebesgue integrable for P⊗ dt.

For any s ≤ t,

E[M1Λ
t | Hs] = E

[
1Λ(ξ(t)) − 1Λ(ξ(0)) −

∫ t

0
F1Λ(ξ(r))

∣∣∣∣Hs

]
= E[1Λ(ξ(t)) | Hs] − 1Λ(ξ(s)) −

∫ t

s

E[F1Λ(ξ(r)) | Hs] ds + M1Λ
s .

Owing to the Markov property,

E[M1Λ
t | Hs] = M1Λ

s + P (t− s, ξ(s),Λ) − 1Λ(ξ(s))

−
∫ t

s

∫
X∗

P (r − s, ξ(s),dy)G(y,Λ) −
∫ t

s

P (r − s, ξ(s),dy)F (y)1Λ, a.s..

Thanks to the Kolmogorov forward equation (4.1)-(4.2), {M1Λ
t }t≥0 is a martin-

gale and 1Λ ∈ Dom(F �).

We now focus on subspaces of the domain of the extended generator.

Notation 6.7. We the notations of Definition 6.3, we set

Mart(F �) :=

⎧⎪⎨⎪⎩φ ∈ B(X∗,R)

∣∣∣∣∣∣∣
Ex

[∫ t

0
|F �φ|(ξ(s)) ds

]
< +∞

for any (t, x) ∈ R+ × X
∗

⎫⎪⎬⎪⎭ ⊂ Dom(F �).

A consequence of Lemma 6.6 is the so-called Dynkin formula.
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Proposition 6.4 (Dynkin formula). For any φ ∈ Mart(F �), Mφ is a martin-
gale. Besides, F �φ = F and the Dynkin formula holds:

Ptφ(x) = φ(x) +
∫ t

0
PsFφ(x) ds. (6.6)

Moreover, for any t ≥ 0, Ptφ ∈ Mart(F �), PtFφ = FPtφ for any t ≥ 0, and

Ptφ(x) = φ(x) +
∫ t

0
FPsφ(x) ds.

At last,
lim
t→0

Ptφ(x) = φ(x) for any x ∈ X
∗. (6.7)

Remark 6.2. Eq (6.7) means that the semi-group with weakly continuous. If the
semi-group maps Cb(X∗,R) to itself, then it it is strongly continuous on Cb(X∗,R).

Proof. The proof of (6.6) is the same as the one of Lemma 4.5. That Mφ is a
martingale follows from the same arguments as the one of Lemma 6.6.

Fix v ≥ 0 and φ ∈ Mart(F �). We define

Nt := Pvφ(ξ(t)) − Pvφ(ξ(0)) −
∫ t

0
PvFφ(ξ(r)) dr, t ≥ 0.

As in the poof of Lemma 6.6 and using the semi-group property of {Pt}t≥0,

E[Nt −Ns | Hs] = Pt−s+vφ(ξ(s)) − Pvφ(ξ(s)) −
∫ t

0
Pr−s+vFφ(ξ(s)) dr.

This quantity is equal to 0 thanks to the Dynkin formula (6.6) so that {Nt}t≥0
is a martingale. Therefore, Pvφ ∈ Mart(F �) and F �Pvφ = FPvφ = PvFφ.

The weak continuity of Pt follows from the integrability condition of (s, ω) �→
φ(ξ(s, ω)) on [0, t] × Ω.

Proposition 6.5. (i) Let {Pt}t≥0 be a contractive, strongly continuous semi-
group with generator (F ,Dom(F )) on Y ⊂ B(X∗,R) (We refer to Lemma
4.5). Then Dom(F ) ∈ Mart(F �).

(ii) Under Hypothesis 3.1 (boundedness of the rate), then Cb(X∗,R)⊂Mart(F �).
(iii) Under Hypothesis 6.1 (local boundedness of the rate), then Cc(X∗,R) ⊂

Mart(F �).
Proof. These properties holds because for φ in either Dom(F ), Cb(X∗,R) or
Cc(X∗,R), Fφ is bounded. More specifically, for (iii), recall that G(x, [0, x]) = 1
so that

∫
X∗ G(x,dy)φ(y) = 0 whenever x close to 0 does not belong to the

support of φ.

With Proposition 6.4, we get a solution of the fragmentation equation.
Corollary 6.1. Let φ ∈ Mart(F �), then

u : (t, x) �→ Ptφ(x) ∈ L1([0, T ],B(X∗,R))

solves the fragmentation equation ∂tu(t, x) = Fu(t, x) with initial condition
u(0, x) = φ(x).
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6.4. The martingale problem

We now discuss an approach through the martingale problem. We just give some
hints, a complete study is found in [38].
Hypothesis 6.2. The operator (F ,Dom(F )) is a closed operator on C0(X∗,R)
with

Dom(F ) := {φ ∈ C0(X∗,R) | Fφ ∈ C0(X∗,R)}.
Besides, the rate F is bounded (in particular, the associated process generated
by (F,G) is conservative, see Proposition 4.3).

When the rate F is bounded, the operator F is bounded on B(X∗,R), and
thus λ−F is invertible for λ > 0 large enough. However, it does not mean that
Dom(F ) is not empty unless additional hypotheses are added on the pair (F,G).
Example 6.1. Assume that F ∈ C0(X∗,R) and x �→ G(x, ·) is weakly continuous.
Then Hypothesis 6.2 holds and Dom(F ) = C0(X∗,R).
Example 6.2. Assume that the rate F is continuous, bounded and that G(x,dy)=
δλx for some λ > 0. Then Hypothesis 6.2 holds and Dom(F ) = C0(X∗,R).
Lemma 6.7. Under Hypothesis 6.2, (F ,Dom(F )) is conservative (that is that
there exists φn such that limn→∞ Fφn(x) = 0 and limn→∞ φn(x) = 1), and
satisfies the positive maximum principle (that is for any φ ∈ Dom(F ) and
y such that supx∈X∗ φ(x) = φ(y) ≥ 0, then Fφ(y) ≤ 0). The last condition
implies that the operator is dissipative (that is ‖(λ − F )φ‖∞ ≥ ‖φ‖∞ for any
φ ∈ Dom(F ) for any λ > 0, [38, Lemma 4.2.1, p. 165]).

The first result is the existence of a strongly continuous semi-group9 as well
as the existence of a strong Markov process.
Theorem 6.1 ([38, Theorems 1.2.6 (p. 13), 4.2.2 (p. 165), and 4.2.7, (p. 169)]).
Assume Hypothesis 6.2 and moreover that Dom(F ) is dense in C0(X∗,R) and
that Dom(λ− F ) = C0(X∗,R) for some λ > 0. Then:

(i) The operator (F ,Dom(F )) generates (See Definition 4.6) a strongly con-
tinuous, positive, contractive semi-group {Qt}t≥0 on C0(X∗,R), that is a
Feller semi-group.

