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Abstract

We present dimension-free convergence and discretization error bounds for the un-
adjusted Hamiltonian Monte Carlo algorithm applied to high-dimensional probability
distributions of mean-field type. These bounds require the discretization step to be
sufficiently small, but do not require strong convexity of either the unary or pairwise
potential terms present in the mean-field model. To handle high dimensionality, our
proof uses a particlewise coupling that is contractive in a complementary particlewise
metric.
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1 Introduction

Markov Chain Monte Carlo (MCMC) methods are used to sample from a target
probability distribution of the form µ(dx) ∝ exp(−U(x))dx. The simplest methods (e.g.,
Gibbs and random walk Metropolis) display random walk behavior which slow their
convergence to equilibrium. This slow convergence motivates the Hamiltonian Monte
Carlo (HMC) method, first established in [24], which offers the potential to converge
faster, particularly in high dimension [59, 37, 6, 21, 25].

The convergence properties of HMC have received increasing interest. Ergodicity
was proven in [65, 18, 66]. By drift/minorization conditions, geometric ergodicity was
demonstrated in [16, 51, 28]. In [13, 53, 20], the convergence behavior is analyzed for
a strongly convex potential U and explicit bounds on convergence rates are obtained
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Unadjusted HMC for mean-field models

using a synchronous coupling approach. In [13], contraction bounds were obtained for
more general potentials U by developing a coupling tailored to HMC. However, these
convergence bounds deteriorate in high dimension for mean-field models (see, in particu-
lar, (2.9) for the precise form of these contraction bounds for high-dimensional mean-field
models). Therefore, a new approach is needed to obtain convergence bounds for non-
strongly convex potentials of mean-field type that are dimension-free, i.e., independent
of the number of particles in the mean-field model.

Mean-field models play an important role in understanding statistical properties of
high-dimensional systems. This connection was introduced by Kac in [44] as propagation
of chaos and has been investigated amongst others in [56, 67, 57], for very recent related
work on second-order mean-field Langevin dynamics see [38, 39]. A key component in
Kac’s program was to establish bounds on relaxation times of many-body dynamical
systems that are dimension-free, see Section 1.4 of [58] for a fuller discussion.

The behavior of HMC in high-dimensional mean-field models is also relevant, at least
conceptually, to molecular dynamics (MD), see [4] and [35], or [48] for a mathematical
perspective. MD involves the time integration of high-dimensional Hamiltonian dynamics
often coupled to a heat or pressure bath [4, 35]. The corresponding process typically ad-
mits a stationary distribution. Time discretization introduces an error in the numerically
sampled stationary distribution. In general, one might hope that this discretization error
is dimension-free for ergodic averages of measurable functions (“observables”) that are
intensive (e.g., energy per particle) as opposed to extensive (e.g., total energy). A key
contribution of this paper is to demonstrate that this is indeed the case for particles with
weak mean-field interactions (see Theorem 3.12 and Remark 3.13).

In this paper, we consider high-dimensional mean-field models, where the potential
U : Rdn → R is a function of the form

U(x) =

n∑
i=1

(
V (xi) +

ε

n

n∑
j=1
j 6=i

W (xi − xj)
)
.

Here, V : Rd → R and W : Rd → R are twice differentiable functions, ε is a real constant
and x = (x1, . . . , xn) where xi ∈ Rd represents the position of the i-th particle. Usually, d
is a small fixed number that represents the dimension per particle, whereas the number n
of particles is large. We call the unary potential V the confinement potential per particle
and the pairwise potential W the interaction potential. While we focus on mean-field U
with pairwise interactions in this paper, our results can be readily extended to potentials
U with more general mean-field interactions (see Remark 2.5).

In its simplest form, every step of HMC uses the Hamiltonian dynamics
(qt(x, v), pt(x, v)) of the mean-field particle system with unit masses defined as the

solution to the ordinary differential equations

d

dt
qit = pit

d

dt
pit = −∇iU(qt) = −∇V (qit)−

ε

n

n∑
j=1
j 6=i

(
∇W (qit − q

j
t )−∇W (qjt − qit)

)
,

(1.1)

for i = 1, . . . , n with initial value (q0, p0) = (x, v). The transition step of the Markov chain
in Rdn corresponding to HMC is given by

X(x) = qT (x, ξ),

where the initial velocity ξ ∼ N (0, Idn) is sampled independently per HMC step, and the
integration time T > 0 is a fixed constant, determining the duration of the Hamiltonian
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Unadjusted HMC for mean-field models

dynamics per HMC step. The corresponding Markov chain is known as exact HMC
because it uses the exact Hamiltonian dynamics and therefore, leaves invariant the
target measure µ, cf. [15].

Generally, the choice of the duration T has a large impact on the performance per
HMC step. If T is too small, we obtain a highly correlated chain indicative of random walk
behavior. Whereas, if T is chosen too large, due to periodicities and near-periodicities,
qT (x, v) can realize U-turns even as the computational cost of the algorithm increases.
This issue was observed by Mackenzie in [52], and motivated duration randomization
[59, 18, 16] and the No-U-Turn sampler [42]. In contraction bounds for HMC, this issue
leads to conditions that limit the duration T of the Hamiltonian dynamics, e.g., for U
stronlgy convex LT 2 ≤ constant where L is the Lipschitz constant of ∇U [20]. As we
discuss more below, non-convexity of U leads to additional restrictions on the duration T .

Since the Hamiltonian dynamics cannot be simulated exactly in general, a numerical
version of these dynamics comes into play to approximate the exact dynamics, and
normally, the velocity Verlet algorithm is used, cf. [50, 15]. The numerical version
contains an additional parameter, the discretization step h > 0 satisfying T ∈ hZ. Note
that in the numerical version of HMC without adjusting the algorithm by an additional
acceptance-rejection step (see e.g. [59, 15]), the corresponding Markov chain does
not exactly preserve the target measure. This chain is called unadjusted HMC. In this
article we focus on unadjusted HMC because both from the viewpoint of theory and
practice the acceptance-rejection step in adjusted HMC may lead to difficulties in high
dimension. Indeed, in the product case (when ε = 0), a dimension-dependent time
step size (h ∝ n−1/4) is needed to ensure that the acceptance rate in adjusted HMC is
bounded away from zero as n ↑ ∞, cf. [6, 40]. Further, as far as we know only a local
contraction result for adjusted HMC is known (see Remark 3.4). We stress that both
adjusted and unadjusted HMC are implementable on a computer, whereas exact HMC is
not.

The main result of this paper gives dimension-free convergence bounds for unadjusted
HMC applied to mean-field models, i.e., bounds that are independent of the number of
particles in the mean-field model. Our proof is motivated by the coupling approach in
[13], but with a new ‘particlewise’ coupling and a complementary particlewise metric.
We now state a simplified version of our main result, which holds in the special case of
exact HMC where h = 0.

We assume that ∇V and ∇W are Lipschitz continuous with Lipschitz constants L and
L̃, respectively. Further, we assume that V is K-strongly convex outside a Euclidean ball
of radius R, but possibly non-convex inside this ball. Let π(x, dy) be the transition kernel
of exact HMC, and letW`1 denote the Kantorovich/L1-Wasserstein distance on Rdn based
on an `1-metric `1(x, y) =

∑n
i=1 |xi − yi|. Then for any two probability measures η and ν

on Rdn, we show that

W`1(ηπm, νπm) ≤Me−cmW`1(η, ν). (1.2)

Here, M = exp
(

5
2

(
1 + 4R

T

√
L+K
K

))
and the contraction rate c is of the form

c =
1

156
KT 2 exp

(
− 10

R

T

√
L+K

K

)
.

This bound holds provided the duration T and the interaction parameter ε are sufficiently
small, i.e.,

5

3
LT 2 ≤ min

(1

4
,

3K

10L
,

3K

256 · 5 · 26LR2(L+K)

)
, and
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|ε|L̃ < min
(K

6
,

1

2

( K

36 · 149

)2(
T + 8R

√
L+K

K

)2

exp
(
− 40

R

T

√
L+K

K

))
.

Note that both the contraction rate c and the conditions above are dimension-free, i.e.,
independent of the number n of particles. A restriction on the strength of interactions ε
cannot be avoided because for large values of ε multiple invariant measures and phase
transition phenomena can occur, which typically leads to an exponential deterioration in
the rate of convergence as the number of particles tends to infinity [60, 67, 69]. Roughly
speaking, the factor LR2 appearing in the condition on T measures the degree of non-
convexity of U and excludes the possibility of high energy barriers. To obtain this result,
we first show contraction for a modified Wasserstein distance that is based on a specially
designed particlewise metric ρ on Rdn, i.e.,Wρ(ηπ

m, νπm) ≤ e−cmWρ(η, ν), and by using
that ρ is equivalent to `1, we obtain (1.2). From this result we deduce a quantitative
bound for the number m of steps required to approximate the target measure µ up to
a given error ε̃, i.e., W`1(ηπm, µ) ≤ ε̃. This bound may depend logarithmically on the
number n of particles through the distance between the initial distribution and the target
measure. Finally, we show quantitative dimension-free bounds on the bias for ergodic
averages of intensive observables of the form f(x) = 1

n

∑
i f̂(xi).

For unadjusted HMC, we show the same contraction result provided the discretization
step h is chosen small enough and deduce that there exists a unique invariant measure µh
of unadjusted HMC. Since unadjusted HMC does not exactly preserve the target measure
µ, we prove thatW`1(µ, µh) = O(h2n) provided enough regularity for U is assumed, i.e.,
V and W are three times differentiable and have bounded third derivatives. If less
regularity is assumed, i.e., V and W are only twice differentiable, an O(hn) bound is
obtained. Invariant measure accuracy of numerical approximations for related second-
order measure preserving dynamics has been extensively investigated in the literature
[64, 54, 68, 55, 10, 14, 47, 1, 2], but according to our knowledge, it is new to obtain
bounds onWl1 with a precise dimension dependence (see Corollary 3.8). Durmus and
Eberle [26], using partially the same approach, generalize these results on invariant
measure accuracy to a broader class of both models and inexact (or unadjusted) MCMC
methods.

Other work on HMC in high dimension

The study of the behavior of HMC as dimensionality increases is carried out in other
settings, too. For example, in Bayesian inference problems with a large number of
observations where the posterior itself is not necessarily high-dimensional. In this
setting, sampling the posterior directly using HMC is computationally intractable, which
motivates stochastic gradient HMC [19], the zig-zag process [9] and the bouncy particle
sampler [23]. In [70], an ADMM-type splitting of the posterior in conjunction with a split
Gibbs sampler are proposed, and a dimension-free convergence rate for the split Gibbs
sampler is obtained.

Considering the truncation of infinite dimensional probability distributions having
a density with respect to a Gaussian reference measure leads to another class of high-
dimensional target measures, which arises for instance in path integral MD, cf. [45, 11,
62], and statistical inverse problems, cf. [22]. Dimension-free convergence bounds are
obtained for the Metropolis adjusted Langevin Algorithm [29] and for preconditioned
Crank Nicholson (pCN) [41]. Moreover, preconditioned HMC was introduced in [7].
The convergence of pHMC was analyzed under strong convexity using a synchronous
coupling [61], and by using a two-scale coupling, dimension-free convergence bounds are
obtained for semi-discrete pHMC applied to potential energies that are not necessarily
globally strongly convex [12].

Another standard approach to analyze convergence properties in high dimension is
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optimal scaling of MCMC, see [36, 63, 8, 25]. This theory of optimal scaling provides a
general way to tune the time step size in HMC [40, 6].

While our object of study is the simplest version of HMC applied to mean-field models,
there are other variants of HMC available including one that uses a general reversible
approximation of the Hamiltonian dynamics [34], HMC with partial randomization of
momentum [43, 3], preconditioned HMC using a position dependent mass matrix [37],
and adjusted HMC with delayed rejection [17].

Outline

The rest of the paper is organized as follows. In Section 2, we state the considered
framework before presenting our main results in Section 3. In Section 4, estimates used
to prove the main results are stated. Finally, Section 5 and Section 6 contain the proofs.

2 Preliminaries

We first give the definition of unadjusted HMC applied to mean-field models and state
assumptions for the mean-field model before constructing the particlewise coupling used
to obtain the contraction result in the next section.

2.1 Hamiltonian Monte Carlo Method

Consider a function U ∈ C2(Rdn) of the form

U(x) =

n∑
i=1

(
V (xi) +

ε

n

n∑
j=1
j 6=i

W (xi − xj)
)

(2.1)

such that
∫

exp(−U(x))dx < ∞ holds. Assuming all particles have unit masses, the
corresponding Hamiltonian is defined by H(x, v) = U(x) + 1

2 |v|
2 for x, v ∈ Rdn. The HMC

method is an MCMC method for sampling from a ‘target’ probability distribution

µ(dx) = Z−1 exp(−U(x))dx, (2.2)

on Rdn with normalizing constant Z =
∫

exp(−U(x))dx. In particular, the HMC method
generates a Markov chain on Rdn.

Since (1.1) is not exactly solvable, a discretized version is considered. Here, we
consider the velocity Verlet integrator with discretization step h > 0, cf. [15]. The
numerical solution produced by the velocity Verlet integrator is interpolated by the flow
(qt(x, v), pt(x, v)) of the ODE

d

dt
qit = pibtch −

h

2
∇iU(qbtch),

d

dt
pit = −1

2
(∇iU(qbtch) +∇iU(qdteh)) (2.3)

with initial condition (q0, p0) = (x, v) where

btch = max{s ∈ hZ : s ≤ t}, dteh = min{s ∈ hZ : s ≥ t},

and where ∇iU : Rdn → Rd is the gradient in the xi-th direction, i.e., ∂U
∂xi . The transition

step of unadjusted HMC is given by x 7→ Xh(x) where Xh(x) = qT (x, ξ), T/h ∈ Z for
h > 0 and ξ ∼ N (0, Idn) is a random variable, where N (0, Idn) denotes the centered
normal distribution on Rdn with covariance given by the dn × dn identity matrix. The
transition kernel of the Markov chain on Rdn induced by the unadjusted HMC algorithm
is denoted by πh(x,B) = P [Xh(x) ∈ B].

If h > 0 is fixed, we write the abbreviation btc and dte instead of btch and dteh and omit
the h dependence in Xh(x). For h = 0 we consider the solution (qt(x, ξ), pt(x, ξ)) of (1.1)
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and obtain exact HMC with transition step X(x) := X0(x) = qT (x, ξ) and transition
kernel π(x,B) := π0(x,B). As the Hamiltonian is not preserved by the numerical flow
with h > 0, unadjusted HMC does not preserve the target measure µ. Therefore, after
we study convergence of unadjusted HMC, we then bound the error between exact and
unadjusted HMC in Section 3.

2.2 Mean-field particle model

Let U : Rdn → R be a potential function of the form (2.1) where V : Rd → R and W :

Rd → R are twice continuously differentiable functions such that
∫

exp(−U(x))µ(dx) <

∞. Without loss of generality we assume that ε is a non-negative constant. Otherwise
we change the sign of the interaction potential W . The following conditions are imposed
on the functions V and W for proving the contraction results for exact HMC.

