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Abstract

We look at random walks in Dirichlet environment. It was known that in dimension
d ≥ 3, if the walk is sub-ballistic, the displacement of the walk is polynomial of order κ
for some explicit κ. We show that the walk, after renormalization, actually converges
to a κ-stable completely asymmetric Lévy Process.
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1 Introduction and results

1.1 Introduction

Random walks in random environments (RWRE) have been studied for several
decades and are now rather well understood in the one dimensional case (see Solomon
[29], Kesten, Kozlov, Spitzer [18] and Sinaï [27]). Important progress has been made
in higher dimension, mainly in 3 directions: under a ballisticity condition, for small
perturbation of the simple random walk [9, 34, 6, 23, 19] and in Dirichlet environment.

The most studied ballisticity conditions come from the conditions (T ) and (T ′) intro-
duced by Sznitman in [32, 33]. They have been shown to be equivalent in iid uniformly
elliptic environments in [17] and also to be equivalent to an effective polynomial con-
dition [3, 10]. By assuming any of these, in the ballistic regime, directional transience,
ballisticity, and a CLT have been proved. Quenched CLTs have also been proved in
various cases, either by assuming an annealed CLT, uniform ellipticity and a condition
introduced by Kalikow [31], or by assuming the existence of high enough moments for
the renewal times (see [30] for a definition of the renewal times) and uniform ellipticity
of the environment [22] and [4] in dimension d ≥ 4.

All these results show limit theorems in the ballistic case, that is to say that the
walk has a positive speed. In dimension 2 and higher no complete limit theorems are
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Limit theorem for RWDE

known for the RWRE in the sub-ballistic case. However in dimension 1 we know that
a sub-ballistic regime exists, where the walk can behave like the inverse of a stable
subordinator [18, 13]. This sub-ballistic regime is caused by the existence of traps
where the walk spends most of its time. This trapping phenomenon appears in other
models closely related to the RWRE for instance the Bouchaud Trap Model (see [1]
for a precise definition and an overview of the results). The model of random walks in
random conductances also exhibits a similar trapping phenomenon. Indeed an annealed
limit theorem (the limit is the inverse of a stable subordinator) and an equivalent to
the CLT [16] have been proved for the biased random walk in random conductances.
Similar results have been obtained for the biased walk in the percolation cluster and in
Galton-Watson trees, but in both cases there is no convergence to a limit law [2, 15]. In
the special case of iid, elliptic (but not uniformaly elliptic) RWRE a trapping phenomenon
that leads to sub-ballistic behaviour has been identified in [8, 7] and [14] but no limit
theorem has been proved.

The random walk in Dirichlet environment (RWDE) is a model where the transition
probabilities are iid Dirichlet random variables (see [26] for an overview). It was first
introduced because of its link to the linearly directed-edge reinforced random walk
[21, 12]. It also has a property of invariance by time reversal that allows explicit
calculations (see [24]). In particular, it gives a simple criterion for existence of absolutely
continuous invariant distribution from the point of view of the particle, directional
transience and ballisticity in dimension d ≥ 3 [35, 8, 36, 25]). In the non-ballistic case
the walk is directionally transient but the limit law was still unknown [8], it was only
known that for some explicit κ ∈ (0, 1], log(|Xn|)

log(n) −−−−→n→∞
κ.

In this paper we prove the annealed limit law for the sub-ballistic regime (κ ≤ 1)
in dimension d ≥ 3. In the case κ = 1 we prove that 1

n log(n)Yn (where Y is the random
walk) converges in law and we give its limit while for κ < 1 we prove that the process
converges and give its limit. To the best of our knowledge, this is the first stable limit
theorem for non reversible RWRE in iid environment, in dimension d ≥ 3.

1.2 Notations

As the article is quite long, it involves a large number of notations. We put them here
to help the reader.

• dα is the drift defined in 1.3.

• EPω0
is the expectation with respect to Pω0 .

• EP(α) , EP be the expectation with respect to P(α).

• γmω (x) is the speed up function defined in (1.1).

• γΛ
G,ω is the modification of γmω (x) for graph different from Zd defined in 2.5.

• γωG(x) is the acceleration function defined in 2.7.

• Ii is the set of configuration of size i defined in 2.16.

• In =
⋃

1≤i≤n Ii (2.16).

• κ, κ′ and κj are parameters describing the strength of traps defined in 1.4.

• Lτ (n) = min{i, τi ≥ n}.
• `ji is the time Y spends in the ith trap in the direction j.

• (ωmt )t∈[0,+∞ is the process (Xm
t )t∈[0,+∞) from the point of view of the particle.

• ω is the environment (the set of the transition probabilities).

• Ω is the set of all environments.

• ω̃ is the partially-forgotten environment defined in 2.15.

• Ω̃ is the set of all equivalence classes for the trap-equivalence relation (2.14).
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Limit theorem for RWDE

• Pω0 is the expectation associated with the discrete time walk in environment ω and
started at 0.

• P(α), P is the measure on Ω where the transition probabilities are iid Dirichlet
random variables of parameter α at each site.

• P(α)
0 [.] := EP(α) [Pω0 (.)] is the annealed law of the process starting at 0.

• Q(α), Q is the invariant measure from the point of view of the particle.

• Qm,α0 (·) is the invariant measure from the point of view of the particle for
(ωmt )t∈[0,+∞).

• Sκ is the κ-stable Lévy process defined in 1.8.

• Nx→x, Nx→y, Ny→x, Ny→y are the number of crossings of the trap (see 2.16).

• N j
i is the number of times the walk enters the ith trap in the direction j.

• sji is the strength of the ith trap in the direction j.

• S̃κ is the inverse of Sκ.

• (τi)i∈N are the renewal times defined in 1.1.

• (Tmi )i∈N∗ are the renewal times associated with (Xm
t )t∈[0,+∞).

• T ω, T is the set of traps (2.13)

• T̃ ω, T̃ is the set of vertices in traps (2.13).

• T ωJ , TJ is the set of traps with direction in J (2.13).

• T̃ ωJ , T̃J is the set of vertices in traps in direction in J (2.13).

• (Xm
t )t∈[0,+∞) is the accelerated version of Y where the speed up is given by γmω .

• (Yn)n∈N is the discrete time random walk in Dirichlet environment.

• (Ỹn)n∈N is the partially-forgotten walk associated with (Yn)n∈N defined in 2.15.

• ‖z‖ is the L1-norm of z.

1.3 Definitions and statement of the results

In all the paper we set d ≥ 3. Let (e1, . . . , ed) be the canonical basis of Zd and for any
j ∈ Jd + 1, 2dK, set ej = −ej−d. For any z ∈ Zd, let ‖z‖ :=

∑d
i=1 |zi| be the L1-norm of z.

For any x, y ∈ Zd we will write x ∼ y if ‖y − x‖ = 1. Let E = {(x, y) ∈ (Zd)2, x ∼ y} be
the set of directed edges of Zd and let Ẽ = {{x, y}, (x, y) ∈ (Zd)2, x ∼ y} be the set of
non-directed edges. Let Ω be the set of environments on Zd:

Ω =

{
ω = (ω(x, y))x∼y ∈ (0, 1]E such that ∀x ∈ Zd,

2d∑
i=1

ω(x, x+ ei) = 1

}
.

For each ω ∈ Ω, let (Yn)n∈N be the Markov chain on Zd defined by Y0 = 0 almost surely
and the following transition probabilities:

∀y ∈ Zd,∀i ∈ J1, 2dK, Pω0 (Yn+1 = y + ei|Yn = y) = ω(y, y + e1).

Let EPω0
be the expectation with respect to Pω0 .

Given a family of positive weights (α1, . . . , α2d), we consider the case where the
transition probabilities at each site are iid Dirichlet random variables of parameter
α := (α1, . . . , α2d), that is with density:

Γ

(
2d∑
i=1

αi

)
2d∏
i=1

Γ(αi)

(
2d∏
i=1

xαi−1
i

)
dx1 . . . dx2d−1
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on the simplex {
(x1, . . . , x2d) ∈ (0, 1]2d,

2d∑
i=1

xi = 1

}
.

Let P(α) be the law obtained on Ω this way. Let EP(α) be the expectation with respect to

P(α) and let P(α)
0 [.] := EP(α) [Pω0 (.)] be the annealed law of the process starting at 0. Let

(τi)i∈N∗ be the renewal times in the direction e1 (see [30]):

Definition 1.1. We define (τi)i∈N∗ , the renewal times in the direction e1, by:

τ1 = inf{n ∈ N,∀i < n, Yi · e1 < Yn · e1 and ∀i > n, Yi · e1 > Yn · e1}

and for all i > 1:

τi+1 = inf{n > τi,∀i < n, Yi · e1 < Yn · e1 and ∀i > n, Yi · e1 > Yn · e1}.

The renewal times are used to create independence thanks to the following theorem
(Theorem 1.4 of [30]).

Proposition 1.2. For all k ∈ N∗, let Gk be the σ-field defined by:

Gk := σ(τ1, . . . , τk, (Yn)0≤n≤τk , (ω(x, ·))x·e1<Yτk ·e1).

We have, for all k ≥ 1:

P
(α)
0 ((Yτk+n)n≥0 ∈ ·, (ω(Yτk + x, ·))x·e1≥0 ∈ ·|Gk)

= P
(α)
0 ((Yn)n≥0 ∈ ·, (ω(x, ·))x·e1≥0 ∈ ·|τ1 = 0) .

This means that the trajectories and the transition probabilities inside slabs between
two consecutive renewal times (after the first one) are i.i.d random variables.

Definition 1.3. We define the drift dα by:

dα :=

2d∑
i=1

αiei.

If dα 6= 0, we will assume, without loss of generality, that α1 > α1+d.

Definition 1.4. We define the two parameters κ and κ′ by:

κ = 2

(
2d∑
i=1

αi

)
− max
i=1,...,d

(αi + αi+d)

and

κ′ = 3

(
2d∑
i=1

αi

)
− 2 max

i=1,...,d
(αi + αi+d) .

For any direction j ∈ J1, dK we also define the parameter κj by:

κj := 2

(
2d∑
i=1

αi

)
− (αj + αj+d)

In [25], it was proved that, for d ≥ 3, when κ > 1, there exists an invariant probability
measure Q(α) for the environment from the point of view of the particle, absolutely
continuous with respect to P(α). From that it is possible to show that directional
transience and ballisticity are equivalent when κ > 1. Furthermore, we know for which
parameter the walk is directionally transient.
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Theorem 1.5 (Corollary 1 of [36]). If d ≥ 3 and dα 6= 0, then for P(α) almost every
environment, the walk is directionally transient with asymptotic direction dα, that is to
say:

Yn
‖Yn‖

−−−−→
n→∞

dα
‖dα‖

, Pω0 almost surely.

However, when κ ≤ 1, such an invariant probability does not exist because of traps.
But, in [8], it was proved that, by accelerating the walk, we can get an invariant
probability for this accelerated walk, absolutely continuous with respect to P(α).

This leads to the following limit theorem in [8]:

Proposition 1.6. If κ ≤ 1, d ≥ 3 and dα 6= 0. Let l ∈ {e1, . . . , e2d} be such that dα · l > 0.
Then we have the following convergence in probability (for the annealed law):

log(Yn · l)
log(n)

−−−−→
n→∞

κ.

We will now give a precise definition of the accelerated walk. We call directed path
a sequence of vertices σ = (x0, . . . , xn) such that (xi, xi+1) ∈ E for all i. To simplify
notations, we will write ωσ :=

∏n−1
i=0 ω(xi, xi+1). For any positive integer m, we define

the accelerating function γmω (x) by:

γmω (x) :=
1∑
ωσ
, (1.1)

where the sum is on all finite simple (each vertex is visited at most once) paths σ in
x + J−m,mKd, starting from x, going to the border of x + J−m,mKd and stopped the
first time they reach this border. We will call Xm

t the continuous-time Markov chain
whose jump rate from x to y is γmω (x)ω(x, y), with Xm

0 = 0. This means that Yn = Xm
tmn

and Xm
t =

∑
k Yk1tmk ≤t<tmk+1

, for tmn =
∑n
k=1

1
γmω (Yk)Ek, where the Ei are iid exponential

random variables of parameter 1. The walk Xm
t can be viewed as an accelerated version

of the walk Yn.
Now, we need to introduce an other object: the walk seen from the point of view of

the particle. First, let (θx)x∈Zd be the shift on the environment defined by: θxω(y, z) :=

ω(x+ y, x+ z). We call process seen from the point of view of the particle the process

defined by ωmt = θXmt ω. Unlike the walk Y , under P(α)
0 , ωmt is a Markov process on Ω. Its

generator R is given by:

Rf(ω) =

2d∑
i=1

γmω (0)ω(0, ei)f(θeiω),

for all bounded measurable functions f on Ω.

Theorem 1.7 (Theorem 2.1 of [8]). In dimension d ≥ 3, if m is large enough then the
process

(
ωmt
)
t∈R+ has a stationary distribution Qm,α. For any β > 1 there exists an m

such that dQm,α

dP(α) is in Lβ
(
P(α)

)
.

We will write Qm,α0 (·) for Qm,α (Pω0 (·)) To simplify the notations, we will drop the (α)

from P(α),P
(α)
0 ,Qm,α and Qm,α0 when there is no ambiguity. We will also write Xt, Q and

Q0 instead of Xm
t , Qm and Qm0 when there is no ambiguity on m.

We need a last definition to be able to state the limit theorems.

Definition 1.8. For any κ ∈ (0, 1) let Sκ be the Lévy process where the increments are
completely asymmetric κ-stable random variables. The increments have the following
characterizations:

∀λ ∈ R,∀s ∈ R+,E (exp (iλSκs )) = exp
(
−s|λ|κ

(
1− i sgn(λ) tan

(πκ
2

)))
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and for any s ∈ R+, Sκs and s
1
κSκ1 have the same law.

Since this process is non-decreasing and càdlàg we can define the càdlàg inverse S̃κ
by:

S̃κt := inf{s,Sκs ≥ t}.
The following two theorems, which are the main results of this paper, give a full

annealed limit theorem:

Theorem 1.9. Set d ≥ 3 and α ∈ (0,∞)2d. Let Y n(t) be defined by:

Y n(t) = n−κYbntc.

If κ < 1 and dα 6= 0 (e1 is such that dα · e1 > 0), there exist positive constants c1, c2, c3
such that for the J1 topology and for P(α)

0 :(
u 7→ n−

1
κ τbnuc

)
−−−−→
n→∞

c1Sκ,

for the M1 topology and for P(α)
0 :(

x 7→ n−
1
κ inf{t ≥ 0, Y (t) · e1 ≥ nx}

)
−−−−→
n→∞

c2Sκ

and for the J1 topology and for P(α)
0 :

Y n −−−−→
n→∞

c3S̃κdα.

Remark 1.10. We will give a quick explanation on what the M1 and J1 topologies are,
for a precise definition see [28, 37]. They were both introduced as a generalization
of the infinite norm for càdlàg functions. In the J1 topology, a sequence of càdlàg
functions fn converges to f if there exists a sequence of increasing homeomorphisms
λn : [0, 1]→ [0, 1] such that

sup
t∈[0,1]

|λn(t)− t| −−−−→
n→∞

0,

and
sup
t∈[0,1]

|fn(λn(t))− f(t)| −−−−→
n→∞

0.

It is essentially the same as the infinite norm except that the function are allowed to
“wiggle” time-wise. The M1 topology is a topology on the graphs of the functions where
we add vertical segments every time there is a jump. The main difference between
the M1 and J1 topology is that there is almost no difference between one jump and
small consecutive jumps in the M1 topology while the difference is significant in the
J1 topology. The reason why we only have a convergence in M1 for the hitting times
n−

1
κ inf{t ≥ 0, Y (t) · e1 ≥ nx} is because there are consecutive jumps (this does not

happen for the renewal times τ as the increments are independent). Indeed, if there is
a large jump between inf{t ≥ 0, Y (t) · e1 ≥ n} and inf{t ≥ 0, Y (t) · e1 ≥ n+ 1} it is likely
that there is a trap with high strength close-by which means that it is likely that there
also is a large jump between inf{t ≥ 0, Y (t) · e1 ≥ n+ 1} and inf{t ≥ 0, Y (t) · e1 ≥ n+ 2}.
Theorem 1.11. If d ≥ 3, dα 6= 0 (e1 is such that dα · e1 > 0) and κ = 1, there exist positive
constants c1, c2, c3 such that we have the following convergences in probability (for the
annealed law):

1

n log(n)
τn −−−−→

n→∞
c1,

1

n log(n)
inf{i, Yi · e1 ≥ n} −−−−→

n→∞
c2,

log(n)

n
(Yn) −−−−→

n→∞
c3dα.
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Remark 1.12. We cannot replace the convergence in probability by an almost sure
convergence. This is because if we look at a sum of iid random variables Zi with a heavy
tail P(Zi ≥ t) ∼ ct−1 then we do not have an almost sure convergence. In fact, there are
infinitely many i such that:

Zi ≥ i log(i) log(log(i)).

However we might expect, as is the case in dimension 1, to have a convergence of the
process:

t 7→
Ybtnc − vnn log(n)

n
,

for some deterministic sequence (vn)n∈N as n goes to infinity.

Remark 1.13. As the result we obtain are similar as the ones that exist in dimension 1,
it seems that the same results should be true in dimension 2. The reason we do not treat
this case is that there is no proof for the existence of an invariant measure for the walk
from the point of view of the particle. It is actually possible that no such measure exists
in the symmetric case (dα=0 = 0). However it should exist in the transient case and then
the result could easily be extended to dimension 2.

Remark 1.14. The Dirichlet environment is mostly used for two reasons. First, the
existence of the invariant measure which is an essential part of the proof. Second, to get
information on the probability density of the strength of a trap knowing the partially-
forgotten walk 2.15. For this second part, weaker assumptions on the environment would
suffice. This means that the proof could theoretically be adapted for other environments
once the existence of an invariant measure is proved.

A tool that will be central in the proof is the study of traps. We now give a precise
definition of traps.

Definition 1.15. A trap is any undirected edge {x, y} such that ω(x, y) + ω(y, x) > 3
2 .

The strength of a trap is the quantity 1
(1−ω(x,y))+(1−ω(y,x)) .

Remark 1.16. The strength of a trap is of the same order as the time the walk spends
in the trap every time it enters it. The value 3

2 has been chosen because it ensures that
ω(x, y), ω(y, x) > 1

2 which in turn means that for every point x, there is at most one point
y such that (x, y) is a trap.

1.4 Sketch of the proof

The proofs for κ < 1 and κ = 1 are mostly the same and therefore we will explain
both at the same time. One of the key elements of the proof is the existence of an
invariant measure which is a consequence of the invariance by time-reversal property
of the random walk in Dirichlet environment. This invariant measure will allow us to
bound the expectation of various quantities (the number of vertices visited between two
renewal times for instance) which is necessary for our proof.

1.4.1 Only the renewal times matter

We first show that the number of points visited between two renewal times has a finite
expectation (Lemma 2.2). This means that the walk does not “wander far” between
two renewal times. So we only have to know the renewal times and the position of the
walk at the renewal times to prove both theorems (Lemma 2.3). By Proposition 1.2, the
random variables (τi+1 − τi) are iid which simplifies the study of the process i 7→ τi
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1.4.2 The time between renewal times only depends on the strength of the
traps

Then we use the stationary law of the accelerated walk to get two results: firstly, the
time spent outside of traps is negligible (Lemma 2.27); secondly, the number N of times
the walk enters a trap has a finite moment of order κ + ε for some ε > 0 if κ < 1. If
κ = 1, then N has a finite expectation (Lemma 2.19). This means the time spent in a trap
mostly depends on its strength.

Now we want to show that the number of times the walk enters a trap and the time it
stays in the trap each time are approximately independent.

We get two different results in this direction:

1.4.3 The strengths of the traps are essentially independent

The first result (Lemma 2.17) is that in a way the time spent in traps are independent
random variables. These random variables have a tail in Ct−κ where the constant C
depends on where the walk enters and exits the trap and how many times it does. More
precisely, we first set an environment and a path in this environment. Then we forget all
the transition probabilities in the traps, this means that if {x, y} is a trap, then we only
remember the “renormalized” transition probabilities:(

ω(x, z)

1− ω(x, y)

)
z∼x,z 6=y

and

(
ω(y, z)

1− ω(y, x)

)
z∼y,z 6=x

.

Then every time the path visits a trap we only remember where it enters the trap and
where it exits the trap, we forget the number of back and forths inside the trap. Then,
only knowing these information, the strengths of the traps are independent.

1.4.4 The number of times a trap is visited and its strength are essentially
independent

The second result (Lemma 2.20) allows us to bound the probability that both the number
of times the walk enters a trap and the strength of the trap are high. We use the fact that
for an edge (x, y) if we know all the transition probabilities outside of x, y and we know

the
(

ω(x,z)
1−ω(x,y)

)
z∼x

and the
(

ω(y,z)
1−ω(y,x)

)
z∼y

then the number of times the walk enters the

trap is essentially independent of the strength of the trap (it depends mostly on 1−ω(x,y)
1−ω(y,x)

and hardly on the strength of the trap). This means that it is unlikely that the traps with
a high strength are visited many times.

1.4.5 Conclusion

Thanks to these results we get that if we set an integer A and we only look at traps that
are entered less than A times then we have a good approximation of the total time spent
in traps (Lemma 2.22). The higher A is, the better the approximation gets. Now if we
only look at the traps the walk enters less than A times, we get a finite sum of sums of
iid random variables by Lemma 2.17. This means that, after renormalization, the time
spent in traps entered less than A times converges to a stable distribution if κ < 1. It
converges to a constant if κ = 1 (Lemma 2.23). Then the only thing left is to make A go
to infinity and we get the first two results of both theorems.

Finally to prove the last part of both theorems we just use basic inversion arguments.
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2 The proof

For the remainder of the article we assume that dα 6= 0 and α1 > α1+d, so dα · e1 > 0.

2.1 Number of points visited between renewal times

In this section we show that the expectation of the number of points visited between
two renewal times is finite. This means that only knowing the values of the renewal
times will be enough to prove Theorems 1 and 2.

