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Abstract: A very popular class of models for networks posits that each
node is represented by a point in a continuous latent space, and that the
probability of an edge between nodes is a decreasing function of the dis-
tance between them in this latent space. We study the embedding problem
for these models, of recovering the latent positions from the observed graph.
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lish the uniform convergence of the log-likelihood of latent positions as the
number of nodes grows. A consequence is that the maximum likelihood em-
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sense. Extensions of these results, to recovering distributions in the latent
space, and so distributions over arbitrarily large graphs, will be treated in
the sequel.
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1. Introduction

The statistical analysis of network data, like other sorts of statistical analysis,
models the data we observe as the outcome of stochastic processes, and rests
on inferring aspects of those processes from their results. It is essential that the
methods of inference be consistent, that as they get more and more information,
they should come closer and closer to the truth. In this paper, we address the
consistency of non-parametric maximum likelihood estimation for a popular
class of network models, those based on continuous latent spaces.

In these models, every node in the network corresponds to a point in a la-
tent, continuous metric space, and the probability of an edge or tie between
two nodes is a decreasing function of the distance between their points in the
latent space. These models are popular because they are easily interpreted in
very plausible ways, and often provide good fits to data. Moreover, they have
extremely convenient mathematical and statistical properties: they lead to ex-
changeable, projectively-consistent distributions over graphs; the comparison of
two networks reduces to comparing two clouds of points in the latent space, or
even to comparing two densities therein; it is easy to simulate new networks
from the estimated model for purposes of bootstrapping, etc. While the latent
space has typically been taken to be a low-dimensional Euclidean space [11],
recent work has suggested that in many applications it would be better to take
the space to non-Euclidean, specifically negatively curved or hyperbolic [15, 5]
and positively curved [17, 26].

We can estimate continuous latent space models in the sense of an embed-
ding: given an observed graph, we wish to work backwards the locations of the
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nodes in the latent space, i.e., to “embed” the graph in the latent space. The
most straightforward method of embedding is a maximum likelihood estimator
(MLE), treating the latent position of each node as a parameter (or vector of
parameters). While it is straightforward to say that a good embedding should
converge on the true coordinates as the number of nodes n → ∞, making this
mathematically precise is somewhat tricky. (We would, for example, need to
define a metric on the space of embeddings of graphs of different sizes.) Instead,
we prove the next best thing: that for continuous latent space models of suffi-
cient symmetry and tameness, the distribution over graphs implied by the MLE
converges, in normalized Kullback-Leibler (KL) divergence, to the distribution
implied by the true embedding. That is, the MLE becomes statistically indistin-
guishable, in its observable consequences, from the truth. This is a consequence
of a result we establish along the way, about the uniform convergence of nor-
malized log-likelihoods to their expectation values (Theorem 4); the rate of this
uniform convergence upper-bounds the rate at which the MLE approaches the
true embedding in KL divergence.

In the sequel in preparation, we combine our results about normalized log-
likelihood with the construction of a specific class of metrics on growing se-
quences of embeddings, to establish a more conventional, coordinate-wise notion
of consistency, and consistency for a subsequent estimator of the node density
in the latent space.

Section 2 reviews background on continuous latent space models of networks.
Section 3 states our main results, along with certain technical assumptions, and
observes that these results generalize to mis-specified models. All proofs, and a
number of subsidiary results and lemmas, are deferred to Section 5.

2. Background

In many, though not all, network data-analysis situations, we have only one net-
work — perhaps not even all of that one network — from which we nonetheless
want to draw inferences about the whole data-generating process. This clearly
will require a law of large numbers or ergodic theorem to ensure that a single
large sample is representative of the whole process. The network, however, is
a single high-dimensional object whose every part is dependent on every other
part. This is also true of time-series and spatial data, but there we can often
use the fact that distant parts of the data should be nearly independent of each
other. While general networks often exhibit such decay, networks in nature often
lack a natural, exogenous sense of distance (in the technical, geometric sense)
that explains such decay.

Continuous latent space (CLS) models are precisely generative models for
networks which exhibit just such an exogenous sense of distance. Each node is
represented as a location in a continuous metric space, the latent space. Con-
ditional on the vector of all node locations, the probability of an edge between
two nodes is a decreasing function of the distance between their locations, and
all edges are independent. Generative models for networks for which the exis-
tence of different edges is conditionally independent with respect to some latent
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quantity μ are common; however CLS models, at least as taken in this paper,
are distinguished by the particular geometric form that μ takes.

As mentioned above, the best-known CLS model for social networks is that
of Hoff, Raftery and Handcock [11], where the metric space is taken to be Eu-
clidean, and node locations are assumed to be drawn iidly from a Gaussian
distribution. In random geometric graphs [18], the locations are drawn iidly
from a distribution on a metric space possibly more general than Euclidean
space and the probabilities of connecting edges are either 0 or 1 based on a
threshold.

