n b
Electr® 8biljty

Electron. J. Probab. 28 (2023), article no. 54, 1-56.
ISSN: 1083-6489 https://doi.org/10.1214/23-EJP940

Stochastic primitive equations with horizontal
viscosity and diffusivity*

Martin Saal’ Jakub Slavik*

Abstract

We establish the existence and uniqueness of pathwise strong solutions to the stochas-
tic 3D primitive equations with only horizontal viscosity and diffusivity driven by
transport noise on a cylindrical domain M = (—h,0) x G, G C R? bounded and
smooth, with the physical Dirichlet boundary conditions on the lateral part of the
boundary. Compared to the deterministic case where the uniqueness of z-weak so-
lutions holds in L?, more regular initial data are necessary to establish uniqueness
in the anisotropic space H ;Lﬁy so that the existence of local pathwise solutions can
be deduced from the Gyongy-Krylov theorem. Global existence is established using
the logarithmic Sobolev embedding, the stochastic Gronwall lemma and an iterated

stopping time argument.
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1 Introduction and main results

The 3D primitive equations, one of the fundamental models for geophysical flows,
describe oceanic and atmospheric dynamics. They are derived from the compressible
Navier-Stokes equations assuming hydrostatic balance and the Boussinesq approxima-
tion. The subject of this work is the initial value problem for the primitive equations
with horizontal viscosity and diffusivity and the physical lateral Dirichlet boundary
conditions.
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Stochastic primitive equations with horizontal viscosity

The study of problems with partial viscosity and diffusivity is motivated by the fact
that in many geophysical models, the horizontal viscosity and diffusivity is considered
dominant and the vertical one is neglected (see e.g. [40]). Models with partial viscosity
and diffusivity are also interesting from the analytical point of view since they combine
features of both parabolic diffusion equations in horizontal directions (represented by
the term —Apy ) and hyperbolic transport equations in the vertical direction (represented
by the nonlinear term wd,v), see (1.1) below. Roughly speaking, one thus expects
that regularity is preserved in the vertical direction while it is smoothed in horizontal
directions. Following this intuition, we may identify classes of initial data for which the
problem is locally or even globally well-posed.

1.1 Primitive equations with horizontal viscosity and diffusivity

Lett > 0 and let G C R? be a bounded and smooth domain. We consider the primitive
equations on a cylindrical domain M of depth i > 0, defined by M = G x (—h,0). The
boundary 0M decomposes into a lateral, upper and bottom parts as

[ :=0G x (—h,0), Ty:=Gx {0}, Ty:=G x {—h}.

The primitive equations describe the velocity u = (v,w): M — R?, the temperature
T : M — R and the pressure p: M — R of a fluid, where v = (v1,v3) denotes the
horizontal components and w stands for the vertical component of velocity. The primitive
equations with horizontal viscosity and diffusivity are

1
0 — vy Agv+kxv+ —Vgp
Po

+v - Vg v+ wd,v = f, + 01(v, Ve v, T, Vy T)Wl,
OWT —vpAy T +v-Vy T+ wd. T = fr + 02(v, Vg v, T, Vg T)Wa, (1.1)

0.p = —pg,
divg v + 0,w = 0,

p=po(l—Br(T -1T,)),

in M x (0,¢) with
w=0 onT, UT}, x (0,t). (1.2)

For the prognostic variables v, T, we have the initial conditions
v(t =0) = v, T(t=0) =Ty, (1.3)
and the boundary conditions
v=0 and 0,,7=0 onIyx(0,%), (1.4)

where n¢ is the outer normal to G on I'; (since M is cylindrical ng does not depend
on the vertical coordinate). The first boundary condition in (1.4) is a lateral no-slip
boundary condition for v, the second one is a Neumann-type condition for 7. The
condition (1.2) on w is considered to be part of the system (1.1) since w is a diagnostic
variable, see (2.8).

In what follows, we will denote the variables of the horizontal domain by (z,y) € G
and the vertical coordinate by z € (—h,0). We define Vi = (9,,9,)7, divg = Vg * and
Ay = 0%+ 85 to be the horizontal gradient, divergence and Laplacian, respectively. Also

let v- Vg =v10, +v20, and let k x v = ko(—v2,v1) be the Coriolis force. The terms o,;W;
model the stochastic forces. The constants v,,vr > 0 are the horizontal viscosity and
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horizontal diffusivity, kg > 0 is the Coriolis parameter, pg, 51,9 > 0 denote the reference
density, the expansion coefficient and the gravity, respectively. Note that for the primitive
equations the nonlinear term wod,v is of worse order compared to the nonlinearity of
the Navier-Stokes equations since w = w(v) given by (2.8) also involves a first order
derivative. However, the pressure p in (1.1) is essentially two-dimensional up to a linear
shift, see (2.16) below.

The general anisotropic primitive equations with full viscosity and diffusivity are
obtained from (1.1) if one replaces the term v,Ay by v,Ay + v, .0,,, where v, ., > 0
is the vertical viscosity, in the equation for v and similarly in the equation for 7" and
provides additional appropriate boundary conditions in (1.2).

1.2 Previous results

Deterministic results. The mathematical analysis of the initial value problem for
primitive equations with full viscosity and diffusivity was started by Lions, Temam and
Wang [42, 43, 44] and launched significant activity in the field. In comparison to the
3D Navier-Stokes equations, the primitive equations are globally well-posed for initial
data in Hl(M) by a breakthrough result of Cao and Titi [9], see also Kobelkov [37]. The
more realistic case of Dirichlet boundary conditions on the velocity on the bottom and
lateral part of the boundary, also called physical boundary conditions in this context,
in non-cylindrical domains were handled by Kukavica and Ziane [39]. These results
were refined to global well-posedness for initial data with vy, 0,v9 € L?, see [35], or
vo € LY(—h,0; L>(@)), see [21].

The primitive equations with only horizontal viscosity and diffusivity are of particular
interest in the field of numerical weather prediction [40]. On the one hand, the horizontal
viscosity v, is much larger than the vertical viscosity v, in the atmosphere and the
limiting case v, = 0 is considered a good approximation. On the other hand, numerical
(hyper-)viscosity acting only in the horizontal directions is often used in the computer
simulations for the hydrostatic Euler equations.

Cao, Li and Titi [7, 8] were the first to study the primitive equations with only
horizontal viscosity and diffusivity analytically. They tackled this problem in a periodic
setting by considering a vanishing vertical viscosity limit, i.e.

~Ay —e0? for £—0.

Using this strategy, they obtained a remarkable global strong well-posedness result
for the initial value problem with initial data of regularity near H!, and local well-
posedness for initial data in H!. Recently, the first author applied a more direct approach
considering the system without vanishing viscosity limit [51] where local well-posedness
results even for less partial viscosities has been proven and, in the case of only horizontal
viscosity, unnecessary boundary conditions on the bottom and top have been avoided.
The construction of weak solutions, namely the compactness argument, is difficult in this
case due to the lack of dissipation in the vertical direction. In [34], the existence of z-
weak solutions, i.e. weak solutions with additional regularity in the vertical direction, and
the existence of time-periodic solutions is shown for initial data with vg, d,vq € L?(M).
Additionally, the global existence of solutions is shown for less regular data than in [51].
For more results and further references on the deterministic primitive equations with
horizontal and full viscosity, we refer the reader to the surveys [41] and [32].

Results on local well-posedness of the Navier-Stokes equations with only horizontal
viscosity can be found in [1, Chapter 6].

The primitive equations without any viscosity and the equation for the temperature
are called the hydrostatic Euler equations. One important reason to consider this system
is the understanding of the behaviour of numerical weather and climate models because
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the time scale associated with viscous dissipation is beyond the current computational
capability [40, Chapter 2]. The primitive equations with only horizontal viscosity are
closer to this situation than the ones with full viscosities. For the hydrostatic Euler
equations, blow-up results were established by Wong [59], see also [6], and ill-posedness
results in Sobolev spaces were established by Han-Kwan and Nguyen [30]. Local well-
posedness was proven only for analytical data by Kukavica et al. [38].

For more information on previous results and the geophysical applications of the
primitive equations, we refer to the works of Washington and Parkinson [58], Pedlosky
[50], Majda [45] and Vallis [57].

Stochastic results. Stochastic modelling plays an important role in meteorology
and climatology. Current models in these fields consist of a deterministic dynamical
core based on equations of continuum mechanics and thermodynamics, complemented
by stochastic elements at several levels: random initial conditions, reflecting partial
knowledge of the initial state, and random inputs distributed in space-time, related for
instance to sub-grid stochastic parametrizations. Predictions are probabilistic in the
sense that they aim to produce a range of scenarios with associated probabilities, usually
by the method called ensemble forecasting system. For more information on this field,
see the review articles [19, 48] and the references therein. Of particular interest in
fluid dynamics and also for geophysical flows is a noise of transport type which appears
naturally when stochastic models are derived from Hamiltonian principles as proposed
in [33] (see also [4] for a brief description) and yield a physically relevant randomization
[2] with energy conservation.

Recently, the importance of transport noise was discussed in the connection with un-
resolved small scales and stochastic model reduction in [17, 18], see also the references
therein. Let v = vy, 4+ vg be the decomposition of the velocity into parts describing inter-
actions at large and small scales, respectively. In climate modelling, one is interested
mainly in the large-scale interactions captured in v;. Loosely speaking, the stochastic
model reduction replaces the small-scales interaction (vg - V)vg in the equation for vg
by additive noise of the form ¢~ d W for some « > 0 and studies the limiting equation
for vy, as € — 0. Under suitable conditions, it can be shown that the limiting equation for
vy, contains transport noise arising from the term (vg - V)vy,.

Stochastic primitive equations with full viscosities were studied by several authors.
In two space dimensions, i.e. neglecting one of the horizontal directions, the so-called
weak-strong solutions for multiplicative white noise in time were constructed by a
Galerkin approach by Glatt-Holtz and Ziane [25], where the weak-strong solutions
are weak in the PDE sense and strong in the stochastic sense. In particular, these
solutions can be interpreted in a pathwise sense. For initial data vy with vg, d,v9 €
LP(Q, L?>(M)) where () is the probability space and M the spatial domain, the authors
show the existence and uniqueness of such solutions for p > 4, so these are z-weak
solutions. They make use of a special cancellation related to the assumed periodic
boundary conditions. The long term behaviour of weak solutions of the stochastic two-
dimensional primitive equations is studied in [46]. The existence of global pathwise
strong solutions is shown in [23] for initial data in vy € L?(Q, H*(M)) also by means of
Galerkin approximation. The authors use continuous martingale theory and stopping
time arguments to treat the primitive equations with physical boundary conditions
without the above-mentioned cancellation by establishing stronger convergence of the
Galerkin approximations. Furthermore, a large deviation principle [20] and a central
limit theorem [29] are known to hold.

Regarding the 3D problem, Debussche, Glatt-Holtz, Temam and Ziane established a
global well-posedness result for pathwise strong solutions for multiplicative white noise
in time in [12] and the related work [11] by a different method than in the 2D case.
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They first show the existence of martingale solutions and pathwise uniqueness, which
then leads to the existence of pathwise solutions by a Yamada-Watanabe type argument.
The assumptions on the noise for global existence in [12] require certain smoothing
properties that fail for transport noise. The second author with Brzezniak [5] established
global existence for noise allowing transport by the vertical average of the horizontal
velocity v. In the case of additive noise, the existence of a random pull-back attractor
is known [28]. Logarithmic moment bounds in H2(M) are obtained in [22] and used to
prove the existence of ergodic invariant measures supported in H!(M). A construction
of weak-martingale solutions, i.e. martingale solutions whose regularity in space and
time is the one of a weak solution, by an implicit Euler scheme is given in [24]. Large
deviation principles [13] and moderate deviation principles [55] are known to hold for
small multiplicative noise and short times [15]. The existence of a Markov selection is
proven in [14] for additive noise.

All these above results are shown for the primitive equations with both horizontal
and (i.e. full) viscosity and diffusivity. To the best of our knowledge, there are no results
on the stochastic system with only horizontal viscosity and diffusivity or stochastic
hydrostatic Euler equations.

1.3 Main results

Let us now present a simplified version of the main results. Full (precise and more
technical) statements can be found in Section 2.7.

For separable Hilbert spaces & and X, Lo (U, X) denotes the space of Hilbert-Schmidt
operators from U/ to X. Let Ay = 0, + 0y, be the horizontal Laplace operator. For
k,l € No, we define the anisotropic spaces HYH., = H*(—h,0; H'(G)). An additional
subscript p or y in the symbol for anisotropic spaces denotes additional Dirichlet or
Neumann boundary condition, respectively, on the appropriate part of the boundary.
For example, LEHIIIW = L%(—h,0; H}(Q@)) introduces the Dirichlet boundary condition
to the lateral part of the boundary and, similarly, Hy L7, = {f € H*(=h,0; LY(G)) :
d.f =00onT, UT,} imposes the Neumann boundary condition on the top and bottom
parts of the boundary. The notation is explained in more detail in Section 2.1 below. For
simplicity, we also assume v = v, = vp. The symbol cgpg denotes the optimal constant
in the Burkholder-Davis-Gundy inequality, see Section 2.5.