Lemma 2.1. For m such that Qm exists, let (Tmi )i∈N∗ be the renewal times for the walk
Xm i.e Tmi := tmτi or to put it another way Xm

Tmi
= Yτi . There exists a constant Cm such

that for all i ∈ N∗, E
P

(α)
0

(Tmi+1 − Tmi ) = Cm and P(α)
0 almost surely:

1

n
Tmn −−−−→

n→∞
Cm.

Proof. Let D be the random distance defined by D := (Yτ2 − Yτ1) · e1. First we will show
that EP0

(D) <∞.
Let (τi)i∈N∗ be the different renewal times along the direction e1. Now let (di)i∈N∗ be

the sequence defined by:
∀i ∈ N∗, di = Yτi · e1.

Let L̃τ (i) be the number of renewal times before the walk travels a distance i in the
direction e1 ie:

∀i ∈ N∗, L̃τ (i) = inf{n, dn ≥ i}.

The sequence of random variables (di+1 − di)i∈N∗ is iid by Lemma 1.2. Therefore, if
the expectation of D = d2 − d1 is infinite then dn

n −−−−→n→∞
∞, P0 almost surely. Now,

for every i ∈ N∗, we have dL̃τ (i) ≥ i and therefore L̃τ (i)
i ≤ L̃τ (i)

dL̃τ (i)
. If P0 almost surely

n
dn
−−−−→
n→∞

0 we would have L̃τ (i)
i −−−→

i→∞
0 P0 almost surely. Since L̃τ (i)

i+1 ≤ 1 we would get

that EP0

(
L̃τ (i)
i

)
−−−→
i→∞

0. However, there is a constant C > 0 such that every time the

walk reaches a new height along e1, it is a renewal time with probability C (independent

of the walk up to that time) so EP0

(
L̃τ (i)
i

)
≥ C. Therefore we get that the expectation of

the distance the walk travels in the direction e1 between two renewal times is finite.
Now we can look at the accelerated walk Xm. We would like the sequence (Tmi+1 −

Tmi )i∈N∗ to be a sequence of iid random variables. Unfortunately, the definition of the
accelerated random walk uses vertices in a box of size m around the vertex on which the
walk currently is, so we need to wait at least 2m+ 3 renewal times to be sure to be at a
distance at least 2m+ 1 of all the vertices visited before time Tmi+1 − 1. So we only have

that for any j ∈ N, the sequence
(
Tm(2m+3)i+j+1 − T

m
(2m+3)i+j

)
i∈N∗

is a sequence of iid

random variables. Furthermore the sequence (Tmi+1−Tmi )i≥m+2 is identically distributed.

We know that there exists a constant c > 0 such that P0 almost surely Xmt ·e1
t −−−→

t→∞
c > 0. If the expectation of the time the accelerated walk spends between two re-
newal times is infinite then Tmi

i −−−→i→∞
∞, P0 almost surely since the random variables(

Tm(2m+3)i+1 − T
m
(2m+3)i

)
i∈N∗

are iid. Therefore we would have
XmTm

i
·e1

Tmi

Tmi
i −−−→i→∞

∞ so

Yτi ·e1
i −−−→

i→∞
∞ which is absurd because:

Yτi ·e1
i = di

i and di
i satisfies a law of large

numbers. Therefore the expectation of time the accelerated walk spends between two
renewal times is finite and there exists a constant C > 0 such that:

∀i ≥ m+ 2, EP0
(Tmi+1 − Tmi ) = C.
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And by the law of large numbers, P0 almost surely:

1

i
Tmi −−−→

i→∞
C.

Lemma 2.2. The number of different points the walk visits between two renewal times
has a finite expectation (Note that the number of different points visited between two
renewal times is the same for the walk Y and the accelerated walks Xm).

Proof. We choose m large enough such that dQm

dP is in Lγ for some γ > 1. In the following
we will write Ti instead of Tmi to simplify the notations. Let β be such that 1

γ + 1
β = 1. Let

c∞ be the constant such that P0 almost surely: 1
i Ti −−−→i→∞

c∞, it exists by Lemma 2.1. Let

(Ri)i∈N∗ be the sequence defined by: ∀i ∈ N∗, Ri = #{x, ∃j ≤ τi, Yj = x}. The random
variables (Ri+1 −Ri)i≥1 are iid by Proposition 1.2. Thus if the number of different points
the walk visits between two renewal times has an infinite expectation (for P0) then
Ri
i −−−→i→∞

∞, P0 almost surely and therefore Qm0 almost surely. However we have for any

C > 0:

Qm0 (Rn ≥ Cn) ≤ Qm0 (Tn ≥ 2c∞n) +Q(Rn ≥ Cn and Tn < 2c∞n)

= o(1) +Qm0 (Rn ≥ Cn and Tn < 2c∞n)

≤ o(1) +Qm0

 ∑
0≤i<2c∞n

#{x, ∃t ∈ [i, i+ 1), Xt = x} ≥ Cn


≤ o(1) +

1

Cn
EQm0

 ∑
0≤i<2c∞n

#{x, ∃t ∈ [i, i+ 1), Xt = x}


≤ o(1) +

2c∞
C
EQm0 (#{x,∃t ∈ [0, 1), Xt = x}) .

Now we just have to prove that EQm0 (#{x, ∃t ∈ [0, 1), Xt = x}) is finite. We use the fact

that dQm

dP is in Lγ and therefore dQm0
dP0

is also in Lγ .

EQm0 (#{x, ∃t ∈ [0, 1), Xt = x}) = EP0

(
#{x, ∃t ∈ [0, 1), Xt = x}dQm0

dP0

)
≤ EP0

(
#{x,∃t ∈ [0, 1), Xt = x}β

) 1
β

(
EP0

(
dQm0
dP0

)γ) 1
γ

.

So we just need to prove that EP
(
#{x, ∃t ∈ [0, 1), Xt = x}β

)
is finite. This is an immediate

consequence of Lemma 4 of [8]. Therefore, for C large enough, we get:

Qm0 (Rn ≥ Cn) ≤ o(1) +
1

2
.

This contradicts Rn/n −−−−→
n→∞

∞Qm0 almost surely and thus we have the desired result.

Now, we show that the trajectory of the walk cannot deviate too much from a straight
line.

Lemma 2.3. Let Lτ (n) = min{i, τi ≥ n}. There exists D ∈ Rd such that P0 almost surely:

Yn
Lτ (n)

−−−−→
n→∞

D.
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Proof. By Proposition 1.2, (Yτi+1
− Yτi)i≥1 is a sequence of iid random variables (for P0).

Let Ri := #
{
x ∈ Zd,∃j < τi, Yj = x

}
be the number of different points visited before

time τi. By Lemma 2.2, Ri − Ri−1 has a finite expectation and since ‖Yτi+1
− Yτi‖ ≤

Ri+1 −Ri, we get that ‖Yτi+1
− Yτi‖ also has a finite expectation. So there exists D ∈ Rd

such that P0 almost surely:
Yτn
n
−−−−→
n→∞

D.

Now we want to show that
‖Yn−Yτ(Lτ (n))‖

Lτ (n) −−−−→
n→∞

0, P0 almost surely. We clearly have:∥∥Yn − Yτ(Lτ (n))

∥∥
Lτ (n)

≤
RLτ (n) −RLτ (n)−1

Lτ (n)

but since EP0
(Ri −Ri−1) is finite, Ri−Ri−1

i −−−→
i→∞

0, P0 almost surely, so:∥∥Yn − Yτ(Lτ (n))

∥∥
Lτ (n)

−−−−→
n→∞

0, P0 almost surely .

So we get that P0 almost surely: Yn
Lτ (n) −−−−→n→∞

D.

2.2 Number of visits of traps

This section is devoted to refining some results of [8] to get an upper bound on the
number of visits of traps. First we must get some results on finite graphs and then we
will extend these results on Zd.

Definition 2.4. Let G = (V,E) be a finite, directed graph. A vertex δ ∈ V is a cemetery
vertex if

• no edge exits δ, ie ∀x ∈ V, (δ, x) 6∈ E,
• for every vertex x ∈ V there exists a directed path from x to δ.

In this section we will only consider graphs with no multiple edges, no elementary
loops (one edge starting and ending at the same point), and such that for every x, y ∈
V \{δ}, (x, y) ∈ E if and only if (y, x ∈ E).

We will first extend the definition of γmω (x) for those graphs. Let G = (V ∪ {δ}, E) be
a finite directed graph, (α(e))e∈E be a family of positive real numbers, and Pα be the
corresponding Dirichlet distribution (independent at each site).

Definition 2.5. For x ∈ G and Λ ⊂ V ∪{δ}, we define the following generalization of γmω :

γΛ
G,ω(x) :=

1∑
σ
ωσ
,

where we sum on simple paths from x to the border of Λ (i.e {y ∈ Λ,∃z 6∈ Λ, {x, y} ∈ V })
that stay in Λ.

Remark 2.6. We notice that, in Zd, for any m ∈ N∗:

∀x ∈ Zd, γmω (x) = γ
x+J−m,mKd

Zd,ω
(x).

We will also use the following acceleration function.

Definition 2.7. For any graph G and any environment ω on G we define the partial
acceleration function γωG by:

γωG(x) = max
y∼x

(
1

1− ω(x, y) + 1− ω(y, x)

)
.

When there is no ambiguity we will write γω(x) instead of γωG(x)
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Remark 2.8. Let x be a vertex in Zd. If it is in a trap then γω(x) is equal to the strength
of the trap. Otherwise γω(x) ≤ 2.

We have the following result, in the case of finite graphs:

Lemma 2.9 (Proposition A.2 of [8]). Let n ∈ N∗. Let G = (V ∪ {δ}, E) be a finite directed
graph possessing at most n edges and such that every vertex is connected to δ by a
directed path. We furthermore suppose that G has no multiple edges, no elementary
loop, and that if (x, y) ∈ E and y 6= δ, then (y, x) ∈ E. Let (a(e))e∈E be positive real
numbers. Then, for every vertex x ∈ V , there exist real numbers C, r > 0 such that, for
small ε > 0,

P(a)

(
γ
V \{δ}
G,ω (x) ≥ 1

ε

)
≤ Cεβ(− ln ε)r

where the value of β is explicit and given in [8] but to simplify the notations we will only
use the fact that it is bigger than or equal to κ′ in the case we will look at.

Lemma 2.10 (Lemma 9 of [35]). Let (p
(1)
i )1≤i≤n1

, . . . , (p
(r)
i )1≤i≤nr be independent Dirich-

let random variables with respective parameters (α
(1)
i )1≤i≤n1 , . . . , (α

(r)
i )1≤i≤nr . Let

m1, . . . ,mr be integers such that ∀i ≤ r, 1 ≤ mi < ni, and let Σ =
∑r
j=1

∑mj
i=1 p

(j)
i

and β =
∑r
j=1

∑mj
i=1 α

(j)
i . There exist positive constants C,C ′ such that, for any positive

measurable function f : R×R
∑
j mj → R,

E

[
f

(
Σ,
p

(1)
1

Σ
, . . . ,

p
(1)
m1

Σ
, . . . ,

p
(r)
1

Σ
, . . . ,

p
(r)
mr

Σ

)]
≤CẼ

[
f
(

Σ̃, p̃
(1)
1 , . . . , p̃(1)

m1
, . . . , p̃

(r)
1 , . . . , p̃(r)

mr

)]
,

where, under the probability P̃, (p̃
(1)
1 , . . . , p̃

(1)
m1 , . . . , p̃

(r)
1 , . . . , p̃

(r)
mr ) is sampled from a Dirich-

let distribution of parameter (α
(1)
1 , . . . , α

(1)
m1 , . . . , α

(r)
1 , . . . , α

(r)
mr ), Σ̃ is bounded and satisfies

P̃(Σ̃ < ε) ≤ C ′εβ for every ε > 0, and those two random variables are independent.

The following lemma shows that the value of the acceleration function γmω (x) depends
mostly on the strength of the trap that contains x (if there is one). This means that the
number of visits to a vertex depends mostly on the strength of the trap containing this
vertex.

Lemma 2.11. Set α ∈ (0,∞)2d. In Zd, for any β ∈
[
κ, κ+κ′

2

)
, for any m ≥ 2:

E
P

(α)
0

((
γmω (0)

γω
Zd

(0)

)β)
<∞.

Proof. Let m ≥ 2 be an integer. We will use the results we have on finite graphs

for this lemma. First we notice that the value of
(
γmω (0)
γω(0)

)β
only depends on a finite

amount of edges and vertices around 0. This means that we can look at this quantity
on a finite graph and have the same law. The finite graph Gm = (V m, Em) we want
is obtained by contracting all the points x ∈ Zd such that ‖x‖ ≥ m in a single point δ
(the cemetery vertex) and deleting all the edges going from this vertex to the rest of
the environment. For any environment ω on Zd we have an equivalent environment
ωm on Gm: if (x, y) ∈ E and (x, y) ∈ Em then ω(x, y) = ω̃(x, y) and for any x ∈ V m\{δ},
ω̃(x, δ) =

∑
y∈Zd,‖y‖=m ω(x, y). Now we have:

γmω (0) = γ
Vm\{δ}
Gm,ωm (0)

and

γωZd(0) = γω
m

Gm(0).
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So we just have to show that

EP(α)

(γVm\{δ}Gm,ωm (0)

γω
m

Gm(0)

)β <∞.

For any point y ∼ 0 and any environment ω we define Σωy by:

Σωy = 2− ω(0, y)− ω(y, 0).

For any point x ∈ Gm such that x ∼ 0, we define Gmx = (V mx , Emx ) by contracting the
vertices 0 and x into a single vertex 0 and deleting the edges (0, x) and (x, 0). The edges
(0, y) and (y, 0) stay the same for any y ∼ 0 such that x 6= y. However, the edges (x, y)

and (y, x) become (0, y) and (y, 0) respectively, for any y ∼ x such that 0 6= y. We can
also define ωmx by:

∀(y, z) ∈ Em, y 6∈ {0, x}, ωmx (y, z) := ωm(y, z)

∀(y, z) ∈ Em, y ∈ {0, x}, (y, z) ∈ Emx , ωmx (y, z) :=
ωm(y, z)

Σωy

Let x ∼ 0 be a vertex of Gm. If we think of 1

γ
Vm\{δ}
Gm,ωm

as a sum on simple paths, we have:

1

γ
Vm\{δ}
Gm,ωm

≥ Σω
m

x ωm(0, x)
1

γ
Vm\{δ}
Gm,ωm

Indeed, if we look at 1

γ
V \{δ}
Gmx ,ω

m
x

as a sum on simple paths σ from 0 to δ (σ0 = 0), either the

first vertex σ1 visited by the path is such that (0, σ1) ∈ Em or (x, σ1) ∈ Em. We define σ̃
by: if (0, σ1) ∈ Em then σ̃ := σ and we have:

ωm(σ̃) = Σω
m

x ωmx (σ) ≥ Σω
m

x ωm(0, x)ωmx (σ),

and if (x, σ1) ∈ Em then σ̃i := σi−1 for i ≥ 2 and σ̃0 := 0 and σ̃1 := x and we get:

ωm(σ̃) = Σω
m

x ωm(0, x)ωmx (σ).

For any environment ω, let x(ωm) be the point that maximises (y 7→ ωm(0, y)). We have
ω̃(0, x(ωm)) ≥ 1

2d and therefore:

1

γ
V \{δ}
Gm,ωm

≥ 1

2d
Σω

m

x(ωm)

1

γ
Vm\{δ}
Gm
x(ωm)

,ωm
x(ωm)

.

So we get, for any ε > 0:

P(α)

((
γ
Vm\{δ}
Gm,ωm (0)

γω
m

Gm(0)

)
≥ 1

ε

)
≤ P(α)

 2dε

γω
m

Gm(0)
≥ Σω

m

x(ωm)

1

γ
Vm\{δ}
Gm
x(ωm)

,ωm
x(ωm)


=
∑
y∼0

P(α)

y = x(ωm) and
2dε

γω
m

Gm(0)
≥ Σω

m

y

1

γ
Vm\{δ}
Gmy ,ω

m
y


≤
∑
y∼0

P(α)

 2dε

γω
m

Gm(0)
≥ Σω

m

y

1

γ
Vm\{δ}
Gmy ,ω

m
y

 .

by definition of γω
m

Gm(0):
∀y ∼ 0, γω

m

Gm(0)Σω
m

y ≥ 1.
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Therefore:

P(α)

((
γ
Vm\{δ}
Gm,ωm (0)

γω
m

Gm(0)

)
≥ 1

ε

)
≤
∑
y∼0

P(α)

2dε ≥ 1

γ
Vm\{δ}
Gmy ,ω

m
y

 .

Now we can apply Lemma 2.10 which gives, for any y ∼ 0:

P(α)

2dε ≥ 1

γ
Vm\{δ}
Gmy ,ω

m
y

 ≤ CP̃
2dε ≥ 1

γ
Vm\{δ}
Gmy ,ω

m
y

 ,

where under P̃, ωmy are independent Dirichlet random variables (on the graph Gmy and
the parameters of the Dirichlet are the same as in Zd). Now, according to Lemma 2.9
there exist two constants C ′, r such that:

∀ε small enough, P̃

2dε ≥ 1

γ
V \{δ}
Gmy ,ω

m
y

 ≤ C ′εκ′ (− log(ε))
r
.

This means that by changing the constant C ′, we get:

∀ε ≥ 0, P̃

2dε ≥ 1

γ
Vm\{δ}
Gmy ,ω

m
y

 ≤ C ′εκ+κ′2 .

So there exists a constant D that does not depend on ε such that:

P(α)

((
γ
Vm\{δ}
Gm,ωm (0)

γω
m

Gm(0)

)
≥ 1

ε

)
≤ Dε

κ+κ′
2 .

We have the result we want.

Unfortunately this statement cannot be efficiently used with the invariant distribution
Qm because we can visit multiple points between times 0 and 1 since the time is
continuous. So we need a version of the previous lemma that takes this continuity into
account.

Lemma 2.12. Set α ∈ (0,∞)2d. For every β < κ+κ′

2 , there exists an integer m such that:

EQm0

∑
x∈Zd

 1∫
0

γmω (x)

γω
Zd

(x)
1Xmt =xdt

β
 <∞.

Proof. Let p ∈ (1,∞) be a constant such that βp2 < κ+κ′

2 and let γ be such that 1
p + 1

γ = 1.

Now let m be an integer such that dQm

dP is in Lγ . This means that dQm0
dP0

is also in Lγ . We

will only work in Zd so we will write γω instead of γω
Zd

.

EQm0

∑
x∈Zd

 1∫
0

γmω (x)

γω(x)
1Xmt =xdt

β


=
∑
x∈Zd

EP0


 1∫

0

γmω (x)

γω(x)
1Xmt =xdt

β

dQm0
dP0



≤
∑
x∈Zd

EP0


 1∫

0

γmω (x)

γω(x)
1Xmt =xdt

pβ


1
p

EP0

((
dQm0
dP0

)γ) 1
γ

.
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This means we just need to show that
∑
x∈Zd EP0

((∫ 1

0
γmω (x)
γω(x) 1Xmt =xdt

)pβ) 1
p

is finite. Let

Dm
1 be the random variable defined by:

Dm
1 :=

d∑
i=1

max
t∈[0,1]

|Xm
t .ei|.

We have:

∑
x∈Zd

EP0


 1∫

0

γmω (x)

γω(x)
1Xmt =xdt

pβ


1
p

≤
∑
x∈Zd

EP0

((
γmω (x)

γω(x)

)pβ
1∃t∈[0,1],Xmt =x

) 1
p

≤
∑
x∈Zd

(
EP0

((
γmω (x)

γω(x)

)pβ
1Dm1 ≥‖x‖∞

)) 1
p

≤
∑
x∈Zd

(
EP0

((
γmω (x)

γω(x)

)p2β)) 1
p2 (

EP0

(
1Dm1 ≥‖x‖∞

)) 1
α

=
∑
x∈Zd

(
EP

((
γmω (x)

γω(x)

)p2β)) 1
p2 (

EP0

(
1Dm1 ≥‖x‖∞

)) 1
α

Now since the environment for P is iid, EP

((
γmω (x)
γω(x)

)p2β)
does not depend on x and we

get:

∑
x∈Zd

EP0


 1∫

0

γmω (x)

γω(x)
1Xmt =xdt

pβ


1
p

≤

(
EP

((
γmω (0)

γω(0)

)p2β)) 1
p2 ∑

x∈Zd

(
EP0

(
1Dm1 ≥‖x‖∞

)) 1
γ .

And since there exists a constant C such that for every i ≥ 1 there are at most Cid−1

points x such that ‖x‖∞ = i, we get:∑
x∈Zd

(
EP0

(
1D1≥‖x‖∞

)) 1
γ ≤ 1 + C

∑
i≥1

id−1 (EP0
(1D1≥i))

1
γ

which is finite by lemma 4 of [8]. And by Lemma 2.11 we get:

EP

((
γmω (0)

γω(0)

)p2β)
<∞.

So we get the result we want.

2.3 Independence of the traps

This section will be devoted to the precise study of traps. The notion of trap was
defined in the introduction in definition 1.15. In the previous section we have essentially
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shown that the total amount of time spent on a trap mostly depends on its strength.
Now, we need a way to create independence between the times spent in the different
traps. We will do it in two steps. First we will show that the strengths of the traps are
essentially independent and then we will show that the strength of a trap and the number
of times it is visited are essentially independent. However, we first need to introduce a
few objects to characterize this independence precisely.

Definition 2.13. Let T ω be the set of traps {x, y} ∈ Ẽ for the environment ω.
T̃ ω is the set of vertices x ∈ Zd such that there exists y such that {x, y} ∈ T ω.
For any subset J of J1, dK we define T ωJ , the traps with direction in J by:

T ωJ = {{x, y} ∈ T , ∃j ∈ J, y = x+ ej or y = x− ej}.

For any subset J of J1, dK, T̃ ωJ is the set of vertices x ∈ Zd such that there exists y such
that {x, y} ∈ T ωJ .

