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Abstract: We study the nonparametric estimation of the underlying sur-
vival function of a survival time in a study with cross-sectional sampling
without any follow-up. Under a stationarity assumption on disease inci-
dence rate in the population, the survival function S0 is related to the
observed density of the backward recurrence time, f0, via the relationship
S0(x) = f0(x)/f0(0). As f0(x) is non-decreasing, it is well-known that
the nonparametric maximum likelihood estimator of f0 at x = 0 is in-
consistent. In this article, we establish the asymptotic distributions of the
estimators of S0(x) when different consistent estimators of f0(0) are used.
Such results are currently missing in the literature. Another contribution
is the establishment of a local Kiefer-Wolfowitz-type result of the form
supx∈[0,y] |F̂n(x)−Fn(x)| = Op(n−2/3(logn)2/3) that makes use of weaker
assumptions than existing results, where Fn and F̂n are the empirical dis-
tribution function and its least concave majorant, respectively.
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1. Introduction

Cross-sectional surveys often collect information on time since a certain incident
event, but there is no follow-up of the study participants to collect the end-points
of interest. The time from the initial event to the sampling time is known as the
backward recurrence time or current duration data. Current duration data are
collected in studies of time to pregnancy [11], length of residency [28], duration
between episodes of psychiatric disorders [17], among others. However, the goal
is often to estimate the survival function of the full duration between the initial
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event and an endpoint of interest, but the endpoints are never observed or always
censored as there is no active follow-up.

An additional complication of current duration data is that the survival times
from the population do not have the same chance of being sampled. In particu-
lar, subjects with a longer survival time are more likely to be sampled. Let Y be
the unobserved survival time, which is the time from a disease incidence event to
a failure event of interest. An assumption that the disease incidence rate in the
population remains constant over calendar time and independent of individual
survival time, often referred to as a stationary disease incidence assumption, are
often assumed for cross-sectional sampling [26], because under the assumption
cross-sectional sampling is length-biased [2]. Let Y ∗ be the length-biased version
of Y which is potentially observed from the cross-sectional sample when there is
complete follow-up. As there is no follow-up in our consideration, all the survival
times are immediately censored at recruitment and we only observe the back-
ward recurrence time X, which can be represented as X = Y ∗U [25, 24], where
U is a standard uniform random variable on [0, 1] and it is also independent
of Y ∗. The form of the distortion Y ∗U is also known as multiplicative censoring
because the incompleteness of the Y ∗ results from Y being scaled down by an
independent random variable U [25]. Recall S0 denotes the survival function
of Y . The density of X, f0, is then given by the following key formula [2]:

f0(x) = S0(x)∫∞
0 S0(y)dy

,

where we assume throughout that E(Y ) =
∫∞
0 S0(y)dy < ∞.

In this article, we study the nonparametric estimation of S0. Certainly,

S0(x) = f0(x)
f0(0) (1.1)

for any x ≥ 0, and we could estimate S0 whenever an estimate of f0 is avail-
able. Since S0 is by definition decreasing, f0 is also decreasing. The nonpara-
metric maximum likelihood estimator (NPMLE) of f0 is given by the Grenan-
der estimator f̂n [5] of the backward recurrence times. However, [27] pointed
out that f̂n(0) := f̂n(0+) is not a consistent estimator of f0(0). As a result,
Ŝn(x) := f̂n(x)/f̂n(0) will also not be a consistent estimator of S0(x). Different
alternative consistent estimators of f0(0) has been proposed in the literature:
based on a penalized likelihood [27], using the first bin of a simple histogram
[8], a local [14] and a smoothed Grenender estimator [8].

With a consistent estimator of f0(0), say f̃n(0), we can obtain a consistent
estimator of S0(x) of the form S̃n(x) = f̃n(x)/f̃n(0), where f̃n(x) is a consistent
estimator of f0(x) using, for example, the Grenander estimator, its penalized
or smoothed version. Nevertheless, to the best of our knowledge, theoretical
properties of S̃n(x) have not yet been studied. Our main result in this paper is
to fill in this gap by establishing the asymptotic distributions of S̃n(x) at any
interior point of the support of Y , where f̃n(0) can be the different estimators
introduced above.
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The main crux of establishing the asymptotic distribution of S̃n(x) is to
observe that f̃n(x) and f̃n(0) are asymptotically independent for a variety of
choice of f̃n(x) and f̃n(0). This insight results from the switch relation (3.2)
and the Hungarian approximation [13], so that the estimators f̃n(x) and f̃n(0)
will be related to Brownian motions in non-overlapping intervals asymptotically,
which is the source of independence.

Another contribution of this paper is the establishment of a local Kiefer-
Wolfowitz-type result that requires weaker assumptions than those in [12, 4].
Roughly speaking, [12] proved in their Theorem 1 that, if f0 is bounded away
from 0 with a continuous first derivative f ′

0 that is bounded and away from 0,
then, with probability one, the maximum absolute distance between F̂n and Fn is
of the order n−2/3 logn. [4] considered Grenander-type estimators for monotone
functions in a more general setting. This kind of Kiefer-Wolfowitz-type result
has been applied to study the asymptotic optimality of shape-constrained es-
timators and bootstrap theory (see, e.g., [8] and the references therein) which
could be of independent interest. However, under our setting, the condition in
[12] or [4] corresponds to that S0 is bounded away from 0, and this must lead
to problematic formulation because S0 is a survival function and should be ulti-
mately equal to 0 at the endpoint. We weakened this assumption but allow the
result to be valid over a local region.

The organization of this paper is as follows. In Section 2, we first discuss the
non-uniqueness and inconsistency of nonparametric maximum likelihood esti-
mation and then review four different classes of consistent estimators, including
estimators based on the penalized estimator, the histogram estimator, the local
Grenander estimator and the smoothed Grenander estimator. Next, we establish
the asymptotic distributions of the above estimators at a fixed interior point as
well as a local Kiefer-Wolfowitz resul under relaxed conditions in Section 3. Sec-
tion 4 provides some numerical comparisons of different estimators. A real data
application is given in Section 5. Some discussions are provided in Section 6.
Proofs of the theoretical results are given in the appendix.

2. Nonparametric estimators and their consistencies

In this article, we focus on the nonparametric estimation of the survival func-
tion S0. We first note that the NPMLE for S0 is not necessarily the plug-in
estimator obtained by using (1.1) with f0 being replaced by f̂n, the NPMLE for
f0, unless there is an additional constraint. In addition, it is well-known that
f̂n(0) := f̂n(0+) is inconsistent, which also leads to the inconsistency of the
plug-in estimator for S0(x); see [27]. We then review four different consistent
estimators of f0(0) proposed in the literature and formally define and establish
the consistency of the corresponding estimators of S0(x). This then enables us
to establish the asymptotic distribution of the estimators of S0(x).
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2.1. Nonparametric maximum likelihood estimation

Given a random sample of current duration data X1, . . . , Xn as described in
Section 1, the likelihood function in an arbitrary survival function S is

Ln(S) :=
n∏

i=1

S(Xi)∫∞
0 S(y)dy

, (2.1)

subject to S ∈ S := {H : H is a survival function on [0,∞)}. On the other
hand, the likelihood function in an arbitrary density function f is

Ln,2(f) :=
n∏

i=1
f(Xi), (2.2)

subject to f ∈ F := {h : (0,∞) → [0,∞) : h is decreasing and
∫∞
0 h(y)dy = 1}.

The NPMLE of (2.2) subject to f ∈ F is the well-known Grenander estimator
[5], and we denote it by f̂n. The Grenander estimator can be characterized as the
left-continuous slope of the least concave majorant of the empirical distribution
function of Xi’s. Assuming that all the observations are distinct, it can also be
computed using the following formula:

f̂n(X(k)) = min
0≤i<k

max
k≤j≤n

(j − i)/n
X(j) −X(i)

, for k = 1, . . . , n,

where X(i)’s are the order statistics of Xi’s with X(1) < · · · < X(n); see [20].
In view of (1.1), a natural nonparametric estimator of S0 would be the plug-in
estimator:

Ŝn(x) :=
{

f̂n(x)
f̂n(0) , x ≥ 0;
1, x < 0,

(2.3)

which is well-received in the community; for instance, see [11]; here, f̂n(0) =
f̂n(0+), which is equal to f̂n(X(1)).

However, it is not immediate that Ŝn is the NPMLE of (2.1) although f̂n is
the NPMLE of (2.2); in fact, if S ∈ S maximizes Ln, then for any c > 1, define

Sc(x) :=
{

1, if x = 0;
S(x)/c, if x > 0.

Then, Sc ∈ S and Ln(S) = Ln(Sc). This means that the maximizer of L subject
to S ∈ S is not unique without some additional appropriate constraints. This is
unlike the case of density estimation under monotonicity, where the constraint
that the density integrates to 1 alone ensures the uniqueness of the NPMLE. A
natural choice is to confine that

S(X(1)) = 1, (2.4)

as X(1) is physically the first observation. In the following Lemma 2.1, we shall
show that Ŝn defined in (2.3) is the unique maximizer of Ln under the additional
constraint of (2.4).
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Lemma 2.1. Any possible maximizer of Ln is in the form of:

Sn,c(x) :=
{

f̂n(x)
c , if x > 0;

1, if x ≤ 0,
(2.5)

for some c ≥ f̂n(0). Hence, the unique maximizer of Ln subject to (2.4) is Ŝn

defined in (2.3).

2.2. Consistent nonparametric estimators

Let τ := inf{x ∈ (0,∞) : f0(x) = 0}. While f̂n(x) is a consistent estimator of
f0(x) for any x ∈ (0, τ) (see Corollary 3.1 in [8]), [27] noted that f̂n(0) is not a
consistent estimator for f0(0); from which, in fact, if f0(0) < ∞, f̂n(0)/f0(0) d→
sup1≤j<∞ j/Γj

d= 1/U , where Γj ’s are partial sums of independent and identi-
cally standard exponential random variables and U is a uniform random variable
on [0, 1]. Furthermore, f̂n(0) is simply too big as P(sup1≤j<∞(j/Γj) > 1) = 1 by
the strong law of large numbers. As a result, the estimator Ŝn(x) = f̂n(x)/f̂n(0)
is not a consistent estimator of S0(x) = f0(x)/f0(0) for any x ∈ (0, τ). In this
subsection, we shall discuss four different classes of consistent nonparametric
estimators for S0(x), x > 0, based on various consistent estimators and their
variants of f0(0) proposed in the literature. The corresponding asymptotic dis-
tributions of these estimators will be established in Section 3.

2.2.1. Assumptions for asymptotic results

We first state the conditions under which the asymptotic results in Subsec-
tion 2.2 and Section 3 will be derived. Let f (k)

0 (0) := limx↓0 f
(k)
0 (x) and S

(k)
0 (0) :=

limx↓0 S
(k)
0 (x). Fix x0 ∈ (0, τ).

Cf1 f0 is decreasing and 0 < f0(0) < ∞;
Cf2 0 < |f ′

0(x0)| < ∞;
Cf3 0 < |f ′′

0 (x0)| < ∞;
Cf4 for some k ≥ 1, 0 < |f (k)

0 (0)| < ∞ and f
(i)
0 (0) = 0 for 1 ≤ i ≤ k − 1,

or
Cf4′ for some k ≥ 1, 0 < |f (k)

0 (0)| ≤ sups≥0 |f
(k)
0 (s)| < ∞ and f

(i)
0 (0) = 0 for

1 ≤ i ≤ k − 1;

Cf2 is used for establishing the asymptotic distribution of the Grenander
estimator at an interior point of the support; see [6]. Cf3 is used for establishing
the asymptotic distribution based on smoothed Grenander estimator, which
is a standard assumption for density estimation using kernel smoothing when
deriving the asymptotic distribution; see [15]. The asymptotic behaviours of
different consistent estimators of f0(0) depend on the smoothness of f0 at 0.
Clearly, Cf4 is strictly weaker than Cf4′. Cf4′ is used in [14], where they studied
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the behavior of the Grenander estimator f̂n near the boundaries of the support of
a decreasing density. The canonical examples that satisfies Cf4′ (and therefore
also for Cf4) for k = 1 and k = 2 are the exponential distributions and the
half-normal distributions, respectively.

The followings are the corresponding equivalent conditions in terms of S0.

CS1 0 <
∫∞
0 S0(y)dy < ∞;

CS2 0 < |S′
0(x0)| < ∞;

CS3 0 < |S′′
0 (x0)| < ∞;

CS4 for some k ≥ 1, 0 < |S(k)
0 (0)| < ∞ and S

(i)
0 (0) = 0 for 1 ≤ i ≤ k − 1;

CS4′ for some k ≥ 1, 0 < |S(k)
0 (0)| ≤ sups≥0 |S

(k)
0 (s)| < ∞, and S

(i)
0 (0) = 0 for

1 ≤ i ≤ k − 1;

Recall that g0 is the density of Y , the underlying variable of interest. That is
g′0(x) = −S′

0(x). Hence, for densities such that g0(0) ∈ (0,∞), CS4 is satisfied
with k = 1 (e.g., exponential and half-normal distribution). For densities such
that g0(0) = 0 but |g′0(0)| ∈ (0,∞), CS4 is satisfied with k = 2 (e.g., gamma
distribution with shape and scale parameters being equal to 2).

2.2.2. Penalized NPMLE

As mentioned in Section 2.1, f̂n(0) is simply too big and inconsistent. [27] pro-
posed a penalized version of the log-likelihood by maximizing

ln,2,α(f) :=
n∑

i=1
log f(Xi) − nαf(0+), (2.6)

where α > 0 is a penalty parameter to be determined, but we assume throughout
that α < X(n). From now on, we denote f̂P

n to be the penalized NPMLE for f0.
It is also shown in [27] that the penalized NPMLE has the same form that can
be achieved as the unpenalized one but with transformed variables X̃1, . . . , X̃n

from Xi’s in the following way. Given a penalty parameter α, let X̃0 := 0 and
X̃i = X̃i(α) := α + γαX(i), for i = 1, . . . , n, where γα is the unique, positive
number satisfying the following equation:

γ = min
1≤i≤n

{
1 − αi/n

α + γX(i)

}
.

The penalized NPMLE is a step function with jumps possibly at Xi’s with its
value at the point X(i) being equal to the value of the Grenander estimator
computed from the transformed sample of X̃1, . . . , X̃n at X̃i.

With the penalized estimator f̂P
n , it has been noted that (e.g. [11]) one can

use f̂P
n (x)/f̂P

n (0) to estimate S0(x). To formally recognize that this estimator is
the NPMLE of a penalized log-likelihood, we define the penalized log-likelihood
as

ln,α(S) :=
n∑

i=1
log
{

S(Xi)∫∞
0 S(y)dy

}
− nα

S(0+)∫∞
0 S(y)dy

, (2.7)
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subject to S ∈ S, as f(0+) = S(0+)∫∞
0 S(y)dy . As in the case without penalization, ln,α

does not admit a unique maximizer without any further constraint; henceforth,
we impose the same constraint of (2.4) as in the unpenalized case. We shall then
show that the maximizer is given by

ŜP
n (x) :=

{
f̂P
n (x)

f̂P
n (0) , x ≥ 0;

1, x < 0,
(2.8)

where f̂P
n (0) := f̂P

n (0+).

Lemma 2.2. Any maximizer of ln,α is in the form of:

SP
n,c(x) :=

{
f̂P
n (x)
c , x > 0;

1, x ≤ 0,
(2.9)

for some c ≥ f̂n,α(0). Hence, the unique maximizer of ln,α subject to (2.4) is
ŜP
n as defined in (2.8).

The consistency of ŜP
n (x) follows from that of f̂P

n (x) and f̂P
n (0).

Lemma 2.3. If αn → 0 and nαn → ∞ as n → ∞, and S0 is strictly decreasing
near zero, then ŜP

n (x) P→ S0(x) for x ∈ [0, τ).

2.2.3. Using a histogram estimator

Let Fn be the empirical distribution of X1, . . . , Xn. To estimate f0(0), a natural
and simple histogram estimator is suggested in [8] (see also [10]):

f̂H
n (0) = f̂H

n,bn(0) := Fn(bn)
bn

,

where the bin width {bn} is a vanishing sequence of positive numbers. Assuming
f0(0) < ∞ and |f ′

0(0)| < ∞, the asymptotic mean square error optimal choice for
bn can be shown to be {2f0(0)/f ′

0(0)2}1/3n−1/3; see [10]. The following lemma
gives a more general result on the asymptotic mean square error optimal choice
of bn for f̂H

n (0) under different regularity conditions of f0 at 0 as stated in Cf4.
The corresponding statement in [8] corresponds to the case when k = 1. Given
two sequences {pn} and {qn}, the notation pn ∼ qn means pn/qn → 1 as n → ∞.

Lemma 2.4. Under Cf4 for some k ≥ 1, E(f̂H
n (0)) − f0(0) ∼ f

(k)
0 (0)bkn/k!,

Var(f̂H
n (0)) ∼ 1

nbn
f0(0), and the asymptotic mean square error optimal choice

of bn for f̂H
n (0) is

boptn :=
{

f0(0)
2k{f (k)

0 (0)/k!}2

} 1
2k+1

n− 1
2k+1 .
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The corresponding estimator of S0(x) using f̂H
n (0) can be defined as

ŜH
n (x) :=

{
f̂n(x)
f̂H
n (0) , for x ≥ 0 such that f̂n(x) < f̂H

n (0);
1, for x ≥ 0 such that f̂n(x) ≥ f̂H

n (0).
(2.10)

Lemma 2.5. If bn → 0 and nbn → ∞ as n → ∞, then f̂H
n (0) P→ f0(0). As a

result, ŜH
n (x) P→ S0(x) for x ∈ [0, τ).

2.2.4. Using a local Grenander estimator

[14] studied the behavior of the Grenander estimator f̂n near the boundaries of
the support of a decreasing density. They established the asymptotic distribu-
tion of estimators of the form f̂N

n (0) := f̂n(cn−α), where α ∈ (0, 1) and c > 0
under Cf4′. In particular, the result implies that f̂n(cn−α) is a consistent esti-
mator of f0(0) if 1/(2k + 1) ≤ α < 1, c > 0. The corresponding estimator of
S0(x) using f̂n(cn−α) can be defined as

ŜN
n (x) :=

{
f̂n(x)

f̂n(cn−α) , x > cn−α;
1, x ≤ cn−α.

Lemma 2.6. Suppose that CS4′ holds and 1/(2k + 1) ≤ α < 1, then ŜN
n (x) P→

S0(x) for x ∈ [0, τ).

2.2.5. Using a smoothed Grenander estimator

Let K : [−1, 1] → R be a nonnegative kernel that is symmetric around 0, satisfies∫ 1
−1 K(u)du = 1, and has a bounded derivative. While standard kernel density

estimators lead to inconsistency problems at the boundary, it is well-known that
the use of boundary kernels can correct the bias of a kernel estimator and the
smoothed Grenander estimator using boundary kernel is consistent at 0, see [3]
and [8] and the references therein. Here, we consider boundary kernels as in [3]
and describe the use of boundary kernels when τ < ∞. For a, b ∈ R, denote
a ∧ b := min{a, b} and a ∨ b := max{a, b}. To be more precise, we define the
smoothed Grenander estimator f̂S

n,h(x) by

f̂S
n,h(x) :=

∫ (x+h)∧τ

(x−h)∨0

1
h
Kx

(
x− u

h

)
f̂n(u)du, x ∈ [0, τ ],

where h > 0 is the bandwidth and the boundary kernel Kx is defined by

Kx(u) :=

⎧⎨⎩
φ (x/h)K(u) + ψ (x/h)uK(u), x ∈ [0, h];
K(u), x ∈ (h, τ − h);
φ ((τ − x)/h)K(u) − ψ ((τ − x)/h)uK(u), x ∈ [τ − h, τ ].