As also mentioned above, there is more recent work which indicates that for
some applications it would be better to let the latent space be negatively curved,
i.e. hyperbolic [1, 12, 15]. Remarkably, negatively curved spaces yield networks
that simultaneously exhibit both local and global features found in real-world
networks [15]. Many real-world networks show highly skewed degree distribu-
tions exhibiting power laws, very short path lengths, a division into a core and
peripheries where short paths between peripheral nodes “bend back” towards
the core, and a hierarchical organization of clustering. Thus if the latent space is
chosen to be a certain hyperboloid, one naturally obtains graphs exhibiting all
these properties [13, 15]. Inference of “true” coordinates in a negatively curved
space leads to concrete applications, for example in routing (e.g. [9]) and in hy-
pothesis testing for differences or changes in network structure salient to social
network analaysis [5].

Consistent inference of node coordinates as networks grow in size provides a
consistent method of inferring features of a large, random network from partial
observations. Often in practice, one only observes a subnetwork of some im-
practically large or theoretically infinite network. Also often in practice, such
as in the case of a large class of popular ERGM mopdels, inference on those
subnetworks does not aymptotically agree with inference on the entire network
[20]. Consistent inference of node coordinates in negatively curved spaces can
thus be used to obtain consistent estimates on, say, hierarchical clusters, degree
distributions and hypothesis test statistics (e.g. [5]) based on partial observa-
tions.

The CLS models we have mentioned so far have presumed that node locations
follow tractable, parametric families in the latent space. This is mathematically
inessential — many of the results carry over perfectly well to arbitrary densities
— and scientifically unmotivated. Because CLS models may need very different
spaces depending on applications, we investigate consistency of nonparametric
estimation for them at a level of generality which abstracts away from many of
the details of particular spaces and their metrics.

To the best of our knowledge, there are no results in the existing literature
on the consistency of embedding for CLS models where edge probabilties vary
continuously with distance.1

1Computationally-tractable and consistent embedding algorithms exist for some kinds of
random geometric graph where edges are deterministically present between sufficiently-close
nodes and otherwise deterministically absent [10], but they rely crucially on deterministic links,
and their statistical efficiency is unknown. Uniform consistency for variants of these sorts of
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3. Geometric network inference

Our goal is to show that when the continuous latent space model is sufficiently
smooth, and the geometry of the latent space is itself sufficiently symmetric,
then the maximum-likelihood embedding of a graph converges, in normalized
Kullback-Leibler divergence, to the true locations of the nodes (Theorem 4).
As an intermediate step, we show the uniform convergence of normalized log-
likelihoods on their expectation values, at an explicit rate, which also gives us
the rate of KL convergence of the MLE on the truth. All proofs are postponed
to Section 5.

3.1. Setting and conventions

We consider only simple, undirected, unlabeled graphs; we will write a random
graph as G, and will sometimes abuse notation to also write G for the adjacency
matrix, so that Gpq = Gqp = 1 if there is an edge between nodes p and q, and
= 0 otherwise.

All random graphs G in this paper have conditionally independent edges;
that is, we assume for each G, there exists a random quantity μ such that G | μ
has independently distributed edges. A continuous latent space model assumes
that μ has a certain geometric nature, which will be defined in the succeeding
paragraphs.

All the metrics of metric spaces will be denoted by dist; context will make
clear which metric dist is describing. Our model for generating random graphs
begins with a metric measure space M , a metric space equipped with a Borel
measure, and the corresponding group isom(M) of measure-preserving isome-
tries M ∼= M . Every node is located at (equivalently, “represented by” or “la-
beled with”) a point in M , xi for the ith node; the location of the first n nodes
is x1:n ∈ Mn, and a countable sequence of locations will be x1:∞. For each
n, there is a non-increasing link function wn : [0,∞) �→ [0, 1], and nodes i
and j are joined by an edge with probability wn(dist(xi, xj)). By a latent space
(M,w1:∞), we will mean the combination of M and a sequence w1:∞ of link
functions w1, w2, . . . . We simply write graphn(x1:n) for the distribution of a
random graph on n vertices located at x1:n when the latent space is understood
from context. In other words, graphn(x1:n) regarded as adjacency matrix is the
random (undirected) symmetric (nxn) matrix with conditionally independent
entries (conditioned on x1:n) with (graphn(x1:n))ij drawn from a Bernoulli ran-
dom variable with parameter wn(dist(xi, xj)) for distinct i, j and 0 for i = j.
Thus in the particular case G = graphn(x1:n), we have μ = x1:n.

It is clear that for any φ ∈ isom(M), we have for every n,

graphn(x1:n) d= graphn

(
φ(x1:n)

)
(3.1)

CLS models, such as random dot product graphs (RDPG) [25], have been well established
(cf. [6]); the inherently linear algebraic methods used to develop estimators and consistency
results in the RDPG setting do not seem portable in the metric setting.
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Accordingly, we will use [x1:n] to indicate the equivalence class of n-tuples in
Mn carried by isometries to x1:n; the metric on M extends to these isometry
classes in the natural way,

dist
(
[x1:n], [y1:n]

)
= inf

φ∈isom(M)

n∑
i=1

dist
(
xi, φ(yi)

)
. (3.2)

We cannot hope to find x1:n by observing the graph it leads to, but we can hope
to identify [x1:n].

Conventions When n and m are integers, n < m, n : m will be the set
{n, n + 1, . . .m − 1,m}. Unless otherwise specified, all limits will be taken as
n → ∞. All probabilities and expectations will be taken with respect to the
actual generating distribution of G.

