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Abstract: We consider the deconvolution problem for densities supported
on a (d− 1)-dimensional sphere with unknown center and unknown radius,
in the situation where the distribution of the noise is unknown and without
any other observations. We propose estimators of the radius, of the center,
and of the density of the signal on the sphere that are proved consistent
without further information. The estimator of the radius is proved to have
almost parametric convergence rate for any dimension d. When d = 2, the
estimator of the density is proved to achieve the same rate of convergence
over Sobolev regularity classes of densities as when the noise distribution
is known.
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1. Introduction

In this paper, we study the deconvolution problem of random data on a sphere
corrupted by independent additive noise. The observations are

Yi = Xi + εi, i = 1, . . . , n (1)

where (Xi)i≥1 (the signal) is a sequence of independent identically distributed
(i.i.d.) random variables taking values on a (d− 1)-dimensional sphere (for d ≥
2) with unknown center C� and unknown radius R�, (εi)i≥1 (the noise) is a
sequence of i.i.d. random variables in Rd independent of the signal and with
totally unknown distribution. The distribution of the signal is also unknown, it is
only known that it is spherically supported. To solve the deconvolution problem
and estimate the structural parameters C� and R�, the only assumption we
shall put on the noise is that its d coordinates are independently distributed.
Just notice that in model (1), the observed data may be outside the sphere.
This is different from the model studied in [12], [11], where the observed noisy
data remain on the sphere.

The statistical estimation of the center and of the radius of the sphere is
of interest in various applications such as object tracking, robotics, pattern
recognition, see for instance [5], [6], [16], [19], among others, see also [3] and
references therein. For example, in target tracking, one aim is to recover the
shape of the target from multiple measurements of the extent of the target at
each time, one possible shape being a circle. In biometrics, the aim is to identify
circular irises in an image. Several methods have been proposed to estimate the
center and the radius of a sphere, based on least squares, maximum likelihood,
see [13] for a recent likelihood based algorithm, most of them modeling the noise
distribution with a Gaussian distribution.

The deconvolution problem of the distribution of the signal when the radius
and the center are known is studied for circular signals (that is when d = 2) in
[10]. The author proves that the minimax rate of convergence of the estimator
over a wide collection of smoothness classes of the density of the signal on the
circle does not depend on the (known) noise distribution, for a variety of different
noise distributions, contrasting with the situation where the signal has a density
with respect to Lebesgue over the whole space.

Recently, it has been proved in [7] that deconvolution with unknown noise
distribution is possible for multivariate signals, as soon as the signal can be
decomposed in two components that satisfy a mild dependence assumption, that
its distribution has light enough tails, and without any assumption on the noise
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distribution except that its two corresponding components are independently
distributed. The authors of [7] then consider the situation where the probability
of X1 has a density with respect to Lebesgue measure, and they prove that not
knowing the noise distribution does not deteriorate the estimation rate of the
density on Sobolev regularity classes for compactly supported signals.

Here, the probability distribution of the signal is singular with respect to
Lebesgue measure on Rd and their convergence results do not apply. However,
we prove that the general conditions they propose under which deconvolution
with unknown noise is possible are satisfied for spherical signals, this is our first
main identifiability result Theorem 2. The main contribution of our work is then
to exhibit estimators that achieve remarkable properties:

• We propose estimators of the radius, the center, and the distribution of
the signal, which are proved consistent whatever the noise distribution,
see Proposition 2.

• Under the mild assumption that the noise has finite variance, we prove
that the radius of the sphere can be estimated at almost parametric rate
with totally unknown noise distribution, see Theorem 3.

• When d = 2, that is for circular signals, we prove that the center can be
estimated at almost parametric rate and that the density of the signal
distribution on the circle can be estimated at the same rate as when the
distribution of the noise is known on some Sobolev regularity classes, with
a rate which is minimax as proved in [10], see Theorem 4 and Theorem 5.

In Section 2, we first recall general results of [7] and we prove in Proposition 1
a strengthened version of the local L2-consistency of the general estimator of
the characteristic function of the signal that will be a basic stone for all our
convergence rates theorems. We then state our identifiability theorem, give the
definition of the estimators and prove their consistency. Section 3 studies the
rates of convergence of our estimators, and in section 4 we study the situation
where radius and center of the sphere together with the noise distribution are
unknown, though the distribution of the angles of the random signal is known.
Simulations illustrating our findings are given in Section 5. We discuss possible
further work and related questions in Section 6. Proofs of propositions and
lemmas are detailed in Section 7.

2. Identifiability and estimation method

In this section, we prove that model (1) is identifiable with no more assumptions.
We then explain the estimation method and define the estimators which will be
studied in Section 3.

2.1. Preliminaries: Deconvolution with unknown noise

We first recall general results in [7]. Then, we prove a proposition which will be
used to obtain the nearly parametric rate of our estimators of the radius and the
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center. In [7], the authors consider the situation where the observations Yi ∈ Rd

come from the model (
Y (1)

Y (2)

)
=

(
X(1)

X(2)

)
+

(
ε(1)

ε(2)

)
in which Y (1) ∈ Rd1 , d1 ≥ 1, and Y (2) ∈ Rd2 , d2 ≥ 1, with d1 + d2 = d, and
where ε(1) is independent of ε(2). They prove identifiability under very mild
assumptions on the signal distribution. The first one is about the tail of its
distribution.

A(ρ) There exists ρ<2, a>0 and b>0 such that for all λ∈Rd, E
[
exp

(
λ�X

)]
≤

a exp (b‖λ‖ρ2).

Here, X =
(
X(1)

X(2)

)
and ‖ · ‖2 is the Euclidian norm.

Under A(ρ), the characteristic function of the signal can be extended into a
multivariate analytic function denoted by

Φ : Cd1 × Cd2 −→ C

(z1, z2) �−→ E
[
exp

(
iz�1 X(1) + iz�2 X(2)

)]
.

The second assumption is a mild dependence assumption (see the discussion
after Theorem 2.1 in [7]).

A(dep) For any z0 ∈ Cd1 , z �→ Φ(z0, z) is not the null function and for any
z0 ∈ Cd2 , z �→ Φ(z, z0) is not the null function.

Obviously, if no centering constraint is put on the signal or on the noise, it is
possible to translate the signal by a fixed vector m ∈ Rd and the noise by −m
without changing the observation. The model can thus be identifiable only up
to translation.

Theorem 1 (from [7]). If the distribution of the signal satisfies A(ρ) and
A(dep), then the distribution of the signal and the distribution of the noise can
be recovered from the distribution of the observation, up to translation.

An important step of the identifiabiity proof is to prove that, since the char-
acteristic function of the distribution of the signal is a multivariate analytic
function, it is enough to recover it in a neighborhood of 0. Thus, investigation
of the characteristic functions outside a neigborhood of 0 is not needed, and
decays of the characteristic function of the noise will have no impact on the
convergence rates. In fact, as proved in Theorem 4 below when d = 2, the rate
of convergence of the estimator of the density of the signal on the sphere will
not depend on the unknown distribution of the noise.

The first step in the estimation procedure is the estimation of the characteris-
tic function of the signal by a method inspired by the proof of the identifiability
theorem. For any S > 0, let Υρ,S be the subset of multivariate analytic functions
from Cd to C defined as follows.
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Υρ,S =
{
φ analytic s.t. ∀z ∈ Rd, φ(z) = φ(−z), φ(0) = 1

and ∀j ∈ Nd \ {0},
∣∣∣∣∣ ∂jφ(0)∏d

a=1 ja!

∣∣∣∣∣ ≤ S‖j‖1

‖j‖‖j‖1/ρ
1

}
where ‖j‖1 =

∑d
a=1 ja. For all Φ satisfying A(ρ), there exists S such that

Φ ∈ Υρ,S (Lemma 3.1 in [7]). Let Φε(p) be the characteristic function of ε(p),
p = 1, 2, and define for all φ ∈ Υρ,S and any ν > 0,

M(φ; ν|Φ) =
∫
B

d1
ν ×B

d2
ν

|φ(t1, t2)Φ(t1, 0)Φ(0, t2) − Φ(t1, t2)φ(t1, 0)φ(0, t2)|2

|Φε(1)(t1)Φε(2)(t2)|2dt1dt2,
where Bν = [−ν, ν]. It is proved in [7] that if φ ∈ Υρ,S satisfies A(dep),
M(φ; ν|Φ) = 0 for a fixed ν if and only if φ = Φ (up to translation). The
estimator of the characteristic function of the signal can then be defined as a
minimizer of the empirical estimator of M .

Fix some νest > 0. Let H be a subset of functions from Rd to Cd such that
all elements of H satisfy A(dep) and which is closed in L2(Bd

νest
). Define φ̂n as

a (up to 1/n) measurable minimizer of the functional Mn over Υρ,S ∩H, where
Mn is defined as

Mn(φ)=
∫
B

d1
νest×B

d2
νest

|φ(t1, t2)φ̃n(t1, 0)φ̃n(0, t2)−φ̃n(t1, t2)φ(t1, 0)φ(0, t2)|2dt1dt2,

where for all (t1, t2) ∈ Cd1 × Cd2 ,

φ̃n(t1, t2) = 1
n

n∑
�=1

exp
{
it�1 Y

(1)
� + it�2 Y

(2)
�

}
.

It appears that, for any ν > 0, φ̂n is a consistent estimator of Φ in L2([−ν, ν]d)
at almost parametric rate. The constants c1, c2 and c3 in Proposition 1 will
depend on the signal through ρ and S, and on the noise through its second
moment and the following quantity:

cν = inf{|Φε(1)(t)|, t ∈ Bd1
ν } ∧ inf{|Φε(2)(t)|, t ∈ Bd2

ν }. (2)

For any noise distribution, for small enough ν, cν is a positive real number.
Moreover, notice that for fixed ρ > 0, for S ≤ S′, we have Υρ,S ⊂ Υρ,S′ , that
is, for S large enough, we can find ν ∈ [(d+ 4/3)e/S, νest] such that cν > 0. We
prove the following.
Proposition 1. Assume Φ ∈ Υρ,S ∩ H and ε1 has finite variance. Fix some
ν ∈ [(d + 4/3)e/S, νest] such that cν > 0. For all δ ∈ (0, 1), there exist positive
constants c1, c2, c3 which depend on δ, νest, ν, cν , ρ, S, H, d and E(‖Y1‖2) such
that for all x ≥ 1 and n ≥ (1 ∨ xc1)/c2, with probability at least 1 − e−x,∫

Bd
ν

|φ̂n(t) − Φ(t)|2dt ≤ c3

(
x

n1−δ
∨ x2

n2−2δ

)
.
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Proposition 1 improves on Proposition A.3 in [7] and is proved in Section 7.1.