(2.11)
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The coefficients φ(s) and ψ(s), for s ∈ [0, 1], are determined by the requirements
that

φ(s)
∫ s

−1
K(u)du + ψ(s)

∫ s

−1
uK(u)du = 1, (2.12)

φ(s)
∫ s

−1
uK(u)du + ψ(s)

∫ s

−1
u2K(u)du = 0. (2.13)

For h1, h2 > 0, a smoothed estimator of S is then given by

ŜS
n,h1,h2

(x) :=

⎧⎨⎩
f̂S
n,h1

(x)
f̂S
n,h2

(0) , for x such that f̂S
n,h1

(x) < f̂S
n,h2

(0);

1, for x such that f̂S
n,h1

(x) ≥ f̂S
n,h2

(0).

In the definition above, we allow one to use two different bandwidths for esti-
mating f0 at x and 0. As stated in the following Lemma 2.7, ŜS

n,h1,h2
(x) will

also be a consistent estimator if the same bandwidth hn = h1n = h2n is used
whenever hn → 0 and hnn

1/2 → ∞.

Remark 1. We define ŜS
n,h1,h2

(x) using two different bandwidths because the
rates of convergence of the smoothed estimator at x and 0 can be different,
depending on the smoothness assumptions at the corresponding locations; see
Theorem 3.4. From another point of view, one may want to use a smaller band-
width in a region with more data and vice versa, following the idea of adaptive
kernel estimates; see, e.g., [22]. In the present case, we have a decreasing den-
sity so that there will be more data at 0 than at x > 0. For simplicity, we only
use one bandwidth in the simulation studies.

Lemma 2.7. Under Condition CS1, assume that τ < ∞ and S0 is continuous
on [0, τ ], hj = hjn → 0 and hjn

1/2 → ∞ for j = 1, 2, then ŜS
n,h1,h2

(x) P→ S0(x)
for x ∈ [0, τ ].

Remark 2. Smoothing Ŝn directly will not give a consistent estimator of S
because Ŝn is everywhere inconsistent.

2.3. Conditional distribution of Y given Y > y0

For a small enough y0, an alternative way to avoid the inconsistency problem is
to consider the conditional survival function of Y given Y > y0 (see, e.g., [11]),
denoted by S|y0(x). Then, S|y0(y) = f0(y)/f0(y0) for any y ≥ y0. A consistent
nonparametric estimator is then given by

Ŝ|y0(y) := f̂n(y)
f̂n(y0)

,

because f̂n(y) P→ f0(y) and f̂n(y0)
P→ f0(y0). Note that in the case when y0 =

y0n ↓ 0 at a certain rate in the sense that y0 = cn−α for some c > 0 and α > 0,
Ŝ|y0(y) is the same as the estimator ŜN

n (y) for any y ≥ y0n.
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3. Asymptotic distributions

In this section, we establish the asymptotic distributions of the four estimators
ŜP
n (x0), ŜH

n (x0), Ŝ0
n(x0), and ŜS

n,h1,h2
(x0) for x0 ∈ (0, τ) and that of Ŝ|y0(x0)

for x0 ∈ (y0, τ) and y0 > 0. To this end, we first review some technical tools
used in the proofs in the next subsection and establish a local Kiefer-Wolfowitz
result under relaxed conditions in Subsection 3.2.

3.1. Preliminaries

We first recall a few technical tools that shall be used in the proofs of the results
in this section. As the estimators of S0(x) depend on the estimators of f0(x)
and f0(0), the study of the asymptotic distribution of the former ones depend
on the asymptotic joint distribution of the latter two. Instead of studying f̂n
directly, the established approach by [7] studies its inverse process, which is
more tractable. For a ≥ 0, the inverse process of f̂n is defined by

Un(a) := sup{t ≥ 0 : Fn(t) − at is maximal}. (3.1)

Then, with probability one, we have the following switch relation (see [7] or [8]):

f̂n(x) ≤ a ⇔ Un(a) ≤ x. (3.2)

Let Bloc be the space of all locally bounded real functions on R endowed with
the topology of uniform convergence on compacta. That is, for hn, h ∈ Bloc(R),
hn converges to h if for every M > 0, supt∈[−M,M ] |hn(t)−h(t)| → 0 as n → ∞.
Let Cmax(R) denote the (separable) subset of continuous functions x in Bloc(R)
which satisfies x(t) → −∞ as |t| → ∞, and x achieves its maximum at a unique
point in R.

Proposition 3.1 (Theorem 6.1 in [9]). Let (J1n, J2n) be a sequence of a pair of
random mappings valued in Bloc(R)×Bloc(R) and (T1n, T2n) be another sequence
of random mappings into R× R such that:

(i) (J1n, J2n) d→ (J1, J2), P((J1, J2) ∈ Cmax(R) × Cmax(R)) = 1;
(ii) T1n, T2n = Op(1);
(iii) J1n(T1n) ≥ supt J1n(t) − β1n, and J2n(T2n) ≥ supt J2n(t) − β2n where

β1n, β2n = op(1).

Then (T1n, T2n) d→ (T1, T2) := (arg max(J1), arg max(J2)).

Another tool that simplifies the establishment of asymptotic theory related
to the Grenander estimator is the Hungarian approximation ([13]): There are
Brownian motions Wn and Brownian bridges Bn for which Bn(t) = Wn(t) −
tWn(1), for all 0 ≤ t ≤ 1 and n ≥ 1, and

Fn(x) − F0(x) = 1√
n
Bn(F0(x)) + Rn(x), 0 ≤ x < ∞, (3.3)
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where with probability one,

sup
x

|Rn(x)| = O

(
logn
n

)
. (3.4)

Denote {W (t) : t ∈ [0,∞)} to be a standard Brownian motion over the positive
real line with W (0) = 0 and {W(t) : t ∈ R} to be a standard two-sided Brownian
motion with W(0) = 0. Let Y be distributed as arg maxt∈R

{W(t) − t2}, the
(almost surely unique) location of the maximum of two-sided Brownian motion
minus the parabola t 
→ t2.

Lastly, we also need the asymptotic distribution of f̂n(x0) at x0 ∈ (0,∞)
with f ′

0(x0) < 0, which is established in [19].
Proposition 3.2 (Theorem 6.3 in [19]; see also Theorem 2.1 in [7]). Let x0 ∈
(0,∞). If f ′

0(x0) < 0, then

n1/3
∣∣∣∣12f0(x0)f ′

0(x0)
∣∣∣∣−1/3

· {f̂n(x0) − f0(x0)} d→ 2Y. (3.5)

Since the asymptotic distribution of n1/3f−1
0 (0){f̂n(x0)−f0(x0)} will appear

frequently in the next few sections, for the sake of notational simplicity, we
denote it by

Y0(S0) := f−1
0 (0)

∣∣∣∣12f0(x0)f ′
0(x0)

∣∣∣∣1/32Y
=
∣∣∣∣4S0(x0)S′

0(x0)
∫ ∞

0
S0(y)dy

∣∣∣∣1/3Y
in terms of S0. We also write Y0 = Y0(S0) without cause of ambiguity. In the
rest of the article, {W (t) : t ∈ [0,∞)} and Y0 are defined on the same probability
space and are independent of each other.

3.2. A Local Kiefer-Wolfowitz-type result

To establish the asymptotic distribution of ŜS
n,h1,h2

(x0), we shall need an esti-
mate of the difference between the empirical distribution function Fn and its
least concave majorant F̂n in a neighbourhood of x0. The Kiefer-Wolfowitz re-
sult refers to the following statement in [12] concerning the maximum absolute
distance between Fn and F̂n, where the underlying true distribution function
F0 is concave.
Theorem 3.3 (Theorem 1 in [12]). Suppose that τ < ∞ and sup{x : F0(x) =
0} = 0. If F0 is concave, twice continuously differentiable on (0, τ),

sup0<x<τ (−f ′
0(x))

inf0<x<τ f2
0 (x) < ∞ and inf

0<x<τ

(−f ′
0(x))

f2
0 (x) > 0. (3.6)

Then, with probability one,

sup
0≤x≤τ

|F̂n(x) − Fn(x)| = O(n−2/3 logn).
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Roughly speaking, this theorem holds if f0 has a bounded support, and it
is also bounded away from 0 with a continuous first order derivative f ′

0 whose
negative values are both bounded from above and bounded away from 0. Since
we only wish to establish the asymptotic distribution of the estimator of S0(x)
at an interior point x, it may not be necessary to assume conditions over the
whole support of f0. More importantly, their proposed condition that f0 is
bounded away from 0 corresponds to the condition, under our setting, that S0
is bounded away from 0, and this must lead to problematic formulation because
S0 is a survival function and should be ultimately equal to 0 at the endpoint; in
the following, we aim to modify the conditions, so that a similar claim remains
valid.

In view of this critical matter, we establish a local Kiefer-Wolfowitz result
in the following Theorem 3.4 where it suffices to assume the following Condi-
tion Cf5 instead of (3.6).

Cf5 f0 is continuously differentiable on [0, x0 + 2δ] for some δ > 0 and 0 <
inft∈[0,x0+2δ] |f ′

0(x)| ≤ supt∈[0,x0+2δ] |f ′
0(x)| < ∞.

Theorem 3.4. Under Cf5, we have the rate of convergence,

sup
x∈[0,x0+δ]

|F̂n(x) − Fn(x)| = Op(n−2/3(logn)2/3).

This theorem is a direct consequence of a more general local Kiefer-Wolfowitz-
type theorem given in Appendix B. Note that although a local Kiefer-Wolfowitz-
type theorem is established in Theorem 2.5 of [4], it also requires the assumption
that the density has a bounded support and to be bounded away from 0, which
is thus not possible in our present setting. However, our proof follows a similar
argument as that for Theorem 2.2 in [4] with some modifications where we only
consider a region at a distance away from the right endpoint of the support.

3.3. Penalized NPMLE

In this subsection, we shall establish the asymptotic distribution of the penalized
NPMLE ŜP

n (x0). Because ŜP
n (x0) = f̂P

n (x0)/f̂P
n (0), to establish the asymptotic

distribution of ŜP
n (x0), we shall first establish the joint asymptotic distribution

of f̂P
n (x0) and f̂P

n (0) in the following Theorem 3.5. Note that for the marginal
distribution of f̂P

n (x0), Theorem 4 of [27] implies that under Cf4 with αn =
cn−(k+1)/(2k+1) for some k ≥ 1 and c > 0, we have

n
k

2k+1 {f̂P
n (0) − f0(0)} d→ sup

t>0

W (t) − (c + βk+1t
k+1)

t
, (3.7)

where βk+1 := −f
(k)
0 (0)fk

0 (0)/(k + 1)!.

Theorem 3.5. Under Conditions Cf1, Cf2, and Cf4 for some k ≥ 1, if αn =
cn−(k+1)/(2k+1) for some constant c ∈ (0,∞), then

(n
k

2k+1 {f̂P
n (0) − f0(0)}, n1/3{f̂P

n (x0) − f0(x0)}) (3.8)
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converges in distribution to(
sup
t>0

W (t) − (c + βk+1t
k+1)

t
, f0(0)Y0

)
.

Recall that {W (t) : t ≥ 0} and Y0 are independent. The same holds for the
other propositions that follow.

Corollary 3.1. Under Conditions CS1, CS2, and CS4 for some k ≥ 1, and
also assume that αn = cn−(k+1)/(2k+1) for some constant c ∈ (0,∞), then the
followings hold.

(a) If k = 1, then n1/3{ŜP
n (x0) − S0(x0)} converges in distribution to

−S0(x0)
∫ ∞

0
S0(y)dy sup

0<t<∞

{
W (t) − (c + βS

2 t
2)

t

}
+ Y0,

where βS
2 := −S′

0(0)/[2{
∫∞
0 S0(y)dy}2].

(b) If k > 1, then
n1/3{ŜP

n (x0) − S0(x0)} d→ Y0.

Note that the constant c for the asymptotically optimal penalty parame-
ter in the mean-squared error sense for ŜP

n (x0) is the same as that for f̂P
n (0)

for all k ≥ 1, If k = 1, this is true because of the independence between
sup0<t<∞{W (t)−(c+βS

2 t2)
t } and Y0 due to that of {W (t) : t ≥ 0} and Y0. For

k > 1, the constant c does not appear in the limiting distribution.

Remark 3. (1) In [27], the following condition is used in deriving the asymp-
totic distribution of the penalized estimator f̂n,α:

F0(x) = f0(0)x− f1x
p + o(xp) as x ↓ 0, (3.9)

where 0 ≤ f1 < ∞ and p > 1 and does not have to be a positive integer.
If Cf4 holds, then (3.9) holds with p = k+1 and f1 = −f

(k)
0 (0)/(k+1)! by

Taylor’s theorem. On the other hand, there are examples where (3.9) holds
but Cf4 is not satisfied. For example, if f0(x) = p

p−1 (1−xp−1)I(x ∈ [0, 1])
for p ∈ (1, 2), then for x ∈ [0, 1],

F0(x) = p

p− 1x− 1
p− 1x

p,

but f ′
0(x) = −p/x2−p for x ∈ (0, 1) so that f ′

0(0) = ∞.
(2) The corresponding condition of (3.9) in terms of S0 is∫ x

0
S0(y)dy = x− S1x

p + o(xp) as x ↓ 0, (3.10)

where 0 ≤ S1 < ∞. Similar to Remark 3 (1) above, if CS4 holds, then
(3.10) holds with p = k+1 and S1 = −S

(k)
0 (0)/(k+1)! by Taylor’s theorem.
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On the other hand, there are examples where (3.10) holds but CS4 is not
satisfied. For example, suppose that S0(x) = 1 − xp−1 for x ∈ [0, 1]. Then∫ x
0 S0(y)dy = x− xp/p and g0(x) = (p− 1)xp−2 for any x ∈ [0, 1]. (3.10)

is satisfied for any p > 1. If p ∈ (1, 2), then S′
0(0) = −g0(0) = −∞ so

that CS4 is not satisfied.
(3) To simplify the presentation of the conditions and asymptotic properties of

the different estimators considered here, we only consider Cf4 (resp. CS4)
or Cf4′ (resp. CS4′) but not (3.9) (resp. (3.10)).

3.4. Using a histogram estimator

Similar to the previous subsection, to establish the asymptotic distribution of
ŜH
n (x0), we first establish the joint asymptotic distribution of the histogram

estimator f̂H
n (0) and the Grenander estimator at a fixed interior point f̂n(x0).

The rate of convergence and the asymptotic distribution depend on the order
of the bin width as well as the assumptions near f0(0).

Let Z(μ, σ2) denote a normal random variable with mean μ and variance σ2.
In this article, Z is independent of Y0.

Theorem 3.6. Under Conditions Cf1, Cf2, and Cf4 for some k ≥ 1, if bn =
cn−1/(2k+1) for some constant c ∈ (0,∞), then,(

n
k

2k+1 {f̂H
n (0) − f0(0)}, n1/3{f̂n(x0) − f0(x0)}

)
d→
(
Z

(
f

(k)
0 (0)

(k + 1)!c
k, c−1f0(0)

)
, f0(0)Y0

)
.

Corollary 3.2. Under Conditions CS1, CS2, and CS4 for some k ≥ 1 and if
bn = cn−1/(2k+1) for some constant c ∈ (0,∞), then the followings hold.

(a) If k = 1, n 1
3 {ŜH

n (x0) − S0(x0)} converges in distribution to

Z

(
− c

2S0(x0)S′
0(0), c−1{S0(x0)}2

∫ ∞

0
S0(y)dy

)
+ Y0.

(b) If k > 1,
n

1
3 {ŜH

n (x0) − S0(x0)} d→ Y0.

Note that when k = 1, the constant c for the asymptotically optimal bin
width for ŜH

n (x0) in the mean-squared error sense is the same as that for f̂H
n (0).

This is true because of the independence between the normal random variable
Z in Corollary 3.2 (a) and Y0. For k > 1, the constant c does not appear in the
limiting distribution.

Remark 4. In general, we can also consider the asymptotic results under (3.10)
instead of CS4 and the cases when bn = cn−γ, where γ belongs to one of the
followings: (i) 1/(2p−1) < γ < 1, (ii) γ = 1/(2p−1) and (iii) 0 < γ < 1/(2p−1),
where p ∈ (1,∞) as in (3.9); see Appendix D.1 for these considerations.
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3.5. Using a Grenander Estimator near 0

In [14], the asymptotic distribution of f̂n(cn−α) is established for different range
of values of α ∈ (0, 1) under Cf4′. In the following Theorem 3.7, we first establish
the joint asymptotic distribution of f̂n(cn−α) and f̂n(x0). Using the notation
in [14], define D[Z(t)](a) as the right derivative of the least concave majorant
(LCM) on R of the process Z at the point t = a, and define DR similarly, where
the LCM is restricted to the set {t ≥ 0}. For the same value of k in Cf4′ or CS4′,
define

B2k := {f0(0)1/2|f (k)
0 (0)|−1(k + 1)!}2/(2k+1)

=
{

(k + 1)!|Sk
0 (0)|−1

(∫ ∞

0
S0(y)dy

)1/2
}2/(2k+1)

;

A2k := {B2k/f0(0)}1/2 =
{
B2k

∫ ∞

0
S0(y)dy

}1/2

.

Theorem 3.7. Under Conditions Cf1, Cf2, and Cf4′ for some k ≥ 1, if α =
1/(2k+1), then the couple (nk/(2k+1){f̂n(cn−α)−f0(0)}, n1/3{f̂n(x0)−f0(x0)})
as a random vector converges in distribution to

(A−1
2k DR[W (t) − tk+1](cB−1

2k ), f0(0)Y0).

Again, note that as a functional purely dependent on W (·), DR[W (t) −
tk+1](cB−1

2k ) and Y0 are independent of each other.

Corollary 3.3. Under Conditions CS1, CS2, and CS4′ for some k ≥ 1, if
α = 1/(2k + 1), then n1/3{ŜN

n (x0) − S0(x0)} d→ converges in distribution to{
S0(x0)

∫∞
0 S0(y)dy ·A−1

2k ·DR[W (t) − tk+1](cB−1
2k ) + Y0, if k = 1;

Y0, if k > 1,

where as before DR[W (t) − tk+1](cB−1
2k ) and Y0 are independent.

Remark 5. Again, for k = 1, the two summands are independent of each other.
It is also possible to establish the asymptotic results when 1/(2k + 1) < α < 1;
see Appendix D.2 for details.

3.6. Based on smoothing f̂n

To establish the asymptotic distribution of ŜS
n,h1,h2

(x0), we shall first obtain
the joint asymptotic distribution of (f̂S

n,h1
(x0)−f0(x0), f̂S

n,h2
(0)−f0(0)). Recall

that K0 is the boundary kernel defined in (2.11) when x = 0. Fix c1 > 0 and
c2 > 0. Denote

μ(2)
x0

:= 1
2c

2
1f

′′
0 (x0)

∫ 1

−1
y2K(y)dy,
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μ
(k)
0 := (−1)k

k! ck2f
(k)
0 (0)

∫ 0

−1
ykK0(y)dy.

