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The wave speed of an FKPP equation with jumps via
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Abstract

We consider a Fisher–KPP equation with nonlinear selection driven by a Poisson
random measure. We prove that the equation admits a unique wave speed s > 0 given
by

s2

2
=

∫
[0,1]

log (1 + y)

y
R(dy) ,

where R is the intensity of the impacts of the driving noise. Our arguments are based
on upper and lower bounds via a quenched duality with a coordinated system of
branching Brownian motions.
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1 Introduction

The Fisher-KPP equation is a classical model in spatial population genetics

∂tut =
1

2
∆ut + rut(1− ut), u(0, x) = u0(x) ∈ [0, 1], (t, x) ∈ [0,∞)×R , (1.1)

which describes the evolution of the density of one favoured genetic type over another
disadvantaged one, where the advantage is given by a selection force of strength r > 0.

Instead of the classical equation, this work is concerned with the analysis of a Fisher-
KPP model in which selection acts at discrete jump times. We fix a positive measure R
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Wave speed for jump FKPP

on [0, 1] and denote with R a Poisson random measure on [0,∞) × (0, 1] with intensity
dt⊗ 1

yR(dy). Then we consider the following equation driven by R:

dut =
1

2
∆utdt+ rut(1− ut)dt+

∫
(0,1]

yut−(1− ut−)R(dt,dy), u(0, x) = u0(x) , (1.2)

for (t, x) ∈ [0,∞)×R, where r = R({0}) corresponds to the continuous component of the
equation. The biological motivation behind the choice of such a noise is to model rare se-
lection, or better strong temporary selective advantages of fit individuals due to extreme
behaviour of a random environment, as opposed to the classical, constantly present but
weak selection corresponding to models with continuous forcing (represented e.g. by
the second term on the right-hand side of (1.2)). Such strong evolutionary events involve
a macroscopic portion of the underlying population. They are therefore linked to some
form of “coordination” between individuals. We will elaborate on concrete biological
examples of rare selection and mathematical models of coordination in Section 1.1.

The purpose of this article is to focus on a prominent dynamical feature of the Fisher-
KPP equation – its wave speed – and attempt a first description of how it is affected by
extreme selection events. For the classical equation it is well known that there exists a
travelling wave solution of speed

√
2r, that captures the asymptotic evolution of the front

of an invading gene, say when the initial distribution is of the form u0(x) = 1(−∞,0](x).
Following the convention that

∫
{0} log(1 + y) 1

yR(dy) = R({0}) = r, our main result states
that the wave speed s > 0 of the stochastic equation is given by

s2

2
=

∫
[0,1]

log (1 + y)
1

y
R(dy) , (1.3)

and therefore shows quantitatively how extreme selection events slow down the invading
speed, compared to the deterministic equation (1.1) with r = R([0, 1]) (this is the natural
choice because it is consistent with our definitions in the case R = rδ0): that the wave
speed is strictly smaller than the deterministic one follows for instance by averaging (1.2)
and using Jensen’s inequality.

The size of the gap between the speed s of the stochastic equation and the speed
√

2r

of the associated deterministic one depends on the nature of the noise. In a so-called
pushed regime [21] (for example in presence of a genetic drift term) the effect can be
surprisingly strong also for small noise, as demonstrated in the seminal work by Mueller,
Mytnik and Quastel [27]. In our case, the nonlinearity is smooth and concave: We are in
the pulled regime, where the effect of noise is weaker and most importantly the speed
of the wave is governed by the linearisation of the equation near u = 0.

Now, the Lyapunov exponent of the linearised equation is in turn described the
long-time behaviour of the dual process and the wave speed can be easily rewritten
as the speed of the rightmost particle of the dual. This correspondence is very well
understood: For the deterministic equation the dual is given by a Branching Brownian
Motion (BBM) [16, 25]. In the BBM each particle moves as an independent Brownian
motion and branches into two identical offspring at a constant rate r (see [14, 15, 16]).
In our setting, the dual is given by a coordinated branching Brownian motion (CBBM),
see also the discussion of existing literature below. The main difference with respect to
the BBM is that particles tend to reproduce simultaneously rather than independently:
If n particles are alive at a given time, for any 1 ≤ k ≤ n, any k-tuple of particles decides
to simultaneously produce one offspring per particle at rate

∫
[0,1]

yk(1− y)n−k 1
yR(dy).

To study the speed of the rightmost particle of the CBBM, we consider a general
approach developed by Kyprianou and Englaender [22, 10] (cf. also the references
therein), which uses a martingale argument to study the local survival of branching (or
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Wave speed for jump FKPP

super-) processes. As a rule-of-thumb, it states that the speed of the rightmost particle
equals

√
2λ, where λ is the Lyapunov exponent of the underlying system. A subtlety

when applying their argument in our setting is that the quenched (so conditional on
the realisation of the jumps) growth rate of the number of particles of the CBBM and
annealed growth rate (of the expected number of particles of the CBBM, where the
expectation is taken also over the random environment) might differ: An environment
exhibiting such a behaviour is called strongly catalytic. While in the classical BBM the
almost sure and the expected growth rate coincide, our coordinated process is strongly
catalytic. This imposes a fundamental new challenge to our analysis, as the correct
prediction for the wave speed appears by formally using the rule-of-thumb with the
quenched Lyapunov exponent λ = s2

2 , as in (1.3) (note that this corresponds to the
growth rate of the total mass of the CBBM), while an attempt to make the martingale
argument rigorous breaks down, because the gap between quenched and annealed
implies that now the martingales at hand are not uniformly integrable. We observe that
this issue is related to the gap between the stochastic and the deterministic equation we
already addressed, as the annealed Lyapunov exponent is given by r = R([0, 1]) (which
is a strict upper bound on our speed, unless R = rδ0).

Our approach to overcome this problem is to distinguish between ‘large reproduction
events’ in which individuals participate in an event with probability y ∈ (δ, 1], and ‘small
reproduction events’ where individuals participate with probability y ∈ (0, δ], for some
δ ∈ (0, 1]. Then we proceed to obtain upper and lower bounds on the speed s, which
depend on δ but converge to the correct speed as δ ↓ 0. For the upper bound, we use a
quenched dual, where we condition on the location and impact of ‘large’ reproduction
events. We then use the martingale argument outlined above to deal with small jumps,
which now affect the speed only by a factor R((0, δ]). Instead, for large reproduction
events we use time changes and a “channeling” argument based on elementary large-
deviation estimates to obtain the expected contribution to the speed. For the lower
bound we use comparison to remove the mass of R in the interval (0, δ] and then can
proceed with similar calculations to those we use the upper bound.

Overall, the novelty of our work consists in quantifying the effect of extreme selective
events on the speed of invasion of the favoured of two genetic types. In future, we hope
to extend these results to a much broader class of models, potentially including dormancy
[5, 6], mutation, genetic drift and spatially localized selective events [3]. Finally, we
note that we only consider the highest order (linear) term in the wave speed. For the
original Fisher-KPP equation many, more refined results are available [8, 23] and would
be interesting to extend to the present setting. Similarly, the existence of a (generalized)
travelling wave (and not just the speed of propagation) is left open.

1.1 Related literature

Recently, the study of the effect of extreme selective or reproductive events on
evolutionary models has seen a flurry of activity. An archetypal non-spatial model for
such an evolution is the Λ–coalescent, in which a measure Λ, corresponding to our
R, determines the proportion of individuals participating in a merger event [30, 31]:
see also [13] for one of the first examples of coordinated reproduction in the context
of contact processes, and [11] (and the references therein) for a general framework
regarding coordination in reproduction, death and migration. In the study of non-spatial
models, extreme selection and reproduction events – which are in correspondence via
duality – have been recently addressed by [2, 7, 12]. In the study of spatial models such
as superprocesses, the effects of strong selection have been analysed for example in
[28, 18].

For example, Cordero and Véchambre [7] derive an analogue of our equation, with

EJP 28 (2023), paper 71.
Page 3/29

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP958
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wave speed for jump FKPP

genetic drift and no spatial component, as the scaling limit of a microscopic particle
system and study its long-time behaviour (similar scaling limits and results have been
obtained in [2, 12] in related models). Although these works do not consider our spatial
setting, they share key aspects of our approach. In particular, the use of duality and
the study of the long-time behaviour of the processes through conditioning or averaging
over the environment are essential in our arguments.

In more detail, the most well-known population-genetic example of moment duality
is the one between the Wright–Fisher diffusion (without selection) and the Kingman
coalescent. The Wright–Fisher diffusion appears as the scaling limit of the relative
frequency of a neutral allele in the Wright–Fisher model, which runs forwards in time,
whereas the Kingman coalescent describes the ancestry of a sample of the haploid and
asexually reproducing individuals of the Wright–Fisher model backwards in time. While
the introduction of selection into the forwards-in-time process is straightforward, the
existence of a moment dual was not known before Krone and Neuhauser [19] introduced
this process, called the ancestral selection graph. In this graph, while random genetic
drift still leads to mergers of ancestral lines in the dual, selection makes ancestral
lines branch into multiple potential parents. For example, if the model consists of just
one weak and one strong allele, both potential parents of a particle with a weak allele
type must be themselves of a weak type. The moment duality between the classical
BBM and the solution to the classical FKPP equation can be interpreted similarly; this
is a spatial model without random genetic drift, where the forwards-in-time process
is deterministic, and the Brownian particles of its dual exhibit branching only. If one
introduces a rare selection governed by a Poisson point process just as in Equation (1.2),
then the corresponding part of the dual process will be governed by the same Poisson
point process. Similarly to the Wright–Fisher diffusion with selection, if (t, y) is a point
belonging to the Poisson point process, then the forwards-in-time interpretation of the
model is that at time t a fraction y of individuals, chosen uniformly at random, are
participating in a large selective resampling event. On the other hand, as in the the
ancestral selection graph, backwards-in-time this corresponds to a large scale branching
event, in which each particle participates with probability y.