2.2. Identifiability theorem

For any Z ∈ Rd, denote Z(1), . . . , Z(d) its d coordinates. We shall parametrize
a vector on a sphere through angles. For any u ∈ [0, 1]d−1, define S(u) on the
unit d-dimensional sphere as

S(u) =

⎛⎜⎜⎜⎜⎜⎜⎜⎝

cos(2πu(1))
sin(2πu(1)) cos(πu(2))

sin(2πu(1)) sin(πu(2)) cos(πu(3))
...

sin(2πu(1)) sin(πu(2)) · · · sin(πu(d−2)) cos(πu(d−1))
sin(2πu(1)) sin(πu(2)) · · · sin(πu(d−2)) sin(πu(d−1))

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then for a sequence (Ui)i≥1 of i.i.d random vectors taking values in [0, 1]d−1,
we have for all i ≥ 1,

Xi = C� + R�S(Ui), (3)
with C� the center of the sphere and R� its radius.

We shall also make the following assumptions.

(H1) The coordinates ε
(1)
1 , . . . , ε

(d)
1 of the noise are independently distributed.

We denote Q� = ⊗d
j=1Q

�
j the distribution of ε1, with Q�

j the distribution
of ε(j)

1 , j = 1, . . . , d.
(H2) The distribution of U1 has a density f� with respect to Lebesgue measure

on [0, 1]d−1. When d > 2, we assume f� positive on (0, ζ�) × (0, 1)d−2 for
some ζ� > 0.

We shall sometimes call f� exploration density of the angles or exploration den-
sity. For any Q = ⊗d

j=1Qj , with Qj , j = 1, . . . , d, probability distributions on R,
any probability density f on [0, 1]d−1, any C ∈ Rd and any R ≥ 0, let PC,R,f,Q

be the distribution of Y1 when X1 lies on the sphere with center C, radius R,
and U1 has density f .

Theorem 2. Assume (H1) and (H2). For any Q = ⊗d
j=1Qj, any probability

density f on [0, 1]d−1, any C ∈ Rd and any R ≥ 0, PC,R,f,Q = PC�,R�,f�,Q� if
and only if R = R�, f = f�, and there exists m ∈ Rd such that C = C� + m
and Q(·) = Q�(· + m). If moreover Q and Q� have finite first moment and are
centered distributions, then m = 0, that is C = C� and Q = Q�.

Proof of Theorem 2.
We shall apply Theorem 1. For any probability density f on [0, 1]d−1, C ∈ Rd

and R ≥ 0, A(ρ) holds with ρ = 1 and with the constants a = 1 and b =
‖C‖2 +R. To verify A(dep), since all coordinates of the noise are independently
distributed, we first choose a decomposition of the signal in two components. We
define X̃(1) = X

(1)
1 , and X̃(2) = (X(2)

1 , . . . , X
(d)
1 )T , and we prove in Section 7.2

the following Lemma from which A(dep) follows.
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Lemma 1. Assume (H2). Then for all z ∈ C, E
[
exp

(
izX̃(1)

)
|X̃(2)

]
is not

P
X̃(2)-a.s. the null random variable, and for all z ∈ Cd−1, E

[
exp

(
izT X̃(2)

)
|X̃(1)

]
is not P

X̃(1)-a.s. the null random variable. Here, P
X̃(p) denotes the distribution

of X̃(p), p = 1, 2.

Then, translation of the spherical signal does not change the radius of the
sphere and the exploration density of the angles on the sphere, but only the cen-
tering of the sphere and correspondingly the distribution of the noise. Applying
Theorem 1 leads then to the conclusion of Theorem 2.

The proof of Lemma 1 proceeds by computing explicitly the conditional ex-
pectation, and then to give an argument why it can not be the null random
variable. The argument for d = 2 does not apply to d > 2, in which case we use
another argument needing the positivity of f� near the origin. Since the choice
of the positive first coordinate to define the angles and the density is arbitrary,
the proof still holds under the assumption that the density is positive near the
point of the sphere at the intersection with one of the 2d axis directions.

2.3. Estimation method and consistency

We shall apply the method described in Section 2.1 to estimate R� and f�. For
any positive real number R and any probability density f on [0, 1]d−1, define
Ψf,R the characteristic function of the random variable with distribution on the
centered sphere with radius R, and exploration density of the angles f , that is,
for all t ∈ Rd,

Ψf,R(t) =
∫

(0,1)d−1
exp

{
iRtTS(u)

}
f(u)du. (4)

We shall consider functions Ψf,R for any function f on (0, 1)d−1 (not only prob-
ability densities) as defined by (4). Notice that Ψf,R can be extended to Cd.

Since all components of ε1 are independent, we have to make a choice of d1
and d2 for the definition of Mn and M , thus, in the following, we assume to
have d1 = 1 and d2 = d− 1, as in the proof of Theorem 2. For any ν > 0, define

M(f,R)=
∫
Bν×Bd−1

ν

|Ψf,R(t1, t2)Ψf�,R�(t1, 0)Ψf�,R�(0, t2)

−Ψf�,R�(t1, t2)Ψf,R(t1, 0)Ψf,R(0, t2)|2|Φε(t1, t2)|2dt1dt2.

The parameter ν does not appear in the notation of M and can be chosen as
needed.

Fix some νest > 0, and define

Mn(f,R) =
∫
Bνest×Bd−1

νest

| Ψf,R(t1, t2)ψ̃n(t1, 0)ψ̃n(0, t2)

− ψ̃n(t1, t2)Ψf,R(t1, 0)Ψf,R(0, t2)|2dt1dt2,
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with

ψ̃n(t1, t2) = 1
n

n∑
�=1

exp
{
it1Ỹ

(1)
� + it�2 Ỹ

(2)
�

}
.

where for all , Ỹ (1)
� = Y

(1)
� , and Ỹ

(2)
� = (Y (2)

� , . . . , Y
(d)
� )T .

We need to fix the compact subset on which we minimize Mn. We choose F
a compact subset of L2[(0, 1)d−1] such that for all f ∈ F ,

∫
(0,1)d−1 f(u)du = 1.

For example, F can be the intersection of a regularity class such as a Sobolev
ball with the closed subset of functions f such that

∫
(0,1)d−1 f(u)du = 1, see

Section 3.2 in the case d = 2. We also choose real numbers Rmin and Rmax such
that 0 < Rmin < Rmax < +∞. Since we shall study minimax rates in Section 3,
we shall fix later F to include all Sobolev classes of interest in that paper. Then
we define (f̂ , R̂) as any measurable random variable such that

Mn

(
f̂ , R̂

)
≤ inf

(f,R)∈F×[Rmin;Rmax]
Mn (f,R) + 1

n
. (5)

Notice that we do not constrain functions in F to be non negative, that is we
do not constrain f̂ to be a probability density. Using Proposition 1 we get the
following corollary which will be the basic stone to obtain estimation rates of
our estimators. For any ν > 0, define c�ν as in (2) with Q = Q�.

Corollary 1. Assume f� ∈ F , R� ∈ (Rmin;Rmax) and ε1 has finite variance.
For all ν ∈ (0, νest] such that c�ν > 0, for all δ ∈ (0, 1), there exist a positive
constants c1, c2, c3 which depend on δ, ν, c�ν , d and E(‖Y ‖2) such that for all
x ≥ 1 and n ≥ (1 ∨ xc1)/c2, with probability at least 1 − e−x,∫

[−ν,ν]d
|Ψf̂ ,R̂(t) − Ψf�,R�(t)|2dt ≤ c3

(
x

n1−δ
∨ x2

n2−2δ

)
.

We insist on the fact that the quantity c�ν is unknown, and that its knowledge
is not needed to construct the estimators and to get asymptotic rates, since there
always exists a small enough ν such that c�ν > 0.

For any ν > 0, c(ν) > 0, E > 0, define Q(d)(ν, c(ν), E) the set of distributions
Q = ⊗d

j=1Qj on Rd such that cν ≥ c(ν) and
∫
Rd ‖x‖2dQ(x) ≤ E. The following

corollary gives an upper bound of the maximum risk for the integrated square
loss, showing convergence at rate n1−δ for any positive δ.

Corollary 2. For all ν ∈ (0, νest], c(ν) > 0, E > 0 and δ ∈ (0, 1), there exists
a positive constant C which only depends on δ, ν, c(ν), d, E(‖Y ‖2), Rmin and
Rmax such that for n large enough, uniformly for f ∈ F , R ∈ [Rmin;Rmax],Q ∈
Q(d)(ν, c(ν), E), C ∈ R2,

EC,R,f,Q

[∫
[−ν,ν]d

|Ψf̂ ,R̂(t) − Ψf,R(t)|2dt
]
≤ C

n1−δ
.
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When Q� has a finite first moment and is centered, we can estimate the center
of the sphere. We define

Ĉ = 1
n

n∑
i=1

Yi − R̂

∫
(0,1)d−1

S(u)f̂(u)du. (6)

The estimators of the radius and of the exploration density can be proved to
be consistent by applying M -estimator general results. Then consistency of the
estimator of the radius follows. We give a detailed proof of the following propo-
sition in Section 7.3. Here, it is not needed that the noise has finite variance.

Proposition 2. Assume f� ∈ F and R� ∈ (Rmin;Rmax). Then R̂ = R� +
oPC�,R�,f�,Q� (1) and

∫
(0,1)d−1(f̂(u) − f�(u))2du = oPC�,R�,f�,Q� (1). If moreover

Q� has finite first moment and is a centered distribution, then also Ĉ = C� +
oPC�,R�,f�,Q� (1).

Comments on the practical computation of the estimator. In prac-
tice, computing the minimum over the infinite-dimensional set defined in (5)
requires to introduce a truncation parameter. In other words, instead of mini-
mizing Mn over all elements (f,R) of F × [Rmin, Rmax], we would minimize it
over all (Tmf,R), where m is a truncation parameter and Tmf is the truncated
Fourier expansion of f (also defined in (11)). This truncation has no impact
on the result proved in Theorem 3, Theorem 4 and Theorem 5 i.e. on the con-
vergence rates derived in this paper, as long as this truncation parameter is
chosen sufficiently large with respect to logn/ log logn to obtain the rates for
the estimation of Ψf�,R� (see the end of Section 3.2 of [7]).

3. Convergence rates of the estimators

In this section, we prove that the estimator of the radius has almost parametric
rate of convergence, whatever the dimension d of the sphere. We then get rates of
convergence for the estimator of the exploration density and of the center in the
case d = 2 that is for circular signals. Our estimator of the exploration density
achieves the minimax rate on Sobolev regularity classes and the estimator of
the center can be proved to have almost parametric rate.