Let D be a 2 × 2 diagonal matrix with diagonal elements

d11 := c−1
1 f0(x)

∫ 1

−1
K2(y)dy,

d22 := c−1
2 f0(0)

∫ 0

−1
K2

0 (y)dy.

Since we assume Cf5 to obtain an estimate of the difference between F̂n and
Fn, we are going to impose a modified Cf4:

Cf4′′ for some k ≥ 2, 0 < |f (k)
0 (0)| < ∞ and f

(i)
0 (0) = 0 for 2 ≤ i ≤ k − 1.

Theorem 3.8. Under Conditions Cf1, Cf3, Cf4′′ for some k ≥ 2, and Cf5,
if h1 = h1n = c1n

−1/5 and h2 = h2n = c2n
−1/(2k+1), then the sequence of ran-

dom vectors
(
n2/5{f̂S

n,h1
(x0) − f0(x0)}, nk/(2k+1){f̂S

n,h2
(0) − f0(0)}

)
converges

in distribution to Z((μ(2)
x0 , μ

(k)
0 )�, D).

To state the main result in this subsection, we define additional notations.
Denote

μ
(2)
1 := 1

2c
2
1S

′′
0 (x0)

∫ 1

−1
y2K(y)dy,

σ2
1 := c−1

1 S0(x0)
∫ ∞

0
S0(y)dy

∫ 1

−1
K2(y)dy,

μ
(k)
2 := (−1)k+1

k! ck2S
k
0 (0)S0(x0)

∫ 0

−1
ykK0(y)dy,

σ2
2 := c−1

2 S2
0(x0)

∫ ∞

0
S0(y)dy

∫ 0

−1
K2

0 (y)dy.

The corresponding conditions of Cf4′′ and Cf5 in terms of S0 are

CS4′′ for some k ≥ 2, 0 < |S(k)
0 (0)| < ∞ and S

(i)
0 (0) = 0 for 2 ≤ i ≤ k − 1;

CS5 S0 is continuously differentiable on [0, x0 + 2δ] for some δ > 0 and 0 <
inft∈[0,x0+2δ] |S′

0(x)| ≤ supt∈[0,x0+2δ] |S′
0(x)| < ∞.

Corollary 3.4. Under Conditions CS1, CS3, CS4′′ for some k ≥ 2, and CS5, if
h1 = h1n = c1n

1/5, h2 = h2n = c2n
−1/(2k+1), then n2/5{ŜS

n,h1,h2
(x0) − S0(x0)}

converges in distribution to{
Z(μ(2)

1 + μ
(k)
2 , σ2

1 + σ2
2), if k = 2;

Z(μ(2)
1 , σ2

1), if k > 2.

Remark 6. (i) It is also possible to establish the asymptotic results with the
same h1 but h2 = c2n

−α under the two different cases (i): 1/(2k + 1) <
α < 1/3 and (ii): 0 < α < 1/(2k + 1); see Appendix D.3 for details.
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(ii) It is also possible to consider estimator in the form

f̂n(x0)
f̂S
n,h(0)

,

in which we only use the NPMLE f̂n with smoothing effect at 0. The corre-
sponding asymptotic distribution can also be established using the methods
developed here. In particular, f̂n(x0) and f̂S

n,h(0) will be asymptotically in-
dependent as n goes to infinity. The argument follows that found in the
proof of Theorem 3.8 and the details are omitted.

3.7. Conditional distribution of Y given Y > y0

Similar to previous sections, it can be shown that f̂n(x0) and f̂n(y0) are asymp-
totically independent when x0 �= y0. Hence, it is straightforward to obtain the
following result regarding the asymptotic distribution of the estimator of the
conditional distribution of Y given Y > y0.

Theorem 3.9. For fixed y0 ∈ (0, τ) and x0 ∈ (y0, τ), assume that |S′(x0)| ∈
(0,∞) and |S′(y0)| ∈ (0,∞). Then

n1/3{Ŝ|y0(x0) − S|y0(x0)} d→ 1
S0(y0)

∣∣∣∣4S0(x0)S′
0(x0)

∫
S0(y)dy

∣∣∣∣1/3 Y1

+ S0(x0)
S2

0(y0)

∣∣∣∣4S0(y0)S′
0(y0)

∫
S0(y)dy

∣∣∣∣1/3 Y2,

where Y1,Y2
d= arg maxtR{W(t) − t2}, and Y1 and Y2 are independent of each

other.

4. Simulation studies

In this section, we perform some simulation studies to investigate some prop-
erties and compare the performance of the four estimators considered in this
paper. All the estimators require some tuning parameters. We consider two
methods of choosing a suitable tuning parameter. The first one is using the
asymptotic mean-square optimal results and using some plug-in estimate to
estimate the constant involved. Note that the asymptotic mean-square opti-
mal choice also depends on the conditions near f0(0), in particular, whether
f ′
0(0) = 0 or f ′

0(0) < 0, which is generally unknown. In this simulation studies,
we simply use the rate that is optimal assuming f ′

0(0) < 0. The second method
we consider is to use least-squares cross validation. For this method, we use f0
as the criterion function although we are interested in S0 because it is easier to
find a nearly unbiased estimator of f0. For the estimator based on the smoothed
MLE, we only use the second method based on [8].



Nonparametric estimation for cross-sectional sampled data 2763

From Section 3, we know that all the estimators at 0 and the estimators
at x0 considered in this paper are asymptotically independent, where x0 is in
the interior support of f0. In Table 1, we present the sample correlations of
the estimators at 0 and x0 based on different methods at x0 = 0.25, 0.5, 1,
where the samples are from the standard exponential distribution. The sam-
ple correlations computed are based on 10000 replications of sample sizes n =
50, 200, 500, 10000, where the tuning parameters for f̂P

n (0), f̂H
n (0), f̂N

n (0) and
f̂S
n (0) are 0.5n−2/3, 0.5n−1/3, 0.5n−1/3, min(2n−1/5,maxi=1,...,n Xi/3), respec-

tively. From Table 1, we see that the correlations are getting closer to 0 as the
sample size increases as expected. It can also be seen that the SMLE f̂S

n (x0)
at x0 = 0.25 has higher correlation with f̂S

n (0) compared with other types of
estimators. This is probably because for small to moderate sample sizes, the
bandwidth is not too small so that f̂S

n (x0) at x0 = 0.25 and f̂S
n (0) both use

the values of f̂n(x) over a large common interval. In addition, the correlation
between the SMLE f̂S

n (x0) and f̂S
n (0) is higher, in absolute value, in almost all

cases.

Table 1

Sample correlations of the estimators at 0 and x0 based on different methods.

n = 50 n = 200
x0 0.25 0.5 1 0.25 0.5 1

Cor(f̂P
n (x0), f̂P

n (0)) 0.16 −0.15 −0.20 −0.01 −0.13 −0.12
Cor(f̂n(x0), f̂H

n (0)) −0.02 −0.20 −0.20 −0.04 −0.15 −0.13
Cor(f̂n(x0), f̂N

n (0)) 0.36 −0.12 −0.28 0.12 −0.18 −0.16
Cor(f̂S

n (x0), f̂S
n (0)) 0.85 0.26 −0.55 0.70 −0.13 −0.38

n = 500 n = 10000
x0 0.25 0.5 1 0.25 0.5 1

Cor(f̂P
n (x0), f̂P

n (0)) −0.03 −0.11 −0.09 −0.04 −0.05 −0.03
Cor(f̂n(x0), f̂H

n (0)) −0.08 −0.10 −0.07 −0.06 −0.04 −0.02
Cor(f̂n(x0), f̂N

n (0)) −0.04 −0.13 −0.11 −0.06 −0.05 −0.05
Cor(f̂S

n (x0), f̂S
n (0)) 0.54 −0.27 −0.26 −0.11 −0.15 −0.10

Since the estimate of S0(x0) depends strongly on that of f0(0), we first com-
pare the estimators of f0(0) consider in this paper. Similar simulation studies
have been performed in [14] and [10]. [14] compared the penalized estimator
using the adaptive choice considered in [23] with the estimator using Grenan-
der estimator near 0. In addition to the two estimators considered in [14], [10]
also considered the histogram estimator and the Bayesian estimator proposed
in their paper. In this paper, we shall only compare the four frequentist esti-
mators considered here. Note that all the estimators require the specification
of some tuning parameters. We follow similar specifications in [14] and [10] by
using the adaptive method in [23] for the penalized estimator and estimating
the asymptotic mean-square optimal choice of the tuning parameter assuming
|f ′

0(0)| > 0 for f̂H
n (0) and f̂N

n (0). From the asymptotic independence results in
Section 3, we also know that the asymptotic mean-sqaure optimal choice for
ŜH
n (0) and ŜN

n (0) are the same as those for f̂H
n (0) and f̂N

n (0), respectively. We
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also provide some numerical comparison by choosing the tuning parameters us-
ing least-squares cross-validation (LSCV). To be specific, with a slight abuse of
notation, we define the following:

1. Denote f̂P
n,0.5 = f̂P

n,αn
(0) with αn = 0.649β̂−1/3

n n−2/3 with

β̂n = max
{
f̂P
n,c0n−2/3(0)

f̂P
n,c0n−2/3(0) − f̂P

n,c0n−2/3(xm)
2xm

, n−1/3

}
,

where xm is the second point of jump of f̂P
n,c0n−2/3 and c0 = 0.5. Simi-

larly, define f̂P
n,1 to be the same estimator as f̂P

n,0.5 except that c0 = 1.
Here c0n

−2/3 is an initial tuning parameter that is used to obtain β̂n, an
estimate of the unknown quantity β = 1

2f0(0)|f ′
0(0)| that appears in the

asymptotic mean-square optimal choice.
2. Denote f̂H

n = f̂H
n,bn

(0), where bn = 2−1/3B̂21n
−1/3, where

B̂21 = 41/3f̂n(n−1/3)1/3|f̂ ′
n(0)|−2/3, (4.1)

and
f̂ ′
n(0) = min{n1/6{f̂n(n−1/6) − f̂n(n−1/6)},−n−1/3}.

3. Denote f̂N
n = f̂N

n,cn(0) to be the estimator using Grenander estimator near
0, where cn = 0.345B̂21n

−1/3 with B̂21 as in (4.1).
4. Denote f̂P

n,CV = f̂P
n,αCV

(0), where

αCV := arg min
α

{∫ ∞

0
f̂2
n,α(x)dx− 2

n∑
i=1

f̂−i
n,α(Xi)

}
,

with f̂−i
n,α being the penalized Grenander estimator without using the ith

observation. We search α over a grid from 0.2n−2/3 to 2n−2/3.
5. Denote f̂H

n,CV = f̂H
n,bCV

(0). When using the histogram estimator to esti-
mate f0(0), there are multiple ways to normalize the modified Grenander
estimator. Given f̂H

n,bn
(0) for any bn, we first obtain the corresponding es-

timator ŜH
n of S0 through (2.10). Then the normalized estimator of f0(x),

denoted by f̂H
n,bn

(x) is given by ŜH
n,bn

(x)/
∫∞
0 ŜH

n,bn
(y)dy. Then, bCV is

defined as

bCV := arg min
b

{∫ ∞

0
f̂H
n,b(x)2dx− 2

n∑
i=1

f̂H,−i
n,b (Xi)

}
,

where f̂H,−i
n,b is the estimator without the ith observation. We search b over

a grid from 0.2n−1/3 to 2n−1/3.
6. f̂N

n,CV is defined similarly as f̂H
n,CV and we search c over a grid from

0.2n−1/3 to 2n−1/3.
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7. For simplicity, we only use one bandwidth for the smoothed estimator at
all values. Denote f̂S

n,CV = f̂S
n,hCV

(0). Following equation (9.40) in [8],
hCV is chosen to minimize∫ ∞

0
f̂S
n,h(x)2dx− 2

n− 1

n∑
i=1

f̂S
n,h(Xi) + 2K(0)

(n− 1)h.

In the implementation, we evaluate the above expression with h at grid
points from 0.1 to maxi=1,...,n Xi/2 − 0.1.

We considered two probability distributions to generate the samples. The first
one is the exponential distribution, where f ′

0(0) < 0. For the rate parameter λ,
we consider λ = 1 and λ = 2. The second one is the half-normal distribution
where f ′

0(0) = 0 but |f ′′
0 (0)| > 0. For the scale parameter σ, we consider σ = 1

and σ = 0.5. In Tables 2 and 3, we see that suitable choice of tuning parameters
or preliminary estimates is needed to obtain good results. For example, f̂H

n

and f̂N
n work well in the half-normal distribution with σ = 1, but have large

biases for the other distributions. The estimators with tuning parameters chosen
using cross-validation tend to have smaller biases and larger variances than their
counterparts. While the smoothed estimator has a faster rate of convergence, it
does not always outperform the other estimators in terms of MSE for the half-
normal distributions. It tends to give a larger bias. This can be due to the fact
that the first derivative vanishes at 0 for the half-normal distribution. In such
case, kernel smoothing with boundary correction using the reflection method
could perform better. Another possible reason is that the bandwidth is chosen
using the L2-loss of the whole density, not the single point at 0.

Table 2

Bias, variance and mean-squared error (MSE) of each estimator at 0 where the samples are
from an exponential distribution.

Exp(1) f̂P
n,0.5 f̂P

n,1 f̂H
n f̂N

n f̂P
n,CV f̂H

n,CV f̂N
n,CV f̂S

n,CV

n = 50 Bias 0.012 −0.054 −0.176 −0.214 −0.061 −0.012 −0.115 0.024
Var 0.118 0.072 0.032 0.044 0.128 0.163 0.098 0.091
MSE 0.118 0.075 0.063 0.090 0.132 0.163 0.111 0.092

n = 200 Bias 0.015 −0.042 −0.139 −0.133 −0.023 −0.025 −0.076 −0.027
Var 0.063 0.036 0.018 0.024 0.083 0.055 0.040 0.026
MSE 0.063 0.038 0.038 0.042 0.084 0.056 0.046 0.027

n = 500 Bias 0.010 −0.034 −0.107 −0.096 −0.007 −0.011 −0.052 −0.014
Var 0.036 0.021 0.012 0.014 0.056 0.036 0.025 0.013
MSE 0.036 0.022 0.023 0.023 0.056 0.036 0.028 0.013

Exp(2)
n = 50 Bias −0.131 −0.252 −0.618 −0.692 −0.191 −0.115 −0.291 0.046

Var 0.299 0.199 0.096 0.170 0.396 0.397 0.299 0.394
MSE 0.316 0.262 0.478 0.649 0.433 0.410 0.384 0.396

n = 200 Bias −0.091 −0.173 −0.384 −0.380 −0.176 −0.151 −0.242 −0.037
Var 0.145 0.097 0.058 0.096 0.193 0.167 0.133 0.109
MSE 0.153 0.127 0.206 0.240 0.224 0.190 0.192 0.11

n = 500 Bias −0.075 −0.135 −0.265 −0.242 −0.138 −0.128 −0.186 −0.045
Var 0.083 0.057 0.032 0.054 0.115 0.088 0.073 0.045
MSE 0.089 0.075 0.102 0.113 0.134 0.105 0.108 0.047
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Table 3

Bias, variance and mean-squared error (MSE) of each estimator at 0 where the samples are
from a half-normal distribution.

Hnorm(1) f̂P
n,0.5 f̂P

n,1 f̂H
n f̂N

n f̂P
n,CV f̂H

n,CV f̂N
n,CV f̂S

n,CV

n = 50 Bias 0.112 0.071 0.000 −0.002 0.072 0.086 0.037 0.246
Var 0.066 0.036 0.020 0.025 0.089 0.086 0.043 0.056
MSE 0.078 0.041 0.020 0.025 0.094 0.094 0.044 0.117

n = 200 Bias 0.074 0.041 −0.006 0.013 0.047 0.037 0.030 0.112
Var 0.031 0.016 0.008 0.010 0.037 0.031 0.017 0.012
MSE 0.036 0.018 0.008 0.010 0.039 0.032 0.017 0.024

n = 500 Bias 0.060 0.032 −0.007 0.014 0.049 0.040 0.037 0.076
Var 0.020 0.009 0.005 0.006 0.025 0.020 0.012 0.005
MSE 0.023 0.010 0.005 0.006 0.027 0.022 0.013 0.011

Hnorm(0.5)
n = 50 Bias 0.113 0.041 −0.174 −0.162 0.007 0.076 −0.036 0.552

Var 0.158 0.100 0.080 0.109 0.159 0.185 0.137 0.286
MSE 0.171 0.102 0.111 0.135 0.159 0.191 0.138 0.590

n = 200 Bias 0.075 0.025 −0.096 −0.050 0.002 0.050 −0.002 0.232
Var 0.071 0.042 0.042 0.042 0.066 0.074 0.060 0.040
MSE 0.076 0.043 0.051 0.044 0.066 0.076 0.060 0.094

n = 500 Bias 0.056 0.017 −0.058 −0.017 0.021 0.039 0.009 0.167
Var 0.040 0.023 0.025 0.022 0.050 0.044 0.032 0.023
MSE 0.043 0.023 0.028 0.022 0.051 0.045 0.033 0.051

Table 4

Estimates of E(
∫
(f̃n − f0)2), where f̃n is the density obtained using f̂P

n,0.5, f̂P
n,1, f̂H

n , f̂N
n ,

f̂P
n,CV , f̂H

n,CV , f̂N
n,CV , f̂S

n,CV .

Exp(1) f̂P
n,0.5 f̂P

n,1 f̂H
n f̂N

n f̂P
n,CV f̂H

n,CV f̂N
n,CV f̂S

n,CV

n = 50 0.036 0.034 0.031 0.034 0.044 0.039 0.041 0.014
n = 200 0.014 0.014 0.014 0.014 0.015 0.014 0.015 0.004
n = 500 0.008 0.008 0.008 0.008 0.008 0.008 0.008 0.002
Exp(2)
n = 50 0.071 0.068 0.066 0.084 0.083 0.071 0.080 0.027
n = 200 0.029 0.028 0.028 0.032 0.033 0.029 0.032 0.009
n = 500 0.015 0.015 0.015 0.016 0.018 0.016 0.017 0.004
Hnorm(1)
n = 50 0.031 0.029 0.028 0.029 0.034 0.031 0.031 0.019
n = 200 0.012 0.011 0.011 0.012 0.013 0.013 0.012 0.005
n = 500 0.006 0.006 0.006 0.006 0.007 0.007 0.006 0.003
Hnorm(0.5)
n = 50 0.059 0.056 0.052 0.057 0.067 0.058 0.065 0.039
n = 200 0.023 0.022 0.022 0.023 0.024 0.023 0.024 0.009
n = 500 0.012 0.012 0.012 0.012 0.013 0.013 0.013 0.005

Tables 4 and 5 give the estimates of the expected L2-error of estimating f0
and S0 using different estimators, respectively. For the former one, the smoothed
MLE gives the smallest error in all the scenarios. For the L2-error of estimating
S0, smoothed MLE gives smaller errors in the exponential distributions but
similar errors in the half-normal distributions as the other estimators. Tables 6
and 7 show the biases, variances and mean-squared errors of the estimators
Ŝ|y0(x0) of the conditional survival function S|y0(x0) at two different values of
x0 and y0. As expected, the biases are small.
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Table 5

Estimates of E(
∫
(S̃n − S0)2), where S̃n is the survival function obtained using f̂P

n,0.5, f̂P
n,1,

f̂H
n , f̂N

n , f̂P
n,CV , f̂H

n,CV , f̂N
n,CV , f̂S

n,CV .

