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Abstract: A bipartite experiment consists of one set of units being as-
signed treatments and another set of units for which we measure outcomes.
The two sets of units are connected by a bipartite graph, governing how the
treated units can affect the outcome units. In this paper, we consider esti-
mation of the average total treatment effect in the bipartite experimental
framework under a linear exposure-response model. We introduce the Ex-
posure Reweighted Linear (ERL) estimator, and show that the estimator
is unbiased, consistent and asymptotically normal, provided that the bi-
partite graph is sufficiently sparse. To facilitate inference, we introduce an
unbiased and consistent estimator of the variance of the ERL point estima-
tor. Finally, we introduce a cluster-based design, Exposure-Design, that
uses heuristics to increase the precision of the ERL estimator by realizing
a desirable exposure distribution.
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1. Introduction

Two-sided marketplaces are rife with interesting but difficult causal questions.
What happens to demand if shipping times or fees are reduced? What hap-
pens to people’s willingness to use ride-hailing apps if more drivers are enrolled
in specific cities? What happens to long term user behavior if a hotel book-
ing platform changes its recommendation engine? The causal impact of these
changes is hard to quantify, even when using randomized experiments, because
marketplace dynamics often violate a central tenet of conventional experimenta-
tion: the Stable Unit Treatment Value Assumption, abbreviated SUTVA. This
assumption stipulates that the treatment assigned to one unit does not affect
any other units. Violations of this assumption is a phenomenon known as in-
terference, which is often present in the case of marketplace experiments and
complicates causal analysis.
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The bipartite experimental framework offers a useful formalism to study two-
sided market experiments and other violations of SUTVA that can happen along
the edges of a bipartite graph. This stands in contrast with interference that
occurs on graphs where all units are of the same type (e.g. users of a social
network). In the bipartite experimental framework, we distinguish two types of
units: units that can be subject to an intervention and units whose responses are
of interest to the experimenter. We assign treatment to the former and measure
the outcomes of the latter. The causal impact of treating one group of units is
measured on the other group by tracking the exposure to treatment that the
latter group receives, informed by the knowledge of the bipartite graph between
them. The treatment status of a single unit may affect the measured outcomes
of many units and, likewise, a measured outcome may be affected by many
treatment units.

As an example, consider a marketplace where buyers compete for limited
goods, some of which may be perfectly or partially substitutable. Their demand
of these goods form a bipartite graph that potentially can be inferred by the
marketplace owner. The owner of the marketplace would like to determine the
causal effect of discounting prices on buyers’ marketplace behavior through a
randomized experiment. Randomly assigning certain buyers to receive a dis-
counted price is often not possible, and might even be prohibited, in which case
randomization is only possible at the item-level. At the same time, simply com-
paring discounted goods with non-discounted goods runs the risk of severe bias.
A discounted good may do well against a non-discounted substitutable good,
which does not accurately reflect a world where either both or neither are dis-
counted. To address this, the marketplace owner decides to monitor this change
at the buyer level. The causal effect can be teased out by tracking both buyers’
behavioral changes and exposure to discounted goods.

In addition to the assumptions on the potential outcomes implicitly encoded
in the bipartite graph, we consider a setting where the effects of the treatments
take a particular form. Similar assumptions are common in the interference
literature. One such assumption is the existence of an exposure mapping, which
posits that outcomes are some simple function of the treatment assignments of
neighboring units in the bipartite graph [59, 5]. In this work, we study estimation
of an all-or-nothing treatment effect in the bipartite experimental framework
under a linear exposure-response model, where exposures are linear functions of
assignments and responses are linear functions of the exposures.

The main contributions of this work are summarized as follows:

• We describe the Exposure-Reweighted Linear (ERL) estimator, an unbi-
ased linear estimator of the average total treatment effect under the linear
exposure-response model. We show that the ERL estimator is consistent
and asymptotically normal, provided the graph is sufficiently sparse.

• We describe a variance estimator, which can be used to construct con-
fidence intervals via a normal approximation. We show that under mild
conditions on the exposure distribution, the variance estimator is unbiased
and consistent. Additionally, we prove asymptotic validity of normal-based
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confidence intervals using the variance estimator.
• We describe the behavior of the ERL estimator when the linear exposure-

response model does not hold, showing that it still estimates an inter-
pretable and policy relevant causal quantity.

• We describe Exposure-Design, a cluster-based design which aims to
increase the precision of the ERL estimator. The design achieves this
by increasing the variance of individual exposures while decreasing the
covariance between exposures of different units. This improves precision
in several settings of interest.

2. Related works

Within the wide-ranging causal inference literature, our work falls squarely
within the subset relying on the potential outcomes framework [46, 35]. The
design and analysis of randomized experiments in the presence of interference
has garnered much attention, spanning vaccination trials [57], agricultural stud-
ies [37], voter-mobilization field experiments [55], and viral marketing campaigns
[2, 20]. It is beyond the scope of the current paper to extensively review the lit-
erature on causal inference under interference. Instead, we direct readers to the
review article by Halloran and Hudgens [28].

Our work is primarily motivated by marketplace experiments. Evidence of
interference in marketplaces has been noted across industries for various exper-
imental designs [27]. Reiley [50], Einav et al. [21] and Holtz et al. [32] study
the interference bias that results from supply-side randomization, while Blake
and Coey [11] and Fradkin [24] consider this problem in the context of de-
mand/user-side randomization. Basse et al. [10] and Liu et al. [39] compare
supply-side randomization to two-sided randomization as well as to budget-
split designs, showing bias can be reduced in the context of certain ad auction
experiments. More recently, Johari et al. [36] characterize which randomiza-
tion scheme (supply-side, demand-side, or two-sided) leads to reduced bias as a
function of market balance.

We consider a slightly different experimental setting, introduced by Zigler
and Papadogeorgou [61], characterized by random assignment of treatment on
one side of the bipartite graph (demand- or supply-side), while outcomes are
measured on the other side. The advantage of this framework is that the bi-
partite graph defines an exposure function (similar to Aronow and Samii [5]),
which is assumed to solely determine an unit’s outcome, making the estimation
problem more tractable. Zigler and Papadogeorgou [61] study causal estimands
which are more closely related to direct effects rather than the all-or-nothing
treatment effect considered here. A drawback of their work is that the analysis
of their estimators requires that the bipartite graph be the union of many small
connected components.

To make estimation and inference more tractable when the graph is com-
plex, methodologists opt for stronger structural assumptions on the outcomes.
An exposure-response assumption similar to the one we use here is adopted
by Pouget-Abadie et al. [49], who introduce a cluster-based design for general
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bipartite graphs, consider a similar estimand, and are also motivated by market-
place experiments. Later, Doudchenko et al. [18] proposed a class of generalized
propensity score estimators for this framework, which are unbiased for both ex-
perimental and observational settings under standard assumptions and a similar
exposure-response assumption.

To the best of our knowledge, our work is the first to propose methods for
provably valid inference (e.g., confidence intervals) in the bipartite settings and
to jointly consider estimators and designs which improve overall precision of
treatment effect estimators. While the cluster design of Pouget-Abadie et al. [49]
is based on the intuition of achieving a large spread of exposures, it disregards
the correlation of exposures and is not directly tied to the performance of an
estimator. Additionally, while the estimators proposed by Doudchenko et al.
[18] are unbiased, they are based on a different approach which requires fitting
a generalized propensity score function. Neither of these papers present methods
for valid inference.

3. Experimental setting

In the bipartite experimental framework, the units that receive treatment are
distinct from the units on which the outcomes are measured. For example, Zigler
and Papadogeorgou [61] apply the framework to analyze how interventions on
power plants’ pollution affect the hospitalization rates among nearby hospitals.
We discuss the general bipartite framework in Section 3.1 and the linear expo-
sure response assumption in Section 3.2.

3.1. Bipartite experiments

In the bipartite experiment setting, there are two groups of units: the diversion
units, to which treatment is applied, and the outcome units, on which outcomes
are measured. We denote the set of m diversion units by Vd and the set of n
outcome units by Vo.

Each of the m diversion units receives a (random) binary treatment zi ∈
{0, 1}, and we collect these treatments into a treatment vector, z = (z1, z2, . . .
zm) ∈ {0, 1}m. The distribution over the random treatment vectors is called
the design of the experiment and it is chosen by the experimenter. Each of the
outcome units i ∈ Vo is associated with a potential outcome function Yi(z),
which maps the treatment assignments to the observed value, which is a real
number. In the bipartite setting, we assume that each potential outcome function
depends only on the treatment of a neighborhood set of diversion units. More
formally, there exists a neighborhood mapping N : Vo → 2Vd such that for all
outcome units i ∈ Vo,

Yi(z) = Yi(z′) if zj = z′j for all j ∈ N (i) .

Throughout the paper, we assume that the neighborhood mapping is known and
correctly specified, so that the above condition holds. We recover the standard
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Stable Unit Treatment Value Assumption (SUTVA) when the diversion units
are identified with the outcome units and the neighborhood mapping is the
identity function.

The number of potential outcomes for each outcome unit grows exponentially
in the size of its neighborhood. Zigler and Papadogeorgou [61] avoid this issue
by assuming that the bipartite structure is the union of many small connected
components. While this is a useful assumption in some settings, it typically does
not hold in a marketplace setting where we know that more varied interactions
occur: buyers may interact with a variety of products. Without further restric-
tions on the structure of the neighborhoods or the potential outcome functions,
inference of any causal estimand is impossible [9, 54]. One example where this
is impossible is when the neighborhood of each outcome unit is all diversion
units. For this reason, we restrict our attention to settings where a stronger
assumption on the potential outcomes is reasonable.

3.2. Linear exposure-response model

In order to admit tractable inference of causal estimands, we consider a linear
exposure-response model, which consists of two underlying assumptions: a linear
exposure assumption and a linear response assumption, which we state formally
below.

In the linear exposure-response model, we suppose that there is a weighted
bipartite graph between diversion units and outcomes units, where the edges
have non-negative weights wi,j ≥ 0, which we arrange into an n-by-m incidence
matrix W . An edge wi,j represents the influence of diversion unit j on the
outcome units i. We say that outcome unit i and diversion unit j are incident
if the weight wi,j is positive. The degree of a diversion unit is the number of
outcome units it is incident to, and the largest degree among all diversion units
is denoted dd. The degree of an outcome unit is defined similarly and the largest
degree among all outcome units is denoted do. For simplicity, we assume that
each outcome unit has at least one incident diversion unit, do ≥ 1, and the
weights incident to an outcome unit are normalized to sum to one. That is, the
rows of the incidence matrix W sum to one. We also assume that this weighted
bipartite graph is known to the experimenter. In many market experiments,
the experimenter may construct an approximation of this graph from historical
data.

The linear exposure assumption is that the treatment assignments influences
the potential outcomes only through a linear combination. This imposes more
structure on the relationship between the diversion and outcome units than
under arbitrary interference. More formally, for each outcome unit i ∈ Vo, the
exposure of outcome unit i is

xi(z) =
∑
j∈Vd

wi,jzj ,

and for all pairs of assignment vectors z and z′ with xi(z) = xi(z′), we have
that Yi(z) = Yi(z′). This implies that the neighborhood mapping is such that
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N (i) = {j : wi,j > 0}.
We define the exposure vector x(z) = (x1(z), x2(z) . . . xn(z)) to be the ar-

rangement of the n individual exposures into a vector. Because the exposure
is a function of treatment, the experimental design determines the exposure
distribution. This linear exposure assumption is a generalization of the partial
and stratified interference assumptions discussed by Hudgens and Halloran [34].
When the treatment assignment vector z is clear from context, we write simply
xi and x for the ith exposure and the exposure vector, respectively. Similarly,
we write Yi for the outcomes. Using matrix-vector notation, we may write the
exposure vector as x(z) = Wz. Due to the normalization of the weights and
the binary values of the treatment assignment, each exposure takes values in
the range [0, 1].

The linear response assumption is that for each outcome unit, the potential
outcome is a linear function of its exposure. That is, for each outcome unit
i ∈ Vo, there exists parameters αi and βi such that

Yi(z) = αi + βixi(z) .

We refer to αi as the unit-specific intercept and βi as the unit-specific slope.
Note that the linear function does not need to be the same between units.
These coefficients are unknown to the experimenter, and the experimenter only
observes the outcome Yi(z), along with the sampled assignment vector z and
the resulting exposure vector x.

We refer to the linear exposure-response model as the combination of the
linear exposure assumption and the linear response assumption. The linear
exposure-response model imposes restrictions on the potential outcomes, but
allows for more complex structure in the bipartite graph than previous work.
This trade-off is preferable in settings such as marketplace experiments, where
we know that a complex bipartite structure exists and we are more comfortable
with making simplifying assumptions about potential outcomes. For further
discussion on empirical and theoretical evidence for complex structure in mar-
ketplace experiments, we refer the reader to Blake and Coey [11], Fradkin [25],
and Johari et al. [36].

Structural assumptions on the outcomes similar to the linear exposure-response
assumption presented here are commonly made throughout the interference lit-
erature. The linear-in-means (LIM) model posits that a unit’s response is a
linear function of their own treatment, and the mean of the treatments of their
group [42]. The LIM model has been extended in various ways in the context
of partial interference [7, 47] and social network experiments [12, 59]. Chin [16]
investigates the use of machine learning estimators for the total average treat-
ment effect under a variation of the LIM when the terms in the linear model of
arbitrary functions of treatment. Basse et al. [10] study model-assisted estima-
tors and designs under the “normal sum-model” which is similar to the linear
exposure-response considered here, but with a normal noise term. We remark
that the bipartite setting with the linear exposure-response assumption recov-
ers the standard SUTVA setting when diversion units are identified with the
outcome units and the weight matrix is the identity.
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The linear exposure-response assumption in this work bears some resem-
blance to a semiparametric partially linear model with heteroskedastic errors
[51]. A key assumption in those superpopulation models is that the outcomes
of all units have a shared linear term (which is typically the estimand) together
with an additive heteroskedastic noise term whose distribution can depend on
unit-level information such as covariates. We differ from this approach in at
several ways. First, we use a design-based perspective, meaning that random-
ization of treatment assignments forms the sole basis for inference, i.e. units are
not assumed to be drawn i.i.d. from a larger distribution. Second, the linear
exposure-response assumption considered in this paper allows for units to have
distinct linear terms βi as well as additive terms αi, neither of which is assumed
to be related to any covariates.

From one perspective, the linear exposure-response model is a strong assump-
tion. It requires that the response for each unit is exactly a linear function in
the exposure. This rules out, for example, that different diversion units have
different impacts on a single outcome unit, other than what can be captured
by the weights in the linear combination in the exposures. But from another
perspective, the model is completely unrestrictive: it does not limit the hetero-
geneity between units at all. That is, knowing the response function for one unit
tells us nothing about the response function of other units. While there are few
settings in which the linear exposure-response model will hold exactly, it will
sometimes be a useful approximation given its unrestrictiveness with respect to
heterogeneity. In Section 6, we analyze the behavior of the ERL estimator under
a general non-linear response assumption, finding that it estimates a best linear
approximation to the average response. However, we leave it to future work to
more precisely characterize the behavior of estimator under general responses
and we assume the linear exposure-response model holds exactly throughout
the paper, unless otherwise stated.