Theorem (Maximal existence). Let (2, F,TF, P) be a stochastic basis with filtration IF =
{Fi}i>0. Let U be a separable Hilbert space and let o : L2H,  — La(U, L?)

1. satisfy the growth bound

2

|0t Camto@)| <ol U, )+ @) (-am)

1+1 ‘
2
Lo(U,L2) —

L2

forall U € HFHL{?, all (k1) € K := {(0,0),(1,0),(1,1),(2,0)} and some 5 > 0 such
that n? < 2v/(3 +8c%pa),
2. be Lipschitz as a map o : HYHLI' — Ly(U, HF HY, ) for all (k,[) € K with constant
v > 0 such that v* < 4v/(4c% pe + 1),
3. satisfy suitable bounds on the boundary I';, UT,.
Let (f,, fr)T € L*(Q; L?(0,¢; H% L2, x H% _L2 ). Then for all initial data Uy = (vo, Tp) €

2z xy D,z zy

L*(; (L2H}, ., < L2H,, ) O (HY L2, x H}, ,L%,)) there exists a unique maximal pathwise

(i.e. strong in the stochastic sense) strong (in the PDE sense) solution of (1.1)-(1.4).
The proof of the above theorem follows the method from [11]. First, the global

existence of martingale solutions is established for a modified problem with a cut-off.

Compared to [11], where the cut-off acts on the H'-norm of the solution, we need to use

EJP 28 (2023), paper 54. https://www.imstat.org/ejp
Page 5/56


https://doi.org/10.1214/23-EJP940
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Stochastic primitive equations with horizontal viscosity

a weaker cut-off acting on the L?Liy-norm due to the lack of vertical smoothing which
requires more involved estimates. After a standard argument using the theorems by
Prokhorov and Skorokhod (relying on compactness in the anisotropic spaces), the local
existence of strong (in the stochastic sense) solutions is established by the Gyongy-Krylov
theorem.

However, for the Gyongy-Krylov theorem, we need the to establish strong uniqueness
of martingale solutions in the space L*(0,T; L2H,, N L°L},). The required uniqueness
is a consequence Proposition 3.7 where we provide estimates on the difference of two
martingale solutions in the space H ;Lﬁy In this setting, the cancellation property of the
nonlinear term cannot be employed and higher order estimates, in particular estimate on
0.,U, seem to be needed to control the nonlinear term. This additional regularity of the
solution requires additional regularity of the initial data, namely Uy € H2L?, x H2L2,.
Compared to the deterministic case studied in [34], where uniqueness of z-weak solutions
is established in L?, the procedure requires additional boundary conditions for v and T in
the vertical direction. Similarly as in [7], we chose the homogeneous Neumann boundary
condition for the velocity field and the homogeneous Dirichlet boundary conditions for
the temperature. These boundary conditions are preserved by the primitive equations,
see Remark 2.3 for more details.

The smallness assumption on 7 and v come from the estimates in Lemma 3.1 (where
it suffices to take ¢ = 4 as will be made clear from the proof of existence) and Lemma 3.7.

Givenamap u: M — R?, letuw = h™! fi)h u(+, z) d 2z be the vertical average and let
uU=u—1u.
Theorem (Global existence). Let (Q, F,FF,P), U, Uy and o be as the Theorem above.
Additionally, let ¢ have the transport form

al(v)ek =V, -Vgo+ P, -Vgv+ hk(’l)),
oo(U)ex = UL -V T + gr(T,v),

for some U, : G — R?, ®; : (—h,0) = R?, U] : M — R? and hi(v), gx(v,T) : M — R?
such that (¥7)g, (), and (V) are controlled by n in ¢2(L>°) and hy and g, satisfy
suitable sublinear growth bounds. Let

Up = (vo,Tp) € L'3(Q; HY) N L¥3(Q; L'*?), 8,09 € LO(; LY),
and

loc loc

NL¥3(Q; L. (0, 005 L'32)).

loc

(for fr)T €L (% L}, (0, 00; HY, L2, x Hp, ,L2,)) N L3, L2 (0,00; HLL2,))

Let n* < 2v/(131 + 2¢% p;). Then the solution from the above theorem is global.

Global existence of solutions is established combining the (deterministic) estimates,
the logarithmic Sobolev inequality and logarithmic Gronwall lemma from [8] and an
iterated stopping time argument from [12, 5].

In [8], one of the key steps is an estimate on the asymptotic behaviour of ||v| 1« /q'/?
w.r.t. ¢ — oo which later leads to a bound on v in L> and v in L? using the logarithmic
Sobolev embedding and the logarithmic Gronwall lemma. However, due to the asymptotic
nature of the estimate, it seems impossible to get a similar bound in the stochastic setting
with noise acting on Vg u, see Remark 4.9. The issue is resolved by a straightforward
yet useful modification of the logarithmic Sobolev inequality allowing to substitute the
asymptotic bound (which would require ¥; and \Ilf to be zero) by bounds in L? with
q sufficiently large. It turns out that we can choose ¢ = 132, see the discussion below
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Proposition 4.1 for more details. With a bound in L'32, we are able to adapt the rest of
the argument from [8] to the stochastic setting and obtain the desired L2-integrability
in time of the L°°-norm and, in turn, a bound on 0,v using an argument similar to the
logarithmic Gronwall lemma.

In contrast to previous deterministic results [8, 34], we do not require the initial
data to be essentially bounded thanks to the modified version of the logarithmic Sobolev
inequality. Compared to previous results for the stochastic primitive equations with full
viscosity and diffusivity [12, 5], our approach allows for full transport noise. The key
difference to [12] are pressure estimates in L?(M) in Lemma 4.7 necessary to deduce
L%(M)-estimates for the velocity field in Proposition 4.8. In [12], the authors consider
an auxiliary Stokes problem with noise term from the original equation and then prove
estimates for the difference of the solution of the full non-linear problem and the solution
of the auxiliary Stokes problem. The difference solves a random PDE and standard
analytic tools can be used to estimate the pressure term. The disadvantage of this
approach is that it requires the solution of the Stokes problem to be rather smooth and
transport noise cannot be included for this reason. We follow the approach of [5] where
the conditions on the noise allow to obtain a random PDE for the pressure by using a
hydrostatic Leray-Helmholtz projection. Using the linear structure of the transport part
of the noise, we can go beyond the results in [5] and consider transport noise acting not
only on the vertical average of the velocity © but also on the remainder v = v — @.

The additional smallness assumption on 7 comes from the L?-estimates in Proposi-
tion 4.8, see also Remark 4.9.

1.4 Organization of the paper

In Section 2, we define the function spaces used throughout the rest of the paper and
reformulate the primitive equations as an abstract functional problem. In particular, the
discussion on the assumptions on the noise term ¢ and the definition of solution can be
found in Sections 2.4 and 2.6, respectively. In Section 3, we prove the maximal existence
theorem above. After defining the Galerkin approximations of a modified problem in
Section 3.1 and establishing bounds on the approximations in Section 3.2, we prove the
tightness of the corresponding measures and the global existence of martingale solutions
of the modified problem in Section 3.3. Uniqueness is established in Section 3.4 for
more regular initial data due to the use of the Gyongy-Krylov theorem. Finally, Section 4
contains the proof of the global existence of strong solutions using estimates on the
barotropic and baroclinic modes of the velocity, the logarithmic Sobolev embedding and
the logarithmic Gronwall inequality.

2 Preliminaries

2.1 Function spaces and notations

By L?(M), we denote the standard real Lebesgue space with scalar product

<fag>M = /M f(x,y,z)g(x,y,z) d(X7YaZ)7

with L?(G) and (f, g), defined analogously. We denote the induced norms by ||f||L2(M)
and || f|| 12(c)- respectively. If there is no ambiguity, we will not specify the domain in the
notation and write e.g. < f, g > instead of < f,g >/

For k € IN, the space H*(M) consists of f € L?(M) such that V*f € L?*(M) for all
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multi-indices |a| < k endowed with the norm

1AW e ary = Z IVl 2y -

loa| <k

where V* = 92199292 for o € IN§. The space H*(G) is defined analogously and we set
Hi(G):={f € H'(G) | flac = 0}. Again, we will write | f|| 5 if there is no ambiguity.

For non-integer s > 0, the Bessel potential spaces H® are defined by complex inter-
polation, see [56] for details. Analogous definitions hold for spaces H*? for p € [1, ]
and for Banach space-valued function spaces such as the Bochner space H'(0,t; LP(M))
and the anisotropic space H*?(—h,0; H"?(G)) for which we will often use the notation
Hj’pH;qu. We identify H® = H5?2. Furthermore, for s > 1, we write

LYH}, ., = L*(=h,0; H*(G) N Hy(G)), (2.1)
L2HY, ., ={f € L2HZ,| 8,,T =0o0nT} (2.2)
and
Hp L%, :={f € H*(=h,0; L%G)) : f =00nT, UT,}, (2.3)
HY L%, :={f € H*(=h,0;L%G)) : 0.f =0on T, UT,}. (2.4)

for the spaces encoding the boundary condition on the lateral and the vertical boundary.
The boundary condition 9, ,7 = 0 on I'; has to be understood as a condition for the trace
of Vg T on I for almost every z € (—h,0).

For the sake of completeness, let us recall the definition of fractional Sobolev spaces
WeP(0,t; X) for some Banach space X and « € (0,1]. For a = 1, let

Whe(0,t;X) ={ue LP(0,t; X) | Lu e LP(0,t,X)},
t
IOy = [ 10 + [kl as.

For o € (0,1) and p € (1,00), the fractional Sobolev spaces W*?(0,¢; X) are defined
by real interpolation. By [54], we have H*?(0,¢; X) C W*P(0,¢; X) for a € (0,1) and
p € (1,00). We can now state the following compactness result. For proofs see [53,
Theorem 5] and [16, Theorem 2.1], respectively.

Lemma 2.1. a) (the Aubin-Lions-Simon lemma) Let X5 C X C X; be Banach spaces such
that the embedding X, —<— X is compact and the embedding X — X, is continuous.
Letp € [1,00] and « € (0,1]. Then the following embedding is compact:

LP(0,t; Xo) NWP(0,t; X1) —<— LP(0,t; X).

b) Let X5 C X be Banach spaces such that X» is reflexive and the embedding Xo —— X
is compact. Let a € (0,1) and p € (1,00) be such that ap > 1. Then the following
embedding is compact:

WeP(0,t; Xa) —— C([0,], X).

Let us now summarize some of the properties of the anisotropic spaces on a cylindric
domain.

Proposition 2.2. The anisotropic spaces have the following properties:

1. Embeddings in the spaces H;** H;;! can be performed separately:

HIPHG o HIPHGE df HOP((=h,0) = H 7 (=h, 0)),
HEPH < H3PHT if H™(G) = H™(G).
EJP 28 (2023), paper 54. https://www.imstat.org/ejp

Page 8/56


https://doi.org/10.1214/23-EJP940
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Stochastic primitive equations with horizontal viscosity

2. The following anisotropic Holder inequality holds: Let p, p1, ps,q,q1,q2 € [1, 00] with
1,1 _1 1,1 _1 2 T g
ot =gt =gandfell Ly, ge L?LE;,. Then fg € LL], and
||f9||L§Lgy < ||f||L§1LZ,,1y HQHL;”?LZ% : (2.5)

3. Letve H!LE, . Thenv e LFLY, and

1/2 1/2
[ e o [ (2.6)
4. Letve H'. Thenv € L¥ L}, and
1/2 1/2 ) 2.7)

||U||Lg°L§y <c ||U||H;L§y HUHLgH,;y
5. Let «, 8 > 1/2. The following embeddings are compact:

L?HZ,NH!H,, —— L?H.,,  HPHS << LTL;,.
Proof. Checking the embedding properties of the anisotropic spaces and the aniso-
tropic Holder inequality is straightforward. The interpolation inequality (2.6) has been
established in [27, Lemma 3.3(a)] for p = 2. The more general case follows in the same
manner. The interpolation inequality (2.7) has been proven in [8, Lemma 2.3].

It remains to establish the compact embeddings. The first follows directly from the
Aubin-Lions lemma, see Lemma 2.1 a). The second embedding is a consequence of the
Aubin-Lions lemma, the continuous embedding H” Hy, — LHZ, N Hgvooijy holding for
some v > 0 sufficiently small and the compact embedding H*(G) —— L4(Q). O

2.2 Hydrostatic-solenoidal vector fields

We reformulate the primitive equations (1.1) and (1.2) as a system containing only
two-dimensional surface pressure ps and prognostic variables v and 7. The divergence
free condition J,w + divg v = 0 and the boundary condition w = 0 on I', U T, are
equivalent to

z
w)(t,z,y,2) = w(t,z,y,2) = —divg / v(t,x,y,2')d7, (2.8)
—h
0
divy / v(t,x,y,2')dz’ =0, (2.9)
—h

for v sufficiently smooth, e.g. with divy v € L'(M). The vertical velocity w is thus a
function of the horizontal velocity v. If we denote the vertical average and its complement
by v and v, respectively, i.e.