In the following we will omit the ω when there is no ambiguity.

Definition 2.14. We say that two environments ω1 and ω2 are trap-equivalent if:

– they have the same traps:

T ω1 = T ω2 ,

– at each vertex not in a trap, the transition probabilities are the same for both
environment:

∀x 6∈ T̃ ω1 , ∀y ∼ x, ω1(x, y) = ω2(x, y),

– at each vertex x in a trap {x, y}, the transition probabilities conditioned on not
crossing the trap are the same:

∀(x, y) ∈ E, {x, y} ∈ T ω1 , ∀z ∼ x, z 6= y,
ω1(x, z)

1− ω1(x, y)
=

ω2(x, y)

1− ω2(x, y)
.

We will denote by Ω̃ the set of all equivalence classes for the trap-equivalence relation.

Definition 2.15. Set ω̃ ∈ Ω̃. Let T be its set of traps and σ a path starting at 0 that only
stays a finite amount of time every time it enters a trap. We want to define a path, with
the same trajectory as σ outside the traps, which does not keep information regarding
the time spent in the traps. We essentially want to erase all the back and forths inside
traps. To that extent we define the sequences of integer times (ti), (si) by:

t0 = 0,

si = inf{n ≥ ti, (σn = σti or {σn, σti} ∈ T ) and (σn+1 6= σti and {σn+1, σti} 6∈ T )},

ti+1 =

{
si + 1 if σsi = σti

si otherwise.

If σti is in a trap then [ti, si] is the interval of time spent in this trap before leaving it.
The partially forgotten path σ̃ associated with σ in the environment ω̃ is defined by:

σ̃i := σti .

Similarly we can define the partially-forgotten walk (Ỹn)n∈N associated with (Yn)n∈N

Definition 2.16. For all i ∈ N∗, let Ii be the set defined by:

Ii = J1, dK× {a, b, c, d ∈ N, a ≥ 1, a+ b+ c+ d = i}.
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And In be defined by:
In =

⋃
1≤i≤n

Ii.

Let ẽ ∈ Ẽ be an undirected edge. We define the sequences (tini ) (the times when the walk
Ỹ enters ẽ) and (tout

i ) (the times when the walk Ỹ exits ẽ) by:

tin1 = inf{n, Ỹn ∈ ẽ},
tini+1 = inf{n > tini , Ỹn ∈ ẽ and Ỹn−1 6∈ ẽ},

tout
i =

{
tini if Ỹtini +1 6∈ ẽ
tini + 1 otherwise

Since the walk is almost surely transient by Theorem 1.5, we have that for i large enough
tini = tout

i =∞ almost surely.
Now let Ỹ := σtin1 and y be such that {x, y} = ẽ. Let j ∈ J1, dK be such that either

x = y + ej or x = y − ej (j is the direction of the edge) and n be such that tinn <∞ and
tinn+1 =∞. Now we can define Nx→x, Nx→y, Ny→x, Ny→y by:

Nx→x = #{i ≤ n, Ỹtini = x and Ỹtout
i

= x},

Nx→y = #{i ≤ n, Ỹtini = x and Ỹtout
i

= y},

Ny→x = #{i ≤ n, Ỹtini = y and Ỹtout
i

= x},

Ny→y = #{i ≤ n, Ỹtini = y and Ỹtout
i

= y}.

The configuration p of the edge ẽ, for the walk Ỹ , is the element of In defined by:

pỸ{x,y} := (j,Nx→x, Nx→y, Ny→x, Ny→y).

Now we can say in what way the strengths of the traps are independent.

Lemma 2.17. For any environment ω ∈ Ω, let ω̃ ∈ Ω̃ be its equivalence class for
the trap-equivalent relation. Now let (Ỹi) be the partially forgotten walk. We will
write α :=

∑
1≤i≤2d αi and for any vertex z and integer i we will use the notation

α(z, z+ei) := αi. Knowing ω̃ and (Ỹi), the strengths of the various traps are independent.
Furthermore, let {x, y} be a trap and p = (j,Nx→x, Nx→y, Ny→x, Ny→y) its configuration.
To simplify notations we will write Nx := Nx→x + Ny→x, Ny := Nx→y + Ny→y and
N := Nx +Ny. Let (r, k) be defined by (1− ω(x, y), 1− ω(y, x)) = ((1 + k)r, (1− k)r). The
density of law of (r, k) (with respect to the Lebesgue measure) knowing ω̃ and Ỹ is:

Cpr
κj−1(1 + k)Nx+α−α(x,y)−1(1− k)Ny+α−α(y,x)−1hp(r(1 + k), r(1− k))10≤r≤ 1

4
1−1≤k≤1,

where Cp is a constant that only depends on p and α, and hp is a function that only
depends on p and α and that satisfies the following bound:

∀r ≤ 1

4
, | log(hp(r(1 + k), r(1− k)))| ≤ 5(N + 2α)r.

And for the law of the strength s of the trap, there exists a constant Dp that only depends
on the configuration of the trap such that for any A ≥ 2:

DpA
−κj exp

(
−5(N + 2α)

A

)
≤ P0

(
s ≥ A

∣∣ω̃, Ỹ ) ≤ DpA
−κj exp

(
5(N + 2α)

A

)
.

Proof. In the following, we will write α :=
∑2d
i=1 αi and if y = x + ei we will write

α(x, y) := αi. First we need to show that the strengths of the traps are approximately
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independent of the trajectory of the walk. We will take an environment ω and let ω̃ be
the set of all environments that are trap-equivalent to ω. Now for any path σ starting at
0, let σ̃ω̃ be the set of all paths that start at 0 and that have the same partially-forgotten
path as σ. We want to see how the law of the environment is changed knowing the
partially-forgotten path and the equivalence class of the environment. We get that the
density of the environment (we look at an environment of finite size, large enough to
contain the path we look at) (for P(α)) knowing the equivalence class of the environment
is equal to:

C
∏

{x,y}∈T

(εx)α−α(x,y)−1(1−εx)α(x,y)−1(εy)α−α(y,x)−1(1−εy)α(y,x)−11εx+εy<
1
2
dεxdεy, (2.1)

where εx = 1−ω(x, y) and εy = 1−ω(y, x). Now, knowing the environment, the probability
of having the given partially-forgotten walk is the same in parts of the environment
where there is no trap. The only thing that depends on the specific environment is the
times when the walk crosses the traps. Let {x, y} be a trap, and for any z1, z2 ∈ {x, y} let
p̃(z1, z2) be the probability to exit the path by z2, starting at z1, we get:

p̃(x, x) =
εx

εx + εy − εxεy
, p̃(y, y) =

εy
εx + εy − εxεy

,

p̃(x, y) =
εy(1− εx)

εx + εy − εxεy
, p̃(y, x) =

εx(1− εy)

εx + εy − εxεy
.

So for any environment ω, we get that the probability of a partially-forgotten path (for
P(α)

0 ), is equal to:

C
∏

{x,y}∈T

p̃(x, x)Nx→x p̃(x, y)Nx→y p̃(y, x)Ny→x p̃(y, y)Ny→y

=C
∏

{x,y}∈T

εNx→xx (εy(1− εx))Nx→y (εx(1− εy))Ny→xε
Ny→y
y

(εx + εy − εxεy)
Nx→x+Nx→y+Ny→x+Ny→y

=C
∏

{x,y}∈T

ε
Nx→x+Ny→x
x ε

Nx→y+Ny→y
y

(εx + εy)Nx→x+Nx→y+Ny→x+Ny→y

(1− εx)Nx→y (1− εy)Ny→x(
1− εxεy

εx+εy

)Nx→x+Nx→y+Ny→x+Ny→y
. (2.2)

We define h{x,y} by:

h{x,y}(εx, εy) =
(1− εx)Nx→y (1− εy)Ny→x(

1− εxεy
εx+εy

)Nx→x+Nx→y+Ny→x+Ny→y
(1− εx)α(x,y)−1(1− εy)α(y,x)−1.

Now we get that the probability density of having a given environment knowing the
equivalence class of the environment and the partially forgotten path is equal to the
product of (2.1) and (2.2) up to a multiplicative constant C that depends on the partially-
forgotten path:

C
∏

{x,y}∈T

ε
Nx→x+Ny→x+α−α(x,y)−1
x ε

Nx→y+Ny→y+α−α(y,x)−1
y

(εx + εy)Nx→x+Nx→y+Ny→x+Ny→y
h{x,y}(εx, εy)1εx+εy<

1
2
.

This means that for P(α)
0 , knowing the equivalence class of the environment and the

partially forgotten path, the transition probabilities for each trap are independent, so we
will look at each trap independently. Let’s fix a trap {x, y} and to simplify notations, we
will write Nx = Nx→x +Ny→x, Ny = Nx→y +Ny→y and N = Nx +Ny. We define r and k
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by r =
εx+εy

2 and k =
εx−εy
εx+εy

which gives εx = r(1 + k) and εy = r(1 − k) the law of the
transition probabilities becomes:

C
r

2

(r(1 + k))Nx+α−α(x,y)−1(r(1− k))Ny+α−α(y,x)−1

(2r)Nx+Ny+2
h{x,y}(r(1 + k), r(1− k))1r< 1

2
drdk

=C ′rκj−1(1 + k)Nx+α−α(x,y)−1(1− k)Ny+α−α(y,x)−1h{x,y}(r(1 + k), r(1− k))1r< 1
2
drdk.

Now we want to give bounds on h{x,y}. Since for all r ≤ 1
2 , | log(1− r)| ≤ 2r, we get:

| log(h{x,y}(r(1 + k), r(1− k)))|
≤|(N(x, y) + α(x, y)− 1) log(1− r(1 + k))|+ |(N(y, x) + α(y, x)− 1) log(1− r(1− k))|

+ |N log(1− r(1− k2)

2
)|

≤(N(x, y) + α(x, y))4r + (N(y, x) + α(y, x))4r +Nr

≤5(Nx +Ny + αx + αy)r.

Let D :=
∫ 1

k=−1
C ′(1 + k)Nx+α−α(x,y)−1(1− k)Ny+α−α(y,x)−1dk. For any A ≥ 2, we have:

DA−κj exp

(
−5(N + 2α)

A

)
≤ P0

(
s ≥ A|ω̃, Ỹ

)
≤ DA−κj exp

(
5(N + 2α)

A

)
.

Now we want to show that there cannot be too many traps that are visited many
times.

Lemma 2.18. Set α ∈ (0,∞)2d. For any β ∈
[
κ, κ+κ′

2

)
with β ≤ 1 there exists a finite

constant C > 0 such that for every i ∈ N \ {0, 1}:

EP0

 ∑
{x,y}∈T

#{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β
 = C.

Proof. We want to show that

EP0

 ∑
{x,y}∈T

#{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β


can be bounded away from infinity by using the inequality from Lemma 2.12:

EQm0

∑
x∈Zd

 1∫
t=0

γmω (x)

γω(x)
1Xt=xdt

β
 <∞,

which is true for any β ∈
[
κ, κ+κ′

2

)
, and for any integer m such that Qm0 exists.

To that end we need to introduce the intermediate quantity Smn :

Smn :=

n∑
i=0

∑
{x,y}∈T

 Tmi+1∫
Tmi

γmω (x)

γω(x)
1Xmt =xdt


β

+

 Tmi+1∫
Tmi

γmω (y)

γω(y)
1Xmt =ydt


β

,

where (Tmi ) are the renewal times for the walk (Xm
t ), with the convention that Tm0 := 0.

By definition of Xm, the time the walk Xm spends in a vertex x is a sum of `x iid
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exponential random variables of expectation 1
γmω (x) , where `x is the number of times the

walk Y visits the point x. Therefore the quantity∫ ∞
0

γmω (x)1Xt=xdt

should be close to `x. Then, every time the walk Y enters the trap {x, y} it stays a time
of order γω(x). This means that `x

γω(x) should be almost equal to the number of times the
trap is entered. Finally, we get that for every trap the quantities∑

{x,y}∈T

#{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β

and ∑
{x,y}∈T

 Tmi+1∫
Tmi

γmω (x)

γω(x)
1Xmt =xdt


β

+

 Tmi+1∫
Tmi

γmω (y)

γω(y)
1Xmt =ydt


β

should be of the same order. Then we just need to bound the second quantity with
Lemma 2.12 and a law of large numbers.

For any k ∈ J0, 2m + 3K the random variables (Sm(2m+3)i+k+1 − S
m
(2m+3)i+k)i≥1 are iid

(the definition of γmω (x) depends on a box of size m around x and traps span over 2
vertices that’s why we cannot consider the sequence (Smi+1 − Smi )i≥1). This means that
there is a positive constant C0 that can be infinite such that EP0

(
Sm2m+3 − Sm2m+2

)
= C0

and
1

n
Smn −−−−→

n→∞
C0 P0 a.s and therefore Q0 a.s.

For any x ∈ Zd there is at most one integer i such that
(∫ Tmi+1

Tmi

γmω (x)
γω(x) 1Xmt =xdt

)
is non-zero

and therefore:

Smn =
∑

{x,y}∈T

 Tmn+1∫
0

γmω (x)

γω(x)
1Xmt =xdt


β

+

 Tmn+1∫
0

γmω (y)

γω(y)
1Xmt =ydt


β

.

Define S̃mu by:

S̃mu :=
∑

{x,y}∈T

 u∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 u∫
0

γmω (y)

γω(y)
1Xmt =ydt

β

.

By Lemma 2.1 there is a finite constant Dm such that 1
nT

m
n −−−−→

n→∞
Dm P0 and Q0 almost

surely. And therefore (keep in mind that u 7→ S̃mu is non-decreasing) for any ε ∈ (0, 1), P0

and Q0 almost surely:

lim inf
n→∞

1

n
S̃mDmn ≥ lim inf

n→∞

1

n
Smb(1−ε)nc = (1− ε)C0 and

lim sup
n→∞

1

n
S̃mDmn ≥ lim sup

n→∞

1

n
Smb(1+ε)nc = (1 + ε)C0.

And therefore
1

n
S̃mDmn −−−−→

n→∞
C0 Q0 a.s.

In turn this means that,

lim inf
1

n
EQ0

 ∑
{x,y}∈T

 Dmn∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 Dmn∫
0

γmω (y)

γω(y)
1Xmt =ydt

β
 ≥ C0.
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Since β ≤ 1 we have:

1

n
EQ0

 ∑
{x,y}∈T

 Dmn∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 Dmn∫
0

γmω (y)

γω(y)
1Xmt =ydt

β


≤ 1

n

bDmnc∑
i=0

EQ0

 ∑
{x,y}∈T

 i+1∫
i

γmω (x)

γω(x)
1Xmt =xdt

β

+

 i+1∫
i

γmω (y)

γω(y)
1Xmt =ydt

β


=
bDmnc+ 1

n
EQ0

 ∑
{x,y}∈T

 1∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 1∫
0

γmω (y)

γω(y)
1Xmt =ydt

β


<∞ by Lemma 2.12.

So C0 is finite.
Now we want to get a bound on Y from a bound on Xm. For any trap {x, y} ∈ T let

N{x,y} be the number of times the trap {x, y} is entered. Let T ω,n be the subset of T ω
defined by:

T ω,n := {{x, y} ∈ T ω, Yτ1 · e1 ≤ x · e1 ≤ Yτ1 · e1 + n and Yτ1 · e1 ≤ y · e1 ≤ Yτ1 · e1 + n} .

We chose a partially-forgotten path σ and we look at the law of the total time the walk X
spends in a trap {x, y} ∈ T ω knowing Yτ1 and Ỹ = σ, where Ỹ is the partially forgotten
walk. We now have two sources of randomness: the number of back and forths the walk
does every time it visits a trap and the time the accelerated walk Xm spends for every
step.

Knowing the partially-forgotten walk, N{x,y} is deterministic. Let tj{x,y} be the jth

time the walk Y enters the trap {x, y} and t̃j{x,y} be the jth time the walk Y exits the

trap {x, y}. We define Hj
{x,y} by Hj

{x,y} :=

⌊
t̃j{x,y}−t

j
{x,y}

2

⌋
, the number of back and forths

in the trap {x, y} during the jth visit to the trap. For any integer n and for any trap
{x, y} ∈ T ω,n we have that knowing the environment, Yτ1 and the partially forgotten

walk,
(
Hj
{x,y}

)
j∈N,{x,y}∈T

is a sequence of independent geometric random variables of

parameter 1 − (1 − ω(x, y))(1 − ω(y, x)). Finally, for every x ∈ T̃ , let `jx be the number
of times x is visited between times tj{x,y} and t̃j{x,y}. We define εjx by εjx := `jx −H

j
{x,y}.

Knowing the partially forgotten walk, εjx is deterministic (it is equal to 0 iff the walk
enters and leaves the trap by y during the jth visit) and εjx ∈ {0, 1}. We have:

∞∫
0

γmω (x)

γω(x)
1Xmt =xdt =

N{x,y}∑
j=1

εjx+Hj{x,y}∑
k=1

Ek,jm,x
γmω (x)

γω(x)
,

where the (Ek,jm,x)x∈Zd,k,j∈N are independent exponential random variables of parameter
γmω (x), they correspond to the time the accelerated walk spends on each vertex. By
technical Lemma 3.4 (the proof of which is in the annex) we get that there exists a
constant C1 > 0 such that for any integer n and any trap {x, y} ∈ T ω,n:

C1(N{x,y})
β ≤ EPω0


 ∞∫

0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 ∞∫
0

γmω (y)

γω(y)
1Xmt =ydt

β

|Ỹ , Yτ1

 . (2.3)
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Unfortunately, we cannot directly use this inequality to conclude because it does not
behave nicely with the renewal times. Indeed if you know that a trap spans over two
renewal blocks, it means that you cannot do any back and forth inside the trap and the
previous inequality becomes false. Instead we will have to first consider traps in T ω,n.
First, by definition of the renewal times, no trap in T ω,n can be visited before time τ1 or
after time τn+2 since Yτn+2

· e1 ≥ Yτ1 · e1 + n+ 1. Therefore:

∑
{x,y}∈T ω,n

 ∞∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 ∞∫
0

γmω (y)

γω(y)
1Xmt =ydt

β

≤
∑

{x,y}∈T ω

 Tmn+2∫
Tm1

γmω (x)

γω(x)
1Xmt =xdt


β

+

 Tmn+2∫
Tm1

γmω (y)

γω(y)
1Xmt =ydt


β

Therefore we get:

1

n+ 1
EP0

 ∑
{x,y}∈T ω,n

 ∞∫
0

γmω (x)

γω(x)
1Xmt =xdt

β

+

 ∞∫
0

γmω (y)

γω(y)
1Xmt =ydt

β
 ≤ C0 <∞

This in turns gives:

1

n+ 1
EP0

 ∑
{x,y}∈T ω,n

(
N{x,y}

)β ≤ C0

C1
<∞

Now let C2 := EP0

(∑
{x,y}∈T #{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β

)
be the

quantity we want to bound. By the law of large numbers, we have that P0 a.s and
therefore Q0 a.s:

1

n

n∑
i=1

∑
{x,y}∈T

#{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β −−−−→
n→∞

C2

Now, as a consequence of Lemma 2.2 and the law of large numbers, there exists a finite
constant D > 0 such that P0 a.s and therefore Q0 a.s, 1

nYτn · e1 −−−−→
n→∞

D. Furthermore, a

trap spans over at most two renewal blocks so for any trap {x, y}:∑
i≥1

#{j ∈ Jτi, τi+1 − 1K, Yj ∈ {x, y} and Yj+1 6∈ {x, y}}β ≤ 2(N{x,y})
β .

As a consequence, P0 a.s:

lim inf
1

n

1

n+ 1
EP0

 ∑
{x,y}∈T ω,Dn

(
N{x,y}

)β ≥ C2

2
.

Finally we get:
C2

2
≤ DC0

C1

so C2 is finite.

The next lemma is just a variation of the previous one, with the difference that the
sum has a deterministic number of terms instead of a random one which makes it simpler
to use.
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Lemma 2.19. For any j ∈ J1, dK let (xji , y
j
i ) be the ith trap in the direction j the walk

encounters after τ2. Let N j
i be the number of times the walk enters this trap.

If κ ≤ 1, for any β ∈ [κ, κ+κ′

2 ) with β ≤ 1 there is a constant C such that for any
j ∈ J1, dK:

EP0

(
n∑
i=1

(N j
i )β

)
≤ Cn.

If κ = 1 there exists a positive concave function φ defined on [0,∞) such that φ(t) goes
to infinity when t goes to infinity and such that if Φ(t) =

∫ t
x=0

φ(x)dx then there exists a
constant C such that for any n ∈ N:

EP0

(
n∑
i=1

Φ(N j
i )

)
≤ Cn.

Those results are also true if {xji , y
j
i } is the ith trap in the direction j the walk encounters

after τ2 such that xji · e1, y
j
i · e1 ≥ Yτ2 · e1.

Proof. Let p > 0 be the probability, for P0, that there is at least one trap in the direction
j between times τ2 and τ3 − 1. Let Tj be the set of traps in the direction j. Now let the
sequence (ni) be defined by:

n0 =1,

ni+1 = min{k > ni,∃{x, y} ∈ Tj ,∃n ∈ Jτk, τk+1 − 1K, Yn ∈ {x, y}}.

Now, if κ ≤ 1, let Zji =
∑
{x,y}∈Tj #{m ∈ Jτni , τni+1− 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β .

The (Zji )i≥1 are clearly identically distributed and we have:

EP0(Zji ) =
1

p
EP0

 ∑
{x,y}∈Tj

#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β
 .

So let Cj = EP0(Zji ) which is finite by Lemma 2.18. We clearly have:

m∑
i=1

(N j
i )β ≤

2m∑
i=1

Zji .

The sum has to go up to 2m because in the second sum some traps can appear twice if
they are in between two renewal slabs. Indeed, in this case they can be visited before
and after the renewal time (if they are in the direction e1). We now have:

EP0

(
m∑
i=1

(N j
i )β

)
≤ 2Cjm.