3.2. Axioms on the generative model

We recall that a metric space M is k-homogeneous if every isometry between
finite submetric spaces each of size k of M extends to an isometry on M , an
isometry M → M . There we call a metric space M ∞-homogeneous if every
isometry between finite submetric spaces of M extends to an isometry on M . The
literature takes homogeneous to usually mean 1-homogeneous but to sometimes
to mean ∞-homogeneous. Motivating examples are Euclidean space R

d and
the Poincaré Halfplane H2, described in Section 3.3. Almost any example of
a metric space with a single “singularity” x1, such as a “figure 8,” is not 1-
homogeneous; for a close enough point x2, there are also points x3, x4 such
that dist(x1, x2) = dist(x3, x4), but intuitively there cannot be any isometry
carrying a singularity to a non-singularity. An example of a metric space that
is 1-homogeneous but not ∞-homogeneous is the orientable surface of infinite
genus.

Identifiability of graph distributions determined by certain CLS models is
possible. We define such CLS models below.

Definition 1. A laiiitent space (M,w1:∞) is regular when:

1. M is a complete ∞-homogeneous Riemannian manifold;
2. The group of isometries on M has only finitely-many connected compo-

nents;
3. The function wn is injective and smooth for each n; and
4. The sequence w1:∞ satisifes −vn � supx,y∈M logitwn(dist(x, y)) � vn for

some vn ∈ o(
√
n).

Proposition 2. The metric spaces R
d and H2 satisfy points (1) and (2) of

Definition 1 with
BH2 = BRd = 2.

where BM denotes the number of connected components of the group of isome-
tries on a metric space M .
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Demanding that vn = o(
√
n) is done with an eye towards the needs of the

proofs in Section 5. Some common examples of link functions (cf. [15]) include
the following two kinds:

wn(t) =
{

1 t � lnn

0 t > lnn
wn(t) = 1

1 + e(T−1
n /2)(t−lnn)

(3.3)

The first sort defines a graph where edges are deterministically present be-
tween sufficiently-close nodes, and deterministically absent between more dis-
tant nodes. The second sort, in which the sequence of Tns are fixed temper-
ature parameters; the higher the temperature Tn, the closer the link func-
tion is to a constant probability 1/2. The determinism of the first kind vio-
lates logit-boundedness. The second kind satisfies logit-boundedness when Tn ∈
o((lnn)n−1/2) and t � lnn; in that case

logit 1
1 + e(T−1

n /2)(t−lnn)
= −

(
T−1
n /2

)
(t− lnn) ∈ o(

√
n)

By extension, a CLS model is regular when (M,w1:∞) is. The proof of the
following proposition, a straightforward consequence of ∞-homogeneity and in-
jectivity of the link functions, is omitted.

Proposition 3. For regular CLS model

graphn(x1:n) d= graphn(y1:n) ⇐⇒ [x1:n] = [y1:n] n = 1, 2, . . . (3.4)

Theorem 3 lets us identify graph distributions of the form graphn(x1:n) with
isometry classes [x1:n].

3.3. An example in the literature

Latent spaces of the form
(H2, wn).

where H2 = {z = x+ ij ∈ C | x ∈ R, y ∈ [0,∞)} is the Poincaré halfplane with
metric

dz = y−2 dx dy

were introduced [15] to model networks in nature with tree-like characteristics
(e.g. the internet). With the first link function defined in (3.3), regularity is
violated in multiple ways; the link functions are not logit-bounded as noted
earlier, but also the link functions are neither smooth nor injective. With the
second set of wn’s in (3.3), with temperature parameters Tn ∈ o(

√
n
−1), the

CLS model is regular. Such CLS models have been shown to model salient for
both large-scale and small-scale properties of various sorts of social networks
[21], building on work of Krioukov et al. [15].
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3.4. Estimation

Given a latent space model (M,w1:∞) and an n-node graph G, the likelihood
L(x1:n;G) of observing coordinates x1:n ∈ Mn is given as the product of edge
probabilities:2

L(x1:n;G) ≡
n∏

q=1

q−1∏
p=1

wn(dist xpxq)Gpq
(
1 − wn(dist xpxq)

)1−Gpq

A maximum likelihood (ML) embedding of an n-node graph G into M is

x̂1:n = argmax
x1:n∈Mn

L(x1:n;G) (3.5)

Taking logs and dividing by the number of summands, we obtain the nor-
malized log-likelihood �(x1:n;G) of observing coordinates x1:n ∈ Mm by:

�(x1:n;G) = 1
n(n− 1)

( ∑
(p,q)∈G

log
(
wn

(
dist(xp, xq)

))

+
∑

(p,q) �∈G

log
(
1 − wn

(
dist(xp, xq)

)))
(3.6)

As usual, when there is no ambiguity about the graph G providing the data, we
will suppress that as an argument, writing �(x1:n).

