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Breaking multivariate records*

James Allen Fill†

Abstract

For a sequence of i.i.d. d-dimensional random vectors with independent continuously
distributed coordinates, say that the nth observation in the sequence sets a record
if it is not dominated in every coordinate by an earlier observation; for j ≤ n, say
that the jth observation is a current record at time n if it has not been dominated in
every coordinate by any of the first n observations; and say that the nth observation
breaks k records if it sets a record and there are k observations that are current
records at time n− 1 but not at time n.

For general dimension d, we identify, with proof, the asymptotic conditional distri-
bution of the number of records broken by an observation given that the observation
sets a record.

Fix d, and let K(d) be a random variable with this distribution. We show that the
(right) tail of K(d) satisfies

P(K(d) ≥ k) ≤ exp
[
−Ω
(
k(d−1)/(d2+d−3)

)]
as k →∞

and

P(K(d) ≥ k) ≥ exp
[
−O
(
k1/(d−1)

)]
as k →∞.

When d = 2, the description of K(2) in terms of a Poisson process agrees with
the main result from Fill (2021) that K(2) has the same distribution as G − 1, where
G ∼ Geometric(1/2). Note that the lower bound on P(K(d) ≥ k) implies that the
distribution of K(d) is not (shifted) Geometric for any d ≥ 3.

We show that P(K(d) ≥ 1) = exp[−Θ(d)] as d → ∞; in particular, K(d) → 0 in
probability as d→∞.
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Breaking multivariate records

1 Introduction and main result

Let X(1),X(2), . . . be i.i.d. (independent and identically distributed) copies of a random
vector X = (X1, . . . , Xd) with independent coordinates, each uniformly distributed over
the unit interval. In this paper, for general dimension d, we prove (Theorem 1.3) that
the conditional distribution of the number of records broken by the nth observation X(n)

given that X(n) sets a record has a weak limit [call it µ(d), the distribution or law L(K(d))

of a random variable K(d)] as n → ∞, and we identify this limit. (See Definition 1.1
for the relevant definitions regarding records.) The case d = 1 is trivial: K(d) = 1

with probability 1. The case d = 2 is treated in depth in [3], where it is shown that
µ(2) = L(G − 1) with G ∼ Geometric(1/2).

Notation. We let 1(E) = 1 or 0 according as E is true or false, and for a random
variable Y and an event A we write E(Y ;A) as shorthand for E[Y 1(A)]. We write ln or
L for natural logarithm. For d-dimensional vectors x = (x1, . . . , xd) and y = (y1, . . . , yd),
write x ≺ y to mean that xj < yj for j = 1, . . . , d. The notation x � y means y ≺ x.
The notations x � y and y � x each mean that either x ≺ y or x = y. Whenever we
speak of incomparable vectors, we will mean vectors belonging to Rd that are (pairwise-)
incomparable with respect to the partial order �. We write x+ :=

∑d
j=1 xj for the sum of

coordinates of x = (x1, . . . , xd) and ‖ · ‖ for `1-norm; thus x+ = ‖x‖ if x � 0, where 0 is
the vector (0, . . . , 0).

We begin with some relevant definitions, taken from [5; 4; 3]. We give definitions
for record-large values; we consider such records exclusively except in the case of
Theorem 1.3′, which deals with record-small values (for which the analogous definitions
are obvious).

Let X(1),X(2), . . . be i.i.d. (independent and identically distributed) copies of a ran-
dom vector X with independent coordinates, each drawn from a common specified
distribution. We mainly consider the case (as in [5; 4]) where the common distribution is
Exponential(1), but in Theorem 1.3′ we consider the uniform distribution over the unit
interval. As far as counting records or broken records, any continuous distribution gives
the same results.

Definition 1.1. (a) We say that X(n) is a Pareto record (or simply record, or that X(n)

sets a record at time n) if X(n) 6≺ X(i) for all 1 ≤ i < n.

(b) If 1 ≤ j ≤ n, we say that X(j) is a current record (or remaining record, or
maximum) at time n if X(j) 6≺ X(i) for all i ∈ [n].

(c) If 0 ≤ k ≤ n, we say that X(n) breaks (or kills) k records if X(n) sets a record and
there exist precisely k values j with 1 ≤ j < n such that X(j) is a current record at time
n− 1 but is not a current record at time n.

(d) For n ≥ 1 (or n ≥ 0, with the obvious conventions) let Rn denote the number
of records X(k) with 1 ≤ k ≤ n, and let rn denote the number of remaining records at
time n.

Remark 1.2. Definition 1.1 is illustrated in Figures 1–2, adapted from [3, Figure 1] and
[4, Figure 2], respectively. In dimension 2, remaining records can be ordered northwest
to southeast, as seen in Figure 1. In dimensions d ≥ 3, the record-setting region is a
(typically) more complicated set, as illustrated in Figure 2.

A maximum x for a given set S ⊆ Rd is defined in similar fashion to Definition 1.1(b):
We say that x is a maximum of S if x 6≺ y for all y ∈ S. In this language, if 1 ≤
j ≤ n we have that X(j) is a remaining record at time n if X(j) is a maximum of
{X(1),X(2), . . . ,X(n)}.

Here is the main result of this paper, illustrated in Figure 3.
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0

Figure 1: In this 2-dimensional example, after n− 1 observations, none of which fall in
the shaded region, there are rn−1 = 6 remaining records. The nth observation, shown in
bright green at the intersection of the dashed lines, breaks the Kn = k = 3 remaining
records shown in red but not the rn−1 −Kn = 3 remaining records shown in dark green.

Theorem 1.3. Let X(1),X(2), . . . be i.i.d. d-variate observations, each with independent
Exponential(1) coordinates. Let Kn = −1 if X(n) does not set a record, and otherwise let
Kn denote the number of remaining records killed by X(n). Then Kn, conditionally given
Kn ≥ 0, converges in distribution as n→∞ to the law of K ≡ K(d), where

L(K) is the mixture EL(KG).

Here G is distributed standard Gumbel and

Kg = number of maxima dominated by x ≡ x(g) := (g/d, . . . , g/d)

in a nonhomogeneous Poisson point process in Rd with intensity function

1(z 6� x)e−z+ , z ∈ Rd.

It is easy to see from the form of the intensity function that, for each g ∈ R, the
distribution of Kg is unchanged if x(g) is replaced by any point x̃(g) ∈ Rd with x̃(g)+ = g.

By using the decreasing bijection z 7→ e−z from R to R+ := (0,∞), which is also a
bijection from R+ to (0, 1), Theorem 1.3 can be recast equivalently as follows:

Theorem 1.3′. Suppose that independent d-variate observations, each uniformly dis-
tributed in the unit hypercube (0, 1)d, arrive at times 1, 2, . . ., and consider record-small
values. Let Kn = −1 if the nth observation is not a new record, and otherwise let
Kn denote the number of remaining records killed by the nth observation. Then Kn,
conditionally given Kn ≥ 0, converges in distribution as n→∞ to the law of K ≡ K(d),
where

L(K) is the mixture EL(K′W ).

Here W is distributed Exponential(1) and

K′w = number of minima that dominate x′ ≡ x′(w) := (w1/d, . . . , w1/d)
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x1

x2

x3

g

Figure 2: In this 3-dimensional example, suppose that there are 8 remaining records,
as shown in green. A new observation will set a record if and only if it belongs to
the union of positive orthants translated by one of the 17 points shown in purple. The
lower boundary of one of these translated orthants (corresponding to the purple point
labeled g) is shown using dashed lines.

in a (homogeneous) unit-rate Poisson point process in the set

{z ∈ Rd+ : z 6≺ x′}.

Section 2 gives a non-rigorous but informative proof of Theorem 1.3, and the much
longer Section 3 gives a rigorous proof. Tail probabilities for K(d) are studied (asymp-
totically) for each fixed d in Section 4; moments are considered, too. Asymptotics of
L(K(d)) as d→∞ are studied in Section 5; in particular, we find that K(d) converges in
probability to 0. Finally, in Section 6 we show that the main Theorem 1.3 of this paper
reduces to the main Theorem 1.1 of [4] when d = 2.