Similarly, if {xi, yi} is the ith trap in the direction j the walk encounters after τ2 such

that xi · e1, yi · e1 ≥ Yτ2 · e1 and N
j

i the number of times the walk enters this trap then we
have:

m∑
i=1

(N
j

i )
β ≤

2m+1∑
i=1

Zi.

If κ = 1, by Lemma 2.18,

EP0

 ∑
{x,y}∈Tj

#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β
 <∞.
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Therefore, by forthcoming technical Lemma 3.1 there exists an increasing, positive,
concave function φ defined on [0,∞) such that φ(t) goes to infinity when t goes to infinity
and such that, if Φ(t) :=

∫ t
x=0

φ(x)dx then:

EP0

Φ

2
∑

{x,y}∈Tj

#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β
 <∞,

where Φ(t) :=
∫ t
x=0

φ(x)dx. We have that x 7→ Φ(x)
x is increasing and therefore, by writing

g(x) = Φ(x)
x , for any non-negative sequence (ai)1≤i≤n:∑

1≤i≤n

Φ(ai) =
∑

1≤i≤n

aig(ai)

≤
∑

1≤i≤n

aig

 ∑
1≤j≤n

aj


=

 ∑
1≤i≤n

ai

 g

 ∑
1≤i≤n

ai


= Φ

 ∑
1≤i≤n

ai

 .

So we get:

EP0

 ∑
{x,y}∈Tj

Φ
(
2#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β

)
≤EP0

Φ

2
∑

{x,y}∈Tj

#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β
 <∞.

Let Zji :=
∑
{x,y}∈Tj Φ

(
#{m ∈ Jτni , τni+1 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β

)
. The

(Zji )i≥1 are clearly identically distributed and we have:

EP0
(Zi)=

1

p
EP0

(
2

∑
{x,y}∈Tj

Φ
(
#{m ∈ Jτ2, τ3 − 1K, Ym ∈ {x, y} and Ym+1 6∈ {x, y}}β

))
<∞.

So let Cj = EP0
(Zji ), which is finite. We clearly have:

m∑
i=1

Φ(N j
i ) ≤

2m∑
i=1

Zi.

Once again, the sum has to go up to 2m because in the second sum some traps can
appear twice if they are in between two renewal slabs. Indeed, in this case they can be
visited before and after the renewal time (if they are in the direction e1). So:

EP0

(
m∑
i=1

Φ(N j
i )

)
≤ 2Cjm.

Similarly, if {xi, yi} is the ith trap in the direction j the walk encounters after τ2 such

that xi · e1, yi · e1 ≥ Yτ2 · e1 and N
j

i the number of times the walk enters this trap then we
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have:
m∑
i=1

Φ(N
j

i ) ≤
2m+1∑
i=1

Zji .

and we get the result we want.

The following lemma gives us some independence between the strength of a trap and
the number of times the walk enters this trap.

Lemma 2.20. Let j ∈ J1, dK be an integer that represents the direction of the traps we
will consider. Let {xji , y

j
i } be the ith trap in the direction j (ie xji − y

j
i ∈ {ej ,−ej}) to be

visited after time τ2 and such that xji · e1 ≥ Yτ2 · e1 and yji · e1 ≥ Yτ2 · e1. Now let sji be
the strength of the trap. Let N j

i be the number of times the trap {xji , y
j
i } is exited. Let

κj = 2
∑2d
i=1 αi − αj − αj+d. For any γ ∈ [0, 1], there exists a constant C that does not

depend on i such that:

∀A ≥ 2, EP0

(
(N j

i )γ1sji≥A

)
≤ C

Aκj
EP0

((N j
i )γ).

We also have that for any positive concave function φ such that φ(0) = 1 with Φ(t) =∫ t
x=0

φ(x)dx we get:

∀A ≥ 2, EP0

(
Φ(N j

i )1sji≥A

)
≤ C

Aκj
EP0(Φ(N j

i )).

Proof. First if H is a geometric random variable of parameter p then for any γ ∈ [0, 1]

we have the following three inequalities:

E((1 +H)γ) ≥ 1 = pγ
1

pγ
, (2.4)

E((1 +H)γ) ≥ P
(

1 +H ≥ 1

p

)
1

pγ
≥ (1− p)

1
p−1 1

pγ
, (2.5)

E((1 +H)γ) ≤ E((1 +H))γ =
1

pγ
. (2.6)

Inequalities (2.4) and (2.5) give us that there is a constant Cγ such that E((1 +H)γ) ≥
Cγ

1
pγ , inequality (2.4) gives us the result for p ≥ 1

2 and since (1 − p)
1
p−1 converges to

exp(−1) when p goes to 0, inequality (2.5) gives us the result for p ≤ 1
2 .

By Lemma 3.2 we get that there is a constant Cφ such that:

1

2

1

p
φ

(
1

p

)
≤ E(Φ(1 +H)) ≤ Cφ

1

p
φ

(
1

p

)
. (2.7)

Let t ∈ N be an integer. In the following we will call renewal hyperplane the set of
vertices {x, x · e1 = Yt · e1}. We look at the nth time, after time t, that the walk encounters
a vertex that touches a trap {x, y} in the direction j that has never been visited before
and such that x · e1, y · e1 ≥ Yt · e1. We want to show that the strength of the trap is
basically independent from the number of times the walk leaves the trap and from the
random variable 1τ2=t. Let x, y be the corresponding trap with x being the first vertex
visited.

Now we look at the trap {x, y}. Let i be such that y = x+ ei, we will write αx := αi,
αy := αi+d and α :=

∑2d
k=1 αk. The probability density (for P(α)) for the transition proba-

bilities ω(x, y) and ω(y, x), knowing all the transition probabilities (ω(z1, z2))z1∈Zd\{x,y},

the renormalized transition probabilities ( ω(x,z)
1−ω(x,y) )z 6=y, (

ω(y,z)
1−ω(y,x) )z 6=x and that {x, y} is a

trap is:

Cω(x, y)αx−1(1− ω(x, y))α−αx−1ω(y, x)αy−1(1− ω(y, x))α−αy−11ω(x,y)+ω(y,x)≥ 3
2
.
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Now we make the change of variables:

1− ω(y, x) = r(1− k), 1− ω(x, y) = r(1 + k),

which gives a probability density of:

2rCrκj−2(1− k)α−αy−1(1 + k)α−αx−1(1− r(1 + k))αx−1(1− r(1− k))αy−11r≤ 1
4
drdk.

Let h(r, k) be defined by:

h(r, k) = (1− r(1 + k))αx−1(1− r(1− k))αy−1.

For 0 ≤ r ≤ 1
4 and −1 ≤ k ≤ 1 we have:

log(h(r, k)) ≤ |αx − 1|
∣∣∣∣log

(
1

2

)∣∣∣∣+ |αy − 1|
∣∣∣∣log

(
1

2

)∣∣∣∣ ≤ (αx + αy + 2) log(2).

So for 0 ≤ r ≤ 1
4 and −1 ≤ k ≤ 1 we have:

2−(αx+αy+2) ≤ h(r, k) ≤ 2αx+αy+2.

Now the probability density is:

2Ch(r, k)rκj−1(1− k)α−αy−1(1 + k)α−αx−11r≤ 1
4
drdk.

Now we look at a specific environment ω and an edge {x′, y′} in that environment. To
simplify the notation we will write εx′ = 1 − ω(x′, y′) and εy′ = 1 − ω(y′, x′). When the
walk leaves the trap there are three possibilities:

– the walk goes to infinity before going back to the trap or the renewal hyperplane

– the walk goes to the renewal hyperplane before it goes back to the trap (this does
not necessarily mean that the walk will go back to the trap after going to the
renewal hyperplane)

– the walk goes back to the trap before it goes to the renewal hyperplane (this does
not necessarily mean that the walk will eventually go to the renewal hyperplane).

If the walk is in x′ let β∞x′ be the probability, knowing that the next step isn’t crossing
the trap, that the walk goes to infinity without going to the renewal hyperplane or the
trap. Similarly, let β0

x′ be the probability, knowing that the next step isn’t crossing the
trap, that the walk goes to the renewal hyperplane before it goes back to the trap (this
does not mean that the walk necessarily goes back to the trap). We will also define βx′

by βx′ := β∞x′ + β0
x′ . Similarly we will define βy′ , β∞y′ , β

0
y′ .

Now, if the walk is in x′, the probability that when the walk leaves the trap it either
never comes back to the trap or goes to the renewal hyperplane before it goes back to
the trap is:

εx′

εx′ + εy′ − εx′εy′
βx′ +

εy′(1− εx′)
εx′ + εy′ − εx′εy′

βy′ =
εx′βx′ + εy′(1− εx′)βy′

εx′ + εy′ − εx′εy′
.

Similarly, if the walk is in y′, this probability is:

εx′(1− εy′)βx′ + εy′βy′

εx′ + εy′ − εx′εy′
.

Now we want to show that that both these quantities are almost equal to:

εx′βx′ + εy′βy′

εx′ + εy′
.
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We will only show it for the first quantity, the proof is the same for the second one. We
recall that εx′ , εy′ ≤ 1

2 , therefore:

0 ≤ εx′εy′ ≤
1

2
(εx′ + εy′)

and

0 ≤ εx′εy′βy′ ≤
1

2
(εx′βx′ + εy′βy′).

So we get:

1

2

εx′βx′ + εy′βy′

εx′ + εy′
≤ εx′βx′ + εy′(1− εx′)βy′

εx′ + εy′ − εx′εy′
≤ 2

εx′βx′ + εy′βy′

εx′ + εy′
.

Similarly, if the walk is in x′, the probability that the walk goes to infinity knowing that
the walk either goes to infinity or the renewal hyperplane before coming to the trap is:

εx′β
∞
x′ + εy′(1− εx′)β∞y′
εx′ + εy′ − εx′εy′

εx′ + εyx′ − εx′εy′
εx′βx′ + εy′(1− εx′)βy′

=
εx′β

∞
x′ + εy′(1− εx′)β∞y′

εx′βx′ + εy′(1− εx′)βy′
.

And if it is in y′ this probability is:

εx′(1− εy′)β∞x′ + εy′β
∞
y′

εx′(1− εy′)βx′ + εy′βy′
.

We want to show that both these probabilities are almost equal to
εx′β

∞
x′+εy′β

∞
y′

εx′βx′+εy′βy′
. We will

only show it for the first one:

εx′β
∞
x′ + εy′(1− εx′)β∞y′

εx′βx′ + εy′(1− εx′)βy′
≤

εx′β
∞
x′ + εy′β

∞
y′

εx′βx′ + εy′(1− εx′)βy′

≤ 1

(1− εx)

εx′β
∞
x′ + εy′β

∞
y′

εx′βx′ + εy′βy′

≤2
εx′β

∞
x′ + εy′β

∞
y′

εx′βx′ + εy′βy′
.

And we also get, the same way:

εx′β
∞
x′ + εy′(1− εx′)β∞y′

εx′βx′ + εy′(1− εx′)βy′
≥ 1

2

εx′β
∞
x′ + εy′β

∞
y′

εx′βx′ + εy′βy′
.

Now we get back to the trap {x, y}. Let N be the number of times the walk leaves the
trap {x, y} before going to the renewal hyperplane (so if the walk never goes to the
renewal hyperplane, N is just the number of times the walk leaves the trap {x, y}). We
get that knowing εx, εy and N , the probability (for Pω0 ) that the walk never goes to the

renewal hyperplane is between 1
2

εxβ
∞
x +εyβ

∞
y

εxβx+εyβy
and 2

εxβ
∞
x +εyβ

∞
y

εxβx+εyβy
.

We also have that there exist two geometric random variablesN− andN+ respectively
of parameter 1− 1

2
εxβx+εyβy
εx+εy

and 1− 2
εxβx+εyβy
εx+εy

such that Pω0 almost surely:

1 +N− ≤ N ≤ 1 +N+.

Therefore, by equations (2.4), (2.5), (2.6) and (2.7) there exist two positive constants C1

and C2 (that depend on γ and Φ) such that for f equal to either x 7→ xγ or Φ:

C1f

(
εx + εy

εxβx + εyβy

)
≤ EPω0

(f(N)) ≤ C2f

(
εx + εy

εxβx + εyβy

)
. (2.8)

Now let f be either x 7→ xγ or Φ. We need to show that N is almost independent from
1τ2=t. Let txy be the first time the walk is in x or y and let B be the event that “τ2 can be
equal to t” ie there exists t′ < t (t′ plays the role of τ1) such that:
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– ∀i < t′, Xi · e1 < Xt′ · e1,

– ∀i ∈ Jt′, t− 1K, Xt′ · e1 ≤ Xi · e1 < Xt · e1,

– ∀i ∈ Jt, txyK, Xi · e1 ≥ Xt · e1,

– ∀i ∈ J0, t′−1K∪ Jt′+ 1, t−1K, (∃j < i, Xj · e1 ≥ Xi · e1) or (∃j ∈ Ji+ 1, t−1KXj · e1 <

Xi · e1).

We have that if B isn’t true then τ2 cannot be equal to t. If B is true then τ2 = t iff the
walk never crosses the renewal hyperplane after time txy. So, for any environment ω:

1

2

εxβ
∞
x + εyβ

∞
y

εxβx + εyβy
Pω0 (B) ≤ Pω0 (τ2 = t|N) ≤ 2

εxβ
∞
x + εyβ

∞
y

εxβx + εyβy
Pω0 (B) (2.9)

To simplify notations we will write

h(k) :=
(1 + k)β∞x + (1− k)β∞y
(1 + k)βx + (1− k)βy

.

We have (in the following, the constant C will depend on the line):

EP0

(
f(N)1εx+εy≤ 1

A
1τ2=t

)
≤2EP0

(
f(N)

εxβ
∞
x + εyβ

∞
y

εxβx + εyβy
1εx+εy≤ 1

A

)
by (2.9)

≤CEP0

(
f

(
εx + εy

εxβx + εyβy

)
1εx+εy≤ 1

A

εxβ
∞
x + εyβ

∞
y

εxβx + εyβy

)
by (2.8).

Now we use the fact that the various β only depend on {x, y} being a trap, the trajectory
of the walk up to the time it encounters the nth trap in the direction j after time t, the
transition probabilities (ω(z1, z2))z1∈Zd\{x,y} and the renormalized transition probabilities

( ω(x,z)
1−ω(x,y) )z 6=y, (

ω(y,z)
1−ω(y,x) )z 6=x. But the law of (ω(x, y), ω(x, y)) is independent of this so we

get:

EP0

(
f(N)1εx+εy≤ 1

A
1τ2=t

)
≤CEP0

( 1
2A∫

r=0

1∫
k=−1

f

(
r

r(1+k)βx + r(1−k)βy

)
2Ch(r, k)rκj−1(1−k)αy (1+k)αxh(k)dkdr

)

≤CEP0


1

2A∫
r=0

rκj−1dr

1∫
k=−1

f

(
1

(1 + k)βx + (1− k)βy

)
(1− k)αy (1 + k)αxh(k)dk


=C

(
2

A

)κj
EP0

( 1
4∫

r=0

rκj−1dr

1∫
k=−1

f

(
1

(1 + k)βx + (1− k)βy

)
(1− k)αy (1 + k)αxh(k)dk

)

≤ C

Aκj
EP0

( 1
4∫

r=0

1∫
k=−1

f

(
r

r(1+k)βx + r(1−k)βy

)
2Ch(r, k)rκj−1(1−k)αy (1+k)αxh(k)dkdr

)

≤ C

Aκj
EP0

(
f(N)1εx+εy≤ 1

2

εxβ
∞
x + εyβ

∞
y

εxβx + εyβy

)
≤ C

Aκj
EP0

(
f(N)1εx+εy<

1
2
1τ2=t

)
.

Then, by summing on all t we get the result.
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2.4 The time the walk spends in traps

Now that we have some independence, we can start to look at the precise behaviour
of the time spent in the traps. First we want to show that the number of times the walk
enters a trap times the strength of said trap is a good approximation of the total time
spent in this trap.

Lemma 2.21. Let j ∈ J1, dK be a direction. Now let {xji , y
j
i } be the ith trap in the direction

j entered after time τ2 and such that xji · e1, y
j
i · e1 ≥ Yτ2 · e1. Let sji be the strength of this

trap, N j
i the number of times the walk enters this trap and `ji = #{n, Yn ∈ {xji , y

j
i }} the

time spent in the trap. We have for any environment ω, for any A,B ≥ 0, for any integer
m and for any C ∈ R+ ∪ {∞}:

Pω0

(
n∑
i=1

`ji1Nji≥m
1sji≤C

≥ A and
n∑
i=1

N j
i 1Nji≥m

sji1sji≤C
≤ B

)
≤ 5B

A
.

Proof. Let ω be an environment, (Ỹi)i∈N be the partially forgotten walk on this environ-
ment. Let pji = ω(xji , y

j
i )ω(yji , x

j
i ). Now the number of back and forths inside the trap

(xji , y
j
i ) during its kth visit is equal to Hj

i,k where Hj
i,k is a geometric random variable of

parameter 1− pji . Knowing the partially-forgotten walk and pji , the Hj
i,k are independent

and we get for any j:

EPω0

 n∑
i=1

1Nji≥m
1sji≤C

Nji∑
k=1

2Hj
i,k|Ỹ

 =

n∑
i=1

1Nji≥m
1sji≤C

Nji∑
k=1

2
pji

1− pji

≤2

n∑
i=1

1Nji≥m
1sji≤C

N j
i

1

1− pji
.

Now we use the fact that ω(xji , y
j
i ) ≥ 1

2 to show that 1− pji ≥ 1

2sji
:

1− pji =1− (1− (1− ω(xji , y
j
i )))(1− (1− ω(yji , x

j
i ))

=(1− ω(xji , y
j
i )) + (1− ω(yji , x

j
i ))− (1− ω(xji , y

j
i ))(1− ω(yji , x

j
i ))

≥(1− ω(xji , y
j
i )) + (1− ω(yji , x

j
i ))−

1

2
(1− ω(yji , x

j
i ))

≥ (1− ω(xji , y
j
i )) + (1− ω(yji , x

j
i ))

2

=
1

2sji
.

So we get:

EPω0

 n∑
i=1

1Nji≥m
1sji≤C

Nji∑
k=1

2Hj
i,k|Ỹ

 ≤ 4

n∑
i=1

N j
i 1Nji≥m

sji1sji≤C
.

The actual value of `ji can be slightly larger than
∑Nji
k=1 2Hj

i,k because this only counts
the back and forths, so we miss the correct amount by 1 every time the walk crosses
the trap an even number of times and by 2 every time the walk crosses the trap an odd
number of times. So we get that the time `ji the walk spends in the ith trap is smaller

than 2N j
i +

∑Nji
j=1 2Hj

i,k. For any positive constants A,B > 0, let En(B) be the event
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∑n
i=1N

j
i 1Nji≥m

1sji≤C
sji ≤ B, we have:

Pω0

(
n∑
i=1

`ji1Nji≥m
1sji≤C

≥ A and
∑

N j
i 1sji≤C

1Nji≥m
sji ≤ B

)

=EPω0

(
Pω0

(
n∑
i=1

`ji1sji≤C
1Nji≥m

≥ A|Ỹ

)
1En(B)

)

≤EPω0


n∑
i=1

N j
i 1Nji≥m

1sji≤C
(4sji + 2)

A
1En(B)



≤EPω0


n∑
i=1

5N j
i 1Nji≥m

sji1sji≤C

A
1En(B)

 since sji > 2

≤EPω0

(
5B

A
1En(B)

)
≤ 5B

A
.

Now we want to show that we can neglect the time spent in traps in directions j
such that κj 6= κ and in traps that are visited a lot of times. This will allow us to have
traps that are rather similar so that the time spent in those traps are almost identically
distributed.

Lemma 2.22. Let j ∈ J1, dK be an integer that represents the direction of the trap we
will consider. Let {xi, yi} be the ith trap in the direction j visited by the walk after time
τ2 and such that xi · e1 ≥ Yτ2 · e1 and yi · e1 ≥ Yτ2 · e1. Let κj = 2α− αj − αj+d ≥ κ.

If κ < 1 there are two cases: If κj = κ, for any ε > 0 there exists an integer mε such
that for n large enough:

P0

(
n∑
i=1

`ji1Nji≥mε
≥ εn 1

κ

)
≤ ε.

If κj > κ, for any ε > 0, for n large enough:

P0

(
n∑
i=1

`ji ≥ εn
1
κ

)
≤ ε.

If κ = 1 there are two cases: If κj = κ, for any ε > 0 there exists an integer mε such that
for n large enough:

P0

(
n∑
i=1

`ji1Nji≥mε
≥ εn log(n)

)
≤ ε.

If κj > 1, for any ε > 0, for n large enough:

P0

(
n∑
i=1

`ji ≥ εn log(n)

)
≤ ε.

Proof. For all i ≥ 0 let ti be the time at which the walk Y enters its ith trap ({xi, yi})
in the direction j after τ2 and such that xi · e1 ≥ Yτ2 · e1 and yi · e1 ≥ Yτ2 · e1. We will
write xi the vertex such that xi = Yti . Let sji be the strength of the trap {xji , y

j
i }. For any
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A,B > 0:

P0(∃i ≤ n, sji ≥ A and N j
i ≥ B) ≤ P0

((
n∑
i=1

N j
i 1sji≥A

)κ
≥ Bκ

)

≤ P0

(
n∑
i=1

(N j
i )κ1sji≥A

≥ Bκ
)

≤ 1

Bκ
EP0

(
n∑
i=1

(N j
i )κ1sji≥A

)

≤ c

Bκ
1

Aκj
EP0

(
n∑
i=1

(N j
i )κ

)
by Lemma 2.20

≤ c

Bκ
1

Aκj
Cn by Lemma 2.19. (2.10)

We will first look at the case κ < 1.
Now, we want to show that we can neglect traps with a high N j

i or a low sji . We get
that for any positive integer M , any real A ≥ 2 and any β ∈ [κ, 1] and η > 0 such that

β + η ≤ min
(
κ+κ′

2 , 1
)

:

P0

(
n∑
i=1

N j
i s
j
i1sji<A

1Nji≥M
≥ (an)

1
κ

)

≤P0

(
n∑
i=1

(N j
i )β(sji )

β1sji<A
1Nji≥M

≥ (an)
β
κ

)

≤(an)−
β
κEP0

(
n∑
i=1

(N j
i )β(sji )

β1sji<A
1Nji≥M

)

≤(an)−
β
κM−ηEP0

(
n∑
i=1

(N j
i )β+η(sji )

β1sji<A

)

≤(an)−
β
κM−ηEP0

 Aβ∫
t=0

n∑
i=1

(N j
i )β+η1(sji )

β≥tdt


≤(an)−

β
κM−η

n∑
i=1

Aβ∫
t=0

EP0

(
(N j

i )β+η1(sji )
β≥t

)
dt

≤(an)−
β
κM−η

n∑
i=1

2EP0

(
(N j

i )β+η
)

+

Aβ∫
t=2β

EP0

(
(N j

i )β+η1
si≥t

1
β

)
dt

 .