(ii) For any probability measure ν, there exists a Markov process ζ ∈ D(R+,X
∗)

(see Notation 6.3) with initial distribution ν and whose corresponding
semi-group is {Qt}t≥0. Besides, ζ is strong Markov with respect to the
filtration {Ht}t≥0, Ht := ∩ε>0σ(ζ(s), s ≤ t + ε).

Remark 6.3. The process ζ constructed above is the one constructed in Sec-
tion 6.2.
Definition 6.4 (Martingale problem, [38, Section 4.3, p. 173]). A probability
measure P solves the martingale problem for (F ,Dom(F ), ν) if there exists a
stochastic process ζ on a filtered probability space (Ω,H,P, {Ht}t≥0) such that

Mφ
t := φ(ζ(t)) − φ(ζ(0)) −

∫ t

0
Fφ(ζ(s)) ds

9This is actually a consequence of the Hille-Yosida theorem.
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is a martingale for any φ ∈ Dom(F ) and ζ(0) has a given distribution ν.

The following result is a consequence of Proposition (i) for the process ξ and
of [38, Proposition 4.1.7, p. 162] for ζ.

Corollary 6.2. Under the conditions of Theorem 6.1, both the processes ξ with
characteristics (F,G) and ζ of Theorem 6.1 solve the martingale problem for
(F ,Dom(F ), ν) for any initial distribution ν.

We have constructed possibly two different processes ξ and ζ, one associated
with a semi-group {Pt}t≥0 given by the Kolmogorov equations, and the other
associated with a semi-group {Qt}t≥0.

Corollary 6.3. The processes ξ and ζ have the same distribution.

Proof. As the processes ξ and ζ are Markov processes, it is sufficient to show
that ξ(t) and ζ(t) have the same marginal distribution for any t ≥ 0. From
Proposition 6.4 and Remark 6.2, the semi-group {Pt}t≥0 of ξ is strongly contin-
uous on Cb(X∗,R) and then on C0(X∗,R), and with Lemma 4.5, its infinitesimal
generator is (F ,Dom(F )). It is then uniquely defined [36, Theorem II.1.4, p. 53]
and thus Qt = Pt for any t ≥ 0. This implies the equality of the marginal distri-
butions of ξ and ζ. Finally, since X∗ is separable, this is sufficient to determine
their distributions in D(R+,X

∗) [38, Proposition 3.7.1, p. 127].

From now, we have constructed two solutions ξ and ζ of the martingale
problem, which are furthermore Markov processes. More may arise.

Definition 6.5 (Uniqueness, [38, Section 4.4, p. 182]). Let ν be a distribu-
tion on X

∗. Then uniqueness holds for the martingale problem (F ,Dom(F ), ν)
whenever any two solutions have the same finite-dimensional distribution.

Definition 6.6 (Well-posedness, [38, Section 4.4, p. 182]). The martingale prob-
lem (Definition 6.4) is well-posed whenever for any y ∈ X

∗, there exists one and
only one solution to the martingale problem with the initial distribution δy.

We now state two uniqueness results. Recall that Theorem 6.1 gives one
construction of the solution of the martingale problem. Yet other may exists.

Theorem 6.2 ([38, Theorem 4.4.2, p. 184]). Assume that for any starting dis-
tribution μ, any two solutions of the martingale problem with respect to (F ,
Dom(F ), μ) have the same finite-dimensional distributions. Then the solution
is Markov, has paths in D(R+,X

∗), and is unique in the sense of Definition 6.5.

Theorem 6.3 (Direct consequence of [38, Theorem 4.4.1, p. 182]). Under the
conditions of Theorem 6.1, the martingale problem is well-posed and any solution
is Markov.

Dealing with functions in Cc(X∗,R) may be to stringent. Using some localiza-
tion argument, one may relax Cc(X∗,R) to Cb(X∗,R) and even assume that the
rate F is not bounded. We now give some related results from V.N. Kolokoltsov
on the subject. We refer to [61] for the proofs.
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Proposition 6.6 (Proposition 2.2(i), [61]). Under Hypothesis 4.3, the operator
(F , Cb(X∗,R)) is bounded and the associated martingale problem is well-posed.

Hypothesis 6.3. There exists a function φ ∈ C(X∗,R+) such that F is uniformly
bounded on Uα := {x ∈ X | ψ(x) ≤ α}, α > 0 and Fψ(x) ≤ b + cψ(x) for any
x ∈ X

∗ and some constants b, c ≥ 0. The rate x ∈ X
∗ �→ G(x, ·) ∈ M

+(X∗) is
weakly continuous.

Proposition 6.7 (Proposition 2.2(ii), [61]). Under Hypothesis 6.3, for any
x ∈ X, there exists a unique Markov process ξ whose infinitesimal generator
is F with Cc(X∗,R) ⊂ Dom(F ), and ξ is the unique solution to the martingale
problem with initial measure δx.

6.5. A description using a marked point process

Using the rate F and the kernel G, we have constructed a Markov chain {(τk,
Yk)}k≥0 which we have embedded into a continuous time stochastic process
{ξ(t)}t≥0 with jumps at times τk such that ξ(τk) = Yk. Here, Yk represents the
mass after a breakage that occurs at time τk.

Notation 6.8 (Loss of mass at breakage). The loss of mass at breakage is the
quantity Δkξ := −(ξ(τk+1) − ξ(τk)) ≥ 0.

Notation 6.9 (Kernel for the loss of mass). We define the kernel GLM as

GLM(x, [0, u]) :=
{

G(x, [x− u, x]) for 0 ≤ u ≤ x,

G(x, [0, u]) = 1 for u ≥ x.
(6.8)

This means that if X is distributed as G(x, ·), then x − X is distributed as
GLM(x, ·). The indice LM refers to the loss of mass as it corresponds to the
remaining mass after a breakage. We also set

GLM(x, ·) := F (x)GLM(x, ·). (6.9)

The sequence {(τk,Δkξ)}k≥0 is not Markov as it depends on the remaining
mass.

We consider now another representation using random measures on [0,+∞]×
X. For this aim, we define the random measure

μ(ω; dt,dx) :=
∑
k≥1

δτk(ω),Δkξ(ω)(dt,dx)1τk(ω)<+∞, (6.10)

where δ(s,x) is the Dirac mass at (s, x). This measure is identified with points
on R+ ×X, where the coordinates of the points represent the time and the loss
of mass when a breakage occurs.