Exp(1) ŜP
n,0.5 ŜP

n,1 ŜH
n ŜN

n ŜP
n,CV ŜH

n,CV ŜN
n,CV ŜS

n,CV

n = 50 0.069 0.069 0.068 0.097 0.098 0.087 0.100 0.024
n = 200 0.032 0.032 0.035 0.040 0.040 0.037 0.040 0.010
n = 500 0.019 0.018 0.021 0.022 0.025 0.021 0.023 0.006
Exp(2)
n = 50 0.039 0.043 0.055 0.089 0.062 0.045 0.065 0.011
n = 200 0.017 0.017 0.023 0.028 0.025 0.020 0.025 0.006
n = 500 0.009 0.010 0.011 0.013 0.014 0.011 0.013 0.003
Hnorm(1)
n = 50 0.065 0.056 0.049 0.053 0.069 0.077 0.064 0.059
n = 200 0.034 0.027 0.023 0.025 0.035 0.040 0.030 0.022
n = 500 0.021 0.016 0.013 0.014 0.022 0.024 0.018 0.014
Hnorm(0.5)
n = 50 0.030 0.029 0.028 0.033 0.040 0.033 0.039 0.031
n = 200 0.014 0.012 0.013 0.013 0.017 0.016 0.015 0.012
n = 500 0.008 0.007 0.007 0.007 0.010 0.009 0.008 0.007

Table 6

Bias, variance and mean-squared error of Ŝ|y0 (x0) where f0 is the exponential distribution.

Exp(1) Ŝ0.1(0.5) Ŝ0.1(1) Ŝ0.2(0.5) Ŝ0.2(1)
n = 50 Bias −0.027 −0.01 0.007 0.016

Var 0.049 0.031 0.047 0.038
MSE 0.05 0.031 0.047 0.038

n = 200 Bias −0.01 −0.005 0.008 0.008
Var 0.024 0.011 0.024 0.013

MSE 0.024 0.011 0.024 0.013
n = 500 Bias −0.007 −0.007 −0.002 −0.003

Var 0.013 0.006 0.014 0.007
MSE 0.013 0.006 0.014 0.007

Exp(2)
n = 50 Bias 0.015 −0.009 0.037 −0.002

Var 0.036 0.007 0.05 0.012
MSE 0.036 0.007 0.051 0.012

n = 200 Bias 0.004 −0.003 0.015 0.001
Var 0.014 0.003 0.021 0.004

MSE 0.014 0.003 0.021 0.004
n = 500 Bias 0 0.002 0.004 0.004

Var 0.006 0.001 0.011 0.002
MSE 0.006 0.001 0.011 0.002

5. Application to a health survey without follow-up

Most surveys are administered cross-sectionally without follow-up data, due to
cost and logistic reasons. Partial survival information in the form of backward
recurrence times are frequently collected in health surveys. However, without
any prospective follow-up, survival times being collected are all censored and
conventional statistical methods are not applicable. These partial survival infor-
mation being collected are therefore seldom analyzed. An exception in given in
[17], who examined the associations between childhood adversities and the dura-
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Table 7

Bias, variance and mean-squared error of Ŝ|y0 (x0) where f0 is the half-normal distribution.

Hnorm(1) Ŝ0.1(0.5) Ŝ0.1(1) Ŝ0.2(0.5) Ŝ0.2(1)
n = 50 Bias −0.109 −0.097 −0.056 −0.06

Var 0.042 0.036 0.034 0.039
MSE 0.054 0.046 0.037 0.043

n = 200 Bias −0.074 −0.045 −0.035 −0.017
Var 0.019 0.019 0.016 0.02

MSE 0.025 0.021 0.018 0.02
n = 500 Bias −0.045 −0.029 −0.022 −0.013

Var 0.011 0.008 0.01 0.009
MSE 0.013 0.009 0.01 0.009

Hnorm(0.5)
n = 50 Bias −0.052 −0.027 −0.01 −0.019

Var 0.041 0.007 0.045 0.009
MSE 0.044 0.007 0.045 0.009

n = 200 Bias −0.019 −0.007 0.001 −0.003
Var 0.019 0.003 0.022 0.003

MSE 0.019 0.003 0.022 0.003
n = 500 Bias −0.009 −0.005 0.006 −0.002

Var 0.009 0.002 0.011 0.002
MSE 0.009 0.002 0.011 0.002

tions of adult mental disorders using backward recurrence times collected from a
nationally representative sample from the National Comorbidity Survey Repli-
cation. We analyzed a different survival outcome collected in the same survey,
the duration between suicidal thoughts. Although suicidal thoughts are recur-
rent events, cross-sectional surveys like the one we have usually collect the most
recent onset of the recurrent events. The survey was administered in 2001–2002,
and collected the time of last suicidal thoughts from 1010 respondents with ages
between 18 and 91.

The left panel of Figure 1 shows a histogram of the observed backward recur-
rence data, where the observed data apparently has a decreasing density. The
right panel of Figure 1 shows the estimator based on the penalized Grenander
estimator Ŝp,CV , where the tuning parameter is chosen using cross-validation
(the step function in black), and the one based on the smoothed Grenander
estimator (the smoothed curve in red). Only these two estimators are shown in
the figure because the other non-smooth estimates are similar to Ŝp,CV . Table 8
shows the estimated values of the survival functions using different estimators
at different times. The values are in generally similar for various non-smooth
estimators.

6. Discussion

In this article, we considered four different classes of estimators of the survival
function for current duration data under stationarity. We established the asymp-
totic distribution of those estimators under various regularity conditions of S0
at 0 and the assumption that S′

0(x0) < 0. If S0 contains a flat region so that
S′

0(x) = 0, then the corresponding f0 will have a flat region and the Grenander
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Fig 1. The left figure shows a histogram of the observed data, where the observed data appar-
ently has a decreasing density. The right figure shows the estimator of the survival function
based on the penalized Grenander estimator (the step function in black) and the one based on
the smoothed Grenander estimator (the smoothed curve in red).

Table 8

Estimated values of the survival functions at different times (in 10 years) using different
estimators.

Time ŜP
n,0.5 ŜP

n,1 ŜH
n ŜN

n ŜP
n,CV ŜH

n,CV ŜN
n,CV ŜS

n,CV

0.25 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.984
0.5 1.000 1.000 1.000 0.977 1.000 1.000 1.000 0.901

0.75 0.737 0.737 0.769 0.713 0.735 0.741 0.729 0.785
1 0.737 0.737 0.769 0.713 0.735 0.741 0.729 0.699
2 0.379 0.379 0.395 0.367 0.378 0.381 0.375 0.344
3 0.180 0.180 0.188 0.174 0.180 0.181 0.178 0.181
4 0.087 0.087 0.091 0.085 0.087 0.088 0.087 0.083
5 0.032 0.032 0.033 0.031 0.032 0.032 0.032 0.023

estimator at any point inside the flat region converges at
√
n instead of n1/3

according to Theorem 6.4 in [1]. When such a case is considered, the asymptotic
distribution of the estimators of S0(x0) discussed in this article can be estab-
lished easily because f̂n(x0) converges at a faster rate than any of the estimator
of f0(0) considered here. On the other hand, the implication of S0 having a
flat region is that the survival time cannot occur in this region. However, the
observed variable can nevertheless occur at that point due to multiplicative cen-
soring. In establishing the asymptotic results, we also relaxed a bounded density
condition for a local Kiefer-Wolfowitz-type result in a general setting which is
of independent interest.

As expected from the faster rate of convergence of the smoothed estima-
tor compared with the non-smoothed one, our numerical results confirm that
the smoothed estimator can provide a more accurate estimate for both f0 and
S0. Therefore, if one is willing to impose more smoothness assumptions on the
underlying survival function, the smoothed estimator will be preferred. The
bandwidth chosen using least-squares cross-validation also seem to work well
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in that case. Another advantage of the smoothed estimator is that the esti-
mated survival probability will not be equal to 1 at values close to 0 so that
it can give more sensible estimate. For the non-smoothed estimators, they per-
formed similarly in simulation studies and share the same rate of convergence,
with the estimators based on the histogram estimator and local Grenander es-
timator perform slightly better than the penalized estimator in terms of the
L2-loss.

Regarding the derivative condition of the order k in Condition Cf4 (or CS4),
similar conditions are also imposed in conventional kernel density estimation
problems at the interior point. However, it is in generally difficult to determine
this order k in any kernel density estimation problems, so many papers just
fix a certain k such as k = 1. The presented theoretical results are mainly for
understanding the limiting convergence rates of the estimators under different
precise conditions. In addition, the unknown constant multiple in the optimal
bandwidth affect practical performance as in conventional kernel density estima-
tion. We therefore recommend using data-adaptive approaches like least-squares
cross-validation illustrated in the simulation studies to choose the tuning param-
eters instead of trying to estimate the order of k. In addition, the higher the
value of the k is, the faster the convergence will be (see, e.g., Theorems 3.5
and 3.6). Thus, the conservative approach will be to use the minimal value like
k = 1 in Condition Cf4. If the true k is 2 and one assumed k = 1, the estimator
will still be consistent but the convergence will no longer be the optimal one.
Section D in the appendix gives additional results when the order of the tuning
parameter is not the optimal one.

Alternative consisent estimators of f0(0) may be used. For example, [21] and
[10] studied Bayesian estimation of a decreasing density, where the former de-
rived posterior consistency of the Bayesian estimator of f0(0) and the latter
derived a contraction rate equal to n−2/9 (up to log factors) under some as-
sumptions on the prior distribution.

We only considered the case without covariates. When a regression model
is considered, we expect that the NPMLE will be inconsistent as in the non-
parametric estimator and suitable smoothing or penalization will be needed. We
shall devote the further study in a future work.

Appendix A: Proofs for Section 2

A.1. Proof for Section 2.1

Proof of Lemma 2.1. For an arbitrary survival function S in S, define f(x) =
S(x)/

∫∞
0 S(y)dy. Then f ∈ F and Ln(S) = Ln,2(f). Hence, supS∈S Ln(S) ≤

supf∈F Ln,2(f) = Ln,2(f̂n). If S̄ is of the form (2.5), then Ln(S̄) = Ln,2(f̂n)
and so S̄ is a maximizer. Now, suppose S̄ ∈ S is not of the form (2.5). Define
f̄(x) := S̄(x)∫∞

0 S̄(y)dy for x > 0. Then f̄ ∈ F and f̄ �= f̂n. Since f̂n is the unique
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maximizer of Ln,2(f) subject to f ∈ F ,

Ln(S̄) = Ln,2(f̄) < Ln,2(f̂n) = Ln(Sn,c),

for any c ≥ f̂n(0).
Hence, any possible maximizer of Ln must be of the form (2.5). The unique-

ness of Ŝn follows from the fact that the constraint (2.4) implies that it can only
be achieved if and only if c = f̂n(X(1)) = f̂n(0).

A.2. Proofs for Section 2.2.2

Proof of Lemma 2.2. The proof is similar to that in Lemma 2.1. For an arbitrary
survival function S in S, define f(x) = S(x)/

∫∞
0 S(y)dy. Then f ∈ F and

ln,α(S) = ln,2,α(f). Hence, supS∈S ln,α(S) ≤ supf∈F ln,2,α(f) = ln,2,α(f̂n,α). If
S̄ is of the form (2.9), then ln,α(S̄) = ln,2,α(f̂n,α) and so S̄ is a maximizer.
Now, suppose S̄ ∈ S is not of the form (2.9). Define f̄(x) := S̄(x)∫∞

0 S̄(y)dy . Note
that f̄ ∈ F and f̄(0+) = S̄(0+){

∫∞
0 S̄(y)dy}−1, where the limits exist as S̄ is

a bounded monotone function. Since f̂n,α is the unique maximizer of ln,α,2(f)
subject to f ∈ F ,

ln,α(S) = ln,2,α(f) < ln,2,α(f̂n,α) = ln,α(Sn,α,c),

for any c ≥ f̂n,α(0).
Hence, any possible maximizer of ln,α must be of the form (2.9). The unique-

ness of Ŝn,α follows from the fact that the constraint (2.4) implies that it can
only be achieved if and only if c = f̂n,α(X(1)) = f̂n,α(0).

Proof of Lemma 2.3. For any x ∈ (0, τ), by Corollary 2 and Proposition 1 in
[27], and the fact that f̂n(x) is consistent (Corollary 3.1 in [8]),

Ŝn,αn(x) = f̂n,αn(x)
f̂n,αn(0)

= f̂n(x) + Op(αn)
f̂n,αn(0)

P→ f0(x)
f0(0) = S0(x).

The case when x = 0 is trivial because Ŝn,αn(0) = 1 and S0(0) = 1.

A.3. Proofs for Section 2.2.3

Proof of Lemma 2.4. Similar to the established approach in kernel methods, to
find an optimal choice of the bin width, we strike a balance between the square
of the bias and the variance. First, the variance is

Var(f̂H
n (0)) = 1

nb2n
F0(bn)(1 − F0(bn)).
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Hence, Var(f̂H
n (0)) ∼ 1

nbn
f0(0). The bias is

E(f̂H
n (0)) − f0(0) = F0(bn)

bn
− f0(0) = f

(k)
0 (0)
k! bkn + o(bkn).

Hence, E(f̂H
n (0)) − f0(0) ∼ f

(k)
0 (0)bkn/k!. The mean square error is therefore

MSE(f̂H
n (0)) ∼

{
f

(k)
0 (0)
k!

}2

b2kn + f0(0)
nbn

and the optimal choice of bn in the sense of mean square error can be found
accordingly by minimizing the RHS of the above relation.

Proof of Lemma 2.5. By Taylor’s theorem, the bias is o(1) as bn ↓ 0. Hence,

MSE(f̂H
n (0)) = o(1) + 1

nbn

F0(bn)
bn

(1 − F0(bn)) → 0

as nbn → ∞. As a result, f̂H
n (0) P→ f0(0). The consistency of ŜH

n (x) then follows
from the consistency of f̂H

n (0) and f̂n(x) (Corollary 3.1 in [8]).

A.4. Proofs for Section 2.2.4

Proof of Lemma 2.6. Under Cf4′, Theorem 3.1 in [14] implies that f̂n(cn−α) P→
f0(0). The consistency of ŜN

n (x) then follows from the consistency of f̂n(cn−α)
and f̂n(x).

A.5. Proofs for Section 2.2.5

The proof of Lemma 2.7 requires the consistency of f̂S
n,h as given in the following

Lemma A.1. The result is standard when dealing with the kernel smoothed
isotonic estimators, see, for instance, [15] and [18]. For completeness, we provide
a proof.

Lemma A.1. Let K : [−1, 1] → R be a nonnegative kernel that is symmetric
around 0, satisfies

∫ 1
−1 K(u)du = 1, and has a bounded derivative. Suppose that

h = hn → 0 and hn1/2 → ∞. If f0 is a decreasing density and continuous on
[0, τ ],

sup
x∈[0,τ ]

|f̂S
n,h(x) − f0(x)| P→ 0.

To prove the above lemma, we first state some properties of the boundary
kernel defined in (2.11) and (2.12). For x ∈ [0, h], by (2.12),∫ x/h

−1
Kx(y)dy = 1 and

∫ x/h

−1
yKx(y)dy = 0. (A.1)
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Similarly, by (2.12) and the fact that K is symmetric, for x ∈ [τ − h, τ ],∫ 1

x−τ
h

Kx(y)dy = 1, (A.2)

indeed, for x ∈ [τ − h, τ ], by symmetry of K,∫ 1

x−τ
h

Kx(y)dy =
∫ 1

x−τ
h

{
φ

(
τ − x

h

)
K(y) − ψ

(
τ − x

h

)
yK(y)

}
dy

=
∫ τ−x

h

−1

{
φ

(
τ − x

h

)
K(y) + ψ

(
τ − x

h

)
yK(y)

}
dy = 1,

where the last equality follows from (2.12). Furthermore, it can be shown that
φ and ψ are bounded from above (see the supplementary of [3]).

Proof of Lemma A.1. For simplicity, we write f̂S
n = f̂S

n,h. For x ∈ [0, τ ], write

f̂S
n (x) − f0(x) = {f̂S

n (x) − fS
n (x)} + {fS

n (x) − f0(x)},

where

fS
n (x) :=

∫ (x+h)∧τ

(x−h)∨0

1
h
Kx

(
x− u

h

)
f0(u)du.

We first consider the three ranges of x according to the definition of Kx.

(i) Fix x ∈ [0, h]. By the change of variable y = (x− u)/h and (A.1),

fS
n (x) − f0(x) =

∫ x/h

−1
Kx(y){f0(x− hy) − f0(x)}dy.

Therefore, by the uniform continuity of f0,

sup
x∈[0,h]

|fS
n (x) − f0(x)|

≤ sup
x∈[0,h]

∫ x/h

−1
Kx(y)|f0(x− hy) − f0(x)|dy → 0

as n → ∞. By using integration by parts and a change-of-variable,

f̂S
n (x) − fS

n (x) =
∫ x+h

0

1
h
Kx

(
x− u

h

)
d(F̂n − F0)(u)

= −
∫ x+h

0

1
h

∂

∂u
Kx

(
x− u

h

)
{F̂n(u) − F0(u)}du

= 1
h

∫ x/h

−1

∂

∂y
Kx(y){F̂n(x− hy) − F0(x− hy)}dy.
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Since K is assumed to be continuously differentiable, K and K ′ are
bounded on the compact set of [−1, 1]. By the boundedness of φ, ψ,K
and K ′, we have

sup
x∈[0,h]

|f̂S
n (x) − fS

n (x)| � 1
h
‖F̂n − F0‖∞,

where � indicates an inequality up to a constant multiple that does not
depend on n. By Marshall’s lemma [16], ‖F̂n − F0‖∞ ≤ ‖Fn − F0‖∞ =
Op(n−1/2). Since hn1/2 → ∞, supx∈[0,h] |f̂S

n (x) − f0(x)| = op(1).
(ii) Fix x ∈ (τ, τ − h). By the change-of-variable y = (x − u)/h and the fact

that
∫ 1
−1 K(y)dy = 1,

fS
n (x) − f0(x) =

∫ 1

−1
K(y){f0(x− hy) − f0(x)}dy.

By the uniform continuity of f0,

sup
x∈(h,τ−h)

|fS
n (x) − f0(x)|

≤ sup
x∈(h,τ−h)

∫ 1

−1
K(y)|f0(x− hy) − f0(x)|dy → 0.

By using integration by parts and a change-of-variable,

f̂S
n (x) − fS

n (x) =
∫ x+h

x−h

1
h
K

(
x− u

h

)
d(F̂n − F0)(u)

= −
∫ x+h

x−h

1
h

d

du
K

(
x− u

h

)
{F̂n(u) − F0(u)}du

= 1
h

∫ 1

−1

d

dy
K(y){F̂n(x− hy) − F0(x− hy)}dy.

Similar to (i), by the boundedness of K ′,

sup
x∈(h,τ−h)

|f̂S
n (x) − fS

n (x)| � 1
h
‖F̂n − F0‖∞ = op(1).

(iii) Fix x ∈ [τ − h, τ ]. By the change-of-variable y = (x− y)/h and (A.2),

fS
n (x) − f0(x) =

∫ 1

x−τ
h

Kx(y){f0(x− hy) − f0(x)}dy.

