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Abstract: We propose a new autocorrelation measure for functional time
series that we term “spherical autocorrelation”. It is based on measuring
the average angle between lagged pairs of series after having been projected
onto the unit sphere. This new measure enjoys several complimentary ad-
vantages compared to existing autocorrelation measures for functional data,
since it both 1) describes a notion of “sign” or “direction” of serial depen-
dence in the series, and 2) is more robust to outliers. The asymptotic prop-
erties of estimators of the spherical autocorrelation are established, and are
used to construct confidence intervals and portmanteau white noise tests.
These confidence intervals and tests are shown to be effective in simulation
experiments, and demonstrated in applications to model selection for daily
electricity price curves, and measuring the volatility in densely observed
asset price data.
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1. Introduction

Functional data analysis as a field has grown considerably over the past three
decades, likely owing to increasing interest in analyzing high-dimensional data
that arise from continuously observing processes over various domains, includ-
ing time, space, and frequency. We refer the reader to [13] and [30] for text-
book length treatments of functional data analysis. In many cases of interest,
functional data are collected sequentially over time. For example, continuous
observations of the electricity price in a given region might be interpolated and
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fashioned into daily electricity price curves. Such series of functional data ob-
jects are referred to as functional time series, and methods for analyzing and
modelling functional time series have also been steadily developed in recent
years; see [5], [12], and Chapter 8 of [20] for an overview of functional time
series analysis.

When analyzing, or evaluating a model for, any time series, one often begins
by computing and plotting a measure of the sample autocorrelation of the series,
along with corresponding confidence intervals computed assuming the series
forms a strong white noise. This is usually done in order to evaluate the serial
dependence structure of the series or model residuals in order to inform further
modelling, or to validate that a given time series model appears to fit the data
well.

In terms of estimating the serial dependence structure of a functional time
series, available methods to date are based on measuring the magnitude of the
lagged autocovariance operator of the series. In order to fix ideas, suppose that
{Xi(t), i ∈ Z, t ∈ [0, 1]} is a sequence of stochastic processes whose sample
paths are in L2[0, 1], the space of real-valued square-integrable functions defined
on the unit interval. For example, Xi(t) might denote the electricity price in a
certain region on day i at time t, where t is normalized to lie in [0, 1]. Concep-
tually a functional time series can be thought of as an observed stretch of such
a sequence of length n, X1, ..., Xn. As defined in, for example, [28], when the
series {Xi(t), i ∈ Z, t ∈ [0, 1]} is stationary, the autocovariance kernel at lag
h of the series is

Ch(t, s) = E (X0(t) − EX0(t)) (Xh(s) − EXh(s)) .

Using the standard L2-norm to measure the magnitude of Ch, a functional
autocorrelation function (fACF) may be defined as the mapping h �→ ρ

(F )
h ,

where
ρ
(F )
h =

‖Ch‖2∫
C0(t, t)dt

, and ‖Ch‖2
2 =

∫∫
C2

h(t, s)dtds.

[26] considered this definition of the fACF, and studied its use in perform-
ing model selection for functional SARIMAX models. [21] also considered the
properties of this fACF assuming the underlying functional time series is con-
ditionally heteroscedastic.

Although this fACF is useful in many situations, it has several drawbacks.
Among them are that ρ

(F )
h describes only the magnitude of Ch, and is always

non-negative. Any information about the “sign” or “direction” of the correlation
in the series is lost in computing ρ

(F )
h . Additionally, estimating ρ

(F )
h is highly

prone to the influence of outliers. Although the definition of the fACF only
presumes the existence of two moments of the underlying series, i.e. E‖Xi‖2 <

∞, in order to perform inference on ρ
(F )
h , one often requires four moments,

E‖Xi‖4 < ∞. Worse still, in many cases of interest, for instance in the context
of fitting volatility models to functional time series, one often wishes to estimate
the autocorrelation structure of transformations of the original series. A popular
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transformation to consider in this setting is X2
i , and in this case the implicit

number of moments required in order for the usual confidence intervals for ρ(F )
h

to be valid is E‖Xi‖8 < ∞.
To address some of these shortcomings, we propose a new autocorrelation

measure for functional time series that we dub the spherical autocorrelation
function. It is constructed by computing the average angle, as encoded by the
inner product of projections of the series onto the unit sphere in L2[0, 1], be-
tween lagged pairs in the series that have been centred by the spatial (geometric)
median of the series. This measure both captures “signed” serial dependence in
the series, and is robust in the sense that it does not require high moment con-
ditions to define and estimate. We show that this new autocorrelation function
can be consistently estimated when the underlying series is stationary, and that
it satisfies the central limit theorem assuming the series is a strong white noise.

The main theoretical challenge that we overcome in doing so lies in handling
the effect of estimating the spatial median, since the natural estimator of the
spherical autocorrelation is not easily linearized in terms of the spatial median,
and existing spatial median estimators are defined in terms of iterative opti-
mization procedures, and do not have closed-form expressions; see e.g. [9] and
[7]. We establish though that under primitive conditions, which are satisfied by
existing functional spatial median estimators, the estimator that we propose
for the spherical autocorrelation is still consistent and asymptotically Gaussian
when the underlying series is a strong white noise.

These results are used to construct asymptotically valid confidence intervals
and portmanteau white noise tests for the spherical autocorrelation function.
As confirmed in simulation experiments and two real data applications, these
confidence intervals and tests appear to perform well in many settings, and are
useful in exploring the dependence structure and performing model selection
with functional time series.

There are a number of papers related to this work that generally address
the problems of estimating the correlation between functional data objects, and
robust covariance estimation with functional data. [22] studied the canonical
correlation between paired functional data, see also page 28 in [3], and [30] put
forward a robust estimator for the canonical correlation of functional data. [4]
develop a robust, spherical covariance operator for functional data, which is also
based on centring the data using the spatial median.

[8] is perhaps the most related to the present work. They develop a correlation
measure between paired functional data based on projecting onto the unit sphere
referred to as “dynamical correlation”. Some drawbacks to their measure are
that it is computed by centring the data with the sample mean, which causes
the measure to potentially take non-zero values for measuring the correlation
between independent functional data. Moreover, asymptotic normality of the
sample statistic is established only when the mean is either known or constant.
Weighted empirical likelihood methods are used to construct confidence intervals
for the dynamical correlation in [32].

The rest of the paper is organized as follows. Section 2 gives a definition of the
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spherical autocorrelation and its natural estimator. That section also includes
statements of the asymptotic properties of the estimator, as well as definitions
of confidence intervals and portmanteau tests. The practical implementation of
the methods are discussed in Section 3, as well as the results of several sim-
ulation experiments. Two data applications are provided in Section 4, and we
close the paper with concluding remarks in Section 5. All proofs and some addi-
tional implementation details and simulation results are placed in an Appendix
following these main sections.

2. Problem statement and methodology

We begin by introducing some notation that will be used throughout the paper.
We consider a functional time series {Xi}i∈Z := {Xi(t) : i ∈ Z, t ∈ T }, where
T is a compact interval, from which we assume that we have observed a stretch
of length n, X1, ..., Xn. Without loss of generality, we assume the argument t is
re-scaled so that T = [0, 1]. Here each variable Xi is a stochastic process whose
sample paths may be viewed as elements of the Hilbert space H = L2[0, 1] of
real valued square integrable functions equipped with the inner product

〈f, g〉 =
∫

f(t)g(t)dt,

and corresponding norm ‖·‖ =
√
〈·, ·〉, where

∫
=

∫ 1
0 . Although the methods and

results below would hold equally well when H is any separable Hilbert space, we
take H = L2[0, 1] since this both covers the applications that we consider, and
also coincides with the space considered for many existing methods for robust
estimation of the centre and covariance of functional data; see [9] and [4].

2.1. Definition of spherical autocorrelation

In the event that the series {Xi}i∈Z is strictly stationary, our main goal is
to quantify the autocorrelation present in the series using the observations
X1, ..., Xn. The method that we propose is based on examining the angle be-
tween suitably centred, lagged pairs of the series Xi and Xi+h. This angle is en-
coded by the inner product of the projections of these pairs onto the unit sphere.
We denote the projection of x ∈ H onto the unit sphere as S(x) := x/ ‖x‖ for
x 	= 0, and S(0) = 0. S(·) is often referred to as the spatial sign. The centred
and projected observations may then be written as

S(Xi − μ) = Xi − μ

‖Xi − μ‖ , i = 1, · · · , n, (1)

where μ is a suitably defined “centre” of the process Xi, which we discuss in
detail below. Note that S(x) is bounded, and ‖S(x)‖≤1. The following defines
a new notion of autocorrelation for a functional time series.
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Definition 1. Suppose the series {Xi}i∈Z is strictly stationary. Given a fixed
time lag h, we define the spherical autocorrelation at lag h as

ρ
(S)
h = ρh = E 〈S(X0 − μ), S(Xh − μ)〉 . (2)

The functional spherical autocorrelation function (abbreviated fSACF) is the
function h �→ ρ

(S)
h for h ∈ {0, 1, ...}.

It is immediate from its definition that the fSACF shares a number of similar
features with the classic autocorrelation function of a univariate time series: i)
−1 ≤ ρh ≤ 1, ii) ρ0 = 1, and iii) the fSACF is symmetric around the origin,
i.e., ρh = ρ−h. Another clear consequence of its definition is that ρh is well-
defined for any stationary process in H. In particular, no moment conditions
are required in defining the fSACF.

In order to maintain its analogy to other classic notions of autocorrelation
and aid in its interpretation, it would also be an appealing feature of the fSACF
if when the variables are independent at lag h, i.e. when X0 and Xh are inde-
pendent, ρh = 0. It turns out that this property depends primarily on how the
observations are centred by μ. A natural candidate is to take μ(t) = EXi(t),
the mean function of the observations, however this does not lead to an fSACF
with this property.

What appears instead to be the correct “centre” in order to preserve this
property is take μ to be the functional spatial median:
Definition 2. The spatial median (also sometimes referred to as the geometric
median) μ of a random variable X ∈ H is any element of H satisfying

μ = arg min
y∈H

E [‖X − y‖ − ‖X‖].

See [4], [7], [9] and [18]. As noted in equation (2) of [9], when P (X = μ) = 0,
the definition of the spatial median implies that ES(X−μ) = 0. As a result when
X0 and Xh are independent and μ is the spatial median, we have by Fubini’s
theorem that ρh = 〈ES(X0 − μ),ES(Xh − μ)〉 = 0, so long as P (Xi = μ) = 0.

Going forward we thus take μ in the definition of ρh to be the functional
spatial median as in Definition 2.