Such a measure can be integrated against any measurable, bounded func-
tion f on R+ × X with f(+∞, x) = f(t, †) = 0 for any (t, x) ∈ R+ × X by
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(omitting the ω), ∫ +∞

0

∫
X

f(s, x)μ(dt,dx) =
∑
k≥1

f(τk,Δkξ). (6.11)

The set {(τk,Δkξ)}≥1 is called a multivariate point process, or a marked point
process.

From the knowledge of μ and (6.11), we recover many information on ξ. For
example, with f : (t; s, x) �→ 1(0,t](s),∫ +∞

0

∫
X

f(t; s, x)μ(dt,dx) =
∑
k≥1
τk≤t

1 = �ξ�(0, t].

Using the function f : (t; s, x) �→ −1(0,t](s)x,∫ +∞

0

∫
X

f(t; s, x)μ(dt,dx) = −
∑
k≥1
τk≤t

Δkξ = ξ(t) − ξ(0). (6.12)

The random measure is defined on a probability space (Ω,H,P). As it contains
temporal evolution, we consider also a filtration (Ht)t≥0 such that Ht ⊂ H and
μ((0, t], ·) is Ht-measurable for any t > 0. Given Λ ∈ Bor(X) and t ≥ 0, h > 0,
one may ask what is the mean number of points of μ falling in [t, t+h)×Λ given
Ht−, where Ht− represents the information seen up to time t−. For h small,

P[�ξ�[t, t + h) = � | Ht−] =

⎧⎪⎨⎪⎩
exp(−hF (ξ(τ�ξ�(t−)))) if � = 0,
hF (ξ(τ�ξ�(t−)))) if � = 1,
o(h) if � ≥ 2.

(6.13)

Most likely, there will be no points or one point. Given there is one point, the
probability it falls in Λ is GLM(ξ(τ�ξ�(t−)),Λ).

Note that since ξ is piecewise constant, ξ(τ�ξ�(t−)) = ξ(t−) for any t ≥ 0.
Thus, the mean number of points in the small volume [t, t + Δt) × Δy is

approximately

F (ξ(τ�ξ�(t−))))GLM(ξ(τ�ξ�(t−)),Δy)Δt = GLM(ξ(τ�ξ�(t−)),Δy)Δt.

This suggests to define a new random measure

ν(dt,dx) =
∑
k≥0

1τk<t≤τk+1F (ξ(τk))GLM(ξ(τk),dx) dt

=
∑
k≥0

1τk<t≤τk+1G
LM(ξ(τk),dx) dt

= GLM(ξ(τ�ξ�(t−)),dx) dt = GLM(ξ(t−),dx) dt.

(6.14)

This random measure ν has two main features: it is (Ht−)t≥0-measurable, hence
depends only on the past. Besides, E[μ([t, t + h),Λ)] = E[ν([t, t + h),Λ)].

We now formalize this construction.



268 M. Deaconu and A. Lejay

Hypothesis 6.4. On a probability space (Ω,H,P) supporting {(τk,Δkξ)}k≥0, we
assume that there exists a filtration {Ht}t≥0 which is right-continuous, such
that Ht ⊂ H, τk is a stopping time with respect to (Ht)t≥0 and Δkξ is Hτk -
measurable. Furthermore, we assume that

Ht = H0 ∨ σ(μ((0, s) × Λ); s ≤ t, Λ ∈ Bor(X)) for any t ≥ 0. (6.15)

Such a filtration may be called the intrinsic history10 [28, p. 358].
In (6.15), μ((0, s) × B) is the number of points of {(τk,Δkξ)}k≥0 that falls

in (0, s) ×B.
Definition 6.7 (Predictable process). A process X : Ω × R+ is predictable if
(ω, t) �→ Xt(ω) is measurable with respect to the σ-algebra P generated by
left-continuous process which are {Ht}t≥0-adapted.
Definition 6.8. A random measure ν is called predictable if for each process
X : Ω × R+ × X → R+ which is measurable with respect to P ⊗ Bor(X), the
process (νX) : Ω × R+ → R+ defined by

(νX)t(ω) :=
∫
X

∫ t

0
X(ω, s, x)ν(ω; ds,dx)

is predictable.
Our measure ν given by (6.14) is clearly predictable.

Theorem 6.4 ([53, Theorem (2.1), (2.4)]). There exists a unique predictable
random measure ν (up to a P-null set) such that

E

[∫
X

X(t, x)μ(dt,dx)
]

= E

[∫
X

X(t, x)ν(dt,dx)
]

(6.16)

for any process X : Ω ×R+ ×X → R+ which is measurable with respect to P ⊗
Bor(X). Moreover, it may be chosen so that ν({t} × X) ≤ 1 for any t ≥ 0 and
ν([τ∞,+∞[×X) = 0. This measure ν is called the dual predictable projection
of μ. This measure ν is also characterized by the fact that for any Λ ∈ Bor(X),
{ν((0, t] × Λ)}t≥0 is predictable and {μ((0, t ∧ τk] × Λ) − ν((0, t ∧ τk × Λ))}t≥0
is a uniformly integrable martingale.
Proposition 6.8 ([53, Proposition (3.1)]). The dual predictable projection ν of
μ is given by (6.14).
Remark 6.4. In [53, Theorem (3.6)], it is possible to construct μ from a suitable
predictable random measure. We note that however, to apply such a construc-
tion, we need to construct ξ as in our setting, ν depends on ξ. The issue of
simultaneously constructing μ and ξ is solved when considering the approach
via stochastic differential equations.

The next result is a consequence of (6.13).
Corollary 6.4. The counting process t �→ �ξ�(t) is a non-homogeneous Poisson
process with random intensity t �→ F (ξ(t)).

10Using more general filtrations hinders the explicit computation of the compensator, see
[28, p. 367].
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6.6. Marked point processes and the martingale problem

The construction by the marked point process also allows one to easily recover
that the process so constructed is the solution to the martingale problem.

Since ξ is piecewise constant and of finite variation, the following change of
variable formula is obtained through a telescopic sum:

φ(ξ(t)) = φ(ξ(r)) +
∑
k≥0

r<τk≤t

(φ(ξ(τk)) − φ(ξ(τk−)))

= φ(ξ(r)) +
∑
k≥0

r<τk≤t

(φ(ξ(τk−) − Δkξ) − φ(ξ(τk−))).
(6.17)

Let φ ∈ Cb(X,R) and t ≥ r ≥ 0. Eq. (6.17) suggests to introduce the process
Xr,t,φ from Ω × R+ × X to R by

Xr,t,φ(ω; s, z) := 1(r,t](s)Xφ(ω, s, z)

with
Xφ(ω; s, z) := −(φ(ξ(ω; s−) − z) − φ(ξ(ω; s−))).