Taking expectations with respect to the actual graph distribution of a random
graph G having n nodes, we define the expected normalized log-likelihood by

�(x1:n) = EG

[
�(x1:n;G)

]
. (3.7)

As we review in Section 5.2, well-known results from information theory show
that −�(x1:n) can always be decomposed into the sum of two non-negative terms,
−�(x1:n) = H +D(x1:n). For now, fix some true coordinates x∗

1:∗ determining a
CLS model. Here the first term, the “source entropy rate” H, captures the in-
herent stochasticity of the data source. The second term, the “divergence rate”
D(x1:n), measures the distance, or rather the normalized Kullback-Leibler di-
vergence, between the “true” distribution graphn(x∗

1:n), for some choice of true
coordinates x∗

1:∗, and graphn(x1:n). Among other properties, D(x1:n) controls
the power of any hypothesis test to distinguish graphn(x1:n) from the true dis-
tribution. This divergence is minimized by x1:n = x∗

1:n; when the model is
well-specified, D(x∗

1:n) = 0.
We are now in a position to state our main results.
2In this expression, every dyad appears twice, once as (p, q) and again as (q, p), but, since

G is undirected, contributing the same factor to the likelihood each time. This is thus the
square of another possible likelihood which counted each dyad only once. This will make no
difference to the analysis, apart from needing to track a factor of 2 through our results.
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Theorem 4. Suppose that the CLS model is regular. Then

Γn ≡ sup
x1:n

|�(x1:n) − �(x1:n)| P→ 0

where
Corollary 5. Suppose that the CLS model is regular, and G ∼ graphn(x∗

1:n).
Then

D(x̂1:n) −D
(
x∗

1:n
)
≤ 2Γn

P→ 0

4. Enrichments of the generative model

We briefly discuss a couple of natural enrichments on our generative model, re-
flecting structure and properties often observed in the real-world setting. These
enrichments take the form of natural geometric structure on the latent space
and suggest future areas of research.

4.1. Node covariates

Real-world networks often come equipped not just with the relational data of
edges between nodes but, often, covariates on the nodes themselves. For exam-
ple, social networks are comprised not just of the data of friendship relations
between users but also demographic information for each user, such as age,
height, and income. Assuming the covariates are sufficient to distinguish be-
tween the nodes, these covariates in effect embed the nodes in Euclidean space
and therefore are modelled by the extra data of an embedding M ↪→ Re of the
latent n-dimensional space M into Euclidean space Re of some dimension e � n.
If the embedding is assumed to pull back the Riemannian metric from R

e to M ,
then the complete geometry of an unknown latent space M can even be inferred
from sample covariates by methods of non-parametric manifold learning [4]; the
idea is that the sample covariates can be used to estimate the Laplace-Beltrami
operator of the unknown latent space M , from which the complete geometry
of M can be inferred by an application of Connes’ Distance Formula [4]. Even
if the embedding is more realistically assumed to satisfy some milder H older
or Lipschitz constraints, then both some information about the geometry of M
as well as the embedding of the nodes in M ought to be inferable from partial
observations of node covariates and edge relationships. A consistent estimator
for both the latent space geometry and all of the node covariates from partial
observations of node covariates and edge relationships, adapting techniques de-
veloped in this paper, would find innumerable applications in social network
analysis.

4.2. Volume

It is often desirable to control the occurrences of cliques of various orders in a
generative model. Riemannian metrics, infinitesimal distances, govern the for-
mation of edges, 2-cliques. The occurrence of higher order cliques follows from
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the properties of infinitesimal notions of compatible higher order distance, such
as area forms in surfaces and more general volume forms. For example, the area
form on the Poincaré Halfplane, a uniformly negatively curved space, governs
the exponential rate at which the area of disks grows as a function of radius;
this exponential growth severely constraints the growth of higher order cliques
in a network sampled from a CLS model having the Poincaré Halfplane as a
latent space [15]. Extending the detailed statistical analysis of local and global
properties of such hyperbolic networks [12, 14, 15] for other latent spaces with
different volume forms would find immediate applications in CLS model selec-
tion (cf. Smith, Asta and Calder [21] Hoff, Raftery and Handcock [11]).

5. Proofs

This section furnishes proofs of main results about networks. We can sketch the
general approach as follows. We show that the expected log-likelihood achives
its maximum precisely at the true coordinates up to isometry (Lemma 6). We
then show that (in large graphs) the log-likelihood �(x1:n) is, with arbitrarily
high probability, arbitrarily close to its expectation value for each x1:n (Lem-
mas 9 and 10). We then extend that to a uniform convergence in probability,
over all of Mn (Theorem 4). To do so, we need to bound the richness (pseudo-
dimension [3, §11], a continuous generalization of VC dimension) of the family
of log-likelihood functions (Theorem 8), which involves the complexity of the la-
tent space’s geometry, specifically of its isometry group isom(M). Having done
this, we have shown that the MLE also has close to the maximum expected
log-likelihood. We emphasize this because the expected log-likelihood has a nat-
ural information-theoretic interpretation in terms of divergence from the truth
(Eq. (5.3) below).

5.1. Notation

Before we dive into details, we first introduce some additional notation for our
proofs. We will use G for both a (random or deterministic) graph and its adja-
cency matrix.