By Lemma 2.20, there exists a constant c such that EP0

(
(N j

i )β+η1
sji≥t

1
β

)
≤

EP0

(
(N j

i )β+η
)
ct−

κ
β , for t ≥ 2β so:

P0

(
n∑
i=1

N j
i s
j
i1sji<A

1Nji≥M
≥ (an)

1
κ

)

≤(an)−
β
κM−η

n∑
i=1

2EP0((N j
i )β+η) + EP0

(
(N j

i )β+η
) Aβ∫
t=2β

ct−
κ
β dt

 (2.11)
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≤(an)−
β
κM−η

n∑
i=1

2 + c

Aβ∫
t=2β

t−
κ
β dt

EP0
((N j

i )β+η)

≤dn(an)−
β
κM−η

2 + c

Aβ∫
t=2β

t−
κ
β dt

 by Lemma 2.19.

Now for κj = κ if we take β ∈ (κ, 1] such that β < κ+κ′

2 , η = 0 and A = bn
1
κ we get:

P0

(
n∑
i=1

N j
i s
j
i1sji<bn

1
κ

1Nji≥M
≥ (an)

1
κ

)
≤d
a
n1− βκ

(
2 +

βc

β − κ

(
bn

1
κ

)β−κ)
≤d
a
n1− βκ

(
2 +

βc

β − κ
bβ−κn

β−κ
κ

)
=2

d

a
n1− βκ +

d

a

βc

β − κ
bβ−κ.

(2.12)

Now, we get by Lemma 2.21 that for any positive constants A,B and any positive
integer m:

P0

(
n∑
i=1

`ji1Nji≥m
≥ A

)

≤P0

(
n∑
i=1

`ji1Nji≥m
≥ A and

n∑
i=1

N j
i 1Nji≥m

sji ≤ B

)
+ P0

(
n∑
i=1

N j
i 1Nji≥m

sji ≥ B

)

≤5B

A
+ P0

(
n∑
i=1

N j
i 1Nji≥m

sji ≥ B

)
.

(2.13)

So for any ε > 0, for any a > 0, by taking B = ε2n
1
κ and A = εn

1
κ in (2.13), we have for

any positive integer m:

P0

(
n∑
i=1

`ji1Nji≥m
≥ εn 1

κ

)
≤ 5ε+ P0

(
n∑
i=1

N j
i 1Nji≥m

sji ≥ ε
2n

1
κ

)
.

And we have for any b > 0:

P0

(
n∑
i=1

N j
i 1Nji≥m

sji ≥ ε
2n

1
κ

)

≤P0

(
n∑
i=1

N j
i 1Nji≥m

sji1sji≤bn
1
κ
≥ ε2n

1
κ

)
+ P0

(
∃i ≤ n,N j

i ≥ m and sji ≥ bn
1
κ

)
.

We have by (2.10):

P0

(
∃i ≤ n,N j

i ≥ m and sji ≥ bn
1
κ

)
≤ cdn

(mb)κn
=

cd

(mb)κ
.

And by (2.12), taking b = ε
2κ+1
β−κ :

P0

(
n∑
i=1

N j
i 1Nji≥m

sji1
sji≤ε

2κ+1
β−κ n

1
κ
≥ ε2n

1
κ

)
≤ d

ε2κ

(
2n1− βκ +

βc

β − κ
ε

2κ+1
β−κ (β−κ)

)
=

d

ε2κ

(
2n1− βκ +

βc

β − κ
ε2κ+1

)
.
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So for n large enough:

P0

(
n∑
i=1

N j
i 1Nji≥m

sji1
sji≤ε

2κ+1
β−κ n

1
κ
≥ ε2n

1
κ

)
≤ 2dβc

β − κ
ε

which means that for n large enough and mε such that mεε
2κ+1
β−κ ≥ ε− 1

κ we have:

P0

(
n∑
i=1

`ji1Nji≥mε
≥ εn 1

κ

)
≤ 5ε+ cdε+

2dβc

β − κ
ε.

And we have the result we want.
If κj > κ there exists β ∈ (κ, κj) such that β ≤ 1 and β ≤ κ+κ′

2 we get by taking M = 1

and A =∞ in (2.11):

P0

(
n∑
i=1

N j
i s
j
i ≥ (an)

1
κ

)
≤da−

β
κn1− βκ

2 +

∞∫
t=2

t−
κj
β dt


=da−

β
κn1− βκ

(
2 +

β

κj − β
21−

κj
β

)
=Ca−

β
κn1− βκ for some constant C.

And then Lemma 2.21 gives us the result we want.
Now we can look at the case κ = 1.
Let φ be a positive concave function such that φ(t) goes to infinity when t goes to

infinity. We define Φ by Φ(x) :=
∫ x
t=0

φ (t) dt. Let f be defined by f(0) := φ(0) > 0 and

∀x > 0, f(x) := Φ(x)
x . As φ is concave and goes to infinity, it is increasing. As φ is positive

and increasing, it follows that f is increasing. We choose φ such that EP0(Φ(N j
i )) <∞

which is possible by Lemma 2.19. We get that for any positive integer M and any real
A ≥ 2:

P0

(
n∑
i=1

N j
i s
j
i1sji<A

1Nji≥M
≥ an log(n)

)

≤ 1

an log(n)
EP0

(
n∑
i=1

N j
i s
j
i1sji<A

1Nji≥M

)

≤ 1

an log(n)f(M)
EP0

(
n∑
i=1

N j
i f(N j

i )sji1sji<A

)

≤ 1

an log(n)f(M)

n∑
i=1

A∫
t=0

EP0

(
Φ(N j

i )1sji≥t

)
dt

≤ 1

an log(n)f(M)

n∑
i=1

2EP0(Φ(N j
i )) +

A∫
t=2

EP0

(
Φ(N j

i )1sji≥t

)
dt

 .

Now, by Lemma 2.20 we get:

P0

(
n∑
i=1

N j
i s
j
i1sji<A

1Nji≥M
≥ an log(n)

)

≤ 1

an log(n)f(M)

n∑
i=1

2EP0(Φ(N j
i )) + EP0

(
Φ(N j

i )
) A∫
t=2

ct−κjdt


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≤ 1

an log(n)f(M)

n∑
i=1

2 + c

A∫
t=2

t−κjdt

EP0
(Φ(N j

i ))

≤ dn

an log(n)f(M)

2 + c

A∫
t=2

t−κjdt

 by definition of φ. (2.14)

If κj = 1, we get, by taking A = n2 (for n ≥ 2) in (2.14):

P0

(
n∑
i=1

N j
i s
j
i1sji≤A

1Nji≥M
≥ an log(n)

)
≤ d

a log(n)f(M)
(2 + 2c log(n)) ≤ C

af(M)
.

And by taking A = n2 and B = 1 in equation (2.10) we have for some constant c:

P0

(
∃i ≤ n, sji ≥ n

2
)
≤ c

n
.

So for any ε > 0 we get, by taking mε such that f(mε) ≥ 1
ε3 and using Lemma 2.21:

P0

(
n∑
i=1

`ji1Nji≥mε
≥ εn log(n)

)
≤5ε+ P0

(
n∑
i=1

N j
i s
j
i1Nji≥M

≥ ε2n log(n)

)
≤5ε+

c

n
+ Cε.

So there exists a constant C such that for any ε > 0 there exists mε such that:

P0

(
n∑
i=1

`ji1`ji≥mε
≥ εn log(n)

)
≤ Cε.

If κj > 1, we take M = 0 and A =∞ in (2.14) we get for some constant C:

P0

(
n∑
i=1

N j
i s
j
i ≥ an log(n)

)
≤ d

a log(n)f(0)

2 + c

∞∫
t=2

t−κjdt

 =
C

a log(n)
.

And therefore by Lemma 2.21, for any ε > 0

P0

(
n∑
i=1

`ji ≥ εn log(n)

)
≤5ε+ P0

(
n∑
i=1

N j
i s
j
i ≥ ε

2n log(n)

)

≤5ε+
C

ε2 log(n)
.

So we have the result we want

Now we have all the tools to get a first limit theorem on the time spent in traps.

Lemma 2.23. Set α ∈ (0,∞)2d and let α :=
∑2d
i=1 αi. Let J = {j ∈ J1, dK, 2α − αj −

αj+d = κ} and T̃j be the set of vertices x such that there exists j ∈ J such that either
(x, x+ej) ∈ T or (x, x−ej) ∈ T . Let {xji , y

j
i } be the ith trap in the direction j encountered

after time τ2.
For κ < 1, for any m there exists a constant Cm such that:

n−
1
κ

∑
j∈J

∑
i≥0

`ji1Nji≤m
1∃k≤τn+1−1,Yk∈{xji ,y

j
i }
−−−−→
n→∞

CmSκ1 in law for P0.

For κ = 1, for any m there exists a constant Cm > 0 such that:

1

n log(n)

∑
j∈J

∑
i≥0

`ji1Nji≤m
1∃k≤τn+1−1,Yk∈{xji ,y

j
i }
−−−−→
n→∞

Cm in probability for P0.
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Proof. For every configuration p ∈
⋃
n≥1 In (In is defined in 2.16) let Cp be the expecta-

tion of the number of traps of configuration p encountered between times τ2 and τ3 − 1

(it is also the expectation of the number of traps of configuration p encountered between
times τi and τi+1 − 1 for any i ≥ 2). We clearly have:

Cp ≤ EP0

∑
x∈Zd

1∃i∈[τ2,τ3−1],Yi=x

 <∞.

Once we know that a trap is in a direction j ∈ J and has a configuration p for some
partially forgotten random walk, the exact number of back and forths the walk does
in this trap is still random, because the exact number of back and forths knowing the
transition probabilities of the trap is random and because the transition probabilities of
the trap are still random, following the law (cf Lemma 2.17):

Dpr
κ−1(1 + k)px(1− k)pyh(r(1 + k), r(1− k))1r≤ 1

4
drdk,

where r(1 + k) = 1− ω(x, y), r(1− k) = 1− ω(y, x) and the value of px, py are explicit but
irrelevant. Let N be such that p ∈ IN (ie the walk exits the trap N times) we also have
that there exists a constant Cα that only depends on α such that:

| log(h(r(1 + k), r(1− k)))| ≤ CαNr.

The number of back and forths is the sum of N iid geometric random variables (H1, . . . ,

HN ) of parameter 1 − q with q = ω(x, y)ω(y, x) = 1 − 2r + r2(1 − k2). This gives us the
following bound:

P

(
N∑
i=1

Hi ≥ a|q

)
≤ NP

(
H1 ≥

a

N
|q
)

≤ N(1− q)q aN

≤ N exp
(

log(1− 2r + r2(1− k2))
a

N

)
≤ N exp

(
(−2r + r2)

a

N

)
.

For r ∈
[

2κn log(a)
a , 1

2

]
we have −2r + r2 ≤ −r and

N exp
(

(−2r + r2)
a

N

)
≤ N exp

(
−r a

N

)
≤ N exp

(
−2κN log(a)

a

a

N

)
= Na−2κ.

Now let `− be equal to twice the number of back and forths: `− := 2
∑N
i=1Hi. Now we

look at P
(
`− ≥ a and r ≤ 2κN log(a)

a

)
, we want to show that it is equivalent to Ca−κ for

some constant C. First we want to have a good approximation of P
(

2
∑N
i=1Hi ≥ a|q

)
for

large q. Now let H̃1, . . . , H̃n be iid exponential random variables of parameter − log(q)

such that for every i, Hi = bH̃ic. And we define ˜̀− = 2
∑n
i=1 H̃i. Now it is easy to show

by induction on n that:

P0

(
˜̀− ≥ 2a|q

)
=

N−1∑
j=0

(−a log(q))j

j!
exp(log(q)a).
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Now we clearly have:

`− ≤ ˜̀− ≤ `− + 2N

so

P0

(
`− ≥ a|q

)
≤ P0

(
˜̀− ≥ a|q

)
and

P0

(
`− ≥ a|q

)
≥ P0

(
˜̀− ≥ a− 2N |q

)
.

We want to show that P
(

˜̀− ≥ a|q
)

and P
(

˜̀− ≥ a− 2N |q
)

are more or less equal. We

clearly have:

P0

(
˜̀− ≥ a− 2N |q

)
≤ P0

(
˜̀− ≥ a|q

)
and we also have:

P0

(
˜̀− ≥ 2a− 2N |q

)
=

N−1∑
j=0

(−a log(p))j

j!

(
1− N

a

)j
exp(log(q)a) exp(− log(p)N)

≥ exp(− log(q)N)

(
1− N

a

)N N−1∑
j=0

(−a log(q))j

j!
exp(log(q)a).

First we want to show that we can replace log(q) by−2r. We clearly have log(q) ≤ −2r+r2.
We also have log(q) ≥ log(1− 2r) and for r ∈ [0, 1

4 ], there exists a constant C that does
not depend on r such that log(1− 2r) ≥ −2r − Cr2. So we get:

2r − r2 ≤ − log(q) ≤ 2r + Cr2.

So

exp(−2ar) exp(−Car2) ≤ exp(a log(q)) ≤ exp(−2ar) exp(ar2).

So we get:

∀j, (−a log(q))j

j!
exp(log(q)a) ≤ (2ar)j

j!
exp(−2ar)

(
1 +

Cr

2

)j
exp(ar2)

and
(−a log(q))j

j!
exp(log(q)a) ≥ (2ar)j

j!
exp(−2ar)

(
1− r

2

)j
exp(−Car2).

Now we will define g+(a, r) and g−(a, r) by:

g+(a, r) =

(
1 +

Cr

2

)j
exp(ar2) exp (rCαN)

g−(a, r) =
(

1− r

2

)j
exp(−Car2) exp (−rCαN) exp(

(
2r − r2

)
N)

(
1− N

a

)N
,

where C is the same constant as in the previous inequality and Cα is the same as in (2.4).
And for every r ≤ 1

4 , k ∈ [−1, 1] we have:

(−a log(q))j

j!
exp(log(q)a)h(r(1− k), r(1 + k)) ≤ (2ar)j

j!
exp(−2ar)g+(a, r)

and
(−a log(q))j

j!
h(r(1− k), r(1 + k)) exp(log(q)a) ≥ (2ar)j

j!
exp(−2ar)g−(a, r).
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We clearly have that g+(a, r) is increasing in r while g−(a, r) is decreasing in r and

g+(a, 0) = 1 and g−(a, 0) =
(
1− N

a

)N
.

So, for any c > 0, we have the following 2 inequalities:

P0(`− ≥ 2a and 1− q ≤ c)

≤P0(˜̀− ≥ 2a and 1− q ≤ c)

≤P0(˜̀− ≥ 2a and r ≤ c) since 1− q ≥ 2r − r2 ≥ r

=

c∫
r=0

1∫
k=−1

Dpr
κ−1(1 + k)px(1− k)pyh(r(1 + k), r(1− k))P0(˜̀− ≥ 2a|q)dkdr

≤
c∫

r=0

1∫
k=−1

Dpr
κ−1(1 + k)px(1− k)py

N−1∑
j=0

(2ar)j

j!
exp(−2ar)g+(a, r)dkdr

≤g+(a, c)

1∫
k=−1

(1 + k)px(1− k)pydk

c∫
r=0

Dpr
κ−1

N−1∑
j=0

(2ar)j

j!
exp(−2ar)dr,

and

P0(`− ≥ 2a and 1− q ≤ c)

≥P0(˜̀− ≥ 2a− 2N and 1− q ≤ c)

≥P0(˜̀− ≥ 2a− 2N and 2r ≤ c) since 1− q ≤ 2r

=

c
2∫

r=0

1∫
k=−1

Dpr
κ−1(1 + k)px(1− k)pyh(r(1 + k), r(1− k))P0(˜̀− ≥ 2a− 2N |q)dkdr

≥

c
2∫

r=0

1∫
k=−1

Dpr
κ−1(1 + k)px(1− k)py

N−1∑
j=0

(a2r)j

j!
exp(−2ar)g−(a, r)dkdr

≥g−
(
a,
c

2

) 1∫
k=−1

(1 + k)px(1− k)pydk

c
2∫

r=0

Dpr
κ−1

N−1∑
j=0

(a2r)j

j!
exp(−2ar)dr.

If we take c = a−
3
4 we clearly get that when a→∞, g−(a, a−

3
4 )→ 1 and g+(a, a−

3
4 )→ 1.

Furthermore, for any constant c′:

c′a−
3
4∫

r=0

Dpr
κ−1

N−1∑
j=0

(a2r)j

j!
exp(−2ar)dr

=(2a)−κ
2c′a

1
4∫

r=0

DpCr
κ−1

N−1∑
j=0

rj

j!
exp(−r)dr

∼(2a)−κDp

N−1∑
j=0

Γ(j + κ)

j!

=(2a)−κD′p for some constant D′p that only depends on the configuration p.

Therefore we get:

P0(`− ≥ 2a and 1− q ≤ a− 3
4 ) ∼ D′p

 1∫
k=−1

(1 + k)px(1− k)pydk

 (2a)−κ.
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So there exists a constant Dp,α that only depends on α and p such that:

P0(`− ≥ 2a and 1− q ≤ a− 3
4 ) ∼ Dp,α(2a)−κ.

And thus:
P0(`− ≥ a) ∼ Dp,αa

−κ.

Now let ` be the total time spent in the trap. It is equal to `− plus the number of times
the walk enters and exits the trap by the same vertex plus twice the number of times the
walk enters and exits the trap by different vertices. This means there exists a constant
δp that only depends on the configuration such that ` = `− + δp. This, in turn, means that
we have also the asymptotic equality:

P0(` ≥ a) ∼ Dp,αa
−κ.

Now, let `pi be the time spent in the ith trap with configuration p.
First, if κ < 1, by Theorem 3.7.2 of [11] we get that for some constant cp:

n−
1
κ

n∑
i=1

`pi −−−−→n→∞
cpSκ1 in law for P0.

Now we use the fact that the number of traps of configuration p between two renewal
times has a finite expectation Cp to show that we have the convergence we want. Let
Mn,p be the number of traps of configuration p the walk has entered before the nth

renewal time. For any ε > 0 and any p we have:

P0(Mn,p ∈ [(Cp − ε)n, (Cp + ε)n]) −−−−→
n→∞

1.

Therefore for any configuration p:

n−
1
κ

(Cp+ε)n∑
i=(Cp−ε)n

`pi −−−−→n→∞
(2ε)

1
κ cpSκ in law for P0.

And for any m ∈ N:

n−
1
κ

∑
p∈Im

(Cp+ε)n∑
i=(Cp−ε)n

`pi −−−−→n→∞
(2ε)

1
κ

∑
p∈Im

(cp)
κ

 1
κ

Sκ in law for P0.

We write Im(J) all the configuration of Im that are in a direction j ∈ J . Now, using the
fact that the `ip are non negative, for any n ∈ N and any ε > 0 small enough, we have:

P0

n− 1
κ

∣∣∣∣∣∣
∑

p∈Im(J)

Mn,p∑
i=1

`pi −
∑
p

Cpn∑
i=1

`ip

∣∣∣∣∣∣ ≥ η


≤P0(∃p ∈ Im(J), Nn,p 6∈ [(Cp − ε)n, (Cp + ε)n]) + P

n− 1
κ

∑
p∈Im(J)

(Cp+ε)n∑
i=(Cp−ε)n

`pi ≥ η


=o(1) + P0

(2ε)
1
κ

 ∑
p∈Im(J)

(cp)
κ

 1
κ

Sκ1 ≥ η

 .

Since it is true for all ε, we get that

n−
1
κ

∣∣∣∣∣∣
∑

p∈Im(J)

Mn,p∑
i=1

`pi −
∑

p∈Im(J)

Cpn∑
i=1

`ip

∣∣∣∣∣∣ −−−−→n→∞
0 in probability for P0.
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And since

n−
1
κ

∑
p∈Im(J)

Cpn∑
i=1

`pi −−−−→n→∞

 ∑
p∈Im(J)

(cp)
κ

 1
κ

Sκ1 in probability for P0,

we get:

n−
1
κ

∑
p∈Im(J)

Mn,p∑
i=1

`pi −−−−→n→∞

 ∑
p∈Im(J)

(cp)
κ

 1
κ

Sκ1 in law for P0

Now if κ = 1, we first want to show that we can neglect the values larger than n log(n).
Let p be a configuration, `pi the total time spent in the ith trap in the configuration p

encountered, Cp the constant such that the number of traps encountered before time
τn+1−1 is equivalent to Cpn, Mn,p the number of traps in the configuration p encountered
before the time τn+1 − 1 and cp the constant such that P0(`pi ≥ n) ∼ cpn−1. We get:

P0(∃i ≤Mn,p, `
p
i ≥ n log(n)) ≤P0(∃i ≤ 2Cpn, `

p
i ≥ n log(n)) + P0(Mn,p ≥ 2Cpn)

≤2Cpn
cp

n log(n)
+ o(1).

=o(1)

Now we can compute the expectation and variance of `pi ∧ n log(n):

EP0(`pi ∧ n log(n)) ∼
n log(n)∫
t=1

cp
t

dt

∼cp log(n).