As also mentioned in [7, 12], examples of experimental studies on rare selection
can be found in [9, 26]. In [9], lizards with long fingers can hold on stronger and thus
avoid being blown away whenever their habitat is hit by a hurricane, which provides
them a strong but temporary selective advantage. Further, [26] compares different
antibiotic treatment strategies against a bacterial population. Here, the analogue of a
continuously present but weak selective pressure is a constant administration of the
antibiotic in low concentration dosage, while rare and strong selective events correspond
to a less frequent inoculation with higher dosages (possibly of varying concentration and
at random times).

We also note that extreme evolutionary events in a spatial setting have received much
attention over the past years in relation to the study of spatial Λ–Fleming–Viot (SLFV)
models introduced by Barton, Etheridge and Véber [3]. Unlike our equation, in this class
of processes reproductive events are localized in space, which is a natural assumption
and an interesting direction for future extensions of our result.

After completion of the present paper, we learned that the speed of the rightmost
particle of the CBBM can be computed also via the results of [24] on branching random
walks in a time-inhomogeneous random environment, using different tools.

Together with our results on well-posedness of (1.2) its duality with respect to the
CBBM, this provides an alternative proof of the wave speed of (1.2).
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1.2 Structure of the paper

This article is divided as follows. In Section 2.1 we present our model and in
Section 2.2 we state our main results, along with the crucial points of their proofs. The
technical details of the proofs are carried out in the rest of the paper. In Section 3 we
prove the existence and uniqueness of strong solutions to (1.2) as well as (quenched and
annealed) duality. These results do not come as a surprise, but require a proof and a
precise statement. Section 4 is devoted to upper and lower bounds on the wave speed
via quenched duality arguments.

1.3 Notations

We write N = {1, 2, . . . } and denote [n] = {1, . . . , n} for any n ∈ N. Furthermore, let
M be the space of finite positive Borel measures on [0, 1] with the topology of weak
convergence. For a set X and two functions f, g : X → R we write f . g if there exists a
constant c > 0 such that f(x) 6 cg(x) for all x ∈ X . If the constant c depends on some
parameter ϑ we write f .ϑ g. We further denote with Ckb (R;O) (for k ∈ N∪{∞} and any
target set O ⊆ R) the space of bounded and k times differentiable functions ϕ : R→ O
with continuous and bounded derivatives. Similarly, for γ ∈ (0,∞) \ N we define Cγb
to be the space of bounded and bγc–times differentiable functions with γ − bγc-Hölder
continuous and bounded derivatives.

Finally, with Cloc(R;O) we denote the space of continuous (and not necessarily
uniformly bounded) functions with values in O. When O = R we may drop the depen-
dence on it in the notation. The spaces Ckb and Cαb , for k ∈ N, α 6∈ N come equipped,
respectively, with the norms

‖ϕ‖∞ = sup
x∈R
|ϕ(x)| , ‖ϕ‖Ckb =

k∑
i=0

‖∂ixϕ‖∞ ,

and

‖ϕ‖Cαb =

bαc∑
i=0

‖∂ixϕ‖∞ + sup
x 6=y

|ϕ(x)− ϕ(y)|
|x− y|α−bαc

.

Moreover, for any polish space E we indicate with D([0,∞);E) the space of càdlàg paths
with values in E endowed with the Skorokhod topology (similarly for [0,∞) replaced by
some finite interval [0, T ]).

2 Setting and main results

2.1 The model

The main object of interest in this work is the wave speed s of the solution to (1.2). It
will be convenient to consider the following class of initial conditions, for any α ∈ (0, 1)

Cα0,1 =
{
u ∈ Cαb (R; [0, 1]) such that {x : u(x) 6∈ {0, 1}} is compact

and such that lim
x→−∞

u(x) = 1, lim
x→∞

u(x) = 0
}
,

for which the wave speed is naturally defined below.

Definition 2.1. We say that s ∈ R is the wave speed associated to (1.2) if for any
α ∈ (0, 1) and all u0 ∈ Cα0,1 the following hold.

1. For every λ > s and any x ∈ R, we have limt→∞ ut(x+ λt) = 0 in probability.

2. For every λ < s and any x ∈ R, we have limt→∞ ut(x+ λt) = 1 in probability.
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Remark 2.2. Our initial conditions are chosen to be Hölder continuous, to simplify
the statements that will follow. We could consider also discontinuous initial data, e.g.
u0(x) = 1(−∞,0](x), at the cost of introducing blow-ups at time t = 0 in the solution
theory for (1.2).

The study of the wave speed of the solution to (1.2) passes through the analysis
of its dual process, which consists of a system of Brownian motions with coordinated
branching that run backwards in time and roughly represent the genealogy of types
of a sample of particles. In the dual process the parameter y interpolates between no
coordination (y = 0, so all particles act independently) and full coordination (y = 1, so all
particles reproduce at once). In this backwards (or dual) picture the measure R captures
the reproduction rate.

Notation 2.3. To describe the state space of our particle systems we introduce the set

P =
⊔
n∈N

Rn .

Then to every point x of P we can associate a length `(x) = n ⇐⇒ x ∈ Rn. In particular,
P is a Polish space with the distance d(x,y) = |`(x)− `(y)|+ ‖x− y‖1{`(x)=`(y)}, where
‖ · ‖ indicates the Euclidean norm. To concisely express our duality formulas, let us
introduce the following notation

ϕx =

n∏
i=1

ϕ(xi), ∀ϕ ∈ Cloc(R), x = (x1, . . . , xn) ∈ P.

In addition, for x,y ∈ P we write the concatenation

x t y = (x1, . . . , x`(x), y1, . . . , y`(y)) ∈ P.

The way in which we use duality requires the introduction of an additional parameter
δ ∈ (0, 1]. We will then consider a dual conditional on jumps with impact y > δ. We start
by distinguishing small from large jumps with the following notation.

Definition 2.4. For any δ ∈ (0, 1] and R ∈M([0, 1]) define

R−δ (A) = R(A ∩ [0, δ]) , R+
δ (A) = R(A ∩ (δ, 1]) , Rδ = (R−δ ,R

+
δ ) .

In general, we call compatible with δ any ordered pair of measures µδ = (µ−δ , µ
+
δ ) ∈M2

with support in [0, δ] and [δ, 1] respectively with µ+
δ ({δ}) = 0. Finally, for any compatible

measures µδ we introduce the Poisson point process with intensity dt⊗ 1
yµ

+
δ (dy):

Sδ = {(tj , yj)}j∈N ⊆ [0,∞)× (δ, 1] , (2.1)

which is characterised by the fact that 0 < t1 < · · · < tj < tj+1, and tj ↑ ∞, and is linked
to the Poisson random measure

R+
δ (dt, dy) =

∑
j∈N

δtj (dt)δyj (dy) .

We observe that formally we can rewrite the noise R in (1.2) as

R = R−δ +R+
δ ,

with R−δ a Poisson random measure with intensity dt ⊗ 1
yR
−
δ (dy). To be precise, R is

in general not a measure, but can only interpreted when integrated against functions
that vanish near y = 0 sufficiently fast. More precisely, R−δ is associated with a Poisson
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point process {(sj , zj) : i ∈ I} of intensity dt⊗ 1
yR(dy) on [0,∞)× (0, δ], with countable

index set I ⊆ N (so both the points (sj , zj) and the index set I are random). Then for
measurable functions f : [0,∞)× (0, δ]→ R satisfying∫

[0,∞)×(0,δ]

min{|f(t, y)|, 1}1

y
R(dy)dt <∞ , (2.2)

the integral ∫
[0,∞)×(0,δ]

f(t, y)R(dt,dy) :=
∑
j∈I

f(sj , zj) (2.3)

is almost surely finite, as discussed in the context of Campbell’s theorem in [17, Section
3].We can now introduce the dual process to (1.2) conditional on the realisation of Sδ.
We highlight that the FKPP equation and its conditional dual share the same jump times
Sδ (to be precise, the dual process may jump at a time contained in Sδ but does not
necessarily do so), whereas they do not share the jump times associated to smaller
impacts.

Definition 2.5 (µδ–CBBM). For any δ ∈ (0, 1] and any couple µδ = (µ−δ , µ
+
δ ) compatible

with δ, let Sδ be the Poisson point process defined by (2.1). We say that (Ct)t>0 is a
µδ–coordinated branching Brownian motion (µδ–CBBM) with initial condition C0 = x ∈ P
if, conditional on the realisation of Sδ, the process Ct is a P-valued Markov process with
the following dynamics:

1. Diffusion. Let Ct = (x1, . . . , xn) at time t > 0. Then each individual xi moves in R
according to a Brownian motion, independent of all other individuals, until one of
the following two jumps occur.

2. Large reproduction events. For every j ∈ N, assume that at time tj (of the
Poisson point process Sδ) there are currently n individuals Ctj = (x1, . . . , xn) ∈ Rn.

Then we observe one of the following transitions, for any subset I ⊆ [n]:

(xi)i∈[n] → (xi)i∈[n] t (xi)i∈I ∈ Rn+|I| with probability y
|I|
j (1− yj)n−|I|.

3. Small reproduction events. Assume that at time t > 0 there are currently n

individuals Ct = (x1, . . . , xn) ∈ Rn. Then for any subset ∅ 6= I ⊆ [n] we have the
following coordinated transition:

(xi)i∈[n] → (xi)i∈[n] t (xi)i∈I ∈ Rn+|I| at rate

∫
[0,δ]

y|I|(1− y)n−|I|
1

y
µ−δ (dy) .

We observe that for δ = 1 we have Sδ = ∅. Then the dynamics of the CBBM do not
have a discrete reproduction component, and in this case the process is the unconditional
dual of (1.2). The duality between the CBBM and the FKPP equation will be established
in Proposition 3.6.

The necessity of dealing with δ ∈ (0, 1) (and in particular, we will eventually consider
the limit δ → 0) is forced upon us to capture the exact wave speed of (1.2). In fact
the martingale problem for the R1–CBBM (or alternatively, [11, Lemma 3]) implies
the following (in fact e−rtIt is a martingale, although it is in general not uniformly
integrable).