1 0
v(t,z,y) == E/ v(t,r,y,2')dz’ and ©:=v -7, (2.10)

—h
then (2.9) implies that the vertical average v is divergence free, i.e. divy v = 0. To ease
the notation from the typographical point of view, we sometimes write .Av and Rv instead
of ¥ and v, respectively. Hence, one identifies a suitable hydrostatic-solenoidal space as

L%(M) ={veCx(M)?|divgv = O}H~|IL2,

where C2° stands for smooth compactly supported functions. Note that this space admits
the decomposition

LE(M) =L2(G) @ {ve L*(M)? |7 =0}, (2.11)

o
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where L2(G) = {p € C*(G)?: divy ¢ = O}ML2 is the space of solenoidal vector fields
over GG. The hydrostatic Helmholtz projection thereon is therefore defined by

P,: L*(M)? — L2(M), P,v =1%o+ PaT, (2.12)

where P the classical Leray-Helmholtz projection on L?(G). More precisely, since due
to the product structure L?(M) = L2(G) ® L2?(—h,0), one obtains by applying P, that

LE(M) = L2(G) @ span{1} @ L2(G)2 @ LE(—h,0), (2.13)

where L2(—h,0) = {v € L*(=h,0) | fghv(z) dz = 0} and 1 € L?(—h,0) is a constant
function.

We now may reformulate the system (1.1, 1.2) as (see [49, Section 2.1] for more
details)

O — vpyAg v+ k xv
0

1
+—Vyps — VuT(z,y,2")dz
2 HPs — Bryg VH (z,y,2") (2.14)

+v-Vgv—w)o,v=f, +01(v,Vgv,T,Vyg T)Wl,
T —vrAgT +v-VygT + ’LU(’U)@ZT = fT + 0'2(1), Vv, T, Vg T)WQ

in M x (0,t), where p, is the surface pressure, and
v(s) € LA(M) for s € (0,t) (2.15)

complemented by the initial conditions (1.3) and boundary conditions (1.4). The system
is thus closed. We can reconstruct the full pressure p from the surface pressure ps by

0
p(z,y,2) = ps(v,y) +g/ p(z,y,2')dz, (2.16)

where p = po(1 — (T — T}.)) as in (1.1). We emphasize that p, is independent of the
vertical variable z.

Remark 2.3. In order to show the existence of strong solutions, we assume Ty, = 0
on 'y UT,. Note that the homogeneous Dirichlet boundary condition can be relaxed
to Ty = ¢, on I'y, and Ty = ¢, on I', for constants ¢, c,. Indeed, applying the linear
transformation 7' = T — Cy Z*};h + cb%, one immediately observes that To =0onl,Uul,
and that (v, T) satisfies (2.14) with an additional term w(v) %% and o (v, Vg v, T, Vi T))
replaced by oa(v, Vg v, T+ ¢, ZJgh — 7, Vi T). The additional deterministic term can
be handled in the same way as —frg fzo Vi T(x,y,z")dz’ in the equation for v and it
vanishes on I', UT',,. Since the inhomogenous Dirichlet condition does not introduce any
additional difficulties, we consider only the homogenous Dirichlet condition to simplify

the presentation.

2.3 Functional formulation

Let us now formulate the original equations (1.1)-(1.4) in an abstract functional
form. We also provide estimates on the nonlinear term demonstrating the importance of
the anisotropic spaces defined in the previous section. For simplicity, we assume that
V=1V, =Up.

EJP 28 (2023), paper 54. https://www.imstat.org/ejp
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We call the operator —vP, Ay the hydrostatic Stokes operator. Let
D(Ag) = (L:H} ,, N L2) x L2HY -

For U € D(Ay), we define the operator Ay by
_ (—vP;Agv
anv = (TR0

The representation of P, given in the previous subsection and (2.13) allow us to
introduce an orthonormal system of eigenfunctions of Ay using the known orthonormal
systems associated with the 2D Stokes operator the 3D horizontal Laplacian. To this end,
let (¢m)m C C™®(G)?> N H(G)? and (@m)m C C*(G)* N HY(G)? N L2(G) be orthonormal
bases of eigenfunctions of the Dirichlet Laplacian in L?(G)? and the Stokes operator in
L2(G), respectively, with corresponding increasing sequences of eigenvalues (fi, ), and
(fum)m- Moreover, recall that {cos(%™(z + h))}ren, forms a basis of eigenfunctions of the
Neumann Laplacian on L?((—h,0)) and, by the first representation theorem, a basis on
H'((—h,0)) and of H%((—h,0)) := {v € H*((—h,0)) | 0.v(—h) = 8.v(0) = 0} as well.

For m € IN and k € INy, we define the functions ®,, , € C*(M) by

m(z,y)cos (55 (z+h)) for k>0,

(2.17)
m (T, Y) for k=0.

(I)m,k(xvyv Z) =

hsS

—

= =

Then span{®,, x|m € N,k € Ny} is dense in LZ, in particular divy ®,, » = 0, because for
k > 0 we have ®,,, , = 0 and divy ®,,0 = divy $y, = 0.

For the temperature, note that the functions {sin(%*(z + h))},en form a basis of
eigenfunctions of the Dirichlet Laplacian on L?((—h,0)) and a basis on H{((—h,0)) and
of H%((=h,0)) := H%((—h,0)) N Hi((—h,0)). Let (¢m)m C C*°(G)? be an orthonormal
basis of eigenfunctions of the Neumann Laplacian in L?((G)? with an increasing sequence

of eigenvalues (\,,)., and define for m, k € IN the functions ¥,, , € C*(M) by

U i(2,y, 2) = %wm(x,y) sin (k]j(z + h)) . (2.18)

Then span{W¥,, x|/m,k € N} is dense in L?>. Hence, span{®,, x|m € N,k € No} x
span{¥,, x|m,k € IN} is dense in LZ x L?(M) and from the construction we observe
that it is also dense in D(Ay). Additionally,

/j‘m(I)m,k k> 07

g (2.19)
/J’m(I)m,h k= 0,

- AH \Ijm,k = )\m\Ijm,k and — PO'AH (I)m,k = {

therefore the sequences (U, x)m , and (P, x)m, i are indeed eigenfunctions of —Ay and
—P,Ay, respectively. Note that the eigenspaces of all the eigenvalues have infinite
dimension.

Proposition 2.4. The operator Ay is a self-adjoint unbounded operator. In particular,
D(Ay) C L2HZ,, the domains of fractional powers D(Af;) are dense in L2 x L? for o > 0.
Moreover, let

P, : L2 x L? — span{®,, ; | m < n,k € No} x span{¥,, 1, | m < n, k € N},

where ®,, ;, and V,, ;. are geﬁned in (2.17) and (2.18), be the orthogonal projection
onto its range, Q, := I — P, and || - ||o := ||Ax - |22 xz>. Then the following Poincaré

EJP 28 (2023), paper 54. https://www.imstat.org/ejp
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inequalities hold

Q] — Q9

Hp’nUHag SX PHU”@N HQTLUHCH S )‘n

g — Q]
no

1QnU||as, (2.20)
forn € N, 0 < oy < ap and A\, := max{fin, fin, A\n}-

Proof. Density of the domains of fractional powers is well-known, see e.g. [52, Theorem
37.2]. It is easy to see that the operator Ay is positive and symmetric, hence there exists
a self-adjoint extension. Having already found an orthonormal system of eigenfunctions
for which the corresponding eigenvalues don’t have an accumulation point, we conclude
that Ag itself is this extension. The inequalities (2.20) follow from the estimate

0
12012, = [ 1PV bz

0
< / max{fn, fin, )‘n}Q(az_al)HPnU(Z)”?{arM dz
—h oy

= max{fin, fin, A}~V | B,U |13

Q2 —a1?

where we used the inequality
|Bal ()2 < max{ g, fin, A Y22~ U (2)] gy

which can be derived similarly as in [26, Lemma 2.1] by considering the operator Ay in
L(G). O

Let B: H' x H' — H~? be the bilinear operator

P, [(v- Vg b + w(v)0:0°]

B(U,U") = ( (v- Vi )T 4 w(v)d.T"

) . U=@T),U" =0T e H.

The operator B is continuous by e.g. [49, Lemma 2.1]. In fact, by (2.24) in Proposi-
tion 2.5 below, B(U,U’) is well defined in L? for U,U” € L2H2, N H!H . The standard
cancellation property

(B(U,U%), |U*|9U*) =0,

holds for ¢ > 0, U = (v,T) and U* = (v*,T%) sufficiently regular. Indeed, denoting
b(vf,v) :=vf - Vg v + w(vf)d,v and b(v¥, T) := v - Vg T + w(v*)9, T with a slight abuse of
notation, we have

(b(v,v?), [v*|90%) = / (v - Vg o?)|vf |9 d(x,y, 2)
M

—/ (/ divy v(x,y,z')dz') D0 [vf| 9 d(x, y, 2)
M \J-n
1

=~ (divg v)[o* 72 — (divg v) 0! 72 d(x, v, 2)
q M

:07

where one uses the divergence-free vertical average condition (2.9). The identity
(b(v, T%),|T*|9T*) = 0 can be obtained similarly.

Proposition 2.5. We have the following estimates on the nonlinear term:

1. ForU € H', U’ € H'H}, and U* € L?H},, we have
(B@,U"),U)| < Ui [0 Nz, 10 2, - (2.21)
EJP 28 (2023), paper 54. https://www.imstat.org/ejp
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2. ForU € L?H!, NL¥LY, U* € L2H}!, N L*LL,, U* € HILY , we have

Ty’ Ty Ty’ xy’

(Bw,v"),U%)]
< (Ul s Ve U llzz + 1V Ull 2| U° e o MO arr s, - (2.22)

3. ForU € H!H,, withv € L?H}, ,,, we have

[(0.B(U,U),0,U)|
< Ul g, (190 0020002 + [V 001321001112 - 223)

4. ForU € LLY NL2H2 , U’ € L2H2, N H!H},, we have

Ty’ Ty’

IBU.U)E < UG s, V6 Uz (196 U7 e + 180 U 12)
+ |V Ul 2]| Ag Ul| 12]|0:U° || 12 (||82Ub||L2 + |V azUbHLQ) . (2.24)

5. ForU € H!H}, with (v,T) € L2H?

27172
Dy X L2HY 4, We have

TY’

1/2 3/2
(BW,U), A U)] < e Ul e, WU 5500 0175502,

1/2 1/2
e Ul s, U1, U1 oz WU Ny, - (2:25)

Proof. The estimates are established using the anisotropic Holder inequality (2.5). For
simplicity of the presentation, we prove the estimates only for the temperature.
To prove (2.21), we employ (2.7) to obtain

(o 9 T, T8 < ol s, 190 T 22l T s,

< ol 1T N 1T 2, -

z txy

Similarly, using [[w(v)||reer2, < [V v| 12 which follows from the definition of w (2.8), we
get

‘<w(v)8sz,Tﬂ>‘ < || Vi 0l 22 10T | p2na 1 TH |22 24 -

z xy zHxy

Continuing to (2.22), we treat the first term as above by

zy

(o Vi T 7)< Mole g, 19 el Tz,

Recalling that w = 0 on I', U Ty, we use integration by parts and the definition of w (2.8)
to get

‘ <w(v)aZTb,Tﬁ> ’ - ‘<divH UTb,Tﬂ> v <w(v)T", azTﬂ>‘

< lldivir vl 21Tl pa, 1 T* N2 ns, + llw(@)l]2 |1 T° || oo s, 10T 211,

z xy

< ||VE vz ||Tb||LgoL§y||TuHH1L4 .

zHzy

For (2.23), we use the cancellation property (B(U,9,U),d.U) = 0 and integration by
parts with v = 0 on I'; to obtain

(0,b(v,T),0,T) = (0,vVy T,0,T) — (div yvd, T, 0,T)

= — (divy 0.0T, 0.T) — (90T, Vi 0.T) + 2 (v - Vg 9.T,0.T) .
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Therefore, by the Holder inequality and the Ladyzhenskaya inequality, we get

[(0:b(0, T),0-T)| < c[|U]l .z 1, 10Ul 2, |V 0=U 2
< Ul g, (I U110V 2 + [ Vs 0:U 210U

To establish (2.24), we use the 2D Gagliardo-Nirenberg inequality to deduce

b 2 b
[v- Vi T7|72 < ||vHLg°Lf}W Ve T ||2L§L§y

< cllol}wps, 196 ez (I T2 + 18 T°)2z2)
Similarly, from the definition of w (2.8) and the interpolation inequality (2.7), we have

lw(©)0:T° (172 < lw()Fers 10117211
z Ty zTxy

< cl| Vi vl gz A 0l 2210-T° |z (1027712 + |V 0.7 12 ) -
Finally, regarding (2.25), we integrate by parts to get

(b(v,T), Ay T) = — (Vi b(v, T), Vg T)
=—(b(v,VgT), Vg T)
—(Vu 110, T 4+ Vg v20,T + Vg w(v)0,T,Vy T)
= — (Vg v10,T,Va T) — (Vg v20,T,Vu T) — (Vg w(v)0,T,Vu T)
= (yVy 8, T,V T) + (10, T,Ag T)
4 (02 0,T, Vir T + (020,T, Ay T)
—(Vu divg vT, Vg T) + (w(v)T,Vy 0,T),

where we used the boundary conditions for v, 7" and w. Hence, we have

[ (b0, T), Ay T) | < el|T|p2mz, [vlleers, Vi Tllrzrs,
+cllw)llezrs T peera, Vi 0.1 2

1/2 3/2
< Ul e, 1015500 WU,
1/2 1/2
+ e Ul s, U1 U1 e N0 W, - =

Next, we turn to a higher order estimate in the vertical direction used in Section 3.4
to establish the existence of solutions regular enough to prove uniqueness.