3.3. Causal estimand

We are interested in understanding the contrast between two possible worlds:
one where all diversion units receive treatment and one where they all receive
control. For an individual outcome unit, this contrast is captured by the indi-
vidual treatment effect, τi = Yi(1) − Yi(0) for i ∈ Vo. Just as in the typical
SUTVA setting, we cannot hope to estimate the individual treatment effects
well because only one potential outcome is observed for any one unit. In light
of this, we opt to estimate an aggregated causal quantity. In this paper, we are
interested in the Average Total Treatment Effect (ATTE), which is the average
contrast between the scenario when all diversion units receive treatment and
when all diversion units receive control. More precisely, ATTE is defined as

τ = 1
n

n∑
i=1

τi = 1
n

n∑
i=1

[
Yi(1) − Yi(0)

]
Under the linear exposure-response assumption, the ATTE is proportional to



472 C. Harshaw et al.

the average of the slope terms, as shown in the following proposition.

Proposition 3.1. Under the linear exposure-response assumption, the ATTE
is τ = 1

n

∑n
i=1 βi.

Proof. The individual treatment effect of outcome unit i is equal to its slope, as

τi = Yi(1) − Yi(0) =
[
βixi(1) + αi

]
−
[
βixi(0) + αi

]
= βi ,

where we have used that xi(1) = 1 and xi(0) = 0. The result follows by taking
the average of the individual treatment effects.

There are two main challenges in estimating the ATTE in this setting. First,
we want to estimate the average of the slopes of many different linear response
functions, but we observe only one point from each of the distinct linear re-
sponse functions. Although stated in somewhat unfamiliar terms, this is the
fundamental problem of causal inference [31]. The second challenge is that of
constructing a treatment design which realizes a desirable exposure distribu-
tion. This is a difficult task when the bipartite weight matrix has non-trivial
overlapping structures. In the remainder of the paper, we focus on addressing
these two challenges by developing an estimator and a class of designs which
together accurately estimate the ATTE.

3.4. Cluster designs

Some of the analysis in this paper assumes that the treatment is assigned ac-
cording to a independent cluster design, where the diversion units are grouped
into clusters and treatment is assigned to an entire cluster. More formally, we
say that a partition C1, C2, . . . , C� of the diversion units is a clustering, which we
denote as C = {C1, C2, . . . , C�}. That is, the clusters C1, C2, . . . , C� are disjoint
and their union is set of diversion units Vd. Given a clustering C, a treatment
assignment from the corresponding independent cluster design is drawn in the
following way: independently for each cluster, we assign all diversion within
a cluster to have either treatment zi = 1 with probability p and treatment
zi = 0 with probability 1 − p. For notational simplicity, we consider the treat-
ment probability p to be fixed for all clusters, but our results extend to settings
where each cluster has its own treatment probability. Note that the class of
independent cluster designs is completely specified by C and p.

4. The exposure reweighted linear estimator

The Exposure Reweighted Linear (ERL) estimator, which is an estimator of
the ATTE under the linear exposure-response assumption, is defined as

τ̂ = 1
n

n∑
i=1

Yi

(
xi − E[xi]
Var(xi)

)
. (1)
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The ERL estimator requires knowledge of the mean and variance of each of the
marginal exposure distributions under the treatment design. For several com-
monly used designs such as Bernoulli and independent cluster designs, these
exposure characteristics can be computed directly. For arbitrary designs, the
expectation and variance of the exposures may need to be estimated using sam-
ples drawn from the treatment design. We assume here that these exposure
characteristics are known exactly. The ERL estimator can be used under any
treatment design and not just the cluster-based treatment design we propose in
Section 7.

The ERL estimator belongs to the class of linear estimators, as it is a (ran-
dom) linear function of the observed outcomes. It shares similarities with the
style of Horvitz–Thompson estimators, which weight an outcome by the proba-
bility of observing that outcome [45, 33]. On the other hand, the ERL estimator
weights an outcome by the normalized distance of the exposure from its mean.
When there are many possible values of exposures, such as under the linear
exposure-response model, the type of weighting done by the Horvitz–Thompson
estimator would lead to excessively large variance.

4.1. Unbiasedness and consistency of the ERL estimator

In this section, we analyze the behavior of the ERL estimator as a point es-
timator of the average total treatment effect (ATTE). First, we show that the
ERL estimator is unbiased. Then we show consistency and asymptotic normal-
ity of the ERL estimator, provided that the bipartite graph is not too dense.
Theorem 4.1 ensures that under mild conditions on the treatment design, there
is no systematic bias in the ERL estimator.

Theorem 4.1 (Unbiasedness). Suppose the design is such that each exposure
has positive variance, Var(xi) > 0. Under the linear response assumption, the
ERL estimator is unbiased for the ATTE: E[τ̂ ] = τ .

Next, we analyze the asymptotic behavior of the ERL estimator. In the
asymptotic analysis, we suppose that there is a sequence of bipartite exper-
iments, in which the number of outcome and diversion units are growing to
infinity. Strictly speaking, all quantities of the experiment such as the bipartite
graph, the outcomes, the treatment design, and so on, should be indexed by an
integer indicating which experiment in the sequence the variable refers to, but
we drop these subscripts for notational clarity.

We make two additional assumptions about the bipartite experiments in this
asymptotic sequence. The first is that the potential outcomes are bounded. The
second is that the design has limited dependence between treatment assign-
ments.

Assumption 1 (Bounded Potential Outcomes). The potential outcomes are
bounded in absolute value |Yi(z)| ≤ M , where M is a constant.

Assumption 2 (Design Conditions). The treatments assignments are distributed
according to an independent cluster design, where the probability of treatment
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p is bounded away from 0 and 1 by a constant in the asymptotic sequence. Ad-
ditionally, the sizes of clusters are bounded by k, which is a constant in the
asymptotic sequence.

Assumption 2 rules out certain classes of treatment designs, such as complete
randomization (i.e. group balanced designs). While it may be possible to obtain
similar asymptotic results under such designs, we here limit our consideration
to those satisfying Assumption 2. Under these assumptions, we prove that ERL

is consistent when the bipartite graph is not too dense.

Theorem 4.2 (Consistency). Under Assumptions 1 and 2, the mean squared
error of the ERL estimator is bounded as E[(τ̂ − τ)2] = O

(
ddd

3
o/n
)
. Thus, the

estimator is consistent if ddd3
o = o(n).

Theorem 4.2 shows that the convergence rate of the ERL estimator is at
least

√
ddd3

o/n, where dd and do are the maximum degrees of the diversion and
outcome units, respectively. The main technical assumption that we require for
consistency is that ddd

3
o = o(n) in the asymptotic sequence. Informally, this

condition ensures that the bipartite graph is not too dense as it grows. Indeed,
we expect the convergence of any estimator to worsen as the graph becomes
more complex and dense. While consistency may hold under weaker conditions
for particular designs, an assumption on the graph density must be made: in
the complete bipartite graph where all outcome units receive the same exposure,
consistent estimation is impossible.

We now discuss a specific class of instances where this condition ddd
3
o = o(n)

holds. Suppose that each diversion unit has fixed degree dd, which is a constant
with respect to m and n. The average degree of an outcome unit is then d̄o =
ddm/n. Assuming that the maximum outcome degree do is within a constant
factor of the average, this yields that the term do = O(m/n). Using that the
diversion degrees are constant, we get that ddd

3
o = o(n) if m = o(n4/3). Thus,

in graphs with constant diversion degrees where the edges are roughly evenly
distributed between outcome units, the premise of Theorem 4.2 holds when m
grows at a rate slower than n4/3. Observe that the growth condition m = o(n4/3)
arises from the fact that all diversion units have the same degree. Generally
speaking, the underlying bipartite graph need not have constant degree across
all diversion units and so the condition ddd

3
o = o(n) may still hold for faster

growth rates on m, in certain instances.

4.2. Asymptotic normality of the ERL estimator

We next characterize the limiting distribution of the estimator. In particular, we
show that the sampling distribution of the ERL estimator converges to a normal
distribution as the size of the bipartite experiment grows, provided that the
graph remains sparse. This result is derived under the same asymptotic regime
as above. In order to prove the central limit theorem, we require an additional
assumption on the asymptotic sequence of bipartite experiments. Namely, we



Bipartite experiments with linear exposure-response 475

require that the variance of the ERL estimator decreases no faster than the
parametric rate.

Assumption 3. The normalized variance of the ERL estimator n · Var(τ̂) is
bounded away from zero asymptotically.

Assumption 3 rules out settings in which we can estimate the ATTE at an
unusually fast rate. It is theoretically possible to estimate ATTE at a faster
than parametric rate, but these settings are not practically relevant. Assump-
tion 3 rules out primarily three scenarios. The first is when the magnitude of the
potential outcomes approaches zero in the asymptotic sequence. This requires
that almost all potential outcomes approach zero; the magnitude of the potential
outcomes are generally non-zero even when their average is zero. The second sce-
nario is when the design almost perfectly pinpoints the potential outcomes. This
can be formalized as the variance of each individual term of the estimator di-
minishes asymptotically, i.e. Var(τ̂i) → 0, where τ̂i = Yi(z)(xi−E[xi])/Var(xi).
The third scenario is when the ERL estimator converges at a parametric rate,
but the asymptotic variance happens to be exactly zero. All of these scenarios
are knife-edge cases that we have good reason to believe would not materialize in
practice. Even if they do, the estimator would still be unbiased and consistent,
but its asymptotic distribution might not be normal.

We are now ready to present a central limit theorem.

Theorem 4.3 (Asymptotic Normality). Under Assumptions 1, 2, and 3, and
supposing that d4

dd
10
o = o(n), the ERL estimator is asymptotically normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1) .

The proof relies on Stein’s method for bounding distances between distribu-
tions (see, e.g. Ross [52]). We use Stein’s method because standard techniques
for establishing central limit theorems which rely heavily on independence are
not applicable in the bipartite experimental framework where exposures are nec-
essarily correlated. Stein’s method has been used to investigate limiting behavior
of other estimators in the recent interference literature [5, 15, 48].

The assumptions on the asymptotic growth of the bipartite graph may be in-
terpreted similarly as those appearing in Theorem 4.2. Namely, they prevent the
bipartite graph from becoming too dense. The growth assumptions required for
asymptotic normality (Theorem 4.3) are stronger than those required required
for consistency (Theorem 4.2). The conditions in Theorem 4.3 are only sufficient,
and we conjecture that they are not necessary for asymptotic normality. One
aspect the growth conditions ensure is that the variance of the exposures does
not converge to zero at a too fast rate. If we ensure positivity of the exposures
through some other means, then the growth conditions can be weakened. For
example, assuming that Var(xi) ≥ c > 0, the growth conditions are relaxed to
d4
dd

4
o = o(n). However, weakening the growth conditions beyond this would re-

quire a different analysis, either by a more careful application of Stein’s method
or by different means all together.
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Assumption 2 allows for a broad class of designs. For example, unit-level
Bernoulli randomization satisfies this condition, but this design does not con-
sider the structure of the bipartite graph and will generally perform poorly. To
derive analytical results for this broad class of designs, the growth conditions
on the bipartite graph are quite restrictive, and they may be too restrictive in
certain settings where more dense interaction patterns occur. If one restricts
focus to a smaller class of designs, these growth conditions could potentially be
weakened. The key implication of Assumption 2 together with the growth con-
ditions is that the variance of the exposures is large and the correlation between
most pairs of exposures is small. Heuristically, these conditions on the exposure
distribution are the main aspects required for consistency and normality. We
describe a design in Section 7 that directly targets the exposure distribution to
satisfy these conditions, and it will therefore be better behaved than many of
the designs allowed by Assumption 2.

5. Variance estimation and confidence intervals

In this section, we present methods for constructing confidence intervals for the
ATTE in the bipartite setting under the linear exposure-response assumption. If
we knew the variance of the ERL estimator, we could use Theorem 4.3 directly
to construct asymptotically valid confidence intervals. However, because the
variance of the ERL estimator depends on the unobserved potential outcomes,
we must construct an estimator of the variance.

In the finite population experimental settings with binary treatments, un-
biased variance estimation is not possible without strong assumptions on the
heterogeneity between units [35]. In light of this negative result, experimenters
tend to favor conservative variance estimators that lead to valid but overly wide
confidence intervals. In contrast to the typical experimental settings, we show
that unbiased variance estimation is possible in the bipartite setting under the
linear response assumption when the exposures take many (i.e. more than two)
values.

5.1. Derivation of the variance estimator

To the best of our knowledge, this approach to constructing a variance estimator
is new. We will therefore describe its derivation somewhat carefully here. Our
approach begins by first decomposing the ERL estimator into a weighted aver-
age of individual effect estimators, and then further decomposing the variance
of the ERL estimator as the average of covariances of these individual effect
estimators.

Define τ̂i � Yi(xi − E[xi])/Var(xi) to be the individual terms in the ERL

estimator. We may interpret τ̂i as an unbiased, but very imprecise, estimator
of the individual treatment effect τi. The ERL estimator can now be written
as the average of these quantities: τ̂ = (1/n)

∑n
i=1 τ̂i. The variance of the ERL
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estimator can therefore be written as

Var(τ̂) = Var
(

1
n

n∑
i=1

τ̂i

)
= 1

n2

n∑
i=1

n∑
j=1

Cov(τ̂i, τ̂j) .

Our approach to constructing a variance estimator will be to construct simple
weighting estimators for each of the Cov(τ̂i, τ̂j) terms. These weighting estima-
tors will be expressed as Ĉi,j = YiYjRi,j(xi, xj), where YjYj is the product of
observed outcomes and Ri,j(xi, xj) is a weighting function which takes the ob-
served exposures as inputs, such that our variance estimator will be the simple
average of these weighted products of outcomes:

V̂ar(τ̂) � 1
n2

n∑
i=1

n∑
j=1

Ĉi,j �
1
n2

n∑
i=1

n∑
j=1

YiYjRi,j(xi, xj) .

The goal here is to make each individual estimator Ĉi,j unbiased for each indi-
vidual covariance Cov(τ̂i, τ̂j), so that the entire variance estimator V̂ar(τ̂) will
be unbiased. Moreover, if the individual estimators Ĉi,j are sufficiently uncor-
related, then the overall variance estimator will achieve high precision.