Assumption 2.1. V has a global minimum at 0, V (0) = 0 and V (x) ≥ 0 for all x ∈ Rd.
Assumption 2.2. V has bounded second derivatives, i.e., L := sup ‖∇2V ‖ <∞.

Assumption 2.3. V is strongly convex outside a Euclidean ball: There exists K ∈ (0,∞)

and R ∈ [0,∞) such that for all x, y ∈ Rd with |x− y| ≥ R,

(x− y) · (∇V (x)−∇V (y)) ≥ K|x− y|2.

Assumption 2.4. W has bounded second derivatives, i.e., L̃ := sup ‖∇2W‖ <∞.

We note that Assumption 2.1 is stated for simplicity, since Assumption 2.3 implies
that V has a local minimum and so Assumption 2.1 can always be obtained by adjusting
the coordinate system appropriately and adding a constant to V . Since V is a unary
confinement potential per particle and W is a pairwise interaction potential, note that the
strong convexity constant K, the Lipschitz constants L, L̃ and the radius R are dimension-
free, i.e., independent of the number of particles. By Assumption 2.1, Assumption 2.2
and Assumption 2.4,

|∇V (x)| = |∇V (x)−∇V (0)| ≤ L|x|, and (2.4)

|∇W (x− y)−∇W (y − x)| ≤ 2L̃|x− y| ≤ 2L̃(|x|+ |y|) (2.5)

for all x, y ∈ Rd. From (2.4) and Assumption 2.3, it follows that K is smaller than L,

K/L ≤ 1. (2.6)

Further, we deduce from Assumption 2.2 and Assumption 2.3 that for all x, y ∈ Rd,

(x− y) · (∇V (x)−∇V (y)) ≥ K|x− y|2 − Ĉ (2.7)

with Ĉ := R2(L+K) and so V is asymptotically strongly convex.

Remark 2.5. In this work, we focus on a pairwise mean-field interaction energy W .
However, the results can be readily extended to the situation where the Hessian of the
mean-field potential U satisfies:

L = sup
1≤i≤dn
x∈Rdn

∣∣∣∣∂2U

∂x2
i

(x)

∣∣∣∣ , L̃ = sup
1≤i<j≤dn
x∈Rdn

∣∣∣∣ ∂2U

∂xi∂xj
(x)

∣∣∣∣ (2.8)

and the parameter L̃ scales like 1/n as n → ∞ which corresponds to the standard
mean-field limit [60, 67, 69, 27].

For proving discretization error bounds, we suppose additionally for the confinement
potential V and for the interaction potential W :
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Assumption 2.6. V is three times differentiable and has bounded third derivatives, i.e.,
LH := sup ‖∇3V ‖ <∞.

Assumption 2.7. W is three times differentiable and has bounded third derivatives, i.e.,
L̃H = sup ‖∇3W‖ <∞.

This additional regularity gives a better order in the error bounds between exact
HMC and unadjusted HMC, see Theorem 3.7.

Possible interaction potentials meeting Assumption 2.4 and Assumption 2.7 are the
Morse potential [71] and the harmonic (or linear) bonding potential [5, Section 7.4.1.1],
which are both used to model interactions between particles in molecular dynamics.

Remark 2.8. Let us note that by (2.5) and (2.7) it holds for the potential U that

(x− y) · (∇U(x)−∇U(y)) =

n∑
i=1

(
(xi − yi) · (∇V (xi)−∇V (yi))

+
ε

n

∑
j 6=i

(xi − yi) · (∇W (xi − xj)−∇W (yi − yj)−∇W (xj − xi) +∇W (yj − yi))
)

≥ K|x− y|2 − n(K + L)R2 − 2εL̃

n

∑
i

∑
j 6=i

|xi − yi − (xj − yj)||xi − yi|

≥ (K − 4εL̃)|x− y|2 − n(K + L)R2.

Hence, the potential U is strongly convex if R = 0 and K − 4εL̃ > 0 holds. Moreover,
a similar calculation shows that ∇U is globally Lipschitz continuous with an effective
Lipschitz constant of L+ 4εL̃. In this case, [13, Theorem 2.1] and [53, Theorem 1] have
already shown contraction for exact HMC with the dimension-free rate c = (1/2)(K −
4εL̃)T 2 if (L+ 4εL̃)T 2 ≤ (K − 4εL̃)/(L+ 4εL̃) holds. Recently, the latter condition on T
has been improved to (L+ 4εL̃)T 2 ≤ (1/4), cf. [20, Theorem 3]. Whereas, if R > 0, then
the potential U is only asymptotically strongly convex provided K − 4εL̃ > 0, and in this
case,

(x− y) · (∇U(x)−∇U(y)) ≥ ((K − 4εL̃)/2)|x− y|2

for all |x − y| ≥ Rn = R
√

2n(L+K)/(K − 4εL̃). Thus, by [13, Theorem 2.3] we obtain
the following contraction rate for exact HMC

cn = (1/10) min(1, (1/4)(K − 4εL̃)T 2(1 + (Rn/T ))e−Rn/(2T ))e−2Rn/T (2.9)

provided (L + 4εL̃)T 2 ≤ min(1/4, (K − 4εL̃)/(L + 4εL̃), 1/(26(L + 4εL̃)R2
n)) holds. The

condition on T is dependent on the number n of particles and the rate cn decreases
exponentially fast in the number of particles. This dimension dependence motivates the
particlewise coupling stated next.

2.3 Construction of coupling

We establish a coupling between the transition probabilities πh(x, ·) and πh(y, ·) of
unadjusted HMC with discretization step h for two states x, y ∈ Rdn. The key idea for
the coupling is to locally couple the velocity randomizations, i.e., for the i-th particles in
each component of the coupling separately and independently of the other particles. A
particlewise coupling approach was used before in [30, 27] and enables us here to show
a dimension-free contraction rate, i.e. a rate that does not depend on the number n of
particles. The idea for the construction for the i-th particles in each component of the
coupling is adapted from [13], see also [31]. The coupling transition step for unadjusted
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f(r)

r

Figure 1: Under an increasing concave distance function f , a decrease in r has a larger
impact on f(r) than an increase in r, i.e., f(r)− f(r −∆) ≥ f(r + ∆)− f(r) for r,∆ > 0.

HMC is given by

X(x, y) = qT (x, ξ) and Y(x, y) = qT (y, η) (2.10)

with qT defined in (2.3) and where ξ and η are the corresponding velocity refreshments
for the position x and y given in the following way: Let ξ ∈ Rdn be a normally distributed
random variable. Let Ui ∼ Unif[0, 1] be independent uniformly distributed random
variables that are independent of ξ. Let γ be a constant that is specified later. If
|xi − yi| ≥ R̃, where R̃ is a positive constant specified later, we apply a synchronous
coupling for the i-th particle by setting ηi = ξi. If |xi − yi| < R̃, the i-th velocity
refreshment of y is given by

ηi :=

{
ξi + γzi if Ui ≤ ϕ0,1(ei·ξi+γ|zi|)

ϕ0,1(ei·ξi) ,

ξi − 2(ei · ξi)ei otherwise,
(2.11)

where ϕ0,1 denotes the density of the standard normal distribution, zi = xi − yi, and
ei = zi/|zi| if |zi| 6= 0. If |zi| = 0, ei is some arbitrary unit vector. If we consider the free
dynamics, i.e., U ≡ 0, then the first case in (2.11) leads to a decrease in the difference
of the positions in the i-th component provided the duration T is sufficiently small, i.e.,
|Xi(x, y)−Yi(x, y)| = |xi − yi||1− Tγ|. When U does not vanish, we obtain contractivity
of this coupling in a metric equivalent to the standard `1 metric that involves a concave
distance function, see Figure 1.

We note that each of the components ηi are normally distributed random variables
by [13, Section 2.3] and that the components ηi are independent by the independent
particlewise construction. This implies η ∼ N (0, Idn), which is sufficient to verify that the
constructed transition step given by (2.10) is a coupling of the transition probabilities
πh(x, ·) and πh(y, ·).

2.4 Numerical simulations

We next present a numerical illustration of some properties of the particlewise
coupling which supports the main results for unadjusted HMC stated in the next section.

We simulate the coupling for mean-field potentials with non-strongly convex confine-
ment potential to illustrate the coupling and to support our theoretical results stated in
the next subsection.

We consider two mean-field models with two different confinement potentials. The
first potential is the negative logarithm of a Gaussian mixture distribution. Here, we take
a mixture of 20 two-dimensional Gaussian distributions whose means are independent
uniformly distributed random variables on the rectangle [0, 10]× [0, 10] and whose covari-
ance matrices are the identity matrix, cf. [49, 46, 13]. The second confinement potential
is the negative logarithm of a banana-shaped distribution. In particular, V : R2 → R is
given by the Rosenbrock function V (x) = (1− x1)2 + 10(x2 − (x1)2)2, cf. [13].
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Figure 2: Coupling of HMC applied to mean-field models with n = 10 particles. The
confinement potential is the potential of a Gaussian mixture distribution in the left plot
and of a banana-shaped distribution in the right plot. The projection to one particle of
the Markov chain is plotted on the contour graph of the potentials and connected by a
linear interpolation; the inset shows the mean distance between the two components of
the coupling on a log-scale.

Figure 3: Evolution of the mean distance 1
n

∑n
i=1 |Xi

k −Yi
k| between the two components

of the coupling for HMC after k steps with n ∈ {1, 10, 100} particles.

For the interaction between particle i and j, we take the function W (xi − xj) =

(1/2)|xi − xj |2 and ε = 0.01 in Figure 2 and Figure 3. In Figure 4, we vary ε and W , as
indicated in the legend.

The plots in Figure 2 show realizations of the coupling with T = 1, γ = 1 and n = 10.
The evolution of a selected particle of the coupling is drawn on a contour plot of the
confinement potential. To visualize the order of the projected points they are connected
by linear interpolation. The evolution of the distance function 1

n

∑n
i=1 |Xi

k − Yi
k| is

given in the inset. Here, Xi
k and Yi

k are the positions of the i-th particles of the two
realizations of the coupling after k HMC steps of duration T = 1. The simulation
terminates when the distance is smaller than ε̃ = 10−5. Figure 3 shows the sample
average of the mean distance 1

n

∑n
i=1 |Xi

k −Yi
k| for different numbers n ∈ {1, 10, 100}

of particles. For n ∈ {1, 10} we sampled the mean distance a hundred times and for
n = 100 thirty times, since the statistical error is smaller for n large. We observe that
the mean distance decreases exponentially fast after a short time, which reflects a factor
M appearing in the bounds in Corollary 3.6 given below, and that the rate is dimension-
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Figure 4: Evolution of the mean distance 1
n

∑n
i=1 |Xi

k −Yi
k| between the two components

of the coupling for HMC after k steps with n = 10 particles for various interaction
parameters ε. This figure suggests that the particlewise coupling does not converge if
the interaction is too large.

free, i.e., independent of the number of particles. In Figure 4, the impact of the size
of the interaction parameter ε is illustrated. We observe that for small attractive and
repulsive interaction the mean coupling distance appears to converge to zero, whereas
for larger interaction, particularly for large repulsive interaction (corresponding to
W (xi − yi) = −(1/2)|xi − yi|2) this convergence is not observed.

3 Main results

3.1 Dimension-free contraction rate for unadjusted HMC

To prove contraction for unadjusted HMC, we introduce a modified distance function.
Define

R̃ := 8R
√

(L+K)/K, (3.1)

γ := min(T−1, R̃−1/4), (3.2)

R1 := (5/4)(R̃+ 2T ). (3.3)

Note that the constants are dimension-free, i.e. independent of the number of particles.
Let f : R+ → R+ be given by

f(r) :=

∫ r

0

exp(−min(R1, s)/T )ds. (3.4)

This function is concave and strictly increasing with f(0) = 0 and f ′(0) = 1. We define a
metric ρ : Rdn ×Rdn → [0,∞) by

ρ(x, y) :=

n∑
i=1

f(|xi − yi|). (3.5)

This definition is motivated by [30] where it was introduced to obtain optimal contraction
rates for weakly interacting diffusions. This metric is equivalent to the `1-metric,

`1(x, y) :=
∑
i

|xi − yi|. (3.6)
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More precisely, since rf ′(r) ≤ f(r) ≤ r,

ρ(x, y) ≤ `1(x, y) ≤Mρ(x, y), with (3.7)

M = f ′(R1)−1 = exp((5/4)(R̃/T + 2)). (3.8)

The following theorem gives a contraction result for unadjusted HMC with respect to
the metric ρ.

Theorem 3.1 (Global contractivity for unadjusted HMC). Suppose that Assumption 2.1,
Assumption 2.2, Assumption 2.3 and Assumption 2.4 hold. Let R̃, γ, R1 and f be given
as in (3.1), (3.2), (3.3) and (3.4). Let T ∈ (0,∞) and h1 ∈ [0,∞) satisfy

L(T + h1)2 ≤ 3

5
min

(1

4
,

3K

10L
,

3

256 · 5LR̃2

)
, (3.9)

h1 ≤
KT

525L+ 235K
. (3.10)

Let ε ∈ [0,∞) satisfy

εL̃ < min
(K

6
,

1

2

(K(R̃+ T )

36 · 149

)2

exp
(
− 5

R̃

T

))
. (3.11)

Then for all x, y ∈ Rdn and for any h ∈ [0, h1] such that h = 0 or T/h ∈ N,

E
[
ρ(X(x, y),Y(x, y))

]
≤ (1− c)ρ(x, y)

with contraction rate

c =
1

156
KT 2 exp

(
− 5R̃

4T

)
. (3.12)

A proof is given in Section 6.1.

Remark 3.2. In a simplified setting where only one particle is considered and global
strong convexity is assumed, i.e., n = 1 and Assumption 2.1-Assumption 2.3 hold with
R = 0, the conditions simplify and we refer to Theorem A.1 in Appendix A for global
contractivity. In particular, the conditions on T and h improve to h ≤ T and LT 2 ≤ 20−1

and the contraction rate becomes c = KT 2/10.

Remark 3.3. The parameter c is dimension-free, i.e., independent of the number of
particles, which is an improvement compared to the contraction rate given in (2.9)
obtained by applying [13, Theorem 2.3]. However, it might depend implicitly on the
number of degrees of freedom per particle d through the parameter R̃.

Further, note that the contraction result holds only if the interaction parameter ε is
sufficiently small. For larger ε, contraction with a dimension-free contraction rate is not
guaranteed, as illustrated in Figure 4.

Remark 3.4. For adjusted HMC one can show local contraction by precisely bounding
the effect of the accept-reject step. The case is considered for a general potential in [13].
In the mean-field model for a large number n of particles, an analogous local contraction
result for adjusted HMC is only obtained for a restrictive choice of h. In particular, using
the estimate for the rejection probability of [13, Theorem 3.8] the discretization step h
has to be chosen of order O(n−2).

Remark 3.5. Theorem 3.1 holds in particular for the product case with ε = 0. As
the interaction terms vanish and some calculations simplify in that case, the con-
dition in T becomes L(T + h1)2 ≤ min(1/4,K/L, 1/(256LR̃2)) as in [13], the condi-
tion in h1 relaxes to h1 ≤ 4KT/(165L) and the contraction rate improves to cprod =
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(1/39)KT 2 exp(−5R̃/(4T )). If V is a quadratic function, the mean-field model can
be treated as a perturbation of the product model and the difference |Xprod(x, y) −
Yprod(x, y)− (X(x, y)−Y(x, y))| of a coupling between to copies of the product model
and two copies of the mean-field model can be bounded in terms of εL̃

∑n
i=1 |xi − yi|.