Therefore, by the uniform continuity of f0,

sup
x∈[τ−h,τ ]

|fS
n (x) − f0(x)|
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≤ sup
x∈[τ−h,τ ]

∫ 1

x−τ
h

Kx(y)|f0(x− hy) − f0(x)|dy → 0,

as n → ∞. By using integration by parts and a change-of-variable,

f̂S
n (x) − fS

n (x) =
∫ τ

x−h

1
h
Kx

(
x− u

h

)
d(F̂n − F0)(u)

= −
∫ τ

x−h

1
h

∂

∂u
Kx

(
x− u

h

)
{F̂n(u) − F0(u)}du

= 1
h

∫ 1

x−τ
h

∂

∂y
Kx(y){F̂n(x− hy) − F0(x− hy)}dy.

By the boundedness of φ, ψ,K and K ′, we have

sup
x∈[τ−h,τ ]

|f̂S
n (x) − fS

n (x)| � 1
h
‖F̂n − F0‖∞ = op(1).

Combining (i)–(iii), the result is proven.

Proof of Lemma 2.7. Since S0 is continuous, so does f0 by (1.1). By Lemma A.1,
supx∈[0,τ ] |f̂S

n,h(x) − f0(x)| P→ 0 for any h → 0 and hn1/2 → ∞. Thus,

ŜS
n,h1,h2

(x) = min
(

1,
f̂S
n,h1

(x)
f̂S
n,h2

(0)

)
P→ S0(x)

for any x ∈ [0, τ ].

Appendix B: A local Kiefer-Wolfowitz-type result

In this section, we follow the general setting and notation in [4] and establish
a local version of Kiefer-Wolfowitz-type result under weaker conditions on the
underlying function of interest; namely by removing the condition of the lower
bound being away from zero; see Theorem B.3. Suppose Fn is a cadlag step
estimator for a concave function F : [a, b] → R, where a and b are known and
finite. Note that the argument and results in this section are also valid when
we take b to infinity, by then F : [a,∞) → R. For simplicity, we only state the
results when F is defined on [a, b]. The corresponding results when F is defined
on [a,∞) can be obtained by replacing “b]” by “∞)” without any major change
of arguments. Assume that F is continuously differentiable with F (a) = 0 and
denote by f its derivative. Fix an interior point y ∈ (a, b).

We impose the following conditions on f :

(A1) The function f : [a, b] → R is decreasing and continuously differentiable
on [0, y + 2δ0] ⊂ [a, b] for some δ0 > 0 such that 0 < inft∈[0,y+2δ0] |f ′(t)| ≤
supt∈[0,y+2δ0] |f ′(t)| < ∞.



2776 K. C. G. Chan et al.

Note that [4] assumes instead 0 < inft∈[a,b] |f ′(t)| ≤ supt∈[a,b] |f ′(t)| < ∞ on
the whole support. Furthermore, assume that the cadlag estimator Fn can be
approximated in the sense that

sup
t∈[a,b]

|Fn(t) − F (t) − n−1/2Bn ◦ Ln(t)| = Op(γn), (B.1)

where γn → 0 as n → ∞, L : [a, b] → R is non-decreasing, and Bn is a process
on [L(a), L(b)] that satisfies the following two conditions for a given τ ∈ [0, 4):

(A2) There are positive constants K1,K2 such that for all x ∈ [L(a), L(b)],
u ∈ (0, 1], and ν > 0,

P

(
sup

|x−y|≤u

|Bn(x) −Bn(y)| > ν

)
≤ K1 exp(−K2ν

2u−τ );

(A3) There are positive constants K1,K2 such that for all x ∈ [L(a), L(b)], u ∈
(0, 1], and ν > 0,

P

(
sup
z≥u

{Bn(x− z) −Bn(x) − νz2} > 0
)

≤ K1 exp(−K2ν
2u4−τ ).

Finally, we impose the following smoothness condition on L that does not require
L′ to be bounded away from 0 on [a, b].

(A4) The function L : [a, b] → R is continuously differentiable on [0, y + 2δ0] ⊂
[a, b] such that 0 < inft∈[0,y+2δ0] L

′(t) ≤ supt∈[0,y+2δ0] L
′(t) < ∞.

As explained in [4], a typical example that satisfies Conditions (A1)–(A4) is
during the estimation procedure for a monotone density f . By the Hungarian
approximation, Fn can be approximated by a sequence of Brownian bridges Bn

with L being the cumculative distribution function F corresponding to f , and
γn = (logn)/n. In our application, the function S(x) = f(x)/f(0) cannot be
uniformly bounded away from 0 when x approaches the ceiling of the support.
Since L′ = f in this monotone density estimation, we also need to relax the
condition that L′ is bounded away from 0, which was necessarily required in [4].

Let FB
n := F + n−1/2Bn ◦ L. Denote

cn :=
(
c0 logn

n

)1/(4−τ)

(B.2)

for some c0 > 0. For x ∈ [a, b], let F̂
(B,x)
n,cn (·) be the least concave majorant of

the process {FB
n (η) : η ∈ [x− 2cn, x+2cn]∩ [a, b]}. The following Lemma B.1 is

similar to Lemma 2.1 in [4]. However, instead of considering the whole support
[a, b] of f , we only consider a local region around a fixed point y ∈ (a, b) that
allows us to relax the assumption of L′ being bounded away from 0.

Lemma B.1. Under Conditions (A1)–(A4), there exist positive numbers K1,
K2, C0 independent of n, such that for c0 ≥ C0,

P

(
sup

x∈[y−δ0,y+δ0]
|F̂B

n (x) − F̂ (B,x)
n,cn (x)| �= 0

)
≤ K1n

−c0K2 .
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Proof of Lemma B.1. The proof is similar to that of Lemma 2.1 in [4]. We still
include here to illustrate the major differences. Without loss of generality, let
a = 0. Denote Iy := [y − δ0, y + δ0] and Iy,2 := [y − 2δ0, y + 2δ0]. For all x ∈ Iy,
let

x̃i := inf{u ≥ (x− 2cn) ∨ (y − δ0) : F̂B
n (u) = F̂ (B,x)

n,cn (u)},

with the convention that the infimum of an empty set is (x + 2cn) ∧ (y + δ0);
also let

x̃s := sup{u ≤ (x + 2cn) ∧ (y + δ0) : F̂B
n (u) = F̂ (B,x)

n,cn (u)},

with the convention that the supremum of an empty set is (x− 2cn)∨ (y − δ0).
If F̂B

n (u) = F̂
(B,x)
n,cn (u) for some u ≤ x, and F̂B

n (v) = F̂
(B,x)
n,cn (v) for some v ≥ x,

then we must have the common values of F̂B
n = F̂

(B,x)
n,cn on the interval [u, v].

Therefore, if for some x ∈ Iy, we have F̂B
n (x) �= F̂

(B,x)
n,cn (x), then we must have

either x̃i > x or x̃s < x. Thus,

P

(
sup
x∈Iy

|F̂B
n (x) − F̂ (B,x)

n,cn (x)| �= 0
)

≤ P(x̃i > x for some x ∈ Iy)

+ P(x̃s < x for some x ∈ Iy). (B.3)

Our goal is to show both probabilities on the right hand side are tending to be
arbitrarily small. Comparing with Lemma 2.1 of [4], they aim to show that the
probability P(supx∈[a,b] |F̂B

n (x)− F̂
(B,x)
n,cn (x)| �= 0) is converging to 0. As a result,

instead of considering two probabilities on the right hand side of (B.3), they
need to consider P(x̃i > x for some x ∈ [2cn, b]) and P(x̃s < x for some x ∈
[0, b − 2cn]), where they assumed f is bounded away from 0 to provide an
upper bound of these probabilities. In our case, we only need to consider these
probabilities when x ∈ Iy and so we do not need to require f to be bounded
away from 0. We shall first show that

P(x̃i > x for some x ∈ Iy) ≤ K1n
−K2c0 , (B.4)

for all c0 ≥ C0 for some sufficiently large C0. If x̃i > x for some x ∈ Iy, then by
definition of x̃i,

F̂B
n (u) �= F̂ (B,x)

n,cn (u),

for all x− 2cn ≤ u ≤ x. In that case, there exist 0 ≤ y ≤ x− 2cn and x ≤ z ≤
(x+2cn)∧b, such that the line segment joining (y, FB

n (y)) and (z, FB
n (z)) is above

(t, FB
n (t)) for all t ∈ (y, z). In particular, this line segment is above the point

(x − cn, F
B
n (x − cn)), which implies that the slope of the straight line segment

joining the points (y, FB
n (y)) and (x− cn, F

B
n (x− cn)) is smaller than the slope

of another line segment joining the points (z, FB
n (z)) and (x− cn, F

B
n (x− cn));

this implies that

FB
n (y) − FB

n (x− cn)
y − (x− cn) <

FB
n (z) − FB

n (x− cn)
z − (x− cn) .
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At a time, for every α ∈ R, this further implies that either

FB
n (y) − FB

n (x− cn)
y − (x− cn) < α or α <

FB
n (z) − FB

n (x− cn)
z − (x− cn) .

In particular, with the choice of αx := f(x) + cn|f ′(x)|, we have

P(x̃i > x for some x ∈ [2cn, 1]) ≤ P1 + P2,

where

P1 := P(∃x ∈ Iy,∃y ∈ [0, x− 2cn] : FB
n (y) − FB

n (x− cn) > (y − x + cn)αx),

and

P2 :=P(∃x ∈ Iy,∃z ∈ [x, (x + 2cn) ∧ b] : FB
n (z) − FB

n (x− cn)>(z − x + cn)αx).

Furthermore, with tx := c2nf
′(x)/4, we can easily argue that P1 ≤ P1,1 + P1,2,

where
P1,1 := P(∃x ∈ Iy : FB

n (x) − FB
n (x− cn) > cnαx + tx),

and

P1,2 := P(∃x ∈ Iy,∃y ∈ [0, x− 2cn] : FB
n (x) − FB

n (y) < (x− y)αx + tx).

We first estimate P1,1. From (A1), f ′ is uniform continuous on [0, y+ δ0]. Thus,
by using Taylor’s theorem, as n → ∞,

F (x) − F (x− cn) = cnf(x) + c2n
2 (|f ′(x)| + o(1)),

where the o(1) term is uniform, in x ∈ Iy in the order of small-o of c2n. Therefore,
with MB

n := FB
n − F , we obtain

P1,1 ≤ P

(
∃x ∈ Iy : (MB

n (x) −MB
n (x− cn)) > c2n

2 (|f ′(x)| + o(1))
)

≤ P

(
sup
x∈Iy

(MB
n (x) −MB

n (x− cn)) > c2n
8 inf

t∈Iy
|f ′(t)|

)
,

provided n is sufficiently large. By definition of FB
n , MB

n = n−1/2Bn ◦L. More-
over, |L(x) − L(x − cn)| ≤ cn supt∈Iy,2

L′(t) for all x ∈ Iy, where by (A4),
‖L′‖Iy,2 := supt∈Iy,2

L′(t) < ∞. Using Lemma 5.1 in [4], we conclude that with
ε := inft∈Iy |f ′(t)| > 0 and J := [L(0), L(y + δ2)],

P1,1 ≤ P

(
sup
x∈J

sup
|x−y|≤cn‖L′‖Iy,2

(Bn(x) −Bn(y)) > c2n
√
n

8 ε

)

≤ K1‖L′‖−1
Iy,2

c−1
n exp

(
− K2ε

2

64‖L′‖τIy,2

nc4−τ
n

)
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= K1‖L′‖−1
Iy,2

(
n

c0 logn

)1/(4−τ)

n
−K2ε

2c0/(64‖L′‖τ
Iy,2

)
.

For a sufficiently large c0, we see that(
n

c0 logn

)1/(4−τ)

n
−K2ε

2c0/(64‖L′‖τ
Iy,2

) ≤ n
−K2ε

2c0/(65‖L′‖τ
Iy,2

)
.

Therefore we can find a K1 such that for c0 sufficiently large and all large n,

P1,1 ≤ K1n
−K2ε

2c0/(65‖L′‖τ
Iy,2

)
.

Replacing K2ε
2c0/(65‖L′‖τIy,2

) by K2, we conclude that there are positive num-
bers K1 and K2 which depend only on f , L and C0 such that

P1,1 ≤ K1n
−K2c0 ,

for all large n, provide that c0 ≥ C0 for some sufficiently large C0.
Next, consider P1,2. For all x ∈ Iy and z ∈ [1, x/(2cn)], let Yn(x, z) be defined

by
Yn(x, z) := FB

n (x− 2cnz) − FB
n (x) + 2cnαxz + tx,

so that
P1,2 = P(∃x ∈ Iy,∃z ∈ [1, x/(2cn)] : Yn(x, z) > 0). (B.5)

Denote ε2 := inft∈[0,y+δ2] |f ′(t)|. Let δ > 0 such that δε2 > 2 supt∈Iy |f ′(t)|
(that gives δ ≥ 2). Now, distinguish between two possible cases z ∈ [1, δ] or
z ∈ [δ, x/(2cn)].

For z ∈ [δ, x/(2cn)], by Taylor’s theorem and the definition of αx,

F (x− 2cnz) − F (x) = −2cnz(αx − cn|f ′(x)|) + 2c2nz2f ′(xn),

for some xn lying between x− 2cnz and x. Thus, as x ≥ xn ≥ x− 2cnz ≥ 0 for
z ∈ [δ, x/(2cn)] and f ′(xn) < 0,

F (x− 2cnz) − F (x) + 2cnzαx ≤ 2c2nz sup
t∈Iy

|f ′(t)| − 2c2nz2ε2

≤ 2c2nz sup
t∈Iy

|f ′(t)| − c2nzδε2 − c2nz
2ε2

≤ −ε2c
2
nz

2, (B.6)

where the second inequality follows as z ≥ δ and the last inequality follows from
the choice of δ.

Define An := {(x, z) : x ∈ Iy, z ∈ [δ, x/(2cn)]}. From (B.6), we have

P

(
sup

(x,z)∈An

Yn(x, z) > 0
)

≤ P

(
sup

(x,z)∈An

{MB
n (x− 2cnz) −MB

n (x) − ε2c
2
nz

2} >
c2nε2

4

)
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= P

(
sup

(x,z)∈An

{Bn ◦ L(x− 2cnz) −Bn ◦ L(x) − ε2c
2
n

√
nz2} >

c2nε2
√
n

4

)
,

where the last equality follows as MB
n = n−1/2Bn ◦ L.

Define A′
n := {(t, u) : t = L(x), u = (L(x)−L(x−2cnz))/(2cn), (x, z) ∈ An}.

Then, for (t, u) ∈ A′
n, by mean-value theorem, u = L′(xn)z for some xn lying

between x and x− 2cnz. Thus,

z2 = u2

(L′(xn))2 ≥ u2

‖L′‖2
[0,y+δ0]

,

where ‖L′‖[0,y+δ0] := supt∈[0,y+δ0] L
′(t). Thus, following the arguments as above,

it yields

P

(
sup

(x,z)∈An

Yn(x, z) > 0
)

≤ P

(
sup

(t,u)∈A′
n

{
Bn(t− 2cnu) −Bn(t) − c2nε2

√
nu2

‖L′‖2
[0,y+δ0]

}
>

c2nε2
√
n

4

)
.

Now, denote by kn := �c−1
n �, the integer part of c−1

n and for all j = 0, 1, . . . , kn,
let tj := L(y − δ1) + j(L(y + δ2) − L(y − δ1))/kn. If for some (t, u) ∈ A′

n, one
has

Bn(t− 2cnu) −Bn(t) − c2nε2
√
nu2

‖L′‖2
[0,y+δ0]

>
c2nε2

√
n

4 , (B.7)

then, for j = 1, 2, . . . , kn, such that t ∈ [tj−1, tj ], one either has

Bn(tj − 2cnu) −Bn(tj) −
c2nε2

√
nu2

‖L′‖2
[0,y+δ0]

> 0,

or
Bn(t− 2cnu) −Bn(tj − 2cnu) −Bn(t) + Bn(tj) >

c2nε2
√
n

4 ;

indeed, if not, then both

Bn(tj − 2cnu) −Bn(tj) −
c2nε2

√
nu2

‖L′‖2
[0,y+δ0]

≤ 0,

and
Bn(t− 2cnu) −Bn(tj − 2cnu) −Bn(t) + Bn(tj) ≤

c2nε2
√
n

4 ,

which contradicts (B.7) after adding these last two inequalities.
Note that for any j = 0, 1, . . . , kn,

|Bn(t) −Bn(tj)| ≤ sup
u∈[L(y−δ0),L(y+δ0)]

sup
|u−v|≤k−1

n

|Bn(u) −Bn(v)|. (B.8)
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Furthermore, for (t, u) ∈ A′
n, we have t−2cnu = L(x−2cnz) ∈ J = [L(0), L(y+

δ0)], so that

|Bn(t− 2cnu) −Bn(tj − 2cnu)| ≤ sup
t∈J

sup
|t−y|≤k−1

n

|Bn(t) −Bn(y)|. (B.9)

Hence, from (B.8), (B.9) and a simple use of triangle inequality, it follows that

sup
t∈[tj−1,tj ]

sup
u≥δ inft∈[0,y+δ0] L′(t)

{Bn(t− 2cnu) −Bn(tj − 2cnu) −Bn(t) + Bn(tj)}

≤ 2 sup
t∈J

sup
|t−y|≤k−1

n

|Bn(t) −Bn(y)|.

We conclude that

P

(
sup

(x,z)∈An

Yn(x, z) > 0
)

≤ P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(t) −Bn(y)| > c2nε2
√
n

4

)

+
kn∑
j=1

P

(
sup

u≥δ inft∈[0,y+δ0] L′(t)

{
Bn(tj − 2cnu) −Bn(tj) −

c2nε2
√
nu2

‖L′‖2
[0,y+δ0]

}
> 0
)
.

Using Lemma 5.1 in [4] with I = J, u = k−1
n , ν = c2nε2

√
n

4 , we have

P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(t) −Bn(y)| > c2nε2
√
n

4

)

≤ K1kn exp
(
−K2ε

2
2n

16 c4nk
τ
n

)
≤ K1c

−1
n exp

(
−K2ε

2
2n

16 · c4n · c
−τ

2τ

)
= K1

(
n

c0 logn

)1/(4−τ)
n−K2c0ε

2
2/2

4+τ

,

by definitions of cn and kn, since kn ≤ c−1
n and kn ≥ c−1

n /2 for those sufficiently
large n. Hence, there exist positive numbers K1 and K2 that depend only on f ,
L and C0 such that

P

(
2 sup

t∈J
sup

|t−y|≤k−1
n

|Bn(t) −Bn(y)| > c2nε2
√
n

4

)
≤ K1n

−K2c0 ,

for all n, provided c0 ≥ C0 for some sufficiently large C0. Furthermore, with (A3),
we have

kn∑
j=1

P

(
sup

u≥δ inft∈[0,y+δ0] L′(t)

{
Bn(tj − 2cnu) −Bn(tj) −

c2nε2
√
nu2

‖L′‖2
[0,y+δ0]

}
> 0
)
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=
kn∑
j=1

P

(
sup

z≥2cnδ inft∈[0,y+δ0] L′(t)

{
Bn(tj − z) −Bn(tj) −

c2nε2
√
nz2

4‖L′‖2
[0,y+δ0]

}
> 0
)

≤
kn∑
j=1

K1 exp
(
− K2ε

2
2n

16‖L′‖4
[0,y+δ0]

(
2cnδ inf

t∈[0,y+δ0]
L′(t)

)4−τ
)

≤ K1

(
n

c0 logn

)1/(4−τ)

n−K2ε
2
2c0(2δ inft∈[0,y+δ0] L

′(t))4−τ/(16‖L′‖4
[0,y+δ0]),

by definitions of cn and kn. Renaming K1 and K2, the expressions on the right
hand side in the last inequality is bounded from above by K1n

−K2c0 for all n,
provided c0 ≥ C0 for some sufficiently large C0, where K1 and K2 depend only
on f , L and C0. We conclude that there exist constants K1,K2 such that

P

(
sup

(x,z)∈An

Yn(x, z) > 0
)

≤ K1n
−K2c0 ,

for all n, provided c0 is sufficiently large.
To show that P1,2 ≤ K1n

−K2c0 , we also need to show that

P

(
sup
x∈Iy

sup
z∈[1,δ]

Yn(x, z) > 0
)

≤ K1n
−K2c0 .