Since Xr,t,φ(ω; s, z) involves s �→ ξ(s−) on (r, t] and is left-continuous in s, Xr,t,φ

is {Ht}t≥0-adapted and is P ⊗ Bor(X)-measurable.
With (6.17) and the definition of μ in (6.10), we have

φ(ξ(ω; t)) = φ(ξ(ω; r)) +
∫ +∞

0

∫
X

Xr,t,φ(ω; s, z)μ(ω; ds,dz)

= φ(ξ(ω; r)) +
∫

(r,t]

∫
X

Xφ(ω, s, z)μ(ω; ds,dz).

With (6.14), we obtain∫ +∞

0

∫
X

Xr,t,φ(ω; r, z)ν(ω; ds,dz)

=
∑
k≥0

r<τk≤t

∫ τk

τk−1

(φ(ξ(s−) − z) − φ(ξ(s−)))GLM(ξ(s−),dz) ds

=
∫ t

s

(φ(ξ(s) − z) − φ(ξ(s)))GLM(ξ(s),dz) ds.

With Notation 3.4, we remark that

Fφ(x) :=
∫
X

(φ(x− y) − φ(x))GLM(x,dy).

We then rewrite∫ +∞

0

∫
X

Xr,t,φ(ω; r, z)ν(ω; ds,dz) =
∫ t

r

Fφ(ξ(s)) ds.
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Proposition 6.9 ([53, Proposition 5.3]). Let X be a finite P-measurable func-
tion. Let us assume that for any t ≥ 0,∫ t

0

∫
X

|X(ω; r, z)|ν(ω; ds,dz) < +∞ a.s. on {t < τ∞}. (6.18)

There exists a sequence {θk}k of stopping times, increasing almost surely to-
ward τ∞ such that {Zt∧θk}t≥0 is a uniformly integrable martingale for each
k ≥ 0, where Z is the right-continuous {Ht}t≥0-adapted process defined by

Zt := Z0 +
∫ t

0

∫
X

X(s, x)(μ(ds,dz) − ν(ds,dz)) a.s. on {T < τ∞}.

With our choice of Xφ as above, we define Z as

Zt :=
∫

(0,t]
Xφ(s, z)(μ(ds,dz) − ν(ds,dz)), t ≥ 0,

with Z0 = 0 so that

φ(ξ(t)) − φ(ξ(0)) = Zt +
∫ t

0
Fφ(ξ(s)) ds.

The conditions of the next corollary are met when the rate is bounded.

Corollary 6.5 ([53]). If (6.18) holds with Xφ and τ∞ = +∞ almost surely, the
distribution of the process ξ solves the local martingale problem.

7. Stochastic differential equations

7.1. Motivation

The martingale problem (Definition 6.4) was defined in terms of the distribution
of the process, through the notion of test functions. The process ξ constructed
by embedding a Markov chain solves the local martingale problem:

φ(ξ(t)) = φ(ξ(0)) + Mφ
t +

∫ t

0
Fφ(ξ(s)) ds, t ≥ 0

for any suitable φ and a local martingale Mφ. Can we describe Mφ
t ?

7.2. Stochastic differential equations driven by a Poisson point
process

We assume through all this section that Hypothesis 5.2, that is G(x, ·) has a
density g(x.·) for any x ∈ X

∗. We also write gLM(x, ·) for the density of GLM(x, ·).
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Definition 7.1 (Compensated Poisson process). Let N be a Poisson Point
Process11 on R

3
+ with intensity dsdu dv. The compensated Poisson process of N

is
Ñ(ds,du, dv) := N(ds,du, dv) − dsdu dv. (7.1)

We set

H(y, u, v) := −u · 1u≤y1v≤gLM(y,u), (7.2)

and �(y) :=
∫
X

∫
X

H(y, u, v) du dv =
∫ y

0
z · gLM(y, z) dz. (7.3)

We consider finding a process X ∈ D(R+,R) and a PPP N such that

Xt = X0 +
∫ t

0

∫
X

∫
X

H(Xs−, u, v)N(ds,du, dv) for t ≥ 0 (7.4)

or equivalently using the compensated Poisson process,

Xt = X0 +
∫ t

0

∫
X

∫
X

H(Xs−, u, v)Ñ(ds,du, dv) +
∫ t

0
�(Xs) ds for t ≥ 0. (7.5)

Eq. (7.4) is called a stochastic differential equation (SDE) driven by a random
measure. For general accounts on this theory, see for example [10, 51].
Remark 7.1. As X has a countable number of discontinuities, we could write
either

∫ t

0 �(Xs−) ds or
∫ t

0 �(Xs) ds, as these two quantities are almost surely
equal.

The meaning of the solution to (7.5) is clear from the results of Section 5.2:
the function H filters out the points of a Poisson Point Process and return a
sample of a jump.

7.3. Weak solutions

We consider only existence of weak solutions. The problem of existence of a
strong solution remains open, although this seems plausible thanks to the results
of Section 5.2 and the approach of [62]. However, strong existence does not follow
from the usual results (see e.g. [51]) which require some Lipschitz continuity not
satisfied by the function H.

Definition 7.2 (Weak solution). Given a distribution ν on X, a weak solution
to (7.4) is any 3-uple (X,N, ζ) defined on a probability space (Ω,H, (Ht)t≥0,P)
such that the distribution of ζ is ν, the distribution of N is that of a PPP with
intensity dsdu du and X solves (7.4), while ζ is H0-measurable, and X and N
are both (Ht)t≥0-adapted.

Weak solutions are also solutions to the martingale problem.
11See Appendix B.
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Proposition 7.1 (Itô’s formula). Let us consider X to be a weak solution to
the SDE (7.4). Let φ ∈ Mart(F �) ∩ Cb(X∗,R). Then for any t ≥ 0,

φ(Xt) = φ(ζ) +
∫ t

0

∫
R2

+

(φ(Xs− + H(Xs−, u, v)) − φ(Xs−))Ñ(ds,du, dv)

+
∫ t

0
Fφ(Xs) ds, (7.6)

for the compensated Poisson Process Ñ of N . Moreover, X solves the martingale
problem with respect to (F ,Dom(F ), μ) when ζ has distribution μ.

Proof. Let φ ∈ Cb(X∗,R). Since X is piecewise constant,

φ(Xt) − φ(ζ) =
∑

s s.t. ΔsX �=0

(φ(Xs− + ΔsX) − φ(Xs−)) with ΔtX = Xs −Xs−.

(7.7)
Using (7.5), we obtain

φ(Xt) = φ(ζ) +
∫ t

0

∫
R2

+

(φ(Xs− + H(Xs−, u, v)) − φ(Ys−))N(ds,du, dv). (7.8)

For any event A and any 0 ≤ u ≤ y,

φ(y − u1A) − φ(y) = (φ(y − u) − φ(y))1A.