Proposition 2.6 (Invariance of expectation). Let R ∈ M be any measure and C =

(Ct)t≥0 be an R1–CBBM and write It = `(Ct) for the total number of particles at time
t > 0. Then

E[It] = I0ert , with r = R([0, 1]) . (2.4)
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In the present case, in which the nonlinearity in (1.2) is concave, the wave speed
is determined by the growth of the linearisation near u = 0 of the equation: this is
referred to as the pulled regime [21]. Moreover, the growth of the linearisation is
roughly equivalent to that of the dual process. On the other hand, Jensen’s inequality
guarantees that the speed of the expected value of the solution to (1.2) is strictly slower
than in the classical case (with same total mass for the reproduction), since

∂tE[ut] 6
1

2
∆E[ut] + rE[ut](1− E[ut]) ,

where we used that Mf
t =

∫ t
0

∫ 1

0
yfsR(ds,dy) −

∫ t
0
R((0, 1])fsds is a martingale for

bounded, adapted f . As an educated guess, one can think that the speed of the ex-
pected value of the solution is the same as the wave speed of the solution itself, and
Theorem 2.8 below shows that this is indeed true. Hence we are faced with an apparent
conundrum, as the speed predicted by (2.4) is exactly the deterministic (annealed) one,
which we now know to be incorrect.

The issue is that the coordinated process Ct, unlike the branching Brownian motion,
is strongly catalytic (apart from the case R = cδ0, c > 0, in which the two processes
coincide): Namely its almost sure growth rate is strictly smaller than its annealed growth
rate, captured by (2.4). For this reason, classical martingale arguments do not work
directly.

Our approach is therefore to use the conditioning as a way to obtain the almost sure
growth rate. As usual for Poisson point processes, one has to take particular care of
the small jumps: for this reason we consider a fixed parameter δ > 0. Small jumps are
then dealt with via the argument we just explained, through Jensen’s inequality and
martingales. This delivers a wrong estimate, but now with an error of order O(δ), in
such a way that as δ → 0 we obtain the correct speed.

2.2 Main results

Now we are ready to present our main results. We start by proving well-posedness
of (1.2).

Theorem 2.7. Fix any R ∈ M and let (Ω,F ,P) be a probability space supporting a
Poisson point process S on [0,∞)× (0, 1] with intensity measure dt⊗ 1

yR(dy). Let Ft be

the right-continuous filtration generated by St = S ∩ ([0, t]× (0, 1]). For any α ∈ (0, 1)

and any initial condition u0 in Cαb (R; [0, 1]) there exists a unique (up to modifications on
a nullset) adapted process

u : Ω→ D([0,∞);Cαb ([0, 1];R))

that solves (1.2) on [0,∞) × R (with the derivatives interpreted in the sense of distri-
butions and the integral against R interpreted in the sense of sums over Poisson point
processes, cf. (2.3) for δ = 1) with u(0, ·) = u0(·).

This result is a consequence of Proposition 3.4. For the solution we just constructed
we can describe the wave speed as follows.

Theorem 2.8. For every R ∈ M, α ∈ (0, 1) and any initial condition u0 ∈ Cα0,1, the
solution u to the FKPP equation (1.2) with initial condition u0 (as in Theorem 2.7) has
wave speed s > 0 in the sense of Definition 2.1 given by

s2

2
=

∫
[0,1]

log (1 + y)
1

y
R(dy) . (2.5)

Again, we follow the convention
∫
{0} log(1 + y) 1

yR(dy) = R({0}) = r.
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Proof. We follow two different arguments for the lower and upper bounds to the wave
speed (the two conditions in Definition 2.1).

Step 1. Let us start with the upper bound, so fix any λ > s. Our aim will be to prove
that for any x ∈ R

lim
t→∞

Eut(x+ λt) = 0 ,

which implies the required convergence in probability. For this purpose consider δ ∈
(0, 1) and define Rδ = (R−δ ,R

+
δ ) as in Definition 2.4, associated to the decomposition

R = R−δ +R+
δ , where R+

δ is the random measure associated to the Poisson point process
Sδ with intensity dt⊗ 1

yR
+
δ (dy). Then let Eδ indicate the expectation conditional on Sδ,

namely
Eδ[f ] = E[f |Sδ] .

Since ut(x) takes values in [0, 1] by dominated convergence it thus suffices to prove that
if δ = δ(λ) ∈ (0, 1) is sufficiently small, then P–almost surely

lim
t→∞

Eδut(x+ λt) = 0 .

Here we use the conditional duality of Proposition 3.6 to bound

Eδ[1− ut(x+ λt)] = Eδ
[
(1− u0)C

x(λ,t)
t

]
,

where C
x(λ,t)
t is an Rδ–CBBM as in Definition 2.5, started in x(λ, t) = x+ λt ∈ R1. Now

since u0 ∈ Cα0,1 there exists an a ∈ R such that u0(x) = 0 for all x > a. In particular

Eδ(1− u0)C
x(λ,t)
t > Eδ(1[a,∞))

C
x(λ,t)
t = Pδ(St 6 −a+ λt+ x) ,

where St = maxC0
t is the rightmost particle of an Rδ–CBBM C0

t started in x = 0 ∈ R1

(note that by symmetry Pδ(maxC0
t ≤ c) = Pδ(minC0

t ≥ −c) = Eδ(1[−c,∞))
C0
t ). Hence it

suffices to show that for any x0 ∈ R

lim
t→∞

Pδ(St > λt+ x0) = 0 .

This claim follows from Proposition 4.4, up to choosing δ sufficiently small so that for cδ
as in (4.1)

s 6
√

2cδ < λ .

Step 2. Let us now pass to the lower bound. That is, choose λ < s and, similarly to
above, let us prove that limt→∞Eut(x+ λt) = 1. As before we can fix δ ∈ (0, 1), so that it
suffices to prove that P–almost surely

lim
t→∞

Eδut(x+ λt) = 1 .

Then by the duality of Proposition 3.6 we have

Eδ(1− ut)(x+ λt) = Eδ(1− u0)C
x(λ,t)
t 6 Eδ(1− u0)C

x(λ,t)
t .

Here C
x(λ,t)
t is an Rδ–CBBM, with Rδ = (R−δ ,R

+
δ ) started in x(λ, t) = x + λt ∈ R1, and

C
x(λ,t)
t is an Rδ–CBBM associated to compatible measures Rδ = (rδ0,R

+
δ ), started in

x(λ, t). Then we can use that by definition

rδ0 6 R−δ ,
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in the sense of measures, so that we can couple Ct and Ct in such a way that Ct ⊆ Ct,
which implies the desired estimate. In particular it now suffices to prove that

lim
t→∞

Eδ(1− u0)C
x(λ,t)
t = 0 .

Again, we find b ∈ R such that u0(x) = 1 for all x 6 b, so that

Eδ(1− u0)C
x(λ,t)
t 6 Pδ(St 6 −b+ λt+ x) ,

where St = maxC0
t , the latter being a (rδ0,R

+
δ )–CBBM started in C0

0 = 0 ∈ R1. Now by
Proposition 4.5 we know that if δ ∈ (0, 1) is chosen to be sufficiently small such that for
cδ as in (4.4)

λ <
√

2cδ 6 s ,

then limt→∞P
δ(St 6 −b+ λt+ x) = 0, P–almost surely. The proof is concluded.

3 Existence and duality

This section is devoted to proving existence and uniqueness of solution to (1.2), as
well as duality. We will first construct unique solutions and observe that they satisfy a
certain martingale problem. Then we use the martingale problem to establish duality.

3.1 Existence and uniqueness

Let us start by defining the generator associated to the nonlinearity of (1.2). To be
precise, the first definition will be associated to the space-independent equation. The
extension to the spatial case passes through cylinder functions, as explained in the
subsequent definition of martingale solutions. Here the set C∞c indicates the space of
smooth functions with compact support on R. Throughout these construction, we recall
that in Definition 2.4 we have divided

R = R−δ + R+
δ .

Definition 3.1. Fix any P ∈M. For any n-tuple of smooth functions ϕ = (ϕ1, . . . , ϕn) ∈
(C∞c )n and an F ∈ C1

b (Rn) define the cylinder function

Cloc(R) 3 u 7→ Fϕ(u) = F (〈u, ϕ1〉, . . . , 〈u, ϕn〉) ,

where 〈u, ϕi〉 =
∫
R
uϕi dx, and for any such Fϕ we define the generator

LPFϕ : Cloc(R)→ R

as follows

LP(Fϕ)(u) =

∫
(0,1]

{Fϕ(u+ yu(1− u))− Fϕ(u)} 1

y
P(dy) ,

for all u ∈ Cloc(R).

We observe that the integral is well defined at y = 0 for every u, since

Fϕ(u+ yu(1− u))− Fϕ(u)

=

n∑
i=1

∂iF (〈u, ϕ1〉, . . . , 〈u, ϕn〉)y〈u(1− u), ϕi〉+ o(y) ,

for y → 0 as F ∈ C1
b .
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Remark 3.2. In particular, we can bound for any F ∈ C1
b and ϕ = (ϕ1, . . . , ϕn):

|LP(Fϕ)(u)| .‖F‖
C1
b
,
∑n
i=1 ‖ϕi‖L1

P((0, 1]) ,

where ‖ϕi‖L1 =
∫
R
|ϕi(x)|dx.

Next we give a precise definition of martingale solutions to the stochastic FKPP
equation. We use the following convention. For any n ∈ N and F ∈ C1

b (Rn;R) and
for any smooth functions ϕi ∈ C∞c (R), i = 1, . . . , n write, for ϕ = (ϕ1, . . . , ϕn) and any
u ∈ Cloc(R):

Fϕ(u) = F
(
{〈u, ϕi〉}ni=1

)
, ∂iFϕ(u) = ∂iF

(
{〈u, ϕi〉}ni=1

)
.

We also recall that for Sδ as in Definition 2.4 we let Pδ be the (random) probability
distribution

Pδ(A) = P(A|Sδ) ,

and we let Fδt be the filtration generated by

Fδt = σ(Stδ) , Stδ
def
= St ∪ Sδ = (S ∩ ([0, t]× (0, 1])) ∪ Sδ .