We consider three different types of terms in the double sum. The first type
is when the covariance between unit-level estimators Cov(τ̂i, τ̂j) is known to be
zero. In particular, the linear response assumption implies that Cov(τ̂i, τ̂j) = 0
when Cov(xi, xj) = 0. Therefore, we set the weighting function Ri,j(xi, xj) to
be exactly zero whenever Cov(xi, xj) = 0, which means that Ĉi,j = 0.

The second type is the non-zero, off-diagonal terms: Cov(τ̂i, τ̂j) �= 0 and i �= j.
For these pairs, we define the overall weighting function Ri,j(xi, xj) to be

Ri,j(xi, xj) = Qi,j(xi, xj) − Si,j(xi, xj) ,

where Qi,j(xi, xj) and Si,j(xi, xj) are defined as

Qi,j(xi, xj) = xi − E[xi]
Var(xi)

· xj − E[xj ]
Var(xj)

,

Si,j(xi, xj) = ai,j(xixj − E[xixj ]) + bi,j(xi − E[xi]) + ci,j(xj − E[xj ]) ,

and the coefficients ai,j , bi,j , ci,j are obtained as solutions to the following system
of linear equations:

Σi,j

⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣ Var(xixj) Cov(xi, xixj) Cov(xj , xixj)
Cov(xixj , xi) Var(xi) Cov(xj , xi)
Cov(xixj , xj) Cov(xi, xj) Var(xj)

⎤⎦⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣1
0
0

⎤⎦ .

The two weighting functions have been constructed such that YiYjQi,j(xi, xj)
and YiYjSi,j(xi, xj) are unbiased estimators of E[τ̂iτ̂j ] and E[τ̂i]E[τ̂j ], respec-
tively. Because Cov(τ̂i, τ̂j) = E[τ̂iτ̂j ] − E[τ̂i]E[τ̂j ], this means that the overall
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estimator Ĉi,j � YiYjRi,j(xi, xj) = YiYjQi,j(xi, xj) − YiYjSi,j(xi, xj) is an un-
biased estimator of the covariance Cov(τ̂i, τ̂j). We refer the reader to Appendix B
for more details.

The third case is the diagonal terms: i = j. In principle, we could use the
same functions Qi,j(xi, xj) and Si,j(xi, xj) as for the off-diagonal terms, but
the system of equations is underdetermined, so the coefficients ai,j , bi,j , and ci,j
are not uniquely determined. To address this, we set ci,i = 0 when i = j, and
obtain the coefficients ai,i and bi,i as solutions to the following system of linear
equations:

Σi,i

[
ai,i
bi,i

]
=
[

Var(x2
i ) Cov(x2

i , xi)
Cov(x2

i , xi) Var(xi)

] [
ai,i
bi,i

]
=
[
1
0

]
.

The existence of unique solutions to these systems of linear equations requires
that the exposures and their products are not perfectly correlated. The matrices
Σi,j allow us to capture this. Note that when i �= j, Σi,j is the 3-by-3 covariance
matrix of the two exposures xi, xj , and their product xixj . When i = j, Σi,j is
the 2-by-2 covariance matrix of the exposure xi and its square x2

i . For a given
pair i, j ∈ Vo (whether distinct or not), a unique solution to the corresponding
system of linear equations above exists if det(Σi,j) > 0. To understand this,
note that the determinant of a covariance matrix is a quantitative measure of
the linear dependence of a set of random variables, which prompted Wilks [60]
to refer to det(Σ) as the “generalized variance”.

In Appendix B.1, we derive the coefficients in closed form. The coefficients
can be expressed as simple functions of various statistics of the joint distribu-
tion of exposure pairs. The exposure distribution depends on the underlying
bipartite graph and the experimental design, both of which are known to the
experimenter. Thus, the coefficients of the variance estimator can be computed
before the experiment begins. In the case of an independent cluster design, the
coefficients can be computed exactly. For more complicated designs, the statis-
tics in the coefficients can be estimated to high precision via a Monte Carlo
procedure [23]. Throughout the paper, we assume that the exact coefficients are
used.

5.2. Unbiased and consistent variance estimation

The following theorem demonstrates that, under certain condition on the expo-
sure distribution described above, the variance estimator is unbiased.

Assumption 4 (Non-degenerate Exposures). For each pair of outcome units
i, j ∈ [n], the joint distribution of their exposures xi, xj satisfies the non-degener-
acy condition det(Σi,j) > 0.

Theorem 5.1 (Unbiased Variance Estimator). Under Assumption 4 and the
linear response assumption, the variance estimator of the ERL point estimator
is unbiased, i.e. E[V̂ar(τ̂)] = Var(τ̂).
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As discussed above, the exposure distribution is known to the experimenter,
so they can check whether the non-degeneracy conditions in Assumption 4 hold
before the experiment is run. In particular, this information may inform the
experimenter’s choice of design. When i = j, the condition states that xi and
x2
i are not perfectly correlated random variables, which occurs exactly when xi

is supported on at least three distinct values. It is often possible to ensure this
condition holds through careful selection of the experimental design. However,
such a condition cannot be satisfied when an outcome unit is incident to only
a single diversion unit, as only two exposures are ever observed in that case.
This impossibility is in line with the fact that unbiased variance estimation is
generally not possible in experimental settings with binary treatments. In the
case of a pair of exposures (i.e. i �= j), the condition states that exposures
xi, xj , and their product xixj are not perfectly correlated random variables.
Again, this may be achieved by careful selection of the experimental design;
however, this condition cannot be satisfied when two outcome units have iden-
tically weighted edges (i.e. wi,k = wj,k for all k ∈ Vd), because this would imply
that the exposures are identical, xi = xj .

When Assumption 4 does not hold, our proposed variance estimator will
be ill-defined or biased. Indeed, it is possible that no unbiased variance esti-
mator exists in such settings. In this case, one can replace the problematic
Cov(τ̂i, τ̂j) terms, which cannot be estimated directly, with upper bounds that
can be estimated. For example, if the exposure xi takes only two values, so that
det(Σi,i) = 0, then one can replace the problematic term in the variance with
the upper bound: Cov(τ̂i, τ̂i) = Var(τ̂i) = E[τ̂2

i ] − E[τ̂i]2 ≤ E[τ̂2
i ], as Aronow

and Samii [3] do when they invoke Young’s inequality. To unbiasedly estimate
this term, we can modify our weighting estimator as Ri,i(xi) = Qi,i(xi). Sim-
ilarly, if det(Σi,j) = 0 for some distinct outcome units i �= j, then one can
replace the corresponding covariance term with an upper bound obtained from
the Cauchy-Schwarz and AM–GM inequalities:

Cov(τ̂i, τ̂j) ≤
√

Var(τ̂i)Var(τ̂j) ≤
1
2

(
Var(τ̂i) + Var(τ̂j)

)
.

An unbiased estimator for the above term may be obtained by modifying the
weighting function so that Ri,j(xi, xj) = 1/2 · (Ri,i(xi, xi)+Rj,j(xj , xj)). Under
Assumptions 1 and 2, replacing one of these individual terms in this way leads
to a positive bias of the normalized variance estimator n · V̂ar(τ̂) which is on the
order O(1/n). Thus, the variance estimator remains asymptotically unbiased as
long as we apply these upper bounds to o(n) terms. This is stated formally in
the proposition below:

Proposition 5.2. Let E = {(i, j) ∈ Vo × Vo : det(Σi,i) = 0} be the pairs of
outcome units for which Assumption 4 is not satisfied. Consider the alternative
variance estimator V̂arcon(τ̂) defined by the new weighting function:

R′
i,j(xi, xj) =

⎧⎨⎩
Ri,j(xi, xj) if (i, j) /∈ E
Qi,j(xi, xi) if (i, j) ∈ E and i = j
1
2 (R′

i,i(xi, xi) + R′
j,j(xi, xj)) if (i, j) ∈ E and i �= j

.
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Then, under Assumptions 1 and 2, the normalized alternative variance estimator
is conservative in expectation with bounded bias: 0 ≤ E[n·V̂arcon(τ̂)]−n·Var(τ̂) =
O(|E|/n). Thus, the normalized alternative variance estimator is asymptotically
unbiased if |E| = o(n).

Even when the terms can be estimated without bias, it could still be preferable
to apply the bound if det(Σi,j) ≈ 0, as the individual covariance estimators
would have high variance in this case, causing the overall variance estimator
to be imprecise. For the rest of the section, we analyze the variance estimator
assuming that Assumption 4 holds exactly, but we conjecture that many of our
results will go through for the conservative variance estimator described above.

We now present conditions under which our proposed variance estimator is
consistent in mean squared error. To this end, we define Δ = mini,j∈[n] det(Σi,j)
to be the smallest non-degeneracy measure.

Theorem 5.3. Under Assumptions 1, 2, and 4, the mean squared error of the
normalized variance estimator is bounded as

E

[(
n · Var(τ̂) − n · V̂ar(τ̂)

)2] = O
( 1
n
·
(
d3
dd

7
o + 1

Δ2

))
.

Thus, the normalized variance estimator is consistent if d3
dd

7
o = o(n) and Δ =

ω(n−1/2).

In Theorem 5.3, we analyze convergence of the normalized variance estimator
to the normalized variance, which is bounded below by a positive constant,
according to Assumption 3. This normalization ensures that both the variance
and its estimator are on appropriate scales so that the mean squared error does
not trivially approach zero. In light of Assumption 3, this says that the variance
estimator converges to the variance at a faster rate than the variance of the ERL

estimator converges to zero. A stronger requirement for the rate of convergence
yields a stronger restriction on the growth conditions of the bipartite graph. We
also require that the degeneracy measure Δ does not approach zero too quickly,
which is a quantitative strengthening of Assumption 4.

Theorem 5.3 holds for a broad class of designs under Assumption 2, includ-
ing Bernoulli randomization at the level of individual diversion units. An ex-
perimental design that takes the structure of the bipartite graph into account
would generally yield consistency under weaker conditions than those needed
for Theorem 5.3. In particular, a design which decorrelates the individual co-
variance estimators Ĉi,j and make their variances small will yield improved
precision of the variance estimator. Interestingly, improving the precision of the
ERL estimator and improving the precision of its variance estimator are gen-
erally different goals; a design which improves one may not necessarily improve
the other. A detailed investigation into this trade-off is beyond the scope of the
current paper.
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5.3. Asymptotically valid confidence intervals

We may now use our variance estimator together with the asymptotic normal-
ity to construct well-motivated confidence intervals. We construct a confidence
interval at the 1 − α confidence level as

τ̂ ± Φ−1(1 − α/2)
√

V̂ar(τ̂) ,

where Φ−1 : [0, 1] → R is the quantile function of the standard normal devi-
ate. The following result follows from the consistency of the variance estimator
(Theorem 5.3) together with asymptotic normality of the ERL estimator (The-
orem 4.3).

Corollary 5.4. Under Assumptions 1-4 and further supposing that d4
od

10
d =

o(n) and Δ = ω(n−1/2), the Wald-type confidence interval using the proposed
variance estimator is asymptotically valid:

lim
n→∞

Pr
(
τ ∈
[
τ̂ ± Φ−1(1 − α/2)

√
V̂ar(τ̂)

])
= 1 − α .

It is possible that the proposed variance estimator may take negative values
for some treatment assignments. This may happen when the variance is near
zero and the variance estimator is imprecise relative to the variance. When the
variance estimator takes a negative value, this construction of confidence inter-
vals is not well-defined. Experimenters may here opt for a more conservative
estimator of the variance in order to ensure that it never is negative. For exam-
ple, in the simulation study, we use the absolute value of the estimator described
here to ensure non-negativity.

6. Analyzing ERL without the linear response assumption

Our previous analysis of the ERL estimator relied on the linear response as-
sumption. In this section, we show that without the linear response assumption,
the ERL estimator can be interpreted as capturing as an average of linear
approximations of each unit’s dose response function to treatment intensities
among the relevant diversion units.

The following theorem derives the expectation of the ERL estimator without
the linear response assumption.

Theorem 6.1. Let the potential outcome functions be arbitrary functions of the
exposures: Yi(z) = Yi(xi). Then, the expectation of the ERL estimator is

E[τ̂ ] = 1
n

n∑
i=1

β̃i ,

where β̃i is the coefficient of the exposure xi in a unit-specific OLS regression of
Yi on xi: β̃i = Cov(xi,Yi)

Var(xi) .
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Theorem 6.1 shows that under a general (non-linear) response assumption,
the ERL estimator may be interpreted as estimating the average of the slopes
of the best linear fit of the outcome to the exposure. We emphasize that this
regression cannot be run by the experimenter because the outcomes are not
known.

This result is related to several previous results within and outside causal
inference. Realizing that most conditional expectation functions are not linear,
some statisticians and econometricians have advocated for an interpretation of
linear regression as capturing an interpretable approximation of the underlying
relationship between the outcome and the regressors [13, 41, 26]. Specifically
for causal inference, Angrist [1] highlights that when linear regression is used
to estimate treatment effects in an observational setting, the estimator captures
a variance-weighted average of unit-level causal effects (see also [4] and [56]).
In a vein similar to these results, Theorem 6.1 shows that the ERL estimator
captures a policy-relevant causal quantity even if the linear response assumption
does not hold. The difference is that the effect it captures is an unweighted
average over the units, and the approximation is with respect to each unit’s
response function.

Under the linear response assumption, this regression-based estimand is equal
to the average total treatment effect (ATTE) defined in Section 3.3. However,
these two estimands will not coincide for arbitrary response functions and de-
signs. Aside from the linear response assumption, there are several scenarios
where we would expect the ATTE and the regression-based estimand to be
similar. One such scenario is when the design very closely approximates the
Bernoulli design with respect to the exposures, so that exposures have mean
1/2 and concentrate around 0 and 1. When the design is exactly Bernoulli the
regression-based estimand is exactly equal to the ATTE, which matches the in-
tuition from the no-interference setting. Another scenario is when the response
function is well-approximated by a linear function. An extensive investigation
into formal conditions under which the regression-based estimand and the causal
estimand (ATTE) are equivalent or similar is beyond the scope of this paper.

7. A cluster design for targeting exposure distribution

In this section, we describe Exposure-Design, an independent cluster design
which aims to improve precision of the ERL estimator by constructing a de-
sirable exposure distribution. To this end, we first show in Section 7.1 that
increasing the variance of exposures and decreasing the covariance between ex-
posures can lead to improved precision of the ERL estimator in settings of
interest. We use the formal results in this setting as inspiration for a heuristic
for more general settings. In Section 7.2, we present a clustering objective that
aims to achieve such exposure distributions, thereby improving the precision
of ERL estimator. Finally, we present a heuristic algorithm for optimizing this
clustering objective in Section 7.3.



Bipartite experiments with linear exposure-response 483

7.1. An ideal exposure distribution

Like all linear estimators, the ERL estimator will incur a large mean squared
error when the coefficients for the observed outcomes are large. In particular, if
the variance of an exposure Var(xi) is close to zero, the corresponding term of
the estimator in equation (1) on page 472 will become large, yielding a high mean
squared error even though the estimator is unbiased. In general, experimenters
should use designs for which the corresponding exposure variances are large.