We fix the latent space as (M,w1:∞). For brevity, define

λn(xp, xq) ≡ logitwn

(
dist(xp, xq)

)
. (5.1)

As usual with binary observations, we can rewrite (3.6) so that the sum is
taken over all pairs of distinct (p, q) and then replace each summand by log(1−
wn(dist(xp, xq)))+Gpqλn(xp, xq). This brings out that the only data-dependent
(and hence random) part of � is linear in the entries of the adjacency matrix,
and in the logit transform of the link-probability function. As usual, when there
is no ambiguity about the graph G providing the data, we will suppress that
as an argument, writing �(x1:n). We write the class of log-likelihood functions
as Ln.
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5.2. Information theory

Recall the definition of expected normalized log-likelihood from Eq. (3.7):
Taking expectations with respect to the actual graph distribution of a random

graph G having n nodes, we define the expected normalized log-likelihood (the
cross-entropy; Cover and Thomas 8, ch. 2) by

�(x1:n) = EG

[
�(x1:n;G)

]
, (5.2)

where the expectation is taken with respect to the random graph G (and not
the random graph G conditioned on some random equantity μ making the edges
independent). For notational convenience, set

πpq(a) = Pr(Gpq = a | xp, xq)
π∗
pq(a) = Pr

(
Gpq = a | x∗

p, x
∗
q

)
(so that πpq(1) = wn(xp, xq) and π∗

pq(1) = wn(x∗
p, x

∗
q)). Then

�(x1:n) = 1
n(n− 1)

∑
1≤p<q≤n

∑
a∈{0,1}

π∗
pq(a) log πpq(a).

In information theory [8, ch. 2], this quantity is known as the (normalized)
cross-entropy, and we know that

−
∑

a∈{0,1}
π∗
pq(a) log πpq(a) = H

[
π∗
pq

]
+ D

(
π∗
pq‖πpq

)
,

as the left side is the cross-entropy of the distribution πpq with respect to the
distribution π∗

pq and the right side is the sum of ordinary entropy H with the
Kullback-Leibler divergence D. Since both entropy and KL divergence are ad-
ditive over independent random variables [8, ch. 2] like Gpq, we have,3 defining
H[π∗] and D(π∗‖π) in the obvious ways,

−�(x1:n) = H
[
π∗] + D

(
π∗‖π

)
(5.3)

Unsurprisingly, � achieves a maximum at the (isometry class of) the true
coordinates.4

Lemma 6. For ∞-homogeneous M and G ∼ graphn(x∗
1:n),[

x∗
1:n

]
= argmax

x1:n∈Mn

�norm(x1:n).

3The decomposition of expected log-likelihood into a entropy term which only involves the
true distribution of the data, plus a KL divergence, goes back to at least Kullback [16].

4The statement and proof of the following lemma presume that the model is well-specified.
If the model is mis-specified, then infx1:n D(π∗‖π) is still well-defined, and still defines the
value of the supremum for �. The pseudo-true parameter value would be one which actually
attained the infimum of the divergence [24]. This, in turn, would be the projection of π∗ on
to the manifold of distributions generated by the model [2]. All later invocations of Lemma 6
could be replaced by the assumption merely that this pseudo-truth is well-defined.
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Proof. Letting H and D respectively denote entropy and KL divergence as in
(5.3), D(π∗‖π) ≥ 0, with equality if and only if π∗ = π. Therefore we have that
the divergence-minimizing π must be the distribution over graphs generated by
some x1:n ∈ [x∗

1:n], and conversely that any parameter vector in that isometry
class will minimize the divergence. The lemma follows from (5.3).

5.3. Geometric complexity of continuous spaces

For various adjacency matrices G1, G2, etc., let us abbreviate �(x1:n;Gi) as
�i(x1:n) (following Anthony and Bartlett 3, p. 91). Let us pick r different ad-
jacency matrices G1, . . . , Gr, and set ψ(x1:n) = (�1(x1:n), . . . , �r(x1:n)). We will
be concerned with the geometry of the level sets of ψ, i.e., the sets defined by
ψ−1(c) for c ∈ R

r. We say that a function ψ : Mn → R
r has has fibers with

uniform bound B on the number of path-components if ψ−1(x) has at
most B path-components, equivalence classes of points where two points are
equivalent if there is a path in ψ−1(x) connecting them, for each x ∈ R

r.

Proposition 7. Suppose that all functions in Ln are jointly continuous in their
d parameters almost everywhere, and that Ln has fibers with uniform bound
B on the number of path-components. Then the growth function of Ln, i.e.,
the maximum number of ways that m ≥ d data points G1, . . . Gm could be
dichotomized by thresholded functions from Ln, is at most

Π(m) ≤ B

(
em

d

)d

(5.4)

Thus the pseudo-dimension of Ln is at most 2 log2 B + 2d log2 2/ ln 2.

Proof. The inequality (5.4) is a simplification of Theorem 7.6 of Anthony and
Bartlett [3, p. 91], which allows for sets to be defined by k-term Boolean combi-
nations of thresholded functions from Ln. (That is, the quoted bound is that of
the theorem with k = 1.) Moreover, while Theorem 7.6 of Anthony and Bartlett
[3] assumes that all functions in Ln are Cd, the proof (op. cit., sec. 7.4) only
requires continuity in the simplified setting k = 1.

