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1. Introduction

Our goal here is to derive quantitative bounds for approximate normality of
parameter estimators that arise as minimizers of certain random functions. The
main example to keep in mind is maximum likelihood estimation [56, Chapter
5.5], but other problems fit in the framework we shall consider, including least
square estimators [52] and cross validation [8, 61].

Consider a fixed compact parameter space Θ ⊂ R
p and a sequence of random

functions (Mn)n∈N, where for n ∈ N, Mn : Θ → R. Throughout, N is the set of
non-zero natural numbers. The variable n should be thought of as a sample size,
and Mn the function for which a minimizer will be the M-estimator of interest,
which is a (measurable) random vector θ̂n ∈ Θ such that

θ̂n ∈ argmin
θ∈Θ

Mn(θ). (1)
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A classical family of M-estimators is given by functions of the form

Mn(θ) = 1
n

n∑
i=1

ρ(θ,Xi) (2)

where the Xi are the sample independent data, valued in a space X , and ρ : Θ×
X → R is a fixed function. We shall address in details this class in Sections 3.1
and 3.2, but investigation shall go beyond this framework, in particular to cover
covariance estimation for Gaussian processes, addressed in Section 3.3.

Our goal will be to derive quantitative central limit theorems in L1 Wasser-
stein (or optimal transport) distance for the fluctuations of θ̂n around a deter-
ministic parameter θ0,n (that is allowed to depend on n). The simplest example
is when θ0,n = θ0 is fixed, typically when Mn stems from the likelihood function
and there is a fixed data generating process characterized by the “true” param-
eter θ0 [56, Chapter 5.5]. Nevertheless, we allow for a sample-size dependent
θ0,n which enables to address relevant situations such as misspecified models
[14, 17, 36, 59]. In particular, in [14, 17], the parameter of interest θ0,n that θ̂n
estimates explicitly depends on sample size.

In the context of this paper, it is typically already known that the distribu-
tion of n1/2(θ̂n− θ0,n) converges to a Gaussian distribution. General techniques
for showing this convergence are available in a wealth of contributions, see for
instance [20, 51, 56] and references therein. Our goal is then to go beyond the
convergence between these two distributions (for which, usually, no rates are
available) by providing quantitative bounds on their L1 Wasserstein distance.
In this view, the main challenge is the M-estimation setting, which often entails
that no explicit expression of θ̂n is available. Our main abstract result, The-
orem 2, is a general statement about reducing the problem to a central limit
theorem for an explicit function of the data. More precisely, the L1 Wasserstein
distance between the distribution of n1/2(θ̂n−θ0,n) and a Gaussian distribution
is bounded by the sum of a term of order O((log n)n−1/2) and the distance
between a Gaussian distribution and the normalized gradient of Mn at θ0,n.

Hence, Theorem 2 reduces the problem to quantifying the asymptotic nor-
mality of this normalized gradient. Since this quantity is explicit, there are many
techniques in the literature that can be applied. We shall discuss this aspect of
the problem in Section 2.3.

We shall illustrate the benefits of Theorem 2 with several examples of func-
tions Mn: averages of independent functions in Section 3.1, maximum likelihood
for logistic regression in Section 3.2 and cross validation estimation of covariance
parameters of Gaussian processes in Section 3.3. This last example highlights
the flexibility of our techniques, since the observations are dependent and the
function Mn is not based on the likelihood. In all these three cases, eventually,
we provide a bound, for the L1 Wasserstein distance between the distribution
of n1/2(θ̂n − θ0,n) and a Gaussian distribution, of order O((log n)n−1/2).

There has been a recent interest for bounding the normal approximation of
M-estimators, as we do here. On connected topics, the normal approximation
is quantified in [50] for the Delta method and in [3] for gradient descent. Con-
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sidering now specifically M-estimators, a series of articles successfully addressed
them: [1, 2, 4, 5, 6, 7, 15, 49, 54]. These articles address not only the univariate
case (for θ) [1, 6, 7, 15, 49], but also the general multivariate one [2, 4, 5, 54].
In particular, some of these references exploit the characterization of the L1

Wasserstein distance as a supremum of expectation differences, over Lipschitz
functions. This enables to decompose the target Wasserstein distance into sev-
eral terms that can be addressed independently with different approaches. This
idea appears for instance in equations (9), (10) and (20) in the reference [1], as
well as some of the other articles above. We also rely on it, see (22) and (24)
(also, Remark 7 discusses the extension of the results of this paper to general
Lp Wasserstein distances, p > 1).

We shall now highlight the novelty of our results compared to the above arti-
cles. First, the references [2, 4, 6, 7, 15, 49, 54] do not address the L1 Wasserstein
distance as we do. Only [1, 5] do. In [54], the distance is the supremum prob-
ability difference over convex sets, which is of the Berry-Esseen type. Earlier
and similarly, [15, 49] considered the Kolmogorov distance in the univariate
case. Also, [6, 7] address Zolotarev-type distances based on supremums of ex-
pectation differences over absolutely continuous bounded test functions (and
Lipschitz in [7], yielding the bounded-Wasserstein distance). Similarly, [2, 4]
consider test functions that are bounded with bounded derivatives of various
orders. Remark that while the L1 Wasserstein and Kolmogorov distances can
be compared under regularity conditions and a priori moment bounds, using
general comparison results typically worsens the quantitative estimates. Note
also that bounding the L1 Wasserstein distance is stronger than in [2, 4, 7], as
it allows for a larger class of test functions. Remark furthermore that Berry-
Esseen-type and Kolmogorov distances may be less sensitive than Wasserstein
distances to, for instance, the moments of θ̂n − θ0,n. Thus, the Wasserstein dis-
tances necessitate specific treatments compared to them (for instance, see the
proof and use of Lemma 7 here, or the terms in Theorem 2.1 in [7] involving
the moments of θ̂n − θ0,n).

In addition, we allow for general functions Mn, while most of the above ref-
erences focus on maximum likelihood. Some arguments provided for maximum
likelihood do carry over to general functions Mn, but it is not clear that this is
the case for all of them. Also, most of the above references focus on independent
observations (often also identically distributed) defining the function Mn (with
the exception of [1]), while we allow for Mn stemming from dependent observa-
tions. Again, some but not all arguments for independent observations can be
extended to dependent observations. In the case of independent observations,
as in [5] we shall rely on a result of Bonis [18] to bound the rate of convergence
in the multivariate central limit theorem.

Furthermore, in comparison to [1, 2, 4, 5, 6, 7], our general bound in Theo-
rem 2 only depends on Mn and its derivatives, and does not feature θ̂n − θ0,n.
In contrast, most of the general bounds in these references contain moments of
θ̂n − θ0,n (see for instance Theorem 2.1 in [7]). Hence, our general bound seems
more convenient to apply to examples, particularly when θ̂n does not have an
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explicit expression, which is often the case. In agreement with this, in most of
the examples provided by [1, 2, 4, 5, 6, 7], θ̂n has an explicit expression. As an
exception, [2, 7] address maximum likelihood estimation of the shape parameters
of the Beta distribution. Finally, [1, 2, 4, 5, 6, 7] usually make the assumption
that there is a unique θ̂n satisfying (1), while Theorem 2 here holds for any θ̂n
satisfying (1). In many statistical models of interest, there is no guarantee that
Mn has a unique minimizer over Θ, almost surely.

The examples we address are representative of the flexibility of Theorem 2. In
particular we address general averages of independent functions in Section 3.1.
We treat logistic regression in Section 3.2, with a simple proof once Theorem 2 is
established, which illustrates that this theorem is efficient even when θ̂n does not
have an explicit expression, and is not necessarily unique. Finally, in Section 3.3
we address cross validation estimation of covariance parameters of Gaussian
processes. This last example highlights our flexibility to dependent observations
and to Mn not stemming from a likelihood and even not being an average
of functions of individual observations (most of the discussed references above
consider these averages of functions for Mn). Again, θ̂n has no explicit expression
in this cross validation example.

Note that a price we pay, so to speak, for the wide class of M -estimators we
can address, is that our bounds are not exactly of order O(n−1/2), but rather of
order O((log n)n−1/2). In contrasts, the bounds given in the examples studied
in [1, 2, 4, 5, 6, 7] are of order exactly O(n−1/2). Remark 3 in Section 2 discusses
the obstacles, in our setting and compared to [1, 2, 4, 5, 6, 7], for establishing
bounds of order exactly O(n−1/2).

Similarly, our bonds feature non-explicit constants (that do not depend on
n but typically depend, for instance, on p). On the contrary, the bounds given
in the examples studied in [1, 2, 4, 5, 6, 7] are fully explicit. In particular, they
can be computed numerically, which can be beneficial in applications. Remark 4
provides further discussion on this point.

The rest of the paper is organized as follows. Section 2 provides the general
technical conditions and the general bound of Theorem 2, reducing the problem
to the asymptotic normality of the normalized gradient. It also discusses many
references to address this asymptotic normality in the probabilistic literature.
Section 3 addresses the three examples discussed above. Some of the proofs are
postponed to the appendix.

2. General bounds

For an �× � matrix A, we write ρ�(A) ≤ · · · ≤ ρ1(A) for its singular values, and
for a symmetric matrix, we write λ�(A) ≤ · · · ≤ λ1(A) for its eigenvalues.

2.1. Technical conditions

For u, v ∈ R
p, u �= v, we write [u, v] = {tu + (1 − t)v; t ∈ [0, 1]} and (u, v) =

{tu+(1− t)v; t ∈ (0, 1)}. We also write [u, u] = {u} and (u, u) = ∅. We write Θ̊
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for the interior of the parameter space Θ. The next condition means that Θ is,
so to speak, well-behaved. It can be checked that this condition holds for most
common compact parameter spaces, in particular hypercubes, balls, ellipsoids
and polyhedral sets. Typically we expect Condition 1 not to be restrictive in
practice.
Condition 1. There exist two constants 0 < CΘ < ∞ and 0 < c′Θ < ∞ such
that for each 0 < ε ≤ c′Θ, there exist N ≤ Cθε

−p and θ1, . . . , θN ∈ Θ̊ satisfying
the following. For each θ ∈ Θ, there exists i ∈ {1, . . . , N} such that (θ, θi) ⊆ Θ̊
and ||θ − θi|| ≤ ε.