Proposition 2.6. For U,0.U € H}H,, with (v,T) € L2Hp, ,, x L?H}, ,,, we have

zy
(0::BU, V), 0..0)| <c|[Ullgrapa 102U WU 32 - (2.26)
Proof. Similarly as above, we only show the estimates for the temperature to keep the
presentation concise. We prove the claim by the anisotropic Holder inequality (2.5).
Using the cancellation (B(v, 0,,T),0,,T) = 0, we get
[(0,.0(v,T),0,.T)| < [(b(02:v,T),0,.T)| + 2|(b(0zv,0.T),0..T)]|.

Integration by parts and the Ladyzhenskaya inequality yield

EJP 28 (2023), paper 54. https://www.imstat.org/ejp
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(020 - Vi T,0:.T)| = [{T0..divg v,0:.T) + (T0:.v, Vi 9..T)|
< C||azzU||LgL§y ||UHL<;chy Ve 0::U|| 2
< ellUll e, 10130, 101320,
and
[(divig 00::T, 0| < Ul e ) 102U 1357 10:2U 1175, -
From (2.5) and the interpolation inequality (2.6), we deduce
|(divyg 0,v0,T, .. T)|
< c||divy 3zUHL<;°L§y HBZTHLzL‘}W ||azzT||Lngy
< c|ldivir O:UII7 ldivir .U 7 s 0N g, 102U 102U
< el Ugszs, N0azs WO
and
(@-0 8-V T,0-2T)| < ¢ |Ullygapa, 1Ulligsra, 1013230, O

We denote the hydrostatic contribution of the pressure by

0 ’ ’
Ap U = <_P”5Tgfz Vfé Tley, ) dz > ., Uel?d},

the Coriolis forcing by

EU = (ngox “), Uer?

and the regular forcing by

Fy = (P"f”> € H' a.e. in|0,t].
Ir

To ease up the notation, we define

_(FO) _ _ 2771
F(U)_(FT(U)> — AU +EU—Fy, UelL?H),

Clearly, F'(U) satisfies a sublinear growth condition and is Lipschitz continuous, that is

IE@) e < e (IFollze + Ul ) U L2H},.
|F(U) = FUH)e < el = U2y, U,U € 120},

Let U be a separable Hilbert space. For another Hilbert space X, let Ly(U, X)
be the space of Hilbert-Schmidt operators G : Y — X. We define the noise term
o: LEH;y — Lao(U, L?) by

. Pgal(v,VH ’U,T, VH T)
J(U) N < 02(U7VH UaTa VI‘I T)

) ; UelLlH,,.

Assumptions on the noise term ¢ are discussed in Section 2.4.
We may now reformulate equation (2.14) as

AU + [AgU + B(U) + F(U)]dt = o(U)dW,  U(t = 0) = Up. (2.27)
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To establish bounds in better spaces required for global existence, we need to use
the particular structure of the primitive equations, in particular the possibility of the
decomposition into the barotropic and baroclinic modes.

Recalling the notation in (2.10) and below, we follow [9] and split the momentum
equation in (2.14) into equations for the barotropic mode v

1 .

O — VAT + p—VH ps +0-Vu v =—N(0)+ AF,(U) + Ao, (U)Wh, (2.28)
0

divg v =0, (2.29)

where

AFU(U)*—kvarBT—g/ /VHTxy, "Ydz' dz +f,,

0
N(v) = %/ (V- Vgv + (divg ) v) dz
and the baroclinic mode v
OV —VvAgT+0-Vgo=—-0-Vygv—0-Vgo+ N@©)+ RF,(U) + RalWl, (2.30)
where
RE,(U) = Fy(U) = AF,(U) = —k x T+ f,

0 0 0
+ Brg {/ Vu T(z,y,2")d7 f% / / VuT(z,y,72")dz dz| .
z —h Jz

2.4 Assumptions on noise

We assume that o satisfies the growth conditions

lo @2 0022y < L+ 1U122) + 02l (~An ) V2], (2.31)
1000132y < e+ (U2, ) + 02 (e ) 20U, (2.32)
100 20 U)oy < 1+ 102y, )+ 01 U, (2.33)
1020 )3, ey < 1+ U r )+ 2100 (~ A )20 3, (2.39)

for U € L?H},, H'H! , [?H? and H?H} , respectively, with n > 0, and is Lipschitz

Ty’ Ty’ z7try xy’
continuous
o) = (U | L2y < ANU — UﬁHLzHl ,  UU'€lL?H),, (2.35)
9. [o(U) = (UM I swr2y S AVIU = U¥|lmamy . UU* € HYHY,,  (2.36)
2( oy zy
—Ag ) [o(U) = o(UY] |l@irey < WU = Ullpzpe,  UU* € L2HZ,,  (2.37)
2( s ) xy Yy
102 [0(U) = o (U] Il Lowzy <WU = U¥lzms,,  UU* € HZH,,  (2.38)

for some v > 0. An example of a noise term ¢ satisfying the above can be constructed
similarly as in [5, Section 2.5]. Furthermore, let on I', UT',,,

10:01 ()|, @220y < 00l 72y + 1T 12 () + Pl (=20 ) 20.00 20y (2.39)
lo2 ()12, @22y < cUld=022) + T2 () + 0Pl (=2 )/ T[Z. (2.40)

Under the above conditions, we show the existence of a maximal solution from Theo-
rem 2.11 in Section 3. However, to obtain global solutions from Theorem 2.12, we need
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stronger assumptions using the split into (2.28) and (2.30). Thus, in Section 4, we will
consider noise of the form
o1(v)ex = Uy - Ve U+ @ - Vg T+ hy(v),

(2.41)
oa(Uep = Vi -V T+ gp(T,v),

where (ey) is a basis of the underlying Hilbert space U, the functions ¥, : G — R?,
@, : (—h,0) — R, ¥T : M — R? satisfy
U, € Whe(Q), @, € W (=h,0), Ui e Wiewh>

xy

0.9, =00onT,UT, and hy(v), gx(v,T) : M — R? are such that

divyy Ahg(v) = 0 for divy 7 = 0, (2.42)
> D)0 < c(1+ w7 + IDv]|7.), D €{1,Vn,0}, (2.43)
k=1
D gk, DlI7a < c(L+1TN120 + IVa Ol170 + 0l74) » (2.44)
k=1
ST <n? S4B <02 S IREL 3 < 0. (2.45)
k=1 k=1 k=1

Moreover, leton I'y U T,

10:hi (V) L2(q) < ellOvlz2a), g llz2(a) < e(l0:v]|L2@y + 1T L2 (@)

The above assumptions imply

0,01 (v)ek =W, -Vygo,v+ 82@ -Vgv+ azhk(v), (2.46)
Aal(v)ek = (.A‘I)k) -Vyv+ Ahk(v), (2.47)
Roi(v)ey = Uy - Vag U+ (RP%) - Ve T + Rhg(v). (2.48)

Moreover, since (A®y) is constant, (2.42) yields divyg Aoy (v) = 0, in other words
(1 — Pg)Aoy(v) = 0in Ly(U, L?), (2.49)

where Pg is the standard Leray-Helmholtz projection on the 2D domain G. By (2.43),
(2.45), (2.47) and the boundary conditions for v, we get

(=20 )2 A0 (U 1y,n2) < PN B2 + e (14 11(=20 ) 20132 ) (2.50)
Example 2.7. The additional assumptions (2.42)-(2.45) are satisfied for

hi(v) = kT + V¥ + Xks
9k (v) = T + O - Vi T+ (0 + 0 + Xk

for sufficiently regular functions (i, vk, Xk, Yk, Ok, Ck U and xj such that 0,(x, 0,vk,
02Xk, O, Cx, Uy, and xi vanish on 'y UT,,.
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2.5 Stochastic preliminaries

Let (2, F,F,P) be a stochastic basis with filtration F = {F; },>¢. Let i/ be a separable
Hilbert space and let W be an IF-cylindrical Wiener process with reproducing kernel
Hilbert space U. It is well-known that if i, is a Hilbert space such that the embedding
U — Uy is Hilbert-Schmidt, the trajectories of W are continuous in time in Uj.

Let X be a Hilbert space. For a predictable process ® : (0,¢) xQ — Lo(U, X)) satisfying
1@ L2(0,¢;L5w, x)) < 00 P-a.s. the stochastic integral fo G dW is well defined, see e.g. [10,
Section 4]. We will often use the following two variants of the Burkholder-Davis-Gundy
inequality. Let ® € L?(£2; L2(0,t; L2 (U, X))) be predictable for some p > 1. Then

/(<I>dW
0

For proof see e.g. [36, Theorem 3.28, p. 166]. We note that the constant cgpc depends
on p, even though we will tacitly omit the dependence since it does not significantly affect
the results in this paper. A fractional variant of the Burkholder-Davis-Gundy inequality
has been established in [16, Lemma 2.1]. Letp > 2, ® € LP(Q; LP(0,¢; Lo(U, X))) be
predictable and let « € [0,1/2). Then

t
/<I>dW
0

2.6 Notion of solution

E sup

p t p/2
< conct ([ 1010 05) - 2.51)
s€[0,t] X 0

p t
]E’ chDGE/ 1917, 01, s - (2.52)
0

W (0,£;X)

We adapt the definitions from [11]. All the solutions considered here are strong in the
PDE sense. The definitions can be changed in a straightforward way to cover modified
variants of equation (2.27) which we will study in Section 3.

For the definitions below, let I/ be a fixed separable Hilbert space.

Definition 2.8. Let 1 be a probability measure on H' such that

| Wl dna(v) < .

1. A tuple (S,U,7,W) is a local martingale solution of (2.27) if S = (Q,F,F,P) is a
stochastic basis, W is an F-cylindrical Wiener process with reproducing kernel
Hilbert space U, T is a strictly positive F-stopping time and U = U(- A1) : X
[0,00) — H' is an IF-adapted stochastic process satisfying

U(-AT)€L? (Q;C’([O,oo),Hl)) ,

(2.53)
LjonU € L? (4 L, .(0,00; H  Hy,, N D(Ap)))
the law of U(0) is uo and the process U satisfies
U(s A7)+ / ApU + B(U,U) + F(U)dr = U(0) + / o(U) dW (2.54)
0 0

foralls > 0in H.
2. The martingale solution (S, U, 1) is global if 7 = oo IP-almost surely.

Definition 2.9. Let Uy € L*(Q; H') be an Fy-measurable random variable and let
S = (Q, F,F,P) be a stochastic basis. Let W be an IF-cylindrical Wiener process with
reproducing kernel Hilbert space U.

1. Apair (U, 1) is a local pathwise solution if 7 is a strictly positive IF-stopping time and
U=U(AT):Qx[0,00) = H! is an F-adapted stochastic process such that (2.53)
and (2.54) hold w.r.t. the stochastic basis S.
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2. Let (1,,) be an increasing sequence of IF-stopping times converging P-a.s. to an
F-stopping time . The triple (U, &, (7,)) is called a maximal pathwise solution if
(U, r,) is a local pathwise solution for all n € IN and

13
sup ||U||§,1+/ AU + U2 ds = oo (2.55)
s€[0,€) 0 =y

fora.a.w € {£ < oo}.
3. The maximal pathwise solution (U, &, (7)) is called global if ¢ = oo P-a.s.

Remark 2.10. The notions of martingale and pathwise solutions from Definitions 2.8
and 2.9 are the weak and strong solutions, respectively, in the stochastic sense. We
chose to adopt the terminology from e.g. [23, 11] to avoid any confusion with weak or
strong solutions in the PDE sense.