2 Informal proof of main theorem

In this section we give an informal (heuristic) proof of Theorem 1.3; a formal proof is
given in the next section. The informal proof suggests that it should be possible to prove
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x

Z(1)

Z(2)

Figure 3: In this (d = 2) realization of the Poisson point process in Theorem 1.3 and the
theorem’s possible extension in Section 2, the maxima are shown in red [and labeled
Z(1) and Z(2)] if dominated by the bright green point x (so K = 2) and in dark green
otherwise. The intensity of the process vanishes in the shaded region.

extensions of Theorem 1.3 (under the same hypotheses as the theorem and using the
same notation) such as the following, but we haven’t pursued such extensions in this
paper.

Possible extension. Let k ≥ 1. Over the event Kn = k, let Y(n,1), . . ., Y(n,k) denote the
values of the k records killed by X(n), listed (for definiteness) in increasing order of
first coordinate, and let Y(n,`) := X(n) for ` > k. Then (X(n) −Y(n,1),X(n) −Y(n,2), . . . )

converges in distribution to

(x(G)− Z(1)(G),x(G)− Z(2)(G), . . . );

here, over the event {G = g, K = k}, the points Z(1)(g), . . . ,Z(k)(g) are the k maxima
counted by Kg, listed in increasing order of first coordinate, and Z(`)(g) := x(g) for ` > k.

Before beginning our heuristic proof of Theorem 1.3, we gather and utilize important
information from [5] in the following remark.

Remark 2.1. (a) It is well known that

pn := P(X(n) sets a record) = P(Kn ≥ 0) ∼ 1

n

(lnn)d−1

(d− 1)!
(2.1)

as n→∞; see, for example, [5, (4.5)].

(b) Recall from [5, proof of Theorem 1.4] that, conditionally given Kn ≥ 0, the joint
density of

Gn = ‖X(n)‖ − Ln, Un = ‖X(n)‖−1X(n)

EJP 28 (2023), paper 78.
Page 5/27

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP968
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Breaking multivariate records

with respect to the product of Lebesgue measure on R and uniform distribution on the
probability simplex Sd−1 is

(g,u) 7→ p−1
n n−1 (g + Ln)d−1

(d− 1)!
e−g(1− n−1e−g)n−11(g > −Ln) (2.2)

and, as n→∞, converges pointwise to

(g,u) 7→ e−g exp
(
−e−g

)
,

the density (with respect to the same product measure) of the standard Gumbel probabil-
ity measure and uniform measure on Sd−1. Thus by Scheffé’s theorem (e.g., [1, Theorem
16.12]), there is total variation convergence of L(Gn,Un) to L(G,U) in obvious notation.

(c) We also claim that

E e−Gn →
∫ ∞
−∞

e−2g exp(−e−g) dg = 1 (2.3)

as n→∞. To see this, first observe that as n→∞ we have [using (2.2) and (2.1)] that

E e−Gn =

∫ ∞
−∞

1(g > −Ln) p−1
n

(g + Ln)d−1

(d− 1)!

e−2g

n

(
1− n−1e−g

)n−1
dg

∼
∫ ∞
−∞

1(g > −Ln)
(

1 +
g

Ln

)d−1

e−2g
(
1− n−1e−g

)n−1
dg.

For fixed g ∈ R, as n→∞ the integrand converges to

e−2g exp
(
−e−g

)
,

so it suffices to invoke the dominated convergence theorem. For n ≥ 3 we can dominate
the integrand by

(1 + |g|)d−1e−2z exp

(
−n− 1

n
e−g
)
≤ (1 + |g|)d−1e−2g exp

(
−2

3
e−g
)
,

and this last expression integrates: Indeed, as g → −∞, it is asymptotically equivalent
to |g|d−1e2|g| exp

(
− 2

3e
|g|), and as g →∞, it is asymptotically equivalent to gd−1e−2g.

Here now is a heuristic proof of Theorem 1.3. Recall that we use the shorthand
notation L for natural logarithm. From Remark 2.1(a), the conditional density of Gn =

X
(n)
+ − Ln given Kn ≥ 0 converges pointwise to the standard Gumbel density as n→∞;

further, the conditional distribution of X(n) given Kn ≥ 0 and Gn = g is uniform over
all positive d-tuples summing to Ln + g. Next, given Kn ≥ 0 and X(n) = w � 0 with
w+ = Ln+ g (call this condition C), the random variables X(1) −w, . . . ,X(n−1) −w are
i.i.d., each with (conditional) density proportional to z 7→ e−z+ with respect to Lebesgue
measure on

Sn := {z ∈ Rd : z � −w and z 6� 0} = {z ∈ Rd : z � −w} −Rd+,

a proper set difference; the proportionality constant is then the reciprocal of ew+ − 1 =

neg − 1. For ∆ > 0 and g fixed real numbers, this implies that the conditional density
in question evaluated at a point z 6� 0 at distance (say, `1-distance) at most ∆ from 0 is
asymptotically equivalent to n−1e−z+−g.

It follows that (still conditionally given C) the set of points X(i) − w + x(g) with
i ∈ {1, . . . , n− 1} that are within distance ∆ of x(g) is approximately distributed (when n
is large) as a nonhomogeneous Poisson point process with intensity function as described
in Theorem 1.3, restricted to the ball of radius ∆ centered at x(g). The maxima of
this restricted Poisson process ought to be the same as the maxima of the unrestricted
process when ∆ is sufficiently large. Letting ∆→∞, Theorem 1.3 results.
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3 Proof of Theorem 1.3

In this section we give a complete formal proof of the main Theorem 1.3. Let
µn := L(Kn | Kn ≥ 0). In Subsection 3.1 we prove the existence of a weak limit µ for µn,
and in Subsection 3.2 we identify µ as the law of K as described in Theorem 1.3.

3.1 Existence of weak limit

In this subsection we prove the following proposition.

Proposition 3.1. There exists a probability measure µ on {1, 2, . . . } such that µn =

L(Kn | Kn ≥ 0) converges weakly to µ.

Indeed, Proposition 3.1 is established by showing that the sequence (µn) is tight
(Lemma 3.2) and has a vague limit (Lemma 3.3).

Lemma 3.2. (i) We have E(Kn | Kn ≥ 0)→ 1 as n→∞.

(ii) The sequence (µn) is tight.

Proof. By Markov’s inequality, boundedness of first moments is a sufficient condition for
tightness. Thus (ii) follows from (i).

We now prove (i). When d = 1 we have Kn = 1 deterministically if Kn ≥ 0, so (i) is
obvious.

We therefore assume henceforth that d ≥ 2. Recalling Definition 1.1(d) and intro-
ducing the dimension d into the notation, denote the number of records that have been
broken through time n by βn(d) := Rn(d)− rn(d). Then

E(Kn |Kn ≥ 0) = E[βn(d)− βn−1(d) |X(n) sets a record]

=
E[βn(d)− βn−1(d); X(n) sets a record]

P(X(n) sets a record)

=
E[βn(d)− βn−1(d)]

Pd(X(n) sets a record)
. (3.1)

For the numerator of (3.1) we observe

E[βn(d)− βn−1(d)] = E[Rn(d)−Rn−1(d)]− E rn(d) + E rn−1(d)

= Pd(X
(n) sets a record)− ERn(d− 1) + ERn−1(d− 1)

= Pd(X
(n) sets a record)− Pd−1(X(n) sets a record),

where the second equality follows by standard consideration of concomitants: The
two random variables rn(d) and Rn(d− 1) have the same distribution, for any n and d.
Combining the last display with (3.1), one has

E(Kn |Kn ≥ 0) = 1− Pd−1(X(n) sets a record)

Pd(X(n) sets a record)
. (3.2)

Thus, by (2.1), as n→∞ we have

E(Kn |Kn ≥ 0) = 1− (1 + o(1))
d− 1

lnn
→ 1,

as claimed.

Lemma 3.3. The sequence of probability measures µn = L(Kn | Kn ≥ 0) converges
vaguely.
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Proof. It is sufficient to show that there exists (κk)k=1,2,... such that for each k we have

P(Kn ≥ k | Kn ≥ 0)→ κk as n→∞. (3.3)

This is proved by means of the next three lemmas and the arguments interspersed among
them.