For any class of sets with VC dimension v < ∞, the growth function is
polynomial in m, Π(m) ≤ (em/v)v [3, Theorem 3.7, p. 40], and, conversely, if
Π(m) < 2m for any m, then the class of sets has VC dimension at most m. Since
Eq. (5.4) shows that Π(m) grows only polynomially in m, the VC dimension
must be finite. Comparing the O((m/d)d) rate of Eq. (5.4) to the O((m/v)v)
generic VC rate suggests v = O(d), but it is desirable, for later purposes, to find
a more exact result.

To do so, we find the least m where Eq. (5.4) is strictly below 2m, and take
the logarithm:

B

(
em

d

)d

< 2m (5.5)



Consistency for continuous network models I 347

log2 B + d log2
e

d
+ d log2 m < m (5.6)

Now, one can show that log2 m ≤ m
2d + log2

2d
e ln 2 [3, p. 91], so that

log2 B + d log2
e

d
+ d log2 m ≤ log2 B + d log2

e

d
+ m

2 + d log2
2d

e ln 2 (5.7)

and it will be sufficient for the right-hand side to be < m. This in turn is implied
by

2 log2 B + 2d log2
2

ln 2 < m (5.8)

so this is an upper bound on the VC dimension of the subgraphs of Ln, and so
on the pseudo-dimension of Ln.

Next we bound the complexity of log-likelihoods for certain latent spaces.

Theorem 8. If (M,w1:∞) is regular, the pseudo-dimension of Ln is at most

2 log2 BM + 2ndimM log2 2/ ln 2, (5.9)

where BM is the number of path-components of the space of isometries on M .
isom(M).

Proof. By the fact that (M,w1:∞) is smooth, Ln is C∞ in all its ndimM contin-
uous parameters, so in applying Proposition 7, we may set d = ndimM . Define
φ(x1:n;G) to be the function Mn → Rn2 sending a tuple x1:n to the vector
whose (pq)th coordinate, for 1 ≤ p, q ≤ n, is dist(xp, xq). Define T : Rn2 → R

n

by the rule
T (y1, y2, . . . , yn2) = 1

n(n− 1)
∑

1≤p≤q≤n

ypq.

Note each �norm(−;G) ∈ Ln satisfies �norm = Tφ(−;G). The preimage
T−1(c) of a point under T , a linear transformation, is either empty or a (con-
nected and convex) linear subspace of Rn2 . The function φ(−;G) has bounded
connected components with bound BM because φ(x1:n) = φ(y1:n) if and only
if [x1:n] = [y1:n] by ∞-homogeneity. Each x1:n ∈ Mn has a neighborhood U
(e.g. a product of normal convex neighborhoods of x1, x2, . . . , xn in M) such
that φ(U ;G) is convex in Rn2 . It is then straightforward to show that every
path in φ(Mn;G) starting from a point φ(x1:n;G) lifts under φ(−;G) to a path
in Mn from x1:n. Thus CC(φ(−;G)−1(d)) = CC((φ(−;G)−1(T−1(c))) for each
d ∈ T−1(c). Thus

CC
(
φ(−;G)−1(T−1(c)

))
≤ CC

(
φ(−;G)−1(d)

)
d ∈ T−1(c)

≤ BM ,

where CC(X) denotes the number of path-components of a space X. Thus
each �(−;G) ∈ Ln has bounded connected components with bound BM . The
hypotheses of Proposition 7 being satisfied, (5.9) follows from Proposition 7.
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5.4. Pointwise convergence of log-likelihoods

Lemma 9. Suppose that all of the edges in G are conditionally independent
given some random variable μ. Then for any ε > 0,

Pr
(
|�(x1:n) − �(x1:n)| > ε

)
≤ 2e

(−2 n2(n−1)2ε2∑n
p=1

∑
q>p 2λ2

n(xp,xq) ) (5.10)

In particular, this holds when G ∼ graphn(x∗
1:n) or G ∼ graphn(f).

Proof. Changing a single Gpq, but leaving the rest the same, changes �(x1:n;G)
by 1

n(n−1)λn(xp, xq). The Gpq, for p < q, are all independent given μ. We may
thus appeal to the bounded difference (McDiarmid) inequality [7, Theorem 6.2,
p. 171]: if f is a function of independent random variables, and changing the
kth variable changes � by at most ck, then

Pr
(
|f − E[f ]| > ε

)
≤ 2e(− ε2

2ν ) (5.11)

where ν = 1
4
∑

c2k. In the present case, cpq = λn(xp, xq). Thus,

ν = 1
4

n∑
p=1

∑
q>p

n−2(n− 1)−2λ2
n(xp, xq) = 1

4n2(n− 1)2
n∑

p=1

∑
q>p

λ2
n(xp, xq) (5.12)

and so Pr(|�(x1:n) − �(x1:n)| > ε | μ) is bounded from above by

2e
(− 2n2(n−1)2ε2∑n

p=1
∑

q>p λ2
n(xp,xq) ) (5.13)

Since the unconditional deviation probability

Pr
(
|�(x1:n) − �(x1:n)| > ε

)
is just the expected value of the conditional probability, which has the same
upper bound regardless of μ, the result follows (cf. Shalizi and Kontorovich 19,
Theorem 2).

Finally, note that all edges in graphn(x∗
1:n) are unconditionally independent,

while those in graphn(f) are conditionally independent given X1:n, which plays
the role of μ.