Then, the next condition basically consists in asking for enough integrability
on the derivatives of Mn to be able to commute expectation and derivation,
which is usually established using the dominated convergence theorem. Remark
that the conditions on the first two derivative orders will actually be implied by
some of our later conditions, but we state them here independently for conve-
nience of writing.
Condition 2. Consider n ∈ N. For θ ∈ Θ, the random variable Mn(θ) is abso-
lutely summable. Almost surely, the function Mn is three times differentiable
on Θ̊. For i, j, k ∈ {1, . . . , p} and θ ∈ Θ̊, the random variables ∂Mn(θ)/∂θi,
∂2Mn(θ)/∂θi∂θj and ∂3Mn(θ)/∂θi∂θj∂θk are absolutely summable. Further-
more,

E

(
∂Mn(θ)
∂θi

)
= ∂E(Mn(θ))

∂θi
, E

(
∂2Mn(θ)
∂θi∂θj

)
= ∂2

E(Mn(θ))
∂θi∂θj

and

E

(
∂3Mn(θ)
∂θi∂θj∂θk

)
= ∂3

E(Mn(θ))
∂θi∂θj∂θk

.

Note that assuming that Mn is almost surely differentiable is also done in
many of the references discussed in the introduction. This assumption is indeed
satisfied in many practical cases. Nevertheless, this assumption does exclude
some cases, among which, importantly, the median estimator in dimension one
(defined as a minimizer of sums of absolute values) and estimators stemming
from L1 penalizations, for instance the lasso [55]. Asymptotic normality results
exist for non-differentiable functions Mn, see for instance [56, Theorem 5.21].
In future work, providing quantitative bounds on the Wasserstein distance for
these asymptotic normality results would definitely be relevant.

The next condition means that, for a fixed θ, Mn(θ) and ∂Mn(θ)/∂θi, i ∈
{1, . . . , p}, concentrate around their expectations at rate n−1/2, with an expo-
nential decay for deviations of order larger than n−1/2. Many tools from con-
centration inequalities (for instance [19, 23]) enable to check this condition in
specific settings (see for instance those of Section 3). The rate n in the expo-
nential is sharp in general for averages of i.i.d. random variables. For a function
f : Θ̊ → R and for θ ∈ Θ̊, we write ∇f(θ) the gradient column vector of f at θ
and we write ∇2f(θ) the Hessian matrix of f at θ.
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Condition 3. There are constants 0 < cM < ∞, 0 < c′M < ∞ and 0 < CM < ∞
such that for n ∈ N and 0 < ε ≤ c′M ,

sup
θ∈Θ

P(|Mn(θ) − E(Mn(θ))| ≥ ε) ≤ CMe−ncM ε2

and
sup
θ∈Θ̊

P(||∇Mn(θ) − E(∇Mn(θ))|| ≥ ε) ≤ CMe−ncM ε2 .

We expect Condition 3 to hold in many practical situations, except perhaps
for instance when considering long range dependence in time series [16].

The next condition is a control on the deviations of the derivatives of Mn

of order 1 and 2, that is uniform over Θ̊. Remark that the deviations that
are controlled are of larger order than those in Condition 3. Hence, again, the
condition can be checked in many settings.
Condition 4. There are constants 0 < cd,1 < ∞, 0 < Cd,1 < ∞ and 0 < C ′

d,1 <
∞ such that for n ∈ N and K ≥ C ′

d,1,

P

(
sup
θ∈Θ̊

||∇Mn(θ)|| ≥ K

)
≤ Cd,1ne

−cd,1K

and

P

(
sup
θ∈Θ̊

pmax
i,j=1

∣∣∣∣∂2Mn(θ)
∂θi∂θj

∣∣∣∣ ≥ K

)
≤ Cd,1ne

−cd,1K .

We then require the derivatives of order 1, 2 and 3 of Mn to have certain
bounded moments, respectively of order 1, 1 and 2.
Condition 5. There is a constant Cd,2 such that for n ∈ N,

sup
θ∈Θ̊

E (||∇Mn(θ)||) ≤ Cd,2, sup
θ∈Θ̊

pmax
i,j=1

E

(∣∣∣∣∂2Mn(θ)
∂θi∂θj

∣∣∣∣
)

≤ Cd,2 (3)

and
pmax

j,k,�=1
E

(
sup
θ∈Θ̊

∣∣∣∣ ∂3Mn(θ)
∂θj∂θk∂θ�

∣∣∣∣
2)

≤ Cd,2. (4)

Above, the moments are for fixed θ for the order 1 and 2. The moments for
the order 3 are uniform over Θ̊. Note that it can be seen from the proof of Theo-
rem 2 that assuming uniformity only locally around θ0,n (see Condition 7) would
be sufficient. For instance, [4] has a similar locally uniform moment bound on
the third-derivatives of the log-likelihood function (see (R.C.3) there). Overall,
for applications where Mn is already assumed to be three-times differentiable,
Condition 5 is arguably not overly restrictive.

The next condition requires the variances of the derivatives of order 1 and 2
of Mn to be of order 1/n. This condition is natural and easy to check in many
settings, for example for i.i.d. random variables. Nevertheless, similarly as for
Condition 3, Condition 6 could exclude some relevant settings, for instance long
range dependence in time series.
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Condition 6. There is a constant CVar such that for n ∈ N, j, k ∈ {1, . . . , p},

sup
θ∈Θ̊

pmax
j=1

Var
(
∂Mn(θ)
∂θj

)
≤ CVar

n

and
sup
θ∈Θ̊

pmax
j,k=1

Var
(
∂2Mn(θ)
∂θj∂θk

)
≤ CVar

n
.

Remark 1. In Condition 6, it is actually sufficient that the second inequality
holds only for θ = θ0,n. We state Condition 6 as it is only for convenience of
writing, and because checking the inequality uniformly over θ in the bounded
Θ̊ usually brings no additional difficulty.

For x ∈ R
p and r ≥ 0, we let B(x, r) be the closed Euclidean ball in R

p

with center x and radius r. The next condition introduces the sequence of de-
terministic parameters (θ0,n)n∈N, to which (θ̂n)n∈N is asymptotically close. In
the applications of Sections 3.2 and 3.3, θ0,n = θ0 does not depend on the
sample size and determines the fixed unknown data generating process. Never-
theless, it is beneficial to allow for an n-dependent θ0,n, to cover general cases
of misspecified models, for instance as in [14, 17, 36, 59].
Condition 7. There exists a sequence (θ0,n)n∈N and a constant 0 < cθ0 < ∞
such that for each n ∈ N, B(θ0,n, cθ0) ⊆ Θ̊. Additionally, for each n ∈ N,
E(∇Mn(θ0,n)) = 0. Finally, for each r > 0 such that Θ\B(θ0,n, r) �= ∅, there
exist constants Nr ∈ N and 0 < cr < ∞ such that for n ≥ Nr,

inf
θ∈Θ

||θ−θ0,n||≥r

(E(Mn(θ)) − E(Mn(θ0,n))) ≥ cr.

Condition 7 is a usual one in M-estimation: θ0,n cancels out the expected
gradient of Mn and is asymptotically the minimizer of E(Mn), so to speak.
In practice, Condition 7 will of course exclude statistical models that are not
identifiable, a common example being the estimation of the mean vectors, co-
variance matrices and proportions in a mixture of Gaussian distributions (even
with a known upper bound on the number of classes). We refer for instance to
[24, 35, 37] on estimation problems with mixtures. For statistical models that
are identifiable, Condition 7 is arguably not overly restrictive in practice.

Then, define the covariance matrix of the normalized gradient

C̄n,0 = Cov(
√
n∇Mn(θ0,n)) (5)

and the expected Hessian

H̄n,0 = E(∇2Mn(θ0,n)). (6)

The next condition requires the expected Hessian matrix of Mn at θ0,n to be
asymptotically strictly positive definite. Similarly to Condition 7, this is a usual
requirement for θ0,n and θ̂n to be close at asymptotic rate n−1/2.
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Condition 8. There are constants 0 < cθ0,H < ∞ and Nθ0,H ∈ N such that for
n ≥ Nθ0,H

λp(H̄n,0) ≥ cθ0,H .

We finally require the covariance matrix of the normalized gradient to be
asymptotically strictly positive definite, so that the Gaussian limit in the central
limit theorem is non-degenerate.
Condition 9. There are constants cθ0,∇ > 0 and Nθ0,∇ ∈ N such that for n ≥
Nθ0,∇,

λp(C̄n,0) ≥ cθ0,∇.

In practice, similarly as Condition 7, Conditions 8 and 9 are arguably not
overly restrictive for identifiable statistical models, while they will typically not
hold for non-identifiable ones.

2.2. Reduction to the normal approximation of the normalized
gradient

For a symmetric non-negative definite matrix A, we write A1/2 for its unique
symmetric non-negative definite square root. When A is also invertible, we write
A−1/2 = (A1/2)−1 = (A−1)1/2.

Consider the normalized gradient C̄
−1/2
n,0 n1/2∇Mn(θ0,n). If this normalized

gradient (that has identity covariance matrix) converges to a standard Gaus-
sian distribution, then the conditions of Section 2.1 imply that n1/2(θ̂n − θ0,n)
is asymptotically normally distributed, with asymptotic covariance matrix tak-
ing the “sandwich” form H̄−1

n,0C̄n,0H̄
−1
n,0. Equivalently, C̄−1/2

n,0 H̄n,0n
1/2(θ̂n − θ0,n)

converges to a standard Gaussian distribution. We state this result formally as
follows.