2.2. Inference for ρh assuming μ is known

Although in practice the spatial median μ must be estimated from the sample
in order to produce feasible estimators of ρh, we think it is useful to begin by
considering estimators of ρh, and their properties, assuming μ is known. In the
next subsection we will consider the properties of these estimators when μ is
replaced with typical estimators of the spatial median. Presenting the results in
this order allows us to separate the properties of the underlying process {Xi}i∈Z

that are needed to perform inference on ρh from those that are required to handle
the effect of estimating μ.
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Assuming μ is known, a natural estimator of ρh is

ρ̃h = 1
n

n−h∑
i=1

〈S(Xi − μ), S(Xi+h − μ)〉 . (3)

When analyzing a functional time series, we are often interested in evaluat-
ing whether the series, perhaps comprised of model residuals, appears to be a
white noise, or instead appears to exhibit significant autocorrelation at some
lags, which may inform subsequent modelling. As such our main aim is to ap-
proximate the distribution of ρ̃h if the underlying series forms a strong white
noise, i.e. a sequence of independent and identically distributed functional data
objects, and also show that ρ̃h is consistent for ρh if the underlying series is
strictly stationary.

If the series {Xi}i∈Z is strictly stationary and ergodic, then ρ̃h
a.s.→ ρh by the

mean ergodic theorem. Our first result then concerns the asymptotic distribution
of ρ̃h when the underlying series is a strong white noise. Let

CP (t, s) = E [(S(X0 − μ)(t)) (S(X0 − μ)(s))] , t, s ∈ [0, 1],

denote the covariance kernel of the observations projected onto the unit sphere
in H.

Theorem 1. Suppose that {Xi}i∈Z is a strong white noise in H such that
P (X0 = μ) = 0. Then

√
nρ̃h

D→ N (0, ‖CP ‖2
2), (4)

where ‖ · ‖2 is the Hilbert-Schmidt norm of a kernel. Moreover, if for a positive
integer H, R̃H = (ρ̃1, ..., ρ̃H)�, then

√
nR̃H

D→ NH(0, ‖CP ‖2
2IH), (5)

where NH(m,Σ) denotes an H-dimensional normal random vector with mean
vector m and covariance Σ, and IH is the H-dimensional identity matrix.

The proof of Theorem 1 is given in the Appendix A.1. This result may be
used to justify the asymptotic consistency of tests of the hypotheses:

H0,h: For a fixed positive integer h, ρh = 0, and
H′

0,H : For a fixed positive integer H, ρh = 0 for all h ∈ {1, ..., H}.
In particular, an asymptotically sized α test of H0,h is to reject when |√nρ̃h| >

‖CP ‖2zα/2, where zq is the q critical value of the standard normal distribution.
Similarly, a 1 − α confidence set for the fSACF assuming the series is a strong
white noise is

−
z1−α/2√
n‖CP ‖2

≤ ρ̃h ≤
z1−α/2√
n‖CP ‖2

. (6)

Comparing the estimated fSACF ρ̃h to its 95% confidence bounds assuming the
underlying series follows a strong white noise leads to a simple visual summary
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that may be used to measure at a glance the serial dependence structure of a
functional time series; see e.g. Figure 1 below.

Testing H′
0,H is often referred to as “portmanteau testing”. As a result of

Theorem 1, the test statistic Q̃n,H = ‖√nR̃H‖2
E satisfies

Q̃n,H = n
H∑

h=1

ρ̃2
h

D→ ‖CP ‖2χ2(H),

where ‖ · ‖E is the standard Euclidean norm of a vector, and χ2(H) denotes a
χ2 random variable with H degrees of freedom. An approximate P-value of a
test of H′

0,H may be computed as p = P (‖CP ‖2χ2(H) > Q̃n,H).

2.3. Inference for ρh assuming μ is unknown

In practice of course the spatial median μ is typically not known, and must in-
stead be estimated from the sample. Given its definition, it is natural to estimate
μ with

μ̂ideal = arg min
μ∈H

n∑
i=1

‖Xi − μ‖ . (7)

Although there is no closed-form solution for the estimator satisfying (7), sev-
eral authors have proposed iterative procedures to approximate μ̂ideal, and have
shown that these lead to consistent estimators with quantifiable convergence
rates. For example, [9] proposes an approach to approximately solve (7) using
Gateaux differentials, and [7] propose an approach based on stochastic gradi-
ent decent. Both of these approaches result in an estimator μ̂ approximately
satisfying (7). Using μ̂ in place of μ in (3) leads to the feasible estimator

ρ̂h = 1
n

n−h∑
i=1

〈S(Xi − μ̂), S(Xi+h − μ̂)〉 . (8)

We now aim to establish conditions under which ρ̂h also satisfies Theorem 1 and
is asymptotically consistent to ρh. Or, in other words, conditions under which
the effect of estimating the spatial median μ is asymptotically negligible. We
begin by establishing an analogue of Theorem 1 under the following additional
assumptions.

Assumption 1. The sequence
√
n(μ̂− μ) is uniformly tight in H.

Assumption 2. There exists constants C1, C2 > 0 so that for all u ∈ H with
‖u‖ ≤ C1, E‖Xi − (μ + u)‖−2 ≤ C2.

For a definition of uniform tightness in a metric space see [2]. Assumption 2
coincides with Assumption A3 in [7], where it is discussed extensively. It holds,
for example, for Gaussian processes under mild conditions, as well as for many
other processes possessing exponentially decaying small-ball probabilities; see
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[23, 27]. The stochastic gradient decent-based estimator of [7] also satisfies As-
sumption 1 under Assumption 2 and an additional assumption entailing that
the spatial median is unique. The estimator of the spatial median proposed in
[9] also satisfies Assumption 1 under similar conditions.

Theorem 2. Suppose that {Xi}i∈Z is a strong white noise in H, and that As-
sumptions 1 and 2 hold. Then ρ̂h satisfies Theorem 1 in place of ρ̃h.

Theorem 2 shows that under Assumptions 1 and 2, the same confidence sets
and portmanteau tests based on ρ̃h remain asymptotically valid when based on
ρ̂h instead.

We now turn to the asymptotic consistency of ρ̂h, which we establish under
the following assumptions.

Assumption 3. μ̂
a.s.→ μ as n → ∞.

Assumption 4. For any h ≥ 1, E ‖X0 − μ‖−1 ‖Xh − μ‖−1
< ∞.

Assumption 5. E ‖X0 − μ‖−1
< ∞.

Theorem 3. Suppose {Xi}i∈Z is strictly stationary and ergodic, and that As-
sumptions 3-5 hold. Then ρ̂h

a.s.→ ρh as n → ∞.

Assumption 3-5 are analogous in a time series setting of the assumptions in
Theorem 1 of [4], and the proof makes use of some of the same ideas. Assump-
tion 4 essentially ensures that the terms in the sum defining ρ̂h have bounded
expectation, and from a technical perspective appears in bounding terms in the
sum where Xi or Xi+h have large deviations from μ̂. When the data are a strong
white noise Assumption 4 is implied by Assumption 5. Theorem 3 implies that
when ρh 	= 0 for some h ∈ {1, ..., H}, both tests of H0,h and H′

0,H described at
the end of Section 2.2 are consistent when based on ρ̂h.

3. Implementation and simulation studies

In this section we briefly provide some details on implementation, and then
present the results of several simulation studies that aimed to evaluate the pro-
posed inferential procedures for the fSACF.

In the simulations and applications below, we assume that all functional data
are observed on a common grid tj ∈ [0, 1], j = 1, ...,M . In our applications to
electricity price data and intraday asset price data below, each functional data
object is observed at M = 24 and M = 78 points, respectively, and for all
simulated examples we generated the data on M = 101 equally spaced points.
In these cases all inner products and norms involved in producing ρ̂h can be
estimated by simple Riemann integration. For instance, with t0 = 0

‖Xi − μ̂‖2 ≈
M∑
j=1

[Xi(tj) − μ̂(tj)]2[tj − tj−1]
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and

〈S(Xi − μ̂), S(Xi+h − μ̂)〉 ≈ 1
‖Xi − μ̂‖‖Xi+h − μ̂‖×

M∑
j=1

[Xi(tj) − μ̂(tj)][Xi+h(tj) − μ̂(tj)](tj − tj−1).

If the functional data are not observed on a common grid, then one may use
interpolation techniques to estimate the integrals required to compute ρ̂h; see
e.g. Chapter 2 of [30].

In order to estimate ‖CP ‖2, we use the estimator

ĈP (t, s) = 1
n

n∑
j=1

S(Xj(t) − μ̂(t))S(Xj(s) − μ̂(s)),

and estimate its norm based on the discrete sample with

‖Ĉ2
P ‖2

2 ≈
M∑

j,k=1

Ĉ2
P (tj , tk)[tj − tj−1][tk − tk−1].

Additional simulations evaluating the accuracy of these estimators are pro-
vided in Appendix B, which suggested that they work well so long as the reso-
lution of the data is not too low. With these estimators, the confidence sets for
ρ̂h assuming the series is a strong white noise, and p-values for the portmanteau
test, may be calculated respectively as

−
z1−α/2√
n‖ĈP ‖2

≤ ρ̂h ≤
z1−α/2√
n‖ĈP ‖2

, (9)

and

Q̂n,H = n

H∑
h=1

ρ̂2
h, p = P (‖ĈP ‖2χ2(H) > Q̂n,H). (10)

In all examples below μ was estimated using the estimator described in [9].
We now turn to presenting the results of several simulation experiments. Below
we refer to the functional autocorrelation function of [26] as the fACF. All the
computations are performed using R, version 4.1.2 [36].

3.1. White noise processes

We simulated several strong white noise (WN) processes, and examined their
fACF and fSACF. The examples that we considered were

1. Standard Brownian motion (BM): Xi(t) = Wi(t), where {Wi(t), t ∈
[0, 1]}i∈Z are iid standard Brownian motions.
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Fig 1. Top: 50 iid curves of each strong noise process with the spatial median estimate from
[9] (in black); Middle: The leading 7 basis functions in the Karhunen-Loéve expansion of
each process; Bottom: The estimated fSACF of each series for lags h ∈ {1, ..., 30} with 95%
confidence bounds as in (9) (in blue).

2. Brownian bridge (BB): Xi(t) = Bi(t), where Bi(t) = Wi(t) − tWi(1).
3. Fourier-Cauchy process (F): Xi(t) = Fi(t), where Fi(t) = Z1,i +∑3

k=1[Z2k,i cos(2πkt)+Z2k+1,i sin(2πkt)] and Zj,i are a family of indepen-
dent and identically distributed standard Cauchy random variables.

4. B-spline Exponential process (BS): Xi(t)=Bsi(t) where Bsi(t)=
∑

k=1 εi,k
Bk(t) in which εi,k is a family of independent and identically distributed
exponential random variables with mean 1, and Bk(t) is the k-th orthog-
onal cubic B-spline basis function.

The top panel of Figure 1 displays 50 iid realizations of each WN process
along with the estimated spatial median. The estimated fSACF for each process
is displayed in the bottom row of Figure 1, along with blue lines indicating the
confidence intervals in (9).