This lemma appears to give exponential concentration at an O(n4) rate, but
of course the denominator of the rate itself contains

(
n
2
)

= O(n2) terms, so
the over-all rate is only O(n2). Of course, there must be some control over the
elements in the denominator.

Lemma 10. If −vn ≤ λn(xp, xq) ≤ vn, then for any x1:n and ε > 0,

Pr
(
|�(x1:n) − �(x1:n)| > ε

)
≤ 2e(−2n(n−1)ε2

v2
n

) (5.14)

Proof. By assumption, λ2
n(xp, xq) ≤ v2

n. Thus
∑n

p=1
∑

q>p λ
2
n(xp, xq) ≤

(
n
2
)
v2
n,

and the result follows from Lemma 9.
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5.5. Uniform convergence of log-likelihoods

Lemmas 9 and 10 show that, with high probability, �(x1:n) is close to its ex-
pectation value �(x1:n) for any given parameter vector x1:n. However, we need
to show that the MLE X̂1:n has an expected log-likelihood close to the optimal
value. We shall do this by showing that, uniformly over Mn, �(x1:n) is close to
�(x1:n) with high probability. That is, we will show that

sup
x1:n

∣∣�(x1:n) − �(x1:n)
∣∣ P→ 0 (5.15)

This is a stronger conclusion than even that of Lemma 10: since M is a continu-
ous space, even if each parameter vector has a likelihood which is exponentially
close to its expected value, there are an uncountable infinity of parameter vec-
tors. Thus, for all we know right now, an uncountable infinity of them might
be simultaneously showing large deviations, and continue to do so no matter
how much data we have. We will thus need to show that likelihood at differ-
ent parameter values are not allowed to fluctuate independently, but rather are
mutually constraining, and so eventually force uniform convergence.

If there were only a finite number of allowed parameter vectors, we could
combine Lemma 10 with a union bound to deduce (5.15). With an infinite
space, we need to bound the covering number of Ln. To recall,5 the L1 covering
number of a class F of functions at scale ε and m points, N1(ε, F,m), is the
cardinality of the smallest set of functions fj ∈ F which will guarantee that,
for any choice of points a1, . . . am, sup1,...,am

1
m

∑m
i=1 |f(ai)fj(ai)| ≤ ε for some

fj (this definition can be straightforwardly shown to be equivalent to that of
Anthony and Bartlett [3]). Typically, as in Anthony and Bartlett [3, Theorem
17.1, p. 241], a uniform concentration inequality takes the form of

Pr
(
sup
f∈F

∣∣f − E[f ]
∣∣ ≥ ε

)
≤ c0c1N1(εc2, F, c3m)e(−c4ε

2r(m)) (5.16)

where the individual deviation inequality is

Pr
(
|f − E[f ]| ≥ ε

)
≤ c0e

−(−ε2r(m)). (5.17)

In turn, Anthony and Bartlett [3, Theorem 18.4, p. 251] shows that the
L1 covering number N1(ε, F,m) of a class F of functions with finite pseudo-
dimension v at scale ε and m observations is bounded:

N1(ε, F,m) ≤ e(v + 1)
(

2e
ε

)v

. (5.18)

In our setting, we have m = 1. (That is, we observe one high-dimensional
sample; notice that the bound is independent of m so this hardly matters.)

It thus remains to bound the pseudo-dimension of Ln. This involves a rather
technical geometric argument, ultimately revolving on the group structure of the
isometries of (M,dist). This may be summed up in the existence of a constant
BM , which is 2 for any Euclidean space, and (as it happens) also 2 for H2. This
matter was handled in Section 5.3.

5See, e.g., Anthony and Bartlett [3] or Vidyasagar [23].
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5.6. Proof of Theorem 4

By assumption, there exists a sequence ν1, ν2, . . . of non-negative reals such that
|λn(xp, xq)| ≤ vn for each n and p, q with νn ∈ o(

√
n).

Presume for the moment that we know the L1 covering number of Ln is at
most N1(Ln, ε, 1). Then

Pr
(
sup
x1:n

|�(x1:n) − �(x1:n)| ≥ ε
)
≤ 4N1(Ln, ε/16, 2)e(− ε2n(n−1)

8v2
n

) (5.19)

The proof is entirely parallel to that of Theorem 17.1 in Anthony and Bartlett
[3, p. 241], except for using Lemma 10 in place of Hoeffding’s inequality, and so
omitted.

Now, by Proposition 2 BM = 2 and therefore by Theorem 8, the pseudo-
dimension of Ln is at most 2 log2 BM + 2ndimM log2 2/ ln 2. The L1 covering
number of Ln is thus exponentially bounded in O(n log 1/ε), specifically [3,
Theorem 18.4, p. 251]: N1(Ln, ε, 2) is bounded above by

e(1+2 log2 BM +2ndimM log2 2/ ln 2)
(

2e
ε

)2 log2 BM+2n dimM log2 2/ ln 2

(5.20)

(5.20) grows exponentially in O(n log 1/ε), while the rightmost factor in the
upper bound of (5.19) shrinks exponentially in O(ε2n2/v2

n) and hence O(nε2)
by our regularity assumption. For fixed ε, then, the uniform deviation proba-
bility over all of Ln in (5.19) is therefore exponentially small, hence we have
convergence in probability to zero.