Definition 3.3 (Conditional martingale solution). Fix any R ∈M as well as δ ∈ (0, 1], α ∈
(0, 1) and u0 ∈ Cαb . Let u be a stochastic process over a probability space (Ω,F ,P) taking
values in D

(
[0,∞);Cαb (R; [0, 1])

)
. Let Sδ = {(tj , yj)}j∈N be a Poisson point process as in

Definition 2.4, defined on the same probability space.
We say that u is a martingale solution to Equation (1.2) on [0,∞) with initial condition

u0, conditional on Sδ, if u(0, ·) = u0(·) and the following conditions are satisfied for any
n ∈ N, F ∈ C1

b (Rn;R) and ϕi ∈ C∞c (R) for i = 1, . . . , n:

1. For all j ∈ N the process

MF
t := Fϕ(ut)− Fϕ(utj )−

∫ t

tj

Lδ(Fϕ)(us)ds

is an Fδt –càdlàg centered martingale for t in [tj , tj+1), with Lδ(Fϕ) defined as:

Lδ(Fϕ)(u) =

(
n∑
i=1

∂iFϕ(u) ·
(
〈u, 1

2
∆ϕi〉+ 〈ru(1− u), ϕi〉

))
+ LR−δ (Fϕ)(u) . (3.1)

2. For all j ∈ N the martingale MF
t has predictable quadratic variation, for t ∈

[tj , tj+1)

〈MF 〉t =

∫ t

tj

Lδ((Fϕ)2)(us)− 2Fϕ(us)Lδ(Fϕ)(us)ds . (3.2)

3. And finally for all j ∈ N we have utj = utj− + yjutj−(1− utj−).

In this setting we find the following result.

Proposition 3.4. Fix any R ∈ M, as well as α ∈ (0, 1). Let (Ω,F ,P) be a probability
space supporting a Poisson point process S = S0 as in Definition 2.4. For every u0 ∈
Cαb (R; [0, 1]) there exists a unique solution

u : Ω→ D([0,∞);Cαb (R; [0, 1])) ∩D((0,∞);Cβb (R; [0, 1]))

to (1.2) in the sense of Theorem 2.7, for arbitrary β > 0. Moreover such u satisfies for
any δ ∈ (0, 1] the conditional martingale problem of Definition 3.3.
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Proof. To construct solutions our approach is to build an approximating sequence
{uε}ε∈(0,1) associated to Poisson point processes that has only finitely many jumps.
For this reason, for ε ∈ (0, 1) we recall that the measure R+

ε is the restriction of the
Poisson random measureR to [0,∞)×(ε, 1], as in from Definition 2.4 (we callR a Poisson
random measure, but it can only be integrated against functions that vanish sufficiently
quickly near y = 0, cf. (2.3) for δ = 1).

In this way the Poisson random measure R+
ε (dt,dy) has intensity 1

yR
+
ε (dy)⊗ dt with

finite total mass and we recall the representation through the locally finite Poisson point
process Sε = {(ti, yi)}i∈N

R+
ε =

∑
i∈N

δ(ti,yi) .

Let now uε ∈ D([0,∞);Cαb ) be the solution to:

duεt =
1

2
∆uεtdt+ ruεt (1− uεt )dt+

∫
(ε,1]

yuεt−(1− uεt−)R+
ε (dt, dy), (3.3)

with initial condition u0. Here solutions are defined by the following constraints for any
j ∈ N

uεt = Pt−tju
ε
tj +

∫ t

tj

rPt−s[u
ε
s(1− uεs)]ds , ∀t ∈ [tj , tj+1) ,

uεtj = uεtj− + yju
ε
tj−(1− uεtj−) ,

where Pt is the heat semigroup

Ptϕ(x) =

∫
R

1√
2πt

ϕ(y)e−
|x−y|2

2t dy .

Step 1: Existence and uniqueness. We start by proving that the sequence {uε}ε∈(0,1)

is Cauchy in D([0, T ];Cb(R; [0, 1])) for ε → 0 and any T > 0. Fix any two 0 < ε < ε < 1

and let vε,ε be the difference vε,ε = uε − uε. Now we observe that vε,ε is positive:
vε,εt (x) > 0 for all t > 0, x ∈ R. This follows because the solution to the ε-discretised
FKPP equation is order preserving, meaning that if g1

0 > g2
0, then the solution git for

i ∈ {1, 2} to dgi = ∆gidt+ rgi(1− gi)dt+
∫

(0,1]
ygi(1− gi)Rε(dt,dy) satisfies g1

t > g2
t . Then

observe that uε solves the same equation as uε apart from the jump times tj such that
yj ∈ (ε, ε]. In particular, if one assumes that at such times tj one has vε,εtj− > 0, then it

follows that vε,εtj > 0, because uε is increasing at time tj: we can then conclude that

vε,ε > 0 until the next time tj′ such that yj′ ∈ (ε, ε]. By induction, since vε,ε0 = 0 we obtain
as desired that vε,εt > 0 for all t > 0. In addition, vε,ε solves

dvε,ε =
1

2
∆vε,εdt+ rvε,ε(1− uε − uε)dt+

∫
(0,1]

yvε,ε(1− uε − uε)R+
ε (dt, dy)

+

∫
(0,1]

yuε(1− uε)1(ε,ε](y)R+
ε (dt, dy)

6

(
1

2
∆vε,ε + rvε,ε

)
dt+

∫
(0,1]

yvε,εR+
ε (dt, dy) +

∫
(0,1]

y1(ε,ε](y)R+
ε (dt,dy) ,

where we used that the solution takes values in [0, 1]. Using that vε,ε(0, ·) = 0, we find
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via a maximum principle the upper bound:

‖vε,εt ‖∞ 6
∫ t

0

∫
(0,1]

y1(ε,ε](y) exp

{
r(t− s) +

∫ t

s

∫
(0,1]

log (1 + y)R+
ε (dr, dy)

}
R+
ε (ds,dy)

6
∫ t

0

∫
(0,1]

y1(0,ε](y) exp

{
r(t− s) +

∫ t

s

∫
(0,1]

log (1 + y)R(dr, dy)

}
R(ds,dy) ,

where the integrals are defined in the sense of Campbell’s theorem (see (2.3), or [17,
Section 3] for further details). Now, the right-hand side decreases to zero as ε → 0,
uniformly over t ∈ [0, T ]:

lim
ε→0

sup
t∈[0,T ]

‖vε,εt ‖∞ = 0 .

Since the supremum norm (in time) dominates the Skorohod distance, the claimed con-
vergence in D([0, T ];Cb(R; [0, 1])) follows. We observe that the same argument delivers
also uniqueness of solutions, if we replace uε with any solution u to (1.2).

Step 2: Regularity. Now we focus on the Cαb regularity of the solutions uε. Since the
only issue for the regularity comes from the Poisson jumps let us assume without loss of
generality that r = 0. The argument we present works verbatim to obtain the required
regularity for the limiting solution u: We provide instead a bound that is uniform in ε

instead, which will be useful to obtain the martingale problem in our last step. The
bound reads as follows:

sup
ε∈(0,1)

sup
t∈[0,T ]

‖uεt‖Cαb < C <∞ ,

for some random constant C > 0. To prove this statement we can write uε in its mild
formulation, as a convolution with the heat semigroup:

uεt = Ptu0 +

∫ t

0

∫
(0,1]

yPt−su
ε
s−(1− uεs−)R+

ε (ds,dy) .

Then we can use classical Schauder estimates, which captures the regularisation of the
Laplacian

‖Ptϕ‖Cαb 6 C(α, γ)t−
γ
2 ‖ϕ‖∞ ,

for some C(α, γ) > 0 and all α, γ such that α, γ ∈ (0,∞) \N, γ > α and α+ γ ∈ (0,∞) \N
(this follows for example from [1, Theorem 2.24] by embedding L∞ in a Besov space of
negative regularity).

Then we find for any 2 > γ > α

‖uεt‖Cαb . ‖u0‖Cαb +

∫ t

0

∫
(0,1]

y‖uεs−(1− uεs−)‖∞(t− s)−
γ
2R+

ε (ds,dy)

. ‖u0‖Cαb +

∫ t

0

∫
(0,1]

(t− s)−
γ
2 yR(ds,dy) ,

(3.4)

where the latter integral is again defined by (2.3), since for γ ∈ (0, 2)∫ t

0

∫
(0,1]

(t− s)−
γ
2 y

1

y
R(dy)ds <∞ .

Hence our upper bound is proven. We observe that we can additionally deduce the
following moment bound:

E
[

sup
ε∈(0,1)

sup
06t6T

‖uεt‖Cαb
]
<∞ .
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The bound for arbitrary β > 0 follows similarly, allowing a blow-up at t = 0.
Step 3: Martingale problem. Since the proof does not vary, we restrict to establishing

this property for δ = 1. Hence, consider F as in Definition 3.3. It is straightforward
to establish the martingale problem for uε (where we are in presence of locally finite
jumps). Namely, we have that

MF,ε
t :=Fϕ(uεt )− Fϕ(uε0)−

∫ t

0

L1,ε(Fϕ)(uεs)ds

is a càdlàg martingale, with

(L1,εFϕ)(u) =

(
n∑
i=1

∂iFϕ(u) ·
(
〈u, 1

2
∆ϕi〉+ 〈ru(1− u), ϕi〉

))
+ LR+

ε (Fϕ)(u)ds ,

in analogy to (3.1) (the notation L1,ε is used to avoid confusion with Lδ, since we are in
the case δ = 1). Moreover, MF,ε

t has predictable quadratic variation

〈MF,ε〉t =

n∑
i=1

∫ t

tj

L1,ε((Fϕ)2)(uεs)− 2Fϕ(uεs)L1,ε(Fϕ)(uεs)ds .