This term can be controlled for sufficiently small ε by the obtained contraction for the
product case. See Appendix B for the complete argument.

3.2 Quantitative bounds for distance to the target measure

We deduce from Theorem 3.1 global contractivity of the transition kernel πh(x, dy)

with respect to the Kantorovich distance based on ρ

Wρ(ν, η) = inf
ω∈Γ(ν,η)

∫
ρ(x, y)ω(dxdy)

on probability measures ν, η on Rdn, where Γ(ν, η) denotes the set of all couplings of
ν and η. Since the metric ρ is equivalent to the `1-distance `1 on (Rd)n given in (3.6),
contractivity with respect toWρ yields a quantitative bound on the Kantorovich distance
based on `1 on (Rd)n,

W`1(νπh
m, µh) := inf

ω∈Γ(νπhm,µh)

∫ n∑
i=1

|xi − yi|ω(dxdy)

between the law after m HMC steps with initial distribution ν and invariant measure µh.

Corollary 3.6. Suppose that Assumption 2.1, Assumption 2.2, Assumption 2.3 and
Assumption 2.4 hold. Let T ∈ (0,∞) and h1 ∈ [0,∞) satisfy (3.9) and (3.10). Let
ε ∈ [0,∞) satisfy (3.11). Then, for any m ∈ N, for any probability measures ν, η on Rdn,
and for any h ∈ [0, h1] such that h = 0 or T/h ∈ N,

Wρ(νπh
m, ηπh

m) ≤ e−cmWρ(ν, η), (3.13)

W`1(νπh
m, ηπh

m) ≤Me−cmW`1(ν, η) (3.14)

with c given by (3.12) and M given by (3.8). Further, there exists a unique invariant
probability measure µh on Rdn for the transition kernel πh of unadjusted HMC and

W`1(νπh
m, µh) ≤Me−cmW`1(ν, µh). (3.15)

Thus, for any constant ε̃ ∈ (0,∞) and for any initial probability distribution ν the
Kantorovich distance ∆(m) =W`1(νπh

m, µh) satisfies ∆(m) ≤ ε̃ provided

m ≥ 1

c

(5

2
+

5R̃

4T
+ log

(∆(0)

ε̃

))
. (3.16)

A proof is given in Section 6.2. We note that we obtain the same bound as in (3.14)
and (3.15) for the Kantorovich distance with respect to the `1-distance averaged over all
particles, ˜̀1(x, y) = 1

n

∑
i |xi − yi|. Then, the term ∆(0)/ε̃ in (3.16) differs by a factor 1/n.

In this case, if we consider for example a product measure as initial distribution, the
bound in terms of this metric does not depend logarthmically on the number of particles.

To give quantitative results of the accuracy of unadjusted HMC with respect to
the target measure µ, we bound the strong accuracy of velocity Verlet. The exact
dynamics started in (x, ξ) with h = 0 is denoted by (qs(x, ξ), ps(x, ξ)) and the position of
the dynamics started in (x, ξ) with h > 0 is denoted by (q̃s(x, ξ), p̃s(x, ξ)).

Theorem 3.7 (Strong accuracy of velocity Verlet). Suppose that Assumption 2.1, As-
sumption 2.2 and Assumption 2.4 hold. Let T ∈ (0,∞) satisfy (L+ 4εL̃)T 2 ≤ (1/4). For
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x ∈ Rdn, for any h ∈ (0,∞) with T/h ∈ N and k ∈ N with kh ≤ T , it holds

Eξ∼N (0,Idn)

[∑
i

|qikh(x, ξ)− q̃ikh(x, ξ)|
]
≤ hC2

(
d1/2n+

∑
i

|xi|
)

(3.17)

with C2 depending on L, L̃, ε and T . If additionally Assumption 2.6 and Assumption 2.7
are supposed, then for x ∈ Rdn, for any h > 0 with T/h ∈ N and k ∈ N with kh ≤ T ,

Eξ∼N (0,Idn)

[∑
i

|qikh(x, ξ)− q̃ikh(x, ξ)|
]
≤ h2C̃2

(
dn+

∑
i

|xi|+
∑
i

|xi|2
)

(3.18)

with C̃2 depending on L, L̃, ε, LH , L̃H and T .

A proof is given in Section 6.2.
We obtain a bound on the difference between the invariant measure µh and the target

measure µ, by using the contraction result of Theorem 3.1 and by applying a triangle
inequality trick, which is mentioned in [55, Remark 6.3] and has been used in many
other works. In particular, it holds

Wρ(µ, µh) =Wρ(µπ, µhπh) ≤ Wρ(µπ, µπh) +Wρ(µπh, µhπh)

≤ Wρ(µπ, µπh) + (1− c)Wρ(µ, µh).

Hence, by (3.7)

W`1(µ, µh) ≤Mc−1W`1(µπ, µπh) ≤Mc−1Ex∼µ, ξ∼N (0,Idn)

[∑
i

|qikh(x, ξ)− q̃ikh(x, ξ)|
]

with M given in (3.8). Inserting (3.17), respectively (3.18), yields the following result.

Corollary 3.8 (Asymptotic Bias). Suppose that Assumption 2.1, Assumption 2.2, Assump-
tion 2.3 and Assumption 2.4 hold. Let T and h1 satisfy (3.9). Let ε satisfy (3.11). Let C2

and C̃2 be as in Theorem 3.7. Then for h ∈ (0, h1] with T/h ∈ N,

W`1(µ, µh) ≤ hc−1MC2

(
d1/2n+

∫
Rnd

∑
i

|xi|µ(dx)
)

with c given by (3.12) and M given by (3.8). If additionally Assumption 2.6 and Assump-
tion 2.7 are assumed, then for h ∈ (0, h1] with T/h ∈ N,

W`1(µ, µh) ≤ h2c−1MC̃2

(
dn+

∫
Rnd

∑
i

|xi|µ(dx) +

∫
Rnd

∑
i

|xi|2µ(dx)
)
.

Note that the bound in Corollary 3.8 is linear in the number n of particles.
For unadjusted HMC, Corollary 3.6 gives exponential convergence to the invariant

measure µh. In the next theorem, we give a bound on the number of steps to reach the
target measure µ up to a given error.

Theorem 3.9 (Complexity Guarantee). Suppose that Assumption 2.1, Assumption 2.2,
Assumption 2.3 and Assumption 2.4 hold. Let T ∈ (0,∞) and h1 ∈ (0,∞) satisfy (3.9)
and (3.10). Let ε ∈ [0,∞) satisfy (3.11). Let ν be a probability measure on Rdn, and let
∆(m) =W`1(νπh

m, µ) denote the Kantorovich distance with respect to `1 to the target
probability measure µ after m steps with initial distribution ν. For some ε̃ ∈ (0,∞), let
m ∈ N be such that

m ≥ 1

c

(5

2
+

5R

4T
+ log

(2W`1(µh, ν)

ε̃

)+)
(3.19)
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with c given by (3.12). Then, there exists h2 such that for h ∈ (0,min(h1, h2)] with
T/h ∈ Z,

∆(m) ≤ ε̃ (3.20)

where for fixed K, L, L̃, ε, R and T , h−1
2 is of order O(ε̃−1(d1/2n +

∫ ∑
i |xi|µ(dx))). If

additionally Assumption 2.6 and Assumption 2.7 are assumed, then there exists h̃2 such
that for h ∈ (0,min(h1, h̃2)] with T/h ∈ Z, (3.20) holds, where for fixed K, L, L̃, LH , L̃H ,

ε, R and T , h̃−1
2 is of order O(ε̃−1/2((nd)1/2 +

√∫ ∑
i |xi|µ(dx) +

√∫ ∑
i |xi|2µ(dx))).

A proof is given in Section 6.2. If we consider the averaged distance ˜̀1 instead
of `1, the argument in the logarithmic term in (3.19) changes by a factor 1/n and the
logarithmic dependence on n in h2 and h̃2 vanishes.

Remark 3.10. We note that h−1 is O(n1/2) in Theorem 3.9 and hence it grows sublinear
in n. Further, the constant C̃2 obtained in the proof of Theorem 3.7 is O(T−1). For the
numerical method uLA, which forms a special case of unadjusted HMC with h = T (see
[59, Section 5.2]), we obtain that h−1 = T−1 has to be chosen of order O(n), which
corresponds to the results in [26, Example 18]. Therefore, an ε̃-accurate approximation
of the target measure in the W`1 distance can be achieved by uHMC applied to the
n-particle mean-field system with O(n1/2ε̃−1/2 log(n/ε̃)) gradient evaluations; whereas
the corresponding complexity of uLA is O(nε̃−1 log(n/ε̃)).

Remark 3.11. From Theorem 3.9, note that the number of evaluations of the gradient
∇U(x) in each step of duration T is O(n1/2) for fixed K, L, L̃, ε, T , R, d and h. If
we assume that the computation of the gradient in one step is O(n), then the overall
complexity of unadjusted HMC is O(n3/2).

3.3 Dimension-free bounds for ergodic averages of intensive observables

Next, we define the ergodic averages Am,bg, which approximate µ(g) =
∫
g(x)µ(dx),

by

Am,bg :=
1

m

b+m−1∑
i=b

g(Xi), (3.21)

for some function g : Rdn → R and for b,m ∈ N, where (Xn) is the Markov chain given by
unadjusted HMC. The parameter b corresponds to the burn-in time. Here, we consider
bounded and continuously differentiable observables, i.e., g ∈ C1

b (Rdn). Quantitative
bounds on the bias of the ergodic averages follow by the exponential convergence in the
Kantorovich distance with respect to the `1 metric given in (3.6) and the bound on the
accuracy of unadjusted HMC.

Theorem 3.12 (Bias of Ergodic Averages). Let g ∈ C1
b (Rdn) with maxi ‖∇ig‖∞ < ∞.

Suppose that Assumption 2.1, Assumption 2.2, Assumption 2.3 and Assumption 2.4 hold.
Let T ∈ (0,∞) and h1 ∈ [0,∞) satisfy (3.9) and (3.10). Let ε ∈ [0,∞) satisfy (3.11). Let
ν be a probability measure on Rdn. Let C2 and C̃2 be given as in Theorem 3.7, and let c
be given as in (2.9). Then for h ∈ [0, h1] such that h = 0 or T/h ∈ N,

|Eν [Am,bg]− µ(g)| ≤ 1

m
max
i
‖∇ig‖∞

e−cb

1− e−c
W`1(ν, µh) + hmax

i
‖∇ig‖∞C3,

where C3 = exp( 5
4 (2+R̃/T ))c−1C2

(
d1/2n+

∫ ∑
i |xi|µ(dx)

)
. If additionally Assumption 2.6

and Assumption 2.7 are supposed, then

|Eν [Am,bg]− µ(g)| ≤ 1

m
max
i
‖∇ig‖∞

e−cb

1− e−c
W`1(ν, µh) + h2 max

i
‖∇ig‖∞C̃3,
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where C̃3 = exp( 5
4 (2 + R̃/T ))c−1C̃2

(
dn+

∫ ∑
i |xi|µ(dx) +

∫ ∑
i |xi|2µ(dx)

)
.

A proof is given in Section 6.3.

Remark 3.13. We note that provided maxi ‖∇ig‖∞ is O(1/n) the bound of the bias of the
ergodic averages is independent of the number n of particles. Hence for intensive observ-
ables of the form g(x) = 1

n

∑
i ĝ(xi) where ĝ ∈ C1

b (Rd) with ‖∇ĝ‖∞ < ∞, Theorem 3.12
gives quantitative bounds on the bias of their ergodic averages which are dimension-free,
i.e., independent of the number n of particles. Whereas, for extensive observables, where
maxi ‖∇ig‖∞ is O(1), the bound depends on the number n of particles.

4 Estimates for the dynamics (2.3)

4.1 Deviation from free dynamics

Here we apply the Lipschitz conditions in Assumption 2.2 and Assumption 2.4 to
obtain bounds on how far the dynamics in (2.3) deviates from the free dynamics, U ≡ 0.
To obtain these bounds, we assume in the following that t, h ∈ [0,∞) are such that
t/h ∈ N for h > 0 and such that

(L+ 4εL̃)(t2 + th) ≤ 1. (4.1)

This condition essentially states that the duration of the Hamiltonian dynamics in (2.3)
is small with respect to the fastest characteristic time-scale of the mean-field particle

system represented by
√

sup ‖HessU‖ ≤
√
L+ 4εL̃ (see Remark 2.8). This bound follows

from Assumption 2.2 and Assumption 2.4. The i-th component of the solution to (2.3) is
denoted by (xis, v

i
s).

Lemma 4.1. Let x, v ∈ Rdn. Then for i ∈ {1, . . . , n},

max
s≤t
|xis| ≤ (1 + (L+ 2εL̃)(t2 + th)) max(|xi|, |xi + tvi|) (4.2)

+
2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|xjs|,

max
s≤t
|vis| ≤ |vi|+ (L+ 2εL̃)t(1 + (L+ 2εL̃)(t2 + th)) max(|xi|, |xi + tvi|)) (4.3)

+
2εL̃t

n
(1 + (L+ 2εL̃)(t2 + th)) max

s≤t

∑
j 6=i

|xjs|.

Moreover,

max
s≤t

∑
i

|xis| ≤ (1 + (L+ 4εL̃)(t2 + th))
∑
i

max(|xi|, |xi + tvi|), (4.4)

max
s≤t

∑
i

|vis| ≤ (L+ 4εL̃)t(1 + (L+ 4εL̃)(t2 + th))
∑
i

max(|xi|, |xi + tvi|) (4.5)

+
∑
i

|vi|.

A proof of Lemma 4.1 is provided in Section 5.
Let two processes (xs, vs), (ys, us) with initial values (x, v) and (y, u) be driven by the

Hamiltonian dynamics in (2.3). We set (zs, ws) := (xs − ys, vs − us). Since (xs, vs) and
(ys, us) depend on (x, v) and (y, u), respectively, (zs, ws) depends on (x, v, y, u). By (2.3),
the dynamics of the i-th component of (zs, ws) is given by

d

dt
zit = wibtc − (h/2)(∇iU(xbtc)−∇iU(ybtc))

d

dt
wit = (1/2)(−∇iU(xbtc)−∇iU(xdte) +∇iU(ybtc) +∇iU(ydte)).

(4.6)
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Next, we bound the distance between the process (zis, w
i
s) and the process given by the

free dynamics, where U ≡ 0. As the particlewise coupling in Section 2.3 is designed
with respect to the free dynamics, this bound plays an important role in proving the
contraction results of Section 3. It explains why the particlewise coupling works when
the distance between i-th particles is small, i.e., when |xi − yi| < R̃, and when the
duration T and the time step h are small, i.e., when (4.1) is assumed.