3.1. The estimator of the radius

Our first main result is the fact that, without any knowledge of the noise distri-
bution and of the exploration density, the radius of the sphere can be recovered
at almost parametric rate.

Theorem 3. Assume f� ∈ F and R� ∈ (Rmin;Rmax). Assume also that ε1 has
finite variance. For all ν ∈ (0, νest] such that c�ν > 0, for all δ ∈ (0, 1), there
exist positive constants c1, c2, c3 which depend on δ, ν, c�ν , d and E(‖Y ‖2) such
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that for all x ≥ 1 and n ≥ (1 ∨ xc1)/c2, with probability at least 1 − e−x,

|R̂−R�|2 ≤ c3

R2
min(1 − (νRmax)2

2d+8 )2

(
x

n1−δ
∨ x2

n2−2δ

)
.

Proof. We denote by Δ the Laplacian operator in the Cartesian coordinate
system,

Δ =
d∑

i=1

∂2

∂x2
i

,

and for all k ≥ 1, Δk = Δk−1 ◦ Δ with Δ0 the identity operator.
Notice that Ψf,R is an eigenfunction of the Laplacian, with eigenvalue R2,

ΔΨf,R(x) + R2 Ψf,R(x) = 0,

so that for all k ≥ 1,

ΔkΨf,R(x) + (−1)k−1R2k Ψf,R(x) = 0.

Define Dd(0, ν) = {x ∈ Rd, ‖x‖2 ≤ ν} the d-dimensional disk centered at
the origin and with radius ν, Γ the gamma function and λd the d-dimensional
Lebesgue measure. Then, according to [15], for all ν > 0 and for all multivariate
analytic function ψ on Cd,

1
λd(Dd(0, ν))

∫
Dd(0,ν)

ψ(x)dx =
∞∑
k=0

Δkψ(0)
2kk!

∏k
j=1(d + 2j)

ν2k

= Γ
(
d

2 + 1
) ∞∑

k=0

Δkψ(0)
22kk!Γ(d2 + k + 1)

ν2k.

Applying this equality to Ψf̂ ,R̂ and to Ψf�,R� we get that

1
(
√
πν)d

∫
Dd(0,ν)

(
Ψf̂ ,R̂(x) − Ψf�,R�(x)

)
dx =

∞∑
k=0

(−1)k R̂2k − (R�)2k

22kk!Γ(d2 + k + 1)
ν2k,

(7)
since λd(Dd(0, ν)) = πd/2

Γ( d
2 +1)ν

d.
Let Jd/2 be the Bessel function of order (d/2). We collect in Section 8 results

on Bessel functions that will be useful in our analysis. Using identity (I) in
Section 8 we get that for all x ∈ R,

∞∑
k=0

(−1)k x2k

22kk!Γ(d2 + k + 1)
= 2d/2

Jd/2(x)
xd/2 , (8)

so that using (7), (8), Cauchy-Schwarz inequality and the fact that Dd(0, ν) ⊂
Bd

ν we obtain

2d
∣∣∣∣∣Jd/2(νR̂)

(νR̂)d/2
−

Jd/2(νR�)
(νR�)d/2

∣∣∣∣∣
2

≤ 1
(
√
πν)dΓ(d2 + 1)

∫
Bd

ν

(
Ψf̂ ,R̂(x) − Ψf�,R�(x)

)2
dx.

(9)
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Let H be the function defined by

∀x �= 0, H(x) =
Jd/2(x)
xd/2 , H(0) = 1

2d/2Γ(d2 + 1)
.

Then using (8), H has infinitely many derivatives so that there exists R̃ ∈
(R�, R̂) such that

H(νR̂) −H(νR�) = ν(R̂−R�)H ′(νR̃).

Computation of the derivative and (IV) in Section 8 gives

H ′(x) =
x(Jd/2−1(x) − Jd/2+1(x)) − dJd/2(x)

2xd/2+1 ,

and using (V) in Section 8 we get

H ′(x) = −
Jd/2+1(x)

xd/2 .

Using lemma 3 in Section 8, we get that

Jd/2+1(νR̃) ≥ (νR̃)d/2+1

2d/2+1Γ(d2 + 2)

(
1 − (νR̃)2

2d + 8

)
.

Since R̃ ∈ (Rmin, Rmax), we deduce that for any ν ∈ (0, 1/Rmax),

|H ′(νR̃)| =

∣∣∣∣∣Jd/2(νR̃)
(νR̃)d/2

∣∣∣∣∣ ≥ νR̃

2d/2+1Γ(d2 + 2)

∣∣∣∣∣1 − (νR̃)2

2d + 8

∣∣∣∣∣
≥ νRmin

2d/2+1Γ(d2 + 2)

(
1 − (νRmax)2

2d + 8

)
> 0,

so that

|R̂−R�| ≤
2d/2+1Γ(d2 + 2)

ν2Rmin(1 − (νRmax)2
2d+8 )

|H(νR̂) −H(νR�)|.

Using (9) we get

|R̂−R�|2 ≤
4Γ(d2 + 2)2

ν4(
√
πν)dR2

min(1 − (νRmax)2
2d+8 )2

∫
Bd

ν

(
Ψf̂ ,R̂(x) − Ψf�,R�(x)

)2
dx.

The end of the proof follows from Corollary 1.

The following corollary gives an upper bound for the rate of convergence of
the maximum risk.
Corollary 3. For all ν ∈ (0, νest], c(ν) > 0, E > 0 and δ ∈ (0, 1), there exists
a positive constant C which only depends on δ, ν, c(ν), d, E(‖Y ‖2), Rmin and
Rmax such that for n large enough,

sup
f∈F,R∈[Rmin;Rmax],Q∈Q(d)(ν,c(ν),E),C∈R2

EC,R,f,Q|R̂−R|2 ≤ C

n1−δ
.
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3.2. The estimator of the density and of the center

In this section, we consider the case of circular signals, that is d = 2. In this
case, we can rewrite model (3) using one dimensional angles Ui ∈ [0, 1], as

Xi = C� + R�

(
cos(2πUi)
sin(2πUi)

)
. (10)

We shall focus on the following regularity classes. For any L > 0, β > 1
2 and

γ > 0, set

Wβ(L) = {f ∈ L2([0, 1]) :
∞∑

k=−∞
|fk|2|k|2β ≤ L2},

Aγ(L) = {f ∈ L2([0, 1]) :
∞∑

k=−∞
|fk|2e2γk ≤ L2},

where for any function f ∈ L2([0, 1]), (fk)k∈Z is the sequence of Fourier coeffi-
cients of f :

fk =
∫ 1

0
f(θ)e2iπkθdθ, k ∈ Z.

We fix F as a compact subset of L2[(0, 1)] such that for all f ∈ F ,∫ 1
0 f(u)du = 1, and containing as subsets all Wβ(L) and Aγ(L) for all β > 1

2 ,
γ > 0, and L ≤ Lmax chosen. If a lower bound β0 > 1/2 on β is known, we can
choose F = Wβ0(Lmax) ∩ {f ∈ L2([0, 1]) :

∫ 1
0 f(u)du = 1}. We shall now define

an estimator of f� using truncated Fourier expansions of f̂ defined in Section 2.3.
For N > 0 an integer to be chosen, we define TN f̂ the trigonometric polynomial
estimator of f�:

∀x ∈ (0, 1), TN f̂(x) =
∑

|k|≤N

f̂ke
−2iπkx. (11)

Define now the maximum risk of the estimator for any class of densities C
and any class of noise distribution Q as follows.

R
[
TN f̂ ; C;Rmin;Rmax;Q

]
=

sup
f∈C,R∈[Rmin;Rmax],Q∈Q,C∈R2

EC,R,f,Q

(∫ 1

0
(TN f̂(x) − f(x))2dx

)
.

The following theorem shows that a good choice of N leads to minimax adaptive
estimation rate over the regularity classes Wβ(L) and controlled maximum risk
over the regularity classes Aγ(L).

Theorem 4. For α ∈ (0, 1/2), set

N =
⌊
α

logn
log logn

⌋
.
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Then for all L > 0, β > 1/2, (resp. γ > 0), for all ν ∈ (0, νest], c(ν) > 0, E > 0,

R
[
TN f̂ ;Wβ(L);Rmin;Rmax;Q(2)(ν, c(ν), E)

]
≤L2α−2β

(
log log(n)

log(n)

)2β

(1+o(1))

(12)
as n tends to infinity, and

R
[
TN f̂ ;Aγ(L);Rmin;Rmax;Q(2)(ν, c(ν), E)

]
≤exp

(
−2γ

(
α

log(n)
log log(n)

))
(1+o(1))

(13)
as n tends to infinity.

In [10], the author studies the estimation of the exploration density for noisy
circular data on the unit circle (known radius) and with known noise distri-
bution. Theorem 1 in [10] proves that for centered 2-dimensional Gaussian
noise having variance σ2I2, the minimax rate for estimating f over Wβ(L) is

L2
(

log log(n)
log(n)

)2β
(1+ o(1)). Thus, our estimator is rate minimax adaptive to un-

known radius, unknown noise distribution and unknown regularity over classes
Wβ(L) for the signal, with a constant deteriorated by a factor at most 22β . The-
orem 2 in [10] proves that with the same noise, the minimax rate for estimating
f over Aγ(L) is L2 exp

(
−2γ

(
log(n)

log log(n)

))
(1 + o(1)). In our result, there is a

loss in the upper bound for the rate of convergence of the maximum risk of our
estimator in case of unknown radius and unknown noise distribution on classes
Aγ(L) for the signal.

Note that, as in [10] and [7], the convergence rates do not depend on the
error distribution. This is in contrast to the standard density deconvolution
problem where, when we know the error distribution, the optimal convergence
rate depends on the rate of decrease of the Fourier transform of the noise dis-
tribution (over classes of noise distributions satisfying such decay), see [14] and
references therein. Here, analyticity of the Fourier transform of the signal dis-
tribution allows us to dispense with the knowledge of the noise, in particular of
the decay rate of its Fourier transform. It would be interesting, in the context
of unknown noise, to recover noise dependent minimax risk by restricting the
set of possible unknown noises. One way could be to make in our methodology
ν = νest go to infinity and to study the square integrated risk with cνest having
a precise decreasing behavior. But this would require new ideas as explained in
the concluding section of [7].

Proof. For any f ∈ F ,∫ 1

0

(
TN f̂(x) − f(x)

)2
dx =

∑
|k|≤N

|fk − f̂k|2 +
∑

|k|>N

|fk|2,

so that for any R ∈ (Rmin;Rmax), Q ∈ Q(ν, c(ν), E), C ∈ R2,

EC,R,f,Q

(∫ 1

0
(TN f̂(x) − f(x))2dx

)
= EC,R,f,Q

⎡⎣ ∑
|k|≤N

|fk − f̂k|2
⎤⎦ +

∑
|k|>N

|fk|2.