2.7 Main results revisited
The following theorems will be proved in Sections 3.5 and 4.4, respectively.

Theorem 2.11 (Maximal existence). Let (2, F, I, IP) be a stochastic basis with filtration
F = {F:}+>0 satisfying the usual conditions. Let U be a separable Hilbert space and
let o satisfy (2.31)-(2.40). Let (f,, fr)" € L*(%; L*(0,t; HY, ,L2, x Hp _L2)). Letn® <
2v/(3 + 8¢% ) and v? < 4v/(4ckpe + 1). Then for all initial data Uy = (vo,Tp) €
L2(; (L2H}, ., < L2H,, ) O(HR L2, x H}, ,L2,)) there exists a unique maximal pathwise
solution (U, T) of (1.1)-(1.4) in the sense of Definition 2.9. Moreover, the solution satisfies

tATN
E| sup HU||2H§L2 +/ U132 g1 ds] < 00 (2.56)
zy 0 zTrry

s€[0,tATN]

forall N € Nandt>0andU(s) € H} L%, x H}, L2, forall0 < s <7 P-a.s.

Theorem 2.12 (Global existence). Let (2, 7, I, P), U, Uy and o, be as in Theorem 2.11.
Additionally, let o satisfy (2.41)-(2.45) and let

Uo = (vo, To) € L'/3(Q; HY) N L¥3(; L), 9.0 € LY(Q; L),
and

(for fr)" €L L}, (0,00, HY, L2, x Hp _L%)) N LY/3(Q; L2 (0,00, HILZ,))

loc loc
N L¥3(Q; Lo (0, 005 L12)).
Letn* < 2v/(131+2c¢% ). Then there exists a unique global pathwise solution (U, &, (1,,))
of (1.1)-(1.4) in the sense of Definition 2.9. Moreover, the solution satisfies (2.56) for all
N eNandt > 0.

Remark 2.13. Even though we omit the dependence of the constant cppg in the
Burkholder-Davis-Gundy inequality (2.51) in the rest of the paper, let us note that
the conditions on v and ~ in the theorems above should hold for cgpg = cgpa(p) with
p € [1,2] for both Theorem 2.11 and Theorem 2.12.

3 Existence of maximal solutions

To establish local existence of strong solutions of the system (2.14), we study a
modified equation with a cut-off to make all the nonlinear transport terms globally
Lipschitz in suitable spaces. Local existence will then follow by a localization argument.
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Let 6 € C*°(R) be a fixed function such that
L1212 SO < Ty,

ie. 6(r)=1forr € [-1/2,1/2] and (r) = O for |r| > 1. Let 85(-) = 0(-/A) for A > 0. For
p > 0 fixed, we define

OU(®) = b, (IUO) 213, ) - (3.1)

We are looking for a solution U = (v,T') to the modified system
dU + [AgU + 0(U)B(U,U) + F(U)]dt = o(U) dW, U(0) = U. (3.2)

As we have already described in the introduction, the original system (2.14) doesn’t
provide any direct control over vertical derivatives 0,v,0,T. To work around this issue,
we use the basis defined in (2.17) and (2.18) and consider the spaces

H:=L2xL*and V := (L?Hp,, NLZ) x L2H,

with the corresponding inner products (-,-), and (-,-),,. By V/,V; we denote the dual
spaces

V'i=V{ xVy=L3H,} x L2H,],
where, with slight abuse of notation, H_' denotes the duals of Hj(G) and H'(G),
respectively. We denote the dual pairing in V' x V' by (-, -) ; to keep the notation simple.

3.1 Galerkin scheme

To define a suitable basis of Hz for a Galerkin scheme, one can take advantage of the
direct sum (2.13). In Section 2.3 we have defined for m,! € IN, k € IN, the functions ®,, j
and ¥, ; in (2.17) and (2.18) to be eigenfunctions of the hydrostatic Stokes operator
and the horizontal Laplacian, see (2.19). Recall that these functions are dense in Hz and
H,, respectively. We set

Hz ,, := span{®,, x|m, k < n}, Ho, = span{¥,, |m,l <n}, H, := Hz, X Ha,

and define P,, : H — H,, to be the orthogonal projection onto H,,, see Proposition 2.4. We
remark that this step is only possible because we consider a cylindrical domain. In the
case of a more realistic topography, one has to transform the domain into a cylindrical
one which leads to additional lower order terms in both equations.

Another consequence of having a cylindrical domain is the following important
property of the projector P,: For k,m € IN and for any function g € C*° (M), it holds

2 2

h
_m <97 _8zz(pm,k> = W <8zgaaz¢)m,,k> .

<ga (I)m,k> =
Similarly, we have (g, ®,,, ) = kf—; (0229, 022 P 1) if additionally 0.g =0 on I', UT', and
we obtain the same equalities for ¥,, , and g € C*°(M) with ¢ = 0 on I', UT,,. Hence,
when projecting the system (2.14) onto H,,, the projected equations do not only hold for
U but also for 9,U and 0,,U because of (2.39), (2.40) andw =0on T, UT,,.
We now project the primitive equation onto the finite-dimensional space H,, and we
look for a solution U" = (v™,T™) : [0,T] — V,, of the system of stochastic differential
equations

AU™ + [AgU™ + 0(U™)B™ (U™, U™) + F*(U™)] dt = ¢™(U™) dW (3.3)
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with the initial condition
Ut =0)=U} = (Pyvo, P,To), (3.4)

where
B"(.,:) = P,B(,), F"()=PF,F() and o"(-)(-) = Palo()(")].

Existence of solutions U" of the finite-dimensional system (3.3) follows by a standard
fixed point argument if Uy € H since the nonlinear term §(U™)B™(U™,U") is globally
Lipschitz and satisfies a sublinear growth condition thanks the cut-off function 6 and
the form of the eigenvectors {®,, i, ¥.,; | m,l € N,k € INo}. Note that such a solution
with enough regularity to have the trace of Vg T defined on I'; satisfies the Neumann
boundary condition for 7T'.

Note that v, (t) € Hz, encodes a divergence free condition and determines the
pressures p” and that the projected equations hold also for the vertical derivatives. Thus,
we have for 0,U™ the system

d0.U™ + [Ag0.U™ + 0(U™)0.B™(U™,U™) + 9.F(U™)] dt
= 0.Fy dt+0,0™(U™)dW, (3.5)

with the initial condition 0,U" (¢ = 0) = 0,U{}' and for 9,,U™ the system

d0,.U" + [Ay0,.U™ + 0(U™)0,. B"(U™,U™) + 0. F(U™)] dt
= 0,.F} dt+0..0™"(U™)dW, (3.6)

with the initial condition 0, U"(t = 0) = 0., U}

3.2 Estimates

In this section, we establish the main estimates needed to pass to the limit in the
Galerkin approximations.

Lemma 3.1. Lett > 0, ¢ > 2 and let Uy = (vo,Tp) € L4(2; H') be an Fy-measurable
random variable. Let o satisfy (2.31)-(2.33), (2.35)-(2.37) and let

Fy e L (;L9(0,t; HLL2,)) .
Assume v > 1% (* + qc4 ). Then the following holds:
1. The sequence U™ is bounded in
LO(Q;L°(0,t;HY)), LY (Q;L*(0,t; H H,, NL2HZ,)) .
2. Leta € [0,1/2). Then [, ¢™(U™)dW is bounded in
L9 (Q;W*9(0,t; L?)) .
3. Letq >4 andp > q/2. ThenU" — [ o™ (U™)dW is bounded in
L (Q; Wh2(0,t; L))

Proof. We divide the proof into eight steps. Due to the length of the estimates, we do not
try make the estimates as sharp as possible and rather aim for readability. In particular,
some of the constants below do depend on n even though it is not always necessary.
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Step 1: U™ is bounded in L9(Q2; L°°(0, t; L?)).
Applying the finite-dimensional It6 formula to (3.3) and estimating the trace term, we
have

A9, + av U927 (—Au )1/2U"||2 dt
< —qUn )42, Fr ) e+ LD o2 on @) 12, 4 4y db
+q| U952 (U™, 0™ (UT) dW) (3.7)
2
= IMdt+I dW
i=1
where we already used the cancellation property (B(U™,U™),U™) = 0. The linear part is

straightforward. For any € > 0, we have

t t
/ 7P| ds <qe / 101952 (= A )20 |24 ds e U™ 2,
0 0

1 n ! mn
+ 1 s (0L ([ 1R )
s€[0,t] 0

By the growth estimate (2.31) of ¢ in Ly(U, L?), we obtain

q/2

1y < THU ||%22||0 (U )H%Q(u L?)

n qlq—=1) 5, n
c(1+|U IIqL2)+T?7 IO %2201 (=0 ) 2013

The stochastic integral is estimated by the Burkholder-Davis-Gundy inequality (2.51) by

E sup
s€[0,t]

S
[ g o aw)
0

1/2
S ( / 1O 222 0™ (™) 2, 1 ds)

t 1/2
< aempcl ([ (14 10732) + 710" B 2(-000) 20" [ )
1 n n n
< 4 swp U2, + > peiE / U182~ A ) 207 3 s

s€[0,t]

N

t
+CIE/ L+ U2, ds
0

Collecting the estimates above yields

t
TE sup U714, + (g, v, m)E / U452 (— A ) V207 22 ds
0

s€[0,t]
t a/2
0O+ 1+ [ 0t as ([ 121 as) ]
0

where c(q,v,£,1) = q[v — e — 7*(%* + qck p)]- Choosing e sufficiently small, we employ

<cE
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Gronwall’s lemma to get

t
B sup U7} + B / 1019521~ A ) V207 22 ds
se|0,t 0

< ck

t q/2
U™ (0)]|F. +1+ </ | FE 1|72 dS) ] . (3.8)
0

Step 2: U™ is bounded in L%(Q; L?(0,¢; L2H}, ).
Since v > n?/2 by the assumptions, the gradient terms in the estimates of the correction
term I3 can be absorbed to the left-hand side of (3.7). Then (3.7), the estimates from
Step 1 with ¢ = 2 and the growth estimate (2.31) on ¢ in Ly(U, L?) imply

t q/2
( | oy oz, ds) <elT Ol + s U7+
0 s€|0,t

+ec (/Ot | Fg|% ds) " +ec (/Ot {um, o"(U™) dW>)q

By the Burkholder-Davis-Gundy inequality (2.51) we have

/2

q/2
E sup

+ ‘Z/4
< enpoE ( [0 el 0 ds)
s€[0,t] 0

q/4

/OS (U, ™ (U™ AW)

t
< CF ( [ e Ime) + 10l - 20 ds)

t q/2
L A B R
0

s€[0,t]

Choosing ¢ sufficiently small, we use the bound (3.8) from Step 1 to get

t q/2
E ( | =y ds)
0

t q/2
< cE [[[UM(0)]|7. + sup [[U™[[T. + 1+ (/ 1517 ds) ] (3.9)
s€[0,t] 0
t q/2
< cE |[|U"(0)][7- + 1+ (/ IF7 7 ds> ] ~
0

Step 3: U™ is bounded in L9(Q; L>(0,t; H1L?)).
To obtain the estimates for vertical derivative, we use the properties of the projector
P, in particular (3.5). Employing the It6 formula and estimates for the trace term, we
obtain

d[0U™[4. + qul|0-U™ || %22 1(—Au ) /20U |32 dt
< —q||0.U™|9,% (0. U™, 8. F™(U") + 0(U™) P, 0. B(U",U™)) dt
q\q — 1 n|1q— n n
+ 10D o 0 122)0.07 (W) 00
+ ¢[|0.U™| %22 (0,U™, 0,0™(U™) dW)

3
= Irdt+I} dW.

i=1
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Similarly as in Step 1, we estimate the lower order linear term as

t
/ s < ¢ s 1007 +c/ l0.U™ 1, ds
0

t q/2 t q/2
c(/ Ve U2, ds> +c</ 0. Fy |22 ds) ,
0 0

n n ag—1) 5 n
Iy <c(1+0.U ||§2)+Tn U HHle 1(—=Am ) 20,032,

and the stochastic term by the Burkholder-Davis-Gundy inequality (2.51)

the correction terms as

E sup

t
/ raw| < E sup 9.0 +cE/ L4 U™ %, e, ds
sefo,4] 1Jo 0 S

s€[0,t

t
P e E / 10U 952 (— A ) V20,072 ds

The nonlinear term is dealt with by the estimate (2.23). Recalling the form of the cut-off
0 (3.1), for ¢ > 0, we have

5] < cab(U™) Ul e s, I1Ve DU 727110-U11 % G

< ¢qp|| Vi 0. U||3/2||a f [
< qel|Vir .U 220U 932 + ceqp | 0.U™ |12

Collecting the above estimates, we obtain

1 t _ .
B3 Sup 10U 1% q,vys,n)/ 10 U922 (=2 ) /?0.U™ |17 dS]
0

s€(0,t
t q/2 t q/2
o0 @l 1+ ¢ ( [ 10.Fuleas) o ([ In0m I 0s) ]
0 0

t
+clE/ U™, + 18,0712, ds
0

< cE

where again ¢(q,v,2,1) = qlv —e — n*(qck pe + 45+)]. With e sufficiently small, Gronwall’s
lemma and the bound (3.9) yield

E

sup [|0:U" |7 / 10U 1522 (I(—=2m ) /20.U™|172) ds

s€[0,t]

t q/2
< ckE HU”(O)HQHley + 1+ (/ ||FUH%,1Lgy ds) ] . (3.10)
z xT O z xT

Step 4: U™ is bounded in L%(; L*(0,¢; HH,, ).
The desired estimate

t q/2
E (/ Ve 0.U™ |2, ds)
0

< cE

t q/2
1T (0)1 %1 12 +1+</ 1Fu % 2 dS) 1 (3.11)
zMzy 0 zHzy
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can be obtained from (3.9) and (3.10) with ¢ = 2 similarly as in Step 2.