Theorem 1. Assume that Conditions 1 to 9 hold. Assume also that

C̄
−1/2
n,0

√
n∇Mn(θ0,n) L−→

n→∞
N (0, Ip) . (7)

Consider θ̂n as in (1). Then, we have

C̄
−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) L−→

n→∞
N (0, Ip) . (8)

Theorem 1 is a direct consequence of (24) going to zero in the proof of The-
orem 2 below. Theorem 1 can also be checked without referring to Theorem 2,
by using standard arguments. The condition (7) holds in many situations, see
in particular the references provided in Section 2.3. Many results similar to (8)
are stated in the literature (although typically not using the exact same set of
assumptions), with for instance [36] as one of the earliest ones in this vein.

We are interested in the Wasserstein distance between the two distributions
in (8). We now introduce this distance. We let L1 be the set of 1-Lipschitz
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continuous functions from R
p to R, that is the set of functions g such that, for

all x1, x2 ∈ R
p,

|g(x1) − g(x2)| ≤ ||x1 − x2||.
Then, for two random vectors U and V in R

p, the L1 Wasserstein distance
between the distributions of U and V is

W1(U, V ) = sup
f∈L1

|E(f(U)) − E(f(V ))|.

Equivalently, W1(U, V ) is also the well known L1 optimal transport cost, ac-
cording to the Kantorovitch-Rubinstein duality formula:

W1(U, V ) = inf
(Ũ,Ṽ )∼Π(U,V )

E(||Ũ − Ṽ ||),

where Π(U, V ) is the set of pairs of random vectors for which the first one
is distributed as U and the second one as V . For p > 1, we can also define
the Lp Wasserstein distance as minimizing the p-power of the distance over all
possible couplings. We shall discuss the extension of our results to those stronger
distances in Remark 7.

The next theorem is the main result of this paper. We show that the Wasser-
stein distance between the two distributions in (8) is bounded by the sum of a
term of order O((logn)n−1/2) and the distance between C̄

−1/2
n,0 n1/2∇Mn(θ0,n)

and the standard Gaussian distribution. The benefit on Theorem 2 is then that
C̄

−1/2
n,0 n1/2∇Mn(θ0,n) is usually much easier to analyze than C̄

−1/2
n,0 H̄n,0n

1/2

(θ̂n − θ0,n), since it takes an explicit form and is not defined as a minimizer. In
Section 2.3, we discuss many existing possibilities to quantify the asymptotic
normality of C̄−1/2

n,0 n1/2∇Mn(θ0,n).

Theorem 2. Assume that Conditions 1 to 9 hold. Consider θ̂n as in (1). Then
there are constants 0 < CW < ∞ and NW ∈ N such that for n ≥ NW , with Z
following the standard Gaussian distribution on R

p,

W1(C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z) ≤W1

(
C̄

−1/2
n,0

√
n∇Mn(θ0,n), Z

)
+ CW

logn√
n

. (9)

Remark 2. In Theorem 2, the bound on W1(C̄−1/2
n,0 H̄n,0n

1/2(θ̂n − θ0,n), Z) di-
rectly provides a similar bound on W1(n1/2(θ̂n−θ0,n), Zn), where Zn follows the
centered Gaussian distribution with covariance matrix H̄−1

n,0C̄n,0H̄
−1
n,0. Indeed the

matrix H̄−1
n,0C̄

1/2
n,0 is bounded and we can apply the well-known Lemma 1 below.

The same remark applies to Theorems 3, 4 and 5, since the matrix H̄−1
n,0C̄

1/2
n,0 is

also bounded in these latter contexts (as is shown in the proofs).

Lemma 1. Let U, V be two random vectors of R
p and h : Rp → R

p be such
that for u, v ∈ R

p, ||h(u) − h(v)|| ≤ C||u − v|| with 0 < C < ∞. Then
W1(h(U), h(V )) ≤ CW1(U, V ).
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Remark 3. The bound in (9) is not exactly of order O(n−1/2) as one may
have wished; there is the extra factor logn. With the proof techniques we have
used, this extra factor can be seen in particular in (29) which itself follows
from bounding the probability that the error ||θ̂n − θ0,n|| exceeds a threshold
t in (28). For this probability bound to vanish, we need t to be of order n−1/2

times (logn)1/2. This happens because the probability bound follows from a
union bound with a diverging number of terms, see Lemma 7 and the proof of
Lemma 2.

In future work, aiming at removing the extra factor logn in (9) is definitely
of interest. The main obstacle for this is, in our opinion, that we typically need
to bond the moments of ||θ̂n−θ0,n||, in cases where θ̂n does not have an explicit
expression. Note that these moments also occur in the references [1, 2, 4, 5, 6, 7]
discussed in the introduction, where they are bounded in several examples where
θ̂n has an explicit expression. In these examples, in the end, bounds of order
exactly O(n−1/2) are obtained.

As Theorems 3 to 5 below rely on Theorem 2, extra factors logn appear there
as well.
Remark 4. In Theorem 2, we do not provide an explicit expression of the con-
stants NW and CW , as a function, for instance, of p and of the constants given in
Conditions 1 to 9. As a consequence, also Theorems 3 to 5 feature non-explicit
bounds.

In specific examples, the references [1, 2, 4, 5, 6, 7] manage to provide explicit
bounds, by exploiting in particular explicit expressions of θ̂n. The numerical val-
ues of these explicit bounds also prove to be of practical use in simulations given
in some of these references. In our case, given the level of generality of Theo-
rem 2, providing explicit expressions for NW and CW appears to be difficult.
One may also anticipate that, even if such explicit expressions were obtained
and would yield fully explicit bounds in Theorems 3 to 5, these latter bounds
would take too high numerical values to be of practical use.

2.3. Background on approximate normality for functions of many
random variables

Theorem 2 reduces the problem of proving a quantitative bound on the distance
to the Gaussian for a general M-estimator to proving the same statement for an
explicit function of the data. We shall now describe some of the broad ideas for
proving such statements, some of which will be used in the applications described
in Section 3. We do not aim at being exhaustive, and other techniques can also
be used in this context.

The abstract setting is to consider a random variable of the form f(X1, ..., Xn)
where the Xi are random variables. The classical central limit theorem consists
in taking the Xi to be i.i.d. and f to be a normalized sum.

When f is a sum, which arises for M-estimators of the form (2) (see Sec-
tions 3.1 and 3.2), there is a vast literature on quantitative central limit the-
orems, beyond the classical i.i.d. assumptions. For independent variables, we
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shall use here a very general result of Bonis [18], but many other results can be
used in such a situation.

If f is not a sum, but is approximately affine, and all variables have some influ-
ence on the value, we still expect approximate normality. This heuristic has been
made rigorous by second-order Poincaré inequalities, which bound distances to
the Gaussian when certain functions of the first and second derivatives are small.
They have been introduced in the Gaussian setting by Chatterjee [22], extended
in [45], and analogues for general independent random variables via discrete
second-order derivatives were studied in [21, 27, 29]. Second-order Poincaré in-
equalities for non-Gaussian, non-independent random variables do not seem to
have been yet addressed in the literature, and warrant further investigation.

Another method for proving approximate normality in the Gaussian setting
when the function f is a multivariate polynomial is via the quantitative fourth
moment theorem of Nourdin and Peccati [42], which for example applies to
U-statistics. When the polynomial is square-free and has low influences, it is
possible to extend this phenomenon to more general i.i.d. random variables
[46]. The approach extends to non-independent functions of Gaussian variables,
a result known as the quantitative Breuer-Major theorem [41, 44]. We refer to
the monograph [43] for a thorough discussion of this approach. We shall use a
variant of it in Section 3.3.

For non-independent random variables, there have been successful implemen-
tations of variants of Stein’s method, often in situations where there is some
symmetry. Classical techniques include the exchangeable pairs method and the
zero-bias transform, and we refer to [53] for a survey.

3. Applications

3.1. Minimization of averages of independent functions

We now show how Theorem 2 applies to estimators provided by

Mn(θ) = 1
n

n∑
i=1

ρ(θ,Xi),

as in (2) with independent random vectors X1, . . . , Xn.
We introduce the property of sub-Gaussianity, that holds for a large class

of random variables, including Gaussian random variables, bounded random
variables and uniformly log-concave random variables.
Definition 1. A real-valued random variable X is said to be sub-Gaussian with
constant σ2 if for any t ∈ R we have

E

(
et(X−E[X])

)
≤ et

2σ2/2.

The next theorem, based on Theorem 2, provides a bound of order O((log n)
n−1/2) in Wasserstein distance for the asymptotic normality of M-estimators
based on (2), under uniform sub-Gaussianity for ρ and its derivatives with re-
spect to θ.
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Theorem 3. Assume that X1, . . . , Xn are independent. Assume moreover that
there are constants 0 < σ2 < ∞ and 0 < Esup < ∞ such that for any i ∈
{1, . . . , n}, for any j, k, � ∈ {1, . . . , p}, for any θ1 ∈ Θ, for any θ2 ∈ Θ̊, and for
any

Y ∈
{
ρ(θ1, Xi), ∂ρ(θ2, Xi)/∂θj , ∂2ρ(θ2, Xi)/∂θj∂θk, ∂3ρ(θ2, Xi)/∂θj∂θk∂θ�

}
, Y

is sub-Gaussian with constant σ2 and has absolute expectation bounded by Esup.
(10)

Assume moreover that Conditions 1, 2 and 7 to 9 hold. Consider Mn, θ̂n, C̄n,0
and H̄n,0 as in (2), (1), (5) and (6). Finally, assume that one of the two fol-
lowing conditions hold: either

• Condition (O1): There exist fixed constants λ > 0 and C < ∞ such that

E

(
exp

(
λ sup

θ∈Θ̊
||∇ρ(θ,Xk)||

))
≤ C;

E

(
exp

(
λ sup

θ∈Θ̊

∣∣∣∣ ∂2ρ

∂θi∂θj
(θ,Xk)

∣∣∣∣
))

≤ C

and

E

(
exp

(
λ sup

θ∈Θ̊

∣∣∣∣ ∂3ρ

∂θi∂θj∂θ�
(θ,Xk)

∣∣∣∣
))

≤ C

for all k ∈ {1, . . . , n} and i, j, � ∈ {1, . . . , p}.
Or

• Condition (O2): All the functions ||∇ρ(·, x)||, ∂2ρ(·, x)/∂θi∂θj and ∂3ρ(·, x)
/∂θi∂θj∂θ� have a modulus of continuity bounded by some function ω, uni-
formly in x ∈ X and in i, j, � ∈ {1, . . . , p}.