Hence,∫ t

0

∫
R2

+

(φ(Xs− + H(Xs−, u, v)) − φ(Xs−)) du dv ds

=
∫ t

0

∫ Xs−

0
(φ(Xs− − u) − φ(Xs−))gLM(Xs−, u) du ds

=
∫ t

0
Fφ(Xs−) ds =

∫ t

0
Fφ(Xs) ds.

Using the compensated Poisson process, we rewrite (7.7) and (7.8) as (7.6). As
φ is bounded,

Mφ
t :=

∫ t

0

∫
R2

+

(φ(Xs− + H(Xs−, u, v)) − φ(Ys−))Ñ(ds,du, dv), t ≥ 0

is a martingale [51, Lemma 3.1].

Corollary 7.1. If the fragmentation kernel is such that the martingale problem
is well posed, then any weak solution to (7.4), which is necessarily a Markov
process, has a transition kernel which satisfies the Kolmogorov forward equation.
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Proof. Let X be a weak solution to (7.4), which is also a Markov process by
Theorem 6.2. Let φ ∈ Cb(X,R) ∩ Mart(F �). Using (7.6),

E[φ(Xt)] = E[φ(ζ)] +
∫ t

0
E[Fφ(Xs)] ds, ∀t ≥ 0.

As X is a Markov process, it is characterized by its probability transition func-
tion P (t, x,Λ), t ≥ 0, x ∈ X, Λ ∈ Bor(X). Therefore, if μ is the distribution of
the initial condition ζ,∫

X

∫
X

μ( dx)P (t, x,dy)φ(y) = E[φ(Xt)]

=
∫
X

μ( dx)φ(x) +
∫ t

0

∫
X

∫
X

μ( dx)P (t, x,dy)Fφ(y). (7.9)

Using Notation 4.2,
〈μ, ∂tPtφ〉 = 〈μ, PtFφ〉,

which is nothing more than the Kolmogorov forward equation.

7.4. A representation theorem

The process ξ with characteristics (F,G) solves the SDE (7.4) provided that F is
bounded. The proof relies on a Poisson representation theorem. As the subject is
technical, we give only the main points of the proofs. We refer to [26, 25, 35, 54]
for the details and proofs.

Proposition 7.2. Assume that the rate is bounded (Hypothesis 3.1). Let ξ be
the process with characteristics (F,G). Then for any x ∈ X

∗, there exists an
extension of the filtered probability space carrying a Poisson Point Process N
with intensity dtdudv such that on this extension, (ξ,N, x) is a weak solution
to the SDE (7.4).

Sketch of the proof. The process ξ has paths of finite variation and is non-
decreasing. Therefore, Id : x �→ x belongs to Mart(F ) as the rate F is bounded
under Px for any x ∈ X

∗.
Thus, ξ is a semi-martingale, which we may write

ξ(t) = ξ(0) + M Id
t +

∫ t

0
F Id(ξ(s)) ds.

We associate ξ with the measure μ given by (6.10). According to Proposition 6.8,
the dual predictable projection of μ is ν(dt,dy) = GLM(ξ(t−),dy) dt. (With
Notation 6.8, we use the convention that Δtξ ≥ 0, which explains the change of
signs with respect to the cited results).

With H defined in (7.2), it holds for any Λ ∈ Bor(X∗) (hence 0 �∈ Λ),

GLM(y,Λ) =
∫
R+

1Λ(u)gLM(y, u) du
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=
∫
R+

∫
R+

1Λ(u)1v≤gLM(y,u) dv du =
∫
1Λ(−H(y, u, v)) dv du.

According to [25, Proposition (3.19), p. 202] (note that the jumps are bounded),
there exists an extension of (Ω,H,Px, {Ht}t≥0) supporting a Poisson random
measure N on R+ × R2

+ such that

ξ(t) = ξ(0) +
∫ t

0

∫
R+

∫
R+

H(ξ(s−), u, v)N(ds,du, dv)

with mean measure dtdu dv.
Additional comments may be found in [25, Section (3.57), p. 214].

7.5. A weak existence condition with unbounded rate

We now give a condition for existence of weak solution of SDE for an unbounded
rate. We refer to [44] for the proofs and additional results.
Hypothesis 7.1. Hypothesis 5.2 (existence of a density for the kernel) holds, and
(x, y) �→ g(x, y) is continuous. The map � defined by (7.3) is continuous with

�(x) ≤ C(1 + xp) (7.10)

for some constants C ≥ 0 and p ≥ 1. Moreover,

lim
n→∞

sup
ε≤x≤ε−1

�n(x) = 0 for any ε ∈ (0, 1)

with
�n(x) :=

∫ x

0
y · gLM(x, y)1xg(x,y)≥ny dy.

Proposition 7.3 ([44, Proposition 3.1]). Assume that Hypothesis 7.1 holds and
that ζ is finite moment of order p + 1 (where p appears in (7.10)). Then

(i) There exists a weak solution to the SDE (7.4) with X0 = ζ and Xt has
finite moments of order p + 1 for any t ≥ 0.

(ii) If moreover, �(x) ≥ ρxγ for γ ∈ (0, 1) and ρ > 0. Then E[τ0] < +∞ where
τ0 := inf{t > 0 |Xt = 0}, and Xτ0+t = 0 almost surely. Identifying 0 to the
cemetery point †, this means that the process is almost surely explosive.
In addition, P[Xt = 0] > 0 for any t > 0 and t �→ P[Xt = 0] is increasing
with limit 1. If P[ζ > 0] > 0 then P[τ0 > t] > 0 for any t ≥ 0.

8. Mass conservation

The mass conservation means that the density satisfies P (t, x,X) = 1 for any
time t > 0 and any starting point x > 0. In the framework of Markov chains, it
means that Yk never reaches the cemetery point † in finite time, i.e. limk→∞ τk =
+∞. In our case, as the mass is non-increasing with respect to the time, one
can use 0 as the cemetery point †.
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If P (t, x,X) = 1 for any t > 0, then the associated semi-group is said to be
stochastic. Otherwise, it is substochastic.

Several sufficient conditions on the kernel can be given to ensure that the
semi-group is stochastic [70, 75, 77, 80]. We just give one such condition. Discus-
sions about cases where the mass is not conserved due to the creation an infinite
number of particles of zero mass (dust) may be found in [8, 47, 49, 69, 77, 78, 79]
among others. Such a phenomena is called shattering and was pointed out first
by A.F. Filippov [43] and McGrady and R.M. Ziff [69].

We give a criteria (see also [75, Corollary 6.1]). A similar criteria is that
lim supx→0+ F (x) < +∞ [9, Theorem 8.5].

Proposition 8.1 ([75, Corollary 6.1]). If F is bounded on bounded subsets of
(0,+∞), then the mass is conserved.