620 J. Capitao-Miniconi and E. Gassiat

The first term on the right hand side will be shown to be negligible with respect
to the second term thanks to the following proposition, for which a detailed
proof can be found in Section 7.4

Proposition 3. Assume f� ∈ F and R� ∈ (Rmin, Rmax). For all ν ∈ (0, νest]
such that c�ν > 0, for all δ ∈ (0, 1), there exists a constant c > 0 depending on δ,
ν, c�ν , d, R�, Rmin, Rmax, and E(‖Y ‖2) such that for all x ≥ 1, n ≥ (1∨xc1)/c2,
with probability at least 1 − e−x,∑

|k|≤N

|f�
k − f̂k|2 ≤ c

(
2

νRmin

)2N

(N + 1)(N !)2
(

x

n1−δ
∨ x2

n2−2δ

)
. (14)

Choose δ small enough so that 2α < 1 − δ. Then for large enough n, for a
constant c > 0,

EC,R,f,Q

⎡⎣ ∑
|k|≤N

|fk − f̂k|2
⎤⎦ ≤ c (νRmin)−2N (N + 1)22N (N !)2n−1+δ,

and using the fact that, ∀N ≥ 1, N ! ≤ eNN+ 1
2 e−N , we finally have,

EC,R,f,Q

⎡⎣ ∑
|k|≤N

|fk − f̂k|2
⎤⎦ ≤ e2c (νRmin)−2N (N + 1)22NN2N+1e−2Nn−1+δ.

(15)
The term at the right hand side of (15) is at most of order

exp
{

(2α + δ − 1) log(n)
[
1 + o(1)

]}
.

Now,
sup

f∈Wβ(L)

∑
|k|>N

|fk|2 ≤ L2N−2β , (16)

and
sup

f∈Aγ(L)

∑
|k|>N

|fk|2 ≤ L2e−2γN . (17)

Equation (12) follows from (15) and (16), and equation (13) follows from (15)
and (17).

Theorem 5. Assume f� ∈ F and R� ∈ (Rmin, Rmax). Then for any δ ∈ (0, 1),
for all ν ∈ (0, νest], c(ν) > 0, E > 0,

sup
f∈F,R∈[Rmin;Rmax],Q∈Q(2)(ν,c(ν),E),C∈R2

EC,R,f,Q

∥∥∥Ĉ − C�
∥∥∥2

= O
(
n−1+δ

)
.

Notice that we can not get exponential deviations for the empirical mean of
the observations when nothing more is assumed about the noise apart having
finite variance.
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Proof. Notice that

f�
1 =

∫ 1

0
cos(2πu)f�(u)du + i

∫ 1

0
sin(2πu)f�(u)du

so that
C� = E[Y ] −R�

(
Re(f�

1 )
Im(f�

1 )

)
,

and in the same way

Ĉ = 1
n

n∑
l=1

Yl − R̂

(
Re(f̂1)
Im(f̂1)

)
.

Thus, using the triangle inequality, and the fact that R̂ ≤ Rmax and |f�
1 | ≤ 1,

we get

‖Ĉ−C�‖2
2 ≤ 3

∥∥∥∥∥ 1
n

n∑
l=1

Yl − E[Y ]

∥∥∥∥∥
2

2

+3|R̂−R�|2+3Rmax

∥∥∥∥∥
(

Re(f�
1 ) − Re(f̂1)

Im(f�
1 ) − Im(f̂1)

)∥∥∥∥∥
2

2

.

The theorem follows from Theorem 3, Proposition 3 and the upper bound on
the variance of the observations.

4. When the exploration density is known

In this section, we assume that f� is known. By exchanging the role of the signal
and of the noise, we can look at model (1) as a semi-parametric deconvolution
problem in which the noise has known distribution (up to centering and radius)
on a sphere. But we are able to estimate the radius and the center without
solving the semi-parametric deconvolution problem, that is without estimating
Q. We estimate the radius using the contrast function Mn(f�, R). Since this
function is continuous, we can define

R̃ = Argmin {Mn(f�, R), R ∈ [Rmin;Rmax]}.

If moreover Q� has finite first moment and is a centered distribution, then the
estimator of the center is defined as

C̃ = 1
n

n∑
i=1

Yi − R̃

∫
(0,1)d−1

S(u)f�(u)du.

Theorem 6 states that
√
n(R̃−R�, C̃−C�) converges in distribution as n tends

to infinity to some centered Gaussian distribution. It will be a consequence of
the lemma stated below. In the following, for R ∈ [Rmin, Rmax], we omit f� as
an argument of M and Mn. We write M ′, M ′

n their derivatives with respect to
R and M ′′, M ′′

n their second derivatives with respect to R.
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Lemma 2. The following results hold true under the assumptions of Theorem 6.

(1) R̃ is a consistent estimator of R�.
(2) There exists a matrix V such that

√
n
( 1
n

∑n
i=1 Yi − E(Y1),M ′

n(R�)
)

con-
verges in distribution to a centered Gaussian distribution with variance
V.

(3) M ′′(R�) �= 0 and for any random variable Rn ∈ [Rmin, Rmax] converging
in probability to R�, one has

M ′′
n (Rn) = M ′′(R�) + oPC�,R�,f�,Q� (1).

The proof of Lemma 2 is given in Section 7.5.
Define the (d + 1) × (d + 1) matrix

Σ =
(

0 − 1
M ′′(R�)

1 E(S(U))
M ′′(R�)

)
V

(
0 1

− 1
M ′′(R�)

E(S(U))T
M ′′(R�)

)

Theorem 6. Assume that Q� has finite second moment and is a centered dis-
tribution. Then

√
n(R̃ − R�, C̃ − C�) converges in distribution to a centered

Gaussian distribution with variance Σ.

The proof of Theorem 6 is detailed in Section 7.6.

5. Simulations

The aim of this section is to illustrate our method with examples for which the
noise is not bounded. We choose d = 2 and we consider the model (10) with
R� = 3, C� = 0 and R� = 0.6, C� = 0, with U, ε generated as follows.

(1) U ∼ Unif(0, 1) and ε ∼ N (0, (0.12)2I), figure 1 (R� = 3) and figure 2
(R� = 0.6).

(2) U ∼ Unif(0, 1) and for i ∈ {1, 2} ε(i) ∼ 1
2δ(−1) + 1

2Exp
{ 1

0.12
}
, figure 3

(R� = 3) and figure 4 (R� = 0.6).
(3) U ∼ Unif(0, 1) and ε ∼ N (0, I), figure 5 (R� = 3) and figure 6 (R� = 0.6).

(4) U∼f� :x∈(0, 1) �→ exp{cos(2πx)}∫ 1
0 exp{cos(2πu)}du and ε∼N (

(
−1.6
2.5

)
,

(
(0.2)2 0

0 (0.57)2
)
),

figure 7 (R� = 3).

(5) U∼f� :x∈(0, 1) �→ exp{cos(2πx)}∫ 1
0 exp{cos(2πu)}du and ε ∼ N (

(
0
0

)
,

(
(0.2)2 0

0 (0.57)2
)

),

figure 8 (R� = 3).

For each case, we generate n observed points for n ∈ V with

V = {102, 2 · 102, 3 · 102, 4 · 102, 5 · 102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104,

7.5 · 104, 105, 3 · 105, 5 · 105, 8 · 105, 106}.

In the case the exploration density is known, we estimate only the radius of the
circle. When the exploration density is unknown, we estimate the radius and



Deconvolution of spherical data 623

the exploration density. To numerically visualize that the center of the noise has
no impact on the estimation of the radius and the exploratory density, we can
look at figure 7 and figure 8.

In practice, when we want to estimate the radius and the exploration density,
we fix N and νest and we minimize Mn(TNf,R) for f ∈ F and R ∈ [Rmin;Rmax].
Since N is fixed, f0 = 1 and f is a real function, we have for all k ∈ N,
fk = f−k, this amounts to minimize a function of (2N + 1) variables. In our
simulations, we noticed that the choice of N and νest does not significantly
change the results thus the simulations are done with N =

⌊
log(n)

log(log(n))

⌋
and

νest = 0.5. Nevertheless, this point remains to be studied further, especially to
apply the method to real-life data. For each figure, there are 6 plots,

Top left Scatter plot of the 106 observed points.
Top right Scatter plot of the 106 observed points.
Middle left Plot of (log |R̂−R�|, log(n))n∈V + the linear regression, when the

density f� is known and unknown.
Middle right We choose W ⊂ V to better visualize the graph, and we plot

(R̂, n)n∈W , when the density f� is known and unknown.
Bottom left Plot of f� and TN f̂ for n ∈ {3 · 103, 104, 5 · 104, 105, 106}.
Bottom right Plot of (log ||f� − TN f̂ ||22, log(n))n∈V .
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Fig 1: R� = 3, U ∼ Unif(0, 1) , ε ∼ N (0, (0.12)2I) and W = {3 · 102, 4 · 102, 5 ·
102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105}
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Fig 2: R� = 0.6, U ∼ Unif(0, 1) , ε ∼ N (0, (0.12)2I) and W = {3 · 102, 4 · 102, 5 ·
102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105}
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Fig 3: R� = 3, U ∼ Unif(0, 1) , for i ∈ {1, 2} ε(i) ∼ 1
2δ(−1) + 1

2Exp
{ 1

0.12
}

and
W = {3 · 102, 4 · 102, 5 · 102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105, 3 ·
105, 5 · 105}
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Fig 4: R� = 0.6, U ∼ Unif(0, 1) , for i ∈ {1, 2} ε(i) ∼ 1
2δ(−1) + 1

2Exp
{ 1

0.12
}

and
W = {3 · 102, 4 · 102, 5 · 102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105, 3 ·
105, 5 · 105}
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Fig 5: R� = 3, U ∼ Unif(0, 1) , ε ∼ N (0, I) and W = {3·102, 4·102, 5·102, 103, 2·
103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105, 3 · 105, 5 · 105}
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Fig 6: R� = 0.6, U ∼ Unif(0, 1) , ε ∼ N (0, I) and W = {3 · 102, 4 · 102, 5 ·
102, 103, 2 · 103, 3 · 103, 5 · 103, 104, 5 · 104, 7.5 · 104, 105, 3 · 105, 5 · 105, 8 · 105, 106}
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Fig 7: R� = 3, U ∼ f� : x ∈ (0, 1) �→ exp{cos(2πx)}∫ 1
0 exp{cos(2πu)}du , ε ∼

N (
(
−1.6
2.5

)
,

(
(0.2)2 0

0 (0.57)2
)

) and W = {3 · 102, 4 · 102, 5 · 102, 103, 2 · 103, 3 ·

103, 5 · 103, 104, 5 · 104, 7.5 · 104}
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Fig 8: R� = 0.6, U ∼ f� : x ∈ (0, 1) �→ exp{cos(2πx)}∫ 1
0 exp{cos(2πu)}du , ε ∼

N (
(

0
0

)
,

(
(0.2)2 0

0 (0.57)2
)

) and W = {3 · 102, 4 · 102, 5 · 102, 103, 2 · 103, 3 ·

103, 5 · 103, 104, 5 · 104, 7.5 · 104}
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The graph of log |R� − R̂| from figure 1 to figure 8 drive us to reasonably
conjecture that the rate of convergence of |R�− R̂| is the same when the density
f� is known and unknown.