Lemma 4.2. Let x, y, v, u ∈ Rdn. Then for all i ∈ {1, . . . , n},

max
s≤t
|zis − zi − swi| ≤ (L+ 2εL̃)(t2 + th) max(|zi + twi|, |zi|) (4.7)

+
2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|zjs |,

max
s≤t
|zis| ≤ (1 + (L+ 2εL̃)(t2 + th)) max(|zi + twi|, |zi|) (4.8)

+
2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|zjs |,

max
s≤t
|wis − wi| ≤ (L+ 2εL̃)t(1 + (L+ 2εL̃)(t2 + th)) max(|zi + twi|, |zi|)) (4.9)

+
2εL̃t

n
(1 + (L+ 2εL̃)(t2 + th)) max

s≤t

∑
j 6=i

|zjs |,

max
s≤t
|wis| ≤ |wi|+ (L+ 2εL̃)t(1 + (L+ 2εL̃)(t2 + th)) max(|zi + twi|, |zi|)) (4.10)

+
2εL̃t

n
(1 + (L+ 2εL̃)(t2 + th)) max

s≤t

∑
j 6=i

|zjs |.

Moreover,

max
s≤t

∑
i

|zis| ≤ (1 + (L+ 4εL̃)(t2 + th))
∑
i

max(|zi + twi|, |zi|), (4.11)

max
s≤t

∑
i

|wis| ≤ (L+ 4εL̃)t(1 + (L+ 4εL̃)(t2 + th))
∑
i

max(|zi + twi|, |zi|) (4.12)

+
∑
i

|wi|.

A proof of Lemma 4.2 is provided in Section 5.

4.2 Bounds in region of strong convexity

Next, we obtain a bound for the difference between the positions of the i-th particles
provided that |xi − yi| > R̃ and vi = ui. We assume that

(L+ 4εL̃)(t2 + th) ≤ min
( κ

L+ 4εL̃
,

1

4

)
, (4.13)

where κ is given by

κ := K − 3εL̃. (4.14)

Further, we assume that

h ≤ Kt

525L+ 235K
. (4.15)
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Lemma 4.3. Suppose that Assumption 2.1, Assumption 2.2, Assumption 2.3 and As-
sumption 2.4 hold. Let ε ∈ [0,∞) be such that εL̃ < K/6 holds. Let R̃ be given in (3.1).
Let t, h ∈ [0,∞) be such that h = 0 or t/h ∈ N, and such that (4.13) and (4.15) holds.
Then, for all x, y, v, u ∈ Rdn and i ∈ {1, . . . , n} such that |xi − yi| ≥ R̃ and vi = ui,

|xit − yit|2 ≤
(

1− 1

4
κt2
)
|xi − yi|2 + 2

εL̃t2

n2

(
max
s≤t

∑
j 6=i

|xjs − yjs|
)2

. (4.16)

A proof of Lemma 4.3 is given in Section 5.
In the strongly convex case with only one particle (i.e., R = 0, ε = 0 and n = 1), an

improved version of Lemma 4.3 with less restrictive assumptions on T and h is given in
Appendix A in Lemma A.2. This bound provides directly contraction in Lp Wasserstein
distance provided T > 0 and h ≥ 0 satisfy LT 2 ≤ 20−1 and T/h ∈ Z if h > 0, see
Appendix A.

5 Proof of results from Section 4

Before stating the proofs of Section 4, note that by (2.4) and (2.5) for all x, y ∈ Rdn,

|∇iU(x)| ≤ L|xi|+ 2εL̃

n

∑
j 6=i

|xi − xj | ≤ (L+ 2εL̃)|xi|+ 2εL̃

n

∑
j 6=i

|xj |, (5.1)

and by Assumption 2.2 and Assumption 2.4

|∇iU(x)−∇iU(y)| ≤ (L+ 2εL̃)|xi − yi|+ 2εL̃

n

∑
j 6=i

|xj − yj |. (5.2)

Further by (2.7) and (2.5), it holds for all x, y ∈ Rdn,

−(xi − yi) · (∇iU(x)−∇iU(y))

≤ −(K − 2εL̃)|xi − yi|2 + 2εL̃|xi − yi| 1
n

∑
j 6=i

|xj − yj |+ Ĉ

≤ −κ|xi − yi|2 + εL̃
( 1

n

∑
j 6=i

|xj − yj |
)2

+ Ĉ. (5.3)

It follows from the definition (3.1) of R̃ and the condition εL̃ < K/6, which is assumed in
Lemma 4.3, that for all x, y ∈ Rd with |x− y| ≥ R̃,

Ĉ = R2(L+K) <
1

64
K|x− y|2 ≤ 1

32
κ|x− y|2. (5.4)

Proof of Lemma 4.1. Fix x, v ∈ Rdn. Let s ≤ t. We have from (2.3)

xis − xi − svi =

∫ s

0

∫ brc
0

(
− 1

2
∇iU(xbuc)−

1

2
∇iU(xdue)

)
du dr −

∫ s

0

h

2
∇iU(xbrc)dr.

We apply (5.1) to obtain

|xis − xi − svi| ≤
(L+ 2εL̃)(t2 + th)

2
max
r≤t

(|xir − xi − rvi|+ |xi + rvi|)

+
2εL̃(t2 + th)

2n
max
r≤t

∑
j 6=i

|xjr|.
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Invoking condition (4.1), we get

max
s≤t
|xis − xi − svi| ≤ (L+ 2εL̃)(t2 + th) max

s≤t
|xi + svi|+ 2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|xjs|

= (L+ 2εL̃)(t2 + th) max(|xi|, |xi + tvi|) +
2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|xjs|.

By applying the triangle inequality, (4.2) is obtained. From (2.3) and (5.1), we have

|vis − vi| ≤
∫ s

0

max
u≤t
|∇iU(xu)|dr ≤ (L+ 2εL̃)tmax

u≤t
|xiu|+

2εL̃t

n
max
u≤t

∑
j 6=i

|xju|. (5.5)

We insert (4.2) in (5.5) to obtain

|vis − vi| ≤ (L+ 2εL̃)t(1 + (L+ 2εL̃)(t2 + th)) max(|xi|, |xi + tvi|)

+
2εL̃t

n
(1 + (L+ 2εL̃)(t2 + th)) max

u≤t

∑
j 6=i

|xju|.

By applying the triangle inequality, (4.3) is obtained. Equation (4.4) and (4.5) follow by
considering the sum over all particles, i.e., by (2.3) we have∑

i

|xis − xi − svi|

≤
∫ s

0

∫ r

0

1

2

∑
i

|∇iU(xbuc) +∇iU(xdue)|dudr +
h

2

∫ s

0

∑
i

|∇iU(xbrc)|dr

≤ (L+ 4εL̃)(t2 + th)

2
max
r≤t

(∑
i

|xir|
)

and hence analogous to the estimate obtained for the i-th particle,

max
s≤t

∑
i

|xis − xi − svi| ≤ (L+ 4εL̃)(t2 + th) max
r≤t

∑
i

|xi + rvi|

≤ (L+ 4εL̃)(t2 + th)
∑
i

max(|xi|, |xi + tvi|).

By applying the triangle inequality, (4.4) is obtained. By (2.3) and (4.4),∑
i

|vis − vi| ≤ (L+ 4εL̃)tmax
r≤t

(∑
i

|xir|
)

≤ (L+ 4εL̃)t(1 + (L+ 4εL̃)(t2 + th))
∑
i

max(|xi|, |xi + tvi|),

and (4.5) is obtained by the triangle inequality.

Proof of Lemma 4.2. By (5.2) and (4.6),

|zis − zi − swi|

≤
∫ s

0

∫ r

0

max
v≤t
| − ∇iU(xv) +∇iU(yv)|du dr +

h

2

∫ s

0

max
v≤t
| − ∇iU(xv) +∇iU(yv)|dr

≤ (L+ 2εL̃)(t2 + th)

2
max
r≤t
|zir|+

2εL̃(t2 + th)

2n
max
r≤t

∑
j 6=i

|zjr |.
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Hence, we obtain similar to the previous proof

max
s≤t
|zis − zi − swi| ≤ (L+ 2εL̃)(t2 + th) max(|zi|, |zi + twi|)

+
2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|zjs |,

which gives (4.7). Then (4.8) is obtained by applying triangle inequality. Next, we
consider

|wis − wi| ≤
1

2

∫ s

0

(| − ∇iU(xbrc) +∇iU(ybrc)|+ | − ∇iU(xdre) +∇iU(ydre)|)dr

≤ (L+ 2εL̃)tmax
r≤t
|zir|+

2εL̃t

n
max
r≤t

∑
j 6=i

|zjr |,

where we again used (5.2) and (4.6). Hence, we obtain by (4.8),

max
s≤t
|wis − wi| ≤ (L+ 2εL̃)t(1 + (L+ 2εL̃)(t2 + th)) max(|zi|, |zi + twi|)

+
2εL̃t

n
(1 + (L+ 2εL̃)(t2 + th)) max

s≤t

∑
j 6=i

|zjs |,

which gives (4.9) and (4.10). Estimates (4.11) and (4.12) hold similarly by considering
the sum over all particles instead of considering only the i-th particle.

Proof of Lemma 4.3. As before, write (zs, ws) = (xs − ys, vs − us) whose dynamics is
given by (4.6). Then, z0 = x− y and wi0 = 0 since the velocities of the i-th component are
synchronized.

Define ai(t) = |zit|2 and bi(t) = 2zit · wit. We set up an initial value problem of the two
deterministic processes ai(t) and bi(t) and solve it to obtain the required bound for ai(t).
By (4.6), we have

d

dt
ai(t) = bi(t) + 2zit · (wibtc − w

i
t)− hzit · (∇iU(xbtc)−∇iU(ybtc)) = bi(t) + δi(t)

d

dt
bi(t) = −zit · (∇iU(xbtc)−∇iU(ybtc) +∇iU(xdte)−∇iU(ydte))

+ 2wit · wibtc − hw
i
t · (∇iU(xbtc)−∇iU(ybtc))

= −zibtc · (∇iU(xbtc)−∇iU(ybtc))− zidte · (∇iU(xdte)−∇iU(ydte))

+ 2|wit|2 − 2κ|zit|2 + κ(|zibtc|
2 + |zidte|

2) + εi(t)

where εi(t) = εi1(t) + εi2(t) + εi3(t) + εi4(t) and

δi(t) = zit · (2(wibtc − w
i
t)− h(∇iU(xbtc)−∇iU(ybtc)))

εi1(t) = −(zit − zibtc) · (∇iU(xbtc)−∇iU(ybtc))

εi2(t) = −(zit − zidte) · (∇iU(xdte)−∇iU(ydte))

εi3(t) = wit · (2(wibtc − w
i
t)− h(∇iU(xbtc)−∇iU(ybtc)))

εi4(t) = κ(2|zit|2 − |zibtc|
2 − |zidte|

2).

By (5.3) the derivative of bi(t) is bounded by

d

dt
bi(t) ≤ −2κ|zit|2 +

εL̃

n2

(∑
j 6=i

|zjbtc|
)2

+
εL̃

n2

(∑
j 6=i

|zjdte|
)2

+ 2|wit|2 + εi(t) + 2Ĉ.
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The previous estimate leads to an initial value problem of the form

d

dt
ai(t) = bi(t) + δi(t), ai(0) = |zi0|2,

d

dt
bi(t) = −2κai(t) + βi(t) + εi(t), bi(0) = 0,

where

βi(t) ≤ εL̃

n2

(∑
j 6=i

|zjbtc|
)2

+
εL̃

n2

(∑
j 6=i

|zjdte|
)2

+ 2|wit|2 + 2Ĉ. (5.6)

Note that when h = 0, εi(t) = δi(t) = 0. By variation of parameters, ai(t) can be written
as

ai(t) = cos(
√

2κ t)|zi0|2 +

∫ t

0

cos(
√

2κ(t− r))δi(r)dr

+

∫ t

0

1√
2κ

sin(
√

2κ(t− r))(βi(r) + εi(r))dr.

(5.7)

Taylor’s integral formula, i.e., cos(
√

2κ t) = 1− κt2 + (1/6)
∫ t

0
(t− s)3 cos(

√
2κ s)(2κ)2ds ≤

1− κt2 + κ2t4/6, and the fact that by (4.13) and (2.6) κ2t4 ≤ (L+ 2εL̃)2t4 ≤ κt2 yield

cos(
√

2κt) ≤ 1− (5/6)κt2. (5.8)

Further, we get by (4.13) and (2.6)

κt2 ≤ (L+ 2εL̃)t2 ≤ 1 ≤ π2/2, and so t ≤ (π/
√

2κ). (5.9)

Therefore, sin(
√

2κ(t− r)) ≥ 0 for all r ∈ [0, t]. Further,

1√
2κ

sin(
√

2κ(t− r)) ≤ (t− r). (5.10)

Inserting (5.8) and (5.10) in (5.7) yields

ai(t) ≤ (1− (5/6)κt2)|zi0|2 +

∫ t

0

|δi(r)|dr +

∫ t

0

(t− r)(|βi(r)|+ |εi(r)|)dr. (5.11)

For βi(t), we note that by (5.6), (4.10) with wi = 0 and (4.13),

|βi(t)| ≤ 2
(

(L+ 2εL̃)t
5

4
|zi0|+

2εL̃t

n

5

4
max
s≤t

∑
j 6=i

|zjs |
)2

+
2εL̃

n2

(
max
s≤t

∑
j 6=i

|zjs |
)2

+ 2Ĉ

≤ 25

4
(L+ 2εL̃)2t2|zi0|2 +

(
25
ε2L̃2t2

n2
+

2εL̃

n2

)(
max
s≤t

∑
j 6=i

|zjs |
)2

+ 2Ĉ. (5.12)

Note that by (2.6), (4.13) and since by assumption εL̃ < K/6,

εL̃(t2 + th) ≤ (1/10)(K + 4εL̃)(t2 + th) ≤ (1/10)(L+ 4εL̃)(t2 + th) ≤ 40−1. (5.13)

Hence, by (5.12) we obtain for the integral containing βi(t) in (5.11)∫ t

0

(t− r)|βi(r)|dr

≤
∫ t

0

(t− r)
(25

4
r2(L+ 2εL̃)2|zi0|2 +

(
25
r2ε2L̃2

n2
+

2εL̃

n2

)(
max
s≤t

∑
j 6=i

|zjs |
)2

+ 2Ĉ
)

dr

EJP 28 (2023), paper 91.
Page 20/40

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unadjusted HMC for mean-field models

≤ 25

48
t4(L+ 2εL̃)2|zi0|2 +

( 25

12 · 40
+ 1
)εL̃t2
n2

(
max
s≤t

∑
j 6=i

|zjs |
)2

+ Ĉt2, (5.14)

where the last step follows by (5.13).
Next, we bound δi(t) and εi(t). To bound δi(t) and εi3(t), we note that by (4.6)

and (5.2),

|wibtc − w
i
t| ≤

∣∣∣ ∫ t

btc

d

ds
wisds

∣∣∣ ≤ h

2
|∇iU(xbtc) +∇iU(xdte)− (∇iU(ybtc) +∇iU(ydte))|

≤ h
(

(L+ 2εL̃)zi,∗t +
2εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

where zi,∗t = maxs≤t |zis|. Hence, by (5.2), (4.8) with wi = 0 and (4.13),

|2(wibtc − w
i
t)− h(∇iU(xbtc)−∇iU(ybtc))| ≤ 3h

(
(L+ 2εL̃)zi,∗t +

2εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

≤ 3h
(5

4
(L+ 2εL̃)|zi0|+

5

2

εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)
.