Now for the variance we get:

VarP0(`pi ∧ n log(n)) ≤EP0((`pi ∧ n log(n))2)

∼
n log(n)∫
t=1

2t
cp
t

dt

∼2cpn log(n).

So for n large enough:
VarP0(`pi ∧ n log(n)) ≤ 4cpn log(n).

First, for any constant c, for n big enough:

P0

(∣∣∣∣∣
cn∑
i=1

`pi ∧ n log(n)− cncp log(n)

∣∣∣∣∣ ≥ εn log(n)

)

≤P0

(∣∣∣∣∣
cn∑
i=1

`pi ∧ n log(n)− cnE (`p1 ∧ n log(n))

∣∣∣∣∣ ≥ 1

2
εn log(n)

)
for n big enough, by (2.4)

≤cn4VarP0
(`p1 ∧ n log(n))

(εn log(n))2

≤cn16cpn log(n)

(εn log(n))2

=
16ccp
log(n)

= o(1)
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This means that we have the following results:

P0

(Cp+ε)n∑
i=1

`pi ∧ n log(n)− (Cp + ε)ncp log(n) ≥ εn log(n)

 −−−−→
n→∞

0

and

P0

(Cp−ε)n∑
i=1

`pi ∧ n log(n)− (Cp + ε)ncp log(n) ≤ −εn log(n)

 −−−−→
n→∞

0

Then, by definition of Cp we get, for any ε ≥ 0:

P0 (|M(n, p)− Cpn| ≥ εn) −−−−→
n→∞

0.

Then, using the fact that
∑n
i=1 `

p
i ∧ a is increasing in n for any a, we get:

P0

M(n,p)∑
i=1

`pi ≥ (Cp + ε)(cp + ε)n log(n)


≤P0(M(n, p) ≥ (Cp + ε)n) + P0

(Cp+ε)n∑
i=1

`pi ≥ (Cp + ε)(cp + ε)n log(n)


=o(1).

Similarly, we have:

P0

M(n,p)∑
i=1

`pi ≤ (Cp − ε)(cp − ε)n log(n)


≤P0(M(n, p) ≥ (Cp − ε)n) + P0

(Cp−ε)n∑
i=1

`pi ≥ (Cp − ε)(cp − ε)n log(n)


=o(1).

Therefore,

1

n log(n)

M(n,p)∑
i=1

`pi −−−−→n→∞
Cpcp in probability for P0.

Now we just have to sum on all configurations p ∈ Im that are in a direction j ∈ J to get
the result we want.

2.5 Only the time spent in traps matter

Now to properly show the result we want, we have to show that some quantities and
some events are negligible, this is what this section is devoted to.

Lemma 2.24. Let j be in [|1, d|]. Let {xji , y
j
i } be the ith trap visited by the walk in the

direction j after time τ2, sji its strength, `ji the time spent in this trap and N j
i the number

of times the walk enters the trap:

`ji =
∑
k≥0

1Yk∈{xji ,y
j
i }
,

N j
i =

∑
k≥0

1Yk∈{xi,yi} and Yk+1 6∈{xji ,y
j
i }
.
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Let κj = 2
∑2d
i=1 αi −αj −αj+d ≥ κ. Let M(n, j) be the number of traps in the direction j

encountered between times τ2 and τn − 1.
If κ < 1 and κj = κ, for any ε > 0 there exists ε′ > 0 such that for n large enough:

P0

M(n,j)∑
i=1

`ji1sji≤ε′n
1
κ
≥ εn 1

κ

 ≤ ε.
Proof. Let γ ∈

(
κ, κ+κ′

2

)
be such that γ ≤ 1. Let β be a positive real. Let {xji , y

j
i} be the

ith trap visited by the walk in the direction j after time τ2 such that {xji ·e1, y
j
i ·e1 ≥ Yτ2 ·e1.

Let sji be its strength `
j

i the time spent in this trap and N
j

i the number of times the trap
is visited.

By Lemma 2.2 the number of traps encountered between 2 renewal times has a
finite expectation and since the (M(2i + 1, j) − M(2i, j))i∈N∗ are iid and so are the
(M(2i+ 2, j)−M(2i+ 1, j))i∈N∗ , there exists a constant Cj such that P0 almost surely:

1

n
M(n, j) −−−−→

n→∞
Cj .

So for any ε > 0, for n large enough:

P0(M(n, j) ≥ 2Cjn) ≤ ε

4
.

We have for n large enough:

P0

M(n,j)∑
i=1

`ji1sji≤ε′n
1
κ
≥ εn 1

κ


≤P0

M(n,j)∑
i=1

`
j

i1sji≤ε′n
1
κ
≥ 1

2
εn

1
κ

+ P0

M(3,j)∑
i=1

`ji1si≤ε′n
1
κ
≥ 1

2
εn

1
κ


≤P0

M(n,j)∑
i=1

`
j

i1sji≤ε′n
1
κ
≥ 1

2
εn

1
κ

+ P0

(
τ3 ≥

1

2
εn

1
κ

)

≤P0

M(n,j)∑
i=1

`
j

i1sji≤ε′n
1
κ
≥ 1

2
εn

1
κ

+
ε

4
for n large enough

≤P0

2Cjn∑
i=1

`
j

i1sji≤ε′n
1
κ
≥ 1

2
εn

1
κ

+ 2
ε

4
for n large enough .

Then by Lemma 2.21 we have:

P0

2Cjn∑
i=1

`
j

i1sji≤ε′n
1
κ
≥ 1

2
εn

1
κ

 ≤ ε

4
+ P0

2Cjn∑
i=1

N
j

is
j
i1sji≤ε′n

1
κ
≥ ε2

40
n

1
κ

 .

And finally we have:

P0

2Cjn∑
i=1

N
j

is
j
i1sji≤ε′n

1
κ
≥ ε2

40
n

1
κ

 ≤P0

2Cjn∑
i=1

(N
j

i )
γ(sji )

γ1
sji≤βn

1
κ
≥
(
ε2

40
n

1
κ

)γ
≤
(
ε2

40
n

1
κ

)−γ
EP0

2Cjn∑
i=1

(N
j

i )
γ(sji )

γ1
sji≤βn

1
κ


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=

(
ε2

40
n

1
κ

)−γ 2Cjn∑
i=1

EP0

(
(N

j

i )
γ(sji )

γ1
sji≤βn

1
κ

)
.

Then by Lemma 2.20 we get, for some constant c that does not depend on β:(
ε2

40
n

1
κ

)−γ 2Cjn∑
i=1

EP0

(
(N

j

i )
γ(sji )

γ1
si≤βn

1
κ

)
≤c
(
ε2

40
n

1
κ

)−γ 2Cjn∑
i=1

EP0

(
(N

j

i )
γ
)(

ε′n
1
κ

)γ−κ
=c

(
ε2

40

)−γ
(ε′)

γ−κ
n−1

2Cjn∑
i=1

EP0

(
(N

j

i )
γ
)
.

And by Lemma 2.19 there exists a constant c that does not depend on β such that:(
ε2

40

)−γ
(ε′)

γ−κ
n−1

2Cjn∑
i=1

EP0

(
(N

j

i )
γ
)
≤ c

(
ε2

40

)−γ
(ε′)

γ−κ
.

So by taking β small enough we get the result we wanted.

Lemma 2.25. Let J = {j ∈ J1, dK, κj > κ}.
If κ = 1 there exists a constant C such that P0 almost surely:

1

n

τn−1∑
i=0

1Yi∈T̃J −−−−→n→∞
C.

If κ < 1 there exists a constant C > 0 and a constant γ ∈ (κ, 1] such that P0 almost surely,
for n large enough:

n−
1
γ

τn−1∑
k=0

1Yk∈T̃J ≤ C.

Proof. For any j ∈ J we define κj = 2
∑2d
i=1 αi − αj − αj+d > κ. Let {xji , y

j
i } be the ith

trap in the direction j the walk enters after time τ2 and such that xji · e1, y
j
i · e1 ≥ Yτ2 · e1.

Let N j
i be the number of times the walk exits {xji , y

j
i } and `ji the time the walk spends in

this trap. Let M(i, j) be the number of traps in the direction j entered before time τi.
The (M(2i+ 2, j)−M(2i+ 1, j))i∈N∗ are iid and so are the (M(2i+ 1, j)−M(2i, j))i∈N∗ ,
they also all have the same law (the only issue is that since a trap span over two vertices,
there might be a slight overlap between traps of two different ‘renewal slabs’). Now,
since the number of different vertices the walk encounters between two renewal times
has a finite expectation, the (M(i+1, j)−M(i, j)) have a finite expectation and therefore
there exists a constant Cj such that P0 almost surely:

M(n, j)− Cjn −−−−→
n→∞

−∞.

Now let Ỹ be the partially forgotten walk associated with Y . We get that knowing the
environment, the partially forgotten walk and the renewal position Yτ2 the time spend in
the {xji , y

j
i }, the kth time the walk enters this trap is equal to εji,k + 2Hj

i,k where εji,k is 1

if the walk enters the trap by the same vertex it leaves it and 2 otherwise and Hj
i,k is a

geometric random variable that counts the number of back and forths. The parameter of
Hj
i,k is 1− pji with pji := ω(xji , y

j
i )ω(yji , x

j
i ).

First, lets look at the case κ = 1. Since the
(∑τ2i+1−1

j=τ2i
1Yi∈T̃J

)
i∈N∗

are iid and so are

the
(∑τ2i+2−1

j=τ2i+1
1Yi∈T̃J

)
i∈N∗

, we just have to prove that their expectation is not infinite to
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have the result we want. If their expectation were infinite, then we would have that P0

almost surely:

1

n

∑
j∈J

M(n,j)∑
i=1

`ji −−−−→n→∞
∞.

Therefore we would have P0 almost surely:

1

n

∑
j∈J

Cjn∑
i=1

`ji −−−−→n→∞
∞.

But

EPω0

 1

n

∑
j∈J

Cjn∑
i=1

`ji |Ỹ

 =
1

n

∑
j∈J

Cjn∑
i=1

Nji∑
k=1

EPω0

(
εji,k + 2Hj

i,k|Ỹ
)

=
1

n

∑
j∈J

Cjn∑
i=1

Nji∑
k=1

(
εji,k + 2

pji
1− pji

)

≤2
1

n

∑
j∈J

Cjn∑
i=1

Nji∑
k=1

1

1− pji

≤C 1

n

∑
j∈J

nCj∑
i=1

N j
i s
j
i ,

where sji is the strength of the trap {xji , y
j
i }. Now we get:

EP0

 1

n

∑
j∈J

Cjn∑
i=1

`ji

 ≤ 1

n
EP0

C∑
j∈J

nCj∑
i=1

N j
i s
j
i


=C

1

n
EP0

∑
j∈J

nCj∑
i=1

N j
i

∞∫
t=0

1(sji )≥t
dt


≤C 1

n

∑
j∈J

nCj∑
i=1

EP0

N j
i

2 +

∞∫
t=2

1sji≥t
dt


≤C 1

n

∑
j∈J

nCj∑
i=1

(
2EP0

(N j
i ) + C

∫ ∞
t=2

EP0
(N j

i 1sji≥t
)dt

)
.

Now by Lemma 2.20 we know that there exists a constant C such that for any t ≥ 2:

EP0
(N j

i 1sji≥t
) ≤ Ct−κjEP0

(N j
i ).

So there exists a constant C ′ (the value of this constant will change depending on the
line) such that:

EP0

 1

n

∑
j∈J

Cjn∑
i=1

`ji

 ≤C ′ 1
n

∑
j∈J

nCj∑
i=1

EP0(N j
i )

≤C ′
∑
j∈J

Cj by Lemma 2.19

≤C ′.
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This means that we cannot have 1
n

∑
j∈J

∑Cjn
i=1 N

j
i −−−−→n→∞

∞ P0 almost surely. Therefore

the random variables
(∑τ2i+1−1

j=τ2i
1Yi∈T̃J

)
i∈N∗

have finite expectation and so have the

random variables
(∑τ2i+2−1

j=τ2i+1
1Yi∈T̃J

)
i∈N∗

. So we have the result we want.

If κ < 1, we will basically use the same method. First there exists γ ∈ (κ, 1] such that
γ < κ+κ′

2 and for every j ∈ J, γ < κj .
We have that:

lim supn−
1
γ

τn−1∑
k=0

1Yk∈T̃J = lim supn−
1
γ

n−1∑
i=2

τi+1−1∑
k=τi

1Yk∈T̃J .

And since: (
n−

1
γ

n∑
i=2

τi+1−1∑
k=τi

1Yk∈T̃J

)γ
≤ 1

n

∑
j∈J

n∑
i=1

(
τi+1−1∑
k=τi

1Yk∈T̃J

)γ
we also have:

lim supn−
1
γ

n∑
i=2

τi+1−1∑
k=τi

1Yk∈T̃J ≤

lim sup
1

n

n∑
i=2

(
τi+1−1∑
k=τi

1Yk∈T̃J

)γ 1
γ

.

Now, since the random variables
((∑τ2i−1

k=τ2i
1Yk∈T̃J

)γ)
i∈N∗

are iid and so are the random

variables
((∑τ2i+1−1

k=τ2i+1
1Yk∈T̃J

)γ)
i∈N∗

we have that there exists a constant C∞ ∈ [0,∞]

such that P0 almost surely:

1

n

n∑
i=2

(
τi−1∑
k=τi

1Yk∈T̃J

)γ
−−−−→
n→∞

C∞.

Now, by definition of the Cj and since (a+ b)γ ≤ aγ + bγ we have that if C∞ =∞ then P0

almost surely:

1

n

∑
j∈J

Cjn∑
i=1

(
N j
i

)γ
−−−−→
n→∞

∞.

However we have (using the same techniques and notations as in the case κ = 1):

EPω0

 1

n

∑
j∈J

Cjn∑
i=1

(`ji )
γ |Ỹ

 =
1

n

∑
j∈J

Cjn∑
i=1

EPω0

Nji∑
k=1

εji + 2Hj
i,k

γ

|Ỹ


≤ 1

n

∑
j∈J

Cjn∑
i=1

EPω0

Nji∑
k=1

εji + 2Hj
i,k|Ỹ

γ

≤ 1

n

∑
j∈J

Cjn∑
i=1

(
N j
i

2

pji

)γ

≤C 1

n

∑
j∈J

Cjn∑
i=1

(
N j
i s
j
i

)γ
.

Now by the same method as the one for κ = 1, by using Lemma 2.20 and Lemma 2.19
we get:

EP0

 1

n

∑
j∈J

Cjn∑
i=1

(`ji )
γ

 ≤ C.
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This means that C∞ <∞ and therefore:

lim supn−
1
γ

τn−1∑
k=0

1Yk∈T̃J ≤ (C∞)
1
γ <∞.

Lemma 2.26. Let Ai1,i2ε,n (i) be the event that the walk visits at least two trap of strength

at least εn
1
κ between times τi and τi+i1 − 1 and that it enters these traps at most i2 times.

We have that for any i1, i2 ≥ 1:

P0

 ⋃
2≤i≤n

Ai1,i2ε,n (i)

 −−−−→
n→∞

0.

Proof. Let α :=
∑2d
i=1 αi. Let M(i) be the number of traps visited before time τi. We

know by Lemma 2.2 that the number M(i+ i1)−M(i) of traps visited between times τi
and τi+i1 − 1 has a finite expectation (for P0) and by Proposition 1.2 the ((M(2i+ 2)−
M(2i+ 1))i≥1 are iid and so are the (M(2i+ 1)−M(2i))i≥1. This means that there is a
positive constant C such that P0 almost surely:

1

n
M(n) −−−−→

n→∞
C.

Now let M i2(i) be the number of traps visited at most i2 times before time τi. We know
that:

P0(M i2(n+ i1) ≥ 2Cn) −−−−→
n→∞

0.

Now, for any η > 0 we have:

P0 (∃i ≤ n,M(i+ i1)−M(i) ≥ ηn)

≤
∑
i≤n

P0 (M(i+ i1)−M(i) ≥ ηn)

=o(1) +
∑

2≤i≤n

P0 (M(i+ i1)−M(i) ≥ ηn)

=o(1) + (n− 1)P0 (M(2 + i1)−M(2) ≥ ηn)

=o(1) since M(2 + i1)−M(2) has a finite expectation.

Now let Ai be the event “the ith trap visited by the walk is of strength at least εn
1
κ and

that the walk enters this trap at most i2 times”. We have:

P0 (∃i ≤ 2Cn,∃j ≤ ηn,Ai and Ai+j)

≤P0

(
∃i ≤ 2C

η
,∃j1, j2 ∈ Jiηn, iηn+ 2ηnK, j1 6= j2 and Aj1 and Aj2

)

≤

2C
η∑
i=0

P0 (∃j1, j2 ∈ Jiηn, iηn+ 2ηnK, j1 6= j2 and Aj1 and Aj2)

≤

2C
η∑
i=0

iηn+2ηn∑
j1=iηn

iηn+2ηn∑
j2=iηn

P0 (Aj1 and Aj2) 1j1 6=j2 .

Now let (Ỹn)n∈N be the partially forgotten walk, by Lemma 2.17 if sj is the strength of
the jth trap visited and Nj is the number of times the walk enters the jth trap, there
exists a constant Dj that only depends on its configuration such that for any B > 2,

P0

(
sj ≥ B|Ỹ , ω̃

)
≤ DjB

−κ exp

(
5(Ni + 2α)

B

)
.
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Let Di2 be the maximum value of Dj exp
(

5(Zi+2α)
2

)
we can get for configuration of traps

entered at most i2 times. We get that for any j:

P0(sj ≥ B and Nj ≤ i2|Ỹ , ω̃) ≤ Di2B−κ.

We also know that the strengths of the traps are independent, knowing the partially
forgotten walk and the equivalence class of the environment for the trap-equivalent
relation. Therefore we have, for any η > 0:

2C
η∑
i=0

iηn+2ηn∑
j1=iηn

iηn+2ηn∑
j2=iηn

P0 (Aj1 and Aj2) 1j1 6=j2

≤

2C
η∑
i=0

iηn+2ηn∑
j1=iηn

iηn+2ηn∑
j2=iηn

(Di2)2
(
εn

1
κ

)−2κ

≤2
2C

η
(ηn)2(Di2)2ε−2κn−2 for η small enough

=4Cη(Di2)2ε−2κ.

Now, by taking a sequence (ηn)n∈N∗ of positive reals such that ηn −−−−→
n→∞

0 and such that:

P0 (∃i ≤ n,M(i+ i1)−M(i) ≥ ηnn) −−−−→
n→∞

0,

we get:

P0

 ⋃
2≤i≤n

Ai1,i2ε,n (i)

 ≤P0 (M(n+ i1) ≤ 2Cn) or (∃i ≤ n,M(i+ i1)−M(i) ≥ ηnn)

+ P0 (∃i ≤ 2Cn,∃j ≤ ηnn,Ai + P0Ai+j) .

Therefore:

P0

 ⋃
2≤i≤n

Ai1,i2ε,n (i)

 −−−−→
n→∞

0.

Lemma 2.27. If κ = 1 there exists a constant C such that P0 almost surely:

1

n

τn−1∑
i=0

1Yi 6∈T̃ −−−−→n→∞
C.

If κ < 1, there exists a constant C > 0 and a constant β < 1
κ such that P0 almost surely,

for n large enough: ∑
x∈Zd

τn−1∑
i=0

1Yi=x1x 6∈T̃ ≤ Cn
β .

Proof. Let m be such that Qm is well defined. Let (tmi )i∈N be the times at which Xm

changes position, with t0 := 0. We have Xm
tmi

= Yi for all i ∈ N. Let (Ei)i∈N be a sequence
of random variables defined by Ei = (tmi+1 − tmi )γmω (Yi). By definition of X and Y , (Ei)i∈N
is a sequence of iid exponential random variables of parameter 1, independent of the
walk and the environment.

We will first look at the case κ = 1.
If
∑τ3−1
i=τ2

1Yi 6∈T̃ has a finite expectation for P0, since the
(∑τ2i+1−1

i=τ2i
1Yi 6∈T̃

)
i∈N∗

are

iid and so are the
(∑τ2i+2−1

i=τ2i+1
1Yi 6∈T̃

)
i∈N∗

then we have the result we want. On the
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other hand, if
∑τ2−1
i=τ1

1Yi 6∈T̃ has an infinite expectation then, since the random variables(∑τi+1−1
i=τi

1Yi 6∈T̃

)
i≥2

are non negative, n−1
∑τn−1
i=τ1

1Yi 6∈T̃ −−−−→n→∞
∞ P0 almost surely.

By the law of large numbers, we get that P0 almost surely:

∃k ∈ N,∀n ≥ k,
τn−1∑
i=0

Ei1Yi 6∈T̃ ≥
1

2

τn−1∑
i=0

1Yi 6∈T̃ .

For any point x, if x is not in a trap then, by definition of traps:

1

γω(x)
≥ 1

2
.

This yields:
τn−1∑
i=0

Ei1Yi 6∈T̃ ≤ 2

τn−1∑
i=0

Ei1Yi 6∈T̃
1

γω(Yi)
.

And by writing Tmn = tmτn we have:

τn−1∑
i=0

Ei1Yi 6∈T̃ ≤ 2

Tmn∫
0

γmω (Xm
t )

γω(Xm
t )

dt.

We know by Lemma 2.1 that there exists a constant dm such that P0 almost surely:

Tmn − dmn −−−−→
n→∞

−∞.

We get:

∃k ∈ N,∀n ≥ k,
Tmn∫
0

γmω (Xm
t )

γω(Xm
t )

dt ≤
dmn∫
0

γmω (Xm
t )

γω(Xm
t )

dt.

Finally, if P0 almost surely:
1

n

τn∑
i=0

1Yi 6∈T̃ −−−−→n→∞
∞.

Then P0 almost surely:

1

n

dmn∫
0

γmω (Xm
t )

γω(Xm
t )

dt −−−−→
n→∞

∞.