9. Binary fragmentation

We now consider the specific case of the binary fragmentation, where each frag-
ment is split in exactly two parts. In this case, the stochastic process represents
exactly the typical path of a particle. This is no longer the case of simultaneous
multiple breakages. However, the binary fragmentation equation, though the
average of the kernel, summarizes the density of the mass of the particles.

Our aim is to examplify the derivations of the various forms of the fragmen-
tation equation by elementary arguments.

Definition 9.1 (Binary fragmentation kernel). The binary fragmentation kernel
is a measurable function F : X2 → R+ specifies how a (x + y)-mer breaks up
into a x-mer and a y-mer. More precisely, (x+y)-mers break into y-mers at rate
F (x, y) and into x-mers at are F (y, x).

We add a supplementary hypothesis.
Hypothesis 9.1. The binary fragmentation kernel F is symmetric: F (x, y) =
F (y, x), for any x, y ≥ 0.

Several examples of classical binary fragmentation kernels may be found in
Table 1.

9.1. The fragmentation equation from the balance condition

The quantity of interest is c(t, x), the concentration of x-mers at time t. Using
Definition 9.1, the balance condition is the following: In a short time Δt,

c(t + Δt, x) ≈ c(t, x) − Δt

2 c(t, x)
∫ x

0
F (x− y, y) dy

+ Δt

∫ +∞

0
c(t, x + y)F (y, x) dy. (9.1)
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The 1/2 term is to avoid to count twice the fragmentation of a x-mer as (y, x−y)
and as (x− y, y).

Passing to the limit as Δt → 0, we recover the fragmentation equation (1.1):

∂c(t, x)
∂t

= −1
2

∫ x

0
c(t, x)F (x− y, y) dy +

∫ +∞

0
c(t, x + y)F (y, x) dy, (9.2)

which we rewrite as

∂c(t, x)
∂t

=
∫ +∞

0
c(t, x + y)F (y, x) dy − c(t, x) × 1

2

∫ x

0
F (x− y, y) dy.

Using the mass-biased mechanism, with p(t, x) := c(t, x) · x,

∂p(t, x)
∂t

=
∫ +∞

x

p(t, y)F (y − x, x)x
y

dy − p(t, x) × 1
2

∫ x

0
F (x− y, y) dy. (9.3)

9.2. Recovering the rate and the daughter distribution

We now relate the kernel F and the daughter distribution m.

Notation 9.1. We define

F (x) :=
∫ x

0
F (x− y, y)x− y

x
dy for x ≥ 0. (9.4)

Lemma 9.1. Under Hypothesis 9.1,

F (x) = 1
2

∫ x

0
F (x− y, y) dy for any x ≥ 0. (9.5)

Proof. Let x ≥ 0 be fixed. We evaluate∫ x

0
F (y, x− y)x− y

x
dy =

∫ x

0
F (y, x− y) dy −

∫ x

0
F (y, x− y)y

x
dy.

With the change of variable z ← x− y, since F is symmetric in its arguments,∫ x

0
F (y, x− y)x− y

x
dy =

∫ x

0
F (y, x− y) dy −

∫ x

0
F (y, x− y)y

x
dy

=
∫ x

0
F (y, x− y) dy −

∫ x

0
F (z, x− z)x− z

x
dz.

This leads to (9.5).

With Lemma 9.1, (9.2) is rewritten

∂c(t, x)
∂t

= −c(t, x)F (x) +
∫ +∞

0
c(t, x + y)F (y, x) dy. (9.6)

Therefore, F (x) is a rate at which a x-mer breaks.
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Proposition 9.1. Under Hypothesis 9.1, the fragmentation kernel F : X
∗ ×

X
∗ → R+ is in one-to-one correspondence with the daughter distribution M and

the rate F .

Proof. Using a change of variable y ← y−x, we rewrite (9.6) (which is equivalent
to (9.2)) as

∂c(t, x)
∂t

= −F (x)c(t, x) +
∫ +∞

x

c(t, y)F (y)m(y, x) dy (9.7)

with
m(y, x) := F (y − x, x)

F (y) 1(0,y)(x) and M(y,dx) = m(y, x)dx. (9.8)

This is the Fokker-Planck equation (2.3).
By combining (9.4) and (9.5),∫ x

0
m(x, y)y

x
dy = 1. (9.9)

Therefore, the mass conservation in average is satisfied (Hypothesis 2.2).
Hence, from the knowledge of a symmetric fragmentation kernel F : X∗2 →

R+, we recover the rate F : X∗ → R+ and the mean number of fragments M .
Conversely, given y �→ m(y, x) for any x ∈ X

∗ and a rate function x �→ F (x),
we may recover the kernel (x, y) �→ F (x, y) by setting

F (x, y) := F (x + y)m(x + y, y).

Hypothesis 9.1 is equivalent to (2.10).

9.3. The Kolmogorov forward and backward equations

We presented previously a formal derivation of the fragmentation equation (9.2).
We now rewrite the Kolmogorov forward and backward equations using the
fragmentation kernel F .

We introduce the following operators.

Notation 9.2. We set for any φ ∈ Cc(X∗)

Fφ(x) :=
∫ x

0
F (x− y, y)x− y

x
(φ(x− y) − φ(x)) dy

and for any μ ∈ M(X∗)

F �μ(dx) :=
(∫ +∞

x

μ(dy)x
y
F (y − x, x)

)
dx− F (x)μ(dx)

whenever the integral is well defined.
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Proposition 9.2. With Notation 2.5, for any μ ∈ M(X∗) and φ ∈ Cc(X∗,R),

〈F �μ, φ〉 = 〈μ,Fφ〉.

In other words, the operators F and F � are in duality.

Proof of Proposition 9.2. Let φ ∈ Cc(X∗) be a continuous function with compact
support on R+. After two changes of variables, by inverting first x and y and
then changing y to x− y,∫ +∞

0
φ(x) dx

∫ +∞

x

μ(dy)x
y
F (y − x, x)

=
∫ +∞

0

∫ +∞

0
μ(dy) dxφ(x)x

y
F (y − x, x)1x≤y

=
∫ +∞

0
μ(dx)

∫ x

0
dy φ(y)y

x
F (x− y, y)

=
∫ +∞

0
μ(dx)

∫ x

0
dy φ(x− y)x− y

x
F (x− y, y).

On the other hand, from the very definition of F in (9.4), we have∫ +∞

0
μ(dx)F (x)φ(x) =

∫ +∞

0

∫ x

0
μ(dx)F (y − x, x)y − x

x
φ(x) dy.

This proves the result.