Then, there are constants 0 < Cρ < ∞ and Nρ ∈ N such that, for n ≥ Nρ, with
Z following the standard Gaussian distribution,

W1(C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z) ≤ Cρ

logn√
n

.

Remark 5. The sub-Gaussianity assumption (10) of Theorem 3 on the par-
tial derivatives of ρ(θ,Xi) with respect to θ can be checked based on the sub-
Gaussianity of X1, . . . , Xn only and on regularity properties of ρ.

Indeed, it is known that if a random vector V with values in R
k has compo-

nents that are sub-Gaussian with constant σ2, then for any c-Lipschitz function
f : Rk → R, the variable f(V ) is sub-Gaussian with constant at most of order
kc2σ2. The dimensional prefactor can be eliminated for example when the com-
ponents are independent and satisfy Talagrand’s L2 transport-entropy inequal-
ity [33]. Consider then the case where X1, . . . , Xn are uniformly sub-Gaussian
and for any j, k, � ∈ {1, . . . , p}, for any

f ∈
{
ρ , ∂ρ/∂θj , ∂

2ρ/∂θj∂θk, ∂
3ρ/∂θj∂θk∂θ�

}
,
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f is Lipschitz in its second variable, uniformly in θ, and |f(θ, xi,0)| is bounded,
also uniformly in θ, for some reference values xi,0 of Xi, i = 1, . . . , n. In this
case then the uniform sub-Gaussianity assumption (10) of Theorem 3 holds.

Note also that these latter assumptions are not minimal. For example, we
could relax the Lipschitz assumption on the second derivatives into some
quadratic growth. The assumptions on the third derivatives are much stronger
than what is necessary to ensure (4) to streamline applications: one can check
essentially the same conditions on all derivatives up to order three, rather than
single out a weaker condition for third derivatives.
Remark 6. The two possible conditions (O1) and (O2) in Theorem 3 are used
to ensure that Condition 4 holds. There are other possible ways of verifying it,
such as classical chaining techniques used to bound the suprema of stochastic
processes when stochastic forms of continuity (in θ) hold, see for example [57,
Chapter 8].

Proof of Theorem 3. First we must check that the conditions required by The-
orem 2 are satisfied. By assumptions, this means checking conditions 3 to 6.

From the sub-Gaussianity and bounded expectation assumption (10), we uni-
formly control moments of all order, and the first two parts of Condition 5 hold.
Condition 3 is an immediate consequence of the Gaussian concentration as-
sumption and Chernoff’s concentration bound. Condition 6 can be established
using the fact that we wish to control the variances of averages of independent
variables, and the uniform moment bounds.

Finally, we need to check that Condition 4 holds, assuming either (O1) or
(O2) holds. If the first one holds, Condition 4 is just a consequence of Markov’s
inequality. If the second one holds, by continuity, Condition 1 and fixing some
λ > 0, and some ε > 0 small enough, we have for any k ∈ {1, . . . , n},

E

(
exp

(
λ sup

θ∈Θ̊
||∇ρ(θ,Xk)||

))
≤ E

(
exp

(
λ sup

θi,i≤N
||∇ρ(θi, Xk)|| + λω(ε)

))

≤ eλω(ε)
∑
i≤N

E(exp(λ||∇ρ(θi, Xk)||))

≤ C ′,

for some constant 0 < C ′ < ∞, where the final bound uses the Gaussian con-
centration of ||∇ρ(θ,Xk)|| for fixed θ and the uniform bound on its expectation.
The same reasoning applies for the second derivatives, and therefore Condition 4
holds with the same argument as when (O1) holds. One can also check (4) with
the same reasoning.

Since Theorem 2 applies, we are reduced to understanding the asymptotic
behavior of

√
n∇Mn(θ0,n) = 1√

n

n∑
i=1

∇ρ(θ0,n, Xi).

Hence we are in the setting of a quantitative central limit theorem for sums of
independent random vectors. From the sub-Gaussianity assumption (10), we see
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that the fourth moments of ∇ρ(θ0,n, Xi), i = 1, . . . , n, are uniformly bounded.
Moreover, by Condition 9, this is not modified by multiplying these vectors by
C̄

−1/2
n,0 . Hence we are considering a sum of independent random vectors with

covariances summing to the identity matrix Ip, and we can apply the following
statement to conclude the proof, which is a particular case of a result of Bonis
[18, Theorem 11].

Proposition 1. Let (Zi)i=1,...,n be a sequence of independent random vectors
taking values in R

p, each centered, and such that Cov(
∑n

i=1 Zi) = nIp. Assume
moreover that for any i ∈ {1, . . . , n}, E[||Zi||4] ≤ β2, for a given 0 < β < ∞.
Then

W1

(
1√
n

n∑
i=1

Zi, Z

)
≤ 26(β3/2 + pβ)√

n

where Z is a standard Gaussian vector on R
p.

We stated here the version for independent but not identically distributed
variables. For i.i.d. variables, the bound can be further improved, as discussed
in [18].

3.2. Parameter estimation in logistic regression

We shall now present the simple example of logistic regression, where Theorem 3
is applied to a maximum likelihood estimator. We consider a deterministic se-
quence (xi)i∈N of vectors in R

p. To match the assumptions of Theorem 3, we
assume this sequence to be bounded.
Condition 10. There is a constant 0 < Cx,1 < ∞ such that for i ∈ N,

||xi|| ≤ Cx,1.

As previously, we let Θ be a fixed compact subset of Rp. We let θ0 ∈ Θ̊ be
fixed. We consider a sequence (yi)i∈N of independent random variables with, for
i ∈ N, yi ∈ {0, 1} and

P (yi = 1) = ex
�
i θ0

1 + ex
�
i θ0

. (11)

We let, for θ ∈ Θ,

pi,θ = ex
�
i θ

1 + ex
�
i θ

.

Hence, we are in the classical well-specified case where the parameter θ0 ∈ Θ
characterizes the data generating process, or distribution, of y1, . . . , yn. The
likelihood function of yi is, for θ ∈ Θ,

L(θ, yi) = pyi

i,θ(1 − pi,θ)1−yi .

Minus the logarithm of the likelihood of yi is, for θ ∈ Θ,

ρ(θ, xi, yi) = −yi log(pi,θ) − (1 − yi) log(1 − pi,θ)
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= −yix


i θ + log

(
1 + ex

�
i θ

)
.

Hence minus the normalized log likelihood function is, for θ ∈ Θ,

Mn(θ) = 1
n

n∑
i=1

(
−yix



i θ + log

(
1 + ex

�
i θ

))
. (12)

Note that we do not have an explicit expression for the minimizer of Mn. We
have, for θ ∈ Θ̊,

∇Mn(θ) = 1
n

n∑
i=1

(
−yixi + ex

�
i θ

1 + ex
�
i θ

xi

)
= 1

n

n∑
i=1

(−yixi + pi,θxi) . (13)

We also have, for θ ∈ Θ̊,

∇2Mn(θ) = 1
n

n∑
i=1

ex
�
i θ(1 + ex

�
i θ) − ex

�
i θex

�
i θ

(1 + ex
�
i θ)2

xix


i = 1

n

n∑
i=1

ex
�
i θ

(1 + ex
�
i θ)2

xix


i .

(14)
Hence we see that Mn(θ) is convex with respect to θ. Next, we assume that the
empirical second moment matrix of the xi’s is asymptotically strictly positive
definite. This type of condition is common for logistic regression [14, 30, 39] and
ensures asymptotic identifiability (Condition 8).
Condition 11. There are constants 0 < cx,2 < ∞ and Nx,2 ∈ N such that, for
n ≥ Nx,2,

λp

(
1
n

n∑
i=1

xix


i

)
≥ cx,2.

We can now state the Wasserstein bound on the asymptotic normality of the
maximum likelihood estimator, in logistic regression. To our knowledge, this
is the first established rate of convergence of asymptotic normality in logistic
regression.

Theorem 4. Assume that Θ satisfies Condition 1. Assume that Conditions 10
and 11 hold. Consider Mn in (12), θ̂n as in (1), θ0 as defined in (11), C̄n,0 as
in (5) and H̄n,0 as in (6). Then, there are constants 0 < Clog < ∞ and Nlog ∈ N

such that for n ≥ Nlog, with Z following the standard Gaussian distribution on
R

p,

W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0), Z

)
≤ Clog

logn√
n

.

3.3. Covariance parameter estimation for Gaussian processes by
cross validation

Our last example stems from the field of spatial statistics [8, 9, 13, 25, 26, 34,
58, 60, 61]. The goal is to illustrate the benefit of Theorem 2 to a situation
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where the observations are dependent and where Mn does not correspond to a
likelihood. We stress that θ̂n has no explicit expression.

We consider a sequence (xi)i∈N of deterministic vectors in R
d, that we call

observation points. Then, for n ∈ N, the observed data consist in a vector y(n) of
size n× 1 which component i is ξ(xi), where ξ : Rd → R is a centered Gaussian
process.

We are interested in the parametric estimation of the correlation function
of ξ, based on a parametric set of stationary correlation functions {kθ; θ ∈ Θ},
where for θ ∈ Θ, kθ : Rd → R and (u, v) ∈ R

2d → kθ(u − v) is a correlation
function. For an introduction to usual parametric sets of stationary correlation
functions in spatial statistics, we refer for instance to [10, 25, 26, 32, 58].

As an estimator for θ, we consider the minimization of the average of square
leave-one-out errors, letting, for θ ∈ Θ,

Mn(θ) = 1
n

n∑
i=1

(
y
(n)
i − Eθ(y(n)

i |y(n)
−i )

)2
.