And therefore, since Qm0 is absolutely continuous with respect to P0 we get the same

convergence Qm0 almost surely. So we would have, since γmω (Xmt )
γω(Xmt ) is positive:

1

n
EQm0

 dmn∫
0

γmω (Xm
t )

γω(Xm
t )

dt

 −−−−→
n→∞

∞

which would mean, since Qm0 is a stationary law:

EQm

 1∫
0

γmω (Xm
t )

γω(Xm
t )

dt

 =∞.

Which is false by Lemma 2.12 so we get the result we want.
Now for the case κ < 1.
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Let β ∈
(
κ, κ+κ′

2

)
be a real such that β ≤ 1. If

∑
x∈Zd

(∑τ3−1
i=τ2

1Yi=x

)β
1x 6∈T̃ has an

infinite expectation (for P0), since the

(∑
x∈Zd

(∑τ2j+1−1
i=τ2j

1Yi=x

)β
1x6∈T̃

)
j∈N∗

are iid, we

would have that P0 almost surely:

n−1
∑
x∈Zd

(
τn−1∑
i=0

1Yi=x

)β
1x 6∈T̃ −−−−→n→∞

∞.

By Lemma 3.5 we get that there exists a constant C > 0 such that P0 almost surely:

∃m ∈ N,∀n ≥ m,
∑
x∈Zd

(
τn+1−1∑
i=0

Ei1Yi=x

)β
1x6∈T̃ ≥ C

∑
x∈Zd

(
τn+1−1∑
i=0

1Yi=x

)β
1x 6∈T̃ .

We also have, by writing Tmn = tmτn :

∑
x∈Zd

(
τn+1−1∑
i=0

Ei1Yi=x

)β
1x 6∈T̃ ≤4β

∑
x∈Zd

(
τn+1−1∑
i=0

Ei1Yi=x
1

γω(x)

)β
1x 6∈T̃

≤4β
∑
x∈Zd

 Tmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt


β

.

We know by Lemma 2.1 that there exists a constant dm such that P0 almost surely:

Tmn − dmn −−−−→
n→∞

−∞.

We get:

∃m ∈ N,∀n ≥ m,
∑
x∈Zd

 Tmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt


β

≤
∑
x∈Zd

 dmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β

.

Finally, if P0 almost surely

1

n

∑
x∈Zd

(
τn−1∑
i=0

1Yi=x

)β
1x 6∈T̃ −−−−→n→∞

∞

then P0 almost surely

1

n

∑
x∈Zd

 dmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β

−−−−→
n→∞

∞.

And therefore, since Qm0 is absolutely continuous with respect to P0 we get that Qm0
almost surely:

1

n

∑
x∈Zd

 dmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β

−−−−→
n→∞

∞.

So we would have:

1

n
EQm0

∑
x∈Zd

 dmn∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β
 −−−−→

n→∞
∞.
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And therefore:

1

n

dmn∑
i=0

EQm0

∑
x∈Zd

 i+1∫
i

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β
 −−−−→

n→∞
∞.

This would mean, since Qm0 is a stationary law that

EQm0

∑
x∈Zd

 1∫
0

γmω (Xm
t )

γω(Xm
t )

1Xmt =xdt

β
 =∞

which is false by Lemma 2.12. Therefore there exists a constant C > 0 such that P0

almost surely:

1

n

∑
x∈Zd

(
τn−1∑
i=0

1Yi=x

)β
1x 6∈T̃ −−−−→n→∞

C.

So P0 almost surely for n large enough:

1

n

∑
x∈Zd

τn−1∑
i=0

1Yi=x1x6∈T̃

β

≤ 1

n

∑
x∈Zd

(
τn−1∑
i=0

1Yi=x

)β
1x6∈T̃ ≤ 2C.

And therefore: ∑
x∈Zd

τn−1∑
i=0

1Yi=x1x 6∈T̃ ≤ (2Cn)
1
β .

2.6 Proof of the theorems

Now we can finally prove both theorems. We will start by the proof of Theorem 1.9.

Proof of Theorem 1.9. The proof will be divided in three parts, one for each result. The
second part and the third one rely on the first part. However, the second part and the
third part are independent from one another.

First Part

First we will prove that there exists a constant c such that for any t ∈ R+ and any
increasing sequence (xn) such that xn −−−−→

n→∞
∞, we have the following convergence in

law, for P0:

x
− 1
κ

n τbxntc −−−−→n→∞
ct

1
κSκ1 .

The result is obvious for t = 0. For t > 0, lemmas 2.27 and 2.25 tell us that we only have
to consider the time spent in traps in directions j such that κj = κ. Then Lemma 2.22
tells us that with probability larger than 1− ε the time spent in such traps is not more
than the time spent in traps where the walk comes back at most mε times (for some

mε) plus at most εx
1
κ
n . We also know by Lemma 2.23 that for any mε there exists a

constant cε such that the time spent in traps where the walk comes back at most mε

times renormalized by x
− 1
κ

n converges in law (for P0) to cεt
1
κSκ so we get the result

we want by having ε go to 0 since cε is increasing and cannot go to infinity. Since the
(τi+1−τi)i≥1 are iid (for P0) by proposition 1.2, we also get that for any sequence (ni)i∈N∗

with ni ≥ 1,
(
i−

1
κ (τni+it − τni)

)
i≥1

converges in law (for P0) to c1t
1
κSκ1 .

Now we want to show that the family of process
(
t 7→ x

− 1
κ

n τbxntc

)
n∈N

is tight. We will

only look at the convergence and tightness for the processes on an interval [0, A]. We
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use the characterisation of tightness of a sequence of càdlàg functions (fn)n∈N given in
Theorem 13.3 of [5]:

(i) for each positive ε there exists a c and an n0 such that:

∀n ≥ n0, P

(
sup
t∈[0,T ]

|fn(t)| > c

)
≤ ε,

(ii) for each ε > 0 and η > 0, there exist a δ, 0 < δ < T , and an integer n0 such that:

∀n ≥ n0, P(wfn(δ) ≥ η) ≤ ε
and

∀n ≥ n0, P(vfn(0, δ) ≥ η) ≤ ε and P(vfn(T, δ) ≥ η) ≤ ε,

where for any càdlàg function f , wf and vf are defined by:

wf (δ) = sup{min (|f(t)− f(t1)|, |f(t2)− f(t)|) t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ},
vf (t, δ) = sup{|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)}.

For a sequence of non-decreasing processes (Wn) defined on [0, T ], this characterization
is implied by the following:

(i) for each positive ε there exists C such that

P(Wn(T ) ≥ C) ≤ ε, for n ≥ 1,

(ii) for each ε > 0 there exists a δ ∈ (0, T ), such that for n ≥ 1

(ii.a) ∀x ∈ [δ, T − δ], P(Wn(x+ δ)−Wn(x) ≥ ε and Wn(x)−Wn(x− δ) ≥ ε) ≤ ε
and

(ii.b) P(Wn(δ)−Wn(0) ≥ ε) ≤ ε
and

(ii.c) P(Wn(T )−Wn(T − δ) ≥ ε) ≤ ε.

For the first property, since we know that the sequence
(
x
− 1
κ

n τbxnAc

)
n∈N

converges in

law for P0, the family
(
x
− 1
κ

n τbxnAc

)
n∈N

is tight and therefore for any ε > 0 there exists

Bε such that:

∀n ∈ N, P0

(
x
− 1
κ

n τbxnAc ∈ [0, Bε]
)
≥ 1− ε.

So:
∀ε > 0,∃Bε,∀n ∈ N,P0

(
∀t ∈ [0, A], x

− 1
κ

n τbxntc ∈ [0, Bε]
)
≥ 1− ε.

Now we will prove the two side conditions (ii.b and ii.c). For (ii.b), we first choose δ such

that P0

(
c1δ

1
κSκ1 ≥ ε

)
≤ ε

2 . This proves the result for n large enough and then, since the

processes we consider are càdlàg, we decrease δ up to the point where we have the
result for n small and we get the result we want.

For (ii.c), the proof will be essentially the same. Since the increments are iid (except

for the first one of which we do not know the law) the law of x
− 1
κ

n τbxnAc − x
− 1
κ

n τbxn(A−δ)c

converges to c1δ
1
κSκ. So we get that for some δ, for n large enough we have the result

we want. For small n we only use the fact that the processes are càdlàg so we get the
result we want by decreasing δ.

Now we can prove (ii.a). Let J = {j ∈ J1, dK, κj = κ}. First we have, by lemmas 2.27
and 2.25, that for n large enough, the time spent in vertices that are not part of a trap in

a direction j ∈ J before time τbxntc is smaller than 1
3εx

1
κ
n with probability at least 1− 1

3ε.
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Similarly by Lemma 2.23 there exists mε such that for n large enough the time spent
in traps in direction j ∈ J such that the walk enters at least mε times the trap is lower

than 1
3εx

1
κ
n with probability at least 1 − 1

3ε. And finally, there exists βε such that for n
large enough, by Lemma 2.24, with probability at least 1− 1

3ε the time spent in traps in

direction j ∈ J such that their strength is at most βεx
1
κ
n is lower than 1

3εx
1
κ
n . Condition

(ii.c) is not verified if either of the previous three events are not verified which happens
with probability at most 1− ε. However if the previous events are verified and there is

no i such that there are at least two traps of strength at least βεx
1
κ
n visited at most mε

times between times τi and τi+2δxn − 1 then the main condition is true.
So now we just have to prove that for δ small enough, with high probability there

is no i such that there are at least two traps of strength at least βεx
1
κ
n visited at most

mε times between times τi and τi+2δxn − 1. By Lemma 2.26 we have that for any m ∈ N
the probability that there exists i ≤ xn such that there are two traps of strength at least

βεx
1
κ
n between times τi and τi+m − 1 goes to 0 when n goes to infinity. So let Bi be the

event: “there exists a trap of strength at least βεx
1
κ
n visited at most mε times between

times τi and τi+1 − 1”. We define the finite sequence (ni) by:

n1 = inf{j ≥ 1, Bj},
ni+1 = inf{j ≥ ni +m,Bj}.

We also define ñi by ñi = sup{j, nj ≤ xi}. First we want to prove that ñi cannot be too
large. We know that there exists a constant C such that if M(n) is the number of different
traps in a direction j visited before time τn then for n large enough: P0(M(xn) ≥ Cxn) ≤
ε and by Lemma 2.20 we clearly have that E(ñn1M(xn)≤Cxn) ≤ cC

βκ . Therefore if we take

B ≥ cC
εβκ we get that for n large enough, P0(ñn ≥ B) ≤ 2ε. Now we want to show that

for δ > 0 small enough, P0(∃i ≤ B,ni+1 − ni ≤ 2δxn) ≤ ε which would yields the desired
result. For any i, we have, by Proposition 1.2:

P0(ni+1 − ni ≤ 2δxn) ≤ P0(n1 ≤ 2δxn).

And therefore:

P0(∃i ≤ ñn, ni+1 − ni ≤ 2δxn) ≤ P0(ñn > B) +BP0(n1 ≤ 2δxn).

We have that there is a constant C such that for n large enough, P0(M(2δxn) ≥ 2Cδxn) ≤
ε
B . And then by Lemma 2.20 we have that the expectation of the number of traps of

strength at least βx
1
κ
n among the first 2δxn traps is lower than 2δxn

c
βκxn

and therefore
for δ small enough, P0(∃i ≤ ñn, ni+1 − ni ≤ 2δxn) ≤ ε. So we have that the sequence of
processes is tight.

Now we want to show that its limit is c1Sκ. Let m be an integer and (xi)0≤i≤n be
reals such that 0 = y0 < y1 < · · · < ym−1 < ym = 1. We have, since the (τi+1 − τi)i≥1 are
iid and independent from τ1:

(x
− 1
κ

n τbxnyic)0≤i≤m −−−−→
n→∞

(Sκ(yi))0≤i≤m.

So we have convergence in the J1 topology for any increasing sequence xi that goes to
infinity.

Second Part

Let L be defined by:
L(t) := inf{i, Yi · e1 ≥ t}.
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And let Ln be the renormalized L:

Ln(t) := n−
1
κL(nt)

Notice that:
Lnκ(t) = inf{i, Y n(i) · e1 ≥ t}.

We have, by definition of τ and L:

∀n ∈ N∗, L(Yτn · e1) = τn.

We first want to show that the sequence Ln is tight in the M1 topology. We use the
characterisation given in Theorem 12.12.3 of [37]:

(i) for each positive ε there exists c such that:

P

(
sup
t∈[0,T ]

|f(t)| > c

)
≤ ε,

(ii) for each ε > 0 and η > 0, there exists a δ, 0 < δ < T , and an integer n0 such that:

∀n ≥ n0, P(wfn(δ) ≥ η) ≤ ε
and

∀n ≥ n0, P(vfn(0, δ) ≥ η) ≤ ε and P(vfn(T, δ) ≥ η) ≤ ε.

Where wf and vf are defined by:

wf (δ) = sup{ inf
α∈[0,1]

|f(t)− (αf(t1) + (1− α)f(t2))|, t1 ≤ t ≤ t2 ≤ T, t2 − t1 ≤ δ},

vf (t, δ) = sup{|f(t1)− f(t2)| : t1, t2 ∈ [0, T ] ∩ (t− δ, t+ δ)}.

First we have:

P0

(
sup
t∈[0,T ]

|Ln(t)| > c

)
=P0

(
L(nT ) > cn

1
κ

)
≤P0

(
τnT > cn

1
κ

)
,

which is smaller than ε for all n, for c large enough.
Next, since Hn is non-decreasing, we have:

P0(wLn(δ) = 0) = 1.

Then, we first use the fact that:

vLn(0, δ) ≤ n− 1
κ τnδ

to get that for δ small enough:

∀n ≥ n0, P0(vLn(0, δ) ≥ η) ≤ ε.

The bound for vLn(T, δ) is similar but slightly trickier. For c = (E(Yτ2 − Yτ1) · e1)
−1, we

know that P0 almost surely:

1

n
(Yτcn(T−2δ)

· e1, Yτcn(T+δ)
· e1) −−−−→

n→∞
(T − 2δ, T + δ).

Therefore, using the fact that Ln is increasing, with probability going to 1:

Ln(T )− Ln(T − δ) ≤ n− 1
κ (τcn(T+δ) − τcn(T−2δ)).
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And we have the result we want for δ small enough and n large enough. So we have
that the sequence (Ln)n∈N∗ is tight. Now we just have to show that its limit is CSκ for
some constant C. Set c = (E(Yτ2 − Yτ1) · e1)

−1. We will show that Ln(x) is almost equal
to τn(cx) which will yield the result. Set ε > 0 and x ∈ [0,∞). We want to show that
P0(|Ln(x)− τn(cx)| ≥ ε) −−−−→

n→∞
0. We will use the following inequality:

P0(Ln(x)− τn(cx) ≥ ε) ≤ inf
δ>0

P0(Ln(x) ≥ τn(cx+ δ)) + P0(τn(cx+ δ)− τn(cx) ≥ ε).

We clearly have, for any δ > 0

lim sup
n→∞

P0(Ln(x) ≥ τn(cx+ δ)) = 0.

And for some constant C̃ that does not depend on x or c

P0(τn(cx+ δ)− τn(cx) ≥ ε) −−−−→
n→∞

P0(C̃Sκ(δ) ≥ ε).

Therefore
P0(Ln(x)− τn(cx) ≥ ε) −−−−→

n→∞
0.

Similarly we get:
P0(Ln(x)− τn(cx) ≤ −ε) −−−−→

n→∞
0.

Therefore the limit of Ln is t 7→ C̃Sκ(ct) which is equal to CSκ for some constant C.

Third Part

We will look at a sequence of processes t 7→ τn(t) such that the law of τn is the same

as that of t 7→ x
− 1
κ

n τbxntc and such that almost surely τn −−−−→
n→∞

τ in the J1 topology with

the law of τ being that of Sκ. We want to show that the law of the inverse of τn converges
to that of the inverse of Sκ. This is a direct consequence of lemmas 3.6 and 3.7. Now if
we define Lτ (t) by Lτ (t) = min{n ∈ N, τn ≥ t}, we have that in J1 topology:

1

xn
Lτ
(
x

1
κ
n t
)
−−−−→
n→∞

S̃κ(t)

for any increasing sequence xn such that xn −−−−→
n→∞

∞. Therefore, for any increasing

sequence xn such that xn −−−−→
n→∞

∞:

1

xκn
Lτ (xnt) −−−−→

n→∞
S̃κ(t).

Now by Lemma 2.3 there exists v ∈ Rd such that P0 almost surely:

Yτbtc
t
−−−→
t→∞

v.

This means that in the J1 topology, we have the following convergence (in law):(
t 7→

Yτbxntc
xn

)
−−−→
t→∞

(t 7→ tv) .

And therefore, in the J1 topology,(
t 7→ x

− 1
κ

n τbxntc, t 7→
Yτbxntc
xn

)
−−−→
t→∞

(c1Sκ, t 7→ tv) .
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Now we will look at (τn, dn) where for any n the law of (τn, dn) is the same as the law of

t 7→ x
− 1
κ

n τbxntc, t 7→
Yτbxntc
xn

and such that almost surely:

(τn, dn) −−−−→
n→∞

(c1Sκ, t 7→ tv) .

Let τ be such that almost surely τn −−−−→
n→∞

τ . Let ∆[0,A] be the distance associated with

the infinite norm on [0, A].
If we look at dτ−1

n (t) where τ−1
n (t) = inf{x, τn(x) ≥ t} we get:

∆[0,A]

(
dn(τ−1

n (t)), τ−1(t)v
)
≤ ∆[0,A]

(
dn(τ−1

n (t), τ−1
n (t)v

)
+ ∆[0,A]

(
τ−1
n (t)v, τ−1(t)v

)
= ∆[0,A]

(
dn(τ−1

n (t)), τ−1
n (t)v

)
+ ‖v‖∆[0,A]

(
τ−1
n (t), τ−1(t)

)
.

So for any B, ε > 0:

P0(∆[0,A]

(
dn(τ−1

n (t)), τ−1(t)v
)
≥ ε)

≤P0(τ−1
n (A) > B) + P0

(
∃t ∈ [0, B], ‖dn(t)− tv‖ ≥ ε

2

)
+ P0

(
∆[0,A]

(
τ−1
n (t), τ−1(t)

)
≥ ε

2

)
=P0(τ−1

n (A) > B) + o(1)

=P0(τn(B) < A) + o(1)

=P0(τ(B) < A) + o(1).

We clearly have that when B goes to infinity, P0(τ(B) < A) goes to 0 so we have that in
the J1 topology:

dn(τ−1
n (t)) −−−−→

n→∞
τ−1(t)v.

Since we have that in law (in the following we will write τ(x) instead of τx for the
formulas to stay readable):

dn(τ−1
n (t)) =

1

xn
Y
τ
(
bxn(x−1

n Lτ ((xn)
1
κ t))c

) =
1

xn
Y
τ
(
bτ((xn)

1
κ t)c

)
we get that in the J1 topology for any increasing sequence xn such that xn −−−−→

n→∞
∞:

x−κn Yτ(bLτ (xnt)c) −−−−→n→∞
c−κ1 S̃κ(t)v.

Now we only have to show that Yτ(bLτ (xnt)c) and Yt are almost equal. For every i > 0 let
Ri be the number of different points visited between times τi and τi+1 − 1 and let R0 be
the number of different points visited before time τi − 1 (0 if τi = 0). The (Ri)i∈N are
independent and the (Ri)i∈N∗ are iid with finite expectation by Lemma 2.2. Let ε > 0

be a constant and let B > 0 be such that for x large enough, P0(x−κLτ (xA) ≥ B) ≤ ε
2

(taking B such that P0(c−κ1 S̃κ(A) ≥ B) ≤ ε
4 works). We get that for x large enough:

P0(∃t ≤ xA, x−κ‖Yτ(bLτ (t)c) − Yt‖ ≥ ε) ≤
ε

2
+ P0(∃i ≤ Bxκ, Ri ≥ εxκ)

≤ε
2

+ P0(R0 ≥ εxκ) + P0(∃i ∈ J1, BxκK, Ri ≥ εxκ)

≤ε
2

+ o(1) +BxκP0(R1 ≥ εxκ)

=
ε

2
+ o(1).

So for any ε > 0 we have that for x large enough:

P0(∃t ≤ xA, x−κ‖Yτ(bLτ (xt)c) − Yt‖ ≥ ε) ≤ ε.
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So we get that in the J1 topology:

x−κYbxtc −−−−→
n→∞

S̃κ(t)v.

Since v and dα are collinear, we get the result we want.

Now we can move on to the proof of Theorem 1.11.

Proof of Theorem 1.11. Let J = {j ∈ J1, dK, κj = κ}.
By Lemma 2.27 we get that there exists a constant C such that P0 almost surely:

1

n

τn∑
i=0

1Yi 6∈T̃ −−−−→n→∞
C.

So we only have to look at the time spent in the traps. By Lemma 2.25 we get that for
any ε > 0, for n large enough:

P0

(
1

n log(n)

τn+1−1∑
i=1

1Yi∈T̃ 1Yi 6∈T̃J ≥ ε

)
≤ ε.

Therefore we only have to look at the time spent in traps in a direction j ∈ J . For any
trap {x, y} let Ñx be the number of times the walk exits the trap {x, y}, we have Ñw = Ñy.
Let ε > 0 be a positive constant. By Lemma 2.22 there exists a mε such that:

P0

(
1

n log(n)

τn+1−1∑
i=1

1Yi∈T̃J1ÑYi≥mε
≥ ε

)
≤ ε.

And by Lemma 2.23 we get that there is a constant Cmε such that:

1

n log(n)

τn+1−1∑
i=1

1Yi∈T̃J1ÑYi≤mε
−−−−→
n→∞

Cmε in probability.

So for n large enough:

P0

(
1

n log(n)

τn+1−1∑
i=1

1Yi∈T̃ ∈ [Cmε − 2ε, Cmε + 2ε]

)
≥ 1− 2ε.

This means that there exists a constant C∞ such that:

1

n log(n)

τn+1−1∑
i=1

1Yi∈T̃ −−−−→n→∞
C∞ in probability.

And therefore:
1

n log(n)
τn+1 −−−−→

n→∞
C∞ in probability.