(5.15)

Hence by (5.15) and (4.8) with wi = 0, and then by (5.13) and (4.13),

max
s≤t
|δi(s)| ≤ 3h

(5

4
|zi0|+

2εL̃(t2 + th)

n
max
s≤t

∑
j 6=i

|zjs |
)

·
(5

4
(L+ 2εL̃)|zi0|+

5

2

εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

≤ 3h
(25

16
(L+ 2εL̃)|zi0|2 +

15

4
εL̃|zi0|

1

n
max
s≤t

∑
j 6=i

|zjs |+
εL̃

8n
max
s≤t

(∑
j 6=i

|zjs |
)2)

(5.16)

≤ h
(75L

16
+ 15εL̃

)
|zi0|2 + h

6εL̃

n2
max
s≤t

(∑
j 6=i

|zjs |
)2

, (5.17)

Note that Young’s product inequality is used in (5.16) to bound the cross term. Similarly,
by (5.15), (4.8) with wi = 0, (4.10) with wi = 0 and (5.13),

max
s≤t
|εi3(s)| t

2
≤ 3h

t

2

(5

4
(L+ 2εL̃)t|zi0|+

5

4

2εL̃t

n
max
s≤t

∑
j 6=i

|zjs |
)

·
(5

4
(L+ 2εL̃)|zi0|+

5

2

εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

≤ 3h
t2

2

(25

16
(L+ 2εL̃)2|zi0|2 +

25

4
(L+ 2εL̃)|zi0|

εL̃

n
max
s≤t

∑
j 6=i

|zjs | (5.18)

+
25

4

(εL̃
n

max
s≤t

∑
j 6=i

|zjs |
)2)

≤ h75(L+ 2εL̃)

64
|zi0|2 + h

15

32

εL̃

n2
max
s≤t

(∑
j 6=i

|zjs |
)2

. (5.19)
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Note that Young’s product inequality is used to bound the cross term in (5.18).

To bound εi1(t), εi2(t) and εi4(t), we note that by (4.6) and (5.2),

|zibtc − z
i
t| =

∣∣∣ ∫ t

btc

d

ds
zisds

∣∣∣ ≤ h|wibtc − h

2
(∇iU(xbtc)−∇iU(ybtc))|

≤ hwi,∗t +
h2

2
(L+ 2εL̃)zi,∗t +

h2εL̃

n
max
s≤t

∑
j 6=i

|zjs |, (5.20)

where wi,∗t = maxs≤t |wis|. Similarly,

|zidte − z
i
t| ≤ hw

i,∗
t +

h2

2
(L+ 2εL̃)zi,∗t +

h2εL̃

n
max
s≤t

∑
j 6=i

|zjs |. (5.21)

Hence, by applying (5.20), (5.21) and (5.2) in the first step, and (4.8) and (4.10) with
wi = 0 in the second step,

max
s≤t

(|εi1(s) + εi2(s)|) t
2
≤ th

(
(L+ 2εL̃)zi,∗t +

2εL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

·
(
wi,∗t +

h

2
(L+ 2εL̃)zi,∗t +

hεL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

≤ th
(5

4
(L+ 2εL̃)|zi0|+

5εL̃

2n
max
s≤t

∑
j 6=i

|zjs |
)

·
(

(L+ 2εL̃)
(
t+

h

2

)5

4
|z0|+

2εL̃

n

5

4

(
t+

h

2

)
max
s≤t

∑
j 6=i

|zjs |
)

≤ ht
(
t+

h

2

)(
(L+ 2εL̃)2 25

16
|zi0|2 +

25

4
(L+ 2εL̃)εL̃|zi0|max

s≤t

1

n

∑
j 6=i

|zjs |

+
25

4

(εL̃)2

n2
max
s≤t

(∑
j 6=i

|zjs |
)2)

≤ ht
(
t+

h

2

)(25

8
(L+ 2εL̃)2|zi0|2 +

25(εL̃)2

2n2
max
s≤t

(∑
j 6=i

|zjs |
)2)

≤ h25

32
(L+ 2εL̃)|zi0|2 + h

5εL̃

16n2
max
s≤t

(∑
j 6=i

|zjs |
)2

. (5.22)

Note that Young’s product inequality is used to bound the cross term in the third step
and (4.13) and (5.13) are used in the last step. For εi4(t), we obtain by (5.20) and (5.21),

max
s≤t
|εi4(s)| t

2
≤ t

2
κmax
s≤t
|(zis + zibsc) · (z

i
s − zibtc) + (zis + zidse) · (z

i
s − zidse)|

≤ 2thκzi,∗t

(
wi,∗t +

h

2
(L+ 2εL̃)zi,∗t +

hεL̃

n
max
s≤t

∑
j 6=i

|zjs |
)

≤ 2th
(5

4
(L+ 2εL̃)|zi0|+

5εL̃

2n
max
s≤t

∑
j 6=i

|zjs |
)

(5.23)

·
(

(L+ 2εL̃)
(
t+

h

2

)5

4
|zi0|+

2εL̃

n

5

4

(
t+

h

2

)
max
s≤t

∑
j 6=i

|zjs |
)
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≤ 2ht
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, (5.24)

where (5.23) follows by (4.8) with wi = 0 and (4.10) with wi = 0 and since by (2.6)
κ ≤ (L+ 2εL̃). Note that Young’s product inequality is used to bound the cross term in
the third step.

Therefore, by (5.17), (5.19), (5.22) and (5.24),∫ t
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where we used εL̃ < K/6 in (5.25). We note that by (4.15), (2.6) and since by assumption
εL̃ < K/6,

h
(525
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K
)
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32
(5.26)

and

h
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32
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2
t. (5.27)

Therefore, by (5.25), (5.26) and (5.27)∫ t

0

(
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)
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. (5.28)

Inserting (5.14) and (5.28) in (5.11) and applying (4.13) yields,
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(
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.

By (5.4), we obtain for x, y ∈ Rdn with |xi − yi| > R̃,
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≤
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4
κt2
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∑
j 6=i

|zjs |
)2

,

as required.

6 Proofs of main results

6.1 Proof of main contraction result

For the proof of Theorem 3.1, we write Ri and ri for ri(x, y) = |xi − yi| and Ri(x, y) =

|Xi(x, y)−Yi(x, y)| for fixed x, y ∈ Rdn. Further, we write ris = |qis(x, ξ)− qis(y, η)| for the
distance between the two positions at time s satisfying (2.3) where ξ, η are the velocities
coupled using the construction given in Section 2.3. Further, we denote z = x− y and
w = ξ − η.

Proof of Theorem 3.1. Note that (3.9), (3.11) and (4.14) imply

κ ≥ (1/2)K and L+ 4εL̃ ≤ L+ (2K/3) ≤ (5/3)L. (6.1)

Hence, we obtain by (3.9)

(L+ 4εL̃)(T + h1)2 ≤ min
(1

4
,

κ

L+ 4εL̃
,

1

256(L+ 4εL̃)R̃2

)
. (6.2)

Moreover, the following inequalities are satisfied,

γT ≤ 1, (6.3)

(L+ 4εL̃)(T + h) ≤ γ/4, (6.4)

γR̃ ≤ 1/4, (6.5)

exp(T−1(R1 − R̃)) ≥ 12. (6.6)

Inequalities (6.3) and (6.5) follow by (3.2), (6.4) follows by (3.2) and (6.2), and the
inequality (6.6) follows by (3.3).

We first prove a bound on E[f(Ri)− f(ri)] for each particle i similarly to the strategy
to bound E[f(R) − f(r)] in [13, Proof of Theorem 2.4]. We split the calculation of this
expectation in two cases depending on the applied coupling.

Case 1: ri = |xi − yi| ≥ R̃. In this case, the initial velocities of the i-th particles are
synchronized, i.e., wi = 0. By concavity of the function f , by Lemma 4.3 and since

√
1− a ≤ 1− a/2 for a ∈ [0, 1), (6.7)

we obtain

E[f(Ri)− f(ri)] ≤ f ′(ri)E[Ri − ri]

≤ f ′(ri)
(
− 1

8
κT 2

)
ri + f ′(ri)

√
2εL̃

T

n
E
[

max
s≤T

∑
j 6=i

rjs

]
. (6.8)

Case 2: ri = |xi − yi| < R̃. In this case, since the distance between the i-th particles
is smaller than R̃, the initial velocities of the i-th particles satisfy wi = −γzi with maximal
possible probability and otherwise a reflection is applied. These disjoint possibilities
motivate splitting the expectation E[f(Ri)− f(ri)] as follows

E[f(Ri)− f(ri)] = E[f(Ri)− f(ri), {wi = −γzi}]
+ E[f(R1 ∧Ri)− f(ri), {wi 6= −γzi}]
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+ E[f(Ri)− f(R1 ∧Ri), {wi 6= −γzi}] = I + II + III.

First, we bound the probability P[wi 6= −γzi], which equals the total variation distance
between a standard normal distribution with zero mean and a normal distribution
with mean γzi and unit variance, cf. Lemma 4.4 of [12]. Note using the coupling
characterization of the TV distance, this representation shows that the coupling ξi− ηi =

−γzi holds with maximal probability. By (6.5),
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2

<
1
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. (6.9)

Next, we bound I, II and III. For I, we note that on the set {wi = −γzi}, by (4.7)
and (6.4)
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Hence by concavity of f and by (6.9),
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To bound II, note that by (3.4) for r, s ≤ R1,

f(s)− f(r) =

∫ s

r

e−t/Tdt = T (e−r/T − e−s/T ) ≤ Te−r/T = Tf ′(r).

Therefore, by (6.9)

II ≤ Tf ′(ri)P[wi 6= −γzi] ≤ Tf ′(ri) γr
i

√
2π

<
2

5
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where we used the bound 1/
√

2π < 2/5. For III, we get by concavity of f

III ≤ f ′(R1)E[(Ri −R1)+, {wi 6= −γzi}]. (6.12)

If wi 6= −γzi, then wi = 2(ei · ξi)ei with ei = zi/|zi| and hence |zi + Twi| = |ri + 2Tei · ξi|.
This computation and (4.8) yield

Ri ≤ (1 + (L+ 2εL̃)(T 2 + Th)) max(|ri + 2Tei · ξi|, ri) +
2εL̃(T 2 + Th)

n
max
s≤T

∑
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Hence by (6.2) and since (5/4)ri −R1 ≤ (5/4)R̃−R1 ≤ 0,

E[(Ri −R1)+, {wi 6= −ziγ}]
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]
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For the first term, where only the i-th particle is involved, we follow the calculations in
the proof of [13, Theorem 2.4],
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Hence by (6.6), (6.12), (6.13) and (6.14),
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We combine the bounds on I, II and III in (6.10), (6.11) and (6.15) respectively, to obtain
for ri ≤ R̃,

E[f(Ri)− f(ri)] ≤ −f ′(ri)27
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Next, we combine (6.8) and (6.16) and sum over i to obtain

E
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]
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(6.17)
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To bound the expectation in the last term of (6.17) we note that when wj 6= −γzj , then
wj = 2(ej · ξj)ej with ej = zj/|zj |, and hence by (6.5),

E
[
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)
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4
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Then we obtain by (4.11), by (6.2), and since by (6.3) for wj = −γzj , |zj + Twj | ≤ |zj |,

E
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where last step holds by (6.18) and (6.3). Hence inserting (6.19) in (6.17),
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Since by (6.4) κT 2 ≤ Tγ/4, the minimum in (6.20) is attained at 1
8κT

2. Since (2.6), (6.2)
and (3.11) imply (5.13) with t = T , it holds that
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40)
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and it holds by (3.3) that
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)
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where we used that f(rj) ≥ rjf ′(rj) and exp(−R1/T ) ≤ f ′(ri) ≤ 1. Hence,
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+
√

2εL̃T
45

16
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(5
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)
exp
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4T

)∑
i

f(ri)

≤ − 1

78
κT 2 exp

(
− 5R̃

4T

)∑
i

f(ri),

where the last step holds by (3.11).

6.2 Proofs of results from Section 3.2

Proof of Corollary 3.6. This proof works analogously to the proof of [13, Corollary 2.6]
and uses essentially [13, Lemma 6.1]. By Theorem 3.1, the contractivity condition

E[ρ(X(x, y),Y(x, y))] ≤ e−cρ(x, y) (6.23)

is satisfied for the coupling (X(x, y),Y(x, y)). Let ν, η be probability measures on Rdn

and let ω be an arbitrary coupling of ν and η. By [13, Lemma 6.1], there exists a Markov
chain (Xm,Ym)m≥0 on a probability space (Ω̃, Ã, P̃ ) such that (X0,Y0) ∼ ω, (Xm), (Ym)

are Markov chains each having transition kernel πh and initial distributions ν and η,
respectively, and Mm = ecmρ(Xm,Ym) is a non-negative supermartingale. Then, for all
m ∈ N,

Wρ(νπh
m, ηπh

m) ≤ E[ρ(Xm,Ym)] ≤ e−cmE[ρ(X0,Y0)] = e−cm
∫
ρdω.

Since ω is chosen arbitrary, we take the infimum over all couplings ω ∈ Γ(ν, η) and
obtain (3.13). The bound (3.14) follows by (3.7). The existence of a unique probability
measure µh on Rdn holds by (3.14) and by Banach fixed-point theorem, cf. [32, Theorem
3.9]. Since µhπh

m = µh for all m, ∆(m) ≤ eR1/T e−cm∆(0). Hence, for a given ε̃ > 0,
∆(m) ≤ ε̃ holds for (3.16) by (3.3).

Proof of Theorem 3.7. This proof uses essentially standard numerical analysis tech-
niques and a priori estimates given in Lemma 4.1. Fix x, ξ ∈ Rdn. Denote by (xs, vs) =

(qs(x, ξ), ps(x, ξ)) the Hamiltonian dynamics driven by (1.1). Set xik := qikh(x, ξ), x̃ik :=

q̃ikh(x, ξ), vik := pikh(x, ξ) and ṽik := p̃ikh(x, ξ). By (1.1) and (2.3), it holds

|xik+1 − x̃ik+1| ≤ |xik − x̃ik|+ h|vik − ṽik|+
∣∣∣ ∫ (k+1)h

kh

∫ u
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(
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drdu
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(1

2
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1

2
∇iU(x̃k+1)

)
du
∣∣∣.
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∑
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4
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)
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where (4.5) and (L+ 4εL̃)T 2 ≤ (1/4) is used in the last step. Analogously,∑
i

(
−∇iU(xu) +

1

2
∇iU(x̃k) +

1

2
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)
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≤
∑
i

(L+ 4εL̃)
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h
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)
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1

2
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1

2
|xik+1 − x̃ik+1|

)
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(6.24)

Then for any initial position x ∈ Rdn,

E
[∑

i

|xik+1 − x̃ik+1|
]
≤
(

1 +
h2(L+ 4εL̃)

2

)
E
[∑

i

|xik − x̃ik|
]

+ hE
[∑

i

|vik − ṽik|
]

+
h3

2
M1,

and

E
[∑

i

|vik+1 − ṽik+1|
]
≤ E

[∑
i

|vik − ṽik|
]

+ h2M1

+
(L+ 4εL̃)h

2

(
E
[∑

i

|xik+1 − x̃ik+1|
]

+ E
[∑

i

|xik − x̃ik|
]) (6.25)

with M1 := Eξ∼N (0,Idn)[
∑
i(L+ 4εL̃)( 21

16 |ξ
i|+ 5

4 (L+ 4εL̃)T |xi|)]. Set ak := E[
∑
i |xik − x̃ik|]

and bk := E[
∑
i |vik− ṽik|]. The goal is to bound ak from above using the discrete Gronwall

lemma [33, Proposition 3.2]. Note that this sequence (ak, bk) with a0 = b0 = 0 satisfies

ak+1 ≤ (1 + (L+ 4εL̃)h2/2)ak + hbk + (h3M1/2)

bk+1 ≤ bk + h2M1 + ((L+ 4εL̃)h/2)(ak+1 + ak).