Step 5: U™ is bounded in L%(Q; L>(0,t; L2H,,)).
Since our basis consists of eigenvectors of the linear operator Ay, we may use the It0
formula on (3.3) to obtain

(=20 20", + avll(~An ) 20152 A U™
< —qll(=Am ) 20|82 ((~An ) PUT, (= du ) V2EHO™) ) s
— all (= ) PO (=B )2, 0™ P (A )2 BUT, UM ) dt

q\q — 1 n(q— n n
e [N A

T all(=2m ) PUT 8 ((=Br ) 20", (~An ) 20" (U™) AW )

3
= IMdt+I7dW.
=1
Similarly as above, for € > 0, we estimate the lower order term and the correction term
by

t t t
g _
/I?dsgi/ ||AHU“||§2\|VHU”II%z2ds+cE/ Ve U™ 12, ds
0 0 0

1 t q/2
#1101+ ([ IRlas)
0

s€[0,t]

I < q(q—1)
2
From the Burkholder-Davis-Gundy inequality (2.51), we deduce

1A U321V U952 + ¢ (14 U2y ) -

E sup
s€10,t]

t
/14 dW‘< —E sup [|[VgU"||%. +cIE)/ 1—|—||U"||L2H1 ds
0 s€0,t]

P peE / IV U452 Agy U721 ds.
0

To deal with the nonlinear term I3, we use (2.25). We estimate the first term on the
right-hand side of (2.25) multiplied by ||Vy U ”H‘EQ using the form of the cut-off 6 (3.1)
by

n 1/2 3/2 n
UMl s, U1 U175 V0 U™ 1%
< ZIIAH U™ 22l1Ve UM 922 + cop® (L4 U122 + Ve U(|2) -
For the second term on the right-hand side of (2.25), we have

OUNU N e 13, U WU s U, |V U152

Ty L2HZ, Ty

< 45180 U3V U™
teep (14 U %y 1+ IV UM% + 190 00" 2:1V0 U752

Collecting the above and using the estimate

t
/ Vi 0.0 2|V U™ 457 ds
0

1 t q/2
< 7 Sup Ve U9 +c (/ Ve (9ZU"||2L2 ds) ,
s€[0,t] 0
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we deduce

E

1 ¢ _
1 Sup] ||VH Un”?ﬁ + C(pa vavn)/ ||VH UnH%22||AH Unlliz ds‘|
0

s€(0,t
t q/2 ¢ q/2
19 0 Ol 1+ ([ WFvlzas) ([ 1900 as) ]
0 0

t
4B [0 sz, + 10", 4

<ckE

where c(q,v,e,m) = gqlv — ¢ — 7)2((’;21 + qc¢%pe)]- Choosing e sufficiently small, we may
employ Gronwall’s lemma and (3.10) to get

t
B| sup [V U7 + / IV U452 | Agy U725 ds
s€[0,t 0

< ckE

t q/2
|U™(0)]|%, + 1+ </o HFUH%I;L?W ds) ] . (3.12)

Step 6: U" is bounded in L?(2; L*(0,¢; L2H?Z,)).
The estimate

t q/2
E (/ |Ag U™ |22 ds)
0

< clk

t q/2
||U"<o>||3p+1+(/ |FU||%I;Lgyds) ] (3.13)
0

follows from (3.10) and (3.12) with ¢ = 2 similarly as in Step 2.

Step 7: [, 0™ (U™)dW is bounded in L?(; W*%(0,t; L?)) for o € [0,1/2).
Using the fractional version of the Burkholder-Davis-Gundy inequality (2.52) and (3.12),
we get

q
i

/ (™) AW

0

t
<& [ 10" 0} g
We.4(0,t;L2) 0

< cE

t q/2
|U“<o>||g1+1+(/0 ||FU|z;Lgyds) ] (3.14)

Step 8: U"(-) — [, 0™(U™)dW is bounded in LP(Q; W"2(0,t; L?)).
The boundedness follows from the definition of the W2-norm, the estimate (2.24) and
the bounds from previous steps thanks to the assumption g > 4. O

Remark 3.2. By interpolation inequality (2.7), we immediately observe that U" is
bounded in the space L4(Q; L>(0,t; LI L3, ).

3.3 Convergence of finite-dimensional approximations

The convergence of Galerkin approximations is established in a similar manner as in
[11]. We will thus only briefly summarize the argument and provide details only in the
parts where the absence of vertical dissipation plays an important role.

We first establish the existence of martingale solutions.

Proposition 3.3. Let Uy € L9(Q; H') with vy € LY(Q; L2H} ,, N L2) for some q > 4.
Then there exists a global martingale solution of the modified equation (3.2).
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Proof. Let Uy be a Hilbert space such that the embedding ¢/ — U, is Hilbert-Schmidt.
Let

7200 +- T2 cor4 -1
Xy = L7(0,t; L;H,,, N L Ly, ) NC([0,t], H*(M)),
XW:C([O,IJ)],UO), X:XUXXW.
Let puf, py and p™ be the probability measures on Ay, Xy and &, respectively, defined
by
po() =PU" ), () =PWe-),  u"=uy < uy.
Recall that the embeddings

2 .T27172 1771 1/4,2 .72 2 727171 ocord
L0, L2H2, N HIH, ) N WY42(0,¢; L?) << L*(0,¢; L2H}, N LTLL ),
and
WP(0,t; L) < C([0,t]; H 1)

are compact by Lemma 2.1 a) and b) if ap > 1, respectively. We may follow the argument
of [11, Lemma 4.1] and use the bounds from Lemma 3.1 the Prokhorov theorem to
establish that the sequence of measures ™ on X is tight and therefore weakly compact.

By the Skorokhod theorem, there exists a probability space (Q,f" ,]ls), an increas-
ing sequence (n;); and X-valued random variables (U, W) and (U, W) such that
(U”k,W"k) — (U, W) P-a.s. in the space X. The processes W™ are cylindrical Wiener
processes with respect to the filtration "+ = { F"*},5, where F;"* is the completion of
o({U™(s), W™ (s) | 0 < s < t}). Moreover, by the Bensoussan argument from [3, Section
4.3.4], the couple (U™, W) solves the equation

AU™ + [AgU™ + 0(U"™)B™ (U™, U™ ) + F™(U™)] dt = o™ (U™ ) dW™

with the initial condition
U™ (0) = Uy*.

Similarly as in [11, Section 7.1], we can establish

U™ € L2 (fz; L2(0,6; L2H2, N HLHL,) 0 L (0, ; Hl)) :

(3.15)
U™ — U in L2 (Q L0, ¢, L2H2, N H;H;y)) :
and by the Vitali convergence theorem and the convergence P-a.s.in X
U™ — U in L2 (Q L0, 4, L2H}, N L;’OLgy)) . (3.16)
In particular, by further thinning the sequence we may assume that
U™ = Ull2ms,, U™ = Ullpeers, =0 as.in [0,1] x Q. (3.17)

The limiting process of [11, Section 7.2] can be divided into four steps: First, one
needs to establish convergence of the deterministic terms in the equation a.s. in [0, ¢] x Q.
This is followed by showing that the deterministic terms converge in L?([0,¢] x Q) is
shown for 1 < p < 2. Next, convergence of the stochastic term fo a”(U ”’C)d\f\/'nk in
L?(Q; L?(0,t; Ly(U, L?))) is established. Finally, one combines the previous steps and
shows that one can take the limit of the variational formulation of the equation provided

the set of test functions is sufficiently smooth and dense in L2 x L2
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The above argument from [11] carries over to this case almost completely with the
following two exceptions - the a.s. convergence of the deterministic nonlinear term and
convergence of gradient-dependent stochastic term. The latter has been established in
[5, Sectiom 3.4] and therefore it remains to show only the a.s. convergence.

Let s € [0,1] be fixed and let U* € D(Ay) N H!L;,. Then

QAS<9Q7“)B"kQWW7ﬁ”U-—HGDENU}ULLW>dr

<

t/SGQVW)<B(U”h(W”)A—B(U,UL}%LW>dr
0

+ +

‘/SGQWW)<BUi(D,QnUﬁ>dr

0
=P+ 1P+ 13

/SQWW)—wm)@x&ﬁym>¢

0

Since B is bilinear, we have

ne |
0

Hence, by (2.22), we deduce

zy

1< [ (107 = Olgzr, + 19 @ = 0)l12) 10" | |01 28, o
i \

S c (HU”k — UA'HLZ(O,S;L;}QLéy) —+ ||U7lk — ﬁ“L%O,s;LﬁH;y))

N0 220,55 1UF | 223, — O

We treat the term I} using the Poincaré inequality (2.20) and the bound (2.21) as

S
B < clQuUPluzm, [ 101100,
0

&
< AU loays) < <710 ot 0

where ), and Q,, are as in Proposition 2.4. Regarding 13, (2.22) and (2.6) yield

t t
E [ 56 ds <0 mns B [ 101 ds < oc.
0 0

By the Dominated convergence theorem with the convergence (3.17) and Lipschitz
continuity of , the estimate above implies I} — 0 a.s. in [0,¢] x Q. O

3.4 Uniqueness

To establish strong uniqueness of martingale solutions, we need additional regularity
in the vertical direction which can be obtained provided the initial data is additionally in
HY L2, x H} . L2,. By the particular structure of the primitive equations, the solution
also takes values in Hy L, x Hp L2, .

The requirement of higher regularity introduces a minor technical drawback as we
need a stronger cut-off to show the desired estimate. Let # € C*°(R) be as in Section 3.

For i1 > 0 fixed, we define

0U(s) =0 IV, ) - (3.18)

z"zy
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We are looking for a solution U = (v,T') of the modified system
dU + [AxU + O(U)B(U,U) + FU)]dt =0o(U)dW, U(0) = U,. (3.19)

Approximated solutions U” for this system are constructed as in Section 3.1. More-
over, the estimates from Lemma 3.1 also hold for these approximations since the cut-off
is stronger than the one considered in Lemma 3.1.

Lemma 3.4. Let the assumptions of Lemma 3.1 hold. Additionally, let 0..U, € L9(Q; L?),
0, Fy € L1 (Q; L(0,t; L2)) and let o satisfy (2.31)-(2.38) and consider the sequence of
approximating solutions (U™),, of (3.19). Then 0,,U™ is bounded in

L (9;C([0,t], L*)) N L9 (4 L*(0,¢; L2H,,)) - (3.20)

Remark 3.5. Assuming the solution U has the regularity from Definition 2.9 and (3.20),

in particular it is continuous in H?L2, and L?H} , one may use a variant of the

mixed derivative theorem [47, Proposmon 3.2] to establish U € C([O,t],Hle;éz) C
C([0,t],H}L3,). The argument of the cut-off function ¢ is therefore bounded on [0, ¢].

Proof. We only show 0, U™ € L1 (Q; L>(0,t; L2)), the other conclusion follows as in
Lemma 3.1 above.
Similarly as in Step 3 of Lemma 3.1, we apply It6’s formula and use (3.6) to get

d[0..U"|| 72 + av|0-2U" (| ZH( Ap )I/QazzUn”%P dt
< —ql|0--U" |92 (0.0, 0. F"(U™) + B(U™) P0.. BU™, U™) ) dt
qa\q — 1 ni||q— nirrm
+ 1D o U 12007 (U0

+q[0--U" 937 (0:.U™, 0..0™(U™) dW)

3
= IMdt+I} dW
=1

We estimate the lower order linear term as

t 1 t
Jimlas < s jovn e [ jovng as

s€[0,t]
t q/2 t qa/
+c (/ 10. Ve U™ |22 ds) +c </ 0. F2. ds)
0 0

a\q — 1 n n
WD 2o U2 - ) 00" s,

and the stochastic term by the Burkholder-Davis-Gundy inequality (2.51)

2
the correction terms as

B <e(1+ 10 e, ) +

E sup
s€[0,t]

t
/14 dW‘< YE sup 0..Um)0. +CE/ L4 U e ds
0 s€0,t]

2 pen’E / 0. U193 (~ B ) /20,0 |2 ds.
0
The nonlinear term is dealt with by the estimate (2.26). For € > 0, we have
n n 3/2 n13/2
1131 < DU U522 Ul s, 10" 30001,

2
< 20U 197 || (— 2 ) 20U ||+ eont 0205
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The estimates above lead to

E

1 q K n - n
5 SUP] ||(‘3ZZU"||£2 + (g, Vﬁ»ﬁ)/ 10..U /H%22||<_AH )1/2822(] ||2L2 dS‘|
0

s€(0,t
t q/2 r q/2
0.0 Ol + 1+ ([ oerpiteas) o+ ([ 107 B, 05) ]

t
e [0 s, + 810207 s ds
0 2o

<ck

where c(q,v,e,1) = q[v — ¢ — 1*(qc%pe; + 45+)]. For e small enough, from Gronwall’s
inequality and the bound (3.11), it follows

E

t
Sl[lp] HazzUn”%2 +/ HazzUn”%;2(||(_AH )1/26zzUn||%2)dS]
s€[0,t 0

< clkE

t q/2
10:2U(0)]|92 + U™ (0) |9, + 1+ (/ 1F e e dS> 1 - (321
0 Yy
O

Remark 3.6. The existence of martingale solutions of the modified system (3.19) follows
similarly as in Proposition 3.3 using the compact embedding H2H,,, —— H!L},.