Lemma 3.4. Let ∆ > 0. Let Kn(∆+) = −1/2 if X(n) does not set a record, and otherwise
let Kn(∆+) denote the number of remaining records killed by X(n) that are at `1-distance
> ∆ from X(n). Then

lim sup
n→∞

P(Kn(∆+) ≥ 1 | Kn ≥ 0) ≤ lim
n→∞

E(Kn(∆+) | Kn ≥ 0) (3.4)

= P(Gamma(d) > ∆) ∼ e−∆ ∆d−1

(d− 1)!
→ 0 (3.5)

where Gamma(d) is distributed Gamma(d, 1) and the asymptotics in (3.5) are as ∆→∞.

Proof. Recalling that we use ‖ · ‖ to denote `1-norm,

P(Kn ≥ 0, Kn(∆+) ≥ 1)

≤ E(Kn(∆+);Kn ≥ 0)

= (n− 1)P(Kn−1 ≥ 0, X(n) � X(n−1), ‖X(n) −X(n−1)‖ > ∆). (3.6)

But

P(Kn−1 ≥ 0, X(n) � X(n−1), ‖X(n) −X(n−1)‖ > ∆)

=

∫
z,x:0≺z≺x, ‖x−z‖>∆

P
(
X(n) ∈ dx; X(n−1) ∈ dz;

X(i) 6� z for i = 1, . . . , n− 2
)

=

∫
z,x:0≺z≺x, ‖x−z‖>∆

e−‖x‖ e−‖z‖
(

1− e−‖z‖
)n−2

dx dz

=

∫
z�0

∫
δ�0:‖δ‖>∆

e−(‖z‖+‖δ‖) e−‖z‖
(

1− e−‖z‖
)n−2

dδ dz

=

[∫ ∞
∆

yd−1

(d− 1)!
e−y dy

]
×
∫
z�0

e−2‖z‖
(

1− e−‖z‖
)n−2

dz.

The first factor equals P(Gamma(d) > ∆). Utilizing all three parts of Remark 2.1, (i) the
second factor, when divided by pn−1, equals

E
(
e−‖X

(n−1)‖ | X(n−1) sets a record
)

= (n− 1)−1E e−Gn−1 ;

and thus (ii) E(Kn(∆+) | Kn ≥ 0) equals

P(Gamma(d) > ∆)× pn−1

pn
E e−Gn−1 ∼ P(Gamma(d) > ∆)× E e−Gn−1

→ P(Gamma(d) > ∆),

as n→∞. The tail-asymptotics for Γ(d) appearing in (3.5) are standard. This completes
the proof of the lemma.
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Having suitably controlled Kn(∆+), we turn our attention to Kn(∆−), defined as
follows for given ∆ > 0. Let Kn(∆−) = −1/2 if X(n) does not set a record, and otherwise
let Kn(∆−) denote the number of remaining records killed by X(n) that are at `1-distance
≤ ∆ from X(n); thus

Kn = Kn(∆−) +Kn(∆+). (3.7)

It follows using Remark 2.1(b) that if we can prove, for each k ∈ {1, 2, . . .}, that∫
g,u

P(G ∈ dg, U ∈ du)P(Kn(∆−) ≥ k | Kn ≥ 0, Gn = g,Un = u) (3.8)

has a limit, call it κk(∆−), as n→∞, then, also for each k, we have

P(Kn(∆−) ≥ k | Kn ≥ 0)→ κk(∆−) as n→∞. (3.9)

To prove that (3.8) has a limit, it suffices by the dominated convergence to prove the
following lemma, in which case we can then take

κk(∆−) :=

∫
g

P(G ∈ dg)κk(∆−;∞, g). (3.10)

Lemma 3.5. Let k ∈ {1, 2, . . . }, g ∈ R, and u ∈ Sd−1 with u � 0. Then

κk(∆−;n, g,u) := P(Kn(∆−) ≥ k | Kn ≥ 0, Gn = g, Un = u)

has a limit κk(∆−;∞, g) as n→∞, which doesn’t depend on u.

Proof. We use the method of moments [and so, by the way, κk(∆−;∞, g) ↓ 0 as k ↑ ∞;
that is, the conditional distributions in question have a weak limit]. Let x = (Ln+ g)u

(which implies ‖x‖ = Ln + g), and let R ≡ R(∆;n − 1,x) denote the set of remaining
record-values X(i) at time n − 1 that are killed by X(n) = x at time n and satisfy
‖x−X(i)‖ ≤ ∆. By writing Kn(∆−) as a sum of indicators, for integer r ≥ 1 we calculate

E[(Kn(∆−))r | Kn ≥ 0, Gn = g, Un = u] (3.11)

=

r∑
m=1

∑∑(
r

j1, . . . , jm

)
P({X(i1), . . . ,X(im)} ⊆ R | X(n) = x sets a record) (3.12)

=

r∑
m=1

(
n− 1

m

)
m!

{
r

m

}
P({X(1), . . . ,X(m)} ⊆ R | X(n) = x sets a record), (3.13)

where, in (3.12), the second of the three sums is over i1, . . . , im satisfying 1 ≤ i1 < · · · <
im ≤ n− 1 and the third sum is over j1, . . . , jm ≥ 1 satisfying j+ = r; and, in (3.13),

{
r
m

}
is a Stirling number of the second kind and is the number of ways to partition an r-set
into m nonempty sets.

Now, writing X = X(1), the conditional probability in (3.13) equals

1

[P(X 6� x)]n−1

∫ [ m∏
i=1

(
e−‖x

(i)‖ dx(i)
)][

P

(
m⋂
i=1

{
X 6� x(i)

})]n−m
,

where the integral is over incomparable vectors x(1), . . . ,x(m) such that, for i = 1, . . . ,m,
we have 0 ≺ x(i) ≺ x and ‖x− x(i)‖ ≤ ∆. For the denominator here we calculate

[P(X 6� x)]n−1 =
(

1− e−‖x‖
)n−1

=
(
1− n−1e−g

)n−1 → exp
(
−e−g

)
.
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Changing variables from x(i) to δ(i) = x − x(i), the numerator (i.e., integral) can be
written as∫

e−m‖x‖

[
m∏
i=1

(
e‖δ

(i)‖ dδ(i)
)][

P

(
m⋂
i=1

{
X 6� x− δ(i)

})]n−m
(3.14)

= n−me−mg
∫
A

[
m∏
i=1

(
e‖δ

(i)‖ dδ(i)
)][

P

(
m⋂
i=1

{
X 6� x− δ(i)

})]n−m
. (3.15)

Both integrals are over vectors δ(1), . . . , δ(m) satisfying the restrictions that

δ(1), . . . , δ(m) are incomparable, and, (3.16)

for i = 1, . . . ,m, we have 0 ≺ δ(i) and ‖δ(i)‖ ≤ ∆;

for the integral in (3.14) we have the additional restrictions that δ(i) ≺ x, and, corre-
spondingly, in the second integral we use the shorthand

A = 1(δ(i) ≺ x for i = 1, . . . ,m).

Observe that the integrands in (3.15) can be dominated by

m∏
i=1

e‖δ
(i)‖, (3.17)

which is integrable [over the specified range (3.16) of δ(1), . . . , δ(m)] because, dropping
the restriction of incomparability in the next integral to appear, the integral of (3.17)
can be bounded by∫ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)

=

[∫
δ�0:‖δ‖≤∆

e‖δ‖ dδ

]m

=

[∫ ∆

0

yd−1

(d− 1)!
ey dy

]m

≤

[∫ ∆

0

e2y dy

]m
≤
(

1

2
e2∆

)m
= 2−me2∆m <∞. (3.18)

So we may apply the dominated convergence theorem to the integral appearing
in (3.15). The assumption u � 0 of strict positivity is crucial, since it implies that A→ 1

as n→∞. If we can show, for fixed m and g and u and δ(1), . . . δ(m) that

qn ≡ qn(m, g,u, δ(1), . . . , δ(m)) :=

[
P

(
m⋂
i=1

{
X 6� x− δ(i)

})]n−m
has a limit q∞(m, g,u, δ(1), . . . , δ(m)) as n→∞, (3.19)

then (3.11) has the following limit as n→∞:

exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg

∫ [ m∏
i=1

(
e‖δ

(i)‖ dδ(i)
)]

q∞(m, g,u, δ(1), . . . , δ(m)), (3.20)
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where the integral is over δ(1), . . . δ(m) satisfying (3.16). Further, using (3.18) this limit
is bounded by

exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg2−me2∆m ≤ exp

(
e−g
) r∑
m=1

mr

m!
e−mg2−me2∆m

≤ 1

2
exp
(
e−g
)
rr+1er|g|e2∆r.