We deduce for bk+1

bk+1 ≤ (L+ 4εL̃)h

k∑
l=1

al +
(L+ 4εL̃)h

2
ak+1 + (k + 1)h2M1.

Inserting this estimate in ak+1 yields

ak+1 ≤ (1 + (L+ 4εL̃)h2)ak + (kh3M1 + h3M1/2) + (L+ 4εL̃)h2
k−1∑
l=1

al. (6.26)

Note that the sequence (ãk) satisfying

ãk+1 = (1 + (L+ 4εL̃)h2)ãk + (k + (1/2))h3M1 + (L+ 4εL̃)h2
k−1∑
l=1

ãl (6.27)

is an upper bound of the sequence (ak), i.e. ak ≤ ãk. Moreover, it holds ãk ≤ ãk+1.
Hence,

ãk+1 ≤ (1 + (L+ 4εL̃)kh2)ãk + (k + 1/2)h3M1 ≤ (1 + (L+ 4εL̃)Th)ãk + Th2M1.

Applying the discrete Grönwall lemma to ãk yields for all k ≤ (T/h),

ak ≤ ãk ≤
1

(L+ 4εL̃)T

(
(1 + (L+ 4εL̃)hT )k − 1

)
ThM1

≤ hexp((L+ 4εL̃)T 2)− 1

(L+ 4εL̃)
M1 ≤ h

exp(1/4)− 1

(L+ 4εL̃)
M1, (6.28)
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where we applied (L+ 4εL̃)T 2 ≥ 1/4 in the last step.
Hence, there exists a constant C2 depending on L, L̃, ε and T such that for all k ∈ N

with kh ≤ T and for any initial value x ∈ Rdn,

E
[∑

i

|xik − x̃ik|
]
≤ h · C2

(
d1/2n+

∑
i

|xi|
)

and so (3.17) holds. Note that the term d1/2n comes from E[
∑
|ξi|] since ξi ∼ N (0, Id).

If we assume additionally Assumption 2.6 and Assumption 2.7, then instead of (6.24)
we can bound using (5.1) and the trapezoidal rule,∣∣∣ ∫ (k+1)h

kh

∑
i

(
−∇iU(xu) +

1

2
∇iU(x̃k) +

1

2
∇iU(x̃k+1)

)
du
∣∣∣

≤
∣∣∣ ∫ (k+1)h

kh

∑
i

(
−∇iU(xu) +

1

2
∇iU(xk) +

1

2
∇iU(xk+1)

)
du
∣∣∣

+
h

2

∑
i

(L+ 4εL̃)(|xk − x̃k|+ |xk+1 − x̃k+1|)

≤ h

2

∑
i

(L+ 4εL̃)(|xik − x̃ik|+ |xik+1 − x̃ik+1|) +
h3

12

∑
i

sup
u∈[kh,(k+1)h]

∣∣∣ d2

du2
∇iU(xu)

∣∣∣.
(6.29)

The last term is bounded using (2.3), (5.1), Assumption 2.6 and Assumption 2.7 by

∑
i

sup
u∈[kh,(k+1)h]

∣∣∣ d2

du2
∇iU(xu)

∣∣∣ ≤∑
i

(LH + 8εL̃H) max
s≤T
|vis|2 +

∑
i

(L+ 4εL̃)2 max
s≤T
|xis|.

Since we can bound
∑
i maxs≤T |vis|2 and

∑
i maxs≤T |xis| by Lemma 4.1 and Young’s

product inequality in terms of
∑
i |ξi|,

∑
i |ξi|2,

∑
i |xi| and

∑
i |xi|2, we can bound the

last term in (6.29) after taking expectation over ξ ∼ N (0, Idn) by a constant h3M2

where M2 is a constant depending on L, L̃, LH , L̃H , ε, d, n,
∑
i |xi| and

∑
i |xi|2. More

precisely, the dependence of M2 is linear in nd,
∑
i |xi| and

∑
i |xi|2. Replacing h2M1

in (6.25) by h3M2 leads to the fact that ak in (6.28) is bounded from above by ak+1 ≤
h2(exp(1/(4k))− 1)/(L+ 4εL̃)(M2 +M1/(2T )). Hence, there exists a constant C̃2 of order
O(T−1) depending on L, L̃, ε, LH and L̃H such that for all k ∈ N with kh ≤ T and for any
initial value x ∈ Rdn (3.18) holds, which concludes the proof.

Proof of Theorem 3.9. Let ν be an arbitrary probability measure on Rdn. Recall that by
Corollary 3.6, it holds W`1(µhπh

m, νπh
m) ≤ exp((5/4)(2 + (R̃/T ))) exp(−cm)W`1(µh, ν).

By (3.7) and Corollary 3.6,

∆(m) :=W`1(µ, νπh
m) ≤ W`1(µ, µh) +W`1(µh, νπh

m) ≤ I + II, where

I = exp
(5

4

(
2 +

R̃

T

))
Wρ(µ, µh)

II = exp
(5

4

(
2 +

R̃

T

)
− cm

)
W`1(µh, ν).

For m chosen as in (3.19), II ≤ ε̃/2. To obtain I ≤ ε̃/2, we use the results of Corollary 3.8.
Then there exists h2 such that for h ≤ min(h1, h2), I ≤ ε̃/2 holds. In particular, we
choose h−1

2 = 2C2(d1/2n +
∫ ∑

i |xi|µ(dx))/(cε̃). Hence, for fixed L, L̃, ε, K, R, T , h−1
2

is of order O(ε̃−1(d1/2n +
∫ ∑

i |xi|µ(dx))). If additionally Assumption 2.6 and Assump-
tion 2.7 are assumed, then for h ≤ min(h1, h̃2) where h̃−1

2 = (2C̃2(dn +
∫ ∑

i |xi|µ(dx) +

EJP 28 (2023), paper 91.
Page 30/40

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unadjusted HMC for mean-field models

∫ ∑
i |xi|2µ(dx))/(cε̃))1/2, I ≤ ε̃/2 holds. Note that h̃−1

2 is for fixed L, L̃, LH , L̃H , ε, K, R,
T of order O(ε̃−1/2((nd)1/2 + (

∫ ∑
i |xi|µ(dx))1/2 + (

∫ ∑
i |xi|2µ(dx))1/2)).

Let us finally remark that
∑
|xi|µ(dx) =

∫
|x1|µ(dx) and

∫ ∑
i |xi|2µ(dx) are finite.

This holds, since by Assumption 2.3 and Assumption 2.4 exp(−U(x)) can be bounded
from above by a density function of a Gaussian product measure which has finite first
and second moments.

6.3 Proofs of results from Section 3.3

Proof of Theorem 3.12. The proof follows [32, Proof of Theorem 3.17]. It holds for
m, b ∈ N by (3.21),

Eν [Am,bg] =
1

m

b+m−1∑
k=b

(νπh
k)(g).

For all g ∈ C1
b (Rnd) with maxl∈{1,...,n} ‖∇lg‖ ≤ ∞,

|g(x)− g(y)| =
n∑
i=1

|g(x1, . . . , xi, yi+1, . . . , yn)− g(x1, . . . , xi−1, yi, . . . , yn)|

≤ max
l
‖∇lg‖

n∑
i=1

|(x1, . . . , xi, yi+1, . . . , yn)− (x1, . . . , xi−1, yi, . . . , yn)|

= max
l
‖∇lg‖

n∑
i=1

|xi − yi|.

Then for all k ∈ N and for all couplings ω ∈ Γ(νπkh, µ),

|(νπkh)(g)− µ(g)| ≤ max
l
‖∇lg‖

∫ n∑
i=1

|xi − yi|ω(dxdy).

Hence by the triangle inequality, by (3.15) and by (3.7),

|Eν [Am,bg]− µ(g)|

≤ 1

m

b+m−1∑
k=b

|(νπhk)(g)− µ(g)| ≤ 1

m

b+m−1∑
k=b

max
i
‖∇ig‖∞W`1(νπh

k, µ)

≤ 1

m

b+m−1∑
k=b

max
i
‖∇ig‖∞W`1(νπh

k, µh) + max
i
‖∇ig‖∞W`1(µh, µ)

≤ 1

m

b+m−1∑
k=b

max
i
‖∇ig‖∞Me−ckW`1(ν, µh) + max

i
‖∇ig‖∞W`1(µh, µ)

≤ 1

m
max
i
‖∇ig‖∞M

e−cb

1− e−c
W`1(ν, µh) + max

i
‖∇ig‖∞W`1(µh, µ)

with M = exp( 5
4 (2 + R̃

T )). Applying Corollary 3.8 yields the result.

A Contractivity of uHMC for K-strongly convex and L-gradient
Lipschitz V

Here, we consider the special case of a single particle with potential V that is
K-strongly convex and L-gradient Lipschitz. In this case, we prove that the uHMC
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transition kernel is contractive with respect to the Lp-Wasserstein distance for p ∈ [1,∞),
which is given by

Wp(ν, η) = inf
ω∈Γ(ν,η)

(∫
|x− y|pω(dxdy)

)1/p

for two probability measures ν, η on Rd with finite p-th moment, where Γ(ν, η) denotes
the set of all couplings of ν and η.

Theorem A.1 (Contractivity of uHMC under global strong convexity). Suppose that As-
sumption 2.1-Assumption 2.3 with R = 0 hold. Let T > 0 and h ≥ 0 be such that (A.4)
holds and T/h ∈ Z if h > 0. Then for any p ∈ [1,∞), any probability measures ν, η on Rd

with finite p-th moment and m ∈ N0,

Wp(νπ̃m, ηπ̃m) ≤ (1− c)mWp(ν, η) where (A.1)

c = K T 2 / 10. (A.2)

For fixed duration hyperparameter, note that theWp contraction rate c is uniform in
the timestep hyperparameter.

To prove this theorem, we introduce the following piecewise quadratic interpolation
of the Verlet flow (q̃t(x, v), ṽt(x, v))

d

dt
q̃t = ṽbtch − (t− btch) ∇V (q̃btch),

d

dt
ṽt = −1

2

(
∇V (q̃btch) + ∇V (q̃dteh)

)
(A.3)

with initial condition (q̃0(x, v), ṽ0(x, v)) = (x, v) ∈ R2d. The following lemma states that
|q̃T (x, v) − q̃T (y, v)|2 is itself contractive provided that the duration T is sufficiently
small as indicated, and h ≤ T (which follows from T/h ∈ Z). This result extends the
contractivity of the exact Hamiltonian flow from Lemma 2.1 of [20] to the velocity Verlet
integrator.

Lemma A.2 (Contractivity of velocity Verlet under global strong convexity). Suppose that
Assumption 2.1-Assumption 2.3 with R = 0 hold. Let T > 0 and h ≥ 0 satisfy T/h ∈ Z if
h > 0 and

LT 2 ≤ 20−1. (A.4)

Then for all x, y, v ∈ Rd,

|q̃T (x, v)− q̃T (y, v)|2 ≤
(
1−K T 2 / 5

)
|x− y|2. (A.5)

Proof of Theorem A.1. By synchronously coupling the random initial velocities in two
copies of uHMC and applying Lemma A.2, it immediately follows that the transition kernel
of uHMC is contractive in the Lp-Wasserstein distance with respect to the Euclidean
distance on Rd with the given contraction rate.

Remark A.3. If V is continuously differentiable, convex, and L-gradient Lipschitz, then
∇V satisfies the following ‘co-coercivity’ property

|∇V (x)−∇V (y)|2 ≤ L(∇V (x)−∇V (y)) · (x− y), for all x, y ∈ Rd. (A.6)

This property plays a crucial role in proving Lemma A.2.

Proof of Lemma A.2. The proof parallels the proof of Lemma 4.3, but employs the
sharper argument from Lemma 2.1 of [20]. Fix t > 0 and h ≥ 0 such that t/h ∈ Z
for h > 0. Introduce the shorthand xt = q̃t(x, v) and yt = q̃t(y, v). Let zt := xt − yt and
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wt := vt(x, v)− vt(y, v). Let at := ‖zt‖2 and bt := 2zt · wt. Our goal is to obtain an upper
bound for at. To this end, define

ρt := Φt · (xt − yt), Φt := ∇V (xt)−∇V (yt),

and note by Assumption 2.2, Assumption 2.3 and (A.6),

Kat ≤ ρt ≤ Lat, |Φt|2 ≤ Lρt, for all t ≥ 0. (A.7)

Moreover, by (A.3), note that

d

dt
zt = wbtch − (t− btch)Φbtch , (A.8)

d

dt
wt = −1

2

(
Φbtch + Φdteh

)
. (A.9)

Let α > 0 be a parameter, which we specify shortly. A straightforward computation
shows that

d

dt
at = bt + δt, (A.10)

d

dt
bt = −αKat + βt, (A.11)

where we have introduced

δt := 2zt · (wbtch − wt − (t− btch)Φbtch) = (t− btch)zt · (Φdteh − Φbtch),

βt := αKat + 2|wbtch − (t− btch)Φbtch |
2 − zt · (Φbtch + Φdteh)

− (t− btch)
(
wbtch − (t− btch)Φbtch

)
· (Φdteh − Φbtch).

Note that δt is piecewise smooth satisfying

δ′t = zt · (Φdteh − Φbtch) + (t− btch)
(
wbtch − (t− btch)Φbtch

)
· (Φdteh − Φbtch)

between consecutive grid points, and having jump discontinuities at the grid points
where δtk+ = 0 and

δtk− = h(ρtk − ρtk−1
)− h

(
hwtk−1

− (h2/2)Φtk−1

)
· Φtk−1

. (A.12)

Set st−r := sin(
√
αK(t− r))/

√
αK and ct−r := cos(

√
αK(t− r)) such that ct−r = − d

dr st−r
and

0 ≤ st−r ≤ st−s for s ≤ r ≤ t ≤ 1/(2
√
K). (A.13)

By, first, variation of parameters, and second, integration by parts for piecewise smooth
functions with jump discontinuities on the evenly spaced time grid {tk},

at = cta0 +

∫ t

0

ct−rδrdr +

∫ t

0

st−rβrdr

= cta0 +
∑

k: tk≤t

[st−rδr]
r=tk+
r=tk− + [−st−rδr]r=t−r=0+ +

∫ t

0

st−r(δ
′
r + βr)dr

= cta0 −
∑

k: tk≤t

st−tkδtk− +

∫ t

0

st−r(−2ρbrch + αKabrch + εr)dr, (A.14)

where εt := ε1t + ε2t + ε3t and

ε1t := 2|wbtch − (t− btch)Φbtch |
2,
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ε2t := −2(zt − zbtch) · Φbtch ,
ε3t := αK(zt − zbtch) · (zt + zbtch).