Above, y(n)
−i is obtained from y(n) by deleting the component i and Eθ(·|·) means

that the conditional expectation is computed as if the Gaussian process ξ had
correlation function (u, v) ∈ R

2d → kθ(u − v). Now, for θ ∈ Θ, let Rn,θ be the
n × n matrix with coefficient i, j equal to kθ(xi − xj), that is, the correlation
matrix of y(n) under correlation function given by kθ. Then, from for instance
[8, 28, 61] (to which we refer for more background and discussions on cross
validation for Gaussian processes), we have

Mn(θ) = 1
n
y(n)
R−1

n,θdiag(R−1
n,θ)

−2R−1
n,θy

(n), (15)

where diag(M) is obtained by setting the off-diagonal elements of a square
matrix M to zero.

For n ∈ N, we let θ0,n = θ0, where θ0 is a fixed element of Θ̊ such that ξ
has correlation function kθ0 , which also implies that y(n) has correlation ma-
trix Rn,θ0 . This corresponds to a well-specified parametric set of correlation
functions. The next condition means that we consider the increasing-domain
asymptotic framework, where the sequence of observation points is unbounded,
with a minimal distance between any two distinct points [9, 26, 40].
Condition 12. There is a constant cx > 0 such that for i, j ∈ N, i �= j,

||xi − xj || ≥ cx.

The next condition is a lower bound on the smallest eigenvalues of the corre-
lation matrices from the parametric model. Given the increasing-domain asymp-
totic framework (Condition 12), this lower bound indeed holds for a large class
of families of stationary correlation functions [9, 12].
Condition 13. There is a constant 0 < cR,1 < ∞ such that

inf
n∈N

inf
θ∈Θ

λn(Rn,θ) ≥ cR,1.
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Next, we assume a third-order smoothness with respect to θ as well as a
decay of the correlation at large distance. As before, many families of stationary
correlation functions do satisfy this.
Condition 14. For any x ∈ R

d, kθ(x) is three times continuously differentiable
with respect to θ on Θ̊. There exist constants 0 < CR,2 < ∞ and 0 < cR,2 < ∞
such that for θ ∈ Θ, for x ∈ R

d,

|kθ(x)| ≤ CR,2

1 + ||x||d+cR,2
, n ∈ N (16)

and for θ ∈ Θ̊, for x ∈ R
d,

max
k∈{1,2,3}

i1,...,ik∈{1,...,p}

∣∣∣∣ ∂k

∂θi1 , . . . , ∂θik
kθ(x)

∣∣∣∣ ≤ CR,2

1 + ||x||d+cR,2
, n ∈ N. (17)

The next condition is interpreted as a global identifiability of the correlation
parameter. This condition is already made in the increasing-domain asymptotic
literature on cross validation and is not restrictive on the sequence (xi)i∈N and
the set {kθ} [9, 11].
Condition 15. For all X > 0, there are constants 0 < cX < ∞ and NX ∈ N such
that for n ≥ NX ,

inf
θ∈Θ

||θ−θ0||≥X

1
n

n∑
i,j=1

(kθ(xi − xj) − kθ0(xi − xj))2 ≥ cX .

Finally, the last condition is interpreted as a local identifiability of the cor-
relation parameter around θ0. Its discussion is similar to the previous one.
Condition 16. For all α1, . . . , αp ∈ R, with α2

1 + · · ·+α2
p > 0, there are constants

0 < cα < ∞ and Nα ∈ N such that for n ≥ Nα,

1
n

n∑
i,j=1

(
p∑

�=1

α�
∂kθ0(xi − xj)

∂θ�

)2

≥ cα.

Under the above conditions, it is known from [9, 11] that n1/2(θ̂n − θ0) con-
verges in distribution to a centered Gaussian vector with covariance matrix
H̄−1

n,0C̄n,0H̄
−1
n,0, with the notation of (5) and (6). Based on Theorem 2, we can

show that the rate of this convergence is O((logn)n−1/2) in Wasserstein dis-
tance. To the best of our knowledge, this is the first result of this kind for cross
validation estimation for spatial Gaussian processes. We remark that Theorem 2
also enables to address maximum likelihood estimation of covariance parameters
(see for instance [9, 26]), but we focus on cross validation for the sake of brevity
and to highlight the benefits of Theorem 2 beyond maximum likelihood.

Theorem 5. Assume that Θ satisfies Condition 1. Assume that Conditions 12
to 16 hold. Consider Mn in (15). Consider then θ̂n as in (1), θ0 as defined
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after (15), C̄n,0 as in (5) and H̄n,0 as in (6). Then, there are constants 0 <
CCV < ∞ and NCV ∈ N such that for n ≥ NCV, with Z following the standard
Gaussian distribution on R

p,

W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0), Z

)
≤ CCV

logn√
n

.

Remark 7 (Extension to Lp Wasserstein distances). Most of our work can be
fairly straightforwardly extended to Lp Wasserstein distances when p > 1, at
the cost of appropriate stronger assumptions. More precisely, Theorem 2 uses a
coupling argument (see (24)), and can be extended if we control higher moments,
by replacing Conditions 5 and 6 with higher moment controls. Theorem 4 also
extends, since we consider bounded variables and the quantitative central limit
theorem of [18] holds for all Lp distances if all moments are bounded. As things
stand, we lack a generalization of Proposition 2 to other distances to extend
Theorem 5, but we expect that the techniques of [38] can be used to generalize
it.

Quantitative central limit theorems for maximum likelihood in Lp Wasser-
stein distances for general p have been considered in [5] for i.i.d. random vari-
ables.

Appendix A: Proofs for Section 2

Lemma 2. Assume that Conditions 1 to 5 hold. Then there are constants 0 <
cM,1 < ∞, 0 < c′M,1 < ∞, 0 < CM,1 < ∞ and 0 < C ′

M,1 < ∞ such that, for
0 < t ≤ c′M,1 and K ≥ C ′

M,1,

P

(
sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ t

)
≤ CM,1K

pe−ncM,1t
2

tp
+ CM,1ne

−cM,1K .

Proof of Lemma 2. From Condition 1, and with c′M and C ′
d,1 from Conditions 3

and 4, there exists a constant CΘ,2 such that for 0 < r ≤ c′M/2C ′
d,1, there exist

N ≤ CΘ,2r
−p and Sr = {θ1, . . . , θN} ⊆ Θ̊ such that for each θ ∈ Θ, there exists

i ∈ {1, . . . , N} such that (θ, θi) ⊆ Θ̊ and ||θ − θi|| ≤ r. We then have, for each
K ≥ C ′

d,1, 0 < t ≤ c′M , using the mean value theorem,

P

(
sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ t

)
≤ P

(
max

θ∈St/2K
|Mn(θ) − E(Mn(θ))| ≥ t

2

)

+ P

(
sup
θ∈Θ̊

||∇Mn(θ)|| ≥ K

2

)
+ P

(
sup
θ∈Θ̊

||∇E(Mn(θ))|| ≥ K

2

)
.

Hence, because ∇E(Mn(θ)) = E(∇Mn(θ)) is bounded from Conditions 2 and 5,
and using a union bound, there is a constant C ′

d,1 ≤ C1 < ∞ such that when
K ≥ C1, 0 < t ≤ c′M , we obtain

P

(
sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ t

)
≤ (18)
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CΘ,22pKp

tp
max
θ∈Θ

P

(
|Mn(θ) − E(Mn(θ))| ≥ t

2

)
+ P

(
sup
θ∈Θ

||∇Mn(θ)|| ≥ K

2

)
.

Hence, using Conditions 3 and 4, we obtain, for 0 < t ≤ c′M and K ≥ C1,

P

(
sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ t

)
≤ CΘ,22pKpCMe−ncM t2/4

tp
+ Cd,1ne

−cd,1K/2.

This concludes the proof.

Lemma 3. Assume that Conditions 1 to 5 hold. Then there are constants 0 <
c∇,1 < ∞, 0 < c′∇,1 < ∞, 0 < C∇,1 < ∞ and 0 < C ′

∇,1 < ∞ such that, for
0 < t ≤ c′∇,1 and K ≥ C ′

∇,1,

P

(
sup
θ∈Θ

||∇Mn(θ) − E(∇Mn(θ))|| ≥ t

)
≤ C∇,1K

pe−nc∇,1t
2

tp
+ C∇,1ne

−c∇,1K .

Proof of Lemma 3. The proof is identical to that of Lemma 2.

Lemma 4. Assume that Conditions 1 to 5 and 7 hold. For any r > 0, there are
constants 0 < cθ̂,r < ∞ and 0 < Cθ̂,r < ∞ such that

P(||θ̂n − θ0,n|| ≥ r) ≤ Cθ̂,rne
−cθ̂,rn

1/4
.

Proof of Lemma 4. The event ||θ̂n − θ0,n|| ≥ r implies

inf
θ∈Θ

||θ−θ0,n||≥r

(Mn(θ) −Mn(θ0,n)) ≤ 0.

From Condition 7 and the triangle inequality, this implies, with a constant
0 < c1 < ∞, for n large enough,

sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ c1.

Hence

P(||θ̂n − θ0,n|| ≥ r) ≤ P

(
sup
θ∈Θ

|Mn(θ) − E(Mn(θ))| ≥ c1

)
.

Using now Lemma 2 with K = n1/4 and n large enough, we obtain, for some
constants 0 < c2 < ∞, 0 < C2 < ∞, 0 < c3 < ∞ and 0 < C3 < ∞, for n large
enough,

P(||θ̂n − θ0,n|| ≥ r) ≤ C2n
p/4e−nc2 + C2ne

−c2n
1/4 ≤ C3ne

−c3n
1/4

.

Lemma 5. Assume that Conditions 2, 5 and 8 hold. There exist constants
0 < c∇2,1 < ∞, 0 < c′∇2,1 < ∞ and N∇2,1 ∈ N such that for n ≥ N∇2,1

inf
θ∈Θ̊

||θ−θ0,n||≤c′∇2,1

λp(E(∇2Mn(θ))) ≥ c∇2,1.
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Proof of Lemma 5. Condition 5, together with the fact that we can exchange
derivatives and expectation for Mn (Condition 2) imply that the derivatives of
E(∇2Mn) are bounded uniformly in θ ∈ Θ̊. Hence, from Condition 8, we can
conclude the proof.