Given the rate of growth of this bound as a function of r, the method of moments applies:
The conditional distribution of Kn(∆−) given Kn ≥ 0, Gn = g, and Un = u converges
weakly to the unique probability measure on the nonnegative integers whose rth moment
is given by (3.20) for r = 1, 2, . . . .

It remains to prove (3.19). Indeed, defining δ(i1,...,i`) to be the coordinate-wise
minimum ∧`h=1δ

(ih) and applying inclusion–exclusion at the second equality,

qn =

[
1− P

(
m⋃
i=1

{
X � x− δ(i)

})]n−m

=

1−
m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

P

(⋂̀
h=1

{
X � x− δ(ih)

})n−m

=

1−
m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

P
(
X � x− δ(i1,...,i`))

)n−m

=

1− e−‖x‖
m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,i`))‖

n−m

=

1− n−1e−g
m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,i`))‖

n−m

−→ exp

−e−g m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,i`))‖

 as n→∞

=: q∞(m, g, δ(1), . . . , δ(m)), (3.21)

as desired.

Since the expression κk(∆;n, g,u) studied in Lemma 3.5 is clearly nondecreasing
in ∆, the same is true for its limit κk(∆;∞, g)—and therefore, by (3.10), for the limit
κk(∆−) appearing in (3.9).

Lemma 3.6. The convergence

P(Kn ≥ k | Kn ≥ 0)→ κk as n→∞

claimed at (3.3) holds with
κk := lim

∆→∞
κk(∆−), (3.22)

where κk(∆−) is defined at (3.10) using Lemma 3.5.

Proof. This follows simply from (3.7), Lemma 3.4, and (3.9). Indeed, the conditional
probability in question is, for each ∆, at least as large as the one in (3.9) and so, by (3.9),
has a lim inf at least κk(∆−). Letting ∆→∞, we find

lim inf
n→∞

P(Kn ≥ k | Kn ≥ 0) ≥ κk.
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Conversely, the conditional probability in question is, by finite subadditivity, at most the
sum of the one in (3.9) and the one treated in Lemma 3.4. Thus, for each ∆, we have

lim sup
n→∞

P(Kn ≥ k | Kn ≥ 0) ≤ κk(∆−) + P(Gamma(d) > ∆)

by (3.9) and Lemma 3.4. Letting ∆→∞, we find from (3.22) and (3.5) that

lim sup
n→∞

P(Kn ≥ k | Kn ≥ 0) ≤ κk.

This completes the proof.

3.2 Identification of the weak limit µ as L(K)

In this subsection we prove the following proposition. Recall that the existence of
a weak limit µ for the probability measures µn = L(Kn | Kn ≥ 0) is established in
Proposition 3.1 and identified to some extent in Lemma 3.6.

Proposition 3.7. The weak limit µ of the measures µn = L(Kn | Kn ≥ 0) is the distribu-
tion L(K) described in Theorem 1.3.

Our approach to proving this proposition is to define K(∆−) and K(∆+) in relation
to K in the same way that we defined Kn(∆−) and Kn(∆+) in relation to Kn, to prove
an analogue (namely, Lemma 3.8) of Lemma 3.4, and to use again the method of
moments to establish (see Lemma 3.9) that the limit κk(∆−;∞, g) in Lemma 3.5 equals
P(Kg(∆−) ≥ k) (in notation that should be obvious and which we shall at any rate make
explicit in the statement of Lemma 3.9).

After stating and proving Lemmas 3.8–3.9, we will give the (then) easy proof of
Proposition 3.7.

Lemma 3.8. Let ∆ > 0. For g ∈ R, let

Kg(∆+) = number of maxima dominated by x ≡ x(g) := (g/d, . . . , g/d)

and at `1-distance > ∆ from x

in the nonhomogeneous Poisson point process described in Theorem 1.3, with intensity
function

1(z 6� x)e−z+ , z ∈ Rd.

Define L(K(∆+)) to be the mixture EL(KG(∆+)), where G is distributed standard
Gumbel. Then

P(K(∆+) ≥ 1) ≤ EK(∆+) = P(Gamma(d) > ∆) ∼ e−∆ ∆d−1

(d− 1)!
→ 0

where Gamma(d) is distributed Gamma(d, 1) and the asymptotics are as ∆→∞.

Proof. Let

P := {y ∈ Rd : y ≺ x, ‖x− y‖ > ∆}.

Denote the Poisson process by Ng. Apply the so-called Mecke equation by setting

f(z, η) = 1(z is a maximum of η dominated by x and at `1-distance from x)
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and taking η = Ng in [6, Theorem 4.1] to find

EKg(∆+) =

∫
y∈P

e−y+ exp

(
−
∫
z:z�y, z6�x

e−z+ dz

)
dy

=

∫
y∈P

e−y+ exp

[
−
(∫

z:z�y
e−z+ dz−

∫
z:z�x

e−z+ dz

)]
dy

=

∫
y∈P

e−y+ exp
[
−
(
e−y+ − e−x+

)]
dy

= exp
(
e−g
) ∫

y∈P
e−y+ exp

(
−e−y+

)
dy

= exp
(
e−g
) ∫

δ�0:‖δ‖>∆

e−(x+−‖δ‖) exp
[
−e−(x+−‖δ‖)

]
dδ

= exp
(
e−g
) ∫

δ�0:‖δ‖>∆

e−(g−‖δ‖) exp
[
−e−(g−‖δ‖)

]
dδ

= exp
(
e−g
) ∫ ∞

∆

ηd−1

(d− 1)!
e−(g−η) exp

[
−e−(g−η)

]
dη.

Multiply by P(G ∈ dg) = exp(−e−g) e−g dg and integrate over g ∈ R to get

P(K(∆+) ≥ 1) ≤ EK(∆+)

=

∫ ∞
∆

ηd−1

(d− 1)!
eη
∫ ∞
−∞

e−2g exp
(
−eηe−g

)
dg dη

=

∫ ∞
∆

ηd−1

(d− 1)!
e−η dη = P(Gamma(d) > ∆),

as claimed.

Lemma 3.9. Let ∆ > 0. For g ∈ R, let

Kg(∆−) = number of maxima dominated by x ≡ x(g) := (g/d, . . . , g/d)

and at `1-distance ≤ ∆ from x

in the nonhomogeneous Poisson point process described in Theorem 1.3, with intensity
function

1(z 6� x)e−z+ , z ∈ Rd.

Then for every k ∈ {1, 2, . . . } we have

P(Kg(∆−) ≥ k) = κk(∆−;∞, g)

with κk(∆−;∞, g) as in Lemma 3.5.

Proof. We need only show that, for each r = 1, 2, . . . , the random variable Kg(∆−) has
rth moment equal to (3.20), where q∞(m, g, δ(1), . . . , δ(m)) is defined at (3.21).

For this, we proceed in much the same way as for the proof of Lemma 3.8. In this
case, let

P := {y ∈ Rd : y ≺ x, ‖x− y‖ ≤ ∆}.
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Applying the multivariate Mecke equation [6, Theorem 4.4], we find

E [(Kg(∆−))
r
]

=

r∑
m=1

{
r

m

}∫ [ m∏
h=1

(
e−x

(h)
+ dx(h)

)]
exp

−∫
z:z�x(h) for some h,
z6�x

e−z+ dz


= exp

(
e−g
) r∑
m=1

{
r

m

}∫ [ m∏
h=1

(
e−x

(h)
+ dx(h)

)]
exp

(
−
∫
z:z�x(h) for some h

e−z+ dz

)
,

where the unlabeled integrals are over incomparable vectors x(1), . . . ,x(m) belonging
to P.