We may now state the result on strong uniqueness of martingale solutions of the
modified problem (3.19).

Proposition 3.7. Let 0 < v < \/4v/(4c%pe+1). Let 9..Fy € L7(;L9(0,¢; L%)).
Let (S,W,U;) and (S,W,Us,) be two global martingale solutions of the modified prob-
lem (3.19) over the same stochastic basis S with the same cylindrical Wiener process W'.
Let Qo = {U1(0) = Ux(0)}. Let also 8,,U;(0),0,.U2(0) € L?(£; L?). Then U; and U, are
indistinguishable on () in the sense

P ({Lo, (Uy(t) — Us(t)) = 0 for all t > 0}) = 1.

Proof. The following proposition is established similarly as [11, Proposition 5.1] using
stopping times

t
2/3 2/3 2/3 2/3
ra =201 IO WO, 0315, I,

2/3 2/3 4/3
O N0 e WO s+ N0 22 MO,

4/3
+ HU2||L/gHgy + |\U2||%13H;y + ||U2H12Hg/:j-;y||U2||§{gH;y ds > n},

and the stochastic Gronwall lemma, see Lemma A.2. From the estimates (2.23), (2.24)
and (3.21), we observe 7, — oo almost surely. Defining R = (vg,Tr) = U1 — U and

R =1q,R, we have

dR + [AgR + 6(Uy)B(Uy, Uy) + F(Uy) — 0(Uz) B(Us, Us) — F(Uy)] dt
= (o(U1) — o(Us)) dW..

For fixed n € IN, we apply the It6 formula to ||R||fq1 ;2 and estimate the trace term, which
z My
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yields

d||Rlf3 12, + 2vII(—Dn )I/QRH%I;Lgy dt
< 2(R,F(U,) — F(Uy)) + 2 (8. R, 0.(F(Uy) — F(Us))) dt
2 <R, §(U)B(UL, Uy — 6(Us)B(Us, U2)> dt
2(0.R,0.(0(U1) B(UL, U) — B(U2) B(U, Un) )t

+ [|o(Ur) — U(U2)H%2(U,H;Lgy) dt
F 2R, 0(U1) — o(Us) AW) + 2 (0. R, - (o(Uy) — o(Us)) dW) .

For arbitrary T > 0 fixed and arbitrary stopping times 0 < 7, <7, <7, AT, we have

E / "y |(RF(UL) — F(UR) + (2R, 0.(F(Uy) — F(U2)))] dt

a

Ty A
< c]E/ Rl mrrz | Rl pa, db
T

a
Tb

Th " N
< %]E/ (=20 ) /2RI s +CEE/ 1Bz, dt

Ta Ta

forall e > 0 and

Tb
E [ ta,o) - o0 wmz,)

a
Th

Tbh R
<cB [ R, e’ | Lo~ Rl dt.

a a

By the Burkholder-Davis-Gundy inequality (2.51) and estimates similar to the ones in
Lemma 3.1, we obtain

/: (R.o(U) ~ o(Un)aW) +/

Ta

t

E sup
tG[T,“Tl,]

Ty 1/2
< ([ IR, lo@h) - oUyypz, o)

(0.0 (0(0) ~ o(U2) aW)|

1 Th o To
< 7B sup 1Bz +6721E/ ||(—AH)%R||§J;Lgydt+CE/ 117 2, dt -

t€[Ta,To] a o

For the nonlinear part, we use the cancellation property to get

(R BB - 0(U2) B(Ua, Ua) )
= (R, (0(U1) = 0(U2)) By, U1) ) + (R 6(U2) (BU1, 1) — B(Uz, U3)) )

< (B(U) — B(Us))B(UY, U1)> + <R, é(UQ)B(Ul,R)> + <R,§(U2)B(R7 U2)>
6(U1) — 6(Ua)) (R, B(U1,Uh)) + 6(U:) (R, B(R, Uy))
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and similarly
<8ZR, 0. (0(U)B(UY, Uy) — 0(Us) B(Us, Ug))>

= (0-R, (0(U1) = 6(U2))0. B(U1, V1)) + (0 R, 0(2)0-(B(U1, Uy) — B(Uz, U2))
= (0(Uy) — 0(Us)) (0. R, 0, B(Uy,Uh)) + 0(Us) (9. R, 9. B(Uy, R))
+0(U2) (0:R,0.B(R, Uy))
= (0(U1) — 0(U»)) (0. R, 9.B(Uy,U1)) + 0(Us) (9. R, B(9.U1, R))
+0(Uy) (0.R,8.B(R,Uy)) .
We concentrate only on the estimates for the part of nonlinearity with vertical derivatives
since the ones without vertical derivatives are easier to obtain. As above, we provide

details only for the estimates for the temperature for the simplicity of presentation.
Using the anisotropic Holder inequality (2.5) and the Ladyzhenskaya inequality, we get

10-B(om, To)l 2
= HazUR -V Ty — divg vgd, T + vg - Vg 0,15 + w(R)aZZTQHLZ,Lz}”/f
< C(HazRHLngy”VH Usllrzrs, + [|diver Rl|peer2 102Uzl r2rs

+ IRl z22s Ve 0:Usllpeo 2, + lw(R)|lpeor2 1022Uall 1214 )

zy zy zy zy

< c(IRlmiz2 102l 222, + | Rl Lo mn 10:Unl| L2 s,
+ | Rl z2ps Vol g2y, + ldiver Rl 2z |Usl sz L)
1/2 1/2
< c(IRmiez, U2l 2 a2, + |1 Rl arses, 1Uallyfi s [0l

1/2 1/2 1/2 1/2
RIS VRIS s 1Uallmzis, + IRl c2ms, 03 102l )

1/2 1/2
< (IR |z, 10allszms, + IRy, Iolf5 s 10212

1/2 1/2
+ I RI IR [T a2, )

z xy

which yields

6(U2) (0. R, 0. B(R,U2))| < 0.Rlls21s, 110-B(R, U 179

1/2 1/2
<RI e IR g, 10-BR, U)o 079

3/2 1/2
< clRlira, IR iy, |Vl zi, + el Rlasre, |1 Rl sy, U a2,

zy

1/2 3/2 1/2 1/2
el R s IR s 102 s 102 e,
9
< GI=20) 2RIz 15,
4/3
e (1021752, + Vel + WV2lirzns, 1Vl iy, ) Rl 2, -

Similarly as above, we deduce

||(3Z’U1, TR) ||L2L4/3 = ||(9Z’U1 - Vg Tgr + divyg UlaZTRHLQLz;/a
zHzyY zHzy
< |0zv1llezps [IVE Tl L2, + Ve 01l 22 10:TrI 2 oo

1/2 1/2
< c(lULlE e 10 g 1Rl
1/2

1/2 1/2 1/2
UL, O s RN IRI s )
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which leads to
6(U2) (0= R, B@-U1, T))| < 0B 214, 0-BO-Ur, Bl 2 0
%HR”HlHl +C€HR”H1LZ ||U1HH1L2 ||U1||H1H1 :
Furthermore,

||8 B('Uth)HLz = Ha vy - Vg 11 — divg 110,11 +v1 - Vg 0,11 + w(Ul)azzT1||L2
< C(Ha U1HLO0L4 HVH U1HL2L4 + ||d1VH U1||L2L4 ||6 U1HLocL4

zHxy

+ Uillr2ree [V 0:Ur||neerz, + lw(Ui)||Leora 10:2Unlp2ra )

1/2 1/2 1/2 1/2

< (10U 2 2 10V 12 gy IV Ul 72, IV Ul oy,
1/2 1/2 1/2 1/2

+ 0L, |U1HLgH;y |azU1||LgoLiy 0.0

1/2 1/2
0L N0 e, 192Ul e,
1/2 1/2 1/2 1/2
+ @012 w2 g 102Ul 72 192201025 )

1/2 1/2 1/2 1/2 1/2 1/2
c(HU1||,{3L5y||U1||LgH;y||U1||I;3H;y||U1HLgH2 + U1l ||Ul||L/sz 1Tl 2, )

ZHg,
Hence, by the Lipschitz continuity of the cut-off 6, we have

(6(Ur) — 6(U2)) (0 R, 0-B(Uy, U1) | < c|[Rllms, 10 Rl| 2 0-B(Uy, Uy) | 12
< eRIG e IRI s (1032 10z 10U 103 e,

1/2 1/2
+ U135 / IOz ULz, )

2/3 2/3 2/3 2/3
(=201 B2\, + e (UL 10T IO s 1017,

2/3 2/3 4/3
O NN s 1032, ) IR IR 2 -

<

[« N0

We conclude

To

1 . R
5 s [Rlss, + clnen) [ I-Bu )2 R, ds

SE[Tq,Tb] Ta

E

< CBIR(r) 31,

Tb
2/3 2/3 2/3 2/3
+ CE]E|:/ (1 + ”Ul”H/ngyHUl”LéH;yHU1||H/§H;yHU1HL/§H§y
T

a

2/3 2/3 4/3 4/3
S e A [y 1o M [ P [
A0 2 10 ary, + 102012 2 1022 VIR 12, dt}

where c(v,e,7) = 2[v — e — v*(2¢% p; + 3)]. From this, the claim follows by applying the
stochastic Gronwall lemma, see Lemma A.2, and recalling that T was arbitrary. O

Remark 3.8. The last estimate in the above proof also identifies U; = Us in the space
L?(0,T; H!H},) for all T > 0 IP-almost surely. The identification therefore holds also in
the space Xy = L?(0,Y; L2H}, N L L;,) from Proposition 3.3 which justifies the use of

the Gyongy-Krylov theorem in the proof of Theorem 2.11 below.

3.5 Proof of Theorem 2.11

The existence of global strong solutions of the modified problem (3.19) for initial
data Uy € L9(Q; H' N HZL2,) for some ¢ > 4 follows similarly as in [11, Section 5.2]
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from the Gyongy-Krylov theorem and the pathwise uniqueness established established
in Proposition 3.7, see also Remark 3.8. Thus, we omit the proof.

In contrast to the approximations in [11], where the cut-off function in (3.19) does
not start at 0, the cut-off in (3.19) may be active from the initial time ¢ = 0. A localization
procedure that also establishes existence of local solutions of the original equation (2.27)
for initial data in L*(Q; H' N HZL2,) is therefore required. For n € N, let

Qn :={n—1<|[Uollur + [Uollnzr2, <n},  Uon =Uslq,,

and let U,, be the global pathwise solution of equation (3.19) with cut-off 6 with 1= 2cen,
where c¢. > 0 a fixed number such that | fllmrs, < ce(|fllmzrz, + | fllz2m,) for all

feH?L, N L2H],, and initial data Uy, € L®(; H' N HZLZ,). Let U = Y 1, U,.
Let us fix M > 0 and define the stopping times

= inf{t > 0| Unllzs + |Unllmzzz, > Qn},

t
M — inf {t >0 sup ||Unl?n +/ [(=Ag Uy ||72ds > M + ||U0,n||§,1} :
s€[0,t] 0
Lett =", 1q, (T# A Tfl”). Clearly, 7 > 0 P-almost surely. It is now straightforward to
check that (U, 7) has the desired integrability and is indeed a local strong solution.
Existence of maximal solutions follows similarly as in [5, Section 3.4]. This concludes
the proof of Theorem 2.11.

4 Global existence

In the whole section, let (U, £) be the maximal solution established in Theorem 2.11
and let Uy, o and f,, fr satisfy the assumptions of Theorem 2.12. For the simplicity of
presentation, we will not list list the smallness requirements on 7 in the statements of
the auxiliary results in this section since they are easily recoverable from the proofs.