In order to evaluate the coverage properties of the proposed confidence inter-
vals for the fSACF, each WN process was independently generated 1000 times
for sample sizes n ∈ {100, 250, 500, 1000, 2000}. Table 1 shows the proportion
of estimators ρ̂h and ρ̃h that were not contained in the 1 − α confidence inter-
vals (9) and (6), respectively, for α ∈ {10%, 5%, 1%}, and for several values of
h. These results suggest that, for the sample sizes and processes considered, the
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Table 1

The empirical rate among 1000 independent simulations of four WN processes that the
1 − α confidence intervals (6) and (9) do not contain the estimators ρ̃h and ρ̂h for

α ∈ {10%, 5%, 1%}, n ∈ {100, 250, 500, 1000, 2000} and several values of h.

n h Significance Level α n h Significance level

10% 5% 1% 10% 5% 1%
Statistic ρ̃h ρ̂h ρ̃h ρ̂h ρ̃h ρ̂h ρ̃h ρ̂h ρ̃h ρ̂h ρ̃h ρ̂h

BM 100 1 0.104 0.108 0.052 0.055 0.011 0.013 BB 100 1 0.086 0.093 0.048 0.05 0.008 0.013
5 0.116 0.112 0.053 0.062 0.011 0.010 5 0.087 0.080 0.040 0.043 0.007 0.005
10 0.081 0.082 0.033 0.030 0.006 0.004 10 0.070 0.069 0.038 0.038 0.007 0.006
15 0.074 0.079 0.034 0.039 0.003 0.005 15 0.070 0.078 0.022 0.027 0.003 0.002

250 1 0.118 0.118 0.053 0.056 0.008 0.010 250 1 0.097 0.096 0.046 0.049 0.010 0.011
5 0.092 0.096 0.049 0.049 0.010 0.013 5 0.110 0.104 0.057 0.059 0.011 0.015
10 0.078 0.082 0.038 0.039 0.007 0.007 10 0.066 0.076 0.030 0.029 0.004 0.004
15 0.088 0.089 0.034 0.035 0.005 0.006 15 0.094 0.097 0.050 0.050 0.002 0.002

500 1 0.114 0.123 0.059 0.055 0.005 0.008 500 1 0.091 0.094 0.048 0.053 0.012 0.011
5 0.087 0.094 0.04 0.038 0.004 0.004 5 0.097 0.101 0.051 0.052 0.01 0.013
10 0.106 0.106 0.053 0.054 0.013 0.01 10 0.086 0.088 0.036 0.037 0.005 0.003
15 0.100 0.099 0.058 0.054 0.011 0.012 15 0.101 0.105 0.048 0.044 0.011 0.007

1000 1 0.104 0.108 0.043 0.045 0.010 0.011 1000 1 0.115 0.114 0.056 0.054 0.014 0.016
10 0.105 0.107 0.059 0.060 0.008 0.008 10 0.094 0.094 0.044 0.041 0.010 0.009
20 0.104 0.107 0.055 0.057 0.009 0.010 20 0.098 0.099 0.046 0.045 0.009 0.008
30 0.112 0.104 0.056 0.058 0.015 0.014 30 0.091 0.086 0.042 0.041 0.008 0.01

2000 1 0.098 0.096 0.043 0.045 0.004 0.005 2000 1 0.107 0.113 0.066 0.063 0.016 0.016
10 0.096 0.096 0.058 0.058 0.009 0.009 10 0.084 0.084 0.045 0.043 0.007 0.007
20 0.098 0.098 0.056 0.057 0.013 0.012 20 0.093 0.093 0.045 0.046 0.006 0.005
30 0.107 0.107 0.053 0.055 0.009 0.008 30 0.006 0.098 0.041 0.044 0.006 0.008

F 100 1 0.86 0.108 0.051 0.055 0.012 0.016 BS 100 1 0.095 0.102 0.05 0.062 0.01 0.013
5 0.089 0.102 0.052 0.053 0.007 0.009 5 0.08 0.081 0.036 0.029 0.005 0.005
10 0.07 0.069 0.03 0.032 0.007 0.010 10 0.075 0.075 0.029 0.036 0.003 0.004
15 0.062 0.074 0.028 0.026 0.003 0.003 15 0.07 0.077 0.026 0.033 0.006 0.009

250 1 0.09 0.101 0.052 0.052 0.005 0.006 250 1 0.099 0.095 0.044 0.05 0.005 0.008
5 0.074 0.08 0.031 0.032 0.007 0.008 5 0.084 0.086 0.047 0.046 0.012 0.012
10 0.088 0.083 0.038 0.04 0.003 0.003 10 0.103 0.107 0.05 0.056 0.012 0.01
15 0.078 0.087 0.039 0.038 0.006 0.007 15 0.08 0.083 0.044 0.042 0.006 0.005

500 1 0.099 0.096 0.048 0.046 0.012 0.01 500 1 0.12 0.117 0.057 0.055 0.008 0.01
5 0.102 0.097 0.051 0.048 0.01 0.012 5 0.105 0.113 0.051 0.052 0.012 0.012
10 0.088 0.093 0.045 0.04 0.008 0.01 10 0.101 0.116 0.043 0.043 0.007 0.008
15 0.093 0.092 0.041 0.043 0.009 0.005 15 0.101 0.101 0.036 0.042 0.003 0.005

1000 1 0.117 0.113 0.062 0.062 0.019 0.019 1000 1 0.1 0.098 0.047 0.047 0.011 0.011
10 0.097 0.09 0.045 0.046 0.011 0.01 10 0.09 0.088 0.035 0.038 0.005 0.008
20 0.110 0.109 0.054 0.051 0.01 0.012 20 0.097 0.101 0.052 0.05 0.013 0.013
30 0.085 0.081 0.047 0.045 0.007 0.006 30 0.096 0.096 0.039 0.039 0.006 0.007

2000 1 0.115 0.11 0.071 0.07 0.016 0.016 2000 1 0.098 0.103 0.044 0.049 0.013 0.011
10 0.104 0.108 0.063 0.06 0.011 0.014 10 0.087 0.087 0.043 0.046 0.011 0.01
20 0.1 0.095 0.047 0.046 0.004 0.005 20 0.08 0.075 0.035 0.037 0.01 0.009
30 0.1 0.099 0.047 0.046 0.006 0.004 30 0.101 0.103 0.048 0.046 0.01 0.011

confidence intervals derived from Theorems 1 and 2 have approximately correct
coverage. We notably also observed this for the Fourier-Cauchy process, as well
as the exponential process, which lends some evidence to the statement that
the fSACF is robust against low-order moments/outliers and skewness in the
data in practice. For smaller n and larger values of h, we noticed that the in-
tervals tended to have somewhat larger than nominal coverage, which we think
may be attributed to the fact that the estimators ρ̂h and ρ̃h are normalized by
1/n rather than 1/(n − h). In unreported simulations when we normalized by
1/(n−h) instead we noticed the opposite effect. Additionally, we observed that
the effect of estimating the spatial median appeared to be negligible in all cases.
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3.2. Functional time series models

We now turn our attention to some examples of serially dependent functional
time series. We consider several models here, the first two in this section for the
purpose of performing simulation experiments, and the second two presented in
Section 4 are used for the purpose of time series modelling and residual analyses
in two real data examples.

The time series models that we considered in our simulation experiments are
from the general class of functional autoregressive models of order p (FAR(p)),
which take the form

Xi(t) =
p∑

j=1
Φj(Xi−j)(t) + εi(t) =

p∑
j=1

∫
φj(t, s)Xi−j(s)ds + εi(t),

where φj(t, s) are the kernels of the integral operators Φj , and εi is a sequence of
iid mean zero functional processes. In our examples, we use the Gaussian kernel

φ(t, s) = c exp
(
− t2 + s2

2

)
,

where the constant c is chosen in order that ‖φ‖ = |S| ∈ [0, 1], where S =
sign(c) ‖φ‖. As such the parameter S describes both the magnitude and “sign”
of the kernel φ. We considered the processes

• FAR(1, S): Xi(t) =
∫
φ1(t, s)Xi−1(s)ds + εi(t), where εi(t) follows the

Brownian bridge WN process (BB).
• FAR(2, S1, S2): Xi(t) =

∫
φ1(t, s)Xi−1(s)ds+

∫
φ2(t, s)Xi−2(s)ds+ εi(t),

where again εi(t) follows the Brownian bridge WN process (BB).

Figure 2 illustrates simulated series of length 1000 from the FAR(1, S) process
for various values of the parameter S, along with corresponding plots of the
fACF of [26] and the fSACF. This figure highlights one of the advantages of the
fSACF compared to the fACF, in that when the parameter S is negative, the
fACF displays a similar behaviour as if the parameter were positive, whereas
the fSACF in this case shows an alternating pattern.

To study the empirical power of the proposed confidence interval and port-
manteau test in (9) and (10), we applied our tests to 1000 independently gen-
erated FAR(1, S) processes of various lengths n ∈ {100, 250, 500, 1000} and for
increasing values of S. Figure 3 shows the empirical rejection rate of the hy-
potheses H′

0,H for H = 1, 10 that we observed among the 1000 independent
simulations with significance level set at α = 0.05 in terms of power curves
that are a function of S. We note that the rejection rate of H′

0,1 at level 0.05
is equivalent to the rate at which the confidence interval (9) does not contain
ρ̂1. We observed that the tests appeared to have empirical size close to the
nominal size, and that expectedly as S increased to 1, the power of each test
also increased to 1. The power was observed to increase more slowly for larger
H, which we attribute to the fact that the FAR(1, S) process has decreasing
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Fig 2. 1000 curves simulated from FAR(1, S) models with different scaling parameter S.
Top: 50 iid curves simulated based on each model; Middle: The fACF of each the processes
with 95% confidence bound (in blue) Bottom: The fSACF of each the processes with 95%
confidence bounds (9) (in blue).

correlation as a function of the lag. It was also clear that the empirical power
of the test increased as the sample size n increased even when S was small, and
the empirical power reached one when the dependence is around 0.45 regardless
of the sample size.

We also performed some simulations to highlight the use of the fSACF in
evaluating the goodness-of-fit of functional time series models through residual
analysis. Given a model capable of producing fitted/forecasted values of the
series X̂i(t), the residuals are calculated simply as

ri(t) = Xi(t) − X̂i(t). (11)

We considered performing residual analyses of FAR models using an estimator
derived from functional principal component analysis. For the FAR(1) model,
the kernel φ may be estimated using a least squares principle by the first J
FPCs:

φ̂1(t, s) = 1
n− 1

n−1∑
k=1

J∑
j=1

J∑
i=1

λ̂−1
j 〈Xk, v̂j〉 〈Xk+1, v̂i〉 v̂j(s)v̂i(t), (12)

where the λ̂j and v̂j(·) are the estimated eigenvalues and eigenfunctions of the
covariance operator of the observations; see e.g. [33]. Such an estimator may
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Fig 3. Empirical rejection rate of the portmanteau test under H′
0,H of data generated accord-

ing to the FAR(1,S) model based on 1000 independent simulations. Left: H = 1; Right: H =
10. The nominal level α is set to be 0.05.

also be constructed for the kernels in general FAR(p) models, and we provide
the details in Appendix C. The fitted values are then calculated in this case as

X̂i(t) =
∫

φ̂1(t, s)Xi−1(s)ds.