For any x ∈ Iy and z ∈ [1, δ], by Taylor’s theorem, for some xn lying between
x− 2cnz and x,

F (x− 2cnz) − F (x) = −2cnzf(x) + 2c2nz2f ′(xn).

By the definition of αx and as f ′ is uniform continuous on Iy,

F (x− 2cnz) − F (x) + 2cnαxz = 2c2n|f ′(x)|z(1 − z) + o(c2n),

where 2c2n|f ′(x)|z(1 − z) ≤ 0 because z ≥ 1, and o(c2n) is uniform in z ∈ [1, δ]
and x ∈ Iy. Recall that tx = c2nf

′(x)/4 ≤ 0. Thus,

F (x− 2cnz) − F (x) + 2cnαxz + tx ≤ −c2n|f ′(x)|/8,

for all z ∈ [1, δ] and x ∈ Iy for all sufficiently large n. Hence,

P

(
sup
x∈Iy

sup
z∈[1,δ]

Yn(x, z) > 0
)

≤ P

(
sup
x∈Iy

sup
z∈[1,δ]

(MB
n (x− 2cnz) −MB

n (x)) > c2n
8 inf

x∈Iy
|f ′(t)|

)

= P

(
sup
x∈Iy

sup
z∈[1,δ]

(Bn(L(x− 2cnz)) −BnL((x))) > c2n
√
nε

8

)
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≤ P

(
sup

t∈[L(y−δ0),L(y+δ0)]
sup

|t−y|≤2cn‖L′‖Iy,2δ

|Bn(t) −Bn(y)| > c2n
√
nε

8

)
.

Using Lemma 5.1 in [4], we have

P

(
sup
x∈Iy

sup
z∈[1,δ]

Yn(x, z) > 0
)

≤ K12−1c−1
n ‖L′‖−1

Iy,2
δ−1e

−K2c
4−τ
n nε22−τ‖L′‖−τ

Iy,2
δ−τ/64

.

By renaming K1 and K2, the last displayed term is bounded from above by
K1n

−K2c0 for all n, provided c0 ≥ C0 for some sufficiently large C0. Thus, we
have shown that

P1,2 ≤ K1n
−K2c0 .

Using similar argument as above, P2 can also be shown to be bounded from
above by K1n

−K2c0 . It remains to show that P(x̃s < x for some x ∈ Iy) ≤
K1n

−K2c0 . If for some x ∈ Iy, x̃s < x, then by the definition of x̃s,

F̂B
n (u) �= F̂ (B,x)

n,cn (u) (B.10)

for all x ≤ u ≤ x+2cn. Let xn := x+ cn. Note that F̂ (B,xn)
n,cn/4 is the least concave

majorant of the process {FB
n (η) : η ∈ [xn − cn

2 , xn + cn
2 ]}. Define

x̃i,n := inf{u ≥ (xn − cn/2) ∨ (y − δ0) : F̂B
n (u) = F̂

(B,xn)
n,cn/4 (u)},

with the convention that the infimum of an empty set is (xn + cn/2)∧ (y + δ0).
From (B.10), we also have

F̂B
n (u) �= F̂

(B,xn)
n,cn/4 (u)

for all x ∈ [xn − cn/2, xn + cn/2]. Hence,

P(x̃s < x for some x ∈ Iy) ≤ P(x̃i,n > xn for some xn ∈ Iy).

The last probability can be shown to be bounded from above by K1n
−K2c0 as

(B.4).

Lemma B.2. Under Conditions (A1)–(A4), we have

sup
x∈[y−δ0,y+δ0]

|F̂B
n (x) − FB

n (x)| = Op

(
logn
n

)2/(4−τ)

.

Proof of Lemma B.2. The proof is similar to that for Theorem 2.1 in [4]. For
any intervals I ⊂ R, denote by CMI the operator that maps a bounded function
h : I → R into the least concave majorant of h on I.
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Denote Iy := [y−δ0, y+δ0] and Iy,2 := [y−2δ0, y+2δ0]. Fix x ∈ Iy ⊂ (a, b). It
suffices to consider all sufficiently large n such that a < x−2cn and x+2cn < b.
Define

T (B,x)
n (η) := FB

n (x + cnη) − FB
n (x),

for all η ∈ [−2, 2]. Then, by the definition of F̂ (B,x)
n,cn (x),

F̂ (B,x)
n,cn (x) − FB

n (x) = (CM[−2,2]T
(B,x)
n )(0).

With MB
n = FB

n − F , we have

T (B,x)
n (η) = MB

n (x + cnη) −MB
n (x) + F (x + cnη) − F (x).

Since supx∈Iy,2
|f ′(x)| < ∞ and |η| ≤ 2, it follows from Taylor’s theorem that

T (B,x)
n (η) = MB

n (x + cnη) −MB
n (x) + Y (B,x)

n (η) + O(c2n), (B.11)

where Y
(B,x)
n (η) := cnηf(x), and the big O-term is uniform in η ∈ [−2, 2] and

x ∈ Iy for all large enough n so that 2cn ≤ δ0. Because the process Y
(B,x)
n

is linear, its least concave majorant on [−2, 2] is Y
(B,x)
n itself. Using the fact

that the maximal distance between the least concave majorants of processes
is less than or equal to the maximum possible distance between the processes
themselves, we have

|F̂ (B,x)
n,cn (x) − FB

n (x)| = |(CM[−2,2]T
(B,x)
n )(0)|

≤ |Y (B,x)
n (0)| + |(CM[−2,2]T

(B,x)
n )(0) − Y (B,x)

n (0)|
≤ sup

η∈[−2,2]
|(CM[−2,2]T

(B,x)
n )(η) − Y (B,x)

n (η)|

≤ sup
η∈[−2,2]

|T (B,x)
n (η) − Y (B,x)

n (η)|.

Using (B.11), we obtain for any x ∈ Iy and all large enough n,

|F̂ (B,x)
n,cn (x) − FB

n (x)| ≤ sup
η∈[−2,2]

|MB
n (x + cnη) −MB

n (x)| + O(c2n).

Hence, for A > 0 sufficiently large and all large enough n,

P

(
sup
x∈Iy

|F̂ (B,x)
n,cn (x) − FB

n (x)| > Ac2n

)
≤ P

(
sup
x∈Iy

sup
η∈[−2,2]

|MB
n (x + cnη) −MB

n (x)| > Ac2n/2
)

= P

(
sup
x∈Iy

sup
η∈[−2,2]

|Bn ◦ L(x + cnη) −Bn ◦ L(x)| > Ac2n
√
n/2
)

≤ P

(
sup

x∈[L(y−δ0),L(y+δ0)]
sup

|x−y|≤2cn‖L′‖Iy,2

|Bn(x) −Bn(y)| > Ac2n
√
n/2
)
,
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where ‖L′‖Iy,2 := supt∈Iy,2
|L′(t)|. Using Lemma 5.1 in [4], for sufficiently large

A and n,

P

(
sup
x∈Iy

|F̂ (B,x)
n,cn (x) − FB

n (x)| > Ac2n

)
≤ K1

2cn‖L′‖Iy,2

exp
{
−K2A

22−2−τ‖L′‖−τ
Iy,2

nc4−τ
n

}
= K1

2‖L′‖Iy,2

(
n

c0 logn

)1/(4−τ)

n
−K2A

22−2−τ‖L′‖−τ
Iy,2

c0 .

Since the above upper bound tends to 0 as n → ∞ provided that A is sufficiently
large,

sup
x∈Iy

|F̂ (B,x)
n,cn (x) − FB

n (x)| = Op(c2n). (B.12)

Finally, the proof is completed in view of Lemma B.1, (B.12) and the triangle
inequality that

sup
x∈Iy

|F̂B
n (x)−FB

n (x)| ≤ sup
x∈Iy

|F̂B
n (x)− F̂ (B,x)

n,cn (x)|+ sup
x∈Iy

|F̂ (B,x)
n,cn (x)−FB

n (x)|.

Theorem B.3. Under Conditions (A1)–(A4), we have

sup
x∈[y−δ0,y+δ0]

|F̂n(x) − Fn(x)| = Op(γn) + Op

(
logn
n

)2/(4−τ)

.

Proof of Theorem B.3. The proof is similar to the proof for Theorem 2.2 in [4].
Write

F̂n − Fn = (F̂n − F̂B
n ) + (FB

n − Fn) + (F̂B
n − FB

n ).

Since the maximal distance between least concave majorant processes is less than
or equal to the maximum possible distance between the processes themselves,

sup
x∈[a,b]

|F̂n(x) − F̂B
n (x)| ≤ sup

x∈[a,b]
|Fn(x) − FB

n (x)|.

Denote Iy := [y − δ0, y + δ0]. The triangle inequality gives

sup
x∈Iy

|F̂n(x) − Fn(x)|

≤ sup
x∈Iy

|F̂n(x) − F̂B
n (x)| + sup

x∈Iy

|FB
n (x) − Fn(x)| + sup

x∈Iy

|F̂B
n (x) − FB

n (x)|

≤ sup
x∈[a,b]

|F̂n(x) − F̂B
n (x)| + sup

x∈[a,b]
|FB

n (x) − Fn(x)| + sup
x∈Iy

|F̂B
n (x) − FB

n (x)|

≤ 2 sup
x∈[a,b]

|Fn(x) − FB
n (x)| + sup

x∈Iy

|F̂B
n (x) − FB

n (x)|.

The required result then follows from (B.1) and Lemma B.2.
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Appendix C: Proofs for Section 3

C.1. Proofs for Section 3.2

Proof of Theorem 3.4. By Theorem B.3, it suffices to verify Conditions (A1)–
(A4). For the problem of estimating a decreasing density, Fn is the empirical
distribution function. By the Hungarian approximation, Fn can be approxi-
mated by a sequence of Brownian bridges Bn with L being the distribution
function F corresponding to f , and γn = (logn)/n. Under Cf5, Conditions (A1)
and (A4) are satisfied. For Conditions (A2) and (A3), Corollary 3.1 in [4] has
verified that Brownian bridges will satisfy these two conditions with the choice
of τ = 1. Hence, the required results follow from Theorem B.3 with y taking
values (2j + 1)δ0 for j = 0, 1, . . . , � x0

2δ0 �, the integer part of x0
2δ0 , and y = x0.

C.2. Proofs for Section 3.3

Proof of Theorem 3.5. We only provide the proof when k = 1 as the other cases
can be proven similar. To derive the asymptotic joint distribution in (3.8), we
shall make use of some intermediate result of [23] as well as the method of proof
(see, e.g., [7] and [8]) of deriving the asymptotic distribution of the Grenander
estimator at a fixed interior point; so, some of the details will be omitted. With
the Hungarian approximation in (3.3), denote

Zn(c) := sup
x>0

[
n1/3

1√
n
Bn(F0(x)) − f0(0)αn − {f0(0)x− F0(x)} + Rn(x)

αn + x

]
,

Z#
n (c) := sup

t>0

n1/6f−1
0 (0)Wn(f2

0 (0)tn−1/3) − c− β2t
2

t
.

By Lemma 2 in [23], we have

sup
0≤c≤Cn

|n1/3{f̂n,αn(0) − f0(0)} − Zn(c)| P→ 0, (C.1)

for whatever Cn = op(n1/3). Furthermore, from the proof of Proposition 2 in
Woodroofe and Sun (1996), for any 0 < c1 < c2 < ∞,

sup
c1≤c≤c2

|Zn(c) − Z#
n (c)| P→ 0. (C.2)

In view of (C.1) and (C.2), to study the asymptotic distribution of (3.8), it
suffices to consider that of (Z#

n (c), n1/3{f̂n(x0) − f0(x0)}).
Let a, b ∈ R. Using the switch relation in (3.2) and the fact that adding or

multiplying a constant will not affect the location of the maximum of a process,
we obtain, with the probability one, that

n1/3{f̂n(x0) − f0(x0)} ≤ b (C.3)
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⇔ n1/3{Un(n−1/3b + f0(x0)) − x0} ≤ 0
⇔ sup{t ≥ −x0n

1/3 : Fn(x0+tn−1/3)−n−2/3bt− f0(t0)tn−1/3 is maximal}≤0
⇔ sup{t ≥ −x0n

1/3 : Vn(t, b) is maximal} ≤ 0,

where for t ≥ −x0n
1/3,

Vn(t, b) := n2/3{Fn(x0 + tn−1/3) − Fn(x0) − f0(x0)tn−1/3} − bt. (C.4)

By the same Hungarian approximation in (3.3), define

Ṽn(t, b) := n1/6{Wn(F0(x0 + tn−1/3)) −Wn(F0(x0))} (C.5)
+ n2/3{F0(x0 + tn−1/3) − F0(x0) − f0(x0)n−1/3t} − bt

and note that

Vn(t, b) = n1/6{Bn(F0(x0 + tn−1/3)) − Bn(F0(t0))}
+ n2/3{F0(x0 + tn−1/3) − F0(x0) − f0(x0)n−1/3t}

+ n2/3{Rn(x0 + tn−1/3) −Rn(x0)} − bt

= Ṽn(t, b) − n1/6{F0(x0 + tn−1/3) − F0(x0)}Wn(1)
+ n2/3{Rn(x0 + tn−1/3) −Rn(x0)}

= Ṽn(t, b) + op(1),

where the op(1) term is uniform in t over any compacta as Wn(1) = Op(1),
n1/6{F0(x0 + tn−1/3) − F0(x0)} → 0 uniform in t over any compacta, and
supt∈R

|n2/3{Rn(x0+tn−1/3)−Rn(x0)}| = op(1) by (3.4). Using Proposition 3.1,
it can be shown that sup{t : Vn(t, b) is maximal} and sup{t : Ṽn(t, b) is maximal}
are asymptotically equivalent in the sense that the difference between them con-
verges to 0 in probability. As a result, it suffices to consider Ṽn in establishing
the asymptotic distribution of (3.8).

Note that we can write

Z#
n (c) = sup

t>0

{
W̃n(t) − (c + β2t

2)
t

}
Ṽn(t, a) = f0(0)

{
W̃n

(
n1/3F0(x0 + tn−1/3)

f2
0 (0)

)
− W̃n

(
n1/3F0(x0)

f2
0 (0)

)}
+ n2/3{F0(x0 + tn−1/3) − F0(x0) − f0(x0)n−1/3t}, (C.6)

where
W̃n(t) := n1/6

f0(0)Wn

(
f2
0 (0)t
n1/3

)
is again a Brownian motion. Denote

Hn1 := sup
{
t > 0 : W̃n(t) − (c + β2t

2)
t

is maximal
}
,
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Hn2 := sup{t : Ṽn(t, b) is maximal}.

Let
An := {Hn1 ≤ Kn, |Hn2| ≤ Kn},

where {Kn} is any positive sequence such that Kn → ∞ but Kn = o(n1/3).
Note that Hn1 = Op(1) and Hn2 = Op(1). The former one can be seen by,
for example, using the law of iterated logarithm of Brownian motions. Thus,
P(An) → 1 as n → ∞. Note that

P(Z#
n (C) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0) =: Dn1 + Dn2, (C.7)

where

Dn1 := P(Z#
n (C) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0, An),

Dn2 := P(Z#
n (C) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0, Ac

n).

Clearly, since Hn1, Hn2 = Op(1) and Kn → ∞,

lim sup
n→∞

Dn2 ≤ lim sup
n→∞

P(Ac
n) = 0. (C.8)

Also, define a sequence of events

Bn :=
{
ω : sup

0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
≤ a and

sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0
}
.

Observe that on An,

sup
0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
= sup

t>0

{
W̃n(t) − (c + β2t

2)
t

}
.

Therefore, we have

Dn1 = P(Bn ∩An) = P(Bn) + o(1), (C.9)

as P(An) → 1. Recall the definition of Ṽn in (C.6). Note that for all sufficiently
large enough n,

Kn ≤ n1/3F0(x0 −Knn
−1/3)

f2
0 (0) .

Therefore, using the independent increment property of Brownian motions, for
all sufficiently large enough n,

sup
0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
and sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal}
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are independent. Hence, for all sufficiently large enough n,

P(Bn) = P

(
sup

0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
≤ a

)
· P(sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0). (C.10)

Therefore,

P

(
sup

0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
≤ a

)
= P

(
sup

0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
≤ a,An

)
+ P

(
sup

0<t≤Kn

{
W̃n(t) − (c + β2t

2)
t

}
≤ a,Ac

n

)
= P

(
sup

0<t<∞

{
W̃n(t) − (c + β2t

2)
t

}
≤ a

)
+ o(1), (C.11)

where the last equality follows as P(An) → 1. Similarly, we have

P(sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0)

= P(sup{t : Ṽn(t, b) is maximal} ≤ 0) + o(1). (C.12)

In view of (C.7)–(C.12), for all sufficiently large n,

P(Z#
n (C) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0)

= P

(
sup

0<t<∞

{
W̃n(t) − (c + β2t

2)
t

}
≤ a

)
· P(sup{t : Ṽn(t, b) is maximal} ≤ 0) + o(1).

Note that
Z#
n (c) d= sup

t>0

{
W (t) − (c + β2t

2)
t

}
and by using Proposition 3.1, it can be shown that

sup{t : Ṽn(t, b) is maximal} d→ S(b),

where S(b) := sup{t :
√

f0(x0)W (t) + 1
2f

′
0(x0)t2 − bt is maximal}. Therefore,

lim
n→∞

P(n1/3{f̂n,αn(0) − f0(0)} ≤ a, n1/3{f̂n(x0) − f0(x0)} ≤ b) (C.13)

= lim
n→∞

P(Z#
n (c) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0)

= P

(
sup
t>0

{
W (t) − (c + β2t

2)
t

}
≤ a

)
· P(S(b) ≤ 0)
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= P

(
sup
t>0

{
W (t) − (c + β2t

2)
t

}
≤ a

)
· P
(
|4f0(x0)f ′

0(x0)|1/3 Y ≤ b

)
.

Proof of Corollary 3.1. Firstly, we write

Ŝn,αn(x0) − S0(x0) = In1 + In2 + In3, (C.14)

where

In1 := f̂n(x0)
{

1
f̂n,αn(0)

− 1
f0(0)

}
;

In2 := 1
f0(0){f̂n(x0) − f0(x0)};

In3 := f̂n,αn(x0) − f̂n(x0)
f̂n,αn(0)

.

(a) Note that under CS4, f0 is strictly decreasing near 0. Hence, by Corollary 2
and Proposition 1 in [27], and the choice that αn = cn−2/3,

n1/3In3 = n1/3Op(αn) = Op(n−1/3) = op(1).

Now, note that the rates of convergence of In1 and In2 are both n1/3.
With Lemma 3.5, continuous mapping theorem, and Slutsky’s theorem,
we obtain

n1/3(In1 + In2)
d→ − f0(x0)

{f0(0)}2 · sup
t>0

{
W (t) − (c + β2t

2)
t

}
+ 1

f0(0) |4f0(x0)f ′
0(x0)|1/3 Y,

where W (·) and Y are independent. The result then follows as
f0(x0)/f0(0) = S0(x0), 1/f0(0) =

∫∞
0 S0(y)dy, and f ′

0(x0)/f0(0) = S′
0(x0).