However, large exposure variances should not be the only property of the
exposure distribution that experimenters focus on. Consider a naive design that
places equal probability on two treatment vectors: either all diversion units re-
ceive treatment (z = 1) or all diversion units receive control (z = 0). Under
this design, all of the exposures have variance ones, which is the largest pos-
sible variance in this setting. However, we observe either all of the treatment
outcomes or all of the control outcomes, but never a mix of the two; in fact,
the estimator itself takes only two values. Thus, the ERL estimator will be very
imprecise under this design, despite the individual exposure variances being as
large as possible. This raises the question: how should we construct a design
that improves the precision of the ERL estimator?

This is a challenging task, since the precision of the ERL estimator depends
on the unobserved outcomes. Indeed, a universally optimal design does not exist
[29]. However, we argue that a good heuristic is to construct the design so that
the variance of the exposures are large and the covariances between most pairs
of exposures are close to zero. As discussed at the end of Section 4.1, a design
which directly targets these aspects of the exposure distribution can be expected
to ensure high precision of the ERL estimator under weaker growth conditions
on the bipartite graph than those presented in our analysis.

As an illustration to motivate this heuristic, consider the scenario where all
of the individual treatment effects are zero, i.e. the response functions are of the
form Yi(xi) = αi. Studies of these sort are sometimes called uniformity trails or
A/A tests. In this scenario, the MSE of the ERL estimator is

E[(τ̂ − τ)2] = 1
n2

[
m∑
i=1

α2
i

1
Var(xi)

+ 2
∑
i<j

αiαj
Cov(xi, xj)

Var(xi)Var(xj)

]
.

As the individual variance terms increase, the first sum decreases. The effect
of the second term depends on the sign of the product of intercepts, αiαj .
Generally speaking, these intercepts are unknown to the experimenter. For the
sake of this discussion, consider when the outcomes Yi(z) are non-negative, in
which case all intercepts αi and their products αiαj are non-negative. In this
case, decreasing the correlation between exposures would decrease the second
term, leading to an overall decrease in the MSE of the ERL estimator. Note that
the same hold if all αi are negative. If the αi have mixed signs, it is beneficial
to introduce positive correlation when αiαj < 0, but it will generally not be
possible to know at the design stage for which pairs of units this holds.
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7.2. Clustering objective for targeting exposure distribution

In the previous section, we noted that a reasonable heuristic is to assign treat-
ments to the diversion units so that the variance of exposures is large and the
covariance between most exposures is small. However, as argued in Section 3.2,
constructing a treatment distribution which realizes a desired exposure distribu-
tion is generally not possible due to overlapping structures in the bipartite graph.
In this section, we present an optimization formulation for an independent clus-
ter design that aims to achieve large exposure variance and small correlations
between exposures, to the extent that this is possible given the bipartite graph.

We propose choosing a cluster design which maximizes the following objective
function:

max
clustering C

n∑
i=1

[
Var(xi) − φ

∑
i �=j

Cov(xi, xj)
]

. (Exposure-Design)

The variance and covariance of the exposures above are with respect to the
random treatment assignments of the corresponding independent cluster de-
sign. The first term in the objective is the sum of the exposure variances, so
maximizing this term will encourage large exposure variances. The second term
penalizes positive correlation between exposures, and maximizing it encourages
small correlation. It is impossible to induce a negative correlation between ex-
posures in the class of independent cluster designs, so the second term of the
objective attains its maximum when the exposures are uncorrelated. The cor-
relation penalizing parameter φ ≥ 0 controls the relative emphasis between
large exposure variances and small exposure correlations. When φ = 0, then the
emphasis is placed entirely on increasing individual exposure variance; this is
typically undesirable, as the optimal solution is often a single cluster containing
all diversion units, which results in a design where either all diversion units re-
ceive treatment or all diversion units receive control. Increasing φ places more
emphasis on decorrelating exposures.

A key insight to solving the Exposure-Design formulation is that it may
be reformulated as a correlation clustering problem, which is well-studied in the
algorithms literature [8, 58, 14]. The existing computational understanding of
these correlation clustering problems is another reason to use the Exposure-

Design objective. The following proposition states the re-formulation of the
Exposure-Design objective into the correlation clustering variant, denoted
Corr-Clust.

Proposition 7.1. For each pair of diversion units i, j ∈ Vd, define the value
ωi,j ∈ R as

ωi,j = (1 + φ)
m∑

k=1

wk,iwk,j − φ
( m∑
k=1

wk,i

)( m∑
k=1

wk,j

)
, (2)

where wk,i is the weight of the edge between the kth outcome unit and the ith
diversion unit. Exposure-Design is equivalent to the following clustering prob-
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lem:
max

clusterings C

∑
Cr∈C

∑
i,j∈Cr

ωi,j . (Corr-Clust)

Although Corr-Clust is a variant of the weighted maximization-type corre-
lation clustering problems previously studied in the literature [14, 58], it is not
equivalent to previously studied formulations in an approximation-preserving
sense, as it takes positive and negative values. Given that weighted maximiza-
tion correlation clustering is NP-Hard [14], it is reasonable to presume that our
formulation Corr-Clust is also computationally hard. However, these compu-
tational complexity considerations are beyond the scope of this paper.

Exposure-Design places no explicit constraint on the number of clusters
produced by the clustering algorithm. However, our analysis in Section 4.1 sug-
gests that limiting the cluster sizes, and thereby reducing correlation between
exposures, helps to achieve consistency and normality of the ERL estimator.
This desirable cluster structure is not captured by the optimization problem it-
self, but we handle it through our local search heuristic described in Section 7.3.
The Exposure-Design objective does not directly minimize MSE of the ERL

estimator, but should instead be understood as a useful heuristic.
The Exposure-Design is conceptually similar to the correlation-clustering

based design presented in [49], but it differs in several key ways. Exposure-

Design provides experimenters the flexibility to trade-off larger exposure vari-
ances with more de-correlated exposures by setting the parameter φ. In contrast,
the cluster design of Pouget-Abadie et al. [49] focuses solely on the exposure
variance by maximizing what is referred to as “empirical dose variance” in their
paper. As we demonstrate in Appendix C, their objective is equal to ours when
the trade-off parameter is set to φ = 1/(n− 1). In this sense, the cluster design
of Pouget-Abadie et al. [49] can be viewed as a specific instance of the more
general Exposure-Design, where a greater emphasis is placed on maximizing
the exposure variances. More importantly, the Exposure-Design presented in
this paper is is arguably better aligned with the objective of minimizing vari-
ance of the ERL estimator, while the correlation-clustering based design of
Pouget-Abadie et al. [49] is motivated by the intuition that extreme exposures
are helpful in this setting, without any reference to an explicit estimator or its
statistical properties.

7.3. Local search heuristic for Exposure-Design

We now describe a local search heuristic for optimizing Exposure-Design. The
local search is initialized with the singleton clustering and iteratively seeks to
improve the clustering. In each iteration, the algorithm loops through random
pairs of diversion units i, j ∈ Vd and moves diversion unit j to the cluster
currently containing diversion unit i if that change improves the objective value,
subject to a user-defined constraint on the clusters. The local search algorithm
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is presented more formally below as Algorithm 1.

Algorithm 1: Local Search(W , φ, k, T , cluster constraints)
1 Initialize singleton clustering C = {{1}, {2}, . . . {m}}
2 for iterations t = 1 . . . T do
3 Choose permutation π on the diversion units uniformly at random.
4 for diversion units i ∈ π do
5 Randomly select a diversion unit j with probability proportional

to (W ᵀW )i,j
6 Let C and C ′ be the clusters containing diversion units i and j,

respectively.
7 if moving j from cluster C ′ to C increases objective value and

satisfies user-defined constraints then
8 Move diversion unit j from cluster C ′ to C.

9 return clustering C

Given a diversion unit i, we use wedge sampling to select unit j proportional
to (W ᵀW )i,j =

∑n
k=1 wk,iwk,j [17]. We use wedge sampling because picking

pairs of units for which (W ᵀW )i,j is large often results in a large correlation
clustering weight ωi,j . Performance improvements are obtained by computing
the correlation clustering weights ωi,j only when they are needed to evaluate
changes in the objective. In particular, the first term of equation (2) on page 484
is an inner product whose computation scales with the sparsity of the bipartite
graph and the second term is the product of sums that can be pre-computed.

Diversion unit j is moved into the cluster containing diversion unit i if two
conditions are met: the objective increase and the user-defined cluster con-
straints are satisfied. We recommend that experimenters choose constraints
which limit the cluster sizes in some way. For example, the experimenter may
choose to constraint the number of diversion units within a cluster. In our im-
plementation, we constrain the sum of the (unweighted) degrees of diversion
units within a cluster to be a fixed fraction of the total number of edges. In this
way, no cluster has too many outgoing edges to outcome units. This implicitly
limits the amount of dependence between exposures, which is one of the key
aspects underlying the design conditions in Assumption 2 of our analysis.

Our local search algorithm is different from the one presented in [49], which
approximates the Gram matrix W ᵀW offline as the sum of a sparse matrix and
a rank-one matrix, so that the algorithm works with an approximation to the
objective. In contrast, our algorithm accepts and rejects changes based on the
exact value of the objective. Relative to [22], this local search does not consider
moving units to new empty clusters, nor does it consider merging clusters. Moves
of the first type seem consistently unprofitable in our setting. As for merges,
we find that the algorithm is able to essentially perform them by moving one
diversion unit at a time.
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8. An application to online marketplace experiments

In this section, we apply our proposed methodology to a simulated marketplace
experiment based on a product review dataset from the Amazon marketplace
[43, 30]. The Amazon product review dataset contains 83 million reviews made
by 121 thousand customers on 9.8 million items. In this application, we imagine
running an experiment where we change the pricing mechanism of items in the
marketplace, and are interested in how customers’ satisfaction is affected by
this change. The items sold in the marketplace are the diversion units and the
customers in the marketplace are the outcome units.

We do not observe customer demand nor purchasing history in this data
set. Instead, we use whether a customer reviewed an item as a proxy for item
demand. Thus, an edge is present in the bipartite graph if a customer reviewed
an item and all edges incident to an outcome unit are uniformly weighted. This
means that a customer’s exposure is the unweighted average of the treatment
status of the items they have previously reviewed. While the use of the review
proxy for demand makes the simulation quite stylized, we believe the proxy
sufficiently aligned with item demand to make the simulation informative. But
we use this dataset only to illustrate our statistical methodology on a bipartite
graph arising from real online interactions; we do not claim that our simulation
is representative of online marketplaces more generally.

We generate potential outcomes in the simulation via an exposure-response
function. The outcomes could be seen as the satisfaction of a customer given
their exposure. The responses in this study are simulated, but we can imag-
ine that they are either reported directly by a customer or inferred from the
customer’s future behavior. In the case of a linear response, a positive slope
indicates an increase in customer satisfaction as a result of the new pricing
mechanism, while a negative slope indicates a decrease in satisfaction as a re-
sult of the new pricing mechanism.

We preprocess the Amazon produce review dataset for computational tractabil-
ity in the same manner as Pouget-Abadie et al. [49]. We begin by removing cus-
tomers that have reviewed fewer than 100 items. Next, we execute a balanced
partitioning algorithm [6] on the entire bipartite graph to create groups of cus-
tomers and groups of items. After this preprocessing, we define the diversion
units to be the item groups and the outcome units to be the customer groups.
The resulting bipartite graph has one thousand outcome units, 2.4 million di-
version units, and 7.1 million edges. Given the denseness of edges, this bipartite
graph can hardly be seen as satisfying the growth conditions used to prove con-
sistency and asymptotic normality (specified in Section 4.1). This application
may therefore be seen as a stricter test of the performance of the proposed design
and estimator, as the current setting would require weaker growth conditions.

We investigate the statistical properties of the ERL estimator, the variance
estimator, and the resulting confidence intervals under various treatment designs
in this application. In particular, we compare our proposed Exposure-Design

to several existing designs: the Bernoulli design, the correlation clustering design
of Pouget-Abadie et al. [49], and the balanced partitioning cluster design of [19],
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as implemented by Aydin et al. [6]. Although the balanced partitioning design
was not developed for the bipartite setting, we may expect it to achieve high
precision estimates if the clustering produces decorrelated exposures with large
variances.

We generate the potential outcomes in three simulations, where we vary the
response functions that are used. The first two simulations feature linear re-
sponse functions and the third simulation features a non-linear response func-
tion. We draw the parameters at random, but keep them (and thus the potential
outcomes) fixed between simulation rounds. These simulation settings are listed
below.

• S1: (Mostly) Positive Effects. In this simulation, we set almost all of
the individual treatment effects to be positive. More precisely, we sam-
ple the slope terms as βi ∼ N (2, 1) and the intercept terms as αi ∼
N (−1, 3/8).

• S2: (Nearly) Zero Effects. In this simulation, we set all the individual
treatment effects close to zero, while varying the baseline outcomes. The
outcomes are chosen to be mostly positive. More precisely, we sample the
slope terms as βi ∼ N (0, 1/2) and the intercept terms as αi ∼ N (2, 3/8).

• S3: Non-Linear Response. In this simulation, we use a non-linear re-
sponse function to specify the potential outcomes. In particular, the re-
sponse of outcome unit i is Yi(xi) = 4xi(xi−1)+αi, where αi ∼ N (0, 1/8).
Under this response, all individual treatment effects are 0. Because the lin-
ear response assumption is not satisfied, we should not expect that our
statistical analyses (unbiasedness, consistency, normality, etc) will hold
exactly.

We run Exposure-Design with different values of the correlation penalty
parameter φ, chosen from a grid of ten points between [0, 2]. The clustering
itself is obtained using our local search heuristic presented in Section 7.3. Recall
that the correlation clustering objective of Pouget-Abadie et al. [49] may be
obtained by setting φ = 1/(n− 1) for the Exposure-Design. For this reason,
we compute the corresponding cluster by running our local search heuristic with
φ = 0.001 ≈ 1/(n− 1).

Table 1

Simulation results
Exposure
Design

(φ = 0.223)

Exposure
Design

(φ = 1.0)

Correlation
Clustering

Balanced
Partitioning Bernoulli

S1
RMSE 0.049 0.057 0.087 0.0718 0.659
CI Width 0.220 0.239 0.329 0.284 2.576
CI Coverage 91.5% 91.5% 94.0% 94.1% 95.1%

S2
RMSE 1.81 2.24 2.05 1.86 43.83
CI Width 7.04 8.72 8.00 7.21 190.8
CI Coverage 94.8% 94.8% 95.0% 94.5% 95.1%

S3
RMSE 0.86 1.09 0.90 0.78 24.37
CI Width 3.47 4.35 3.82 3.39 95.15
CI Coverage 95.7% 95.5% 96.9% 96.9% 95.1%
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A summary of the main results from these simulations appears in Table 1.
For each treatment design and simulation, we sample 15, 000 exposure vectors,
compute the observed outcomes, and construct the corresponding ERL and
variance estimators. Given the ERL and variance estimators, we construct the
confidence intervals as described in Section 5, with absolute value corrections
when the variance estimator takes a negative value. For each simulation setting
and treatment design, we report the root mean square error (RMSE) of the ERL

estimator, the average width of the 95% confidence intervals, and the coverage
of the 95% confidence intervals.