Changing variables from x(h) to δ(h) = x− x(h), we find

E [(Kg(∆−))
r
]

= exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg

×
∫ [ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)]

exp

(
−
∫
z:z�x−δ(i) for some i

e−z+ dz

)
, (3.23)

where now the unlabeled integral is over vectors δ(1), . . . , δ(m) satisfying the restric-
tions (3.16). By using inclusion–exclusion, the z-integral equals [writing δ(i1,...,i`) for the
coordinate-wise minimum ∧`h=1δ

(ih) as in the proof of Lemma 3.5]

m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

∫
z:z�x−δ(ij) for all 1≤j≤`

e−z+ dz

=

m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

∫
z:z�x−δ(i1,...,i`)

e−z+ dz

= e−g
m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,il)‖.

Thus [confer (3.21)]

E [(Kg(∆−))
r
]

= exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg (3.24)

×
∫ [ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)]

exp

−e−g m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,il)‖


= exp

(
e−g
) r∑
m=1

{
r

m

}
e−mg

∫ [ m∏
i=1

(
e‖δ

(i)‖ dδ(i)
)]

q∞(m, g, δ(1), . . . , δ(m))

= (3.20),

as claimed.

Proof of Proposition 3.7. Clearly,

P(K(∆−) ≥ k) ≤ P(K ≥ k) ≤ P(K(∆−) ≥ k) + P(K(∆+) ≥ 1). (3.25)
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But

P(K(∆−) ≥ k) =

∫ ∞
−∞

P(G ∈ dg)P(Kg(∆−) ≥ k)

=

∫ ∞
−∞

P(G ∈ dg)κk(∆−;∞, g) (3.26)

= κk(∆−), (3.27)

using Lemma 3.9 at (3.26) and (3.10) at (3.27).
Therefore, passing to the limit in (3.25) using (3.22) and recalling Lemma 3.6, we

find
P(K ≥ k) = κk = lim

n→∞
P(Kn ≥ k | Kn ≥ 0) = µ({k, k + 1, . . . }),

as claimed.

4 Tail probabilities for K
In Subsection 4.1 we show that all the moments of L(K) are finite and give a simple

upper bound on each, and in Subsection 4.2 we study right-tail (logarithmic) asymptotics
for L(K).

4.1 Bounds on the moments of L(K)

Here is the main result of this subsection.

Proposition 4.1. Let K be as described in Theorem 1.3. Then for r = 1, 2, . . . we have

EKr ≤ ardr(d+2− 1
d−1 )r <∞,

with ad := 21/dd(d+1)/(d−1).

Proof. Recall from (3.23) that

E [(Kg(∆−))
r
]

= exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg

×
∫ [ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)]

exp

(
−
∫
z:z�x−δ(i) for some i

e−z+ dz

)

= exp
(
e−g
) r∑
m=1

{
r

m

}
e−mg (4.1)

×
∫ [ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)]

exp

(
−e−g

∫
δ:δ≺δ(i) for some i

eδ+ dδ

)
,

where the unlabeled integral is over vectors δ(1), . . . , δ(m) satisfying the restrictions (3.16).
Next, multiply both sides of this equality by P(G ∈ dg) = exp(−e−g) e−g dg and

integrate over g ∈ R to find

E [(K(∆−))
r
] =

r∑
m=1

{
r

m

}
m!

∫ ∏m
i=1

(
e‖δ

(i)‖ dδ(i)
)

[∫
δ:δ≺δ(i) for some i e

δ+ dδ
]m+1 .

Changing variables by scaling,

E [(K(∆−))
r
] =

r∑
m=1

{
r

m

}
m!mdm

∫ ∏m
i=1

(
em‖δ

(i)‖ dδ(i)
)

[∫
δ:δ≺mδ(i) for some i e

δ+ dδ
]m+1 ,
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where now the unlabeled integral is over δ(1), . . . , δ(m) satisfying the restrictions

δ(1), . . . , δ(m) are incomparable, and,

for i = 1, . . . ,m, we have 0 ≺ δ(i) and ‖δ(i)‖ ≤ ∆/m.

Observe that for each j = 1, . . . ,m we have∫
δ:δ≺mδ(i) for some i

eδ+ dδ ≥
∫
δ:δ≺mδ(j)

eδ+ dδ = em‖δ
(j)‖

and hence, taking the geometric mean of the lower bounds,∫
δ:δ≺mδ(i) for some i

eδ+ dδ ≥
m∏
j=1

e‖δ
(j)‖. (4.2)

Thus

E [(K(∆−))
r
]

≤
r∑

m=1

{
r

m

}
m!mdm

∫ m∏
i=1

(
e−‖δ

(i)‖ dδ(i)
)

=

r∑
m=1

{
r

m

}
m!mdmP(rm = m; ‖X(i)‖ ≤ ∆/m for i = 1, . . . ,m), (4.3)

where rn ≡ rn(d) denotes the number of remaining records at time n; recall Defini-
tion 1.1(b).

We therefore have the bound

E [(K(∆−))
r
] ≤

r∑
m=1

m!

{
r

m

}
mdmP(rm = m)

≤
r∑

m=1

m!

{
r

m

}
mdm amd m

− 1
d−1m,

with ad as in the statement of the proposition. The inequality

P(rm = m) ≤ amd m−
1
d−1m (4.4)

used here is due to Brightwell [2, Theorem 1] [who also gives a lower bound of matching
form on P(rm = m)], answering a question raised by Winkler [7].

Continuing by using the simple upper bound
{
r
m

}
≤ mr/m!, for any ∆ > 0 we have

E [(K(∆−))
r
] ≤

r∑
m=1

mr+(d− 1
d−1 )m amd

≤ ardr(d+2− 1
d−1 )r <∞. (4.5)

Since K(∆−) ↑ K as ∆ ↑ ∞, the proposition follows by the monotone convergence
theorem.

Remark 4.2. Except for first moments [recalling Lemma 3.2(i) and calculating EK = 1

by using the first sentence in the proof of Lemma 3.9 with r = 1, integrating out g with
respect to L(G), and passing to the limit as ∆→∞] we have not investigated whether
the (also finite) moments of Kn converge to the corresponding moments of K.
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Remark 4.3. (a) When d = 2, the logarithmic asymptotics of the bound in Proposition 4.1
do not have the correct coefficient for the lead-order term. Indeed, the moments of
K ≡ K(2) (see Corollary 6.1) are

EKr =

m∑
r=1

m!

{
r

m

}
=

1

2
Li−r

(
1

2

)
∼
√
π/2

L 2
rr+(1/2)(eL 2)−r, (4.6)

where Li denotes polylogarithm.

(b) We do not know, for any d ≥ 3, whether the logarithmic asymptotics of Propo-
sition 4.1 are correct to lead order. The bound (4.2) is rather crude. However, see
Remark 4.7(b).

4.2 Tail asymptotics for L(K)

The next two theorems are the main results of this subsection. They give closely (but
not perfectly) matching upper and lower bounds on lead-order logarithmic asymptotics
for the tail of K(d). We do not presently know for any d ≥ 3 how to close the gap.

Theorem 4.4. Fix d ≥ 2. Then

P(K(d) ≥ k) ≤ exp
[
−Ω
(
k1/[d+2−(d−1)−1]

)]
as k →∞.

The exponent of k here can be written as (d− 1)/(d2 + d− 3).

Theorem 4.5. Fix d ≥ 2. Then

P(K(d) ≥ k) ≥ exp
[
−O
(
k1/(d−1)

)]
as k →∞.

Proof of Theorem 4.4. This follows simply from Proposition 4.1, applying Markov’s in-
equality with an integer-rounding of the optimal choice (in relation to the bound of the
proposition)

r = e−1

(
k

ad

)1/(d+2− 1
d−1 )

,

to wit:

P(K(d) ≥ k) ≤ k−r EK(d)r ≤ k−r × ardr(d+2− 1
d−1 )r

= exp

[
−(1 + o(1))

(d+ 2− 1
d−1 )−1

e

(
k

ad

)1/(d+2− 1
d−1 )

]
. (4.7)

Remark 4.6. When d = 2, the truth, according to Corollary 6.1, is

P(K(2) ≥ k) = exp[−(L 2)k].