We use Monte-Carlo to estimate Mn and the package optimize.minimize in
Python to minimize Mn, that is, there is possibly a numerical bias that can
explain the fluctuations on the values of R̂ as we can see in the figure 9 (left
histogram) and figure 10. The histograms are computed with Monte-Carlo repli-
cations of 50 values of R̂ for n = 10 000 in the case of figure 1 and figure 3.

Fig 9: U ∼ Unif(0, 1) and ε ∼ N (0, (0.12)2I)

Fig 10: U ∼ Unif(0, 1) and for i ∈ {1, 2} ε(i) ∼ 1
2δ(−1) + 1

2Exp
{ 1

0.12
}

Finally, for each n ∈ V in the case of figure 1, we computed 30 values of
R̂ denoted by (R̂n

k )1≤k≤30 when the density f� is known and unknown, we
give the following table which gives the empirical mean squared error. The
computation time to minimize Mn becomes long when the number of data
increases, in particular when f� is unknown. This is why we choose to make
only 30 replications.



Deconvolution of spherical data 633

n

f� known f� unknown
1
30

∑30
k=1 |R� − R̃n

k |2 1
30

∑30
k=1 |R� − R̂n

k |2

102 7.09 · 10−2 2.86 · 10−3

2 · 102 3.87 · 10−2 1.02 · 10−3

3 · 102 1.87 · 10−2 5.72 · 10−4

4 · 102 1.5 · 10−2 6.15 · 10−4

5 · 102 7.28 · 10−3 4.24 · 10−4

103 1.27 · 10−3 2.07 · 10−4

2 · 103 3.64 · 10−4 9.97 · 10−5

3 · 103 1.39 · 10−4 8.73 · 10−5

5 · 103 1.31 · 10−4 5.29 · 10−5

104 6.99 · 10−5 6.63 · 10−6

5 · 104 1.01 · 10−5 4.96 · 10−7

7.5 · 104 7.75 · 10−6 2.72 · 10−7

105 7.63 · 10−6 1.96 · 10−7

3 · 105 2.47 · 10−6 6.03 · 10−8

5 · 105 1.88 · 10−6 3.27 · 10p−8

8 · 105 1.37 · 10−6 2.32 · 10−8

106 1.02 · 10−6 1.78 · 10−8

6. Discussion

In this paper, we proved that deconvolution of spherical data is possible without
any knowledge of the distribution of the noise, and that the radius of the sphere
can be recovered at nearly parametric rate. The question whether the rate 1/

√
n

can be attained is still open. To get the almost parametric rate following the
proposed analysis would require first to be able to strengthen the lower bound
of M in (18). But in [7], getting a lower bound for M requires delicate argu-
ments involving a technical truncation from which it is not possible to derive
a quadratic lower bound. If ever such a lower bound can be proved, new ideas
have to be developed. Also, we were able to prove the identifiability theorem for
all possible densities on a circle, but in higher dimensions the proof holds only
for densities that are positive near the origin. Extending the result to hold for
any density for any d would be nice.

We also proved, for noisy data on a circle that the exploration density can be
recovered at the same minimax convergence rate on Sobolev regularity classes
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as when the noise distribution is known. The analysis we propose here does not
extend to d > 2, and the question of the convergence rate for d > 2 remains
unsolved.

Finally, we were able to run numerical simulations to estimate the radius and
the exploratory density on simulated data, the results illustrate our theoretical
findings. To apply the method to real-life data requires further work, both on
the methodology side to find a data-driven strategy to choose N and νest and
on the algorithmic side to improve on the computation time.

More generally, deconvolution of data coming from observations supported
on a lower dimensional manifold and corrupted by additive noise has been inves-
tigated earlier for known noise in [9], see also [4]. The extension of the method-
ology proposed here to analyze those settings and to deal with unknown noise
distribution will be developed in a further work. Understanding how to deal
with noisy observations in topological data analysis is a challenging question,
see for instance [1] and [2], and our solution for additive noise having indepen-
dent components can be understood as a contribution in this perspective.

7. Proofs

7.1. Proof of Proposition 1

We shall denote ‖·‖2,ν the L2(Bm
ν )-norm and ‖·‖∞,ν the L∞(Bm

ν )-norm, where
the dimension m may be d, d1 or d2 and is clear from the context.

Following the proof of Proposition A.2 in [7] and the proof of Proposition 24
in Appendix B.5 in [8], we easily get that there exist positive constants b, η1 < 1
and η2 < 1 depending only on ν, S, d, ρ such that for all Φ ∈ Υρ,S ,

‖h‖2,ν ≤ η1 =⇒ M(Φ + h; ν|Φ) ≥ c4ν‖h‖
2+2ε(‖h‖2,ν)
2,ν , (18)

with, for any u ∈ (0, 1/e),

ε(u) = b

log log 1
u

,

and such that for any t1 ∈ Rd1 and any t2 ∈ Rd2 ,

‖h‖2,ν ≤ η2 =⇒ ‖h(·, 0)‖2
2,ν ≤ ‖h‖2−2ε(‖h‖2,ν)

2,ν

and ‖h(0, ·)‖2
2,ν ≤ ‖h‖2−2ε(‖h‖2,ν)

2,ν . (19)

We now fix η = η1 ∧ η2. Let Zn be the random process defined, for all t =
(t1, t2) ∈ Rd1 × Rd2 , by

Zn(t) =
√
n
(
φ̃n(t) − Φ(t)Φε(1)(t1)Φε(2)(t2)

)
Using explicit computation, straightforward upper bounds and (19) we easily
get that there exists a constant C that depends only on νest, ρ and S such that
if h ∈ Υρ,S is such that ‖h‖2,νest ≤ η, then

|(Mn(Φ + h) −M(Φ + h, νest|Φ)) − (Mn(Φ) −M(Φ, νest|Φ))|
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≤ C

[
‖Zn‖∞,νest√

n
+ ‖Zn‖2

∞,νest
n

]
·
[
‖h‖1−ε(‖h‖2,νest )

2,νest
+ ‖h‖2−2ε(‖h‖2,νest )

2,νest

]
≤ 6C ‖Zn‖∞,νest√

n
· ‖h‖1−ε(‖h‖2,νest )

2,νest
(20)

since ‖Zn‖∞,νest ≤ 2
√
n and ‖h‖2,νest ≤ 1. Let now ĥ = φ̂n − Φ. By using that

Mn(Φ + ĥ) ≤ Mn(Φ) + 1
n , M(Φ, νest|Φ) = 0 and (20), we easily get

M
(
Φ + ĥ, νest|Φ

)
≤ 1

n
+ 3C ‖Zn‖∞,νest√

n
· ‖h‖1−ε(‖h‖2,νest )

2,νest
.

But for any ν ≤ νest, M(·, ν|Φ) ≤ M(·, νest|Φ), so that using now (18) we get
that for some constant C that depends only on ν, νest, ρ and S, as soon as
‖ĥ‖2,νest ≤ η,

‖ĥ‖2+2ε(‖ĥ‖2,ν)
2,ν ≤ C

n
+ C

‖Zn‖∞,νest√
n

· ‖ĥ‖1−ε(‖ĥ‖2,νest )
2,νest

≤ 2C
(

1
n
∨ ‖Zn‖∞,νest√

n
· ‖ĥ‖1−ε(‖ĥ‖2,νest )

2,νest

)
. (21)

In the case ‖Zn‖∞,νest√
n

· ‖ĥ‖1−ε(‖ĥ‖2,νest )
2,νest

≤ 1
n , Proposition 1 is proven.

Otherwise, we relate ‖ĥ‖2,ν to ‖ĥ‖2,νest . Using Lemma H.3 of [8] and following
Section A.3 of [7] we get that there exists a constant D that depends only on
ν, νest and S, for all h ∈ Υρ,S , for all integer m ≥ ρd,

‖h‖2,νest ≤ Dmm−m/ρ+3d/2 + Dmmd/2‖h‖2,ν .

By choosing m = ρ log(1/‖h‖2,ν)
log log(1/‖h‖2,ν) we get that for some constant C that depends

only on ν, νest, ρ and S, for all h ∈ Υρ,S small enough,

‖h‖2,νest ≤ C‖h‖1−ε̃(‖h‖2,ν)
2,ν

where ε̃(u) = log log log 1
u

log log 1
u

, which implies that ε(‖h‖2,νest) ≤ 2ε(‖h‖2,ν) for small
enough ‖h‖2,ν . Then using (21) we finally get, for some constant C that depends
only on ν, νest, ρ and S, that as soon as ĥ is small enough,

‖ĥ‖1+4ε(‖ĥ‖2,ν)+ε̃(‖ĥ‖2,ν)(1−2ε(‖ĥ‖2,ν))
2,ν ≤ C

‖Zn‖∞,νest√
n

. (22)

The end of the proof follows from the fact that φ̂n is uniformly consistent
in L2([−ν, ν]d), see [7] Appendix A.1, and the following deviation inequality
which is proved in Appendix G of [8]. There exist a numerical constant c and a
constant C that depends only on d, νest and E(‖Y1‖2) such that for all n ≥ 1
and x > 0, with probability at least 1 − 4e−x,

‖Zn‖∞,νest ≤ C + c
√
x + c

x√
n
. (23)

Proposition 1 easily follows from the uniform consistency of φ̂n, (22) and (23).
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7.2. Proof of Lemma 1

To begin with, for any z0 ∈ C and z ∈ Cd−1,

E
[
exp

(
iz0X̃

(1) + izT X̃(2)
)]

= E
[
E

[
exp

(
iz0X̃

(1)
)
|X̃(2)

]
exp

(
izT X̃(2)

)]
,

and usual arguments for multivariate analytic functions on Cd−1 prove that
z �→ E

[
exp

(
iz0X̃

(1) + izT X̃(2)
)]

is the null function if and only if E
[
exp

(
iz0

X̃(1)
)
|X̃(2)

]
is zero P

X̃(2) -a.s. In the same way, for any z0 ∈ Cd−1, z �→ E
[
exp(

izX̃(1) + izT0 X̃
(2)

) ]
is the null function if and only if E

[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
is zero P

X̃(1) -a.s. Also, the value of the center C� can only change the function
E

[
exp

(
zT (X̃(1), X̃(2))

)]
, z ∈ Cd, by a factor exp(zTC�) which is non zero, so

that we may assume C� = 0 to prove Lemma 1.
In the following, we write for all u ∈ (0, 1), S̃(1)(u) = cos(2πu) and for all

u ∈ (0, 1)d−1,

S̃(2)(u) =

⎛⎜⎜⎜⎜⎜⎝
sin(2πu(1)) cos(πu(2))

sin(2πu(1)) sin(πu(2)) cos(πu(3))
...

sin(2πu(1)) sin(πu(2)) · · · sin(πu(d−2)) cos(πu(d−1))
sin(2πu(1)) sin(πu(2)) · · · sin(πu(d−2)) sin(πu(d−1))

⎞⎟⎟⎟⎟⎟⎠ .