At this point we would like to establish the continuity

LR+
ε (Fϕ)(uεs)→ LR(Fϕ)(us) , LR+

ε ((Fϕ)2)(uεs)→ LR((Fϕ)2)(us) . (3.5)

Since from the established convergence of uε we know that Fϕ(uεs) → Fϕ(us) almost
surely, (3.5) would guarantee that MF,ε

· converges to MF
· almost surely, and similarly the

quadratic variation at level ε would converge to the desired limiting quadratic variation
almost surely. Now, to establish (3.5) we can compute for any pair u, v ∈ Cb(R; [0, 1]):∣∣∣LR+

ε (Fϕ)(u)− LR(Fϕ)(v)
∣∣∣ 6 ∣∣∣LR+

ε (Fϕ)(u)− LR(Fϕ)(u)
∣∣∣+
∣∣LR(Fϕ)(u)− LR(Fϕ)(v)

∣∣ .
Now, for the first term we have via Remark 3.2∣∣∣LR+

ε (Fϕ)(u)− LR(Fϕ)(u)
∣∣∣ =

∣∣∣∣∣
∫

(0,ε]

{Fϕ(u+ yu(1− u))− Fϕ(u)} 1

y
R(dy)

∣∣∣∣∣
.‖F‖

C1
b
,
,‖ϕi‖L1

R((0, ε])→ 0 .

As for the second one we have∣∣LR(Fϕ)(u)− LR(Fϕ)(v)
∣∣ 6 ∫

(0,1]

f(u, v, y)
1

y
R(dy) , (3.6)

where for u, v ∈ Cb(R; [0, 1]) we have

f(u, v, y) = | {Fϕ(u+ yu(1− u))− Fϕ(u)} − {Fϕ(v + yv(1− v))− Fϕ(v)} |

6 C
(
‖F‖C1

b
,

n∑
i=1

‖ϕi‖L1

)
{y ∧ ‖u− v‖∞} .

Then, since ‖u − v‖∞ 6 1 we can split up the integral in (3.6) in the two intervals
[0,
√
‖u− v‖∞] and [

√
‖u− v‖∞, 1]. We then obtain a bound of the form∣∣LR(Fϕ)(u)− LR(Fϕ)(v)

∣∣ .‖F‖
C1
b
,‖ϕi‖L1

R((0,
√
‖u− v‖∞]) +

√
‖u− v‖∞R((0, 1]) ,
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which converges to zero if u → v in Cb(R; [0, 1]). Here for the first term we have used
Remark 3.2, and for the second term we have estimated∫ 1

√
‖u−v‖∞

‖u− v‖∞
1

y
R(dy) 6

√
‖u− v‖∞R((0, 1]) .

The second convergence in (3.5) follows similarly. Finally, from (3.5) we then find that
MF,ε
· converges almost surely to MF

· in D([0, T ];R), for MF as in Definition 3.3. To
conclude that MF is a martingale, we can bound following the same arguments we just
outlined:

sup
ε∈(0,1)

E|MF,ε
T |

2 <∞ .

Hence by uniform integrability the limiting point MF is also a martingale, and a similar
argument as above shows that it has the required predictable quadratic variation.

We conclude with an extension of the previous results to a case in which F is
not of the prescribed form F = Fϕ. To state this assertion, for x ∈ P of the form
x = (x1, . . . , xn) ∈ Rn, we write

x † xi = (x1, . . . , xi−1, xi+1, . . . xn) ∈ Rn−1.

In addition for z ∈ P, we write z ⊆ x if there exists i1 < . . . < im, with m 6 n, such
that

z = (xi1 , . . . , xim) and x † z = (xi : i 6= ij ,∀j ∈ {1, . . . ,m}) .

Lemma 3.5. Assume that u is a martingale solution to Equation (1.2) with initial con-
dition u0, in the sense of Definition 3.3, and u(0, ·) = u0(·) where u0 ∈ Cαb for α ∈ (0, 1).
Then, for any fixed δ ∈ (0, 1],x ∈ P and any jump time tj > 0 of Sδ we have that

(1− ut)x−
∫ t

tj

∑
x∈x

(1− us)x†x
{

1

2
∆(1− us)(x) + rus(x)(us(x)− 1)

}
ds

−
∫ t

tj

∑
z⊆x

∫
(0,δ]

y`(z)(1− y)`(x)−`(z)

{
(1− us)xtz − (1− us)x

1

y
R(dy)

}
ds (3.7)

is a square integrable martingale for t ∈ [tj , tj+1), with respect to the filtration Fδ.
Note that the quantity in (3.7) is well-defined, since u is smooth for strictly positive

times: us ∈ C∞b (R) for any s > 0 by Proposition 3.4.

Proof. Fix any non-negative smooth function ϕ ∈ C∞c such that
∫
R
ϕ(x)dx = 1. Then for

all ζ > 0 and y ∈ R define

ϕx,ζ(y) =
1

ζ
ϕ
(1

ζ
(y − x)

)
.

Now, consider
F (ζ)(v) =

∏
x∈x
〈1− v, ϕx,ζ〉, v ∈ Cloc(R).

Since u is a martingale solution to Equation (1.2) with initial condition u0, conditional
on Sδ, and since v 7→ F (ζ)(v) is smooth and bounded over v ∈ [0, 1], we can apply
Definition 3.3 to obtain that

F (ζ)(ut)−
∫ t

tj

∑
x∈x

( ∏
y∈x†x

〈1− us, ϕy,ζ〉
)
·
{
〈1− us,

1

2
∆ϕx,ζ〉+ 〈rus(us − 1), ϕx,ζ〉ds

}
−
∫ t

tj

∫
(0,δ]

(
F (ζ)(us + yus(1− us))− F (ζ)(us)

)1

y
R(dy)ds

(3.8)
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is a martingale on [tj , tj+1).
In addition, for F (0)(u) = (1− u)x, there exists a constant C > 0 such that

sup
‖u‖∞,‖w‖∞61

|F (0)(u+ yw)− F (0)(u)| 6 Cy .

Therefore, since F (ζ)(u+ yu(1− u)) = F (0)(w + yr) with

w(x) = 〈u, ϕx,ζ〉 , r(x) = 〈u(1− u), ϕx,ζ〉 ,

so that ‖w‖∞, ‖r‖∞ 6 1, we also have the following bound which is uniform over ζ (for
the same constant C > 0 as above):

sup
ζ∈(0,1),‖u‖∞,‖w‖∞61

|F (ζ)(u+ yw)− F (ζ)(u)| 6 Cy . (3.9)

Now, for ζ → 0 we have that F (ζ)(u) → F (0)(u) point-wise. The uniform bound (3.9)
guarantees that we can pass to the limit ζ → 0 under the integral over y in (3.8) and
moreover via Definition 3.3 we see that limit is still a martingale as the quadratic
variation stays uniformly bounded, again by (3.9). We have therefore concluded that

F (0)(ut)−
∫ t

tj

∑
x∈x

(1− us)x†x ·
{

1

2
∆(1− us)(x) + rus(x)(us(x)− 1)

}
ds

−
∫ t

tj

∫
(0,δ]

(
F (0)(us + yus(1− us))− F (0)(us)

)1

y
R(dy)ds

is a martingale. Finally, we must obtain that the last term coincides with the term in the
statement of the lemma. To see this, we compute

(1− u− yu(1− u))x = (1− u)x(1− yu)x = (1− u)x(1− y + y(1− u))x .

Then we use the binomial formula:

(u+ v)x =
∑
z⊆x

uzvx†z .

In particular, we obtain that

(1− y + y(1− u))x =
∑
z⊆x

y`(z)(1− y)`(x†z)(1− u)z ,

so we can finally rewrite:∫
(0,δ]

(1− u− y(u(1− u)))x − (1− u)x
1

y
R(dy)

=
∑
z⊆x

∫
(0,δ]

y`(z)(1− y)`(x†z) {(1− u)xtz − (1− u)x} 1

y
R(dy) ,

from which our claim follows.

3.2 Duality

As we have already discussed, we will consider the solution to (1.2) conditional on
the large jumps R+

δ . In particular, the solution u to (1.2) can be formally rewritten as

dut =
1

2
∆utdt+ rut(1− ut)dt

+

∫
(0,δ]

yut−(1− ut−)R−δ (dt, dy) +

∫
(δ,1]

yut−(1− ut−)R+
δ (dt,dy) .

(3.10)

EJP 28 (2023), paper 71.
Page 16/29

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP958
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Wave speed for jump FKPP

Here the integral against R−δ should be interpreted in the sense of (2.3). Then, let Eδ

indicate expectation conditional on Sδ as in (2.1), or equivalently conditional on R+
δ as

in Definition 2.4:

Eδ[f ] = E[f |Sδ] .

For u ∈ Cloc(R) let us recall the notation

uCt =

`(Ct)∏
i=1

u(C
(i)
t ) .

We find the following duality relation.

Proposition 3.6. Fix R ∈ M and, for any δ ∈ (0, 1], let Rδ = (R−δ ,R
+
δ ) be as in Defini-

tion 2.4. Then, let u be a martingale solution to (3.10) conditioned on Sδ, associated to
R in the sense of Definition 3.3. Furthermore, for any x ∈ P, let (Ct)t>0 be an Rδ–CBBM
started in x as in Definition 2.5. Then for any t > 0

Eδ [(1− ut)x] = Eδ
[
(1− u0)Ct

]
. (3.11)

Proof. Since whether Equation (3.11) holds only depends on the marginal laws of the
couple ((Ct)t>0, (ut)t>0) under the (random) probability measure Pδ, we can without
loss of generality assume that the two processes are independent conditional on Sδ.