Let t �→ p(t,dx) be a M(X∗)-valued solution to

∂

∂t

∫ +∞

0
p(t,dx)φ(x) =

∫ +∞

0

∫ x

0
p(t,dx)F (x− y, y)x− y

x
(φ(x− y) − φ(x)) dy

(9.10)
for any φ ∈ Cc(X∗,R). This is a rewriting of (9.3). Using Notation 2.5, (9.10) is

∂

∂t
〈p(t, ·), φ〉 = 〈p(t, ·),Fφ〉. (9.11)

Using the duality of Proposition 9.2, we obtain that
∂

∂t
〈p(t, ·), φ〉 = 〈F �p(t, ·), φ〉. (9.12)

Hence, (9.11) is the Kolmogorov forward equation while (9.12) is the Kolmogorov
backward equation. The existence of such equations have been studied in Sec-
tions 4.1 and 4.2.

10. A simulation algorithm

10.1. Computation for some kernels

In Table 1, we consider a variety of standard kernels and compute the quantities
associated to some usual fragmentation kernels.
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Fig 1. Statistics of the evolution of a cloud of particles with the time. Each line represents
a quantile (10%, 20%, 50%, 75%, 90%, the lines are ordered from bottom to top), and the
dashed line represents the mean. The initial mass is 1. The cloud has 2000 particles.

In Figures 1 and Figures 2, we present the quantiles (10 %, 20 %, 50 %, 75%,
90 %) and the means at different masses for the evolution of a set of particles
over the time, with a constant initial mass, and with an initial mass being
log-normally distributed. Although almost all the kernels in Table 1 have the
same breaking dynamics G(x, ·), the rate strongly influence the behavior of the
dynamics of the cloud of particles.

We summarize the relations between the different kernels and functions for
a symmetric kernel F (x, y):

F (x) =
∫ x

0
F (x− y, y)x− y

x
dy =

∫ x

0
F (x− y, y)y

x
dy at (9.4),

G(x,dy) = 1[0,x](y)F (x− y, y)y
x

dy,

G(x,dy) = G(x,dy)
F (x) ,

GLM(x,dy) = F (x− y, y)x− y

x
10≤y≤x dy at (6.9),

GLM(x,dy) = GLM(xdy)
F (x) at (6.9),

M(x, y) dy = F (x− y, y)
F (x) dy = G(x,dy)x

y
at (9.8).

The distribution function of the mass of a fragment after a breakage of a
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Fig 2. Statistics of the evolution of a cloud of particles with the time. Each line represents
a quantile (10%, 20%, 50%, 75%, 90%, the lines are ordered from bottom to top), and
the dashed line represents the mean. The initial mass follows the log-normal distribution of
log-mean 0 and log-variance 1.0. The cloud has 2000 particles.

x-mer is then G(x, [0, y]) =
∫ y

0 G(x,dz).

Self-similar fragmentation In many situations, there exists a function H
such that G(x, [0, y]) = H(y/x) for y ≤ x. This is the case for homogeneous
fragmentation (Example 2.5) with H(z) = z · ϑ(z).

For x = 1, y ∈ [0, 1] �→ H(y) is the distribution function of a random variable
we denote by Y . Then Y (x) = xY has for distribution function H : y ∈ [0, x] �→
H(y/x) = G(x, [0, y]). In such situations, this means that the breakage of the
particle x to new particles of mass y and x − y depends only on the relative
mass y/x. Regarding simulation, one has only to know how to simulate the
random variable Y .

Time-change by scaling the kernel Let λ > 0 be a scalar factor. We con-
sider replacing a kernel F (x, y) by F [λ](x, y) := λF (x, y). The rate then become
F [λ](x) = λF (x). This means that the mean of the exponential distribution
drawn at each jump is divided by λ.

Let p[λ](t,dy) be the solution to the corresponding fragmentation equation.
Then, a simple computation shows that p[λ](t, ·) = p[1](λt, ·) for any t > 0.
Thus, scaling the kernel corresponds to scale the time dynamic, and to scale
accordingly the parameter of the exponential distributions giving the breakages’
times.
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Table 1

Computations for different fragmentation kernels for y ∈ [0, x].

F (x, y) G(x, y) F (x) G(x, [0, y])

1
y

x

x

2
y2

x2

x + y y
x2

2
y2

x2

xy
y2(x− y)

x

x3

12
4y3

x3 − 3y4

x4

1
1 + x + y

y

x(x + 1)
x

2(1 + x)
y2

x2

1
(x + y)n

, n ≥ 1
y

xn+1
1

2xn−1
y2

x2

Data: A fragmentation kernel F , a time T and a mass m
Result: The mass of a particle initially of mass m at time T

1 t ← 0;
2 ξ ← m;
3 while t < T do
4 Draw a random variate ζ with law E(F (ξ));
5 Draw a random variate ξ′ with law G(ξ, ·);
6 ξ ← ξ′;
7 t ← min{T, t + ζ};
8 end
9 return ξ;

Algorithm 1: Monte Carlo algorithm for the simulation of the mass of a
typical particle at time T after a fragmentation process.

10.2. A general simulation algorithm

The algorithm follows the considerations of Section 5.1. Unless the kernel has
a simple form, we implement a rejection principle as in Section 5.2. The algo-
rithm is really simple to set up. The memoryless property of the exponential
(Lemma A.1) means that by restarting the algorithm using the position of the
particle at time T up to time T ′, the particles’ distribution is the same as the
one at horizon T + T ′.

10.3. Practical implementation

Algorithm 1 is easy to implement.
The ways to draw a random variable Y with density G(x, ·) depends on the

expression of its distribution function y �→ G(x, [0, y]). If H := y ∈ [0, x] �→
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Fig 3. Probability density function (a) and distribution function (b) of G(x, ·) for the multi-
plicative kernel F (x, y) = xy.

G(x, [0, y]) ∈ [0, 1] is easy to invert, then H−1(U) for a uniform random vari-
able U on [0, 1].

For example, when H(y) = y2/x2, then

H−1(u|x) = x
√
u for 0 ≤ u ≤ 1.

This is the case for several kernels in Table 1. In Figure 3, we present the
density and distribution functions associated to the multiplicative kernel.

If H−1 has no tractable form or is not easily computed numerically, we may
rely on the rejection algorithm 2 in Appendix C. Other ad hoc simulation algo-
rithms may be found in [30].

11. Conclusion

We have presented a survey on the probabilistic representations of the solution
to the fragmentation equation. These representations have the important advan-
tage to allow to construct easy to implement numerical methods and to develop
Monte Carlo simulation. Besides, they can be extended in several directions,
among them

• The breakage mechanism may occurs from different phenomena: it is easy
to deal with several competing kernels.

• The mass can be subject to a continuous abrasion [21] or mass accumula-
tion (growth-fragmentation) [14, 15, 24]. In such case, the times of the next
breakage is the first time of a time-inhomogeneous Poisson process [65].