In Table 1, we show results for Exposure-Design with parameters φ = 0.223
and φ = 1.0. The parameter value φ = 1.0 is chosen arbitrarily, while the value
φ = 0.223 is the value for which Exposure-Design typically achieves the
smallest mean squared error across each of the simulation settings. We empha-
size that selecting φ in this way (i.e. a course grid search to find the smallest
MSE) cannot be performed by an experimenter and is presented here only to
inform our discussion. Still, it is interesting that a single penalty parameter
minimized MSE for all simulations considered here. See Figure 3 for comparison
of the mean squared error of Exposure-Design when the correlation penalty
parameter φ is varied.

We draw particular attention to a few features in these results. Exposure-

Design achieves the smallest RMSE in the simulations which satisfy the lin-
ear response assumption. All cluster-based designs achieve significantly smaller
RMSE than the Bernoulli design, which emphasizes the importance of carefully
considering the exposure distribution when the growth conditions (specified in
Section 4.1) are not satisfied. The confidence intervals in Simulation 1 under
Exposure-Design cover notably below the nominal 95% level, indicating that
either the sampling distribution of the ERL estimator is not sufficiently approx-
imated by a normal or the variance estimator is not sufficiently concentrated
at this sample size. This does not contradict the theory developed earlier in
this paper, because the growth conditions required for validity of the confidence
intervals can hardly be seen as holding with such a dense graph. The confidence
intervals in Simulation 3 cover slightly above the nominal 95% level, which is a
result of conservative bias in the variance estimate due to non-linearity of the
response.

Figure 1 contains histograms of the ERL estimator for each simulation and
design, where the rows correspond to the designs and the columns correspond
to the simulations. The dotted vertical line in the plot is the true ATTE. In all
simulations, the distribution of the ERL estimator appears unimodal, centered
at or close to the ATTE, and (roughly) normal. This is to be expected for
Simulations 1 and 2 where the linear response assumption holds.

Perhaps surprisingly, the statistical analyses seem to hold in Simulation 3,
which features a highly non-linear response. The apparent unbiasedness of the
ERL estimator here can be explained by Theorem 6.1 in the following way:
the quadratic responses in Simulation 3 yield zero treatment effect for all units.
Although the best linear approximation to each quadratic response does not
well-approximate the quadratic response itself, the linear approximation has
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Fig 1. Histograms of the ERL estimator in simulations.

zero slope and so, in this sense, captures each individual ITE—and thus the
ATTE—exactly.

Figure 2 contains histograms of the variance estimator for each simulation and
treatment design, where the rows correspond to the designs and the columns
correspond to the simulations. The dotted vertical line in the plot is the is
the true variance, as estimated by the empirical distribution of the estimator
from the simulations. The variance estimator is unbiased in Simulations 1 and
2, which aligns with Theorem 5.1. However, because the empirical variance
estimate is used, the blue line is close to (but not exactly) the true variance.
Increasing the number of sampled exposure vectors decreases this error, but
drawing more than 20 thousand samples is prohibitively expensive given the
size of the data. In Simulation 1, the mean squared error of all cluster-based
designs is so small that the variance estimator takes negative values with non-
negligible probability. In Simulation 3, the response is highly non-linear so that
the variance estimator incurs a positive bias, which results in a coverage slightly
above the nominal level. Interestingly, the variance estimator under the balanced
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Fig 2. Histograms of the variance estimator in simulations.

Fig 3. MSE of the ERL estimator as trade-off parameter φ is varied. First values of φ are
.001 and .01.

partitioning design is more concentrated around its mean, which is worth further
investigation but is beyond the scope of this paper.

Figure 3 contains a plot for each simulation, where the mean squared error is
plotted against the correlation penalizing parameter φ. The mean squared error
of the balanced partitioning design appears as a dotted blue line. In Simula-
tions 1 and 2 where the linear response assumption holds, there is a range of
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values of φ where Exposure-Design achieves lower mean squared error than
the balanced partitioning design. In our simulations, the choice of φ ≈ 1/4
typically achieves lowest mean squared error. While Exposure-Design per-
formed better than balanced partitioning in some settings we investigated, the
simulation exercise does not support the conclusion that Exposure-Design

is generally preferable over balanced partitioning. Indeed, no design is optimal
across all types of potential outcomes [29]. We encourage experimenters to select
φ (and more generally, select designs) by running tests on simulated data.

9. Concluding remarks

The Exposure Reweighted Linear (ERL) estimator provides a way to estimate
and obtain confidence intervals for the average total treatment effect in bipartite
experiments under a linear exposure-response assumption.

When employing the Exposure-Design design in practice, we recommend
that the experimenter choose the value of the trade-off parameter φ by running
simulations of the experiment using available models of the outcomes when
possible. When this is not possible, we find in our simulations that φ ≈ 1/4
typically yields improvements in the precision of the ERL estimator over the
previously proposed correlation clustering design of Pouget-Abadie et al. [49]
where φ = 1/(n − 1). We suspect that in most settings of interest, the ERL

estimator will enjoy increased precision under any treatment design that ensures
that exposures have large variance and are decorrelated, either explicitly or
implicitly.

The performance of the ERL estimator is sensitive to the choice of experi-
mental design. For example, the precision of the ERL estimator under Bernoulli
randomization will generally be poor. As we saw in our simulation study, the
root mean square error of the ERL estimator under Bernoulli randomization
was about ten times as large as under the clustered designs. For this reason,
experimenters should avoid designs, such as Bernoulli and complete randomiza-
tion, that do not take the structure of the bipartite graph into account. If such
a design is unavoidable, or if precision is inadequate despite a deliberate choice
of design, experimenter can consider implementing covariate adjustments. It is
beyond the scope of this paper to formally extend the ERL estimator to ac-
commodate complex adjustments. A simple approach we expect will work well
when the covariates are discrete (or discretized) is post-stratification [44]. With
this approach, the ERL estimator is applied separately in subsets of the sam-
ple based on covariate information. These estimators are then aggregated to an
overall estimator in a second step. If the covariates used to form the bins are
informative of the potential outcomes and the number of bins is small relative
to the number of units, this approach is expected to improve precision – some-
times drastically so. A related approach is to incorporate covariate information
already in the design stage, with the aim of ensuring that the exposures are
unrelated to covariates for the realized assignment. This could be implemented
in a cluster-type design by introducing dependencies between the treatment
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assignments in different clusters. One way of introducing such dependencies
is rejection sampling, or re-randomization, where assignments are drawn until
one with acceptable balance properties are found [40, 38]. However, the theory
described in this paper does not apply when there are dependencies between
clusters.

There are several open questions suggested by this work. Given that the de-
sign we describe in this paper is heuristically motivated, there is likely room for
large improvements. One technical challenge is to construct a design for which
consistency and asymptotic normality of the ERL estimator may be established
under weaker growth conditions on the bipartite graph. Another important open
question is whether it is possible to develop methods for valid inference in bi-
partite experiments that go beyond the linear exposure-response assumption.
Finally, it would be of practical and methodological interest to develop esti-
mation techniques that are robust to misspecification in the bipartite graph as
well as estimation techniques that perform well in the presence of greater struc-
tural interference (i.e., when outcomes are influenced by the exposures of other
units). The results in Sävje [53] regarding estimation of treatment effects under
a misspecified exposure mapping might extend to this setting, but that remains
to be shown. Answering these methodological questions around the bipartite
experimental framework will increase its relevance and applicability in practice.

Appendix A: Analysis of the ERL estimator

In this section, we present proofs of unbiasedness, consistency, and asymptotic
normality of ERL estimator appearing in Section 4 of the main paper. Before
continuing, we introduce some notation used in the proofs. We begin by defining
for each outcome unit i ∈ Vo, an estimate of the individual treatment effect τi,
which is

τ̂i � Yi(z)
(xi(z) − E[xi(z)]

Var(xi(z))

)
.

Observe that the ERL estimator is the average of these estimates of the indi-
vidual treatment effects, i.e. τ̂ = (1/n)

∑n
i=1 τ̂i. Throughout the proofs, we will

often reason about the behavior of the ERL estimator through the properties
of the individual treatment effect estimates.

Next, we introduce the concept of dependency neighborhoods [52]. Let a1,
a2, . . . an be random variables indexed by the integers [n] and collect these ran-
dom variables into the set A = {ai : i ∈ [n]}. For each variable ai, we define the
dependency neighborhood as

I(i) ⊂ A such that ai is jointly independent of the variables A \ I(i) .

In other words, a random variable ai is jointly independent of all variables
not contained in its dependency neighborhood, but is dependent on variables
contained in its dependency neighborhood. We take the convention that i ∈ I(i)
and so that each dependency neighborhood as cardinality at least 1. A measure
of dependence between the random variables is the maximum dependency degree,
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which is D = maxi∈[n]|I(i)|. Note that independent random variables satisfy
D = 1 and that completely dependent random variables have D = n.

For the remainder of the proof, we focus our discussion of dependency neigh-
borhoods and degrees to the collection of errors of the individual treatment
effects,

a1 = τ1 − τ̂1, a2 = τ2 − τ̂2, . . . an = τn − τ̂n .

We begin by showing that in this case, the maximum dependency degree may
be bounded in terms of the degrees of the bipartite graph and the dependence
in the treatment assignments.

Lemma A.1. The dependency degree of the individual treatment effect errors
is bounded by D ≤ kdddo.

Proof. The first part of this proof is to establish a necessary condition for an
individual treatment effect error aj to be in the dependency neighborhood of ai,
i.e. aj ∈ I(i). We begin by re-writing the exposures under a cluster design. Re-
call that the exposures are defined as xi =

∑m
j=1 wi,jzj . For each cluster C ∈ C,

define wi,C =
∑

j∈C wi,j and define zC to be the ±1 cluster treatment assign-
ment variable which is 1 if diversion units in C are treated and −1 otherwise.
If wi,C �= 0, then we say that cluster C is incident to outcome unit i. Define
S(i) = {zC : wi,C �= 0} to be the cluster treatment assignments which influence
the exposure xi. Under the cluster design, the exposure for outcome unit i may
be written as

xi =
∑
C∈C

wi,CzC =
∑

C∈S(i)

wi,CzC .

By the linear-response assumption, the individual treatment effect error ai is
a function of the exposure xi. Moreover, ai is a function of the cluster treat-
ment assignment variables in S(i). Let us denote this relationship by writing
ai = gi(S(i)), where gi is a function of the cluster treatment variables zC ∈ S(i).
Let B ⊂ Vo be a collection of outcome units. We remark that joint indepen-
dence of cluster treatment assignments implies joint independence of individual
treatment effect errors:

S(i) ⊥⊥ {S(j) : j ∈ B} ⇒ ai ⊥⊥ {aj : j ∈ B} .

Under an independent cluster design, the cluster treatment assignments S(i)
are jointly independent of the cluster treatment assignments {S(j) : j ∈ B}
when the corresponding sets of clusters are disjoint, i.e. S(i) ∩ (∪j∈BS(j)) = ∅.
Thus, the individual treatment effect estimate ai is jointly independent of the
collection of individual treatment effect estimates {aj : j ∈ B} when outcome
unit i is not incident to any cluster that is incident to an outcome unit in B. In
other words, aj ∈ I(i) only if outcome units i and j are incident to a common
cluster.

Fix an outcome unit i ∈ Vo. The remainder of the proof is a simple counting
argument which uses this necessary condition to establish that |I(i)| ≤ kdddo.
In particular, we will count the number of outcome units that are incident to
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one of the clusters that are incident to i. Because the degree of outcome unit
i is at most do, it is incident to at most do clusters. Each of these clusters has
at most k diversion units, by Assumption 2. Because the degree of all diversion
units j is at most dd, the number of outcome units which are incident to at least
one of these clusters is at most kdddo. Thus, we have established that

D = max
i∈Vo

|I(i)| ≤ kdddo .

The following lemma derives a lower bound the exposure variances in terms of
the treatment assignment probability and the maximum degree of the outcome
units.

Lemma A.2. If each pair of treatment assignments is non-negatively correlated,
then each exposure variance is lower bounded as Var(xi) ≥ p(1−p)

do
.

Proof. We begin by expanding the variance of the exposure xi by

Var(xi) = Var(
m∑
j=1

wi,jzj)

=
m∑
i=1

[
Var(wi,jzj) +

∑
��=j

Cov(wi,jzj , wi,�z�)
]

=
m∑
i=1

[
w2

i,j Var(zj) +
∑
��=j

wi,jwi,� Cov(zj , z�)
]

≥
m∑
i=1

w2
i,j Var(zj)

= p(1 − p)
m∑
i=1

w2
i,j ,

where the inequality follows because the weights wi,j are non-negative and the
assignments are non-negatively correlated and the last equality follows because
zi are 0, 1 random variables with Pr(zi = 1) = p.

We complete the proof by lower bounding the sum of the squares of the
weights. Recall that the sum of the weights is 1 and there are at most do non-
negative terms in the sum. Using this together with the inequality that relates
�2 to �1 norms in d-dimensions, ‖·‖2

2 ≥ 1
d‖·‖

2
1, we have that

m∑
i=1

w2
i,j ≥

1
do

m∑
i=1

wi,j = 1
do

.

The following lemma is a bound on the moments of the errors of the individual
treatment effects.



496 C. Harshaw et al.

Lemma A.3. The sth moment of the error of the individual treatment effect
estimates is bounded by

E[|τi − τ̂i|s] ≤
[
M
(
2 + do

p(1 − p)

)]s
.

Proof. We begin by remarking that |Yi(z)| ≤ M implies that each of the indi-
vidual slopes are also bounded in absolute value as |βi| ≤ 2M . Recall that by
the linear response assumption, Yi(z) = βixi + αi and by the linear exposure
assumption (along with the normalization of the edge weights), setting z = 0,1
results in an exposure of ξ = 0, 1. Thus, when considering z = 0,1, the bound
|Yi(z)| ≤ M implies that |βi + αi| ≤ M and |αi| ≤ M , which is enough to
establish that |βi| ≤ 2M .