Remark 1. In applying the theorems from Anthony and Bartlett [3], remember
that we have only one sample (m = 1), which is however of growing (O(n2))
dimensions, with a more-slowly growing (O(n)) number of parameters.

Remark 2. From the proof of the theorem, we see that if v2
n grows slowly

enough, the sum of the deviation probabilities tends to a finite limit. Con-
vergence in probability would then be converted to almost-sure convergence by
means of the Borel-Cantelli lemma, if the graphs at different n can all be placed
into a common probability space. Doing so however raises some subtle issues we
prefer not to address here (cf. [20]).

5.7. Proof of Corollary 5

We adapt a very standard pattern of argument used to prove oracle inequalities
in learning theory. This begins with Lemma 6, that �(x∗

1:n) ≥ �(x̂1:n). This
implies that |�(x̂1:n) − �(x∗

1:n)| = �(x∗
1:n) − �(x̂1:n). Now add and subtract log-

likelihoods:

0 ≤ �
(
x∗

1:n
)
− �(x̂1:n) = �

(
x∗

1:n
)
− �(x̂1:n) + �(x̂1:n) − �(x̂1:n) (5.21)

≤ �
(
x∗

1:n
)
− �

(
x∗

1:n
)

+ �(x̂1:n) − �(x̂1:n) (5.22)
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≤ |�
(
x∗

1:n
)
− �

(
x∗

1:n
)
| + |�(x̂1:n) − �(x̂1:n)| (5.23)

≤ 2 sup
x1:n

|�(x1:n) − �(x1:n)| P→ 0 (5.24)

where in Eq. (5.22) we use the trivial fact that since x̂1:n maximizes the likeli-
hood, �(x∗

1:n) ≤ �(x̂1:n), and the last line invokes Theorem 4.

6. Conclusion

We have formulated and proven a notion of convergence for non-parametric
likelihood estimators of graphs generated from continuous latent space models,
under some mild assumptions on the generative models. Traditional convergence
results for statistical estimators are a kind of ergodicity, or long-term mixing, for
multiple, independent samples. The size of a single sample network here plays
the role of the number of samples in traditional formulations of consistency.
These main results hold even when our generative models are mis-specified, i.e.
when we fix a latent space but the generating graph distributions are not defined
in terms of the space, under some additional assumptions [Appendix A]. Contin-
uous latent space models turn out to provide the necessary ergodicity through
conditional independence. A consequent notion of consistency, which we save
for future work, requires some formalization of what we mean by convergence of
estimates, i.e. sequences of coordinates, of varying sizes. And a proof of such a
consistency result will likely require some adaptation of standard technical tools
for concluding convergence of extremal estimators from convergence in random
objective functions (e.g. [22]).

Appendix A: Mis-specified models

Our consistency results extend from specified to certain mis-specified models.
We still assume the existence of a latent space (M,w1:∞) as before, but assume
that sample graphs are sampled not by a distribution of the form graphn(x1:n)
but in fact by some arbitrary distribution of graphs having n nodes. The only
assumption we make about such random graphs G in this section, as before, is
that there exists some random variable μ such that the edges of G are condition-
ally independent given μ. For the case where G is drawn from a CLS model, μ
can be taken to be the random latent coordinates of the nodes of G. We call a se-
quence G1, G2, . . . of random graphs almost-specified if there exists x∗

1:∞ ∈ M∞

such that, for all sufficiently large n, �(x1:n) achieves a maximum uniquely ex-
actly for x1:n ∈ [x∗

1:n]. For such an almost-specified model, x∗
1:∞ plays the role

of the true coordinates and the assumption of being almost specified plays the
role of Lemma 6 (e.g. in all proofs); we call such x∗

1:∞ the pseudo-coordinates
of the almost-specified model. Consequently, we can restate our main results at
the following level of generality.
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Theorem 11. For an almost specified model with pseudo-coordinates x∗
1:∗ and

a compact, regular latent space (M,w1:∞),

sup
x1:n

|�(x1:n) − �(x1:n)| P→ 0

In particular, a reordering of the nodes is irrelevant for these results. This
is essentially due to logit-boundedness and the fact that we are only claiming
convergence in log-likelihoods, not convergence in coordinates. In our setup, we
are given an ordering, in the sense that we are given for each n an observed
graph Gn of the first n nodes (determined by the first n true coordinates x∗

1:n).
The fact that the MLE’s converge in log-likelihoods, in fact at a certain rate
irrespective of node ordering, follows from the logit-boundedness condition.

If we want to refine our results to obtain a convergence of the MLEs to the true
coordinates in some sort of metric space of coordinates, the particular choice
of ordering of the nodes might cause some problems. In order to go from log-
likelihood convergence to convergence of MLEs in standard settings, one requires
some assumption that the MLE is a well-separated maximum. To go from our
convergence results to convergence of MLEs in our setting is trickier because
the MLEs themselves live in different metric spaces as n → ∞, so one needs
to refine the notion of well-separated maximum to take this into account. This
refined notion of well-separatedness is sensitive to node ordering, and further
assumptions need to be made on the generative model to get the desired refined
notion of convergence.
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