• The evolution of the mass may be coupled with the position and the speed.
• The evolution of mass may be of “mean-field type”, meaning that the

fragmentation kernel actually depends on the distribution of the mass at
a given time.

The question of the inference of the kernel remains largely opened. Some
methods and algorithms may be found in [6, 7, 67] for Monte Carlo approach, [32,
50] for an approach based on PDE, or [4, 5] for inference from the observations
of a single path.
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Appendix A: Properties of the exponential distribution

We recall here some fundamental properties of the exponential distribution.

Lemma A.1 (Memoryless property). Let θ ∼ E(λ). Then

P[θ > t + u | θ > t] = P[θ > u] for any u, t ≥ 0.

Lemma A.2. Let ξ1 ∼ E(λ1), ..., ξn ∼ E(λn) be independent for some positive
parameters λ1, . . . , λn. Then ζ := min{ξ1, . . . , ξn} has the distribution E(λ) with
λ := λ1 + · · · + λn. Besides, J := arg mini=1,...,n ξi is independent from ζ and

P[J = i] = λi

λ
.

Appendix B: Random measures and Poisson point processes

We present here some facts regarding Poisson Point Processes (PPP) and ran-
dom measures. More may be found in [45, 46, 59].

Notation B.1 (Poisson distribution). We denote by P(λ) the Poisson distri-
bution of parameter λ, that is X ∼ P(λ) has its distribution characterized by
P[X = k] = λk exp(−λ)/k! for k = 0, 1, 2, . . ..

We start by recalling standard definitions on Poisson Point process (PPP).
Some properties of PPP are recalled in Section B. More information is given in
[27, 28, 45, 46, 59].

Definition B.1 (Counting measure). Fix d ≥ 1. A counting measure μ on R
d

is a locally finite measure such that μ(Λ) ∈ N for any relatively compact set
Λ ∈ Bor(Rd). The set of counting measures is denoted by Mc. We write Bor(Mc)
the smallest σ-algebra such that μ �→ μ(Λ) is measurable for any relatively
compact Λ ∈ Bor(Rd).

Definition B.2 (Point process and its intensity measure). Let (Ω,H,P) be a
probability space. A point process N is a measurable mapping from (Ω,H,P)
to (Mc,Bor(Mc)), meaning that N is a random counting measure. Its intensity
measure n is n(Λ) := E[N(Λ)] for any Λ ∈ Bor(Rd) (note that possibly, n(B) =
+∞).

Definition B.3 (Poisson Point process (PPP)). A point process N on R
d

whose intensity n is locally finite is called a Poisson Point Process (PPP) if
N(B1), . . . , N(Bk) are independent with N(Bi) ∼ P(n(B1)) for any family of
pairwise disjoint Borel sets (B1, . . . , Bk) of Rd and any k ≥ 1.

Lemma B.1. Let N be a PPP on R+ × R
d with intensity measure n of the

form n(ds,dx) = ds · ν(dx) for a measure ν on Rd. Let Λ ∈ Bor(Rd) such that
ν(Λ) < +∞. Denote by (ζ, Y ) the coordinate of the leftmost point of N∩R+×R

d.
Then ζ ∼ E(ν(Λ)) while P[Y ∈ Λ′] = ν(Λ′)/ν(Λ) for any Λ′ ∈ Bor(Rd), Λ′ ⊂ Λ.
At last, ζ and Y are independent.
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Remark B.1. In the above statement, we may replace the leftmost point of
N ∩ R+ × R

d by the leftmost point of N ∩ [t,+∞) × R
d for any t ≥ 0.

Proof. For any t, h ≥ 0 and Λ′ ∈ Bor(Rd), set Λ′(t, t + h) = [t, t + h) × Λ′.
Remark that n(Λ(t, t + h)) = hν(Λ).

The key point is that when h is small,

P[(ξ, Y ) ∈ Λ′(t, t + h)] = P[N(Λ′(t, t + h)) = 1, N(Λ(0, t)) = 0] + o(h2)
= P[N(Λ′(t, t + h)) = 1]P[N(Λ(0, t)) = 0] + o(h2)

= hν(Λ′) exp(−hν(Λ′)) exp(−tν(Λ)) + o(h2).

Thus, set h = 1/n for some integer n and tk = a + (b − a)kh for 0 ≤ a ≤ b.
Hence,

P[(ξ, Y ) ∈ Λ′(a, b)] =
n−1∑
k=0

P[(ξ, Y ) ∈ Λ′(tk, tk+1)]

=
n−1∑
k=0

b− a

n
ν(Λ′) exp

(
− 1
n
ν(Λ′)

)
exp(−tkν(Λ)) + o(n−1)

−−−−→
n→∞

ν(Λ′)
ν(Λ) (exp(−bν(Λ)) − exp(−aν(Λ))).

This proves the result.

Appendix C: The rejection principle

Introduced by J. Von Neumann, the rejection principle is a convenient way to
simulate random variables from the knowledge of their densities [30].

Lemma C.1. Let p be proportional to the density of a random variable Y with
p(x) = 0 when x �∈ [0,K]. Let (U, V ) be two random variables that are uniformly
distributed under {(u, v) | 0 ≤ v ≤ p(u)}. Then U is distributed as Y .

Proof. Let (U, V ) be as in the statement of the lemma. Then

P[U ≤ x] = lim
n→∞

n−1∑
k=0

P

[
(U, V ) ∈

[
kx

n
,
(k + 1)x

n

]
×

[
0, p

(
(k + 1/2)x

n

)]]

= lim
n→∞

n−1∑
k=0

∑
x
np

(
(k+1/2)x

n

)
∫K

0 p(y) dy
=

∫ x

0 p(y) dy∫K

0 p(y) dy
. (C.1)

Hence the result.

From this, we derive the following result, as the distribution of a random
variable Z ∈ R2 given Z ∈ Λ for a Borel set Λ is uniformly distributed in Λ
when Z is uniformly distributed in R

2, or any subset of R2 containing Λ. Us-
ing a rectangular set Λ in Lemma C.2, this leads to the simple Monte Carlo
algorithm 2.
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Lemma C.2 (Monte Carlo simulation using the rejection principle). Let p be
proportional to the density of a random variable Y with 0 ≤ p(x) ≤ M for
x ∈ [0,K] and p(x) = 0 otherwise. Let (U, V ) be two uniform random variables
on [0,K] × [0,M ]. Then the distribution of U given V ≤ p(U) is the one of Y .

Data: A function p : [0,K] → [0,M ].
Result: A random variate whose density is proportional to p

1 repeat
2 Draw a random variate U ∼ U(0, 1);
3 Draw a random variate V ∼ U(0, 1);
4 until V ·M ≤ p(K · U);
5 return U ;

Algorithm 2: Monte Carlo rejection algorithm.
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