Our aim is then to prove an even stronger statement, namely that for any t > 0 the
process

[0, t] 3 s 7→ Eδ(1− ut−s)Cs is constant. (3.12)

From the definition of Rδ-CBBM we find that

(1− u)Ct−
∫ t

tj

∑
x∈Cs

(1− u)Cs†x
{

1

2
∆(1− u)(x) + ru(x)(u(x)− 1)

}
ds

−
∫ t

tj

∑
z⊆Cs−

∫
(0,δ]

y`(z)(1− y)`(Cs−)−`(z)

{
(1− u)Cs−tz − (1− u)Cs−

1

y
R(dy)

}
ds ,

is a square integrable martingale on [tj , tj+1), for any fixed u ∈ C2
b . In addition, by

Lemma 3.5 we have that also

(1− ut)x−
∫ t

tj

∑
x∈x

(1− us)x†x
{

1

2
∆(1− us)(x) + rus(x)(us(x)− 1)

}
ds

−
∫ t

tj

∑
z⊆x

∫
(0,δ]

y`(z)(1− y)|x|−`(z)

{
(1− us)xtz − (1− us)x

1

y
R(dy)

}
ds

is a square integrable martingale on [tj , tj+1).
In particular, since the two drifts match each other and the processes are assumed to

be independent, upon taking expectations we find that for t ∈ [tj , tj+1)

s 7→ Eδ(1− ut−s)Cs is constant on [tj , t] .

Now, at time tj , we find for zt = 1− ut

(1− utj )x = (1− utj− − yjutj−(1− utj−))x

= (ztj− − yj(1− ztj−)ztj−)x

= ((1− yj)ztj− + yjz
2
tj−)x .
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Hence in particular

(1− utj )x − (1− utj−)x =

{∑
z⊆x

y
`(z)
j (1− yj)`(x†z)zx†ztj−(z2

tj−)z
}
− zxtj−

=
∑
z⊆x

y
`(z)
j (1− yj)`(x†z)

{
zx†ztj−(z2

tj−)z − zxtj−
}
,

where we used that ∑
z⊆x

y
`(z)
j (1− yj)`(x†z) = 1 .

This corresponds again to the branching mechanism of Ct, so that we can deduce that
Eδ(1− ut−s)Cs is constant for s ∈ (0, t). Taking the limit s ↓ 0 and s ↑ t delivers the result
on the closed interval [0, t].

4 Wave speed

4.1 Conditional dual

Apart from the results of Section 3, the last ingredient we will need in the study of
the wave speed is the following almost sure asymptotic property for Sδ.
Lemma 4.1. For any δ ∈ (0, 1) and ε ∈ [0,∞) let Sδ be defined as in (2.1) and associated
to Rδ = (R−δ ,R

+
δ ) as in Definition 2.4. Then for

dδ,ε(t) =
∑

j : tj6t

log(1 + yj + ε) , dδ,ε =

∫
(δ,1]

log (1 + y + ε)
1

y
R(dy) ,

it holds that almost surely that

lim
t→∞

1

t
dδ,ε(t) = dδ,ε .

For simplicity we will write dδ(t) for dδ,0(t) in the case ε = 0 (and similarly for dδ).

Proof. We have

1

t
dδ,ε(t) =

( 1

#{j : tj 6 t}
∑

j : tj6t

log(1 + yj + ε)
)#{j : tj 6 t}

t
.

Now, the first factor on the right-hand side converges a.s. to
∫
(δ,1]

log(1+y+ε)
y R(dy)∫

(δ,1]
1
yR(dy)

due to

the strong law of large numbers, while the second factor converges a.s. to
∫

(δ,1]
1
yR(dy)

due to the Poisson law of large numbers [17, Section 4.2].

4.2 Upper bound on the wave speed

We start by establishing an upper bound on the quenched (w.r.t. jumps larger than δ)
growth rate of the dual process.

Proposition 4.2. Fix R ∈ M and, for any δ ∈ (0, 1], let Rδ = (R−δ ,R
+
δ ) be as in Defini-

tion 2.4. Let Ct be an Rδ–CBBM started in x ∈ R1. Then for Iδt = `(Ct) we have almost
surely

lim sup
t→∞

1

t
log Iδt 6 R−δ ([0, δ]) +

∫
(δ,1]

log (1 + y)
1

y
R+
δ (dy) =: cδ . (4.1)
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Note that since log (1 + y) 1
y 6 1 we always have

R({0}) +

∫
(0,1]

log (1 + y)
1

y
R(dy) 6 cδ ,

which reflects the fact that in the following we obtain an upper bound on the wave speed.
On the other hand, as δ → 0 we obtain

cδ → R({0}) +

∫
(0,1]

log (1 + y)y−1R(dy) = c =
s2

2
, (4.2)

where s is the wave speed defined by (2.5).

Remark 4.3. Although we only prove an upper bound on the growth rate of Iδt , the
arguments we present for the lower bound of the wave speed allow to also prove a lower
bound to the growth of Iδ by comparing Iδ to the a process where we do not have any
jumps with impact y ∈ (0, δ] (and everything else being left unvaried). Alternatively, one
can also use the same comparison, but in combination with the “channelling” argument
that we will use in Section 4.4. Overall, one would thus obtain that almost surely
(independently of δ!)

lim
t→∞

1

t
log Iδt = c ,

with c as in (4.2).

The proof of Proposition 4.2 will be carried out in Section 4.4. Using the previous
result, we obtain an upper bound on the wave speed via a quenched version of the
so-called many-to-one lemma, cf. [4, Section 3.6].

Proposition 4.4. Fix R ∈ M and, for any δ ∈ (0, 1], let Rδ = (R−δ ,R
+
δ ) be as in Defi-

nition 2.4. Let Ct be an Rδ–CBBM started in x = 0 ∈ R1. Then for any x0 ∈ R and
St = maxCt we have, for any λ >

√
2cδ, P–almost surely

lim
t→∞

Pδ(St > λt+ x0) = 0 .

Proof. Without loss of generality we restrict to the case x0 = 0. Let us also write
Ct = (C

(i)
t )i∈[Iδt ] for t > 0 and Iδt = `(Ct), where we assume that the ordering of particles

is exchangeable (which can e.g. be achieved via reshuffling the indices at the time of any
reproduction event uniformly in a right-continuous manner). Then, at any given time
t ≥ 0, conditional on Iδt , the particles are identically (but not independently) distributed
and their marginal law is that of a Brownian motion at time t, so that

Pδ(C
(i)
t > x|Iδt ) = Φ(x/

√
t) ,

with Φ(z) = P(N > x) for a standard Gaussian N . Hence, conditional on the jump times,
we obtain that for any t ≥ 0 and ε > 0,

Pδ(St > x|Iδt ) = Pδ
(
∃i ∈ [Iδt ] : C

(i)
t > x

∣∣Iδt )
≤ Eδ

[ ∑
i∈[Iδt ]

1{C(i)
t >x}

∣∣∣Iδt ]1{Iδt6e(cδ+ε)t} + 1{Iδt>e(cδ+ε)t}

6 Iδt Φ(x/
√
t)1{Iδt6e(cδ+ε)t} + 1{Iδt>e(cδ+ε)t} .

Thus, the Gaussian tail bound∫ ∞
t

1√
2π

e−y
2/2dy 6

1√
2πt

e−
t2

2 , t ≥ 0
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implies that for ε, λ > 0

Pδ(St > λt|Iδt )1{Iδt6e(cδ+ε)t} ≤
1√

2πtλ
e(cδ+ε)t−λ

2t
2

holds almost surely, whence for λ >
√

2(cδ + ε) we obtain by Proposition 4.2 that almost
surely

lim
t→∞

Pδ(St > λt) 6 lim
t→∞

{
1√

2πtλ
e(cδ+ε)t−λ

2t
2 + Pδ(Iδt > e(cδ+ε)t)

}
= 0 . (4.3)

Since ε > 0 can be chosen arbitrarily small, the result follows.

4.3 Lower bound on the wave speed

To obtain the lower bound let us introduce the sequence of constants

r +

∫
(δ,1]

log (1 + y)
1

y
R+
δ (dy) =: cδ , (4.4)

which immediately satisfy cδ 6 s2

2 . Then the main result of this section is the next
proposition.

Proposition 4.5. Fix R ∈ M and, for any δ ∈ (0, 1], let Rδ = (R−δ ,R
+
δ ) be as in Defini-

tion 2.4. Let Ct be an (rδ0,R
+
δ )–CBBM started in x = 0 ∈ R1. Then for any 0 < λ <

√
2cδ

and x0 ∈ R, we have limt→∞P
δ(St > λt+ x0) = 1, P–almost surely.

We chose as approximating sequence the ordered pair of measures {(rδ0,R+
δ )}δ∈(0,1],

so that the difference to the original measure is just given by R|(0,δ], which vanishes
as δ → 0: In particular, this is why we included the mass at zero in our approximation.
To prove this result, let us associate to the (rδ0,R

+
δ )–CBBM Ct started in x = 0 ∈ R1 a

measure-valued process

Xt =

n(t)∑
i=1

δxi(t) , (4.5)

where we assume that at time t > 0, Ct = (x1(t), . . . , xn(t)(t)). Then, in the spirit of
[22, 10] we will link the wave speed to the local survival of the Xt(·+ λt).

Proof. Consider the measure-valued process X of (4.5). Now, let I ⊆ R be any compact
interval (that is a set of the form I = [a, b] for a < b) and observe that the following
implication holds, as long as λ′ > λ, for any x0 ∈ R:{

lim inf
t→∞

Xt(I + λ′t) > 0
}

=⇒
{

lim inf
t→∞

(St − λt+ x0) > 0
}
.

In particular, our result follows if there exists a family

{Rλ,ζ : λ ∈ (0,
√

2cδ) , ζ ∈ (0, 1)}

of positive, Sδ adapted random variables such that for the intervals

Iλ,ζ = [−Rλ,ζ , Rλ,ζ ]

the following is satisfied:

Pδ
(

lim inf
t→∞

Xt(Iλ,ζ + λt) > 0
)
> 1− ζ, P–almost surely, for all 0 < λ <

√
2cδ .

This is exactly the content of Lemma 4.6 below.
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Lemma 4.6. Let X be the measure-valued process of (4.5). Then for any 0 < λ <
√

2cδ
and ζ ∈ (0, 1) there exists an Sδ–adapted positive random variable Rλ,ζ such that P–
almost surely

Pδ
(

lim inf
t→∞

Xt(Iλ,ζ + λt) > 0
)
> 1− ζ ,

with Iλ,ζ = [−Rλ,ζ , Rλ,ζ ].