Proof of Theorem 4.5. We will establish the stronger assertion that

P(K ≥ k) ≥ exp
[
−(1 + o(1))(ck)1/(d−1)

]
(4.8)

for c = e
e−1 (d − 1)! by establishing it for any c > e

e−1 (d − 1)!. The idea of the proof is
that when G = g is large, K = Kg will be large because Kg ≥ Kg(g−) and Kg(g−) will be
large.
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Choose and fix c ≡ cd > e
e−1 (d− 1)!. Define gk := (ck)1/(d−1). Then

P(K ≥ k) ≥
∫ gk+1

gk

P(G ∈ dg)P(Kg ≥ k)

≥
∫ gk+1

gk

P(G ∈ dg)P(Kg(g−) ≥ k)

= P(G ∈ (gk, gk + 1))

×
∫ gk+1

gk

P(G ∈ dg | G ∈ (gk, gk + 1))P(Kg(g−) ≥ k). (4.9)

For the first factor here, we use (with stated asymptotics as k →∞)

P(G ∈ (gk, gk + 1)) = exp
[
−e−(gk+1)

]
− exp[−e−gk ]

= (1 + o(1))e−gk − (1 + o(1))e−(gk+1)

∼ (1− e−1) exp
[
−(ck)1/(d−1)

]
= exp

{
−
[
(ck)1/(d−1) +O(1)

]}
= exp

[
−(1 + o(1))(ck)1/(d−1)

]
.

We will show that the second factor equals 1− o(1). It then follows that

− lnP(K ≥ k) ≤ (1 + o(1))(ck)1/(d−1),

as claimed.
It remains to show that∫ gk+1

gk

P(G ∈ dg | G ∈ (gk, gk + 1))P(Kg(g−) ≥ k) = 1− o(1).

We will do this by applying Chebyshev’s inequality to the integrand factor P(Kg(g−) ≥
k), so to prepare we will obtain a lower bound on EKg(g−) and an upper bound on
VarKg(g−).

After some straightforward simplification, it follows from the case r = 1 (with ∆ = g)
of the calculation of E[(Kg(∆−))r] = (3.24) in the proof of Lemma 3.9 and a change of
variables (in what follows) from η to v = e−geη that, for any 0 < ε < 1 and uniformly for
g ∈ (gk, gk + 1), we have

EKg(g−) = exp
(
e−g
)
e−g

∫ g

0

ηd−1

(d− 1)!
eη exp

(
−e−geη

)
dη

= exp
(
e−g
) gd−1

(d− 1)!

∫ 1

e−g

(
1 +

L v

g

)d−1

e−v dv

≥ exp
(
e−g
) gd−1

(d− 1)!

∫ 1

e−εg
(1− ε)d−1e−v dv

≥ exp
[
e−(gk+1)

] gd−1
k

(d− 1)!
(1− ε)d−1

[
exp
(
−e−εgk

)
− e−1

]
= (1 + o(1))(1− ε)d−1 c

(d− 1)!
(1− e−1)k.

Thus, uniformly for g ∈ (gk, gk + 1), we have

EKg(g−) ≥ (1 + o(1))
c

(d− 1)!
(1− e−1)k. (4.10)
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Observe that the asymptotic coefficient of k in (4.10) exceeds 1.

We next turn our attention to the second moment of Kg(g−). From the case r = 2

(with ∆ = g) of the calculation of E[(Kg(∆−))r] = (3.24) in the proof of Lemma 3.9,

E
[
(Kg(∆−))

2
]

= exp
(
e−g
) 2∑
m=1

e−mg

×
∫ [ m∏

i=1

(
e‖δ

(i)‖ dδ(i)
)]

exp

−e−g m∑
`=1

(−1)`−1
∑

1≤i1<i2<···<i`≤m

e‖δ
(i1,...,il)‖


where the unlabeled integral is over vectors δ(1), . . . , δ(m) satisfying the restrictions (3.16)
with ∆ = g.

Uniformly for g ∈ (gk, gk + 1), the m = 1 contribution to this second moment equals

EKg(g−) ≤ exp
(
e−gk

) (gk + 1)d−1

(d− 1)!

∫ 1

e−(gk+1)

(
1 +

L v

gk

)d−1

e−v dv

≤ (1 + o(1))(1− e−1)
gd−1
k

(d− 1)!

= (1 + o(1))
c

(d− 1)!
(1− e−1)k. (4.11)

[We remark in passing that the asymptotic bounds (4.10) and (4.11) match.]

The m = 2 contribution, call it C2, is

exp
(
e−g
)
e−2g

∫
e‖δ

(1)‖+‖δ(2)‖ exp
[
−e−g

(
e‖δ

(1)‖ + e‖δ
(1)‖ − e‖δ

(1,2)‖
)]

dδ(1) dδ(2).

Here we recall that δ(1) and δ(2) are incomparable. If, for example, 1 ≤ j ≤ d − 1 and
ε
(1)
i := δ

(2)
i − δ

(1)
i > 0 for i = 1, . . . , j and ε

(2)
i := δ

(1)
i − δ

(2)
i > 0 for i = j + 1, . . . , d, then,

with ε := δ(1,2), the integrand equals

e2‖ε‖+‖ε(1)‖+‖ε(2)‖ exp
[
−e−ge‖ε‖

(
e‖ε

(1)‖ + e‖ε
(2)‖ − 1

)]
,

where ε, ε(1), and ε(2) are vectors of length d, j, and d− j, respectively. By this reasoning,
C2 equals

exp
(
e−g
)
e−2g

d−1∑
j=1

{(
d

j

)

×
∫
e2‖ε‖+‖ε(1)‖+‖ε(2)‖ exp

[
−e−ge‖ε‖

(
e‖ε

(1)‖ + e‖ε
(2)‖ − 1

)]
dε(1) dε(2) dε

}
,

where the integral is over vectors ε, ε(1), ε(2) � 0 of lengths as previously specified,
subject to the two restrictions ‖ε‖+ ‖ε(i)‖ ≤ g for i = 1, 2. The integral here reduces to

EJP 28 (2023), paper 78.
Page 19/27

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP968
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Breaking multivariate records

the following three-dimensional integral:∫ g

0

ηd−1

(d− 1)!

∫ g−η

0

∫ g−η

0

ηj−1
1

(j − 1)!

ηd−j−1
2

(d− j − 1)!

× e2η+η1+η2 exp
[
−e−geη (eη1 + eη2 − 1)

]
dη1 dη2 dη

≤
(
d−2
d−1−j

)
(d− 2)!

∫ g

0

ηd−1(g − η)d−2

(d− 1)!

×
∫ g−η

0

∫ g−η

0

e2η+η1+η2 exp
[
−e−geη (eη1 + eη2 − 1)

]
dη1 dη2 dη

=

(
d−2
d−1−j

)
(d− 2)!

∫ g

0

ηd−1(g − η)d−2

(d− 1)!
e2η exp[e−(g−η)]

{∫ g−η

0

eη1 exp
[
−e−(g−η)eη1

]
dη1

}2

dη.

It follows that C2 is bounded above by exp(e−g) times(
2d−2
d−1

)
(d− 1)!(d− 2)!

e−2g

∫ g

0

ηd−1(g − η)d−2e2η exp[e−(g−η)]

×
{∫ g−η

0

eη1 exp
[
−e−(g−η)eη1

]
dη1

}2

dη

=

(
2d−2
d−1

)
(d− 1)!(d− 2)!

e−2g

∫ g

0

ηd−1(g − η)d−2e2η exp[e−(g−η)]

×
{
eg−η

(
exp
[
−e−(g−η)

]
− e−1

)}2

dη

≤
(

2d−2
d−1

)
(1− e−1)2

(d− 1)!(d− 2)!

∫ g

0

ηd−1(g − η)d−2 exp[e−(g−η)] dη

=

(
2d−2
d−1

)
(1− e−1)2

(d− 1)!(d− 2)!
g2d−2

∫ 1

0

td−1(1− t)d−2 exp[e−(1−t)g] dt.

By the dominated convergence theorem, as g →∞ we have

C2 ≡ C2(g) ≤ (1 + o(1))αdg
2d−2,

where

αd = (1− e−1)2

(
2d− 2

d− 1

)∫ 1

0
td−1(1− t)d−2 dt

(d− 1)!(d− 2)!
=

[
1− e−1

(d− 1)!

]2

.

In particular, uniformly for g ∈ (gk, gk + 1), we have

C2(g) ≤ (1 + o(1))

[
(1− e−1)

gd−1
k

(d− 1)!