(b) For In1, by (3.7),

n1/3In1 = n1/3Op(n− k+1
2k+1 ) = op(1),

as k > 1. For In3, note that αn = cn−(k+1)/(2k+1) = o(n−1/3). Thus, by
Corollary 2 and Proposition 1 in [27],

n1/3
(
f̂n,αn(x0) − f̂n(x0)

f̂n,αn(0)

)
= n1/3

(
Op(αn)
f̂n,αn(0)

)
= op(1).

For In2, by Proposition 3.2, we have

n1/3In2
d→ 2{f0(0)}−1

∣∣∣∣12f0(x0)f ′
0(x0)

∣∣∣∣1/3 Y
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=
∣∣∣∣4f0(x0)

f0(0) · f
′
0(x0)
f0(0) · 1

f0(0)

∣∣∣∣1/3 Y
=
∣∣∣∣4S0(x0)S′

0(x0)
∫ ∞

0
S0(y)dy

∣∣∣∣1/3Y.
C.3. Proofs of Section 3.4

Proof of Theorem 3.6. Using Cf4 and the Hungarian approximation (3.3)–(3.4),
we have

Fn(bn)
bn

− f0(0)

=
{
Fn(bn)
bn

− F0(bn)
bn

}
+
{
F0(bn)
bn

− f0(0)
}

= 1√
nbn

· 1√
bn

Wn(F0(bn)) + F0(bn)
bn

Wn(1)√
n

+ Op

(
logn
nbn

)
+ f

(k)
0 (0)

(k + 1)!b
k
n + o(bkn)

=c−1/2n− k
2k+1

Wn(F0(bn))√
bn

+ Op(n−1/2) + Op

(
n− 2k

2k+1 logn
)

+ f
(k)
0 (0)

(k + 1)!b
k
n + o(bkn).

Hence,

n
k

2k+1

{
Fn(bn)
bn

− f0(0)
}

= f
(k)
0 (0)

(k + 1)!c
k + c−1/2

√
bn

Wn(F0(bn)) + op(1). (C.15)

Thus, it suffices to consider the joint asymptotic distribution of the term
Wn(F0(bn))/

√
bn and n1/3{f̂n(x0) − f0(x0)}. For the latter one, it suffices to

consider sup{t : Ṽn(t, b) is maximal}, where Ṽn is defined in (C.6). With Hn2
and Kn as defined in the proof of Lemma 3.5, let

En := {|Hn2| ≤ Kn}.

From there, we have limn→∞ P(En) = 1. For a, b ∈ R, we have

Jn := P

(
1√
bn

Wn(F0(bn)) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0
)

= P

(
1√
bn

Wn(F0(bn)) ≤ a, sup{t : Ṽn(t, b) is maximal} ≤ 0, En

)
+ o(1)

= P

(
1√
bn

Wn(F0(bn)) ≤ a, sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0
)



2792 K. C. G. Chan et al.

+ o(1). (C.16)

Note that for all large enough n,

F0(bn) ≤ F0(x0 −Knn
−1/3).

Hence, by the independent increment property of Browinan motions, we have

P

(
1√
bn

Wn(F0(bn)) ≤ a, sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0
)

= P

(
1√
bn

Wn(F0(bn)) ≤ a

)
· P
(
sup{t ∈ [−Kn,Kn] : Ṽn(t, b) is maximal} ≤ 0

)
= P

(√
F0(bn)
bn

Z ≤ a

)
·
{
P(sup{t : Ṽn(t, b) is maximal} ≤ 0) + o(1)

}
.

(C.17)

Thus, from (C.16) and (C.17) (see also (C.13)),

lim
n→∞

Jn = P
(√

f0(0)Z ≤ a
)
· P
(
|4f0(x0)f ′

0(x0)|1/3 Y ≤ b
)
. (C.18)

In view of (C.15) and (C.18),

lim
n→∞

P

(
n

k
2k+1
{
b−1
n Fn(bn) − f0(0)

}
≤ a, n1/3{f̂n(x0) − f0(x0)} ≤ b

)
= lim

n→∞
P

(
f

(k)
0 (0)

(k + 1)!c
k + c−1/2

√
bn

Wn(F0(bn)) ≤ a,

sup{t : Ṽn(t, b) is maximal} ≤ 0
)

= P

(
f

(k)
0 (0)

(k + 1)!c
k +
√
f0(0)/cZ ≤ a

)
· P(|4f0(x0)f ′

0(x0)|1/3 Y ≤ b).

Proof of Corollary 3.2. Write

ŜH
n (x0) − S0(x0) = I1n + I2n,

where

I1n := − f̂n(x0)
f̂H
0 (0)f0(0)

{
f̂H
n (0) − f0(0)

}
,

I2n := 1
f0(0){f̂n(x0) − f0(x0)}.

(a) If k = 1, both the rates of convergence to 0 of I1n and I2n are n1/3. By
Theorem 3.6,

n
1
3 {ŜH

n (x0) − S0(x0)} d→ −f0(x0)
f0(0)2 Z

(
cf ′

0(0)
2 , c−1f0(0)

)
+ Y0.

The result follows from the relationship between f0 and S0.
(b) If k > 1, I1n = Op

(
n−k/(2k+1)) = op(n−1/3). Hence, by Theorem 3.6, the

result follows.
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C.4. Proofs of Section 3.5

The following elementary fact is used in the Proof of Theorem 3.7.

Lemma C.1. Let {E1n} and {E2n} be two sequences of events. Suppose that
{An} is a sequence of events such that P(An) → 1 and for all large enough n,
E1n and E2n are independent given An, then P(E1n ∩ E2n) = P(E1n)P(E2n) +
o(1).

Proof. For all large enough n,

P(E1n ∩ E2n) = P(E1n ∩ E2n|An)P(An) + o(1)
= P(E1n|An)P(E2n|An)P(An) + o(1)
= P(E1n ∩An)P(E2n ∩An)/P(An) + o(1)
= {P(E1n)(1 + o(1))}{P(E2n)(1 + o(1))}/(1 + o(1)) + o(1)
= P(E1n)P(E2n) + o(1).

Proof of Theorem 3.7. For 1/(2k + 1) ≤ α < 1, t ≥ 0, and x ∈ R, define

Vn1(x, t) := n(1+α)/2{Fn(tn−α) − f0(0)tn−α} − xt

and recall the definition of Vn in (C.4). For x > 0, y ∈ R, using the switch
relation (3.2), and the fact that adding or multiplying a constant does not affect
the location of the maximum of a process,

P(n(1−α)/2{f̂n(cn−α) − f0(0)} ≤ x, n1/3{f̂n(x0) − f0(x0)} ≤ y)
= P(nαUn(f0(0) + xn−(1−α)/2) ≤ c, n1/3{Un(f0(0) + yn−1/3) − x0} ≤ 0)
= P(sup{t ≥ 0 : Vn1(x, t) is maximal} ≤ c,

sup{t ≥ −x0n
1/3 : Vn(x, t) is maximal} ≤ 0). (C.19)

For t ≥ 0, by the Hungarian approximation (3.3) and Condition Cf3,

Vn1(x, t) = nα/2Wn(F0(tn−α)) − nα/2F0(tn−α)Wn(1)

+ n(1+α)/2 f
(k)
0 (0)

(k + 1)! (tn
−α)k+1 − xt

= Ṽn1(x, t) + op(1),

where
Ṽn1(x, t) := nα/2Wn(F0(tn−α)) − xt, t ≥ 0

and the op(1) term is uniform on compacta. To apply Proposition 3.1, we first
extend the process Vn1(x, ·) and Ṽn1(x, ·) to the real line by defining Vn1(x, t) = t
and Ṽn1(x, t) = t for t < 0. Then, by Proposition 3.1, we can show that
sup{t : Vn1(x, t) is maximal} and sup{t : Ṽn1(x, t) is maximal} are asymptoti-
cally equivalent in the sense that the difference between them converges to 0
in probability. The establishment of the joint convergence and checking of the
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tightness conditions required in Proposition 3.1 are essentially the same as in the
proof of Lemmas 3.1 and 3.2 in [14]. Note also that sup{t : Vn(t, y) is maximal}
and sup{t : Ṽn(t, b) is maximal} are asymptotically equivalent; see the proof of
Theorem 3.5. Thus, from (C.19), we obtain that

lim
n→∞

P(n(1−α)/2{f̂n(cn−α) − f0(0)} ≤ x, n1/3{f̂n(x0) − f0(x0)} ≤ y)

= lim
n→∞

P(sup{t : Ṽn1(x, t) is maximal} ≤ c, sup{t : Ṽn(y, t) is maximal} ≤ 0).
(C.20)

Define

An :=
{
| sup{t : Ṽn1(x, t) is maximal}| ≤ Kn,

| sup{t : Ṽn(x, t) is maximal}| ≤ Kn

}
,

where Kn → ∞ but Kn = o(nmin(α,1/3)). Since sup{t : Ṽn1(x, t) is maximal}
and sup{t : Ṽn(x, t) is maximal} are both Op(1), P(An) → 1. On An, for all
large enough n,

sup{t : Ṽn1(x, t) is maximal} = sup{0 ≤ t ≤ Kn : Ṽn1(x, t) is maximal};
sup{t : Ṽn(x, t) is maximal} = sup{−x0n

−1/3 ≤ t ≤ Kn : Ṽn(x, t) is maximal};

and
F0(Knn

−α) < F0(x0 −Knn
−1/3).

By the independent increment property of Brownian motions, sup{t : Ṽn1(x, t)
is maximal} and sup{t : Ṽn(x, t) is maximal} are independent conditional on
An for all large enough n. Therefore, by Lemma C.1,

lim
n→∞

P(sup{t : Ṽn1(x, t) is maximal} ≤ c, sup{t : Ṽn(y, t) is maximal} ≤ 0)

= lim
n→∞

P(sup{t : Ṽn1(x, t) is maximal} ≤ c)

· lim
n→∞

P(sup{t : Ṽn(y, t) is maximal} ≤ 0)

= lim
n→∞

P(sup{t : Vn1(x, t) is maximal} ≤ c)

· lim
n→∞

P(n1/3{f̂n(x0) − f0(x0)} ≤ y))

= P({f0(0)/c}1/2DR[W (t)](1) ≤ x)P(f0(0)Y0 ≤ y), (C.21)

where the convergence of the first term in the last line is proven in the proof of
Theorem 3.1 in [14] while the second one follows from (3.5). For x ≤ 0,

P(n(1−α)/2{f̂n(cn−α) − f0(0)} ≤ x, n1/3{f̂n(x0) − f0(x0)} ≤ y)
≤ P(n(1−α)/2{f̂n(cn−α) − f0(0)} ≤ 0) → 0, (C.22)

where the convergence on the right hand side is obtained in the proof of The-
orem 3.1 in [14]. Combining (C.20), (C.21), and (C.22), the required result is
proven.
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Proof of Corollary 3.3. Write

ŜN
n (x0) − S0(x0) = − f̂n(x0)

f̂n(cn−α)f0(0)
{f̂n(cn−α) − f0(0)}

+ 1
f0(0){f̂n(x0) − f0(x0)}.

The rest of the proof is similar to that for Corollary 3.2 by using Theorem 3.6,
we just omit here.

C.5. Proofs of Section 3.6

To prove Theorem 3.8, we first expand f̂S
n,h(x0) and f̂S

n,h(0) in the following
(C.23) and (C.24), and then study the asymptotic behavior of the terms in the
two expansions in the following Lemmas C.2, C.3 and C.4.

For all sufficiently large n, [x0−h, x0+h] ⊂ (0, τ) and so the boundary kernel
reduces to the usual kernel K for f̂S

n,h(x0). Write

f̂S
n,h(x0) = Mx0,1,n(h) + Mx0,2,n(h) + Mx0,3,n(h), (C.23)

where

Mx0,1,n(h) :=
∫ x0+h

x0−h

1
h
K

(
x0 − u

h

)
dF0(u),

Mx0,2,n(h) :=
∫ x0+h

x0−h

1
h
K

(
x0 − u

h

)
d(Fn − F0)(u),

Mx0,3,n(h) :=
∫ x0+h

x0−h

1
h
K

(
x0 − u

h

)
d(F̂n − Fn)(u).

Similarly, write

f̂S
n,h(0) = M0,1,n(h) + M0,2,n(h) + M0,3,n(h), (C.24)

where

M0,1,n(h) :=
∫ h

0

1
h
K0

(
−u

h

)
dF0(u),

M0,2,n(h) :=
∫ h

0

1
h
K0

(
−u

h

)
d(Fn − F0)(u),

M0,3,n(h) :=
∫ h

0

1
h
K0

(
−u

h

)
d(F̂n − Fn)(u).

The following lemma establishes the asymptotic behaviour of the first term
in the expansion of f̂S

n,h(x0) and f̂S
n,h(0). In particular, the deterministic terms

Mx0,1,n and M0,1,n will contribute to the asymptotic biases of f̂S
n,h(x0) and

f̂S
n,h(0), respectively.
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Lemma C.2. Under Conditions Cf1, Cf3 and Cf4 for some integer k ≥ 2, if
h = hn → 0, then we have the followings.

(i) As n → ∞,

1
h2 {Mx0,1,n(h) − f0(x0)} → 1

2f
′′
0 (x0)

∫ 1

−1
y2K(y)dy;

(ii) As n → ∞,

1
hk

{M0,1,n(h) − f0(0)} → (−1)k

k! f
(k)
0 (0)

∫ 0

−1
ykK0(y)dy.

Proof. (i) By the change-of-variables formula, the facts that
∫ 1
−1 K(u)du = 1

and K is symmetric,

Mx0,1,n(h) − f0(x0)

=
∫ 1

−1
K(y){f0(x0 − hy) − f0(x0)}dy

=
∫ 1

−1
K(y){−f ′

0(x0)hy + 1
2f

′′
0 (ξn,y)h2y2}dy

= h2

2

∫ 1

−1
f ′′
0 (ξh,y)y2K(y)dy,

where ξh,y lies between x0 and x0 − hy. The result then follows from the
dominated convergence theorem.

(ii) By the change-of-variables formula again,

M0,1,n(h) − f0(0)

=
∫ 0

−1
K0(y){f0(−hy) − f0(0)}dy

=
∫ 0

−1
K0(y)

{
−f ′

0(0)hy + f
(k)
0 (ξh,y)

(−hy)k

k!

}
dy

= (−1)khk

k!

∫ 0

−1
K0(y)f (k)

0 (ξh,y)ykdy,

where Taylor’s theorem has been applied to an extension of f0 to an
interval containing 0 as an interior point and the last equality follows
from (A.1). The result then follows from the dominated convergence the-
orem.

The following lemma establishes the joint asymptotic distribution of the sec-
ond term in the expansion (C.23) and (C.24) of f̂S

n,h1
(x0) and f̂S

n,h2
(0).
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Lemma C.3. Under Condition Cf1, if hj = hjn → 0 and
√
nhjn/ logn → ∞

for j = 1, 2, then we have(√
nh1Mx0,2,n,

√
nh2M0,2,n

)
d→ Z(0, D̃), (C.25)

where D̃ is a diagonal matrix with elements d̃11 = f0(x0)
∫ 1
−1 K

2(y)dy and d̃22 =
f0(0)

∫ 0
−1{K0(y)}2dy.

Proof of Lemma C.3. By the change-of-variables formula, (
√
nh1Mx0,2,n,√

nh2M0,2,n) can be written as(∫ 1

−1
K(y)dW1n(y),

∫ 0

−1
K0(y)dW2n(y)

)
,

where

W1n(y) :=
√

n

h1
{Fn(x0−h1y)−Fn(x0) − F0(x0 − h1y) + F0(x0)}, y ∈ [−1, 1],

W2n(y) :=
√

n

h2
{Fn(−h2y) − F0(−h2y)}, y ∈ [−1, 0].

Using the Hungarian approximation (3.3) and (3.4) for the following Rn(·), as
h1 → 0 and

√
nh1/ logn → ∞,

W1n(y) =
√

n

h
[n−1/2{Bn(F0(x0−h1y))−Bn(F0(x0))}+Rn(x0 − h1y) −Rn(x0)]

= 1√
h1

{Wn(F0(x0 − h1y)) −Wn(F0(x0))}

+
√
h1

F0(x0 − h1y) − F0(x0)
h1

Wn(1) + Op

(
logn√
nh1

)
= 1√

h1
{Wn(F0(x0 − h1y)) −Wn(F0(x0))} + op(1), (C.26)

where the op(1) term is uniformly small in y. Similarly, as h2 → 0 and√
nh2/ logn → ∞, we have

W2n(y) =
√

n

h2
[n−1/2

Bn(F0(−h2y)) + Rn(−h2y)]

× 1√
h2

Wn(F0(−h2y)) −
√

h2
F0(−h2y)

h2
Wn(1) + Op

(
logn√
nh2

)
= 1√

h
Wn(F0(−hy)) + op(1), (C.27)

where the op(1) term is again uniformly small in y. Since Brownian motions have
independent increments, for all large n, 1√

h1
{Wn(F0(x0 − h1y))−Wn(F0(x0))}

and 1√
h2
Wn(F0(−h2y)) are independent as F0(−hy) is smaller than min(F0(x0−
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h1y), F0(x0)) so that the increments do not overlap. In addition, y 
→
1√
h
{Wn(F0(x0 − h1y)) −Wn(F0(x0))} has the same distribution as the process

W1

(
F0(x0 − h1y) − F0(x0)

h1

)
, y ∈ [−1, 1]

and y 
→ 1√
h2
Wn(F0(−h2y)) has the same distribution as the process

W2

(
F0(−h2y)

h2

)
, y ∈ [−1, 0],

where W1 is a standard two-sided Brownian motion and W2 is a standard
Brownian motion, and W1 are independent of W2. Therefore, for all large n,
y1 ∈ [−1, 1] and y2 ∈ [−1, 0],(

1√
h1

{Wn(F0(x0 − h1y1)) −Wn(F0(x0))},
1√
h2

Wn(F0(−h2y2))
)

d=
(
W1

(
F0(x0 − h1y1) − F0(x0)

h1

)
,W2

(
F0(−h2y2)

h2

))
. (C.28)

By the uniform continuity of W1 and W2 on compact intervals, we have

sup
y1∈[−1,1]

∣∣∣∣W1

(
F0(x0 − h1y1) − F0(x0)

h1

)
−W1(f0(x0)y1)

∣∣∣∣ P→ 0,

sup
y2∈[−1,0]

∣∣∣∣W2

(
F0(−h2y2)

h2

)
−W2(f0(0)y2)

∣∣∣∣ P→ 0. (C.29)

By (C.26), (C.27), (C.28), and (C.29), we obtain that

(Wn1(y1),Wn2(y2))
d→ (
√

f0(x0)W1(y1),
√
f0(0)W2(y2))

as a process on [−1, 1] × [−1, 0]. Accordingly, as n → ∞,(∫ 1

−1
K(y1)dWn1(y1),

∫ 0

−1
K0(y2)dWn2(y2)

)
d→
(√

f0(x0)
∫ 1

−1
K(y1)dW1(y1),

√
f0(0)

∫ 0

−1
K0(y2)dW2(y2)

)
∼ Z(0, D̃),

where D̃ is defined as in the statement in the theorem. This is because the ex-
pected values of

∫ 1
−1 K(y1)dW1(y1) and

∫ 0
−1 K0(y2)dW2(y2) are both 0, the vari-

ance of
∫ 1
−1 K(y1)dW1(y1) is

∫ 1
−1 K

2(y1)dy1, the variance of
∫ 0
−1 K0(y2)dW2(y2)

is
∫ 0
−1 K0(y2)2dy2, and W1 and W2 are independent so that the off-diagonal

elements in D̃ are 0.