We now proceed by proving a bound on |τi− τ̂i|, which holds for any realiza-
tion of the random variables:

|τi − τ̂i| =
∣∣∣βi − Yi(z)

(xi − E[xi]
Var(xi)

)∣∣∣
≤ |βi| +

|Yi(z)| · |xi − E[xi]|
Var(xi)

(triangle inequality)

≤ 2M + M

Var(xi)
(definition of M and above)

≤ M
(
2 + 1

Var(xi)

)
(collecting terms)

≤ M
(
2 + do

p(1 − p)

)
(Lemma A.2)

The moment bound follows by applying the bound above.

A.1. Expectation of the ERL estimator (Theorems 4.1 and 6.1)

In this section, we derive the expectation of the ERL estimator, both with and
without the linear exposure-response assumption. First, we derive the expecta-
tion under the linear exposure-response assumption.

Theorem 4.1. Suppose the design is such that each exposure has positive vari-
ance, Var(xi) > 0. Under the linear response assumption, the ERL estimator
is unbiased for the ATTE: E[τ̂ ] = τ .

Proof. By linearity, the expectation of the estimator is

E[τ̂ ] = 1
n

n∑
i=1

E

[
Yi(z)

(
xi(z) − E[xi(z)]

Var(xi(z))

)]
.

By Proposition 3.1, the ATTE is the average of the slope terms βi. Thus, to
complete the proof we show that each expectation terms inside the sum is equal
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to the corresponding slope βi. Using the linear response assumption,

E

[
Yi(z)

(
xi(z) − E[xi(z)]

Var(xi(z))

)]

= E

[
(βixi(z) + αi)

(
xi(z) − E[xi(z)]

Var(xi(z))

)]

= βiE

[
xi(z)

(
xi(z) − E[xi(z)]

Var(xi(z))

)]
+ αiE

[(
xi(z) − E[xi(z)]

Var(xi(z))

)]

= βi

(
E[xi(z)2] − E[xi(z)]2

Var(xi(z))

)
+ αi

(
E[xi(z)] − E[xi(z)]

Var(xi(z))

)
= βi

Next, we derive the expectation of the ERL estimator under a general (non-
linear) response assumption.

Theorem 6.1. Let the potential outcome functions be arbitrary functions of the
exposures: Yi(z) = Yi(xi). Then, the expectation of the ERL estimator is

E[τ̂ ] = 1
n

n∑
i=1

β̃i ,

where β̃i is the coefficient of the exposure xi in a unit-specific OLS regression of
Yi on xi: β̃i = Cov(xi,Yi)

Var(xi) .

Proof. We begin by deriving the expectation of an individual term in the ERL

estimator. To this end, observe that

E[τ̂i] = sE
[
Yi

(xi − E[xi]
Var(xi)

)]
= E[Yixi] − E[Yi]E[xi]

Var(xi)
= Cov(xi, Yi)

Var(xi)
.

The proof is completed by linearity of expectation.

We remark that Theorem 4.1 follows from Theorem 6.1 by observing that un-
der a linear response assumption that Yi = βixi+αi, we have that Cov(xi, Yi) =
Cov(xi, βixi + αi) = βi Var(xi).

A.2. Consistency of ERL estimator (Theorem 4.2)

We are now ready to establish the consistency of the ERL estimator. Before
doing so, we restate the theorem here.

Theorem 4.2. Under Assumptions 1 and 2, the mean squared error of the
ERL estimator is bounded as E[(τ̂ − τ)2] = O

(
ddd

3
o/n
)
. Thus, the estimator is

consistent if ddd3
o = o(n).
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Proof. We begin by proving a finite sample bound on the mean squared error
of the ERL estimator, and then we finish the proof by taking the limit in the
asymptotic sequence. Note that the mean squared error may be broken down
into the errors of the individual treatment effect estimates via

E[(τ − τ̂)2] = E

[( 1
n

n∑
i=1

(τi − τ̂i)
)2]

= 1
n2

n∑
i=1

n∑
j=1

E[(τi − τ̂i)(τj − τ̂j)] .

Note that the term in the inner sum is the covariance of the errors in the individ-
ual treatment effect estimators. By definition of the dependency neighborhoods,
only terms j ∈ I(i) are dependent and so only these terms will have non-zero
covariance. Using this and the second moment bound in Lemma A.3, we have
that

E[(τ − τ̂)2] = 1
n2

n∑
i=1

∑
j∈I(i)

E[(τi − τ̂i)(τj − τ̂j)] (dep. neighborhoods)

≤ 1
n2

n∑
i=1

∑
j∈I(i)

√
E[(τi − τ̂i)2]E[(τj − τ̂j)2] (Cauchy-Schwarz)

≤ 1
n2

n∑
i=1

|I(i)| ·
[
M
(
2 + do

p(1 − p)

)]2
(Lemma A.3)

≤ D

n

[
M
(
2 + do

p(1 − p)

)]2
. (max dep. degree)

By using the bound D ≤ kdddo given in Lemma A.1, we have the finite-sample
bound on the mean squared error:

E[(τ − τ̂)2] ≤ kdddo
n

[
M
(
2 + do

p(1 − p)

)]2
= O
(
ddd

3
o/n
)
,

where the final equality comes from interpreting the finite-sample bound in the
context of the asymptotic sequence. In particular, by Assumptions 1 and 2, we
have that M is a constant, p is bounded away from 0 and 1 by a constant, and
k is a constant.

A.3. Asymptotic normality of the ERL estimator (Theorem 4.3)

We establish asymptotic normality of the ERL estimator by using Stein’s method.
In particular, we use the following result from Ross [52]:

Lemma A.4 (Lemma 3.6 of Ross [52]). Let a1, a2, . . . an be random vari-
ables such that E[a4

i ] < ∞, E[ai] = 0, σ2 = Var( 1
n

∑n
i=1 ai), and define X =

( 1
n

∑n
i=1 ai)/σ. Then for a standard normal Z ∼ N (0, 1), we have

dW (X,Z) ≤ D2

σ3n3

n∑
i=1

E[|ai|3] +
√

28
π

· D
3/2

n2σ2

√√√√ n∑
i=1

E[a4
i ] ,
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where D is the maximum dependency degree of the random variables and dW (·, ·)
is the Wasserstein distance.

We will use Lemma A.4 to prove asymptotic normality of the ERL estimator.
Before continuing, let us restate the theorem.

Theorem 4.3. Under Assumptions 1, 2, and 3, and supposing that d4
dd

10
o =

o(n), the ERL estimator is asymptotically normal:

τ̂ − τ√
Var(τ̂)

d−→ N (0, 1) .

Proof. Our strategy may be described in two main steps: first, we use Lemma A.4
to derive a finite-sample bound on the Wasserstein distance between the distri-
bution of (τ − τ̂)/

√
Var(τ̂) and a standard normal. Next, we us this bound to

argue that this Wasserstein distance approaches 0 in the limit of the asymptotic
sequence under the above conditions.

We seek to apply Lemma A.4 where the random variables are the errors of
the individual treatment effect estimates; that is,

a1 = τ1 − τ̂1, a2 = τ2 − τ̂2, . . . an = τn − τ̂n .

Note that 1
n

∑n
i=1 ai = 1

n

∑n
i=1 τi − τ̂i = τ − τ̂ and Var( 1

n

∑n
i=1 ai) = Var(τ̂) so

that the random variable X in Lemma A.4 is equal to (τ − τ̂)/
√

Var(τ̂), which
is indeed the random variable we wish to characterize. Let us show that the
conditions of Lemma A.4 are satisfied: first, recall that τ̂i are unbiased estimates
of τi so that ai has mean zero. Second, because the potential outcomes are
bounded by a constant M , the support of ai is bounded so the fourth moments
are finite. Thus, we may apply Lemma A.4 in this setting.

We will use the Lemma A.3 to bound the sum of the third and fourth mo-
ments. In particular, Lemma A.3 implies that

n∑
i=1

E[|ai|3] ≤ n·
[
M
(
2+ do

p(1 − p)

)]3
and

n∑
i=1

E[|ai|4] ≤ n·
[
M
(
2+ do

p(1 − p)

)]4
.

Using this moment bound together with the bound on the maximum dependence
degree D (Lemma A.1) on the result of Lemma A.4, we obtain that

dW

( τ − τ̂√
Var(τ̂)

, Z
)
≤ (kdddo)2

σ3n2 ·
[
M
(
2 + do

p(1 − p)

)]3

+
√

28
π

· (kdddo)3/2

σ2n3/2 ·
[
M
(
2 + do

p(1 − p)

)]2
.

We now interpret this finite-sample bound in the context of the asymptotic
sequence. By Assumptions 1 and 2, we have that M is a constant, p is bounded
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away from 0 and 1 by a constant, and k is a constant. It follows that the Wasser-
stein distance between (τ−τ̂)/

√
Var(τ̂) and a standard normal is asymptotically

bounded as

dW

( τ − τ̂√
Var(τ̂)

, Z
)

= O
( d2

dd
5
o

σ3n2 +
d
3/2
d d

7/2
o

σ2n3/2

)
By Assumption 3, we have that Var(τ̂) = Ω(1/n), which means that this bound
becomes

dW

( τ − τ̂√
Var(τ̂)

, Z
)

= O
(d2

dd
5
o

n1/2 +
d
3/2
d d

7/2
o

n1/2

)
= O
(d2

dd
5
o

n1/2

)
.

By assumption, the asymptotic sequence satisfies d4
dd

10
o = o(n). Thus, the

Wasserstein distance between (τ − τ̂)/
√

Var(τ̂) and a standard normal ap-
proaches 0 in this asymptotic sequence.

Appendix B: Variance estimation and confidence intervals

In this section, we present the proofs of unbiasedness and consistency of the
variance estimator together with a proof of the asymptotic validity of the normal
based confidence intervals.

B.1. Closed form expressions for coefficients

We begin by deriving closed form expressions for the coefficients ai,j , bi,j , and
ci,j which are obtained as solutions to the system of linear equations:

Σi,j

⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣ Var(xixj) Cov(xi, xixj) Cov(xj , xixj)
Cov(xixj , xi) Var(xi) Cov(xj , xi)
Cov(xixj , xj) Cov(xi, xj) Var(xj)

⎤⎦⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣1
0
0

⎤⎦ .

Distinct outcome units (i �= j) Note that the matrix in the linear system
above is the 3-by-3 covariance matrix of the exposures xi, xj and their product
xixj . Recall that we have defined this matrix to be Σi,j . A unique solution exists
if and only if det(Σi,j) > 0, which is the say that the generalized variance of xi,
xj , and xixj is nonzero. In this case, the solution coefficients may be explicitly
derived via Cramer’s rule for solving linear systems as

ai,j = Var(xi)Var(xj) − Cov(xi, xj)2

det(Σi,j)
,

bi,j = Cov(xi, xj) Cov(xixj , xj) − Var(xj)Cov(xixj , xi)
det(Σi,j)

,

ci,j = Cov(xi, xj) Cov(xixj , xi) − Var(xi)Cov(xixj , xj)
det(Σi,j)

.
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The determinant det(Σi,j) is a polynomial in the entries of the matrix Σi,j . For
completeness, we present the determinant calculation:

det(Σi,j) = Var(xixj)(Var(xi) Var(xj) − Cov(xi, xj)2) − Var(xi) Cov(xixj , xj)2

− Var(xj)Cov(xixj , xi)2 + 2 Cov(xi, xj)Cov(xixj , xj)Cov(xixj , xi) .

Same outcome unit (i = j) Note that the 3-by-3 covariance matrix defining
the system of linear equation above will have zero determinant, as xi = xj .
Nevertheless, we show that a solution to the linear system may still be obtained
under certain conditions on the distribution of the exposure xi. Observe that the
bi,i and ci,i terms are redundant, as xi = xj . By taking ci,i = 0, we reduce the
3-by-3 linear system in Proposition B.1 to the following 2-by-2 linear system:[

Var(x2
i ) Cov(xi, x

2
i )

Cov(x2
i , xi) Var(xi)

] [
ai,i
bi,i

]
=
[
1
0

]
Observe that the matrix in this linear system is the covariance matrix between
the exposure xi and its square x2

i . Recall that in the main body, we defined this
2-by-2 matrix to be Σi,i. Note that a solution exists when the det(Σi,i) > 0,
which is to say that the exposure xi and its square x2

i are not perfectly correlated.
In this case, the solution to the coefficients may be obtained as

ai,i = Var(xi)
det(Σi,i)

, bi,i = Cov(xi, x
2
i )

det(Σi,i)
, ci,i = 0

where det(Σi,i) = Var(xi) Var(x2
i ) − Cov(xi, x

2
i )

2.

B.2. Unbiasedness of variance estimator (Theorem 5.1)

In this section, we present proofs of Proposition B.1 and Theorem 5.1, which es-
tablish unbiasedness of the proposed variance estimator under certain conditions
on the exposure distribution.

Proposition B.1. Under the linear response assumption, Ĉi,j = Yi(z)Yj(z) ×
Ri,j(xi, xj) is an unbiased estimator for the individual covariance term Cov(τ̂i, τ̂j)
if the coefficients ai,j , bi,j , ci,j in the weighting function Si,j(xi, xj) satisfy the
system of linear equations:

Σi,j

⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣ Var(xixj) Cov(xi, xixj) Cov(xj , xixj)
Cov(xixj , xi) Var(xi) Cov(xj , xi)
Cov(xixj , xj) Cov(xi, xj) Var(xj)

⎤⎦⎡⎣ai,jbi,j
ci,j

⎤⎦ =

⎡⎣1
0
0

⎤⎦ .

Proof. If Cov(xi, xj) = 0, then by the linear response assumption Cov(τ̂i, τ̂j) =
0. In this case, the weighting function is identically zero and thus Ĉi,j = 0,
which is trivially unbiased. The remainder of the proof focuses on the case
where Cov(xi, xj) �= 0 and the weighting function Ri,j(xi, xj) = Qi,j(xi, xj) −
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Si,j(xi, xj). Observe that the expectation of the individual covariance estimator
Ĉi,j is equal to

E

[
Ĉi,j

]
= E

[
Yi(z)Yj(z)Ri,j(xi, xj)

]
(3)

= E

[
Yi(z)Yj(z)Qi,j(xi, xj)

]
− E

[
Yi(z)Yj(z)Si,j(xi, xj)

]
.

By construction of the weighting function Qi,j(xi, xj), we can compute the
expectation of the first term in (3) as

E

[
Yi(z)Yj(z)Qi,j(xi, xj)

]
= E

[
Yi(z)Yj(z)

(xi − E[xi]
Var(xi)

)(xj − E[xj ]
Var(xj)

)]
= E
[
τ̂iτ̂j
]
.