There are a number of ways to determine the number of FPCs J to use,
including information criteria [34, 37], resampling methods [1, 11] and cross-
validation. Here, we use the cumulative percentage of total variance (CPV)

CPV(J) =
∑J

k=1 λ̂k∑n
k=1 λ̂k

,

and choose the smallest J for which CPV (J) > 90%. We used the fda package
to carry out functional principal component analysis; see [29].

Figure 4 shows three fSACF’s: the left most is computed from simulated
FAR(2, S1, S2) processes, whereas the middle and right figures are computed
from the residuals of an FAR(2) and FAR(1) model fit, respectively. It is clear
based on these plots that in each case there remains significant autocorrelation
in the residuals based on the FAR(1) model, as expected, while the residuals of
the FAR(2) model appear to be reasonably white.

4. Applications

In this section, we demonstrate the proposed methodology in two data applica-
tions. The first is concerned with fitting forecasting models and evaluating their
goodness-of-fit with Spanish electricity price curves. We now introduce the two
forecasting models that we consider.
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Fig 4. 1000 simulated curves from FAR(2, S1, S2) models with different scaling parameters
S1 and S2 with the error process being a Brownian bridge. Left: The fSACF of observations
simulated from the FAR(2, S1, S2) models with different coefficients of dependence S1 and
S2. Middle: The fSACF of the residuals ri from an FAR(2) model. Right: The fSACF of the
residuals ri from an FAR(1) model, which in this case is evidently under specified.

1) Functional seasonal autoregressive model (FSAR) [14]: The model is given
as

Xi(t) =
∫

φ�1(t, s)Xi−�1(s)ds + · · · +
∫

φ�p(t, s)Xi−�p(s)ds + εi(t),

where 
1, ..., 
p are user selected lags. It is clear that the FSAR models are a
special cases of general FAR models. We show in Appendix C how estimators
for the kernels in this model may be constructed based on functional principal
component analysis and a least squares principle akin to (12).

2) The forecasting model that we consider is the Hyndman-Ullah method
[16], which we abbreviate as the “HU” model: The HU(J) is a model that
is potentially nonlinear and non-stationary that makes use of a truncated
Karhunen–Loève expansion. It supposes that the underlying processes may
be well-approximated by its projection onto the first J eigenfunctions of the
covariance operator

X
(J)
i (t) = m̂(t) +

J∑
j=1

ξi,j v̂j(t),

where the m̂ is the standard sample mean function, ξi,j is referred to as the prin-
cipal component score, or simply the score, and the v̂j(·) are the eigenfunctions
of the sample covariance operator.

There are three steps to fit and forecast with HU(J) models:
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1. Each Xi is approximated as Xi(t) ≈ m̂(t) +
∑J

j=1 ξi,j v̂j(t). J may be se-
lected according to a number of criteria, e.g. general cross validation, in-
formation criterion, cumulative percentage of total variance, or goodness-
of-fit testing.

2. To each of the FPC series, ξi,j , i = 1, ..., n, j = 1, . . . , J , we fit a, poten-
tially non-stationary, scalar time series model. Notably the models can be
distinct for different score series. Here, we fit SARIMA models, see e.g.
[35]. These models may be used to compute forecasts and fitted values of
the score series ξ̂ij .

3. Forecasts or fitted values are constructed as X̂i(t) = m̂(t)+
∑J

j=1 ξ̂i,j v̂j(t),
and residual curves may be computed as ri(t) = Xi(t) − X̂i(t) = Xi(t) −∑J

i=1 ξ̂ij v̂j(t).

4.1. Spanish electricity data

The first application we consider is Spanish electricity price data observed hourly
from January 1st, 2014, to December 31st, 2014. The data was originally pro-
vided by the Spanish electricity market operator, and are also available in the R
fdaACF package [25]. [10] studied fitting and forecasting these data using an
autoregressive–moving-average model with exogenous inputs (ARMAX), and
[26] uses the same dataset to illustrate the properties of the fACF. We use
{Yi(t), i = 1, 2, . . . , 365, t ∈ [1, 24]} to denote the linearly interpolated Spanish
electricity price curves, and these are displayed in the top left panel of Figure 5.
Although each curve generally evolves according to a standard daily pattern
of low prices in the early morning hours, and higher prices during the times
of peak demand, we also observe that there is a strong weekly and seasonal
trend to the series over the course of the year. The corresponding fACF and
fSACF presented in the middle and right of the top row of Figure 5 both indi-
cate such a pattern. To remove the trend component, we consider the pointwise
differenced series Di(t) = Yi(t) − Yi−1(t). The bottom row of Figure 5 displays
the differenced series along with the corrsponding fACF and fSACF plots. The
differenced series appears roughly mean stationary, and has prominent auto-
correlation corresponding to the weekly lag h = 7. In particular, the fSACF
indicates that the correlation at lags one and two are “negative”, while the cor-
relation at weekly lags is “positive”, which is to be expected. In contrast, the
fACF does not capture this pattern.

We then fit FSAR and HU(J) models to the differenced series Di, and ex-
amined their goodness-of-fit using a residual analysis based on the fSACF. For
the FSAR model, we chose lags 1 and 7, as we see the data exhibited both lag
1 and weekly autocorrelation, and selected the model dimension using the CPV
criterion explaining 90% of the total variation. We also considered HU(J) mod-
els for J ∈ {1, ..., 5}, and to each resulting scalar score series we fit a SARIMA
model using the automated model selection method in [15]. In particular, this
lead to SARIMA models with orders (1, 0, 2) × (2, 0, 0)7, (1, 0, 2) × (2, 0, 0)7,
(2, 0, 2)×(2, 0, 0)7, (2, 0, 1)×(2, 0, 1)7 and (2, 0, 2)×(2, 0, 0)7 for the first five uni-
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Fig 5. Left: Top is the hourly observed annual Spanish electricity data {Yi(t), i =
1, . . . , 365, t = 1, . . . , 24} from January 1st 2014 to December 31 sgemented by day. Bot-
tom is the differenced curves {Yi(t) − Yi−1(t), t ∈ [0, 24]}; Middle: The fACF of Yi(t) (top)
and Yi(t)−Yi−1(t) (bottom), respectively; Right: The fSACF of Yi(t) (top) and Yi(t)−Yi−1(t)
(bottom), respectively. The blue lines in the middle and right panels are the 95% confidence
interval under the null hypothesis H0,h, for h = 1, . . . , 20.

variate score series, respectively, where (a, b, c)×(A,B,C)s describes a SARIMA
model with seasonal lag s, standard and seasonal differencing b and B, stan-
dard and seasonal autoregressive orders a and A, and standard and seasonal
moving average orders of c and C. Figure 6 shows the fSACF of the residuals
of these models. We observed that the FSAR model does not fit the data well,
as strong autocorrelation is still present in the residuals at low lags as well as
in the weekly lag. This did not improve by increasing the CPV value up to
99%. As for the HU(J) model with J ∈ {3, 4, 5}, most of the fSACF values fall
within the 95% confidence bounds coloured in blue. We additionally computed
the P-values of tests of H′

0,H as a function of H based on the statistic Q̂364,H
applied to the residuals of each model in Figure 6. These suggest again that the
FSAR fit and HU(1) fit are poor. As for HU(3), these P-values for small lags
were slightly above 0.05, while for HU(5) the P-values were for most lags above
the 0.05 threshold. This suggests that, although there may still be some weak,
lingering autocorrelation in the residuals of the HU(5) model at the weekly lag,
this model generally appears to fit well.

4.2. Densely observed intraday asset price data

The second application that we considered was to the densely observed intra-
day asset price data used in [21]. This dataset consists of financial asset prices,
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Fig 6. Left: The fSACF of the residual ri after fitting by the FSAR model; using the ; Middle:
The fSACF of the residual ri after fitting the data using the Hyndman-Uallh model with three
FPCs; Right: The fSACF of the residual ri after fitting the data using the Hyndman-Uallh
model with three FPCs; Bottom The P-values of test statistics Q̂364,H under H′

0,H of residual
using FSAR model, residual using HU model with three and five FPCs, and the differenced
series Yi(t) − Yi−1(t), respectively.

Table 2

Assets used in the study spanned from Jan 02, 2014, to Dec 31, 2014.

Class Notation Description

Index S&P 500 Standard and Poor’s 500
Currency exchange EC Euro to US Dollar
Commodity futures CL Light sweet crude oil futures
Technology AAPL Apple Inc.

including commodity and currency exchange rates, obtained from the Chicago
Mercer Exchange (cmegroup.com), S&P 500 index, and Apple stock price ob-
tained from Nasdaq (nasdaq.com). Each series that we consider is tabulated in
Table 2. There are 78 daily observations spanning 249 trading days within the
time span from Jan 02, 2014, to Dec 31, 2014.

Let Pi(t) denote the intraday asset price of an asset on the i-th day at time
t, which we obtained from the raw data using linear interpolation. On each
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Fig 7. Top: samples of four curves from each of the four functional time series considered,
constructed from the intraday light sweet crude oil futures prices (CL). Bottom: the empirical
fSACF of each to these series along with the 95% confidence interval 9.

trading day, the first return is recorded at 9:35, and the last one is at 16:00. We
consider four functional time series derived from these data: 1) five minute log
return sequence

Ri(t) = lnPi(t) − lnPi(t− 5),

2) the cumulative intraday returns (CIDRs)

Ci(t) = lnPi(t) − lnPi(0),

3) the squared sequence of five minute log return curve R2
i (t), and 4) squared

CIDR sequence C2
i (t). The CIDR may be thought of as a normalized, smoothed

curve that interpolates the standard log-returns with intraday data, which can
potentially have high volatility; see, [17, 19, 31].

Figure 7 displays the S&P 500 five minute log return Ri(t), squared S&P 500
log return R2

i (t), the CIDR Ci(t), and the squared CIDR C2
i (t) in the first four

days, respectively. It appears that both the log return curves Ri(u) and CIDRs
Ci(t) are roughly stationary. We then calculate the fSACF of each series, which
is displayed in the case of light sweet crude oil futures (CL) in the the bot-
tom row of Figure 7. We observed that both the five minute log-return series
and CIDR series appear based on their fSACFs to be white noise processes.
As for the squared curves, we observed that most series exhibited significant,
although weak, spherical autocorrelation, especially in early lags. The cumula-
tive significance of the observed spherical autocorrelations was assessed using
the portmanteau test of H′

0,10, the P-values of which are reported in Table 3.
The appearance of white noise of the original series coexisting with correlation
in the squared series is the hallmark of GARCH type behaviour or volatility.
Confirming this observation with the fSACF, which is more robust to outliers
and lower order moments in the data generating process, helps confirm that the
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Table 3

Value of the test statistics Q̂249,10 and associated P-values computed from (10) for: 1) five
minute log returns Ri(t), 2) squared five minute log returns R2

i (t), 3) CIDR Ci(t), and 4)
squared CIDR C2

i (t), for each asset considered.