To upper bound ε1t , apply the Peter-Paul inequality with parameter
√

2,

ε1t ≤ 6|wbtch |
2 + 3(t− btch)2|Φbtch |

2
(A.7)
≤ 6|wbtch |

2 + 3Lh2ρbtch . (A.15)

Similarly, for ε2t , apply (A.8) and Peter-Paul inequality with parameter
√

2,

ε2t = −2(t− btch)wbtch · Φbtch + (t− btch)2|Φbtch |
2

(A.7)
≤ 2|wbtch |

2 +
3

2
Lh2ρbtch . (A.16)

Finally, for ε3t , apply (A.8) and Young’s product inequality

ε3t = αK
(
|zt − zbtch |

2 + 2zbtch · (zt − zbtch)
)

= αK|(t− btch)wbtch − (1/2)(t− btch)2Φbtch |
2

+ 2αKzbtch · ((t− btch)wbtch − (1/2)(t− btch)2Φbtch)

(A.7)
≤ (1 + 2αKh2)|wbtch |

2 + αK(αh2 + (1/2)Lh4)ρbtch . (A.17)

To upper bound the sum in (A.14) coming from integration by parts, expand the sum
using (A.12), apply summation by parts, and Young’s product inequality

−
∑

k: tk<t

st−tkδtk− = −
∑

k: t1≤tk<t

hst−tk(ρtk − ρtk−1
)

+
∑

k: t1≤tk<t

hst−tk(hwtk−1
− h2

2
Φtk−1

) · Φtk−1

=
∑

k: t2≤tk<t

h(st−tk − st−tk−1
)ρtk−1

− hst−btchρbtch + hst−t1ρ0

+
∑

k: t1≤tk<t

hst−tk(hwtk−1
− h2

2
Φtk−1

) · Φtk−1

(A.7)
≤

∫ t1

0

st−rρbrchdr + (1/2)

∫ t

0

st−r(|wbrch |
2 + Lh2ρbrch)dr (A.18)

where in the last step we used Young’s product inequality and (A.13). To estimate the
terms in (A.15)-(A.18) involving |wbtch |2, by (A.9) and since w0 = 0,

2|wbtch |
2 = 2

∣∣∣∣∣12
∫ btch

0

(
Φbsch + Φdseh

)
ds

∣∣∣∣∣
2

≤

∣∣∣∣∣
∫ btch

0

Φbschds

∣∣∣∣∣
2

+

∣∣∣∣∣
∫ btch

0

Φdsehds

∣∣∣∣∣
2

≤ t

(∫ btch
0

|Φbsch |
2ds+

∫ btch
0

|Φdseh |
2ds

)
(A.7)
≤ 2Lt

∫ t

0

ρbschds

where in the second to last step we used Cauchy-Schwarz inequality. By (A.13) and
Fubini’s Theorem,∫ t

0

st−r|wbrch |
2dr

(A.13)
≤ L

∫ t

0

∫ r

0

rst−sρbschdsdr = L

∫ t

0

∫ t

s

rst−sρbschdrds

≤ Lt2

2

∫ t

0

st−sρbschds. (A.19)
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Combining (A.15)-(A.18),

∑
k: tk<t

[−st−tkδtk−] +

∫ t

0

st−r(−2ρbrch + αKabrch + εr)dr

≤
∫ t1

0

st−rρbrchdr +

∫ t

0

st−r(−2ρbrch + αKabrch)dr

+

∫ t

0

st−r((5Lh
2 + α2Kh2 +

α

2
KLh4)ρbrch + (

19

2
+ 2αKh2)|wbrch |

2)dr

(A.19)
≤

∫ t1

0

st−rρbrchdr +

∫ t

0

st−r(−2ρbrch + αKabrch)dr

+

∫ t

0

st−r((5Lh
2 + α2Kh2 +

α

2
KLh4) + (

19

4
+ αKh2)Lt2)ρbrchdr

(A.7)
≤

∫ t

0

st−r

[
α+ (

39

4
+ α2 +

3

2
αLt2)Lt2 − 1

]
ρbrchdr ≤ 0 with α = 4/9 (A.20)

where in the last step we used t/h ∈ Z, K ≤ L and condition (A.4) (i.e., Lt2 ≤ 20−1). The
required estimate is then obtained by inserting (A.20) into (A.14) and then using the
elementary inequality

ct ≤ 1− (α/2)Kt2 + (1/6)α2K2t4 ≤ 1− (α/2)Kt2 + (1/120)α2Kt2(K/L)

≤ 1− (α/2− α2/120)Kt2 ≤ 1−Kt2/5 with α = 4/9

which follows from condition (A.4) (i.e., Lt2 ≤ 20−1) and K ≤ L.

B Perturbation of the product model

If the confinement potential is a quadratic potential, i.e., V (x) = K/2|x|2 for all x ∈ Rd,
the mean-field model can be treated as a perturbation of the product model. Given
x, y ∈ Rdn we consider the synchronous coupling of four transition kernels πh(x, ·),
πh(y, ·), πprodh (x, ·) and πprodh (y, ·), where πh(x, ·) and πh(y, ·) denote the two transition

kernels with a mean-field interaction, i.e., ε > 0, and πprodh (x, ·) and πprodh (y, ·) are
transition kernels of the product model, i.e., ε = 0. Then the coupling HMC step is given
by

X(x, y) = qT (x, ξ), Y(x, y) = qT (y, ξ),

Xprod(x, y) = q̂T (x, ξ), Yprod(x, y) = q̂T (y, ξ),

where ξ ∼ N (0, Idn) and q̂T denotes the position component of the Hamiltonian dynamics
given by (2.3) for the product model.

Theorem B.1. Suppose that V (x) = (K/2)|x|2 for all x ∈ Rd and Assumption 2.4 hold.
Let T ∈ (0,∞), h1 ∈ [0,∞) and ε ∈ (0,∞) satisfy

K(T 2 + Th1) ≤ 1. (B.1)

Then for any h ∈ [0, h1] such that h = 0 or T/h ∈ N and any x, y ∈ Rdn,

n∑
i=1

|Xi(x, y)−Yi(x, y)− (Xi,prod(x, y)−Yi,prod(x, y))| ≤ 8εL̃(T 2 + Th)

n∑
i=1

|xi − yi|.

Proof. Fix x, y, v ∈ Rd. For t ∈ [0, T ], we write xit = qit(x, v) and yit = qit(y, v) for the i-th
position component of the solution to (2.3) with initial values (x, v) and (y, v), respectively,
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and with potential U(x) =
∑n
i=1((K/2)|xi|+ εn−1

∑n
j=1,j 6=iW (xi − xj)). Analogously, we

write x̂it = q̂it(x, v) and ŷit = q̂it(y, v) for the i-th position component of the solution to (2.3)
with initial values (x, v) and (y, v), respectively, and with potential Û(x) =

∑n
i=1(K/2)|xi|.

We set zit = xit − yit and ẑit = x̂it − ŷit for all i = 1, . . . , n and t ∈ [0, T ]. By (2.3) and
Assumption 2.4 it holds for t ∈ [0, T ],

max
s≤t

n∑
i=1

|zis − ẑis|

= max
s≤t

n∑
i=1

∣∣∣ ∫ s

0

∫ r

0

(
− 1

2
(∇iU(xibuc)−∇iU(yibuc) +∇iU(xidue)−∇iU(yidue))

+
1

2
(∇iÛ(x̂ibuc)−∇iÛ(ŷibuc) +∇iÛ(x̂idue)−∇iÛ(ŷidue))

)
dudr

− h

2

∫ s

0

(
∇iU(xibuc)−∇iU(yibuc)− (∇iÛ(x̂ibuc)−∇iÛ(ŷibuc))

)
du
∣∣∣

≤ K

2
(t2 + th) max

s≤t

n∑
i=1

|zis − ẑis|+ 2εL̃(t2 + th) max
s≤t

n∑
i=1

|zis|. (B.2)

By (B.1) and (4.11),

max
s≤t

n∑
i=1

|zis − ẑis| ≤ 4εL̃(t2 + th) max
s≤t

n∑
i=1

|zis| ≤ 8εL̃(t2 + th)

n∑
i=1

|xi − yi|.

Thus, the result holds for t = T .

We note that the step (B.2) uses crucially that the third derivative of V vanishes.
As some calculations simplify in the product case with quadratic confinement po-

tential, (4.16) in Lemma 4.3 holds for all i = 1, . . . , n provided K(t2 + th) ≤ 1/4 and
h ≤ (4/165)t is satisfied. Hence by (6.7),

n∑
i=1

|Xi,prod(x, y)−Yi,prod(x, y)| ≤ (1− (1/8)KT 2)

n∑
i=1

|xi − yi|

for K(T 2+Th) ≤ 1/4 and h ≤ (4/165)T . Combining the contraction result for the product
model with the perturbation result yields the following consequence.

Corollary B.2. Suppose that V (x) = (K/2)|x|2 for all x ∈ Rd and Assumption 2.4 hold.
Let T ∈ (0,∞), h1 ∈ (0,∞) and ε ∈ (0,∞) satisfy

K(T 2 + Th1) ≤ 1/4, h ≤ (4/165)T, and

εL̃ ≤ K/256. (B.3)

Then, for any h ∈ [0, h1] such that h = 0 or T/h ∈ N and for any x, y ∈ Rdn

n∑
i=1

|Xi(x, y)−Yi(x, y)| ≤ (1−KT 2/16)

n∑
i=1

|xi − yi|,

and for any two probability measures ν and η on Rdn and any m ∈ N,

Wl1(νπmh , ηπ
m
h ) ≤ e−KT

2m/16Wl1(ν, η).

Proof. The result is a direct consequence of the contraction result and Theorem B.1, i.e.,

n∑
i=1

|Xi(x, y)−Yi(x, y)| ≤
n∑
i=1

|Xi,prod(x, y)−Yi,prod(x, y)|
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+

n∑
i=1

|Xi(x, y)−Yi(x, y)− (Xi,prod(x, y)−Yi,prod(x, y))|

≤ (1−KT 2/8)

n∑
i=1

|xi − yi|+ (8εL̃(T 2 + Th)

n∑
i=1

|xi − yi|

≤ (1−KT 2/16)

n∑
i=1

|xi − yi|,

where the last step follows by (B.3). The second bound in Corollary B.2 holds in the
same line as the proof of Corollary 3.6.

References

[1] Assyr Abdulle, Gilles Vilmart, and Konstantinos C Zygalakis, High order numerical approx-
imation of the invariant measure of ergodic sdes, SIAM Journal on Numerical Analysis 52
(2014), no. 4, 1600–1622. MR3229658

[2] Assyr Abdulle, Gilles Vilmart, and Konstantinos C Zygalakis, Long time accuracy of lie–trotter
splitting methods for langevin dynamics, SIAM Journal on Numerical Analysis 53 (2015),
no. 1, 1–16. MR3296612

[3] E. Akhmatskaya and S. Reich, GSHMC: An efficient method for molecular simulation, J. Com-
put. Phys. 227 (2008), 4937–4954. MR2414842

[4] M. P. Allen and D. J. Tildesley, Computer simulation of liquids, Clarendon Press, 1987.

[5] Adriano Amarante, Guedmiller Oliveira, Jéssica Ierich, Richard Cunha, Luiz Freitas, Eduardo
Franca, and Fabio Leite, Molecular modeling applied to nanobiosystems, pp. 179–220, 12
2017.

[6] A. Beskos, N. S. Pillai, G. O. Roberts, J. M. Sanz-Serna, and A. M. Stuart, Optimal tuning of
hybrid Monte-Carlo algorithm, Bernoulli 19 (2013), 1501–1534. MR3129023

[7] A. Beskos, F. J. Pinski, J. M. Sanz-Serna, and A. M. Stuart, Hybrid Monte-Carlo on
Hilbert spaces, Stochastic Processes and their Applications 121 (2011), no. 10, 2201–2230.
MR2822774

[8] A. Beskos, G. O. Roberts, and A. M. Stuart, Optimal scalings for local Metropolis-Hastings
chains on non-product targets in high dimensions, Ann. Appl. Probab. 19 (2009), 863–898.
MR2537193

[9] J. Bierkens, P. Fearnhead, and G. Roberts, The zig-zag process and super-efficient sampling
for Bayesian analysis of big data, The Annals of Statistics 47 (2019), no. 3, 1288–1320.
MR3911113

[10] S. Blanes, F. Casas, and J. M. Sanz-Serna, Numerical integrators for the hybrid Monte Carlo
method, SIAM Journal on Scientific Computing 36 (2014), no. 4, A1556–A1580. MR3233942

[11] Peter G. Bolhuis, Transition path sampling on diffusive barriers, Journal of Physics: Con-
densed Matter 15 (2002), no. 1, S113.

[12] Nawaf Bou-Rabee and Andreas Eberle, Two-scale coupling for preconditioned Hamiltonian
Monte Carlo in infinite dimensions, Stoch. Partial Differ. Equ. Anal. Comput. 9 (2021), no. 1,
207–242. MR4218791

[13] Nawaf Bou-Rabee, Andreas Eberle, and Raphael Zimmer, Coupling and convergence for
hamiltonian monte carlo, Ann. Appl. Probab. 30 (2020), no. 3, 1209–1250. MR4133372

[14] Nawaf Bou-Rabee and Houman Owhadi, Long-run accuracy of variational integrators in
the stochastic context, SIAM Journal on Numerical Analysis 48 (2010), no. 1, 278–297.
MR2608370

[15] Nawaf Bou-Rabee and J. M. Sanz-Serna, Geometric integrators and the Hamiltonian Monte
Carlo method, Acta Numer. 27 (2018), 113–206. MR3826507

[16] Nawaf Bou-Rabee and Jesús María Sanz-Serna, Randomized Hamiltonian Monte Carlo, Ann.
Appl. Probab. 27 (2017), no. 4, 2159–2194. MR3693523

EJP 28 (2023), paper 91.
Page 37/40

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3229658
https://mathscinet.ams.org/mathscinet-getitem?mr=3296612
https://mathscinet.ams.org/mathscinet-getitem?mr=2414842
https://mathscinet.ams.org/mathscinet-getitem?mr=3129023
https://mathscinet.ams.org/mathscinet-getitem?mr=2822774
https://mathscinet.ams.org/mathscinet-getitem?mr=2537193
https://mathscinet.ams.org/mathscinet-getitem?mr=3911113
https://mathscinet.ams.org/mathscinet-getitem?mr=3233942
https://mathscinet.ams.org/mathscinet-getitem?mr=4218791
https://mathscinet.ams.org/mathscinet-getitem?mr=4133372
https://mathscinet.ams.org/mathscinet-getitem?mr=2608370
https://mathscinet.ams.org/mathscinet-getitem?mr=3826507
https://mathscinet.ams.org/mathscinet-getitem?mr=3693523
https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unadjusted HMC for mean-field models

[17] C. M. Campos and J. M. Sanz-Serna, Extra chance generalized hybrid Monte Carlo, Journal of
Computational Physics 281 (2015), 365–374. MR3281978

[18] E. Cancés, F. Legoll, and G. Stoltz, Theoretical and numerical comparison of some sampling
methods for molecular dynamics, Mathematical Modelling and Numerical Analysis 41 (2007),
351–389. MR2339633

[19] T. Chen, E. Fox, and C. Guestrin, Stochastic gradient Hamiltonian Monte Carlo, International
conference on machine learning, 2014, pp. 1683–1691.