Lemma 6. Assume that Conditions 2, 5, 7 and 8 hold. Recall cθ0 from Condi-
tion 7. There are constants 0 < c∇,2 < ∞, 0 < c′∇,2 ≤ cθ0 and N∇,2 ∈ N such
that for n ≥ N∇,2, for ||θ − θ0,n|| ≤ c′∇,2,

||E(∇Mn(θ))|| ≥ c∇,2||θ − θ0,n||.

Proof of Lemma 6. Using Lemma 5 and E(∇2Mn(θ)) = ∇2
E(Mn(θ)) (Condi-

tion 2), we have, for ||θ − θ0,n|| ≤ c′∇2,1 and for n large enough,

||∇E(Mn(θ)) −∇E(Mn(θ0,n))|| ||θ − θ0,n||
≥ (∇E(Mn(θ)) −∇E(Mn(θ0,n)))
 (θ − θ0,n) ≥ c∇2,1||θ − θ0,n||2.

From Conditions 2 and 7,

∇E(Mn(θ0,n)) = 0.

Hence we have, for ||θ − θ0,n|| ≤ c′∇2,1 and for n large enough,

||∇E(Mn(θ))|| ≥ c∇2,1||θ − θ0,n||.

We conclude from Condition 2.

Lemma 7. Assume that Conditions 1 to 5, 7 and 8 hold. Recall cθ0 from
Condition 7. For any constant γ1 > 0, there are constants 0 < c∇,θ̂,1 < ∞,
0 < c′∇,θ̂,1 ≤ cθ0 , 0 < C∇,θ̂,1 < ∞ and N∇,θ̂,1 ∈ N such that for n ≥ N∇,θ̂,1 and
t ≤ c′∇,θ̂,1,

P

(
∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)
≤ C∇,θ̂,1

log(n)pγ1

tp
e−nc∇,θ̂,1t

2

+ C∇,θ̂,1ne
−c∇,θ̂,1(logn)γ1 + C∇,θ̂,1ne

−c∇,θ̂,1n
1/4

.

Proof of Lemma 7. Recall c′∇,2 from Lemma 6. For 0 < t < c′∇,2, we have, using
Lemmas 4 and 6, for n large enough,

P

(
∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)

≤ P

(
inf

θ∈B(θ0,n,c′∇,2)\B(θ0,n,t)
||∇Mn(θ)|| = 0

)
+ P

(
||θ̂n − θ0,n|| ≥ c′∇,2

)

≤ P

(
sup
θ∈Θ̊

||∇Mn(θ) − E(∇Mn(θ))|| ≥ c∇,2t

)
+ Cθ̂,c′∇,2

ne
−cθ̂,c′∇,2

n1/4

. (19)
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For any constant 0 < γ1 < ∞, we can now use Lemma 3 with K = (logn)γ1 to
obtain, for 0 < t < min(c′∇,2, c

′
∇,1), for n large enough,

P

(
∇Mn(θ̂n) = 0, t ≤ ||θ̂n − θ0,n|| ≤ cθ0

)
≤ C∇,1

log(n)pγ1

cp∇,2t
p

e−nc∇,1c
2
∇,2t

2
(20)

+ C∇,1ne
−c∇,1(logn)γ1 + Cθ̂,c′∇,2

ne
−cθ̂,c′∇,2

n1/4

. (21)

This concludes the proof.

Proof of Theorem 2. From the triangle inequality, we have

W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z

)
(22)

≤W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n),−C̄

−1/2
n,0

√
n∇Mn(θ0,n)

)
+ W1

(
−C̄

−1/2
n,0

√
n∇Mn(θ0,n), Z

)
=:W1 + W2.

Observe first that

W2 = W1

(
−C̄

−1/2
n,0

√
n∇Mn(θ0,n), Z

)
= W1

(
−C̄

−1/2
n,0

√
n∇Mn(θ0,n),−Z

)
= W1

(
C̄

−1/2
n,0

√
n∇Mn(θ0,n), Z

)
.

(23)

Hence, it is sufficient to bound

W1 = W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n),−C̄

−1/2
n,0

√
n∇Mn(θ0,n)

)
,

which we now do. Using the trivial coupling (alternatively, using the definition
of the L1 Wasserstein distance as a supremum of expectation difference over
1-Lipschitz functions), we have

W1 ≤ E

(∣∣∣∣∣∣C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣∣∣∣∣∣) . (24)

With cθ0 as in Condition 7, observe that if θ̂n ∈ B(θ0,n, cθ,0) then ∇Mn(θ̂n) = 0.
Hence, applying Hölder’s inequality, we obtain,

W1 ≤E

(∣∣∣∣∣∣C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣∣∣∣∣∣2)1/2

P

(
θ̂n �∈ B(θ0,n, cθ,0)

)1/2

+E

(
1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}∣∣∣∣∣∣C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣∣∣∣∣∣ )
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=E(W1,1)1/2P(A1,1)1/2 + E(W1,2), (25)

where we define

W1,1 =
∣∣∣∣∣∣C̄−1/2

n,0 H̄n,0
√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣∣∣∣∣∣2 ,
A1,1 =

{
θ̂n �∈ B(θ0,n, cθ,0)

}
and

W1,2 =1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}∣∣∣∣∣∣C̄−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n) + C̄

−1/2
n,0

√
n∇Mn(θ0,n)

∣∣∣∣∣∣ .
Let us first bound E(W1,1)1/2P(A1,1)1/2. In W1,1, C̄−1/2

n,0 is bounded from Con-
dition 9 and H̄n,0 is bounded from Condition 5. Furthermore,

√
n∇Mn(θ0,n)

has mean zero from Condition 7 and has bounded covariance matrix from Con-
dition 6. Hence, since Θ is compact, with constants 0 < C1 < ∞ and N1 ∈ N,
we have for n ≥ N1,

E(W1,1)1/2 ≤ C1
√
n.

Then Lemma 4 directly provides, for some constant 0 < c2 < ∞, 0 < C2 < ∞
and N2 ∈ N, for n ≥ N2,

P(A1,1)1/2 ≤ C2
√
ne−c2n

1/4
.

Hence, eventually, for some constants 0 < c3 < ∞, 0 < C3 < ∞ and N3 ∈ N,
for n ≥ N3,

E(W1,1)1/2P(A1,1)1/2 ≤ C3ne
−c3n

1/4
. (26)

Let us now bound E(W1,2). When ∇Mn(θ̂n) = 0 and θ̂n ∈ B(θ0,n, cθ,0), we
have, since B(θ0,n, cθ,0) ⊂ Θ̊,

0 = ∇Mn(θ0,n) + ∇2Mn(θ̃1, . . . , θ̃p)(θ̂n − θ0,n),

where θ̃1, . . . , θ̃p are on the segment between θ̂n and θ0,n and where ∇2Mn(θ̃1, . . . ,
θ̃p) is p× p with line k equal to the line k of ∇2Mn(θ̃k) for k ∈ {1, . . . , p}. This
yields, when ∇Mn(θ̂n) = 0 and θ̂n ∈ B(θ0,n, cθ,0),

H̄n,0
√
n(θ̂n − θ0,n) +

√
n∇Mn(θ0,n)

=
√
n
(
E(∇2Mn(θ0,n)) −∇2Mn(θ̃1, . . . , θ̃p)

)
(θ̂n − θ0,n). (27)

Using Condition 9, we obtain, when ∇Mn(θ̂n) = 0 and θ̂n ∈ B(θ0,n, cθ,0), for
n ≥ Nθ0,∇,
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W1,2

≤ 1
√
cθ0,∇

√
n
∣∣∣∣∣∣(E(∇2Mn(θ0,n)) −∇2Mn(θ̃1, . . . , θ̃p)

)
(θ̂n − θ0,n)

∣∣∣∣∣∣
≤ 1

√
cθ0,∇

√
nρ1

(
E(∇2Mn(θ0,n)) −∇2Mn(θ̃1, . . . , θ̃p)

)
||θ̂n − θ0,n||

≤ C4
√
n

pmax
j,k=1

∣∣E(∇2Mn(θ0,n))j,k −∇2Mn(θ0,n)j,k
∣∣ ||θ̂n − θ0,n||

+ C4
√
n

pmax
j,k,�=1

sup
θ∈Θ̊

∣∣∣∣ ∂3Mn(θ)
∂θj∂θk∂θ�

∣∣∣∣ ||θ̂n − θ0,n||2,

where, in the last inequality, 0 < C4 < ∞ is a constant and we have used
the mean value theorem. Using Hölder’s inequality together with Conditions 5
and 6, we obtain, for some constants 0 < C5 < ∞, 0 < C6 < ∞ and N5 ∈ N,
for n ≥ N5,

E(W1,2) ≤C5
√
n

pmax
j,k,=1

Var(∇2Mn(θ0,n)j,k)1/2

E

(
1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||2

)1/2

+ C5
√
n

pmax
j,k,�=1

E

(
sup
θ∈Θ̊

∣∣∣∣ ∂3Mn(θ)
∂θj∂θk∂θ�

∣∣∣∣
2)1/2

E

(
1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||4

)1/2

≤C6E
(
1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||2

)1/2

+ C6
√
nE

(
1{∇Mn(θ̂n)=0}1{θ̂n∈B(θ0,n,cθ,0)}||θ̂n − θ0,n||4

)1/2
.

We now apply Lemma 7 with the choice of the constant γ1 = 2 there. We
obtain, with some constants 0 < c7 < ∞, 0 < c′7 < ∞, 0 < C7 < ∞ and N7 ∈ N,
for n ≥ N7 and 0 < t ≤ c′7,

P

(
∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥ t, θ̂n ∈ B(θ0,n, cθ,0)

)
≤ C7

log(n)2pe−nc7t
2

tp

+ C7ne
−c7(logn)2 + C7ne

−c7n
1/4

. (28)

Let C8 = (p/2 + 4)/c7. Using E(X) ≤ A + XmaxP(X ≥ A) for a non-negative
random variable X bounded by Xmax > 0 and for A > 0, we obtain, for a
constant 0 < C9 < ∞, for n ≥ N7,

E(W1,2) ≤ C9

(
C8

log(n)
n

+

P

(
∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥

√
C8 log(n)√

n
, θ̂n ∈ B(θ0,n, cθ,0)

))1/2
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+ C9

(
C2

8 (logn)2

n
+ (29)

nP

(
∇Mn(θ̂n) = 0, ||θ̂n − θ0,n|| ≥

√
C8 log(n)√

n
, θ̂n ∈ B(θ0,n, cθ,0)

))1/2

.