Proof. First of all we observe that instead of considering Xt(A+ λt) for all measurable
A ⊆ R (that is shifting the sets we are measuring) we can and will consider Brownian
motions with a drift λ to the left in the definition of Xt and measure Xt(A) instead.
Consider intervals of the form I(R) = [−R,R] for R > 0: below we will choose a
sufficiently large value R(λ, ζ) and prove the desired result for Iλ,ζ = I(R(λ, ζ)).

Step 1: Continuity of the principal eigenvalue. For any R > 0 let (Pλ,Rt )t>0 be the heat
semigroup with drift λ and Dirichlet boundary conditions on ∂I(R), acting on L2(I(R)).
Namely, for any ϕ ∈ L2(I(R)), Pλ,Rt ϕ satisfies Pλ,R0 ϕ = ϕ and solves

∂tP
λ,R
t ϕ(x) =

(1

2
∆ + λ∂x

)
Pλ,Rt ϕ(x), x ∈ (−R,R), Pλ,Rt ϕ(±R) = 0, ∀t > 0.

Let us denote with µ(λ,R) = sup 1
t log σ(Pλ,Rt ) the principal eigenvalue of 1

2∆ + λ∂x
on I(R) with Dirichlet boundary conditions (here σ indicates the spectrum, and the
definition of µ does not depend on t > 0). Then, we observe that by [29, Section 4,
Theorem 4.1]

lim
R→∞

µ(λ,R) = −λ
2

2
, (4.6)

the latter being the principal (generalised) eigenvalue of 1
2∆ + λ∂x on R.

In particular, for any λ < λ′ <
√

2cδ we can find a R0(λ′) such that µ(λ,R) > − (λ′)2

2

for all R > R0(λ′).
Step 2: Local survival. We now consider λ′ and R0(λ′) as above and define I0 =

I0(λ, λ′) = [−R0(λ′), R0(λ′)]. Then we introduce a new process Xt in which particles
evolve as in Xt but are killed (i.e. the disappear from the measure) upon reaching the
boundary of I0. By comparison we obtain that Xt 6 Xt in the sense of positive measures.
We will then start by considering

η
def
= Pδ

(
lim inf
t→∞

Xt(I0) > 0
)
,

and proving that η is an Sδ-adapted random variable satisfying

P(η > 0) = 1 . (4.7)

To prove this result let us fix ϕ the eigenfunction on L2(I0) associated to µ = µ(λ,R0(λ′))

(note that ϕ(x) > 0 for x ∈ (−R0(λ′), R0(λ′)) by the Krein–Rutman theorem, and
ϕ ∈ C∞b ((−R0(λ′), R0(λ′))) via classical regularity estimates), so that we can write
the martingale problem for Xt(ϕ) as follows. Next consider the jump times {tj}j∈N
associated to Sδ. If we fix some j ∈ N, then we have that for tj 6 t < tj+1 the process

[tj , tj+1) 3 t 7→ e−(r+µ)tXt(ϕ) = M j
t

is a càdlàg martingale under Pδ on [tj , tj+1), with predictable quadratic variation

〈M j〉t =

∫ t

tj

e−2(r+µ)r
[
rXr(ϕ

2) +Xr((∂xϕ)2)
]
dr ,
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where the first term comes from independent reproduction and the second one from the
spatial motion of the particles. Next we consider the jumps at times tj . We have

e−(r+µ)tj
{
Xtj (ϕ)− (1 + yj)Xtj−(ϕ)

}
= ∆Nj ,

where ∆Nj is a martingale increment. Since every particle alive a time tj reproduces
with probability yj independently of all other particles, Nj has the variance of a Bernoulli
random variable with parameter yj:

〈∆Nj〉 = e−2(r+µ)tjyj(1− yj)Xtj−(ϕ2) .

Overall we can now conclude that the following is a càdlàg martingale on [0,∞) under
Pδ:

Lt = e−(r+µ)t

( ∏
j : tj6t

(1 + yj)
−1

)
Xt(ϕ) .

In fact, for any 0 6 s < t < ∞ with j(t) ∈ N uniquely defined by t ∈ [tj(t), tj(t)+1), and
assuming that j(s) < j(t) (otherwise the martingale property is inherited immediately
from M j(t)) and with the notation ∆Mj = M j

tj+1− −M
j
tj , we find that

Lt − Ls =

( ∏
j6j(t)

(1 + yj)
−1

)[
(M

j(t)
t −M j(t)

tj(t)
) + ∆Nj

]

+

j(t)−1∑
`=j(s)+1

(∏
j6`

(1 + yj)
−1

)[
∆M` + ∆N`

]

+

( ∏
j6j(s)

(1 + yj)
−1

)
(M

j(s)
tj(s)+1− −M

j(s)
s ) ,

which is a sum of martingale increments. Hence we have found a positive martingale Lt,
which implies that there exists an almost sure limit limt→∞ Lt = L∞ ∈ [0,∞). We want
to prove that EδL∞ = L0 > 0, which amounts to proving that the martingale is uniformly
integrable. Hence we will show that

sup
t>0

EδL2
t = L0 + sup

t>0
Eδ〈L〉t <∞ . (4.8)

We are thus left with computing the expected quadratic variation.
Let us now follow the notation of Lemma 4.1 and write edδ(t) =

∏
j6j(t)(1 + yj). Then

for t ∈ [tj , tj+1) we find that

d〈L〉t = e−2(r+µ)t−2dδ(t)

([
Xt(rϕ

2 + (∂xϕ)2)
]

+ yj(1− yj)Xtj−(ϕ2)δtj (t)

)
dt .

The last ingredient to bound the expected quadratic variation Eδ〈Lt〉 is to bound the
expected value of Xt. From the definition of X we find for s ∈ [0, t] and any ψ ∈ L2(I0)

dEδXs(P
λ,R0(λ′)
t−s ψ) = rEδXs(P

λ,R0(λ′)
t−s ψ)ds+

∑
j∈N

yjE
δXs(P

λ,R0(λ′)
t−s ψ)δtj (s)ds . (4.9)

Hence for ψ = ϕ we find

EδXt(ϕ) = e(r+µ)t+
∑
j6j(t) log (1+yj)ϕ(0) .
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In particular, we can rewrite Eδ〈L〉t as the sum of two terms:

Eδ〈L〉t =

∫ t

0

e−2(r+µ)s−2dδ(s)

(
rEδXs(ϕ

2) + yj(1− yj)EδXtj−(ϕ2)δtj (s)

)
ds

+

∫ t

0

e−2(r+µ)s−2dδ(s)EδXs((∂xϕ)2)ds .

The difference between the first and second line is that in the first line we can estimate
Xs(ϕ

2) 6 ‖ϕ‖∞Xs(ϕ), which is not possible for the term in the second line since
ϕ(±R0(λ′)) = 0, which does not hold for (∂xϕ)2 (so here we will need some additional
arguments). To fix the key point of the proof let us start with the first term. Using the
previous computations we find∫ t

0

e−2(r+µ)s−2dδ(s)

(
rEδXs(ϕ

2) + yj(1− yj)EδXtj−(ϕ2)δtj (s)

)
ds

.r,‖ϕ‖∞

∫ t

0

exp
{(
− (r + µ)− dδ + o(1)

)
s
}

ds .

Here the o(1) term is intended as s→∞, and is a consequence of Lemma 4.1. Now since
by assumption λ < λ′ <

√
2cδ we have

−r− dδ − µ = −cδ − µ 6 −cδ +
(λ′)2

2

def
= −ε < 0 .

In particular, the integral under consideration is converging for t→∞. Now, if we pass
to the term involving EδXs((∂xϕ)2), we find by (4.9)

EδXs((∂xϕ)2) = ers+dδ(s)Pλ,R0(λ′)
s (∂xϕ)2(0) .

Now at time s = 1 we can control the semigroup P
λ,R0(λ′)
1 (∂xϕ)2 6 Cλ,R0

ϕ, for some

Cλ,R0 > 0: indeed both P
λ,R0(λ′)
1 (∂xϕ)2 and ϕ are strictly positive in the interior of

I(R0(λ′)), vanish at the boundary and are differentiable at the boundary (differentiability
follows for example from [20, Theorem 1.1]), so that the named constant must exist.
Hence the term can be controlled following the same arguments as above, observing
that

EδXs((∂xϕ)2) 6 ers+d0s+µ(s−1)Cλ,R0
ϕ(0) ,

which is of the same order as the bound used in the previous discussion. Hence (4.8) is
proven, and since L0 > 0 we deduce (4.7) from the fact that P-almost surely

Pδ(lim inf
t→∞

Xt(I0) > 0) > Pδ(lim inf
t→∞

Lt > 0) > 0 .

Here we observe that the inclusion{
lim inf
t→∞

Lt > 0
}
⊆
{

lim inf
t→∞

Xt(I0) > 0
}

holds because in the definition of Lt we find, by our assumptions on µ, that

e−(r+µ)t

( ∏
j : tj6t

(1 + yj)
−1

)
6 e−εt+o(1) ,

as t→∞.
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Step 3: Almost sure survival. Now we want to use (4.7) to prove that if we choose a
suitable larger random interval Iλ,ζ , depending on λ and ζ ∈ (0, 1), then

Pδ
(

lim inf
t→∞

Xt(Iλ,ζ) > 0
)
> 1− ζ , P–almost surely .