We first prove that for any z0 ∈ C, E
[
exp

(
iz0X̃

(1)
)
|X̃(2)

]
is not P

X̃(2) -a.s.
zero.

Since f� is not identically zero, there exists a closed interval [α, β] subset
of one of the four following intervals: (0, 1

4 ), (1
4 ,

1
2 ), (1

2 ,
3
4 ), (3

4 , 1), a vector a =
(a(i))1≤i≤d−1 ∈ (α, β) × (0, 1)d−2 (if d = 2, a is a real number in (α, β)) and
ζ > 0 such that if we define

I1 = {u = (u(i))i∈{1,...,d−1} ∈ (α, β) × (0, 1)d−2 :
∥∥∥S̃(2)(u) − S̃(2)(a)

∥∥∥2

2
< ζ2},

then the restriction of f� to I1, f�|I1 , is not the null function.
We choose ζ small enough such that, if we define A ⊂ (−1, 1)d−1 as A =

S̃(2)(I1), we have that there exists I2 ⊂ (0, 1)d−1 such that I1 ∩ I2 = ∅ and
(S̃(2))−1(A) = I1 ∪ I2.

We define, for i, j ∈ {1, 2}, the C1 diffeomorphisms ηi,j : Ii −→ Ij , u �→
(S(2))−1(S(2)(u)), such that ηi,i = Id|Ii and ηi,j ◦ ηj,i = Id|Ii .

Note that we can explicitly calculate ηi,j(x) for the different possible inclu-
sions of [α, β]:

1. for [α, β] ⊂ (0, 1
4 ) or [α, β] ⊂ (1

4 ,
1
2 ), we have η1,2(u(1), u(2), . . . , u(d−1)) =

(1
2 − u(1), u(2), . . . , u(d−1)),
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2. and for [α, β]⊂(1
2 ,

3
4 ) or [α, β]⊂(3

4 , 1), we have η1,2(u(1), u(2), . . . , u(d−1)) =
(3
2 − u(1), u(2), . . . , u(d−1)).

We now compute E[exp(iz0X̃
(1))|X̃(2)]1

X̃(2)∈A
. For any measurable bounded

function ω on (−R�, R�)d−1, we have

E[exp(iz0X̃
(1))ω(X̃(2))1

X̃(2)∈A
]

=
∫

(S̃(2))−1(A)
ω(R�S̃(2)(u)) exp(iz0R

� cos(2πu(1)))f�(u)du

=
∫
I1

ω(R�S̃(2)(u)) exp(iz0R
� cos(2πu(1)))f�(u)du

+
∫
I2

ω(R�S̃(2)(u)) exp(iz0R
� cos(2πu(1)))f�(u)du.

Define the change of variables u = η1,2(v) in the second integral. Using the
explicit definition of η1,2 which is differentiable with Jacobian equal to 1 we get

E[exp(iz0X̃
(1))ω(X̃(2))1

X̃(2)∈A
]

=
∫
I1

ω(R�S̃(2)(u))
(

exp(iR�z0 cos(2πu(1)))f�(u)

+ exp(iR�z0 cos(2πη1,2(u)(1)))f�(η1,2(u))
)
du

=
∫
I1

ω(R�S̃(2)(u)) f�(u)
f�(u) + f�(η1,2(u))

(
exp(iR�z0 cos(2πu(1)))f�(u)

+ exp(iR�z0 cos(2πη1,2(u)(1)))f�(η1,2(u))
)
du

+
∫
I1

ω(R�S̃(2)(u)) f�(η1,2(u))
f�(u) + f�(η1,2(u))

(
exp(iR�z0 cos(2πu(1)))f�(u)

+ exp(iR�z0 cos(2πη1,2(u)(1)))f�(η1,2(u))
)
du.

Thus if we define ν1 : A −→ I1 such that for all u ∈ I1, ν1(S̃(2)(u)) = u, and
ν2 : A −→ I2 such that for all u ∈ I2, ν2(S̃(2)(u)) = u, we get

E
[
exp(iz0X̃

(1))|X̃(2)
]
1
X̃(2)∈A

= 1
f�(ν1(X̃(2))) + f�(ν2(X̃(2)))

(
exp(iR�z0 cos(2πν1(X̃(2)))(1))f�(ν1(X̃(2)))
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+ exp(−iR�z0 cos(2πν2(X̃(2)))(1))f�(ν2(X̃(2)))
)

1
X̃(2)∈A

.

Finally, E
[
exp(iz0X̃

(1))|X̃(2)
]
1
X̃(2)∈A

is null P
X̃(2)-a.s if and only if for f�du

almost all u ∈ I1,

exp(iR�z0 cos(2πu(1)))f�(u) + exp(iR�z0 cos(2πη1,2(u)(1)))f�(η1,2(u)) = 0,

that is for f�du almost all u ∈ I1,

exp
(
iR�z0

(
cos(2πu(1)) − cos(2πη1,2(u)(1))

))
= −f�(η1,2(u))

f�(u) .

Since for almost all u ∈ I1, f�(u) �= 0, this would imply in particular that for
almost all u ∈ I1

R�Re(z0)
(
cos(2πu(1)) − cos(2πη1,2(u)(1))

)
= π [mod2π], (24)

which gives a contradiction.
Now, let us prove that for any z0 ∈ Cd−1, E

[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
is not

P
X̃(1) -a.s. zero.
Let us first assume d > 2, since f� is not identically zero, there exists a closed

interval [α, β] in one of the four following intervals: (0, 1
4 ), (1

4 ,
1
2 ), (1

2 ,
3
4 ), (3

4 , 1),
such that f |(α,β)×(0,1)d−2 is not the null function.

Define J1 = (α, β), B = S̃(1)(J1), and J2 such that J2 ∩ J1 = ∅ and
(S̃(1))−1(B) = J1 ∪ J2. We define the C1 diffeomorphism σ1,2 : J1 −→ J2,
u �→ (S̃(1))−1(S̃(1)(u)), such that σ1,1 = Id|I1 and σ1,2 ◦ σ2,1 = Id|I1 . Note that
we can explicitly calculate σ1,2(u), indeed, for u ∈ J1, we have σ1,2(u) = 1 − u.
The reason of choosing J1 in one of these four intervals is to have the decom-
position of (S̃(1))−1(B) in exactly 2 disjoint open sets on which S̃(1) is one to
one.

For any bounded and measurable function ω on (−R�, R�), we have

E
[
exp

(
izT0 X̃

(2)
)
ω(X̃(1))1

X̃(1)∈B

]
=

∫
J1×(0,1)d−2

ω(R� cos(2πu(1))) exp(iR�zᵀ0 S̃
(2)(u))f�(u)du

+
∫
J2×(0,1)d−2

ω(R� cos(2πu(1))) exp(iR�zᵀ0 S̃
(2)(u))f�(u)du.

Define the following change of variables for the second integral, u = σ(v) =
(σ1,2 ⊗ Id(0,1)d−2)(v), which has Jacobien equal to 1. Then

E
[
exp

(
izT0 X̃

(2)
)
ω(X̃(1))1

X̃(1)∈B

]
=

∫
J1×(0,1)d−2

ω(R� cos(2πu(1)))
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exp(iR�zᵀ0 S̃

(2)(u))f�(u) + exp(iR�zᵀ0 S̃
(2)(σ(u)))f�(σ(u))

)
du

=
∫
J1×(0,1)d−2

ω(R� cos(2πu(1))) f�(u)
f�(u) + f�(σ(u))(

exp(iR�zᵀ0 S̃
(2)(u))f�(u) + exp(iR�zᵀ0 S̃

(2)(σ(u)))f�(σ(u))
)
du

+
∫
J1×(0,1)d−2

ω(R� cos(2πu(1))) f�(σ(u))
f�(u) + f�(σ(u))(

exp(iR�zᵀ0 S̃
(2)(u))f�(u) + exp(iR�zᵀ0 S̃

(2)(σ(u)))f�(σ(u))
)
du.

We now define τ1 : B −→ J1 such that for all u ∈ J1, τ1(S̃(1)(u)) = u, and
τ2 : B −→ J2 such that for all u ∈ J2, τ2(S̃(1)(u)) = u.

Since we assume (H2), when d > 2, we can choose J1 = (0, ζ0) with ζ0 ≤ ζ�

and ζ0 < 1
4 .

E
[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
1
X̃(1)∈B

=
(∫

(0,1)d−2

1
f�(τ1( X̃

(1)

R� ), u) + f�(τ2( X̃
(1)

R� ), u)

[
exp(iR�zᵀ0 S̃

(2)(τ1(
X̃(1)

R�
), u))

f�(τ1(
X̃(1)

R�
), u)+ exp(−iR�zᵀ0 S̃

(2)(τ2(
X̃(1)

R�
), u))f�(τ2(

X̃(1)

R�
), u)

]
du

)
1
X̃(1)∈B

and E
[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
1
X̃(1)∈B

is null P
X̃(1) -a.s. if and only if for all u ∈

J1,∫
(0,1)d−2

exp(iR�zᵀ0 S̃
(2)(u, v))f�(u, v) + exp(iR�zᵀ0 S̃

(2)(1 − u, v))f�(1 − u, v)
f�(u, v) + f�(1 − u, v) dv

= 0.

In particular, this implies that for all u ∈ J1,

∫
(0,1)d−2

cos(Re(z0)ᵀS̃(2)(u, v))
f�(u, v) + f�(1 − u, v)

(
f�(u, v) exp(−R�Im(z0)ᵀS̃(2)(u, v))

+ f�(1 − u, v) exp(R�Im(z0)ᵀS̃(2)(u, v))
)
dv = 0.