Type Ri(t) R2
i (t) Ci(t) C2

i (t)

Q̂249,10 P-value Q̂249,10 P-value Q̂249,10 P-value Q̂249,10 P-value

S&P 500 3.0144 0.9811 31.0026 0.0006 6.2736 0.7918 12.9304 0.2276
EC 7.2702 0.6997 227.4773 0.0000 4.4191 0.9265 166.4873 0.0000
CL 6.6572 0.7574 390.0302 0.0000 4.4574 0.9244 210.533 0.0000
AAPL 5.8559 0.8272 24.0211 0.0080 6.8985 0.7350 7.7158 0.6566

patterns in the autocorrealtion observed previously in these series is not simply
the consequence of outliers.

5. Conclusion

We have put forward a new autocorrelation measure for functional time se-
ries: the functional spherical autocorrelation function (fSACF). Unlike existing
methods in the literature that rely on measuring the size of the empirical auto-
covariance operators, the approach we propose is based on measuring the inner
product between projections of lagged pairs of the series onto the unit sphere.
Some advantages conferred by this approach are its ability to capture the di-
rection or “sign” of the serial dependence in the series at a given lag, and it is
more robust to outliers/lower order moments of the data generating process.

A central limit theorem for the fSACF was established under the assump-
tion that the underlying process is a strong white noise, and mild additional
conditions were also put forward under which this result remains true when the
spatial median defining the fSACF is replaced with an estimator. These large
sample results were used to derive confidence intervals and portmanteau tests
for the fSACF. Through Monte Carlo simulations, we showed that these con-
fidence intervals and tests work well in finite samples, highlighting that they
also appear to be robust against outliers/low moments in the data generating
mechanism, and can be useful in performing model selection with functional
time series models. Two real data applications illustrated the use of the fSACF
for model selection, and also helped confirm with a more robust approach the
finding that intraday return curves derived from dense asset prices series appear
to evolve as volatile white noise series.

Appendix A: Technical details and proofs

Throughout these proofs, we assume without loss of generality that the spatial
median μ = 0. We use Ci, i ≥ 1 to denote unimportant positive numerical
constants that may change from line to line.
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A.1. Proof of Theorem 1

Proof. We use the notation

√
nρ̃h = 1√

n

n−h∑
i=1

〈S(Xi), S(Xi+h)〉 =: 1√
n

n−h∑
i=1

Ti,h. (13)

{Ti,h}i∈Z forms a strictly stationary and h-dependent sequence of scalar random
variables. By equation (2) of [9] and the independence of the Xi’s, ETi,h = 0.
Using Fubini’s theorem and the independence of Xi’s, we obtain that

ET 2
i,h = E 〈S(Xi), S(Xi+h)〉2

=
∫∫

ES(Xi)(t)S(Xi+h)(t)S(Xi)(s)S(Xi+h)(s)dtds = ‖CP ‖2
2.

Once again by equation (2) of [9] and the independence of the Xis, we obtain that
for i 	= j, ETi,hTj,h = 0. Hence by Theorem 6.4.2 of [6],

√
nρ̃

D→ N(0, ‖CP ‖2
2). It

follows by elementary arguments that for fixed H,
√
n‖R̃H −RH‖E P→ 0, where

RH = 1
n

n∑
i=1

(Ti,1, ..., Ti,H)� =: 1
n

n∑
i=1

Ti,H .

Similarly as above, the vector valued process {Ti,H}i∈Z is strictly stationary,
mean zero, and H dependent, with ETi,HT�

i,H = ‖CP ‖2
IH , and ETi,HT�

j,H = 0,
if i 	= j. Hence by Proposition 11.2.2 of [6],

√
nR̃H

D→ NH(0, ‖CP ‖2
IH). It follows

from the continuous mapping theorem that ‖√nR̃H‖2
E

D→ ‖CP ‖2χ2(H).

A.2. Proof of Theorem 2

Lemma 1. Under Assumption 2, if ‖u‖ ≤ C1, then there exists a constant C3
so that

E
‖Xi‖2

‖Xi − u‖2 ≤ C3.

Proof. For all M > 0,

E
‖Xi‖2

‖Xi − u‖2 = E
‖Xi‖2

‖Xi − u‖21{‖Xi − u‖ > M} + E
‖Xi‖2

‖Xi − u‖21{‖Xi − u‖ ≤ M}

≤ E
‖Xi‖2

‖Xi − u‖21{‖Xi − u‖ > M} + [M + C1]C2,

where in the second line we applied Assumption 2, and used that ‖Xi−u‖ ≤ M
implies by the triangle inequality that ‖Xi‖ ≤ M + C1. Again by the triangle
inequality ‖Xi‖ − C1 ≤ ‖Xi − u‖, which implies that so long as ‖Xi‖ > C1,

‖Xi‖
‖Xi − u‖ ≤ ‖Xi‖

‖Xi‖ − C1
.
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Since ‖Xi − u‖ ≤ ‖Xi‖ + C1, we have if M > 2C1, then ‖Xi − u‖ > M implies
that ‖Xi‖ > C1. This implies then with M > 2C1 that

‖Xi‖2

[‖Xi‖ − C1]2
1{‖Xi − u‖ > M} ≤ C5

almost surely for a positive constant C5. Hence Lemma 1 holds with C3 =
C5 + [M + C1]C2 for any M > 2C1.

Theorem 2 follows immediately from Theorem 1 and the following additional
lemma.

Lemma 2. Under Assumptions 1 and 2,
√
n(ρ̂h − ρ̃h) = oP (1).

Proof. Letting m̂i,h = ‖Xi‖‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖, we have that

√
n(ρ̂h − ρ̃h)

= 1√
n

n∑
i=1

[〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉]

= 1√
n

n∑
i=1

1
m̂i,h

[〈(Xi − μ̂)‖Xi‖, (Xi+h − μ̂)‖Xi+h‖〉

−〈Xi‖Xi − μ̂‖, Xi+h‖Xi+h − μ̂‖〉]

= 1√
n

n∑
i=1

1
m̂i,h

[〈Xi‖Xi‖, Xi+h‖Xi+h‖〉 − 〈Xi‖Xi − μ̂‖, Xi+h‖Xi+h − μ̂‖〉]

− 1√
n

n∑
i=1

〈μ̂‖Xi‖, Xi+h‖Xi+h‖〉
m̂i,h

− 1√
n

n∑
i=1

〈Xi‖Xi‖, μ̂‖Xi+h‖〉
m̂i,h

+ 1√
n

n∑
i=1

〈μ̂‖Xi‖, μ̂‖Xi+h‖〉
m̂i,h

=: R1,n −R2,n −R3,n + R4,n.

We now aim to show that Rj,n = oP (1), j = 1, ..., 4. Starting with R2,n, we have
by the linearity of the inner product and the Cauchy-Schwarz inequality that

|R2,n| =

∣∣∣∣∣ 1√
n

n∑
i=1

〈μ̂‖Xi‖, Xi+h‖Xi+h‖〉
m̂i,h

∣∣∣∣∣ =

∣∣∣∣∣ 1√
n

n∑
i=1

〈μ̂,Xi+h〉
‖Xi − μ̂‖‖Xi+h − μ̂‖

∣∣∣∣∣
(14)

=

∣∣∣∣∣
〈
μ̂,

1√
n

n∑
i=1

Xi+h

‖Xi − μ̂‖‖Xi+h − μ̂‖

〉∣∣∣∣∣
≤ ‖

√
nμ̂‖

∥∥∥∥∥ 1
n

n∑
i=1

Xi+h

‖Xi − μ̂‖‖Xi+h − μ̂‖

∥∥∥∥∥ =: ‖
√
nμ̂‖‖R∗

2,n‖. (15)
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By Assumption 1, ‖√nμ̂‖ = OP (1). Let ε, δ > 0. Also by Assumption 1, there
exists a compact set K ⊂ H so that

P (‖R∗
2,n‖ > ε) ≤ δ

2 + P ({‖R∗
2,n‖ > ε} ∩ {

√
nμ̂ ∈ K}). (16)

Define the process G2,n : H → H by

G2,n(u) = 1
n

n∑
i=1

Xi+h

‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖ ,

so that R∗
2,n = G2,n(

√
nμ̂). Then

P ({‖R∗
2,n‖ > ε} ∩ {

√
nμ̂ ∈ K}) ≤ P

(
sup
u∈K

‖G2,n(u)‖ > ε

)
. (17)

Using that {Xi}i∈Z are iid, we get that

EG2,n(u) = E‖X0 − n−1/2u‖−1
E

Xh

‖Xh − n−1/2u‖ .

Notice that for each u ∈ K,

Yh,n :=
∥∥∥∥ Xh

‖Xh − n−1/2u‖ − Xh

‖Xh‖

∥∥∥∥ a.s.→ 0 as n → ∞.

Moreover, it follows from Lemma 1 that {Yh,n}n≥1 are uniformly integrable.
Hence by the Vitali convergence theorem (see e.g. Theorem 16.14 of Billingsly
(1995)), EYh,n → 0 as n → ∞. According to the contraction property of expec-
tation in Hilbert space (see pg. 29 of Bosq (2000)), it follows that∥∥∥∥E Xh

‖Xh − n−1/2u‖

∥∥∥∥ → 0 as n → ∞. (18)

Since E‖X0 − n−1/2u‖−1 < ∞ by Assumption 2, we then obtain that
EG2,n(u) → 0 as n → ∞ for each u ∈ K. Also for u, u′ ∈ K, we obtain using
simple arithmetic with the reverse triangle inequality and again Assumption 2
that

‖EG2,n(u) − EG2,n(u′)‖

= E
‖X0 − n−1/2u‖ − ‖X0 − n−1/2u′‖
‖X0 − n−1/2u‖‖X0 − n−1/2u′‖

∥∥∥∥E Xh

‖Xh − n−1/2u‖

∥∥∥∥
+
∥∥∥∥EXh[‖Xh − n−1/2u‖ − ‖Xh − n−1/2u′‖]

‖Xh − n−1/2u‖‖Xh − n−1/2u′‖

∥∥∥∥E‖X0 − n−1/2u′‖−1

= C6‖u− u′‖.
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Hence EG2,n(u) is uniformly continuous, from which it follows in conjunction
with EG2,n(u) = o(1) that

sup
u∈K

‖EG2,n(u)‖ = o(1), as n → ∞. (19)

Also, using that {Xi}i∈Z are iid, we obtain that

E‖G2,n(u) − EG2,n(u)‖2

= E

∥∥∥∥∥ 1
n

n∑
i=1

[
Xi+h

‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖ − EG2,n(u)
]∥∥∥∥∥

2

= 1
n2

[
n∑

i=1
E

∥∥∥∥ Xi+h

‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖ − EG2,n(u)
∥∥∥∥2

+
∑

1≤i �=j≤n

E

〈
Xi+h

‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖ − EG2,n(u),

Xj+h

‖Xj − n−1/2u‖‖Xj+h − n−1/2u‖ − EG2,n(u)
〉]

.