Next, we evaluate the expectation of the second term in (3). Before doing so,
observe that E[Si,j(xi, xj)] = 0 by construction. Moreover, the coefficients used
in the Si,j(xi, xj) weighting function satisfy the system of linear equations by
assumption, which is equivalent to the following three equations:

• E[xiSi,j(xi, xj)] = 0
• E[xjSi,j(xj , xj)] = 0
• E[xixjSi,j(xi, xj)] = 1

Using these four equations together with the linear response assumption, we
evaluate the expectation of the second term in (3) as

E

[
Yi(z)Yj(z)Si,j(xi, xj)

]
= E

[
(βixi + αi)(βjxj + αj)Si,j(xi, xj)

]
= βiβjE

[
xixjSi,j(xi, xj)

]
+ αiαjE

[
Si,j(xi, xj)

]
+ βiαjE

[
xiSi,j(xi, xj)

]
+ αiβjE

[
xjSi,j(xi, xj)

]
= βiβj

= E[τ̂i]E[τ̂j ] ,

where the last inequality follows from the unbiasedness of the individual treat-
ment effect estimators τ̂i and τ̂j . Thus, substituting these two calculations into
(3) yields the desired result:

E

[
Ĉi,j

]
= E
[
τ̂iτ̂j
]
− E[τ̂i]E[τ̂j ] = Cov(τ̂i, τ̂j)

We are now ready to prove Theorem 5.1, which establishes unbiasedness of
the variance estimator.

Theorem 5.1. Under Assumption 4 and the linear response assumption, the
variance estimator of the ERL point estimator is unbiased, i.e. E[V̂ar(τ̂)] =
Var(τ̂).
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Proof. Note that Assumption 4, together with the linear response assumption,
ensure that the conditions of Proposition B.1 hold for every pair i, j ∈ [n] so
that E[Ĉi,j ] = Cov(τ̂i, τ̂j). Using this fact, we may calculate the expectation of
the variance estimate V̂ar(τ̂) as

E[V̂ar(τ̂)] = E

[
1
n2

n∑
i=1

n∑
j=1

Yi(z)Yj(z)Ri,j(xi, xj)
]

= 1
n2

n∑
i=1

n∑
j=1

E

[
Yi(z)Yj(z)Ri,j(xi, xj)

]
= 1

n2

n∑
i=1

n∑
j=1

Cov(τ̂i, τ̂j) = Var(τ̂) .

B.3. Consistency of variance estimator (Theorem 5.3)

In this section, we present the proof of Theorem 5.3, which establishes consis-
tency of the normalized variance estimator. The main parts of the proof are to
show that the individual covariance estimators Ĉi,j are sufficiently uncorrelated
and that they have small variance.

To establish a bound on the correlation between covariance estimators Ĉi,j ,
we use the formalism of the dependency graph. For each pair of outcome units
i, j ∈ [n], define ai,j � Cov(τ̂i, τ̂j) − Ĉi,j to be the error of the individual
covariance estimator. Let AV = {ai,j : i, j ∈ [n]} be the set of individual
covariance estimator errors. For each variable ai,j , we define the dependency
neighborhood as

IV (i, j) ⊂ AV such that ai,j is jointly independent of the variables AV \IV (i, j) .

Unlike the dependency graph in Appendix A, this dependency graph is indexed
over pairs of integers i, j ∈ [n]. Additionally, quantities associated with this
dependency graph are denoted by a subscript V .

The following lemma bounds the maximum degree of the dependency graph
and is based on a similar counting argument as that used to prove Lemma A.1.

Lemma B.2. The dependency degree of individual covariance estimator errors
is at most DV ≤ 4(kdddo)2.

Proof. The first part of this proof is to establish a necessary condition for an
individual covariance error ak,� to be in the dependency neighborhood of ai,j ,
i.e. ak,� ∈ IV (i, j). We begin by re-writing the exposures under a cluster design.
Recall that the exposures are defined as xi =

∑m
j=1 wi,jzj . For each cluster

C ∈ C, define wi,C =
∑

j∈C wi,j and define zC to be the ±1 cluster treatment
assignment variable which is 1 if diversion units in C are treated and −1 oth-
erwise. If wi,C �= 0, then we say that cluster C is incident to outcome unit i.
Define S(i) = {zC : wi,C �= 0} to be the cluster treatment assignments which
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influence the exposure xi. Under the cluster design, the exposure for outcome
unit i may be written as

xi =
∑
C∈C

wi,CzC =
∑

C∈S(i)

wi,CzC .

By the linear exposure-response assumption, the individual covariance estimator
error ai,j is a function of the exposures xi and xj . Moreover, ai,j is a function
of the cluster treatment assignment variables in S(i, j) � S(i) ∪ S(i). Let us
denote this relationship by writing ai,j = gi,j(S(i, j)), where gi,j is a function of
the cluster treatment variables zC ∈ S(i, j). Let B ⊂ Vo × Vo be a collection of
pairs of outcome units. We remark that joint independence of cluster treatment
assignments implies joint independence of individual covariance errors:

S(i, j) ⊥⊥ {S(k, �) : (k, �) ∈ B} ⇒ ai,j ⊥⊥ {ak,� : (k, �) ∈ B} .

Under an independent cluster design, the cluster treatment assignments S(i, j)
are jointly independent of the cluster treatment assignments {S(k, �) : (k, �) ∈
B} when the corresponding sets of clusters are disjoint, i.e. S(i, j) ∩
(∪(k,�)∈BS(k, �)) = ∅. Thus, the individual covariance estimate ai,j is jointly
independent of the collection of individual treatment effect estimates {ak,� :
(k, �) ∈ B} when outcome units i and j are not incident to any cluster that is
incident to an outcome unit in B. In other words, ak,� ∈ IV (j, k) only if one
of the outcome units i, j and one of the outcome units k, � are incident to a
common cluster.

Fix a pair of outcome units i, j ∈ Vo. The remainder of the proof is a sim-
ple counting argument which uses this necessary condition to establish that
|IV (i, j)| ≤ (2kdddo)2. In particular, we will count the number of outcome units
that are incident to one of the clusters that are incident to i and j. Because the
degrees of outcome unit i and j are at most do, they are incident to at most 2do
clusters. Each of these clusters has at most k diversion units, by Assumption 2.
Because the degree of all diversion units is at most dd, the number of pairs of
outcome units which are incident to at least one of these clusters is at most(

2kdddo
2

)
≤ (2kdddo)2 .

Thus, we have established that

D = max
i,j∈Vo

|IV (i, j)| ≤ 4(kdddo)2 .

Next, we derive a bound on the variance of the individual covariance estima-
tors. Because these individual estimators are unbiased, this yields a bound on
their mean squared error. Recall that Δ = mini,j∈[n] det(Σi,j) is defined to be
the smallest non-degeneracy measure amongst all distinct pairs (i �= j) of expo-
sures and single exposures (i = j). We begin by establishing that the coefficients
of the weighting function are bounded in magnitude.



Bipartite experiments with linear exposure-response 505

Lemma B.3. For each pair of outcome units i, j ∈ [n], the absolute values of
the coefficients in the weighting function Si,j(xi, xj) are bounded in magnitude
as max{|ai,j |, |bi,j |, |ci,j |} ≤ 2/Δ.

Proof. Recall that the coefficients ai,j , bi,j , and ci,j in the weighting function
Si,j(xi, xj) are of the form

ai,j = ãi,j
det(Σi,j)

, bi,j = b̃i,j
det(Σi,j)

, and ci,j = c̃i,j
det(Σi,j)

,

where ãi,j , b̃i,j , and c̃i,j depend on statistics of the joint distribution of the
exposures xi and xj . We will now show that max{|ãi,j |, |b̃i,j |, |c̃i,j |} ≤ 2. We
focus only on the case of distinct exposures (i �= j), as the case of a single
exposure (i = j) follows in an identical way. First, observe that

ãi,j = Var(xi) Var(xj) − Cov(xi, xj)2 ≤ Var(xi)Var(xj) ≤ 1 .

Similarly using the triangle inequality, Cauchy-Schwarz inequality, and the fact
that the exposures are supported on [−1, 1], we have that

|b̃i,j | = |Cov(xi, xj)Cov(xixj , xj) − Var(xj)Cov(xixj , xi)|
≤ |Cov(xi, xj)Cov(xixj , xj)| + |Var(xj) Cov(xixj , xi)|

≤
√

Var(xi)Var(xj)Var(xixj) Var(xj) + Var(xj)
√

Var(xixj)Var(xi)

= 2 Var(xj)
√

Var(xi) Var(xixj)

≤ 2 ,

where the last inequality follows from the fact that random variables on [0, 1]
have variance at most 1. The bound on |c̃i,j | is identical. This establishes
that max{|ãi,j |, |b̃i,j |, |c̃i,j |} ≤ 2. Thus, we have that max{|ai,j |, |bi,j |, |ci,j |} ≤
2/det(Σi,j) ≤ 2/Δ.

Using Lemma B.3 together with previously proved lower bounds on the vari-
ance of an exposure (Lemma A.2), we obtain the following bound on the variance
of the individual covariance estimators:

Lemma B.4. The variance of an individual covariance estimator is bounded
by

Var(Ĉi,j) ≤ CM4

(( do
p(1 − p)

)4
+ 1

Δ2

)
for some absolute constant C.

Proof. Recall that for two random variables X and Y , we have the following
inequality: Var(X + Y ) ≤ (

√
Var(X) +

√
Var(Y ))2. Applying this inequality to

the individual covariance estimator, we obtain

Var(Ĉi,j) = Var
(
Yi(z)Yj(z)Ri,j(xi, xj)

)
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= Var
(
Yi(z)Yj(z)Qi,j(xi, xj) − Yi(z)Yj(z)Si,j(xi, xj)

)
≤
(√

Var
(
Yi(z)Yj(z)Qi,j(xi, xj)

)
+
√

Var
(
Yi(z)Yj(z)Si,j(xi, xj)

))2

Our next goal is to bound each of the terms appearing above. The variance in
the first term may be bounded as

Var(Yi(z)Yj(z)Qi,j(xi, xj))

= Var
(
Yi(z)Yj(z)

(xi − E[xi]
Var(xi)

)(xj − E[xj ]
Var(xj)

))
= 1(

Var(xi)Var(xj)
)2 Var(Yi(z)Yj(z)(xi − E[xi])(xj − E[xj ]))

≤
( do
p(1 − p)

)4
Var(Yi(z)Yj(z)(xi − E[xi])(xj − E[xj ]))

≤
( do
p(1 − p)

)4
·
(
2M2)2

,

where the first inequality follows from using Lemma A.2 and the second in-
equality follows from the bound |Yi(z)Yj(z)(xi − E[xi])(xj − E[xj ])| ≤ M2. to
lower bound the variance of the exposures and the upper bound on the potential
outcomes, i.e. |Yi(z)| ≤ M for all z ∈ {0, 1}n.

We now seek to bound the variance appearing in the second term. Note that
the magnitude of the term inside the variance may be bounded as

|Yi(z)Yj(z)Si,j(xi, xj)|
≤ |Yi(z)Yj(z)| · |Si,j(xi, xj)|
= |Yi(z)Yj(z)| · |ai,j(xixj − E[xixj ]) + bi,j(xi − E[xi]) + ci,j(xj − E[xj ])|
≤ |Yi(z)Yj(z)| ·

(
|ai,j | · |xixj − E[xixj ]| + |bi,j | · |xi − E[xi]| + |ci,j | · |xj − E[xj ]|

)
≤ M2 · 3 · (2/Δ) · 2

= 12M
2

Δ ,

where the final inequality follows from the bound on the potential outcomes,
the bound on the weighting coefficients given in Lemma B.3, and the fact that
the exposures take values in [0, 1]. Thus, the variance in the second term is at
most

Var
(
Yi(z)Yj(z)Si,j(xi, xj)

)
≤
(
24 · M

2

Δ

)2
.

Plugging these two bounds into the bound on Var(Ĉi,j), and using the Arithmetic-
Geometric Inequality, we obtain

Var(Ĉi,j) ≤
(

2M2
( do
p(1 − p)

)2
+24·M

2

Δ

)2

≤ CM4

(( do
p(1 − p)

)4
+ 1

Δ2

)
.
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Finally, we are ready to prove Theorem 5.3, which establishes consistency
rates for the variance estimator. At a high level, we will combine Lemmas B.2
and B.2, which show that the individual covariance estimators are sufficiently
uncorrelated and have small variance.

Theorem 5.3. Under Assumptions 1, 2, and 4, the mean squared error of the
normalized variance estimator is bounded as

E

[(
n · Var(τ̂) − n · V̂ar(τ̂)

)2] = O
( 1
n
·
(
d3
dd

7
o + 1

Δ2

))
.

Thus, the normalized variance estimator is consistent if d3
dd

7
o = o(n) and Δ =

ω(n−1/2).

Proof. By unbiasesness of the variance estimator together a decomposition of
its variance, we have that

E

[(
n · Var(τ̂) − n · V̂ar(τ̂)

)2]
= n2 · Var

(
V̂ar(τ̂)

)
= n2 · Var

(
1
n2

n∑
i=1

n∑
j=1

Ĉi,j

)

= 1
n2

n∑
i=1

n∑
j=1

n∑
k=1

n∑
�=1

Cov(Ĉi,j , Ĉk,�) . (4)

We now discuss which terms are zero in the sum. Recall that when Cov(xi, xj) =
0, then Ĉi,j =0. Moreover, Cov(xi, xj)=0 for all j /∈ I(i). Thus, Cov(Ĉi,j , Ĉk,�)=
0 for any j /∈ I(i). Additionally, the individual covariance estimators Ĉi,j and
Ĉk,� are uncorrelated if (k, l) /∈ IV (i, j). Thus, we may simplify terms as

= 1
n2

n∑
i=1

∑
j∈I(i)

∑
(k,�)∈IV (i,j)

Cov(Ĉi,j , Ĉk,�) . (5)

Next, we use Cauchy-Schwarz inequality on the covariances together with the
upper bound the variances Var(Ĉi,j) provided by Lemma B.4 to obtain

≤ 1
n2

n∑
i=1

∑
j∈I(i)

∑
(k,�)∈IV (i,j)

√
Var(Ĉi,j)Var(Ĉk,�)

≤ 1
n2

n∑
i=1

∑
j∈I(i)

∑
(k,�)∈IV (i,j)

CM4

(( do
p(1 − p)

)4
+ 1

Δ2

)
.

Finally, we use the maximum dependency degree bounds maxi∈[n]|I(i)| � D ≤
kdddo and maxi,j∈[n]|IV (i, j)| � DV ≤ 4(kdddo)2 and rearrange terms to obtain

≤ 1
n2nDDV · CM4

(( do
p(1 − p)

)4
+ 1

Δ2

)
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≤ 4C
n

(dddo)3 ·M4

(( do
p(1 − p)

)4
+ 1

Δ2

)
.

Under Assumptions 1 and 2, the magnitude of the potential outcomes M , the
size of the clusters k, and the term 1/p(1 − p) are constants in the asymptotic
sequence. Thus, mean squared error of the normalized variance estimator is
bounded as

E

[(
n · Var(τ̂) − n · V̂ar(τ̂)

)2] = O
( 1
n
·
(
d3
dd

7
o + 1

Δ2

))
.