Hence from (28), for a constant N8 ∈ N, for n ≥ N8,

E(W1,2) ≤

C9

(
C8

log(n)
n

+ C7 log(n)2pn
p/2e−(p/2+4) logn

(C8 logn)p/2
(30)

+ C7ne
−c7(logn)2 + C7ne

−c7n
1/4

)1/2

(31)

+ C9

(
C2

8 (logn)2

n
+ C7 log(n)2pn

p/2+1e−(p/2+4) logn

(C8 logn)p/2
(32)

+ C7n
2e−c7(logn)2 + C7n

2e−c7n
1/4

)1/2

. (33)

As n → ∞, the quantities

C7 log(n)2pn
p/2e−(p/2+4) logn

(C8 logn)p/2
and C7 log(n)2pn

p/2+1e−(p/2+4) logn

(C8 logn)p/2

in (30) and (32) have smaller order than n−5/2. Similarly, as n → ∞, the
quantities

C7ne
−c7(logn)2 and C7n

2e−c7(logn)2

in (31) and (33) have smaller order than n−B for any constant B. Hence, there
are constants N10 ∈ N and 0 < C10 < ∞ such that, when n ≥ N10,

E(W1,2) ≤ C10
logn√

n
. (34)

Hence from (22), (23), (25), (26) and (34), we obtain, for n ≥ N3 and n ≥ N10,

W1

(
C̄

−1/2
n,0 H̄n,0

√
n(θ̂n − θ0,n), Z

)
≤W1

(
C̄

−1/2
n,0

√
n∇Mn(θ0,n), Z

)
+ C3ne

−c3n
1/4

+ C10
logn√

n
.

This concludes the proof.
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Appendix B: Proofs for Section 3.2

Proof of Theorem 4. As stated previously, the function Mn is given by

Mn(θ) = 1
n

n∑
i=1

(
−yix

T
i θ + log(1 + ex

T
i θ)

)

where the yi are independent random variables with values in {0, 1}. Defining
Xi = (xi, yi), we are in the framework of Theorem 3, so let us check that the
required conditions indeed hold.

It can be checked that there is a constant 0 < C1 < ∞ such that for any Y
as in (10), Y is almost surely bounded by C1 (observe that Y only takes two
values). Hence the assumption (10) of sub-Gaussianity and bounded expectation
holds.

Condition 1 is already assumed to hold. Condition 2 can be shown simply. Let
us show that Condition 7 holds. Indeed, ∇E(Mn(θ0)) = 0 can be seen directly
from (13). Furthermore, from (14), we have, for θ ∈ Θ̊,

∇2
E(Mn(θ)) = ∇2Mn(θ) = 1

n

n∑
i=1

ex
�
i θ

(1 + ex
�
i θ)2

xix


i .

Hence, from Conditions 10 and 11, there are constants N2 ∈ N and 0 < c2 < ∞
such that for n ≥ N2 and θ ∈ Θ̊,

λp

(
∇2Mn(θ)

)
≥ c2. (35)

Hence, since ∇E(Mn(θ0)) = 0, by strong convexity, Condition 7 holds.
Condition 8 is a consequence of (35). Condition 9 holds because

Cov(
√
n∇Mn(θ0)) = ∇2Mn(θ0)

(this holds because we have a well-specified likelihood model and can also be
checked directly).

Finally, since all the quantities involved are uniformly bounded, Condition
(O1) for checking Condition 4 holds. Condition (O2) could also be used instead,
since the functions involved are all uniformly globally Lipschitz.

Hence Theorem 3 can be applied, which concludes the proof.

Appendix C: Proofs for Section 3.3

Lemma 8. Assume that Conditions 12 and 14 hold. There is a constant CR

such that for n ∈ N,
sup
θ∈Θ

ρ1 (Rn,θ) ≤ CR.

Proof of Lemma 8. The lemma follows from (16) and from Lemma 4 in [31].
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Lemma 9. Assume that Conditions 12 to 14 hold. Then, we have, for j ∈
{1, . . . , p}, θ ∈ Θ̊ and n ∈ N,

(∇Mn(θ))j = 1
n
y(n)
Bn,θ,jy

(n) (36)

with

Bn,θ,j = (37)

2R−1
n,θdiag(R−1

n,θ)
−2

(
diag

(
R−1

n,θ

∂Rn,θ

∂θj
R−1

n,θ

)
diag(R−1

n,θ)
−1 −R−1

n,θ

∂Rn,θ

∂θj

)
R−1

n,θ.

For a constant and 0 < CB < ∞, we have, for n ∈ N,

max
j=1,...,p

sup
θ∈Θ̊

ρ1 (Bn,θ,j) ≤ CB . (38)

Proof of Lemma 9. The equation (36) is proved in [9, 11]. The equation (38)
follows from Condition 13, Lemma 8 and (17) and from the arguments in the
proof of Proposition D.7 in [9].

Lemma 10. Assume that Conditions 12 to 14 hold. Then, we have, for j, k ∈
{1, . . . , p}, for θ ∈ Θ̊, for n ∈ N,

(∇2Mn(θ))j,k = 1
n
y(n)
Cn,θ,j,ky

(n), (39)

where the matrices Cn,θ,j,k satisfy, for a constant 0 < CC < ∞, for n ∈ N,

max
j,k=1,...,p

sup
θ∈Θ̊

ρ1 (Cn,θ,j,k) ≤ CC . (40)

Proof of Lemma 10. Equation (39) is shown in [9], where the matrices Cn,θ,j,k

are obtained from the matrices

Rn,θ, R
−1
n,θ, ∂Rn,θ/∂θj , ∂Rn,θ/∂θk and ∂2Rn,θ/∂θk∂θj = ∂2Rn,θ/∂θj∂θk,

from sums and products and from the diag operator. The precise expressions of
the matrices Cn,θ,j,k can be found in [9]. Equation (40) is then shown similarly
to (38).

Lemma 11. Assume that Conditions 12 to 14 hold. Then, for j, k, � ∈ {1, . . . , p},
for θ ∈ Θ̊, for n ∈ N, we have

∂3Mn(θ)
∂θj∂θk∂θ�

= 1
n
y(n)
Dn,θ,j,k,�y

(n), (41)

where the matrices Dn,θ,j,k,� satisfy, for some constant 0 < CD < ∞, for n ∈ N,

max
j,k,�=1,...,p

sup
θ∈Θ̊

ρ1 (Dn,θ,j,k,�) ≤ CD. (42)
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Proof of Lemma 11. The proof is the same as for Lemma 10.

Lemma 12. Assume that Conditions 12 to 14 hold. Then, there is a constant
0 < C∂,y < ∞ such that for n ∈ N,

sup
θ∈Θ̊

||∇Mn(θ)|| ≤ C∂,y
1
n
||y(n)||2, (43)

sup
θ∈Θ̊

ρ1(∇2Mn(θ)) ≤ C∂,y
1
n
||y(n)||2 (44)

and
sup
θ∈Θ̊

max
j,k,�=1,...,p

∣∣∣∣ ∂3Mn(θ)
∂θj∂θk∂θ�

∣∣∣∣ ≤ C∂,y
1
n
||y(n)||2. (45)

Proof of Lemma 12. Equations (43), (44) and (45) follow from Lemmas 9, 10
and 11.

Lemma 13. Assume that Conditions 12, 13, 14 and 16 hold. Then, Condition 8
holds with Mn as in (15) and θ0,n = θ0 as after (15).

Proof of Lemma 13. Let α, β ∈ R
p with α2

1 + · · ·+α2
p = 1 and β2

1 + · · ·+β2
p = 1.

For a matrix M , let ||M ||F be its Frobenius norm. We have

1√
n

∣∣∣∣∣
∣∣∣∣∣

p∑
�=1

α�
∂Rn,θ0

∂θ�
−

p∑
�=1

β�
∂Rn,θ0

∂θ�

∣∣∣∣∣
∣∣∣∣∣
F

(46)

≤ ||α− β|| 1√
n

p∑
�=1

∣∣∣∣
∣∣∣∣∂Rn,θ0

∂θ�

∣∣∣∣
∣∣∣∣
F

≤ C1||α− β||,

with a constant 0 < C1 < ∞, from (17) and Lemma 4 in [31]. Hence, Condi-
tion 16 implies that

lim inf
n→∞

inf
α1,...,αp∈R

α2
1+···+α2

p=1

1
n

n∑
i,j=1

(
p∑

�=1

α�
∂(Rn,θ0)i,j

∂θ�

)2

> 0. (47)

The inequality (47) follows from (46) and Condition 16. Indeed, if (47) does
not hold we can consider a convergent subsequence of unit norm vectors of Rp,
(αn)n∈N, for which the quantity in (47) goes to zero. Considering the limit of
αn and (46) yields a contradiction to Condition 16.

We have from the proof of Proposition 3.7 in [9] that there exists a constant
0 < c2 < ∞ such that, for all α ∈ R

p with α2
1 + · · · + α2

p = 1,

p∑
k,�=1

αkα�(E(∇2Mn(θ0)))k,� ≥ c2
1
n

n∑
i,j=1

(
p∑

�=1

α�
∂(Rn,θ0)i,j

∂θ�

)2

.

Hence from (47) we obtain

lim inf
n→∞

λp

(
E(∇2Mn(θ0))

)
> 0.
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Lemma 14. Assume that Conditions 12, 13, 14 and 16 hold. Then, Condition 9
holds with Mn as in (15) and θ0,n = θ0 as after (15).