When i 	= j, and |j − i| 	= h, it follows due to the assumption that the {Xi}i∈Z

are iid that

E

〈
Xi+h

‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖ − EG2,n(u),

Xj+h

‖Xj − n−1/2u‖‖Xj+h − n−1/2u‖ − EG2,n(u)
〉

= 0.

And when |j− i| = h, by the Cauchy-Schwarz inequality the same inner product
term is bounded by

E

∥∥∥∥ Xh

‖X0 − n−1/2u‖‖Xh − n−1/2u‖ − EG2,n(u)
∥∥∥∥2

. (20)

Hence

E‖G2,n(u) − EG2,n(u)‖2

≤ C7

n
E

∥∥∥∥ Xh

‖X0 − n−1/2u‖‖Xh − n−1/2u‖ − EG2,n(u)
∥∥∥∥2

. (21)

By Assumption 2 and Lemma 1, for all n sufficiently large,

E

∥∥∥∥ Xh

‖X0 − n−1/2u‖‖Xh − n−1/2u‖

∥∥∥∥2
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= E‖X0 − n−1/2u‖−2
E

∥∥∥∥ Xh

‖Xh − n−1/2u‖

∥∥∥∥2

≤ C8,

which implies the term in (20) is bounded for all n sufficiently large. This along
with (21) gives that

G2,n(u) P→ EG2,n(u), for each u ∈ K. (22)

We now aim to show G2,n is stochastically Lipshitz. To that end, for u, u′ ∈ K,
simple arithmetic gives that

‖G2,n(u) −G2,n(u′)‖

=

∥∥∥∥∥ 1
n

n∑
i=1

[
1

‖Xi − n−1/2u‖ − 1
‖Xi − n−1/2u′‖

]
Xi+h

‖Xi+h − n−1/2u‖

+ 1
n

n∑
i=1

[
Xi+h

‖Xi − n−1/2u‖ − Xi+h

‖Xi − n−1/2u′‖

]

× 1
‖Xi − n−1/2u′‖

Xi+h

‖Xi − n−1/2u‖

∥∥∥∥∥
≤

∥∥∥∥∥ 1
n

n∑
i=1

[
1

‖Xi − n−1/2u‖ − 1
‖Xi − n−1/2u′‖

]
Xi+h

‖Xi − n−1/2u‖

∥∥∥∥∥
+

∥∥∥∥∥ 1
n

n∑
i=1

[
Xi+h

‖Xi − n−1/2u‖ − Xi+h

‖Xi − n−1/2u′‖

]

× 1
‖Xi − n−1/2u′‖

Xi+h

‖Xi − n−1/2u‖

∥∥∥∥∥
=: ‖L1,n(u, u′)‖ + ‖L2,n(u, u′)‖.

Notice that by the triangle inequality,

‖L1,n(u, u′)‖

≤ 1
n

n∑
i=1

n−1/2‖u− u′‖
‖Xi − n−1/2u‖‖Xi − n−1/2u′‖

∥∥∥∥ Xi+h

‖Xi+h − n−1/2u‖

∥∥∥∥
= ‖u− u′‖ 1

n3/2

n∑
i=1

1
‖Xi − n−1/2u‖‖Xi − n−1/2u′‖

∥∥∥∥ Xi+h

‖Xi+h − n−1/2u‖

∥∥∥∥
=: ‖u− u′‖Bn,

where by Assumption 2 and Lemma 1, EBn ≤ C9. This implies that the process
{G2,n(u), u ∈ K} satisfies the equicontinuity conditions of Assumption 3A of
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Newey (1991). This along with (22) imply according to Theorem 2.1 of Newey
(1991) that

sup
u∈K

‖G2,n − EG2,n‖ = oP (1).

In conjunction with (19), this shows that supu∈K ‖G2,n(u)‖ = oP (1). Due
to (14), (16), and (17), it follows that R2,n = oP (1). Following a nearly identical
argument, it may be shown that R3,n = oP (1) and R4,n = oP (1). Although the
argument is also similar to show that R1,n = oP (1), it differs in a few places
and so we think it is valuable to provide the details. Notice that we may write

R1,n = 1√
n

n∑
i=1

1
m̂i,h

[〈Xi‖Xi‖, Xi+h‖Xi+h‖〉

−〈Xi‖Xi − μ̂‖, Xi+h‖Xi+h − μ̂‖〉]

= 1√
n

n∑
i=1

1
m̂i,h

〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉

+ 1√
n

n∑
i=1

1
m̂i,h

〈Xi[‖Xi‖ − ‖Xi − μ̂‖], Xi+h‖Xi+h − μ̂‖〉

= 1√
n

n∑
i=1

〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉
‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖

+ 1√
n

n∑
i=1

〈Xi[‖Xi‖ − ‖Xi − μ̂‖], Xi+h‖Xi+h − μ̂‖〉
‖Xi+h‖‖Xi − μ̂‖‖Xi‖

=: R(1)
1,n + R

(2)
1,n.

Define

G
(1)
1,n(u) = 1√

n

n∑
i=1

〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − n−1/2u‖]〉
‖Xi+h‖‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖

so that R(1)
1,n = G

(1)
1,n(

√
nμ̂). Arguing as in (17), it is enough to show that for any

compact K ⊂ H,

sup
u∈K

|G(1)
1,n(u)| = oP (1).

Due the independence of the X ′
is and Fubini’s Theorem,

EG
(1)
1,n(u) =

√
n

〈
E

X0

‖X0 − n−1/2u‖ ,E
Xh[‖Xh‖ − ‖Xh − n−1/2u]|

‖Xh − n−1/2u‖‖Xh‖

〉
.

By the Cauchy-Schwarz and reverse triangle inequality, (18), and Assump-
tion 2, it follows that

EG
(1)
1,n(u) ≤

√
n

∥∥∥∥E X0

‖X0 − n−1/2u‖

∥∥∥∥∥∥∥∥EXh[‖Xh‖ − ‖Xh − n−1/2u]|
‖Xh − n−1/2u‖‖Xh‖

∥∥∥∥ (23)
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≤ C10

∥∥∥∥E X0

‖X0 − n−1/2u‖

∥∥∥∥E‖Xh − n−1/2u‖−1 → 0,

as n → ∞ for each u ∈ K. Moreover, noting that (Xi, Xi+h) is independent of
(Xj , Xj+h) when i 	= j, |i − j| 	= h, we obtain along with the Cauchy-Schwarz
inequality that

Var(G(1)
1,n(u)) = 1

n

[
n∑

i=1
Var

(
〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉

‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖

)
+ 2

∑
1≤i<j≤n

Cov
(
〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉

‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖ ,

〈Xj‖Xj‖, Xj+h[‖Xj+h‖ − ‖Xj+h − μ̂‖]〉
‖Xj+h‖‖Xj − μ̂‖‖Xj+h − μ̂‖

)]

≤ C11Var
(
〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉

‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖

)
.

Again applying Assumption 2 and the reverse triangle inequality, we obtain that

Var
(
〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − μ̂‖]〉

‖Xi+h‖‖Xi − μ̂‖‖Xi+h − μ̂‖

)
≤ C12n

−1/2 → 0 as n → ∞.

This implies by Chebyshev’s inequality that G
(1)
1,n(u) − EG

(1)
1,n(u) = oP (1). In

order to establish the stochastic equicontinuity of G(1)
1,n, we note that for u, u′ ∈

K,

|G(1)
1,n(u) −G

(1)
1,n(u′)| =

∣∣∣∣∣ 1√
n

n∑
i=1

〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − n−1/2u‖]〉
‖Xi+h‖‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖

− 〈Xi‖Xi‖, Xi+h[‖Xi+h‖ − ‖Xi+h − n−1/2u′‖]〉
‖Xi+h‖‖Xi − n−1/2u′‖‖Xi+h − n−1/2u′‖

∣∣∣∣∣
≤ 1√

n

n∑
i=1

[∣∣∣∣ 1
‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖

− 1
‖Xi − n−1/2u′‖‖Xi+h − n−1/2u′‖

∣∣∣∣
×

∣∣∣∣∣
〈
Xi‖Xi‖, Xi+h

[‖Xi+h − n−1/2u‖ − ‖Xi+h − n−1/2u′‖]
‖Xi+h‖

〉∣∣∣∣∣
]

+ 1√
n

n∑
i=1

[∣∣∣∣ 1
‖Xi − n−1/2u‖‖Xi+h − n−1/2u‖

− 1
‖Xi − n−1/2u′‖‖Xi+h − n−1/2u′‖

∣∣∣∣
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×
∣∣∣∣∣
〈
Xi‖Xi‖, Xi+h

[‖Xi+h‖ − ‖Xi+h − n−1/2u‖]
‖Xi+h‖

〉∣∣∣∣∣
]

=: L1,n(u, u′) + L2,n(u, u′).

By Cauchy-Schwarz and the reverse triangle inequalities,

L1,n(u, u′) ≤ ‖u− u′‖ 1
n

n∑
i=1

‖Xi‖
‖Xi − n−1/2u‖‖Xi+h − n−1/2u′‖ =: ‖u− u′‖Bn,1.

By Assumption 2 and Lemma 1, EB1,n < ∞. It follows similarly that

L2,n(u, u′) ≤ ‖u− u′‖Bn,2, with EB2,n < ∞.

Hence |G(1)
1,n(u)−G

(1)
1,n(u′)| ≤ ‖u−u′‖B∗

n, where EB∗
n < ∞. It follows once again

by Theorem 2.1 of Newey (1991) that

sup
u∈K

|G(1)
1,n(u) − EG

(1)
1,n(u)| = oP (1).

Owing then to (23), supu∈K |G(1)
1,n(u)| = oP (1). It follows similarly that

supu∈K |G(2)
1,n(u)| = oP (1), and hence R1,n = oP (1), giving the result.

A.3. Proof of Theorem 3

Proof. We first note that∣∣∣∣∣ 1n
n−h∑
i=1

〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 1
n

n∑
i=1

〈S(Xi − μ̂), S(Xi+h − μ̂)〉
∣∣∣∣∣ ≤ h

n

a.s.→ 0.

Thus the theorem follows upon showing that∣∣∣∣∣ 1n
n∑

i=1
〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 1

n

n∑
i=1

〈S(Xi), S(Xi+h)〉
∣∣∣∣∣ a.s.→ 0.

Let An = {(x, y) ∈ H×H : 2 ‖x− μ̂‖ > ‖x‖ and 2 ‖y − μ̂‖ > ‖y‖}. Then

∣∣∣∣∣ 1n
n∑

i=1
〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 1

n

n∑
i=1

〈S(Xi), S(Xi+h)〉
∣∣∣∣∣

= 1
n

n∑
i=1

|〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉|
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= 1
n

∑
{i:(Xi,Xi+h)∈An}

|〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉|

+ 1
n

∑
{i:(Xi,Xi+h)∈Ac

n}
|〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉|

=: Sn,1 + Sn,2.