But for small enough u ∈ J1, cos(Re(z0)ᵀS̃(2)(u, v)) stays positive for all v ∈
(0, 1)d−2 which gives a contradiction.



640 J. Capitao-Miniconi and E. Gassiat

When d = 2, applying an analogous reasoning, we get for any bounded and
measurable function ω on (−R�, R�), we have

E
[
exp

(
izT0 X̃

(2)
)
ω(X̃(1))1

X̃(1)∈B

]
=

∫
J1

ω(R� cos(2πu)) exp(iR�zᵀ0 S̃
(2)(u))f�(u)du

+
∫
J2

ω(R� cos(2πu)) exp(iR�zᵀ0 S̃
(2)(u))f�(u)du.

Define the following change of variables for the second integral, u = σ(v) =
σ1,2(v), which has Jacobien equal to 1. Then

E
[
exp

(
izT0 X̃

(2)
)
ω(X̃(1))1

X̃(1)∈B

]
=

∫
J1

ω(R� cos(2πu))(
exp(iR�zᵀ0 S̃

(2)(u))f�(u) + exp(iR�zᵀ0 S̃
(2)(σ(u)))f�(σ(u))

)
du

=
∫
J1

ω(R� cos(2πu)) f�(u)
f�(u) + f�(σ(u))(

exp(iR�zᵀ0 S̃
(2)(u))f�(u) + exp(iR�zᵀ0 S̃

(2)(σ(u)))f�(σ(u))
)
du

+
∫
J1

ω(R� cos(2πu)) f�(σ(u))
f�(u) + f�(σ(u))(

exp(iR�zᵀ0 S̃
(2)(u))f�(u) + exp(iR�zᵀ0 S̃

(2)(σ(u)))f�(σ(u))
)
du.

We now define τ1 : B −→ J1 such that for all u ∈ J1, τ1(S̃(1)(u)) = u, and
τ2 : B −→ J2 such that for all u ∈ J2, τ2(S̃(1)(u)) = u.

E
[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
1
X̃(1)∈B

= 1
f�(τ1( X̃

(1)

R� )) + f�(τ2( X̃
(1)

R� ))

(
exp(iR�zᵀ0 S̃

(2)(τ1(
X̃(1)

R�
)))f�(τ1(

X̃(1)

R�
))

+ exp(−iR�zᵀ0 S̃
(2)(τ2(

X̃(1)

R�
)))f�(τ2(

X̃(1)

R�
))
)

1
X̃(1)∈B

and E
[
exp

(
izT0 X̃

(2)
)
|X̃(1)

]
can not be null P

X̃(1) -a.s. since it would require
that for almost all u ∈ J1,

exp(iR�zᵀ0 S̃
(2)(u))f�(u) + exp(iR�zᵀ0 S̃

(2)(1 − u))f�(1 − u) = 0.
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7.3. Proof of Proposition 2

For f, f� ∈ F and R,R� ∈ [Rmin, Rmax], denote θ = (f,R), θ� = (f�, R�), and

define the distance d by d(θ, θ�) =
(∫

(0,1)d−1(f(u) − f�(u))2du
)1/2

+ |R−R�|.
First, using Lemma A.1 in [7] we get

sup
θ∈F×[Rmin,Rmax]

|Mn(θ) −M(θ)| = oPC�,R�,f�,Q� (1). (25)

Then, using the continuity of M with respect to the distance d and the compacity
of F × [Rmin, Rmax], using Theorem 2 we get that for any δ > 0,

inf
θ∈F×[Rmin,Rmax], d(θ,θ�)>δ

M(θ) > M(θ�) = 0. (26)

Consistency of f̂ and R̂ follows from (25), (26) and Theorem 5.7 in [18]. Consis-
tency of Ĉ is then a consequence of the continuity theorem and the law of large
numbers.

7.4. Proof of Proposition 3

The functions Ψf,R on R2 can be written as functions Φf,R on [0,+∞[×[0, 1)
using polar representation. For any r ≥ 0 and θ ∈ [0, 1), define

Φf,R(r, θ) = Ψf,R(r cos(2πθ), r sin(2πθ)).

For all r ≥ 0, let (λp(r))p∈Z be the sequence of Fourier coefficients of Φf,R(r, ·),

λp(r) =
∫ 1

0
Φf,R(r, u)e2iπpudu, p ∈ Z.

Using (III) in Section 8, we get that for all r ≥ 0,

Φf,R(r, θ) =
∫ 1

0
f(u)exp(irR cos(2πu− 2πθ))du

=
∑
p∈Z

ipJp(rR)(
∫ 1

0
f(u)e2iπupdu)e−2iπpθ

=
∑
p∈Z

ipfpJp(rR)e−2iπpθ,

so that for all p ∈ Z,
λp(r) = ipJp(rR)fp,

and also
λ�
p(r) = ipJp(rR�)f�

p , λ̂p(r) = ipJp(rR̂)f̂p,
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where (f�
p )p∈Z (resp. (f̂p)p∈Z) are the Fourier coefficients of f� (resp. f̂) and

(λ̂p(r))p∈Z are the Fourier coefficients of Φf̂ ,R̂(r, .). We have, using Parseval’s
identity,∫ 1

0
|Φf�,R�(r, θ) − Φf̂ ,R̂(r, θ)|2dθ =

∑
k∈Z

|λ�
k(r) − λ̂k(r)|2

=
∑
k∈Z

|f�
kJk(rR�) − f̂kJk(rR̂)|2

≥
∑

|k|≤N

|f�
kJk(rR�) − f̂kJk(rR̂)|2.

We use the fact that |a− b|2 ≥ |a|2
2 − |b|2 for all a, b ∈ C, to get

∫ 1

0
|Φf�,R�(r, θ) − Φf̂ ,R̂(r, θ)|2dθ ≥

∑
|k|≤N

|f�
k − f̂k|2

2 Jk(rR̂)2

−
∑

|k|≤N

|f�
k |2|Jk(rR�) − Jk(rR̂)|2,

so that

∑
|k|≤N

|f�
k − f̂k|2Jk(rR̂)2 ≤ 2

∫ 1

0
|Φf�,R�(r, θ) − Φf̂ ,R̂(r, θ)|2dθ

+ 2
∑

|k|≤N

|f�
k |2|Jk(rR�) − Jk(rR̂)|2.

Then, for all ν ∈ (0, νest] such that c�ν > 0, we integrate from 0 to ν and we use
(IV) in Section 8 to obtain

∑
|k|≤N

|f�
k − f̂k|2

∫ ν

0
rJk(rR̂)2dr ≤ 2||Ψf�,R� − Ψf̂ ,R̂||

2
L2(D2(0,ν))

+ 2
∑

|k|≤N

|f�
k |2|R� − R̂|2

∫ ν

0
r3dr.

Using corollary 1, Theorem 3 and the fact that
∑

|k|≤N |f�
k |2 ≤

∫ 1
0 (f�(u))2du

is uniformly upper bounded in the compact set F , we have that there exists a
constant c > 0 depending on δ, ν, c�ν , d, R�, Rmin, Rmax, and E(‖Y ‖2) such that
for all x ≥ 1 and for c1 and c2 coming from Proposition 1, for all n ≥ (1∨xc1)/c2,
with probability at least 1 − e−x,∑

|k|≤N

|f�
k − f̂k|2

∫ ν

0
rJk(rR̂)2dr ≤ c

(
x

n1−δ
∨ x2

n2−2δ

)
.
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Using lemma 4, we finally have that with probability at least 1 − e−x,∑
|k|≤N

|f�
k − f̂k|2 ≤ c

32
9ν2 (νR̂)−2N (N + 1)22N (N !)2

(
x

n1−δ
∨ x2

n2−2δ

)
.

We finally use R̂ ∈ [Rmin, Rmax] to end the proof.

7.5. Proof of Lemma 2

The proof of (1) follows from the same arguments as in the proof of Proposi-
tion 2.

For all (t1, t2) ∈ R× Rd−1, define

mn,R(t1, t2) = Ψf�,R(t1, t2)ψ̃n(t1, 0)ψ̃n(0, t2)− ψ̃n(t1, t2)Ψf�,R(t1, 0)Ψf�,R(0, t2)

and

mR(t1, t2) = Ψf�,R(t1, t2)Ψf�,R�(t1, 0)Ψf�,R�(0, t2)
− Ψf�,R�(t1, t2)Ψf�,R(t1, 0)Ψf�,R(0, t2),

such that Mn(R) =
∫
Bνest×Bd−1

νest
|mn,R(t1, t2)|2dt1dt2 and

M(R) =
∫
Bν×Bd−1

ν
|mR(t1, t2)|2|Φε(t1, t2)|2dt1dt2.

Let us prove (2). Differentiation of Mn gives

M ′
n(R) =

∫
Bνest×Bd−1

νest

(
d

dR
{mn,R(t1, t2)}mn,R(t1, t2)

+ d

dR
{mn,R(t1, t2)}mn,R(t1, t2)

)
dt1dt2,

where z denotes the complex conjugate of z. Since mn,R(t1, t2) = mn,R(−t1,−t2)
we get

M ′
n(R) =

∫
Bνest×Bd−1

νest

(
d

dR
{mn,R(t1, t2)}mn,R(−t1,−t2)

+ d

dR
{mn,R(−t1,−t2)}mn,R(t1, t2)

)
dt1dt2.

Let Zn be the random process defined for (t1, t2) ∈ R× Rd−1 by

Zn(t1, t2) =
√
n
(
ψ̃n(t1, t2) − Ψf�,R�,(t1, t2)Φε(t1, t2)

)
. (27)

The random process Zn converges weakly to a Gaussian process (Z(t1, t2))(t1,t2)
in the set of complex continuous functions endowed with the uniform norm.
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Using (27), ψ̃n(t1, t2) = 1√
n
Zn(t1, t2) + Ψf�,R�(t1, t2)Φε(t1, t2), so that

√
nM ′

n(R�)

=
∫
Bνest×Bd−1

νest

C(t1, t2)

×
{
Ψf�,R�(−t1,−t2)

[
Zn(−t1, 0)Ψf�,R�(0,−t2)+Zn(0,−t2)Ψf�,R�(−t1, 0)

]

− Zn(−t1,−t2)Ψf�,R�(−t1, 0)Ψf�,R�(0,−t2)
}
dt1dt2

+
∫
Bνest×Bd−1

νest

C(−t1,−t2)

×
{

Ψf�,R�(t1, t2)
[
Zn(t1, 0)Ψf�,R�(0, t2) + Zn(0, t2)Ψf�,R�(t1, 0)

]

− Zn(t1, t2)Ψf�,R�(t1, 0)Ψf�,R�(0, t2)
}
dt1dt2 + OP(

1√
n

)

where all OP (and later oP) are in PC�,R�,f�,Q� probability and C(t1, t2) is defined
by

C(t1, t2) = Φε(t1, t2)
d

dR
mR�(t1, t2).