]2

∼
[

c

(d− 1)!
(1− e−1)k

]2

. (4.12)

We conclude from (4.11), (4.12), and (4.10) that

VarKg(g−) = o(k2),

uniformly for g ∈ (gk, gk + 1).
By Chebyshev’s inequality, uniformly for g ∈ (gk, gk + 1) we have

P(Kg(g−) ≥ k) ≥ 1− VarKg(g−)

[EKg(g−)− k]
2 = 1− o(k2)

Θ(k2)
= 1− o(1),

as was to be shown.
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Remark 4.7. (a) When d = 2, the lower bound (4.8) with c = e
e−1 (d− 1)! gives

P(K ≥ k) ≥ exp

[
−(1 + o(1))

e

e− 1
k

]
.

The logarithmic asymptotics are of the correct order (namely, linear), but the coefficient
e/(e− 1) is approximately 1.582, which is roughly twice as big as the correct coefficient
(recall Remark 4.6) ln 2

.
= 0.693.

(b) Theorem 4.5 can be used to give a lower bound on the moments of K by starting
with the lower bound

EKr ≥ krP(K ≥ k)

and choosing k ≡ k(r) judiciously. The result for fixed d, in short, is that

EKr ≥ exp[(1 + o(1))(d− 1)r L r] as r →∞. (4.13)

The lead-order terms of Proposition 4.1 and (4.13) for the logarithmic asymptotics are of
the same order, but the coefficients [d+ 2− (d− 1)−1 and d− 1, respectively] don’t quite
match.

Remark 4.8. It may be of some interest to study the distribution of K(∆−) for fixed
∆ <∞, but it is then simpler for measuring the distance of a killed record from the new
record to switch from `1-distance to `∞ distance. We call the analogue of K(∆−) for the
latter distance K̃(∆−).

The goal of this remark is to show that, for fixed d and ∆, as k → ∞ we have
− lnP(K̃(∆−) ≥ k) = Θ(k ln k) (in stark contrast to Theorem 4.5); more precisely, we
show (a) that

P(K̃(∆−) ≥ k) ≤ exp

− ln
(

1
1−β

)
ln
(

2
1−β

) (d− 1)−1k ln k +O(k)

 (4.14)

with β ≡ βd,∆ :=[(e∆−1)d+1]−1∈(0, 1) [so that the increasing function ln
(

1
1−β

)
/ ln
(

2
1−β

)
of β belongs to (0, 1) as well] and (b) that

P(K̃(∆−) ≥ k) ≥ exp
[
−(d− 1)−1k ln k +O(k)

]
. (4.15)

(a) Here is a sketch of the proof of (4.14). In order to have K̃(∆−) ≥ k, the Poisson
process Ng in the proof of Lemma 3.8 must have n points ≺ x for some n ≥ k, and at
least k of them must be maxima among these n points. Integrating over g, we find

P(K̃(∆−) ≥ k) ≤ β
∞∑
n=k

(1− β)nP(rn ≥ k).

Over the event {rn > k} there must be some k-tuple of incomparable observations; thus,
by finite subadditivity,

P(rn ≥ k) ≤
(
n

k

)
P(rk = k) ≤ 2nP(rk = k).

Recall from (4.4) that
P(rk = k) ≤ akdk−

1
d−1k.

Thus for any k0 ≡ k0(k) ≥ k we have

P(K̃(∆−) ≥ k) ≤ β
k0−1∑
n=k

2nakdk
− 1
d−1k + β

∞∑
n=k0

(1− β)n

≤ β2k0akdk
− 1
d−1k + (1− β)k0 .
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A nearly optimal choice of k0 here is to round
[
ln
(

2
1−β

)]−1

(d− 1)−1k ln k to an integer,

and this yields (4.14).

(b) To prove (4.15), we start (in similar fashion as the proof of Theorem 4.5) with
a study of K̃g(∆−). Using the Poisson-process notation Ng as we did in the proof of
Lemma 3.8, observe that

P(K̃g(∆−) ≥ k) ≥
∞∑
n=k

P(Ng(A) = n)P(rn ≥ k)P(Ng(B) = 0),

where, with x := (g/d, . . . , g/d) and ∆ := (∆, . . . ,∆), we set

A := {z : x−∆ ≺ z ≺ x}, B := {z : x−∆ ≺ z and x 6≺ z}.

The random variables Ng(A) and Ng(B) are each Poisson distributed with respective
means

λ = e−g(e∆ − 1)d, µ = e−g(ed∆ − 1).

Since the number rn of remaining records in dimension d has the same distribution as
the total number Rn of records set through time n in dimension d− 1, it follows that rn
increases stochastically in n. Thus

P(K̃g(∆−) ≥ k) ≥ P(Ng(A) ≥ k)P(rk = k)e−µ.

If g ≤ gk := −L k + c with −∞ < c ≡ cd,∆ < dL(e∆ − 1), then Chebyshev’s inequality
gives (uniformly for such g) the result

P(Ng(A) ≥ k) = 1− o(1)

as k →∞. If g ≥ gk+1, then

e−µ ≥ exp[−e−c(ed∆ − 1)(k + 1)] ≥ exp[−(e∆ − 1)−1(ed∆ − 1)(k + 1)].

Further, according to [2],

P(rk = k) = exp
[
−(d− 1)−1k L k +O(k)

]
as k →∞. To summarize our treatment thus far, uniformly for gk+1 ≤ g ≤ gk we have

P(K̃g(∆−) ≥ k) ≥ exp
[
−(d− 1)−1k L k +O(k)

]
. (4.16)

But if G is distributed standard Gumbel, we also have

P(gk+1 ≤ G ≤ gk) = e−e
−ck − e−e

−c(k+1) = (1− e−e
−c

)e−e
−ck

= exp[−O(k)]. (4.17)

The assertion (4.15) follows from (4.17) and (4.16).

5 Asymptotics of L(K(d)) as d→∞
In this section we prove that K(d) converges in probability (equivalently, in distribu-

tion) to 0 as the dimension d tends to infinity by establishing upper (Subsection 5.1) and
lower (Subsection 5.2) bounds, each decaying exponentially to 0, on P(K(d) ≥ 1).
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5.1 Upper bound

Here is the main result of this subsection, showing that the decay of P(K(d) ≥ 1) to 0

is at least exponentially rapid.

Theorem 5.1. As d→∞ we have

P(K(d) ≥ 1) ≤ (1 + o(1)) (0.623)d.

Proof. Passing to the limit as ∆→∞ from (4.1) with r = 1, recall that for each g ∈ R we
have

EKg = exp
(
e−g
)
e−g

∫
δ(1)�0

e‖δ
(1)‖ exp

(
−e−ge‖δ

(1)‖
)

dδ(1)

= exp
(
e−g
) ∫ ∞

0

ηd−1

(d− 1)!
e−(g−η) exp

[
−e−(g−η)

]
dη.

Thus for any g > 0 we have

P(K(d) ≥ 1) ≤ P(|G| > g) +

∫ g

−g
e−2γId(γ) dγ (5.1)

where the integral Id(γ) is defined, and can be bounded for any c > 0, as follows:

Id(γ) :=

∫ ∞
0

ηd−1

(d− 1)!
eη exp

[
−e−(γ−η)

]
dη

≤ c−(d−1)

∫ ∞
0

e(c+1)η exp
[
−e−(γ−η)

]
dη

≤ c−(d−1)

∫ ∞
−∞

e(c+1)η exp
[
−e−(γ−η)

]
dη

= c−(d−1)Γ(c+ 1) exp[(c+ 1)γ].

Returning to (5.1), for c > 1 we find

P(K(d) ≥ 1) ≤ P(|G| > g) + c−(d−1)Γ(c+ 1)

∫ g

−g
e(c−1)γ dγ

≤ P(|G| > g) + c−(d−1)Γ(c+ 1)(c− 1)−1e(c−1)g.

As g →∞, this last bound has the asymptotics

(1 + o(1))e−g + c−(d−1)Γ(c+ 1)(c− 1)−1e(c−1)g.

Thus, to obtain an approximately optimal bound we choose

g = c−1 L

[
cd−1

Γ(c+ 1)

]
.

This choice gives the following asymptotics as d→∞:

P(K(d) ≥ 1) ≤ (1 + o(1))
c

c− 1

[
cd−1

Γ(c+ 1)

]−c−1

.