B.4. Asymptotic validity of confidence intervals (Theorem 4.3)

In this section, we present the proof of Corollary 5.4 which establishes asymp-
totic validity of the Wald-type confidence intervals using the variance estimator.

Lemma B.5. Under Assumptions 1, 2, 3, and 4 and further supposing that
d3
od

7
d = o(n) and Δ = ω(n−1/2), the ratio of the variance estimator and the true

estimator converges to 1 in probability: Var(τ̂)
V̂ar(τ̂)

p−→ 1.

Proof. This may be shown by applying the continuous mapping theorem to the
result of Theorem 5.3, as Assumption 3 bounds the normalized variance away
from zero. However, we take a more elementary approach using Chebyshev’s
inequality.

Let ε > 0 be given. Chebyshev’s inequality states that Pr(|X − μ| ≥ kσ) for
any random variable X with mean μ and standard deviation σ:. For random
variables with positive mean, rearranging terms yields Pr(|Xμ − 1| > ε) ≤ σ2

ε2μ2 .
Applying Chebyshev’s inequality together with the bound on the mean squared
error of the variance estimator (Theorem 5.3) and Assumption 3, we have

Pr
(∣∣∣Var(τ̂)

V̂ar(τ̂)
− 1
∣∣∣ > ε

)

≤
E

[(
Var(τ̂) − V̂ar(τ̂)

)2]
ε2 Var(τ̂)2

(Chebyshev’s Inequality)

= n2

n2 ·
E

[(
Var(τ̂) − V̂ar(τ̂)

)2]
ε2 Var(τ̂)2

=
E

[(
n · Var(τ̂) − n · V̂ar(τ̂)

)2]
ε2(n · Var(τ̂))2

≤ 1
ε2

· O
( 1
n
·
(
d3
dd

7
o + 1

Δ2

))
(Theorem 5.3, Assumption 3)

= 1
ε
· o(1) ,
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where the final inequality follows from the assumptions that d3
od

7
d = o(n) and

Δ = ω(n−1/2). This establishes that the ratio of the variance estimator and the
true estimator converges to 1 in probability.

We are now ready to prove Corollary 5.4, which establishes asymptotic valid-
ity of the Wald-based confidence intervals using the proposed variance estimator.
For completeness, we restate the corollary below.

Corollary 5.4. Under Assumptions 1-4 and further supposing that d4
od

10
d =

o(n) and Δ = ω(n−1/2), the Wald-type confidence interval using the proposed
variance estimator is asymptotically valid:

lim
n→∞

Pr
(
τ ∈
[
τ̂ ± Φ−1(1 − α/2)

√
V̂ar(τ̂)

])
= 1 − α .

Proof. Define the random variable Z = τ−τ̂√
Var(τ̂) . By Theorem 4.3, Z converges

in distribution to a standard normal, Z d−→ N (0, 1). Define Z ′ = τ−τ̂√
V̂ar(τ̂)

and

observe that

Z ′ = τ − τ̂√
V̂ar(τ̂)

= τ − τ̂√
Var(τ̂)

·
√

Var(τ̂)√
V̂ar(τ̂)

= Z ·
√

Var(τ̂)
V̂ar(τ̂)

By Lemma B.5, the ratio of the variance and the variance estimator converges
to 1 in probability. Thus, by Slutsky’s theorem, Z ′ d−→ N (0, 1).

Now, we evaluate the probability of coverage in the limit. By rearranging
terms, we can re-write the coverage probability in terms of the tails of Z ′ as
follows:

lim
n→∞

Pr
(
τ ∈
[
τ̂ ± Φ−1(1 − α/2)

√
V̂ar(τ̂)

])
= lim

n→∞
Pr
(
Φ−1(1 − α/2) ≤ τ − τ̂√

V̂ar(τ̂)
≤ Φ−1(1 − α/2)

)
= lim

n→∞
Pr
(
Φ−1(1 − α/2) ≤ Z ′ ≤ Φ−1(1 − α/2)

)
= lim

n→∞
Pr
(
Φ−1(1 − α/2) ≤ Z ′ ≤ Φ−1(α/2)

)
, (6)

where the last equality follows from symmetry of the normal distribution. Let
Fn be the cumulative distribution function of Z ′. By the convergence of Z ′ in
distribution to a standard normal, we have that

= lim
n→∞

Fn

(
Φ−1(1 − α/2)

)
− Fn

(
Φ−1(α/2)

)
= Φ
(
Φ−1(1 − α/2)

)
− Φ
(
Φ−1(α/2)

)
= (1 − α/2) − (α/2)
= 1 − α .
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Appendix C: Exposure-Design and correlation clustering

In this section, we prove the relationship between Exposure-Design, its refor-
mulation Corr-Clust, the previously proposed correlation clustering design of
[49], and other correlation clustering variants. A summary of the results are:

• In Section C.1, we show that the Exposure-Design may be reformulated
as the clustering problem, Corr-Clust.

• In Section C.2, we compare Exposure-Design to the correlation clustering-
based design presented in [49]. In particular, we prove that their design is
equivalent to Exposure-Design when the trade-off parameter is set as
φ = 1/(n− 1) and no constraint is placed on cluster sizes, i.e. k = m.

• In Section C.3, we compare Corr-Clust to other correlation clustering
variants. In particular, we prove that (unconstrained) Corr-Clust may
be viewed as an instance of the weighted maximization correlation clus-
tering considered by [14, 58] but with a possibly large additive constant
which prevents an approximation-preserving reduction.

To begin, we demonstrate how to re-write the Corr-Clust objective using
matrix notation. Let ωi,j ∈ R be the weights for pairs i, j ∈ [m] and let Ω be
the m-by-m matrix whose (i, j)th entry is ωi,j . For a partition C of the indices
[m], let ZC be the m-by-m matrix where the (i, j)th entry is 1 if i and j are in
the same cluster of C and 0 otherwise. Then, we may express the Corr-Clust

objective as

∑
Cr∈C

∑
i,j∈Cr

ωi,j =
n∑

i=1

n∑
j=1

ωi,j [ZC ](i,j) = tr(Ω ZC) .

Throughout the remainder of the section, it will be useful to write the Corr-

Clust objective using this matrix notation.

C.1. Reformulating Exposure-Design as Corr-Clust

We are now ready to prove Proposition 7.1, which we restate here for complete-
ness.

Proposition 7.1. For each pair of diversion units i, j ∈ Vd, define the value
ωi,j ∈ R as

ωi,j = (1 + φ)
m∑

k=1
wk,iwk,j − φ

( m∑
k=1

wk,i

)( m∑
k=1

wk,j

)
, (2)

where wk,i is the weight of the edge between the kth outcome unit and the ith
diversion unit. Exposure-Design is equivalent to the following clustering prob-
lem:

max
clusterings C

∑
Cr∈C

∑
i,j∈Cr

ωi,j . (Corr-Clust)
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Proof. Recall that the objective of Exposure-Design is defined as
n∑

i=1
Var(xi) − φ

∑
i �=j

Cov(xi, xj) ,

where the expectation in the variance and covariance terms is taken with respect
to the random assignment vector z ∈ {0, 1}m, which is drawn from the cluster
design given by C. Recall that the exposures are given by x = Wz. Using matrix
notation, we can more compactly represent this objective as

n∑
i=1

Var(xi) − φ
∑
i �=j

Cov(xi, xj)

= tr
((

I − φ(11ᵀ − I)
)
Cov(x)

)
(rewriting in terms of tr)

= tr
((

(1 + φ)I − φ11ᵀ)Cov(x)
)

(rearranging terms)

= tr
((

(1 + φ)I − φ11ᵀ)Cov(Wz)
)

(definition of exposure)

= tr
((

(1 + φ)I − φ11ᵀ)W Cov(z)W ᵀ
)

(property of covariance)

= tr
(
W ᵀ((1 + φ)I − φ11ᵀ)W Cov(z)

)
(cyclic property of trace)

Because z is drawn from an independent cluster design, the (i, j)th entry of the
covariance matrix Cov(z) is 1/2 if diversion units i and j are in the same cluster
and 0 otherwise. Thus, by the observation above, this clustering objective is a
correlation clustering where the weights are given by the matrix

Ω = W ᵀ((1 + φ)I − φ11ᵀ)W .

By inspection, we have that the (i, j)th entry of this matrix Ω is

ωi,j = (1 + φ)
n∑

k=1

wk,iwk,j − φ
( n∑
k=1

wk,i

)( n∑
k=1

wk,j

)
,

as desired.

C.2. An instance of Exposure-Design when φ = 1/(n − 1)

Now we demonstrate that the correlation clustering objective proposed in [49]
is a special case of Exposure-Design when φ = 1/(n − 1) and no constraint
is placed on cluster sizes, i.e. k = m. Before giving the formal statement, we
re-introduce the clustering objective in that paper; that is,

max
clusterings C

E

[
n∑

i=1

(
xi −

( 1
n

n∑
j=1

xj

))2]
, (Exposure-Spread)
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where the expectation is with respect to the treatment vector z ∈ {±1}m drawn
according to the independent cluster design given by C. The quantity in the
expectation is a measure of the spread of the exposures. We remark that in [49],
the exposures are called “doses” and the quantity in the expectation is referred
to as the “empirical dose variance”.

Proposition C.1. Up to additive and multiplicative constants, Exposure-

Spread is equivalent to Exposure-Design when the trade-off parameter is set
to φ = 1/(n− 1).

Proof. Let us denote the exposure spread by

Q =
n∑

i=1

(
xi −

( 1
n

n∑
j=1

xj

))2

,

Note that the exposure spread is equal to the �2 norm of the de-meaned exposure
vector x̄ = (x̄1, x̄2, . . . x̄n), where

x̄i = xi −
( 1
n

n∑
j=1

xj

)
.

The entire de-meaned exposure vector may be written as x̄ = (I − 1
n11T )x.

Using the fact that this matrix is a projection and that the exposure vector is
x = Wz, we can write the exposure spread as

Q = ‖x̄‖2 = ‖(I − 1
n
11T )x‖2 = xᵀ(I − 1

n
11T )2x

= xᵀ(I − 1
n
11T )x = zᵀW ᵀ(I − 1

n
11T )Wz .

Finally, the expectation of the exposure spread may be written as

E[Q] = E

[
zᵀW ᵀ(I − 1

n
11T )Wz

]
(from above)

= E

[
tr
(
zᵀW ᵀ(I − 1

n
11T )Wz

)]
(trace of a scalar)

= E

[
tr
(
W ᵀ(I − 1

n
11T )Wzzᵀ

)]
(cyclic property of trace)

= tr
(
W ᵀ(I − 1

n
11T )WE[zzᵀ]

)
(linearity of trace)

= tr
(
W ᵀ(I − 1

n
11T )W Cov(z)

)
+ c ,

where the value c in the last line is c = tr
(
W ᵀ(I − 1

n11T )WE[z]E[z]ᵀ
)
, which

follows from Cov(z) = E[zzᵀ]−E[z]E[z]ᵀ and linearity of trace. Moreover, when
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the probability of treatment assignment p is fixed, this value c is a constant with
respect to the clustering being chosen.

Observe that by setting φ = 1/(n− 1) and multiplying by a factor (n− 1)/n,
the Exposure-Design objective becomes

n− 1
n

· tr
(
W ᵀ((1 + 1

n− 1)I − 1
n− 111ᵀ)W Cov(z)

)
= tr
(
W ᵀ(I − 1

n
11T )W Cov(z)

)
.

Thus, the Exposure-Spread objective is equivalent (up to additive and multi-
plicative constants) to the Exposure-Design objective when φ = 1/(n−1).

C.3. Comparison to other correlation clustering variants

Recall that we defined the objective of the correlation clustering variant Corr-

Clust as ∑
Cr∈C

∑
i,j∈Cr

ωi,j ,

where ωi,j is defined for each pair of diversion units i, j ∈ Vd as

ωi,j = (1 + φ)
n∑

k=1

wk,iwk,j − φ
( n∑
k=1

wk,i

)( n∑
k=1

wk,j

)
,

and wk,i is the weight of the edge between the kth outcome unit and the ith
diversion unit. Observe that the term ωi,j can take positive or negative values.

The maximization weighted correlation clustering variant considered by [14,
58] is defined as follows. Let G = (V,E) be a graph where each edge e = (i, j) ∈
E has two non-negative weights: win(i, j) and wout(i, j). Given a clustering C,
an edge e = (i, j) is said to be in-cluster if i and j are in the same cluster and
out-cluster otherwise. The objective function for a given clustering is given by∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e) (Corr-Clust-CS)

We now show that the Corr-Clust objective may be written as an instance of
the Corr-Clust-CS objective, but with the addition of a large additive con-
stant. Again, we stress that this reduction is primarily for aesthetic comparison
purposes because the appearance of the large additive constant prevents any
meaningful approximation-preserving reduction.

Proposition C.2. Our formulation Corr-Clust may be viewed as an in-
stance of Corr-Clust-CS with a large additive constant. More precisely, let
win(i, j) = max{0, ωi,j} and wout(i, j) = min{0, ωi,j}. For a clustering C, we
have that the objectives are related by∑

Cr∈C

∑
i,j∈Cr

ωi,j −
n∑

i=1

n∑
j=1

min{0, ωi,j} =
∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e)
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Proof. For each pair of diversion units i, j, define ω+
i,j = max{0, ωi,j} and ω−

i,j =
−min{0, ωi,j}. Observe that ωi,j = ω+

i,j + ω−
i,j and so we can re-distribute the

following sum as∑
Cr∈C

∑
i,j∈Cr

ωi,j =
∑
Cr∈C

∑
i,j∈Cr

(
ω+
i,j + ω−

i,j

)
=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr∈C

∑
i,j∈Cr

ω−
i,j .

Subtracting the (instance-dependent) constant
∑n

i=1
∑n

j=1 min{0, ωi,j} from
both sides and rearranging yields

∑
Cr∈C

∑
i,j∈Cr

ωi,j −
n∑

i=1

n∑
j=1

min{0, ωi,j}

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr∈C

∑
i,j∈Cr

ω−
i,j −

n∑
i=1

n∑
j=1

min{0, ωi,j}

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j −

∑
Cr �=C′

r∈C

∑
i∈Cr

j∈C′
r

ω−
i,j

=
∑
Cr∈C

∑
i,j∈Cr

ω+
i,j +

∑
Cr �=C′

r∈C

∑
i∈Cr

j∈C′
r

(−ω−
i,j)

=
∑

in-cluster
edges e

win(e) +
∑

out-cluster
edges e

wout(e) .

Finally, observe that for each pair (i, j), the values win(i, j) and wout(i, j) are
non-negative so that the final equation is a valid objective function for the
Corr-Clust-CS formulation.
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