We aim to show Sn,1
a.s.→ 0 and Sn,2

a.s.→ 0. Looking at the first term Sn,1, we
have

Sn,1

= 1
n

∑
{i:(Xi,Xi+h)∈An}

∣∣∣∣〈 Xi − μ̂

‖Xi − μ̂‖ ,
Xi+h − μ̂

‖Xi+h − μ̂‖

〉
−

〈
Xi

‖Xi‖
,

Xi+h

‖Xi+h‖

〉∣∣∣∣
= 1

n

∑
{i:(Xi,Xi+h)∈An}

∣∣∣∣∣
〈

(Xi − μ̂) ‖Xi‖
‖Xi − μ̂‖ ‖Xi‖

,
(Xi+h − μ̂) ‖Xi+h‖
‖Xi+h − μ̂‖ ‖Xi+h‖

〉

−
〈

Xi ‖Xi − μ̂‖
‖Xi‖ ‖Xi − μ̂‖ ,

Xi+h ‖Xi+h − μ̂‖
‖Xi+h‖ ‖Xi+h − μ̂‖

〉 ∣∣∣∣∣
= 1

n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

×

|〈(Xi − μ̂) ‖Xi‖ , (Xi+h − μ̂) ‖Xi+h‖〉 − 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉| ,
where again m̂i,h = ‖Xi‖ ‖Xi+h‖ ‖Xi − μ̂‖ ‖Xi+h − μ̂‖. By expanding the sum-
mand and applying the triangle inequality, we get that

1
m̂i,h

|〈(Xi − μ̂) ‖Xi‖ , (Xi+h − μ̂) ‖Xi+h‖〉

− 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉|

= 1
m̂i,h

|{〈Xi ‖Xi‖ , Xi+h ‖Xi+h‖〉 − 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉}

− 〈μ̂ ‖Xi‖ , Xi+h ‖Xi+h‖〉 − 〈Xi ‖Xi‖ , μ̂ ‖Xi+h‖〉 + 〈μ̂ ‖Xi‖ , μ̂ ‖Xi+h‖〉|

= 1
m̂i,h

∣∣∣S(1)
n,i − S

(2)
n,i − S

(3)
n,i + S

(4)
n,i

∣∣∣ ≤ 1
m̂i,h

(∣∣∣S(1)
n,i

∣∣∣ +
∣∣∣S(2)

n,i

∣∣∣ +
∣∣∣S(3)

n,i

∣∣∣ +
∣∣∣S(4)

n,i

∣∣∣) ,

where

S
(1)
n,i = 〈Xi ‖Xi‖ , Xi+h ‖Xi+h‖〉 − 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉 ,

S
(2)
n,i = 〈μ̂ ‖Xi‖ , Xi+h ‖Xi+h‖〉 ,

S
(3)
n,i = 〈Xi ‖Xi‖ , μ̂ ‖Xi+h‖〉 , and S

(4)
n,i = 〈μ̂ ‖Xi‖ , μ̂ ‖Xi+h‖〉 .

By adding and subtracting 〈Xi ‖Xi‖ , ‖Xi+h‖ ‖Xi+h − μ̂‖〉 and using the tri-
angle inequality, we have

1
m̂i,h

∣∣∣S(1)
n,i

∣∣∣
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= 1
m̂i,h

|{〈Xi ‖Xi‖ , Xi+h ‖Xi+h‖〉 − 〈Xi ‖Xi‖ , Xi+h ‖Xi+h − μ̂‖〉}

+ {〈Xi ‖Xi‖ , Xi+h ‖Xi+h − μ̂‖〉 − 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉}|

=: 1
m̂i,h

∣∣∣S(1,1)
n,i + S

(1,2)
n,i

∣∣∣ ≤ 1
m̂i,h

∣∣∣S(1,1)
n,i

∣∣∣ + 1
m̂i,h

∣∣∣S(1,2)
i,i

∣∣∣ ,
where

S
(1,1)
n,i = 〈Xi ‖Xi‖ , Xi+h ‖Xi+h‖〉 − 〈Xi ‖Xi‖ , Xi+h ‖Xi+h − μ̂‖〉

S
(1,2)
n,i = 〈Xi ‖Xi‖ , Xi+h ‖Xi+h − μ̂‖〉 − 〈Xi(‖Xi − μ̂‖), Xi+h(‖Xi+h − μ̂‖)〉 .

Using the reverse triangle inequality and Cauchy–Schwarz inequality, we ob-
tain that

1
m̂i,h

∣∣∣S(1,1)
n,1

∣∣∣ = 1
m̂i,h

|〈Xi ‖Xi‖ , Xi+h(‖Xi+h‖ − ‖Xi+h − μ̂‖)〉|

= (‖Xi+h‖ − ‖Xi+h − μ̂‖) ‖Xi‖
m̂i,h

〈Xi, Xi+h〉

≤ ‖μ̂‖ ‖Xi‖
m̂i,h

〈Xi, Xi+h〉 ≤
‖μ̂‖ ‖Xi‖2 ‖Xi+h‖

m̂i,h

≤ ‖μ̂‖ ‖Xi‖2 ‖Xi+h‖
‖Xi‖ ‖Xi+h‖ ‖Xi − μ̂‖ ‖Xi+h − μ̂‖

= ‖Xi‖ ‖μ̂‖
‖Xi − μ̂‖ ‖Xi+h − μ̂‖ .

For (Xi, Xi+h) ∈ An, it follows that

‖Xi‖ ‖μ̂‖
‖Xi − μ̂‖ ‖Xi+h − μ̂‖ ≤ 4 ‖Xi‖ ‖μ̂‖

‖Xi‖ ‖Xi+h‖
= 4 ‖μ̂‖

‖Xi+h‖
.

Combining the above arguments, it follows that
1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(1,1)
n,i

∣∣∣ ≤ 1
n

∑
{i:(Xi,Xi+h)∈An}

4
‖Xi+h‖

‖μ̂‖

= 4 ‖μ̂‖ 1
n

∑
{i:(Xi,Xi+h)∈An}

1
‖Xi+h‖

≤ 4 ‖μ̂‖ 1
n

n∑
i=1

1
‖Xi+h‖

.

Since ‖μ̂‖ a.s.→ 0 and 1
n

∑n
i=1 ‖Xi+h‖−1 a.s.→ E‖Xi+h‖−1

< ∞ by the ergodic
Theorem, we have that

1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(1,1)
n,i

∣∣∣ a.s.→ 0. (24)

A similar argument shows that
1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(1,2)
n,i

∣∣∣ a.s.→ 0. (25)
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Combining (24) and (25), we get that

1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(1)
n,i

∣∣∣ a.s.→ 0.

As for S
(2)
n,i , using the Cauchy-Schwarz inequality, we have that

1
m̂i,h

∣∣∣S(2)
n,i

∣∣∣ = 1
m̂i,h

|〈μ̂ ‖Xi‖ , Xi+h ‖Xi+h‖〉|

≤ ‖μ̂‖ ‖Xi‖ ‖Xi+h‖2

‖Xi‖ ‖Xi+h‖ ‖Xi − μ̂‖ ‖Xi+h − μ̂‖

= ‖μ̂‖ ‖Xi+h‖
‖Xi − μ̂‖ ‖Xi+h − μ̂‖ .

For (Xi, Xi+h) ∈ An, it follows that

‖μ̂‖ ‖Xi+h‖
‖Xi − μ̂‖ ‖Xi+h − μ̂‖ ≤ 4 ‖μ̂‖ ‖Xi+h‖

‖Xi‖ ‖Xi+h‖
= 4 ‖μ̂‖

‖Xi‖
.

Thus,

1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(2)
n,i

∣∣∣ ≤ 1
n

n∑
i=1

1
m̂i,h

∣∣∣S(2)
n,i

∣∣∣ ≤ 4 ‖μ̂‖ 1
n

n∑
i=1

1
‖Xi‖

a.s.→ 0.

Nearly identical arguments give that
1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

∣∣∣S(3)
n,i

∣∣∣ a.s.→ 0.

Finally considering S
(4)
n,i , we have that using the Cauchy-Schwarz inequality that

1
n

∑
{i:(Xi,Xi+h)∈An}

∣∣∣S(4)
n,i

∣∣∣ = 1
n

∑
{i:(Xi,Xi+h)∈An}

1
m̂i,h

|〈μ̂ ‖Xi‖ , μ̂ ‖Xi+h‖〉|

≤ 1
n

∑
{i:(Xi,Xi+h)∈An}

‖μ̂‖2 ‖Xi‖ ‖Xi+h‖
‖Xi‖ ‖Xi+h‖ ‖Xi − μ̂‖ ‖Xi+h − μ̂‖

≤ 4 ‖μ̂‖2 1
n

∑
{i:(Xi,Xi+h)∈An}

1
‖Xi‖ ‖Xi+h‖

≤ 4 ‖μ̂‖2 1
n

n∑
i=1

1
‖Xi‖ ‖Xi+h‖

a.s.→ 0,

since ‖μ̂‖2 a.s.→ 0, and 1
n

∑n
i=1 ‖Xi‖−1 ‖Xi+h‖−1 a.s.→ E[‖Xi‖−1 ‖Xi+h‖−1] < ∞

by Assumption 4. Thus, we conclude that

S
(1)
n,i = 1

n

∑
{i:(Xi,Xi+h)∈An}

|〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉| a.s.→ 0.
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Turning to Sn,2. The argument here is similar to that presented in the proof
of Theorem 1 of [4], but we provide the details so that the proof is self-contained.
First note that

‖〈S(Xi − μ̂), S(Xi+h − μ̂)〉‖ = ‖〈S(Xi), S(Xi+h − μ̂)〉‖ = 1. (26)

Let dn,x = {(x, y) ∈ H × H : 2 ‖x− μ̂‖ ≥ ‖x‖}, dn,y = {(x, y) ∈ H × H :
2 ‖y − μ̂‖ ≥ ‖y‖}.