Now, the empirical process Zn converges uniformly in distribution to a Gaussian
process over the set of functions {Id, exp(itT ·), |t| ≤ νest}, so that

√
n
( 1
n

∑n
i=1

Yi − E(Y1),M ′
n(R�)

)
converges in distribution to N (0, V ) as n goes to infinity

for V the covariance matrix of the random vector.
Let us now prove (3). Twice differentiation of M gives

M ′′(R) =
∫
Bν×Bd−1

ν

|Φε(t1, t2)|2
(

d2

dR2mR(t1, t2)mR(−t1,−t2)+2 d

dR
mR(t1, t2)

d

dR
mR(−t1,−t2) + d2

dR2mR(−t1,−t2)mR(t1, t2)
)
dt1dt2.

But mR�(t1, t2) = 0 for all (t1, t2), so that

M ′′(R�) = 2
∫
Bν×Bd−1

ν

∣∣∣∣ d

dR
mR�(t1, t2)

∣∣∣∣2 |Φε(t1, t2)|2dt1dt2.

We shall prove M ′′(R�) �= 0 by contradiction.
If it is not the case, we have, for almost all (t1, t2) ∈ Bν ×Bd−1

ν ,
d
dRmR�(t1, t2)Φε(t1, t2) = 0. Now, there exists rε ∈ (0, ν) such that for all

(t1, t2) ∈ Brε × Bd−1
rε , Φε(t1, t2) �= 0. Since d

dRmR� is a continuous function on
Cd we get d

dRmR�(t1, t2) = 0 for all (t1, t2) ∈ Brε ×Bd−1
rε , that is
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d

dR
Ψf�,R�(t1, t2)Ψf�,R�(t1, 0)Ψf�,R�(0, t2)

= Ψf�,R�(t1, t2)
d

dR
Ψf�,R�(t1, 0)Ψf�,R�(0, t2)

+ Ψf�,R�(t1, t2)Ψf�,R�(t1, 0) d

dR
Ψf�,R�(0, t2), (28)

with
Ψf�,R�(t1, t2) =

∫
(0,1)d−1

f�(u) exp(iR�tᵀS(u))du

and
d

dR
Ψf�,R�(t1, t2) = i

∫
(0,1)d−1

[tᵀS(u)]f�(u)eiR
�tᵀS(u)du.

But Ψf�,R� and d
dRΨf�,R� are multivariate analytic functions, so that, using

Lemma C.1 in [8], we have that (28) holds for all (t1, t2) ∈ C×Cd−1. We shall now
investigate the set of zeros of the functions Ψf�,R�(·, 0) and d

dRΨf�,R�(·, 0). Let
t1 ∈ C be such that Ψf�,R�(t1, 0) = 0. Then by Lemma 1 it is possible to choose
t2 ∈ Cd−1 such that Ψf�,R�(t1, t2) �= 0, and also such that Ψf�,R�(0, t2) �= 0
since Ψf�,R�(0, ·) is a multivariate analytic function having only isolated zeros.
Equation (28) then leads to d

dRΨf�,R�(t1, 0) = 0 so that the set of zeros of the
function Ψf�,R�(·, 0) is a subset of that of the function d

dRΨf�,R�(·, 0). Then,
using Hadamard’s factorization theorem (see [17] Chapter 4, Theorem 4.1), and
the fact that Ψf�,R�(·, 0) and d

dRΨf�,R�(·, 0) have exponential growth order 1,
we get that there exists an entire function G of exponential growth order 1 such
that for any t1 ∈ C,

d

dR
Ψf�,R�(t1, 0) = Ψf�,R�(t1, 0)G(t1).

Plugging into (28) we get that for all (t1, t2) ∈ C× Cd−1,

d

dR
Ψf�,R�(t1, t2)Ψf�,R�(0, t2) = Ψf�,R�(t1, t2)G(t1)Ψf�,R�(0, t2)

+ Ψf�,R�(t1, t2)
d

dR
Ψf�,R�(0, t2).

The same arguments applied for each coordinate of t2 gives that there exists a
multivariate anlytic function H such that for any t2 ∈ Cd−1,

d

dR
Ψf�,R�(0, t2) = Ψf�,R�(0, t2)H(t2),

so that for all (t1, t2) ∈ C× Cd−1,

d

dR
Ψf�,R�(t1, t2) = Ψf�,R�(t1, t2) (G(t1) + H(t2)) . (29)

But for any t ∈ Cd,
d

dR
Ψf�,R�(t) = 1

R

d

du
Ψf�,R�(ut), u ∈ R
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so that solving the derivative equation (29) we find that Ψf�,R�(t1, t2) is a prod-
uct of a function of t1 only by a function of t2 only, meaning that S(1)(U) and
S(2)(U) are independent variables, which is not true and we get a contradiction.
We conclude that M ′′(R�) �= 0.

To end the proof of (3), for all R ∈ [0,+∞[,

M ′′
n (R) −M ′′

n (R�) =
∫
Bνest×Bd−1

νest

|ψ̃n(t1, t2)|2[a1(t1, t2, R) − a1(t1, t2, R�)]dt1dt2

+
∫
Bνest×Bd−1

νest

|ψ̃n(t1, 0)|2|ψ̃n(0, t2)|2[a2(t1, t2, R) − a2(t1, t2, R�)]dt1dt2

+ Re
{∫

Bνest×Bd−1
νest

ψ̃n(−t1, t2)ψ̃n(t1, 0)ψ̃n(0, t2)[a3(t1, t2, R)

− a3(t1, t2, R�)]dt1, dt2

}
,

for functions a1, a2 and a3 functions that are, for all (t1, t2), continuous in the
variable R and uniformly upper bounded for bounded R. Since for all (t1, t2),
|ψ̃n(t1, t2)| ≤ 1, we get that |M ′′

n (R) −M ′′
n (R�)| is upper bounded by∫

Bνest×Bd−1
νest

(|a1(t1, t2, R) − a1(t1, t2, R�)| + |a2(t1, t2, R) − a2(t1, t2, R�)|

+ |a3(t1, t2, R) − a3(t1, t2, R�)|)dt1dt2

from which, applying the continuity theorem, we deduce that M ′′
n (Rn)−M ′′

n (R�)
converges in probability to 0 whenever Rn is a random variable converging in
probability to R�. Then, for any random variable Rn ∈ [Rmin, Rmax] converging
in probability to R�, M ′′

n (Rn) converges in probability to M ′′(R�).

7.6. Proof of Theorem 6

Using Taylor expansion of M ′
n near R�, there exists Rn ∈ (R̃, R�) such that

M ′
n(R̃) = M ′

n(R�) + (Rn −R�)M ′′
n (Rn).

Using M ′
n(R̃) = 0 and Lemma 2 we get M ′′

n (Rn) = M ′′(R�) + oP(1), so that

√
n(R̃−R�) = −

√
n
M ′

n(R�)
M ′′(R�) (1 + oP(1)).

We deduce that

√
n

(
R̃−R�

C̃ − C�

)
=
(

0√
n( 1

n

∑n
l=1 Yl−E[Y1])

)
−
(

1
−E[S(U)]

) √
nM ′

n(R�)
M ′′(R�) (1+oP(1))

and the conclusion follows.
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8. Results on Bessel functions

Denote Jα the Bessel function of order α ∈ [0,+∞[.
We shall use the following results that can be found in [20].

(I) The Bessel function of order α ∈ [0,+∞[ can be represented as

Jα(z) =
∞∑

m=0
(−1)m (z/2)α+2m

m!Γ(α + m + 1) , z ∈ C,

where for all z ∈]0,+∞[, Γ(z) =
∫ +∞
−∞ tz−1e−tdt.

(II) For k ≥ 0 and z ∈ C

J−k(z) = (−1)kJk(z).

(III) For z ∈ C and θ ∈ R

exp(iz cos(θ)) =
∑
k∈Z

ikJk(z)eikθ.

(IV) For k ≥ 0 and x, y > 0

|Jk(x) − Jk(y)| ≤ |x− y|.

Indeed, since, Jk ∈ C1(0,+∞), for k > 0, J ′
k(z) = 1

2 (Jk−1(z) − Jk+1(z)),
J ′

0(z) = −J1(z) and |Jk(x)| ≤ 1.
(V) For α ≥ 1 and x > 0

Jα+1(x) = 2α
x
Jα(x) − Jα−1(x).

We prove lemmas giving useful lower bounds.

Lemma 3. For all 0 ≤ x < 1, for all α ∈ [0,+∞[, we have

Jα(x) ≥ xα

2αΓ(α + 1)(1 − x2

4(α + 1)).

Proof. Let 0 ≤ x < 1, for α ≥ 0, we have Jα(x) =
∑∞

m=0(−1)m (x/2)α+2m

m!Γ(α+m+1) , so,
if we expand the sum using that Γ(x + 1) = xΓ(x) for x > 0:

Jα(x) = xα

2αΓ(α + 1)(1 − x2

4(α + 1) +
∞∑

m≥2
(−1)m (x/2)2m

m!(α + 1) · · · (α + m) ).

Since 0 ≤ x < 1, we have
∑∞

m=2(−1)m (x/2)2m
m!(α+1)···(α+m) ≥ 0 thus,

Jk(x) ≥ xα

2αΓ(α + 1)(1 − x2

4(α + 1)).
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Lemma 4. For all R > 0 and 0 < ν < 1/R, for all 0 ≤ k ≤ N , we have:∫ ν

0
rJk(rR)2dr ≥ 9ν2

32
(νR)2N

(N + 1)22N (N !)2 .

Proof. Let R > 0 and 0 ≤ r ≤ ν < 1/R. For all k ≥ 0, since 0 ≤ rR < 1, we
have from lemma 3,

Jk(rR) ≥ (rR)k

2kk! (1 − (rR)2

4(k + 1)),

and

rJk(rR)2 ≥ r(rR)2k

22k(k!)2 (1 − (rR)2

4(k + 1))2.

Then, ∫ ν

0
rJk(rR)2dr ≥

∫ ν

0

r(rR)2k

22k(k!)2 (1 − (rR)2

4(k + 1))2dr

≥ R2N

(2N + 2)22N (N !)2 (1 − (νR)2

4 )2ν2N+2.

To conclude the proof, we use that ν < 1/R, so that (1 − (νR)2
4 )2 ≥ 9

16 , which
gives the result.
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