So we have proved the first part of the theorem.

Now, by Lemma 2.3 we have for some C > 0, P0 almost surely:

Yτn · e1

n
−−−−→
n→∞

C.
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So for any ε > 0, by writing L(n) := min{i, Yi · e1 ≥ n} and C+ = 1
C(1−ε) :

P0[L(n) ≥ C∞C+(1 + ε)n log(n)]

≤P0[L(n) ≥ C∞C+(1 + ε)n log(n) and τC+n ≤ C∞C+(1 + ε)n log(n)]

+ P0[τC+n > C∞C
+(1 + ε)n log(n)]

=P0[L(n) ≥ C∞C+(1 + ε)n log(n) and τC+n ≤ C∞C+(1 + ε)n log(n)] + o(1)

≤P0[L(n) ≥ τC+n] + o(1)

=P0[YτC+n
· e1 ≤ n] + o(1)

=P0

[
YτC+n

· e1

C+n
≤ C(1− ε)

]
+ o(1)

=o(1).

The same way we get, by taking C− = 1
C(1+ε) :

P0(L(n) ≤ C∞C−(1− ε)n log(n))

≤P0(L(n) ≤ C∞C−(1− ε)n log(n) and τC−n ≥ C∞C−(1− ε)n log(n))

+ P0(τC−n < C∞C
−(1− ε)n log(n))

=P0(L(n) ≤ C∞C−(1− ε)n log(n) and τC−n ≥ C∞C−(1− ε)n log(n)) + o(1)

≤P0(L(n) ≤ τC−n) + o(1)

=P0(YτC−n · e1 ≥ n) + o(1)

=P0

(
YτC−n · e1

C−n
≥ C(1 + ε)

)
+ o(1)

=o(1).

So we get the second result. Now for the last result, we define Lτ (n) = min{i, τi ≥ n} so
τLτ (n)−1 < n ≤ τLτ (n). We get, for n big enough:

P0

(
Lτ (n) ≥ C−1

∞ (1 + 2ε)
n

log(n)

)
≤ P0

(
τC−1
∞ (1+ε) n

log(n)
≤ n

)
.

And we have:

C−1
∞ (1 + ε)

n

log(n)
log

(
C−1
∞ (1 + ε)

n

log(n)

)
= C−1

∞ (1 + ε)n(1 + o(1)).

And therefore, using the result of part one:

τC−1
∞ (1+ε) n

log(n)

n
−−−−→
n→∞

C∞C
−1
∞ (1 + ε) = (1 + ε).

So we get that:

P0

(
τC−1
∞ (1+ε) n

log(n)
≤ n

)
−−−−→
n→∞

0.

And therefore:

P0

(
Lτ (n) ≥ C−1

∞ (1 + 2ε)
n

log(n)

)
−−−−→
n→∞

0.

The proof of the lower bound is exactly the same:

P0

(
Lτ (n) ≤ C−1

∞ (1− ε) n

log(n)

)
≤ P0

(
τC−1
∞ (1−ε) n

log(n)
≥ n

)
.

But we have:
n−1τC−1

∞ (1−ε) n
log(n)

−−−−→
n→∞

(1− ε).
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So

P0

(
Lτ (n) ≤ C−1

∞ (1− ε) n

log(n)

)
−−−−→
n→∞

0.

And therefore:
log(n)

n
Lτ (n) −−−−→

n→∞
C−1
∞ .

Now, by Lemma 2.3 Yi
Lτ (i) −−−→i→∞

D, P0 almost surely so we get:

log(n)

n
Yn −−−−→

n→∞
C−1
∞ D.

3 Annex

This section is devoted to proving some elementary results on random variables.

This first result is reminiscent of a famous result by Charles de La Vallée Poussin (see
for instance p. 19 of [20]) that states that a sequence of random variables (Xn)n∈N is
uniformly integrable iff there exists a convex monotone function Φ with Φ(0) = 0 such
that supn∈NE(Φ(Xn)) < +∞. By taking Xn = X for all n we get a result similar to our
own.

Lemma 3.1. Let X be a non-negative random variable such that E(X) < ∞. There
exists an increasing, positive, concave function φ such that φ(t) goes to infinity when t
goes to infinity and:

E(Φ(X)) <∞,

where Φ(t) =
∫ t
x=0

φ(x)dx.

Proof. First we show that there exists a non-decreasing, positive function f : R+ → R+

such that f(t) goes to infinity when t goes to infinity and:

E(Xf(X)) <∞.

To do that we first define the sequence (ti) by:

t0 = 0

ti+1 = 1 + inf
{
x ≥ ti,E(X1X>x) ≤ 2−(i+1)E(X)

}
.

Now we define f by:

f(x) = 1 +
∑
i≥0

1x≥ti .

We clearly have that f is non-decreasing, positive (f(t) ≥ 2) and that f(t) goes to infinity
when t goes to infinity. As for the expectation we have:

E(Xf(X)) =E

∑
i≥0

X1X≥ti

+ E(X)

=
∑
i≥0

E (X1X≥ti) + E(X)

≤
∑
i≥0

2−iE(X) + E(X)

≤3E(X) <∞.
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Now we want to find an increasing concave function φ lower than f such that φ(t) goes
to infinity when t goes to infinity. To that effect we will define the sequences (ai) and (bi)

by:
a0 =1,

b0 =
1

t1
,

∀i ∈ N, ai+1 =ai + bi(ti+1 − ti),

∀i ∈ N, min(bi+1 =bi,
(i+ 2)− ai
ti+1 − ti

)

and we define φ by:

∀i ∈ N,∀x ∈ [ti, ti+1), φ(x) = ai + bi(x− ti).

The function φ is continuous and its slope is decreasing so it is clearly concave.
We now have to prove that limt→∞ φ(t) = ∞. First we want to show that for every

i ∈ N, ai ≤ i+ 1. It is obvious for i ∈ {0, 1} and for i > 0 we have:

ai ≤ ai−1 +
(i+ 1)− ai−1

ti − ti−1
(ti − ti−1) = i+ 1.

Now we want to show that there can be no i such that bi ≤ 0. If there was, we could
define j by j = min{i, bi ≤ 0}, we would have j ≥ 1 and:

(j + 1)− aj−1

tj − tj−1
≤ 0.

But since aj−1 ≤ j it is impossible so all the bi are positive and therefore φ is increasing.
Now we will prove that limi→∞ ai = ∞. First we notice that if bi+1 < bi then bi+1 =
(i+2)−ai
ti+1−ti so ai+1 = i+ 2. Therefore, either the bi are stationary and φ is larger than some

affine function with positive slope which implies the result we want or the sequence bi is
not stationary and there are infinitely many i such that ai+1 = i + 2 and therefore we
have the result we want.

We still have to show that φ ≤ f . We know that φ is increasing and we have:

∀i ∈ N,∀x ∈ [ti, ti+1), f(x)− φ(x) = i+ 2− φ(x) ≥ i+ 2− φ(ti+1) = i+ 2− ai+1 ≥ 0.

So we have the desired result.

Lemma 3.2. Let φ be a non-decreasing, positive concave function and Φ(x) :=
∫ x
t=0

φ(t)dt.
There exists a constant Cφ such that if X is a geometric random variable with success
probability 1− p:

1

2
Φ

(
1

p

)
≤ 1

2

1

p
φ

(
1

p

)
≤ E(Φ(1 +X)) ≤ Cφ

1

p
φ

(
1

p

)
≤ 2CφΦ

(
1

p

)
.

Proof. Φ is convex so if X is a geometric random variable with success probability p:

E(Φ(1 +X)) ≥ Φ(E(1 +X))

= Φ

(
1

p

)

=

1
p∫

t=0

φ(t)dt
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=
1

p

1∫
t=0

φ

(
t
1

p

)
dt

≥ 1

p

1∫
t=0

tφ

(
1

p

)
+ (1− t)φ (0) dt

≥ 1

p

1∫
t=0

tφ

(
1

p

)
dt

=
1

2

1

p
φ

(
1

p

)
.

Now for the upper bound, we will first look at the case where p ≤ 1
2 :

E(Φ(1 +X)) =E

 ∞∫
t=0

φ(t)11+X≥tdt


=

∞∫
t=0

φ(t)P(X ≥ t− 1)dt

≤
∞∫

t=0

φ(t)(1− p)t−1dt

≤2

∞∫
t=0

φ(t) exp(t log(1− p))dt

=2
−1

log(1− p)

∞∫
t=0

φ

(
− t

log(1− p)

)
exp(−t)dt

≤2
−1

log(1− p)

φ(− 1

log(1− p)

)
+

∞∫
t=1

φ

(
− t

log(1− p)

)
exp(−t)dt

 .

Now we use the fact that φ is concave, this gives us, for t ≥ 1:

1

t
φ

(
− t

log(1− p)

)
+

(
1− 1

t

)
φ(0) ≤ φ

(
− 1

log(1− p)

)
.

Since φ is positive, we get:

φ

(
− t

log(1− p)

)
≤ tφ

(
− 1

log(1− p)

)
.

So we get:

E(Φ(1 +X)) ≤2
−1

log(1− p)

φ(− 1

log(1− p)

)
+

∞∫
t=1

tφ

(
− 1

log(1− p)

)
exp(−t)dt


≤2

−1

log(1− p)

(
φ

(
− 1

log(1− p)

)
+ φ

(
− 1

log(1− p)

))
=4

−1

log(1− p)
φ

(
− 1

log(1− p)

)
.
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Since − p
log(1−p) ≤ 1 and φ is increasing, we get:

− 1

log(1− p)
φ

(
− 1

log(1− p)

)
≤ 1

p
φ

(
1

p

)
.

And therefore, if p ≤ 1
2 :

E(Φ(1 +X)) ≤ 4
1

p
φ

(
1

p

)
.

If p ≥ 1
2 we can couple X with a geometric random variable Y of parameter 1

2 such that
almost surely Y ≥ X and since Φ is increasing:

E(Φ(1 +X)) ≤ E(Φ(1 + Y )) ≤ 8φ(2) ≤ 8φ(2)
1

p

φ
(

1
p

)
φ(1)

= 8
φ(2)

φ(1)

1

p
φ

(
1

p

)
≤ 16

1

p
φ

(
1

p

)
.

We get the upper bound we wanted.
Now we just have to prove that for any x ≥ 0, 1

2xφ(x) ≤ Φ(x) ≤ xφ(x). For the upper
bound we have:

Φ(x) =

x∫
0

φ(t)dt ≤
x∫

0

φ(x)dt = xφ(x).

And for the lower bound we have:

Φ(x) =

x∫
0

φ(t)dt =

x∫
0

φ

(
t

x
x

)
dt ≥

x∫
0

t

x
φ (x) dt =

1

2
xφ(x).

Lemma 3.3. Let X be a positive random variable, and let a = E(X) and X̃ = X − a. If
Var(X) ≤ a2 then:

∀γ ∈ [0, 1], Var (Xγ) ≤ 2a2γ

(
Var(X)

a2

)
.

Proof. For any x ∈ [−1,∞), let fx : [0, 1]→ R the function defined by

fx(γ) := γ 7→ (1 + x)γ .

This function is convex and fx(1) = 1 + x and f ′x(1) = (1 + x) log(1 + x) so:

∀γ ∈ [0, 1], fx(γ) ≥ 1+x+(γ−1)(1+x) log(1+x) ≥ 1+x−(1−γ)(1+x)x ≥ 1+γx−(1−γ)x2.

By Jensen inequality, we have:
E(Xγ) ≤ aγ .

Since E(Xγ) = aγE
((

1 + X̃
a

)γ)
, we also get:

E(Xγ) ≥ aγ
(

1− (1− γ)
Var(X)

a2

)
.

So if Var(X) ≤ a2, then

−E(Xγ)2 ≤ −a2γ

(
1− (1− γ)

Var(X)

a2

)2

≤ −a2γ

(
1− 2(1− γ)

Var(X)

a2

)
.

We also have:

E(X2γ) ≤ E(X2)γ =
(
a2 + Var(X)

)γ ≤ a2γ

(
1 + γ

Var(X)

a2

)
.

Finally we get:

Var (Xγ) ≤ a2γ

(
1 + γ

Var(X)

a2
− 1 + 2(1− γ)

Var(X)

a2

)
= a2γ(2− γ)

Var(X)

a2
.
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Lemma 3.4. Let p ∈ (0,∞) be a positive real, N ≥ 1 an integer, h ∈ ( 1
4 , 1) and q ∈ (0,∞)

with 1 ≥ q(1 − h) ≥ 1
2 . Let (εi) be a sequence of integer in {0, 1}. Let (Hi)i∈N be a

sequence of iid random variables following a geometric law of parameter 1 − h. Let
(Ei,j)i,j∈N be a sequence of iid random variables, independent of (Hi) and following an
exponential law of parameter p. Now let Z be defined by:

Z =

N∑
i=1

εi+Hi∑
j=1

Ei,j
p

q
.

There exists a universal constant C such that:

∀γ ∈ [0, 1], Var (Zγ) ≤ CN2γ−1 ≤ CNγ .

We also have that there are two constant c1, c2 > 0 that do not depend on γ such that:

c1N
γ ≤ E(Zγ) ≤ c2Nγ .

Proof. First we look at the expectation of Z, we get:

E(Z) =

N∑
i=1

E

εi+Hi∑
j=1

1

p

p

q


=

N∑
i=1

1

q

(
εi +

h

1− h

)

=
1

q(1− h)

N∑
i=1

εi(1− h) + h.

Now we will look at the variance but first we need a small result to simplify the notations,
for this result, M will be a non negative random variable and (Xi)i∈N a sequence of iid
real random variables, independent of M . We get:

Var

(
M∑
i=1

Xi

)
= E

( M∑
i=1

Xi

)2
−(E( M∑

i=1

Xi

))2

= E
(
ME(X2

1 ) +M(M − 1)E(X1)2
)
− E(M)2E(X1)2

= E(M)Var(X1) + Var(M)E(X1)2.

Now we can compute the variance of Z. First we have:

Var (Z) =

N∑
i=1

Var

εi+Hi∑
j=1

Ei,j
p

q

 =
p2

q2

N∑
i=1

Var

εi+Hi∑
j=1

Ei,j

 .

Then we have:

p2

q2

N∑
i=1

E(εi +Hi)Var(Ei,1) =
p2

q2

N∑
i=1

(
εi +

h

1− h

)
1

p2

=
1

q2(1− h)2

N∑
i=1

εi(1− h)2 + h(1− h),

p2

q2

N∑
i=1

Var((εi +Hi)
2)E(Ei,1)2 =

p2

q2

N∑
i=1

h

1− h
1

p2

=
1

q2(1− h)2

N∑
i=1

h(1− h),
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So we get, by summing these two equalities:

Var (Z) =
1

q2(1− h)2

N∑
i=1

εi(1− h)2 + 2h(1− h).

We have assumed that h ≥ 1
4 and 1

2 ≤ q(1− h) ≤ 1 therefore we have:

1

4
N ≤ E(Z) ≤ 4N,

Var(Z) ≤ 20N.

Therefore we have:
Var(Z)

(E(Z))2
≤ 320

1

N
.

So by Lemma 3.3, for N ≥ 320 we have:

∀γ ∈ [0, 1], Var (Zγ) ≤ 2E(Z)2γ

(
Var(Z)

E(Z)2

)
≤ 42γN2γ 640

N
.

And if N ≤ 320 we have:

∀γ ∈ [0, 1], Var (Zγ) ≤ E(Z2γ) ≤ E(Z2) ≤ (20N + 16N2).

So there exists a constant C such that if 1 ≤ N ≤ 320:

Var (Zγ) ≤ C 1

N
.

So

∀γ ∈ [0, 1], Var (Zγ) ≤ CN2γ−1.

So we have that there exists a constant C such that if N ≥ 1:

∀γ ∈ [0, 1], Var (Zγ) ≤ CN2γ−1 ≤ CNγ .

Now for the expectation, we first have the upper bound:

E(Zγ) ≤ E(Z)γ ≤ (4N)γ .

For the lower bound, we will use Holder inequality:

E(Z) = E
(
Z

γ
2−γZ2 1−γ

2−γ

)
≤ E

(
Z

γ
2−γ (2−γ)

) 1
2−γ

E
(
Z2 1−γ

2−γ
2−γ
1−γ

) 1−γ
2−γ

.

This yields:

E(Z)2−γ ≤ E(Zγ)E(Z2)1−γ

ie:

E(Zγ) ≥ E(Z)2−γ

E(Z2)1−γ .

Now we have E(Z2) = Var(Z) + E(Z)2 since Var(Z) ≤ 80E(Z) and E(Z) ≥ 1
4 we have

Var(Z) ≤ 320E(Z)2 and therefore: E(Z2) ≤ 321E(Z)2 which yields:

E(Zγ) ≥ E(Z)2−γ

(321E(Z)2)1−γ ≥
E(Z)γ

3211−γ ≥
E(Z)γ

321
.
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Lemma 3.5. Let β ∈ [0, 1]. Let (Ni)i∈N∗ be a sequence of random positive integers and
(Ai)i∈N be a sequence of random finite subsets of N with the following two properties:

∀i ≥ 0, Ai ⊂ Ai+1,

#Ai −−−→
i→∞

∞.

Let (Zi)i∈N be independent exponential random variables of parameter 1 independent of
(Ai), (Ni).

Then there exists a constant C > 0 such that almost surely:

∃m ∈ N,∀n ≥ m,
∑
i∈An

 Ni∑
j=1

Zi

β

≥ C
∑
i∈An

(Ni)
β
.

Proof. Let C be such that 2C − 21−β > 0 Let (ni)i∈N be the sequence defined by:

ni = min

{
i,#

∑
i∈An

(Ni)
β ≥ 2i

}
.

We have that if

∃m ∈ N,∀j ≥ m,
∑
i∈Anj

(
Ni∑
k=1

Zi

)β
≥ 2C

∑
i∈Anj

(Ni)
β

and M is such an m then for every n ≥ nM , if j is the integer that satisfies nj ≤ n < nj+1,
we have: ∑

i∈An

(Ni)
β ≤2j+1

≤2
∑
i∈Anj

(Ni)
β

≤2C
∑
i∈Anj

(
Ni∑
k=1

Zi

)β

≤2C
∑
i∈An

(
Ni∑
k=1

Zi

)β
.

By Lemma 3.3, for any i ∈ N∗:

Var


 Ni∑
j=1

Ei,j

β

|(Ak), (Nk)

 ≤ 2(Ni)
2β−1 ≤ 2(Ni)

β .

And by Hölder:

E


 Ni∑
j=1

Ei,j

β

|(Ak), (Nk)



≥E

 Ni∑
j=1

Ei,j |(Ak), (Nk)

2−β

E


 Ni∑
j=1

Ei,j

2

|(Ak), (Nk)


−(1−β)

=(Ni)
2−β(N2

i +Ni)
−(1−β)

≥(Ni)
2−β(2N2

i )−(1−β)

=2β−1(Ni)
β .
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Now we get: ∑
j≥0

P

 ∑
i∈Anj

(
Ni∑
k=1

Zi

)β
≤ 2C

∑
i∈Anj

(Ni)
β



≤
∑
j≥0

E


Var

( ∑
i∈Anj

(
Ni∑
k=1

Zi

)β
|(Ak), (Nk)

)
(

(2C − 21−β)
∑

i∈Anj
(Ni)β

)2


≤
∑
j≥0

E

 2

(2C − 21−β)2
∑

i∈Anj
(Ni)β


≤ 2

(2C − 21−β)2

∑
j≥0

2−j <∞.

So by Borel-Cantelli we get the result we want

Lemma 3.6. Let f, g be two non-decreasing positive càdlàg functions with f(0) = g(0) =

0. Let A,B > 0 be constants such that f(A) ≥ B and g(A) ≥ B. Let ε, δ > 0 be such that:

∀t ∈ [0, A+ ε], g(t+ ε) ≥ g(t) + δ

and

sup{|f(t)− g(t)|, t ∈ [0, A+ 2ε]} ≤ δ

2
.

Then:

sup{|f−1(x)− g−1(t)|, t ∈ [0, B]} ≤ 2ε.

Proof. Let t be in [0, B]. First we have:

f
(
g−1(t) + 2ε

)
≥ g

(
g−1(t) + 2ε

)
− δ

2
≥ g(g−1(t) + ε) + δ − δ

2
≥ t.

Therefore f−1(t) ≤ g−1(t) + ε. Similarly we have:

f
(
g−1(t)− ε

)
≤ g

(
g−1(t)− ε

)
+
δ

2
≤ g(g−1(t))− δ +

δ

2
< t.

Therefore f−1(t) ≥ g−1(t)− ε. So we have the result we want.

Lemma 3.7. Let t 7→ Sκ(t) be the jump process where Sκ(1) is a completely asymmetric,
positive stable law of parameter κ. For any ε > 0 and any B > 0 there exist A > 0 and
δ > 0 such that:

P(Sκ(A) ≥ B) ≥ 1− ε,
P(∃t ≤ A− ε,Sκ(t+ ε)− Sκ(t) < δ) ≤ ε.

Proof. There clearly exists an A that satisfies the first property. Now we need to find
a δ that satisfies the second inequality for this A. We will look at a slightly different
property:

∃i ≤ 2A

ε
,Sκ

(
i
ε

2

)
− Sκ

(
(i+ 1)

ε

2

)
≤ δ.
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Since for every t ≤ A− ε there exists i ≤ 2A
ε such that: [i ε2 , (i+ 1) ε2 ] ⊂ [t, t+ ε], we have

that for any δ > 0:

P(∃t ≤ A− ε,Sκ(t+ ε)− Sκ(t+ ε) ≤ δ) ≤ P
(
∃i ≤ 2A

ε
,Sκ

(
i
ε

2

)
− Sκ

(
(i+ 1)

ε

2

)
≤ δ
)
.

And there clearly exists δ such that

P

(
∃i ≤ 2A

ε
,Sκ

(
i
ε

2

)
− Sκ

(
(i+ 1)

ε

2

)
≤ δ
)
≤ ε.

So we get the result we want.
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