Recall An = {(x, y) ∈ H × H : 2 ‖x− μ̂‖ > ‖x‖ and 2 ‖y − μ̂‖ > ‖y‖}.
Consequently Ac

n = {(x, y) ∈ H × H : 2 ‖x− μ̂‖ ≤ ‖x‖ or 2 ‖y − μ̂‖ ≤ ‖y‖}.
Clearly Ac

n = dcn,x ∪ dcn,y. Consequently,

1Ac
n
(x, y) ≤ 1dc

n,x
(x, y) + 1dc

n,y
(x, y). (27)

Using the triangle inequality that

Sn,2 = 1
n

∑
{i:(Xi,Xi+h)∈Ac

n}
‖〈S(Xi − μ̂), S(Xi+h − μ̂)〉 − 〈S(Xi), S(Xi+h)〉‖

≤ 2
n

∑
{i:(Xi,Xi+h)∈Ac

n}
1 = 2

n

n∑
i=1

1Ac
n
(Xi, Xi+h)

≤ 2
n

n∑
i=1

(
1dc

n,x
(Xi, Xi+h) + 1dc

n,y
(Xi, Xi+h)

)
= 2

n

n∑
i=1

1dc
n,x

(Xi, Xi+h) + 2
n

n∑
i=1

1dc
n,y

(Xi, Xi+h)

=: Jn,1 + Jn,2. (28)

We aim to show that Jn,1
a.s.→ 0 and Jn,2

a.s.→ 0.
Note that the assumption E ‖X‖−1

< ∞ implies that P (‖X‖ = 0) = 0. Thus,
by continuity of the probability measure, for every ε > 0, there exists δ > 0,
such that P (‖X‖ ∈ Bδ,x) ≤ ε, where Bδ,x = {(X,Y ) ∈ H×H : ‖X‖ ≤ δ}. Then

1
n

n∑
i=1

1dc
n,x

(Xi, Xi+h)

≤ 1
n

n∑
i=1

1Bδ,x
(Xi, Xi+h) + 1

n

n∑
i=1

(
1dc

n,x
(Xi, Xi+h) − 1Bδ,x

(Xi, Xi+h)
)

+

=: J (1)
n,1 + J

(2)
n,1,

where a+ = max(a, 0). Using the ergodic theorem, J (1)
n,1

a.s.→ P (‖X‖ ∈ Bδ,x) ≤
ε. Since ε is arbitrary, we take ε ↓ 0+ and obtained J

(1)
n,1

a.s.→ 0. As for the
Jn,2, note that {(Xi, Xi+h) ∈ H × H : ‖μ̂‖ ≤ δ/2} ⊂ {(Xi, Xi+h) ∈ H × H :
1dc

n,x
(Xi, Xi+h)−1Bδ,x

(Xi, Xi+h) = 0}. Hence, using Assumption 3, there exists
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a null set N such that for ω /∈ N , there exists an M ∈ Z such that for every
integer n ≥ M , ‖μ̂‖ ≤ δ/2. This implies

J
(2)
n,1 = 2

n

n∑
i=1

1dc
n,y

(Xi, Xi+h) = 0.

Combining the arguments above, we obtain Jn,1
a.s.→ 0. An identical argument

shows also that Jn,2
a.s.→ 0. Therefore, Sn,2

a.s.→ 0, which completes the proof.

Appendix B: Additional simulation results

B.1. Accuracy of estimator ‖ĈP ‖2

We examined the accuracy of variance estimator ‖ĈP ‖2 by generating data
for which the value ‖CP ‖2 may be computed explicitly. Consider the two-
dimensional process

Xi(t) =
√

2λ1Z1,i sin(2πt) +
√

2λ2Z2,i cos(2πt),

where Zj,i are a family of independent and identically distributed N (0, 1) ran-
dom variables. Straightforward calculation shows that ‖CP ‖2 may be calcu-
lated based on the moments ratios of quadratic forms of normal random vari-
ables. Such moments are computed explicitly in [24]. It may be shown when
λ1 = λ2 = 1, then

covariance kernel of the projected data is

CP (t, s) = cos(2πt) cos(2πs) + sin(2πt) sin(2πs) = cos(2π(s− t)),

and hence in this case ‖CP ‖2
2 = 1/2. Similarly, when λ1 = 1, λ2 = 2, ‖CP ‖2

2 =
9 − 6

√
2.

In order to examine the effect of variance estimation the coverage of the
confidence intervals in (9), we considered four different ways for constructing
the confidence interval: 1) Normal confidence interval with true variance; 2)
t-confidence interval with true variance with degrees of freedom n − 1; 3) nor-
mal confidence interval with estimated variance and 4) t-confidence interval
with estimated variance with degrees of freedom n− 1. The empirical coverage
rates for each of these intervals are reported in Table 4. We observed that the
difference between the four construction methods yields was quite small, with
the t-confidence interval being relatively narrow which is a phenomenon that is
widely known. With the coverage rates that are close to the nominal levels, it
evidently supports the derived asymptotic distribution given in (5).

Appendix C: Details of the estimation of the FSAR model

The FSAR model was introduced in [14]. The estimation method that we use is
based on a least-squares principle and functional principal component analysis
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Table 4. The comparison between the variance estimate in a finite-dimensional case: 1) Zα/2‖CP ‖2
2 is normal confidence interval with true variance;

2) tα/2,n−1‖CP ‖2
2 is t-confidence interval with true variance with degrees of freedom n−1; 3) Zα/2‖ĈP ‖2

2 is normal confidence interval with estimated
variance; and 4) tα/2,n−1‖ĈP ‖2

2 is t-confidence interval with estimated variance with degrees of freedom n− 1.

λ1 = 1 and λ2 = 2 λ1 = λ2 = 1

N α h Zα/2‖CP ‖2
2 tα/2,n−1‖CP ‖2

2 Zα/2‖ĈP ‖2
2 tα/2,n−1‖ĈP ‖2

2 N α h Zα/2‖CP ‖2
2 tα/2,n−1‖CP ‖2

2 Zα/2‖ĈP ‖2
2 tα/2,n−1‖ĈP ‖2

2

100 0.01 1 0.008 0.006 0.007 0.006 100 0.01 1 0.007 0.006 0.007 0.006
5 0.008 0.006 0.007 0.006 5 0.009 0.007 0.009 0.006
10 0.009 0.008 0.008 0.008 10 0.008 0.007 0.007 0.006

0.05 1 0.048 0.046 0.045 0.045 0.05 1 0.047 0.046 0.047 0.043
5 0.049 0.046 0.047 0.044 5 0.048 0.045 0.047 0.045
10 0.044 0.041 0.041 0.038 10 0.045 0.04 0.043 0.04

0.10 1 0.09 0.087 0.09 0.088 0.10 1 0.094 0.093 0.094 0.09
5 0.102 0.099 0.103 0.098 5 0.11 0.105 0.109 0.105
10 0.088 0.084 0.086 0.084 10 0.094 0.091 0.092 0.088

250 0.01 1 0.011 0.011 0.011 0.011 250 0.01 1 0.008 0.008 0.008 0.008
5 0.008 0.007 0.007 0.006 5 0.006 0.006 0.006 0.006
10 0.009 0.008 0.008 0.006 10 0.007 0.007 0.007 0.007

0.05 1 0.047 0.045 0.045 0.044 0.05 1 0.048 0.047 0.048 0.047
5 0.050 0.048 0.050 0.050 5 0.045 0.045 0.045 0.044
10 0.037 0.035 0.036 0.036 10 0.034 0.033 0.034 0.033

0.10 1 0.101 0.100 0.101 0.101 0.10 1 0.102 0.100 0.100 0.009
5 0.091 0.089 0.088 0.087 5 0.093 0.093 0.093 0.093
10 0.084 0.083 0.083 0.082 10 0.076 0.075 0.074 0.074

500 0.01 1 0.009 0.009 0.009 0.009 500 0.01 1 0.008 0.008 0.008 0.008
5 0.009 0.008 0.01 0.009 5 0.006 0.006 0.006 0.006
10 0.010 0.01 0.011 0.011 10 0.007 0.007 0.007 0.007

0.05 1 0.045 0.044 0.043 0.042 0.05 1 0.051 0.050 0.05 0.049
5 0.047 0.046 0.047 0.047 5 0.045 0.044 0.045 0.044
10 0.046 0.046 0.047 0.047 10 0.044 0.044 0.044 0.044

0.10 1 0.111 0.111 0.111 0.111 0.10 1 0.104 0.104 0.104 0.104
5 0.100 0.098 0.101 0.1 5 0.094 0.093 0.094 0.093
10 0.093 0.093 0.093 0.093 10 0.091 0.089 0.09 0.089
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(FPCA). The FSAR model is defined as

Xn(t) = Φ�1 (Xn−�1) (t) + · · · + Φ�k (Xn−�k) (t) + εn(t), (29)

where each 
i ∈ {1, . . . , n} and 
i 	= 
j for i 	= j. Assuming the kernels φ�i

and the observations Xi’s can be well approximated by the first p functional
principal components, we then let

Xi = (〈Xi, v̂1〉 , . . . , 〈Xi, v̂p〉)� ∈ R
p

and

XL,p,i =

⎛⎜⎜⎜⎝
Xi−�1

Xi−�2
...

Xi−�k

⎞⎟⎟⎟⎠ =

⎛⎜⎜⎜⎝
〈Xi−�1 , v̂1〉
〈Xi−�1 , v̂2〉

...
〈Xi−�k , v̂p〉

⎞⎟⎟⎟⎠ ∈ R
kp.

Then

XL,p =
(
X�

L,p,�k+1 X�
L,p,�k+2 · · · X�

L,p,N

)
=

⎛⎜⎜⎜⎝
〈X�k+1−�1 , v̂1〉 〈X�k+1−�1 , v̂2〉 · · · 〈X1, v̂1〉 · · · 〈X1, v̂p〉
〈X�k+2−�1 , v̂1〉 〈X�k+2−�1 , v̂2〉 · · · 〈X2, v̂1〉 · · · 〈X2, v̂p〉

...
〈Xn−�1 , v̂1〉 〈Xn−�1 , v̂2〉 · · · 〈Xn−�k , v̂1〉 · · · 〈Xn−�k , v̂p〉

⎞⎟⎟⎟⎠
∈ R

(n−�k)×kp,

XR,p =

⎛⎜⎝X�
�k+1
...

X�
n

⎞⎟⎠
=

⎛⎜⎝〈X�k+1, v̂1〉 〈X�k+1, v̂2〉 . . . 〈X�k+1, v̂p〉
...

〈Xn, v̂1〉 〈Xn, v̂2〉 . . . 〈Xn, v̂p〉

⎞⎟⎠ ∈ R
(n−�k)×p.

The least-squares estimator is

Φ̂ =
(
X�

L,pXL,p

)−1 X�
L,pXR,p =:

⎛⎜⎝ Φ̂�1
...

Φ̂�k

⎞⎟⎠ ∈ R
kp×p.

Then the estimates of the kernel function ψ�i(t, s) is

φ̂�i(t, s) ≈
p∑

j=1

p∑
r=1

Φ̂�i [j, r]v̂j(t)v̂r(s), Φ̂i ∈ R
p×p,
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where the square bracket [·, ·] shows the indices of the matrix. It may be re-
written in the matrix form as

φ̂�i(t, s) ≈ (v̂1(t) v̂2(t) · · · v̂p(t)) Φ̂�i

⎛⎜⎜⎜⎝
v̂1(s)
v̂2(s)

...
v̂p(s)

⎞⎟⎟⎟⎠ .

The forecasts are then made by using the estimated kernel as

X̂i(t) =
∫

φ̂�1(t, s)Xi−�1(s)ds + · · · +
∫

φ̂�k(t, s)Xi−�k(s)ds.
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