The following lemma establishes the order of the third term in the expansion
of f̂S

n,h(x0) and f̂S
n,h(0).
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Lemma C.4. Under Conditions Cf1 and Cf5, if h = hn → 0, then we have
the followings.

(i) Mx0,3,n = Op(h−1n−2/3(logn)2/3);
(ii) M0,3,n = Op(h−1n−2/3(logn)2/3).

Proof. (i) By using integration by parts, the change-of-variables formula, and
Theorem 3.4, for all sufficiently large n,

Mx0,3,n =
∫ x0+h

x0−h

1
h2K

′
(
x0 − u

h

)
{F̂n(u) − Fn(u)}du

= 1
h

∫ 1

−1
{F̂n(x0 − hy) − Fn(x0 − hy)}K ′(y)dy

≤ 1
h

sup
y∈[0,x0+δ]

|F̂n(y) − Fn(y)|
∫ 1

−1
K ′(y)dy

= Op(h−1n−2/3(logn)2/3).

(ii) Similar to (i), by using integration by parts, the change-of-variables, and
Theorem 3.4, for all sufficiently large n,

M0,3,n

= 1
h2

∫ h

0

{
φ(0)K ′

(
− u

h

)
+ ψ(0)K ′

(
− u

h

)(
− u

h

)
+ ψ(0)K

(
− u

h

)}
{F̂n(u) − Fn(u)}du

= 1
h

∫ 0

−1
{φ(0)K ′(y) + ψ(0)K ′(y)y + ψ(0)K(y)}{F̂n(−hy) − Fn(−hy)}dy

≤ 1
h

sup
y∈[0,x0+δ]

|F̂n(y)−Fn(y)|
∫ 0

−1
{φ(0)K ′(y)+ψ(0)K ′(y)y+ψ(0)K(y)}dy

= Op(h−1n−2/3(logn)2/3).

Proof of Theorem 3.8. First, for f̂S
n,h1

(x0), by Lemma C.2 (i), Lemma C.3, and
Lemma C.4 (i), we have

n2/5{f̂S
n,h1

(x0) − f0(x0)} = n2/5Mx0,1,n + n2/5Mx0,2,n + n2/5Mx0,3,n

d→ μ(2)
x0

+ Z(0, d11),

as n2/5Mx0,3,n = n2/5Op(n1/5n−2/3(logn)2/3) = op(1). For f̂S
n,h2

(0), by Lem-
ma C.2 (ii), Lemma C.3, and Lemma C.4 (ii),

nk/(2k+1){f̂S
n,h2

(0) − f0(0)}
= nk/(2k+1)M0,1,n + nk/(2k+1)M0,2,n + nk/(2k+1)M0,3,n
d→ μ

(k)
0 + Z(0, d22),



2800 K. C. G. Chan et al.

as nk/(2k+1)M0,3,n = nk/(2k+1)Op(n1/(2k+1)n−2/3(logn)2/3) = op(1).
The required joint convergence follows as (i) Mx0,3,n and M0,3,n are of smaller

order than the other two terms in the expansion (C.23) and (C.24) of f̂S
n,h1

(x0)
and f̂S

n,h2
(0), respectively; and (ii)

√
nh1Mx0,2,n and

√
nh2M0,2,n are asymptot-

ically independent by Theorem C.3.

Proof of Corollary 3.4. The proof is similar to the proof of Corollary 3.2 using
Theorem 3.8. Write

ŜS
n,h1,h2

(x0) − S0(x0) = H1n + H2n,

where

H1n := − f0(x)
f̂S
n,h2

(0)f0(0)
{f̂S

n,h1
(0) − f0(0)}, (C.30)

H2n := 1
f̂S
n,h2

(0)
{f̂S

n,h1
(x0) − f0(x0)}. (C.31)

Since we assume |S′′
0 (x0)| > 0 and h1 = c1n

−1/5, the rate of convergence of H2n
is n2/5. On the other hand, the rate of convergence of H1n is nk/(2k+1).

(i) If k = 2, both H1n and H2n have the same rate of convergence. By Theo-
rem 3.8,

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11) −

f0(x0)
f0(0)2 Z(μ(k)

0 , d22).

(ii) If k > 2, H2n dominates and

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11).

The results then follow using the relationship between f0 and S0.

C.6. Proofs of Section 3.7

Proof of Theorem 3.9. Similar to previous sections, it can be shown that f̂n(x0)
and f̂n(y0) are asymptotically independent when x0 �= y0. Write

n1/3{Ŝ|y0(x0) − S|y0(x0)}

= 1
f̂(y0)

n1/3{f̂n(x0) − f0(x0)} −
f0(x0)

f0(y0)f̂n(y0)
n1/3{f̂n(y0) − f0(y0)}

d→ 1
f0(y0)

|4f0(x0)f ′
0(x0)|1/3Y1 + f0(x0)

f2
0 (y0)

|4f0(y0)f ′
0(y0)|1/3Y2

= f0(0)
f0(y0)

∣∣∣∣4 · f0(x0)
f0(0) · f

′
0(x0)
f0(0) · 1

f0(0)

∣∣∣∣1/3 Y1

+ f0(x0)
f0(0) · f0(0)2

f0(y0)2

∣∣∣∣4 · f0(y0)
f0(0) · f

′
0(y0)
f0(0) · 1

f0(0)

∣∣∣∣1/3 Y2.

The result then follows using the relationship between f0 and S0.
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Appendix D: Additional results

In this section, we provide additional asymptotic results under different regimes
defined by underlying smoothness (p or k) and the tuning parameter (γ or α).

D.1. Additional Results for Section 3.4

Theorem D.1. Under Conditions Cf1, Cf2, and (3.9) for some p > 1, if
bn = cn−γ , where c > 0 and γ ∈ (0, 1), then the followings hold.

(a) If 1
2p−1 < γ < 1, then(

n
1
2 (1−γ){f̂H

n (0) − f0(0)}, n1/3{f̂n(x0) − f0(x0)}
)

d→ (Z(0, c−1f0(0)), f0(0)Y0).

(b) if γ = 1
2p−1 , then(

n
p−1
2p−1 {f̂H

n (0) − f0(0)}, n1/3{f̂n(x0) − f0(x0)}
)

d→ (Z(−f1c
p−1, c−1f0(0)), f0(0)Y0).

(c) if 0 < γ < 1
2p−1 ,(

nγ(p−1){f̂H
n (0) − f0(0)}, n1/3{f̂n(x0) − f0(x0)}

)
d→ (−f1c

p−1, f0(0)Y0).

Proof of Theorem D.1. Using the Hungarian approximation (3.3), (3.4) and
(3.9),

Fn(bn)
bn

− f0(0)

=
{
Fn(bn)
bn

− F0(bn)
bn

}
+
{
F0(bn)
bn

− f0(0)
}

= 1√
nbn

· Wn(F0(bn))√
bn

+ F0(bn)
bn

· Wn(1)√
n

+ Op

(
logn
nbn

)
− f1b

p−1
n + o(bp−1

n )

=c−1/2n
1
2 (γ−1)Wn(F0(bn))√

bn
+ Op(n−1/2) + Op(nγ−1 logn)

− f1c
p−1n−γ(p−1) + o(n−γ(p−1)).

Note that

(i) If 1
2p−1 < γ < 1, then −γ(p− 1) < − p−1

2p−1 < 1
2 (γ − 1) < 0. Therefore,

n
1
2 (1−γ)

{
Fn(bn)
bn

− f0(0)
}
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=c−1/2
√
bn

Wn(F0(bn)) + Op(n
1
2 (1−γ)− 1

2 ) + Op(n
1
2 (1−γ)+γ−1 logn)

+ O(n 1
2 (1−γ)−γ(p−1)) d→ Z(0, c−1f0(0)).

(ii) If γ = 1
2p−1 , −γ(p− 1) = − p−1

2p−1 = 1
2 (γ − 1). Therefore,

n
p−1
2p−1

{
Fn(bn)
bn

− f0(0)
}

= c−1/2
√
bn

Wn(F0(bn)) − f1c
p−1 + op(1)

d→ Z(−f1c
p−1, c−1f0(0)).

(iii) If 0 < γ < 1
2p−1 , then 1

2 (γ − 1) < − p−1
2p−1 < −γ(p− 1) < 0. Therefore,

nγ(p−1)
{
Fn(bn)
bn

− f0(0)
}

= −f1c
p−1 + op(1) P→ −f1c

p−1.

The joint convergence can be established similar to the proof of Theorem 3.6
and we omit the details.

To state the following Corollary D.1, denote

D1 = D1(S0, x0, c, p) := cp−1S1S0(x0),

D2 = D2(S0, c) := Z

(
0, c−1S2

0(x0)
∫ ∞

0
S0(y)dy

)
.

Corollary D.1. Under Conditions CS1, CS2, and (3.10) for some p > 1, if
bn = cn−γ, where c > 0 and γ ∈ (0, 1), then the followings hold.

(a) If 1
2p−1 < γ < 1, then

n
1
2 (1−γ){ŜH

n (x0) − S0(x0)} d→ D2, if γ >
1
3 ;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ D2 + Y0, if γ = 1
3;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ Y0, if γ <
1
3 .

(b) If γ = 1
2p−1 , then

n
p−1
2p−1 {ŜH

n (x0) − S0(x0)} d→ D1 + D2, if γ >
1
3 ;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ D1 + D2 + Y0, if γ = 1
3;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ Y0, if γ <
1
3 .
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(c) If 0 < γ < 1
2p−1 , then

nγ(p−1){ŜH
n (x0) − S0(x0)} d→ D1, if γ(p− 1) < 1

3 ;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ D1 + Y0, if γ(p− 1) = 1
3;

n
1
3 {ŜH

n (x0) − S0(x0)} d→ Y0, if γ(p− 1) > 1
3 .

In (a) and (b), D2 and Y0 are independent.

Proof of Corollary D.1. Write

ŜH
n (x0) − S0(x0) = H1n + H2n,

where

H1n := − f̂n(x0)
f̂H
0 (0)f0(0)

{
f̂H
n (0) − f0(0)

}
,

H2n := 1
f0(0){f̂n(x0) − f0(x0)}.

With Theorem D.1, the proof remains to compare the rates of convergence to 0
of H1n and H2n. Since f ′

0(x0) < 0, the rate of convergence of H2n is n1/3.

(a) If 1/(2p− 1) < γ < 1, then the rate of convergence of Hn1 is n(1−γ)/2.
(i) If γ > 1/3, then (1 − γ)/2 < 1/3. Hence, H1n dominates and

n(1−γ)/2{ŜH
n (x0) − S0(x0)} d→ −f0(x0)

f0(0)2 Z(0, c−1f0(0)) = D2.

(ii) If γ = 1
3 , then (1 − γ)/2 = 1/3. Both H1n and H2n have the same

rate of convergence. Using the asymptotic joint distribution of the
two random variables in Theorem D.1,

n1/3{ŜH
n (x0) − S0(x0)} d→ D2 + Y0,

where D2 and Y0 are independent.
(iii) If γ < 1/3, then (1 − γ)/2 > 1/3. Then H2n dominates and

n1/3{ŜH
n (x0) − S0(x0)} d→ Y0.

(b) Suppose that γ = 1/(2p− 1). The rate of convergence of H1n is n
p−1
2p−1 .

(a) If γ > 1/3, then p ∈ (1, 2) and (p − 1)/(2p − 1) < 1/3. Hence, H1n
dominates and

n
p−1
2p−1 {ŜH

n (x0)−S0(x0)} d→ −f0(x0)
f0(0)2 Z(−f1c

p−1, c−1f0(0)) = D1+D2.
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(b) If γ = 1/3, then p = 2 and (p − 1)/(2p − 1) = 1/3. Both H1n and
H2n have the same rate of convergence and

n1/3{ŜH
n (x0) − S0(x0)} d→ D1 + D2 + Y0,

where D2 and Y0 are independent.
(c) If γ < 1/3, then p > 2 and (p − 1)/(2p − 1) > 1/3. Hence, H2n

dominates and
n1/3{ŜH

n (x0) − S0(x0)} d→ Y0.

(c) The proof is similar to (a) and (b), and it is omitted.

D.2. Additional Results for Section 3.5

For c > 0, define

A1 := {c/f0(0)}1/2 =
{
c

∫ ∞

0
S0(y)dy

}1/2

.

Theorem D.2. Under Conditions Cf1, Cf2, and Cf4′ for some k ≥ 1, if
1/(2k + 1) < α < 1, then (n(1−α)/2{f̂n(cn−α) − f0(0)}, n1/3{f̂n(x0) − f0(x0)})
converges in distribution to (A−1

1 DR[W (t)](1), f0(0)Y0).
Again, note that as a functional purely dependent on W (·), DR[W (t)](1) and

Y0 are independent of each other.

Proof of Theorem D.2. First, note that Theorem 3.1 in [14] implies that

A1n
(1−α)/2{f̂n(cn−α) − f0(0)} d→ DR[W (t)](1).

The require joint convergence can be proven similar to that in the proof of
Theorem 3.7

Corollary D.2. Under Conditions CS1, CS2, and CS4′ for some k ≥ 1, if
1/(2k + 1) < α < 1, then

n(1−α)/2{ŜN
n (x0) − S0(x0)} d→ S0(x0)

∫ ∞

0
S0(y)dyA−1

1 DR[W (t)](1), for α >
1
3 ;

n1/3{ŜN
n (x0)−S0(x0)} d→ S0(x0)

∫ ∞

0
S0(y)dyA−1

1 DR[W (t)](1) + Y0, for α = 1
3;

n1/3{ŜN
n (x0) − S0(x0)} d→ Y0, for α <

1
3 .

Proof of Corollary D.2. Write

ŜN
n (x0) − S0(x0) = − f̂n(x0)

f̂n(cn−α)f0(0)
{f̂n(cn−α) − f0(0)}

+ 1
f0(0){f̂n(x0) − f0(x0)}.

The rest of the proof is similar to that for Corollary D.1 by using Theorem D.2,
we just omit here.
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D.3. Additional Result for Section 3.6

Theorem D.3. Under Conditions Cf1, Cf3, Cf4′′ for some k ≥ 2, and Cf5,
if h1 = h1n = c1n

−1/5 and h2 = h2n = c2n
−α, where α ∈ (0, 1), then the

followings hold.

(i) If 1/(2k + 1) < α < 1/3, then(
n2/5{f̂S

n,h1
(x0) − f0(x0)}, n(1−α)/2{f̂S

n,h2
(0) − f0(0)}

)
converges in distribution to (Z(μ(2)

x0 , 0)�, D).
(ii) If 0 < α < 1/(2k + 1), then(

n2/5{f̂S
n,h1

(x0) − f0(x0)}, nkα{f̂S
n,h2

(0) − f0(0)}
)

converges in distribution to (Z(μ(2)
x0 , d11), μ0)

Proof of Theorem D.3. First, for f̂S
n,h1

(x0), by Lemma C.2 (i), Lemma C.3, and
Lemma C.4 (i), we have

n2/5{f̂S
n,h1

(x0) − f0(x0)} = n2/5Mx0,1,n + n2/5Mx0,2,n + n2/5Mx0,3,n

d→ μ(2)
x0

+ Z(0, d11),

as n2/5Mx0,3,n = n2/5Op(n1/5n−2/3(logn)2/3) = op(1). For f̂S
n,h2

(0), by Lem-
ma C.2 (ii), Lemma C.3, and Lemma C.4 (ii), we have

(i) if 1/(2k + 1) < α < 1/3,

n(1−α)/2M0,1,n = O(n(1−α)/2−αk) = o(1),

n(1−α)/2M0,2,n
d→ Z(0, d22),

n(1−α)/2M0,3,n = n(1−α)/2Op(nαn−2/3(logn)2/3) = op(1).

Thus,
n(1−α)/2{f̂S

n,h2
(0) − f0(0)} d→ Z(0, d22).

(ii) if 0 < α < 1/(2k + 1),

nkαM0,1,n → μ
(k)
0 ,

nkαM0,2,n = nkαOp(n−1/2+α/2) = op(1),
nkαM0,3,n = nkαOp(nαn−2/3(logn)2/3) = op(1).

Thus,
nkα{f̂S

n,h2
(0) − f0(0)} d→ μ

(k)
0 .
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The required joint convergence follows as (i) Mx0,3,n and M0,3,n are of smaller
order than the other two terms in the expansion (C.23) and (C.24) of f̂S

n,h1
(x0)

and f̂S
n,h2

(0), respectively; and (ii)
√
nh1Mx0,2,n and

√
nh2M0,2,n are asymptot-

ically independent by Theorem C.3.

Corollary D.3. Under Conditions CS1, CS3, CS4′′ for some k ≥ 2, and CS5,
if h1 = h1n = c1n

−1/5, h2 = h2n = c2n
−α, where α ∈ (0, 1), then the followings

hold.

(a) If 1/(2k + 1) < α < 1/3, then

n(1−α)/2{ŜS
n,h1,h2

(x0) − S0(x0)} d→ Z(0, σ2
2), if α >

1
5 ;

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ Z(μ(2)
1 , σ2

1 + σ2
2), if α = 1

5;

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ Z(μ(2)
1 , σ2

1), if α <
1
5 .

(b) If 0 < α < 1/(2k + 1), then

nαk{ŜS
n,h1,h2

(x0) − S0(x0)} d→ μ2, if αk <
2
5 ;

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ Z(μ(2)
1 + μ

(k)
2 , σ2

1), if αk = 2
5;

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ Z(μ(2)
1 , σ2

1), if αk >
2
5 .

Proof of Corollary D.3. Recall the definition of H1n and H2n in the proof of
Corollary 3.4.

(a) If 1/(2k + 1) < α < 1/3, then the rate of convergence of H1n is n(1−α)/2.
(i) If α > 1/5, then (1 − α)/2 < 2/5. Hence, H1n dominates and

n(1−α)/2{ŜS
n,h1,h2

(x0) − S0(x0)} d→ −f0(x0)
f0(0)2 Z(0, d22).

(ii) If α = 1/5, then (1 − α)/2 = 2/5. Both H1n and H2n have the same
rate of convergence. By Theorem 3.8,

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11) −

f0(x0)
f0(0)2 Z(0, d22).

(iii) If α < 1/5, then (1 − α)/2 > 2/5. Hence, H2n dominates and

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11).

The results then follow using the relationship between f0 and S0.
(b) If 0 < α < 1/(2k + 1), the rate of convergence of H1n is nαk.
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(i) If αk < 2/5, then H1n dominates and

nαk{ŜS
n,h1,h2

(x0) − S0(x0)} d→ −f0(x0)
f0(0)2 μ0.

(ii) If αk = 2/5, both H1n and H2n have the same rate of convergence.
By Theorem 3.8,

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11) −

f0(x0)
f0(0)2 μ0.

(iii) If αk > 2/5, then H2n dominates and

n2/5{ŜS
n,h1,h2

(x0) − S0(x0)} d→ 1
f0(0)Z(μ(2)

x0
, d11).

The results follow using the relationship between f0 and S0.
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