Proof of Lemma 14. Assume that for all constants 0 < c1 < ∞ and N1 ∈ N,
there is n ≥ N1 such that,

λp(Cov(
√
n∇Mn(θ0))) ≤ c1. (48)

Then, up to extracting a subsequence, there exists a sequence of unit vectors
(vn)n∈N of Rp such that

v
n Cov(
√
n∇Mn(θ0))vn →n→∞ 0. (49)

Let, for t ≥ 0 such that θ0 + tvn ∈ Θ̊,

Mn(t) = Mn(θ0 + tvn)

and let M ′
n(t) be the derivative at t of t → Mn(t). We have

M ′
n(0) = ∇Mn(θ0)
vn.

Hence (49) implies
Var(

√
nM ′

n(0)) →n→∞ 0. (50)

Consider the logarithm of the likelihood

Ln(t) = −1
2 log(det(Rn,t)) −

1
2y

(n)
R−1
n,ty

(n),

where Rn,t = Rn,θ0+tvn . Let K > 0 be fixed, to be selected later. Then, with
L′
n(t) and L′′

n(t) the first and second derivative of t → Ln(t) at t, for n such
that B(θ0,K/

√
n) ⊂ Θ̊,

∣∣Ln(0) − Ln(K/
√
n)
∣∣ ≤ K√

n
sup

|t|≤K/
√
n

|L′
n(t)|

≤ K√
n
|L′

n(0)| +
(

K√
n

)2
sup

|t|≤K/
√
n

|L′′
n(t)|. (51)

Let Pn,t, En,t and Varn,t be the Gaussian distribution of y(n), and the corre-
sponding expectation and variance, assuming that y(n) has mean vector zero
and covariance matrix Rn,t. From the arguments in [9], |L′′

n(t)| is bounded by
nC1 + C1||y(n)||2 and L′

n(0) has expectation under Pn,0 equal to zero and vari-
ance under Pn,0 bounded by C1n, where C1 can be chosen independently of
t ∈ [0,K]. Hence the quantity in (51) is bounded in Pn,0 probability. We also
have, for n such that B(θ0,K/

√
n) ⊂ Θ̊,

∣∣Ln(0) − Ln(K/
√
n)
∣∣ ≤ K√

n
sup

|t|≤K/
√
n

|L′
n(t)|
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≤ K√
n
|L′

n(K/
√
n)| + 2

(
K√
n

)2

sup
|t|≤K/

√
n

|L′′
n(t)| (52)

and, similarly as before, the quantity in (52) is bounded in Pn,K/
√
n probabil-

ity. Hence, from Le Cam’s first lemma (see for instance [56, Lemma 6.4]), the
measures Pn,0 and Pn,K/

√
n are mutually contiguous.

Now (50) and En,0(M ′
n(0)) = 0 imply that

√
nM ′

n(0) →Pn,0
n→∞ 0. (53)

Hence, we have, again from Le Cam’s first lemma and from (53), that
√
nM ′

n(0) →Pn,K/
√

n
n→∞ 0. (54)

We have, for t ∈ [0,K/
√
n] and n such that B(θ0,K/

√
n) ∈ Θ̊,

|En,0(M ′′
n (0)) − En,t(M ′′

n (t))|
≤ |En,0(M ′′

n (0)) − En,0(M ′′
n (t))| + |En,0(M ′′

n (t)) − En,t(M ′′
n (t))|

= |En,0(M ′′
n (0)) − En,0(M ′′

n (t))| + 1
n

Tr ((Rn,0 −Rn,t)Qn,t) ,

with

Qn,t =
p∑

j,k=1

(vn)j(vn)kCn,θ0+tvn,j,k

from (39). Hence from (45), (40), the Cauchy-Schwarz inequality and Lemma 8,
we have

sup
t∈[0,K/

√
n]
|En,0(M ′′

n (0)) − En,t(M ′′
n (t))| →n→∞ 0.

Hence, from Lemma 13, there exist N2 ∈ N and 0 < c2 < ∞ such that, for
n ≥ N2,

inf
t∈[0,K/

√
n]
En,t(M ′′

n (t)) ≥ c2. (55)

Note that c2 can be chosen independently on K while N2 depends on K (for
instance, with c2 = cθ0,H/2 as in Condition 8). Similarly as for showing (55),
we can change the values of c2 and N2 such that, for n ≥ N2,

inf
t1,t2∈[0,K/

√
n]
En,t1(M ′′

n (t2)) ≥ c2. (56)

Again, c2 can be chosen independently on K while N2 depends on K. Then,
from the arguments of the proof of Lemma 6, together with (56), we obtain, for
n larger than a constant NK,1 ∈ N,

|En,K/
√
n

√
nM ′

n(0)| ≥
√
nc2

K√
n
.

Furthermore, from (36), (38) and (16) we have, for n larger than a constant
NK,2 ∈ N, Varn,K/

√
n(
√
nM ′

n(0)) ≤ C3 with a constant 0 < C3 < ∞ that does
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not depend on K. Hence, by taking K large enough, the lim inf of the Pn,K/
√
n-

probability that |√nM ′
n(0)| is larger than one can be made arbitrarily large.

This is a contradiction to (54). Hence we have a contradiction to (48), which
concludes the proof.

Proposition 2. Let X = (Y 
A1Y, ..., Y

ApY ) be a random vector, with A1, ...,

Ap symmetric n× n matrices, and Y a Gaussian vector with covariance matrix
K. Let C be the p× p matrix with coefficients

Ci,j = 2 Tr(KAiKAj)

and ZC be a p-dimensional centered Gaussian vector with covariance matrix C.
Assume moreover that X is centered, which is the same as assuming that

Tr(AiK) = 0, i = 1, . . . , p.

Then

W1(X,ZC) ≤
√

λ1(C)
λp(C)

√
2

∑
i,j=1,...,p

Tr((KAiKAj)2).

Note that if all eigenvalues of the Ai are at most of order 1/
√
n, if the eigen-

values of K are bounded from above and if λp(C) is bounded from below (which
will be the case for our application), this bound will be of order p/

√
n.

Proof of Proposition 2. The proposition is a direct consequence of [47, Propo-
sition 4.3].

Proof of Theorem 5. Let us check that Conditions 1 to 9 hold in order to apply
Theorem 2. Condition 1 is already assumed to hold. Condition 2 holds because
of Lemmas 9 to 12. Let us check the first part of Condition 3. From (15),
Condition 13, (16) and Lemma 8 and as in [9], we have

Mn(θ) = 1
n
y(n)
An,θy

(n)

with An,θ symmetric and supθ∈Θ ρ1(An,θ) ≤ C1 for a constant 0 < C1 < ∞.
By diagonalization, for each fixed θ ∈ Θ, there exist independent standard
Gaussian variables zn,θ,1, . . . , zn,θ,n and scalars λn,θ,1, . . . , λn,θ,n, such that, with
a constant 0 < C2 < ∞,

sup
n∈N

sup
θ∈Θ

nmax
i=1

|λn,θ,i| ≤ C2 and Mn(θ) = 1
n

n∑
i=1

λn,θ,iz
2
n,θ,i.

Hence, we can apply Bernstein’s inequality (for instance Theorem 2.8.1 in [57])
and we obtain, for 0 < ε ≤ 1,

sup
θ∈Θ

P(|Mn(θ) − E(Mn(θ))| ≥ ε) ≤ C3e
−nc3ε

2
,
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with constants 0 < c3 < ∞ and 0 < C3 < ∞ that do not depend on ε. Hence
the first part of Condition 3 indeed holds. The second part is shown in the same
way, using Lemma 9.

Let us check the first part of Condition 4. From (43), we obtain

P

(
sup
θ∈Θ̊

||∇Mn(θ)|| ≥ K

)
≤ P

(
Cδ,y

nmax
i=1

(
y
(n)
i

)2
≥ K

)

≤ n
nmax

i=1
P

(
Cδ,y(y(n)

i )2 ≥ K
)
≤ C4ne

−c4K ,

with constants 0 < c4 < ∞ and 0 < C4 < ∞, from, for instance, (A.2) in [23].
Hence the first part of Condition 4 holds. The second part is shown similarly.

Condition 5, (3) follows from (43) and (44). Condition 5, (4) holds using
first (45), then observing that from for instance (A.6) and (A.7) in [48], we have

E

((
1
n
||y(n)||2

)2
)

= 1
n2 Tr (Rn,θ0)

2 + 2
n2 Tr

(
R2

n,θ0

)
,

and finally using Lemma 8.
The first part of Condition 6 is shown from Lemma 9 and, e.g., (A.7) in

[48]. The second part is shown similarly from Lemma 10. In Condition 7, the
offline equation follows from Condition 15 and the proof of Proposition 3.4 in
[9]. Furthermore, E(∇Mn(θ0)) = 0 is shown for instance in [9] and can also be
checked directly. Thus Condition 7 holds. Condition 8 holds from Lemma 13.
Condition 9 holds from Lemma 14.

Hence Theorem 2 can be applied. From this theorem, in order to conclude
the proof, it is sufficient to show that, with a constant 0 < C5 < ∞,

W1

(
C̄

−1/2
n,0

√
n∇Mn(θ0), Z

)
≤ C5√

n
. (57)

The quantity
√
n∇Mn(θ0) satisfies the condition of Proposition 2, with Y =

y(n) and, for j = 1, . . . , p,

Aj = 1
2
√
n

(
Bn,θ0,j + B


n,θ0,j

)
,

from Lemma 9. From Condition 7, then indeed E(y(n)
Ajy
(n)) = 0. Then Propo-

sition 2 yields
W1(

√
n∇Mn(θ0), Zn) ≤ C6√

n
, (58)

where Zn is a Gaussian vector with mean zero and covariance matrix C̄n,0, for
a constant 0 < C6 < ∞, from (38), Conditions 6 and 9 and Lemma 8. Then
from Lemma 1 and Condition 9,

W1

(
C̄

−1/2
n,0

√
n∇Mn(θ0), Z

)
≤ C6√

n
√
cθ0,∇

.

Hence, (57) is shown, which concludes the proof.
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