[20] Zongchen Chen and Santosh S. Vempala, Optimal convergence rate of Hamiltonian Monte
Carlo for strongly logconcave distributions, Theory Comput. 18 (2022), Paper No. 9, 18.
MR4430734

[21] Xiang Cheng, Niladri S. Chatterji, Yasin Abbasi-Yadkori, Peter L. Bartlett, and Michael I.
Jordan, Sharp convergence rates for langevin dynamics in the nonconvex setting, arXiv
preprint arXiv:1805.01648 (2018).

[22] M. Dashti and A. M. Stuart, The Bayesian approach to inverse problems, Handbook of
Uncertainty Quantification (2017), 311–428. MR3839555

[23] G. Deligiannidis, A. Bouchard-Côté, and A. Doucet, Exponential ergodicity of the bouncy
particle sampler, The Annals of Statistics 47 (2019), no. 3, 1268–1287. MR3911112

[24] Simon Duane, A. D. Kennedy, Brian J. Pendleton, and Duncan Roweth, Hybrid Monte Carlo,
Phys. Lett. B 195 (1987), no. 2, 216–222. MR3960671

[25] David B Dunson and JE Johndrow, The hastings algorithm at fifty, Biometrika 107 (2020),
no. 1, 1–23. MR4064137

[26] Alain Durmus and Andreas Eberle, Asymptotic bias of inexact Markov chain monte carlo
methods in high dimension, arXiv preprint arXiv:2108.00682 (2021).

[27] Alain Durmus, Andreas Eberle, Arnaud Guillin, and Raphael Zimmer, An elementary approach
to uniform in time propagation of chaos, Proc. Amer. Math. Soc. 148 (2020), no. 12, 5387–
5398. MR4163850

[28] Alain Durmus, Éric Moulines, and Eero Saksman, Irreducibility and geometric ergodicity of
Hamiltonian Monte Carlo, Ann. Statist. 48 (2020), no. 6, 3545–3564. MR4185819

[29] A. Eberle, Error bounds for Metropolis-Hastings algorithms applied to perturbations of
Gaussian measures in high dimensions, Ann. Appl. Probab. 24 (2014), no. 1, 337–377.
MR3161650

[30] A. Eberle, Reflection couplings and contraction rates for diffusions, Probability theory and
related fields 166 (2016), no. 3-4, 851–886. MR3568041

[31] A. Eberle, A. Guillin, and R. Zimmer, Couplings and quantitative contraction rates for
Langevin dynamics, Ann. Probab. 47 (2019), no. 4, 1982–2010. MR3980913

[32] Andreas Eberle, Markov processes, Lecture Notes, University of Bonn (2020).

[33] E. Emmrich, Discrete versions of gronwall’s lemma and their application to the numerical
analysis of parabolic problems, Preprint No. 637, Fachbereich Mathematik, TU Berlin (1999).

[34] Youhan Fang, Jesus-Maria Sanz-Serna, and Robert D Skeel, Compressible generalized hybrid
monte carlo, The Journal of Chemical Physics 140 (2014), no. 17, 174108.

[35] D. Frenkel and B. Smit, Understanding molecular simulation: From algorithms to applications,
2nd edition, Academic Press, 2002.

[36] A. Gelman, W. R. Gilks, and G. O. Roberts, Weak convergence and optimal scaling of random
walk metropolis algorithms, Ann. Appl. Probab. 7 (1997), 110–120. MR1428751

[37] M. Girolami and B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo
methods, J. R. Statist. Soc. B 73 (2011), 123–214. MR2814492

[38] Arnaud Guillin, Wei Liu, Liming Wu, and Chaoen Zhang, The kinetic Fokker-Planck equation
with mean field interaction, J. Math. Pures Appl. (9) 150 (2021), 1–23. MR4248461

[39] Arnaud Guillin and Pierre Monmarché, Uniform long-time and propagation of chaos estimates
for mean field kinetic particles in non-convex landscapes, J. Stat. Phys. 185 (2021), no. 2,
Paper No. 15, 20. MR4333408

EJP 28 (2023), paper 91.
Page 38/40

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3281978
https://mathscinet.ams.org/mathscinet-getitem?mr=2339633
https://mathscinet.ams.org/mathscinet-getitem?mr=4430734
https://arXiv.org/abs/1805.01648
https://mathscinet.ams.org/mathscinet-getitem?mr=3839555
https://mathscinet.ams.org/mathscinet-getitem?mr=3911112
https://mathscinet.ams.org/mathscinet-getitem?mr=3960671
https://mathscinet.ams.org/mathscinet-getitem?mr=4064137
https://arXiv.org/abs/2108.00682
https://mathscinet.ams.org/mathscinet-getitem?mr=4163850
https://mathscinet.ams.org/mathscinet-getitem?mr=4185819
https://mathscinet.ams.org/mathscinet-getitem?mr=3161650
https://mathscinet.ams.org/mathscinet-getitem?mr=3568041
https://mathscinet.ams.org/mathscinet-getitem?mr=3980913
https://mathscinet.ams.org/mathscinet-getitem?mr=1428751
https://mathscinet.ams.org/mathscinet-getitem?mr=2814492
https://mathscinet.ams.org/mathscinet-getitem?mr=4248461
https://mathscinet.ams.org/mathscinet-getitem?mr=4333408
https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unadjusted HMC for mean-field models

[40] R. Gupta, G. W. Kilcup, and S. R. Sharpe, Tuning the hybrid Monte Carlo algorithm, Physical
Review D 38 (1988), no. 4, 1278.

[41] M. Hairer, A. M. Stuart, and S. J. Vollmer, Spectral gaps for a Metropolis–Hastings algorithm
in infinite dimensions, Ann. Appl. Probab. 24 (2014), no. 6, 2455–2490. MR3262508

[42] Matthew D. Hoffman and Andrew Gelman, The no-U-turn sampler: adaptively setting path
lengths in Hamiltonian Monte Carlo, J. Mach. Learn. Res. 15 (2014), 1593–1623. MR3214779

[43] A. M. Horowitz, A generalized guided Monte-Carlo algorithm, Phys. Lett. B 268 (1991),
247–252.

[44] Mark Kac, Foundations of kinetic theory. in proceedings of the third berkeley symposium on
mathematical statistics and probability, 1954–1955, vol. III, University of California Press,
Berkeley and Los Angeles, 1956. MR0084985

[45] R. Korol, J. L. Rosa-Raíces, N. Bou-Rabee, and T. F. Miller III, Dimension-free path-integral
molecular dynamics without preconditioning, The Journal of Chemical Physics 152 (2020),
no. 10, 104102.

[46] S. C. Kou, Qing Zhou, and Wing Hung Wong, Equi-energy sampler with applications in
statistical inference and statistical mechanics, Ann. Statist. 34 (2006), no. 4, 1581–1652,
With discussions and a rejoinder by the authors. MR2283711

[47] Benedict Leimkuhler, Charles Matthews, and Gabriel Stoltz, The computation of averages
from equilibrium and nonequilibrium langevin molecular dynamics, IMA Journal of Numerical
Analysis 36 (2016), no. 1, 13–79. MR3463433

[48] T. Lelièvre, M. Rousset, and G. Stoltz, Free energy computations: A mathematical perspective,
1st ed., Imperial College Press, 2010. MR2681239

[49] Faming Liang and Wing Hung Wong, Real-parameter evolutionary Monte Carlo with appli-
cations to Bayesian mixture models, J. Amer. Statist. Assoc. 96 (2001), no. 454, 653–666.
MR1946432

[50] Jun S. Liu, Monte Carlo strategies in scientific computing, Springer Series in Statistics,
Springer-Verlag, New York, 2001. MR1842342

[51] Samuel Livingstone, Michael Betancourt, Simon Byrne, and Mark Girolami, On the geometric
ergodicity of Hamiltonian Monte Carlo, Bernoulli 25 (2019), no. 4A, 3109–3138. MR4003576

[52] Paul B. Mackenzie, An improved hybrid Monte Carlo Method, Phys. Lett. B 226 (1989),
369–371.

[53] O. Mangoubi and A. Smith, Rapid mixing of hamiltonian monte carlo on strongly log-concave
distributions, arXiv preprint arXiv:1708.07114v1 (2017). MR4332690

[54] J. C. Mattingly, A. M. Stuart, and D. J. Higham, Ergodicity for SDEs and approximations:
locally Lipschitz vector fields and degenerate noise, Stoch. Proc. Appl. 101 (2002), no. 2,
185–232. MR1931266

[55] J. C. Mattingly, A. M. Stuart, and M. V. Tretyakov, Convergence of numerical time-averaging
and stationary measures via Poisson equations, SIAM J. Num. Anal. 48 (2010), no. 2, 552–577.
MR2669996

[56] H. P. McKean, Jr., A class of Markov processes associated with nonlinear parabolic equations,
Proc. Nat. Acad. Sci. U.S.A. 56 (1966), 1907–1911. MR0221595

[57] Sylvie Méléard, Asymptotic behaviour of some interacting particle systems; McKean-Vlasov
and Boltzmann models, Probabilistic models for nonlinear partial differential equations
(Montecatini Terme, 1995), Lecture Notes in Math., vol. 1627, Springer, Berlin, 1996, pp. 42–
95. MR1431299

[58] Stéphane Mischler and Clément Mouhot, Kac’s program in kinetic theory, Invent. Math. 193
(2013), no. 1, 1–147. MR3069113

[59] Radford M. Neal, MCMC using Hamiltonian dynamics, Handbook of Markov chain Monte
Carlo, Chapman & Hall/CRC Handb. Mod. Stat. Methods, CRC Press, Boca Raton, FL, 2011,
pp. 113–162. MR2858447

[60] Karl Oelschlager, A martingale approach to the law of large numbers for weakly interacting
stochastic processes, The Annals of Probability (1984), 458–479. MR0735849

EJP 28 (2023), paper 91.
Page 39/40

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=3262508
https://mathscinet.ams.org/mathscinet-getitem?mr=3214779
https://mathscinet.ams.org/mathscinet-getitem?mr=0084985
https://mathscinet.ams.org/mathscinet-getitem?mr=2283711
https://mathscinet.ams.org/mathscinet-getitem?mr=3463433
https://mathscinet.ams.org/mathscinet-getitem?mr=2681239
https://mathscinet.ams.org/mathscinet-getitem?mr=1946432
https://mathscinet.ams.org/mathscinet-getitem?mr=1842342
https://mathscinet.ams.org/mathscinet-getitem?mr=4003576
https://arXiv.org/abs/1708.07114v1
https://mathscinet.ams.org/mathscinet-getitem?mr=4332690
https://mathscinet.ams.org/mathscinet-getitem?mr=1931266
https://mathscinet.ams.org/mathscinet-getitem?mr=2669996
https://mathscinet.ams.org/mathscinet-getitem?mr=0221595
https://mathscinet.ams.org/mathscinet-getitem?mr=1431299
https://mathscinet.ams.org/mathscinet-getitem?mr=3069113
https://mathscinet.ams.org/mathscinet-getitem?mr=2858447
https://mathscinet.ams.org/mathscinet-getitem?mr=0735849
https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Unadjusted HMC for mean-field models

[61] Jakiw Pidstrigach, Convergence of preconditioned Hamiltonian Monte Carlo on Hilbert
spaces, IMA Journal of Numerical Analysis (2022), drac052.

[62] F. J. Pinski and A. M. Stuart, Transition paths in molecules at finite temperature, The Journal
of Chemical Physics 132 (2010), no. 18, 184104.

[63] G. O. Roberts and J. S. Rosenthal, Optimal scaling of discrete approximations to Langevin
diffusions, J. Roy. Statist. Soc. Ser. B 60 (1998), 255–268. MR1625691

[64] G. O. Roberts and R. L. Tweedie, Exponential convergence of Langevin distributions and their
discrete approximations, Bernoulli 2 (1996), 341–363. MR1440273

[65] C. Schütte, Conformational dynamics: Modeling, theory, algorithm, and application to
biomolecules, Habilitation, Free University Berlin, 1999.

[66] G. Stoltz, Some mathematical methods for molecular and multiscale simulation, Ph.D. thesis,
Ecole Nationale des Ponts et Chaussées, 2007.

[67] Alain-Sol Sznitman, Topics in propagation of chaos, École d’Été de Probabilités de Saint-
Flour XIX—1989, Lecture Notes in Math., vol. 1464, Springer, Berlin, 1991, pp. 165–251.
MR1108185

[68] D. Talay, Stochastic Hamiltonian systems: Exponential convergence to the invariant measure,
and discretization by the implicit Euler scheme, Markov Processes and Related Fields 8
(2002), 1–36. MR1924934

[69] Julian Tugaut et al., Convergence to the equilibria for self-stabilizing processes in double-well
landscape, Annals of Probability 41 (2013), no. 3A, 1427–1460. MR3098681

[70] Maxime Vono, Daniel Paulin, and Arnaud Doucet, Efficient MCMC sampling with dimension-
free convergence rate using ADMM-type splitting, J. Mach. Learn. Res. 23 (2022), Paper No.
[25], 69. MR4420750

[71] David J. Wales, Energy landscapes of clusters bound by short-ranged potentials,
ChemPhysChem 11 (2010), no. 12, 2491–2494.

Acknowledgments. The authors would like to thank Andreas Eberle for his insights
and advice during the development of this work.

EJP 28 (2023), paper 91.
Page 40/40

https://www.imstat.org/ejp

https://mathscinet.ams.org/mathscinet-getitem?mr=1625691
https://mathscinet.ams.org/mathscinet-getitem?mr=1440273
https://mathscinet.ams.org/mathscinet-getitem?mr=1108185
https://mathscinet.ams.org/mathscinet-getitem?mr=1924934
https://mathscinet.ams.org/mathscinet-getitem?mr=3098681
https://mathscinet.ams.org/mathscinet-getitem?mr=4420750
https://doi.org/10.1214/23-EJP970
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

	Introduction
	Preliminaries
	Hamiltonian Monte Carlo Method
	Mean-field particle model
	Construction of coupling
	Numerical simulations

	Main results
	Dimension-free contraction rate for unadjusted HMC
	Quantitative bounds for distance to the target measure
	Dimension-free bounds for ergodic averages of intensive observables

	Estimates for the dynamics 
	Deviation from free dynamics
	Bounds in region of strong convexity

	Proof of results from Section 4
	Proofs of main results
	Proof of main contraction result
	Proofs of results from Section 3.2
	Proofs of results from Section 3.3

	Contractivity of uHMC for -strongly convex and -gradient Lipschitz 
	Perturbation of the product model
	References