The optimal choice of c for large d minimizes c−c
−1

, leading to c = e and

P(K(d) ≥ 1) ≤ (1 + o(1)) (0.623)d,

as claimed, since exp[−e−1] < 0.623.

EJP 28 (2023), paper 78.
Page 23/27

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP968
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Breaking multivariate records

5.2 Lower bound

Here is the main result of this subsection, showing that the decay of P(K(d) ≥ 1) to 0

is at most exponentially rapid.

Theorem 5.2. For every d ≥ 1 we have

P(K(d) ≥ 1) ≥ 4−d.

Proof. We use Poisson process notation as in the proof of Lemma 3.8. Let 1 := (1, . . . , 1) ∈
Rd. Given g ∈ R and c > 0, let x(g) = g

d1 and

Sc := {z ∈ Rd : z � x− c1, z 6� x},

and consider the subset

S′c := {z ∈ Rd : x− c1 ≺ z ≺ x}

of Sc. Then

P(Kg ≥ 1) ≥ P(Ng(S
′
c) = 1 = Ng(Sc))

= P(Ng(S
′
c) = 1, Ng(Sc − S′c) = 0)

= e−λ
λ1

1!
× exp

(
−
∫
z∈Sc−S′c

e−z+ dz

)
(5.2)

with

λ =

∫
z∈S′c

e−z+ dz =

d∏
i=1

{exp [−(xi(g)− c)]− exp [−xi(g)]} = e−g (ec − 1)
d
.

The integral in (5.2) equals the difference of the integrals over Sc and over S′c, namely,∫
z�x−c1

e−z+ dz−
∫
z�x

e−z+ dz− λ = e−(g−cd) − e−g − λ.

So

P(Kg ≥ 1) ≥ (ec − 1)
d
e−g exp

[
−e−g(ecd − 1)

]
and hence

P(K(d) ≥ 1) ≥ (ec − 1)
d
∫ ∞
−∞

e−2g exp
[
−e−gecd

]
dg

= (ec − 1)
d
e−2cd =

(
ec − 1

e2c

)d
.

The optimal choice of c is then c = ln 2, yielding the claimed result.

Remark 5.3. In the same spirit as their Conjecture 2.3 and the discussion following it,
the authors of [4] might have put forth the closely related conjecture that P(Kn = 0 |
Kn ≥ 0) has a limit qd and that qd → 1 as d → ∞, with the additional suggestion that
perhaps qd = 1− d−1 for every d ≥ 2. In light of Theorems 1.3 and 5.1–5.2 we see that
the related conjecture is true, but the additional suggestion is not.
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6 Dimension d = 2

Here is the main result of this section.

Corollary 6.1. Adopt the setting and notation of Theorem 1.3 with d = 2. Then

(i) For each g ∈ R, the law of Kg is the mixture EPoisson(Λg), where L(Λg) is the
conditional distribution of g −G given g −G > 0 with G ∼ standard Gumbel.

(ii) K = K(2) has the same distribution as G − 1, where G (with support {1, 2, . . . }) has
the Geometric(1/2) distribution.

Proof. We first show how (ii) follows from (i). If (i) holds, then the law of K is the mixture
EPoisson(Λ), where L(Λ) is the mixture EL(ΛG) with G ∼ standard Gumbel. Observe
that the density of Λg is

λ 7→ 1(λ > 0)eλ−g exp
[
−e−g(eλ − 1)

]
, (6.1)

so the density of Λ is

λ 7→
∫ ∞
−∞

eλ−2g exp
[
−eλ−g

]
dg = e−λ;

that is, Λ has the Exponential(1) distribution. But then L(K) is the law of G−1, as follows
either computationally: for k = 0, 1, . . . we have

P(K = k) =

∫ ∞
0

e−w
wk

k!
e−w dw = 2−(k+1);

or by the probabilistic argument that K has the same distribution as the number of
arrivals in one Poisson counting process with unit rate prior to the (Exponentially
distributed) epoch of first arrival in an independent copy of the process, which (us-
ing symmetry of the two processes and the memoryless property of the Exponential
distribution) has the same distribution as G − 1.

We now proceed to prove (i). It is easy to see that, with probability 1, the Poisson point
process (call it Ng) described in Theorem 1.3 will have an infinite number of maxima,
but with no accumulation points in either of the coordinates, and a finite number of
maxima dominated by x = (x, y) := (g/2, g/2). [It is worth noting that the argument
to follow is unchanged if x is changed to any other point (x, y) with x + y = g.] Thus,
over the event {Kg = k} we can list the locations of the maxima Xi = (Xi, Yi), in order
from northwest to southeast (i.e., in increasing order of first coordinate and decreasing
order of second coordinate), as . . . ,X0,X1, . . . ,Xk,Xk+1, . . ., where X1, . . . ,Xk are the
maxima dominated by x. Given

−∞ < x0 < x1 < · · · < xk < x < xk+1 <∞ (6.2)

and∞ > y0 > y > y1 > · · · > yk > yk+1 > −∞, (6.3)

let S denote the following disjoint union of rectangular regions:

S =

k⋃
i=1

[(xi−1, xi)× (yi,∞)] ∪ [(xk, x)× (yk+1,∞)] ∪ [(x,∞)× (yk+1, y)].

Then (by the same sort of reasoning as in [3, Proposition 3.1]), for k = 0, 1, . . . and
x0, . . . ,xk satisfying (6.2)–(6.3), and introducing abbreviations

k∑
j

:=

k∑
i=j

(e−xi−1 − e−xi)e−yi ,
k∑

:=

k∑
1

,
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we have

P(Kg = k; Xi ∈ dxi for i = 0, . . . , k + 1)

= P(Ng(dxi) = 1 for i = 0, . . . , k + 1;Ng(S) = 0)

=

[
k+1∏
i=0

(e−(xi+yi) dxi)

]
× exp

[
−
∫
z∈S

e−z+ dz

]

= exp

[
−
k+1∑
i=0

(xi + yi)

]
exp

{
e−g −

[
k∑

+ e−(xk+yk+1)

]}
dx0 · · · dxk+1. (6.4)

To calculate P(Kg = k), we need to integrate this last expression over all x0, . . . ,xk+1

satisfying (6.2)–(6.3).
Since xk+1 and y0 appear only in the first of the two factors in (6.4), we integrate

them out first to obtain

e−g
∫

exp

(
−

k∑
i=0

xi

)
exp

(
−
k+1∑
i=1

yi

)
(6.5)

× exp

{
e−g −

[
k∑

+ e−(xk+yk+1)

]}
dx0 dx1 · · · dxk dyk+1,

where the integral is over all x0,x1, . . .xk, yk+1 satisfying

−∞ < x0 < x1 < · · · < xk < x

and y > y1 > · · · > yk > yk+1 > −∞.

Next we integrate out x0. For this we use the calculation∫ x1

−∞
e−x0 exp

(
−e−y1e−x0

)
dx0 = ey1 exp

(
−e−x1e−y1

)
.

So when we integrate out x0 we get

e−g
∫

exp

(
−

k∑
i=1

xi

)
exp

(
−
k+1∑
i=2

yi

)
exp

{
e−g −

[
k∑
2

+ e−(xk+yk+1)

]}
dx1 · · · dxk dyk+1,

where the integral is over all x1, . . .xk, yk+1 satisfying

−∞ < x1 < · · · < xk < x

and y > y1 > · · · > yk > yk+1 > −∞.

Continuing in this fashion, after integrating out x1, . . . , xk we get

e−g
∫

exp
{
e−g − e−(x+yk+1)

}
dy1 · · · dyk dyk+1,

where the integral is over all y1, . . . , yk+1 satisfying

y > y1 > · · · > yk > yk+1 > −∞.

Next we integrate out y1, . . . , yk and change the remaining variable name from yk
to η to find

P(Kg = k) =
e−g

k!

∫ y

−∞
(y − η)k exp

{
e−g − e−(x+η)

}
dη

=

∫ ∞
0

e−λ
λk

k!
eλ−g exp

[
−e−g(eλ − 1)

]
dλ

=

∫ ∞
0

e−λ
λk

k!
P(Λg ∈ dλ), (6.6)
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where we have recalled (6.1) at (6.6). This completes the proof of (i) and thus the proof
of the corollary.
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