For this purpose let us write, for any n ∈ N the interval

In0 = [−nR0(λ), nR0(λ)] ,

and consider X
n

t the process in which particles evolve as in Xt but are killed upon
reaching the boundary of In0 . Next, note that we have

Pδ
(

lim inf
t→∞

X
n

t (In0 ) > 0
)

= Pδ(τn =∞) ,

where τn is the extinction time τn = inf{t ≥ 0: X
n

t (In0 ) = 0} and the equality holds
because for t < τn we have X

n

t (In0 ) > 1. Now let us prove that

Pδ(τn <∞) 6 Pδ(τ1 <∞)n = (1− η)n , (4.10)

with η as in (4.7). Indeed, let us consider X
n,1

t 6 X
n

t the process in which particles
evolve as in X

n

t but are killed upon reaching the boundary of I0, coupled so that particles

in X
n,1

t are exactly particles of X
n

t that have never left the interval I0. By construction

τn,1 < τn ,

where τn,1 is the extinction time of X
n,1

. This means that on the event τn <∞ we have
at time τn,1 at least one particle of X

n

τn,1 either in −R0(λ′) or in R0(λ′). Say the latter

is the case and suppose that n > 2, then we can consider the process X
n,2

t 6 X
n

t for
t > τn,1, started with exactly that particle in R0(λ′) and in which particles are killed upon

reaching the boundary of [0, 2R0(λ′)]. Observe that X
n,2

τn,1+t(·+R0(λ′)) has the same law

as X
n,1

t as in the previous step. If we let τn,2 be the extinction time of X
n,2

, then we
obtain

Pδ(τn <∞) 6 Pδ(τn,1 <∞) · Eδ[Pδ(τn,2 <∞|Fτn,1)]

=
[
Pδ(τ1 <∞)

]2
= (1− η)2 ,

with Ft the filtration generated by X
n

and η the random variable from (4.7) (the last line
follows from the strong Markov property). We can iterate this procedure at least n times,
so that (4.10) is proven. If we choose n = n(η, ζ) (hence n is random) so that

(1− η)n 6 ζ ,

then the claimed result follows.

4.4 Quenched growth rate

Our goal in this section is to verify Proposition 4.2. Recall that, as in Definition 2.4,
Iδt = `(Ct) for t ≥ 0, where (Ct)t≥0 is an (R−δ ,R

+
δ )–CBBM, and recall that we use the

notation

cδ = R−δ ([0, δ]) +

∫
(δ,1]

log (1 + y)
1

y
R+
δ (dy) . (4.11)

Now, Proposition 4.2 is equivalent to the next lemma.
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Lemma 4.7. In the setting of Proposition 4.2, for any ε > 0 we have that P–almost surely

Pδ(lim sup
t→∞

Iδt e
−(cδ+ε)t > 0) = 0 . (4.12)

The proof will follow two different arguments for small and large jumps. For small
jumps we use a martingale approach: this leads to the term R−δ ([0, δ]) in our wave speed
upper bound. In particular, the martingale argument is not exact and delivers only a
rough upper bound (but as δ ↓ 0 this error will be negligible). Instead for large jumps
our argument is exact and builds on a time change argument, which is possible since
jump times are now discrete.

Proof. For brevity, let us write It for Iδt and denote with j(t) = max{j : tj 6 t}. We have

It =
It
Itj(t)

·
( ∏
j6j(t)

Itj−

Itj−1

)
·
( ∏
j6j(t)

Itj
Itj−

)
· I0 ,

with the convention that t0 = 0. Hence our result will follow if we prove the following
three inequalities

lim sup
t→∞

1

t

j(t)∑
j=1

log
Itj−

Itj−1

6 Rδ([0, δ]) ,

lim sup
t→∞

1

t

j(t)∑
j=1

log
Itj
Itj−

6
∫

(δ,1]

log (1 + y)
1

y
R+
δ (dy) ,

lim sup
t→∞

1

t
log

It
Itj(t)

= 0 ,

with the convention that t0 = 0. We observe that the last equality follows analogously to
the first inequality, so we restrict to proving the first two points.

Step 1: Martingale term. Let us start by proving the first bound. We can define the
following discrete time process:

Mn = e−tnRδ([0,δ])
n∏
j=1

Itj−

Itj−1

,

and we observe that (Mn)n∈N0
is a discrete-time Pδ-martingale with respect to the

filtration (Ftn)n∈N0
, where Ft is the filtration generated by (Cs)s6t. To see that the

martingale property holds, we observe that Ct has the law of an (R−δ , 0)–CBBM on every
time interval [tj , tj+1). In particular, by Proposition 2.6, we see that

Eδ
[
Mn|Ftn−1

]
= eRδ([0,δ])(tn−tn−1)e−tnRδ([0,δ])

n−1∏
j=1

Itj−

Itj−1

= Mn−1.

Since Mn is a positive martingale, it follows from the martingale convergence theorem
and Fatou’s lemma that

Eδ
[

lim
n→∞

Mn

]
6 lim inf

n→∞
EδMn 6 EδM0 = 1 .

We conclude that almost surely, for any ε > 0

lim sup
n→∞

1

tn

n∑
j=1

log
Itj−

Itj−1

6 Rδ([0, δ]) + ε ,
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which proves the first bound (note that
tj(t)
t → 1 as t→∞).

Step 2: Large jumps. Here we use a different argument, based on large deviation
principles. In a nutshell, we will prove that as long as the solution is growing expo-
nentially fast at the correct order, such exponential growth becomes ever more likely
(and precise) in future. We observe that the process It does not depend on the spatial

dynamics of the particles. In particular, for every j > 1, the increment
Itj
Itj−

depends only

on the number Rj of particles that participate in the j-th reproduction event:

Itj
Itj−

= 1 +
Rj
Itj−

.

Recall also that every particle reproduces independently of any other particle at time
tj , with probability yj ∈ (δ, 1]. Our aim is then to prove that as Itj− increases, the
approximation

Rj
Itj−

' yj

becomes ever more likely and precise. Following this description, let us consider, for
some ε ∈ (0, 1] and M ∈ N

G0,M :=
{∣∣∣ Rj
Itj−

− yj
∣∣∣ 6 ε, ∀j ∈ {1, . . . ,M}

}
,

where the letter G stands for being a “good” set. We can then find a c(ε) > 0 such that
for I0 > 1

Pδ(G0,M ) > Pδ(G0,M |G0,M−1)Pδ(G0,M−1)

>

1− exp

−c(ε)I0
M−1∏
j=1

(1 + yj − ε)


Pδ(G0,M−1) ,

where we used that on the set G0,M−1 we have ItM− > I0
∏M−1
j=1 (1 + yj − ε) (note that

all other reproduction events, not due to large jumps, only increase the value of It),
together with the following large deviations bound (4.13) for an i.i.d. sequence {Xi}i∈N
of Bernoulli random variables of parameter p:

∀n > 1 , ε ∈ (0, 1] , p ∈ [0, 1] , ∃c(ε) > 0 s.t. P
(∣∣∣ 1
n

n∑
i=1

Xi − p
∣∣∣ > ε

)
6 e−c(ε)n . (4.13)

Indeed, for p ∈ [0, 1] and ε ∈ (0, 1] we have that for all n ∈ N \ {0}

P
(∣∣∣ 1
n

n∑
i=1

Xi − p
∣∣∣ ≥ ε) = P

( 1

n

n∑
i=1

Xi ≤ p− ε
)

+ P
( 1

n

n∑
i=1

Xi ≥ p+ ε
)

6 e−nc̄(p−ε,p) + e−nc̄(p+ε,p),

(4.14)

where the rate function is given by the relative entropy

c̄(a, b) =

{
a log a

b − (1− a) log 1−a
1−b , if a ∈ [0, 1],

∞, otherwise,

for b ∈ [0, 1], using the convention that 0 log 0 = 0 log 0
0 = 0. Here the second line of (4.14)

follows from Markov’s inequality. Thus, in order to show (4.13) it suffices to verify that

c(ε)
def
= inf

p∈[0,1]
min

{
c̄(p− ε, p), c̄(p+ ε, p)

}
> 0 ,
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which follows from the observation that c̄(a, b) = 0 if and only if a = b ∈ [0, 1], since
a 7→ c̄(a, b) is convex for fixed b ∈ [0, 1], and since (a, b) 7→ c̄(a, b) is continuous on (0, 1)2.
Iterating the previous bound down to M = 1 we obtain, always assuming I0 > 1

Pδ(G0,M ) >
M∏
n=1

1− exp

−c(ε)I0
n−1∏
j=1

(1 + yj − ε)




> 1−
M∑
n=1

exp

−c(ε)I0
n−1∏
j=1

(1 + yj − ε)

 .

Here we made use of the inequality
∏M
n=1(1− αn) > 1−

∑M
n=1 αn, which holds for any

sequence αn ∈ (0, 1) by iterating the following bound:

M∏
n=1

(1− αn) =

M∏
n=2

(1− αn)− α1

M∏
n=2

(1− αn) >
M∏
n=2

(1− αn)− α1 .

Finally, by monotonicity, with G0,∞ =
⋂
M∈N G0,M , we find that for ε ∈ (0, δ/2)

I0 > n0 =⇒ Pδ(G0,∞) > 1−
∞∑
n=1

exp

−c(ε)n0

n−1∏
j=1

(1 + yj − ε)

 def
= p(n0, ε) ∈ R .

The fact that the sum is converging follows for example from the condition ε ∈ (0, δ/2), so
that it can be bounded from below by 1−

∑
n exp{−c(ε)n0(1+δ/2)n} > −∞. In particular,

since for any n0 ∈ N and I0 > 1 we have

P(∃j ∈ N such that Itj > n0) = 1 ,

we obtain by the strong Markov property that for any ε ∈ (0, δ/2) and p(n0, ε) as above

P

(∣∣∣∣ RjItj−
− yj

∣∣∣∣ 6 ε , for all but finitely many j ∈ N
)

> p(n0, ε) , ∀n0 ∈ N .

Now, since limn0→∞ p(n0, ε) = 1 for all ε ∈ (0, δ/2), we conclude

P

(∣∣∣∣ RjItj−
− yj

∣∣∣∣ 6 ε , for all but finitely many j ∈ N
)

= 1 .

We therefore deduce that on a set of full probability

lim sup
t→∞

1

t

j(t)∑
j=1

log
Itj
Itj−

6
∫

(δ,1]

log (1 + y + ε)
1

y
R+
δ (dy)

6
∫

(δ,1]

log (1 + y)
1

y
R+
δ (dy) + ε

∫
(δ,1]

1

1 + y

1

y
R+
δ (dy) .

Since ε > 0 was arbitrary, this concludes the proof of the second inequality, and thereby
of the lemma.
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