The proof of global existence combines the technique from [12] with the use of the
logarithmic Sobolev inequality from [8]. In particular, our goal is to find a sequence
of stopping times px satisfying px — oo and px < £ for all K € IN. In the process, we
obtain an inequality of the form

f(t) < f(to) + / o2 £(s) ds,

to

where f contains certain Sobolev norms of the solution, see Lemma 4.11. To control ||v|| s,
we need the logarithmic Sobolev inequality. After that, we employ an argument similar
to the logarithmic Gronwall inequality from [8, Lemma 2.5], see also the references
therein.

Proposition 4.1 (Logarithmic Sobolev inequality). Let p1,ps € (1, 00) satisfy p% + p% < 1.
Then there exist r1,r9 € [2,00) such that for all F € Lng&’;’; with 0, F € L2 we have

£ s
o < (Cpam max ———
[Fl = < Cp, aX{Li:?f; X

dog (e + ||Fllzes + ||[Va Fllper + ||Fllzes + |0:F||ze2),  (4.1)

for any A > 0 provided all the norms are finite.

Proposition 4.1 can be proved in exactly the same manner as [8, Lemma A.1], the only
difference being using the maximum of several LP-norms rather than sup,cs o) [|.f e
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The numbers r; can be computed explicitly. From the proof of [8, Lemma A.1], we
observe r; = (¢ — 1)k, for some ¢ > 3, where

2
1 pi (1"‘2]':1 aj)
o = - KR; = 3 .
Pi 1=> 1 q
Below, we apply the inequality with p; = 6 and p, = 2, choosing ¢ = 3 we get

22 44
T1:(3—1)K]1:132, 7'2:(3—1)?:?

Moreover, since r; > r5, we observe

F T F T F r
max{l,max””f} < 1+max% §C<1+””>L\1) ’
=12 Ty =12 Ty 1

and therefore (4.1) reads as
|FlLe < e+ ||F|[pm)logh(e + [[VaFlle + [|Fll + [0:F| L2 + | F||2). (4.2)

Let us start with the standard energy estimate.
Lemma 4.2 (L2 bounds). Let ¢ > 2 and Uy € L4(Q; L?>(M)). Let the forcing Fy satisfy
Fy € LY(Q; L} (0,00; L2(M))). Then the stopping times ¢ defined for K € N by

loc

tAE
Ti'! = inf {S 20| sup [|U]7- +/ U152 U2 gy, ds
s€[0,tAE) 0 =

IAE q/2
" ( | W0, ds) > K}
0 Ty

satisfy 7Y — oo P-a.s. as K — oc.

Note that the assumptions of Theorem 2.12 are such that the above Lemma can be
applied for ¢ < 16/3.

Proof. Similarly as in Step 1 of Lemma 3.1, we deduce

tATN
—2 2
E| sw U]+ / 101522 U122y, ds

s€[0,tATN]
tIATN 5 q/2
Uo||‘22+1+(/ ||FUL2ds> ]
0

< CGLE

By the monotone convergence theorem, we get

E

tAE
—2 2
sup [[U]]%, + / Ul U||L3H;yds]

s€[0,tAE)
tAE q/2
<GE [|Uofl7> + 1+ (/ (Va5 ds>
0

The a.s. convergence to infinity of the auxiliary stopping time 7}, defined by

SAE
T}(:inf{520| sup ||UH%2+/ ”UH%;Q ||UH%2H1 drzK}
rE€[0,5AE) 0 =
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follows by the first claim in Lemma A.1. Hence, the second claim in Lemma A.1 with
U(s) = 57/2 leads to the convergence of the auxiliary stopping time 7% defined by

q/2

SAE
77 = inf 320|</ 101172 1 dr) > K
0 1HG,

The proof is concluded by setting 77 = 7). A T%. O
4.1 Estimates by splitting

Next, we decompose the momentum equation into equations for barotropic and
baroclinic modes 7 and v in (2.28) and (2.30), respectively, to establish estimates later
leading to control of the LP-norm of the solution. Note that the baroclinic mode is
mean-value free in the vertical direction and 0,v = 0.v. Thus, the vertical Poincaré
inequality

0
[ 10174 < 0L gy = callOvlha iy
holds. This implies
Iollze < I9lzs + 1ollzo < (197l + 9:0]20) . 4.3)

It is straightforward to check that ||Av||zac) < h™ 90| e and [Ro|ze < (1 +
h=4)|v]| L.

We begin with an open estimate for v similarly as in [31]. In Lemma 4.4, we will
combine the estimate with an estimate for v to obtain a useful bound.

Lemma 4.3. Forany N € IN, ¢ > 0 and any two stopping times 0 < 17, < 7, <t A 7y, it
holds

E

1 ™
5 sup II(—AH)l/ZﬁIIQLz+C(V76,n)/ IIAHvllizd%

2 SE[Ta,sTb] “

<ec (]E||(—AH Y25(7) |2 + 1) s

Tb
2 2 _
B [ (U4 U 101, ) (-2 ) /201

a

Tb
—12 ~ ~
+CEE/ 1012, + ol 5e + 1181V T3 ds,
T,

a

where c(v,e,n) = 2[v — e — n*(3 + 2¢% ;)] and the constants c, c. are independent of N,
T, and 1.

Proof. We apply the It formula to ||(—Ay ) /2 Pg- ||i2 and obtain
dll(=2u )?]72 + 20 Ag T]|72 dt
< 20/(=2u)"2 (=8 ) /35, (~ 2 ) /2 Pa [AF,(U) = (3 Vi 7) = N(B)] ) dt
+2[[(= 25 ) Aoy (U) 17, 04,12 At
+2((=An)"25, (~ A )2 Acy (U) AW ),

where we already used Pov = U and Pg Ao (U) = Aoy (U) from (2.29) and (2.49),
respectively. In [34, Lemma 5.3], it was shown that, for ¢ > 0, we have

(=225, (=80 ) 2@ - Vi 7) + (~2u ) 2N (@)
_ _ ~ ~ 9 _
< Ce (1132 ol 2y, (=20 ) 2032 + 1151Va 9132 + = 1A 7
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and
[((—an)25, (2 ) 2 AR, )|
< Ce (IVa TI3e + ol + [|Fll7) + 5 1Au 7

By the sub-linear growth of Ao, (2.50) and the Burkholder-Davis-Gundy inequality (2.51),
we deduce

2[E  sup

SE€[Ta,Tb]

/OS <(—AH V2%, (— Ay )1/2A01(U)> dW‘

1 ™
< 3B sw (-8u) 20l + koo’ | Aol ds

SE[Tq,Tb] a

t
+ CE/ 1+ [[(—An)Y?0|2. ds.
0

We deal with the It6 correction term by (2.50), bounds from Lemma 4.2 and ||Vg 7||;. <
c||Va vl 2 < c||U|| 25 - The claim follows by collecting the above estimates. O
2Hz,

Lemma 4.4 (H' bound for v and L* bound for v). The stopping times 7%4 and 722 defined
for K € N by

B SAE
T;g4:inf{szo| sup [l + [ IﬁlvﬂllizerK}v
re ) 0

[0,sAE

_ SAE
% = inf {s >0| sup ||(—Ax)Y?7|%. +/ 1A |3 ds > K} :
ref0,sNE) 0

satisfy T, — oo P-a.s. as K — oc.

Proof. Recalling the cancellation property of the nonlinear term, we apply the It6 formula
to ||7]|7+ and obtain

d|[ol|7s + 4v (1101Ver 0l|72 + 2[|[0]Ver [0]]7.2) it
< —4{[3]’0,RE,(U) — v - Vv + N (7)) dt +6 Z ([5]%, (Ro1(U)ex)?) dt
k=1

+ 4(|0]*v, Ro1 (U) dW)

almost surely. Integrating by parts, we get

0 0
4 ‘<|5|237, BTg/ Vy T(z,y,2") dz'>’ <c / T(z,y,2")d7
. . L4

2 ~112 ~ ~12
< e |32, 31150 + £ 11131V 9113

1121V 0]l 2 [0l .4

2 ~12 ~ ~12
< e TN 2 g, 19117 + < 1131V 91172

for € > 0 arbitrary. A similar estimate for the term with double vertical integral can be
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established in a similar manner. Hence, by the Young inequality, we have

4/% (5125, RE,(U))] ds

Ty
o
< [ e (173, 1813+ | 7
Ta -
Th _ o Th 9 i
<e [ IaIVa TS dste [ (14171, ) 0+ L) 0
Ta T

L

1 b
1 sup ||5||%4+c</
4se[Ta,‘rb] Ta

for any stopping times 0 < 7, < 7. Following [31, Proof of Theorem 1.1 in Section 6,
Step 3, integrals I7 and Ig], we obtain

~ ~ ~ ~12
LB+ 1L ) + < 1319 91172 ds

~ 112
foll  ds
L4

A[([o1*0, =0 - Vo + N ()] < || Vi 0| [10l| 74 + €ll|9] Vi 0175

Using (2.48), (2.43) and (2.45), the boundedness of the operator R and the Holder and
Young inequalities, we get

6> ([0, (Ro1(U)ex)?)
k=1

= Z (01, (W), - Vi o + (R®) - Vi T + Rhg(v))?)

62<|v|2 1+ WWs - Vi o2 + | (R®y,) - va2+cg|th(v)|2>
(4.5)

< (6n* + 22)I[01Ve OlIZ> + ce (101124 I Va TIZs + 010l Zs + 011Z4)
< (60 +20) |91V 0ll72 + ccl[@lZs (IVa OlZa + (0] s + [7l]24)* + 1)
< (60* +2¢) |91V 0|72 + ccl[T 24 | Ve Tl 2| Ay 9 12

+celol s (19112 + Ve o)z +1)

e~ Eon _ .
< (67" +2) [0V Bl + 51 An BlIZe + cc2(1+ Vi BlIZ2) (1 + RNZs)-

Similarly, we deduce

Z| |v\2v Ro1(U)ex) |

k=1

Z | {|0]?5, W, - V& T + (R®y) - Vir 0+ Rhy (v)) | .

n|uv|vHv||Lzuv||L4 + (0134 IV ol o + 18] 3allv]l oo + [[7]124)
1/2 —nl/2

< |01V Bl 2 [T 24 + ellBl3a Ve B 357 A Tl 1

+e (o) Ls + 15134V ol 2 + 1) .

Let K, N ¢ Nbefixedandlet0 <7, <7, <tATN A 7'}?4. By the Burkholder-Davis-Gundy
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inequality (2.51) and (4.6), we obtain

4E  sup

SE€[Ta,Ts]

2
Th oo
< 4cppclE / <Z | ([01?0, Ro1 (U)er) |> ds
Ta \k=1

a

/T (925, Ro1 (U)) dW‘

1/2

Tb
< 4CBDGE</ V21’ |[[6] Ve Bl[72 1974 + ellD) Gl Ve | 2| Ary T 22
Ta

1/2
11+ GV Bl + 1ds>

Tb
<lE swp |B1L + 1622 pePE / 121V 3112 ds
T

SE[Ta,Tb] ”

DO =

Tb
+ CIE/ PNZsll Ve ll 221 A Bl 2 + 191125 + 191124 Vi TIZ2 + 1ds
’ T

b
< | A I3 ds

DO =

~ LS - 5
E sup ||UH%4+16623DG772E/ |||v\VHvH%2ds+§]E/

SE[Ta,Tb] Ta

To
dee [ [V (1 () ds.

a

Collecting the above, we deduce

E

SE[Ta,Tb]

<E {ca(ra)n; +g/

_ 3 ™ ~
s [+ (v (koo + 5 ) ) | |v|vHv||izds]

Tb
1A 7|2 ds}

a

To

Tb ~ 2 2
+ Ca,EE/ (1 + HUHQLgHiy)(l + ||%HAI{4) ds +e (/ L4 db) ’

Jo

Next, multiply (4.4) by b > 0 precisely determinetd later and add it to the estimate above
to obtain

b _ 1 T
E 3 s[up ]H(—AH)1/2@||%2 +2b <1/—5—772 (2+202BDG>)/ |AHUH%2dS}
SE[Ta,Tp Ta
- 3 ™o ~
+ | s [l d (v oo ? (dckno+ 3 ) ) [ IRV ds]
SE|Ta,Tb Ta

Tb

< chE [n(—AH Pl + [

Ta

2 2 _
(U+ 101 101y ) 200

Tb .9 ~ " B Tb _
+ czbE {/ 1+ ||U||i§H;y + vaHm + 19|V U||2LQ ds] + EE/ | Ag o]|32 ds
a a 2 2
ds) .
L4
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With b = %‘5 and z = 2vbe, the above reads as

1 7o
B s (-8l + 2 (v=2-7 (5+2h0c) ) [ 12wl ds]
S TaTh Ta
~ 3 ™ -
+E| ]Ivlli4+4<v—26—n2 (4800 -3) ) [ 1%l ds]
SE|Ta,Tb Ta
Tb - 2 2 Th -
< clE ||(*AH )1/25(7'@)”%2 + HFﬁ(TH‘)HZ}fI + (/ f’u 4 dS) +/ ||fv||iz dS‘|

Tb
2 2 _
e [ 1+ (IO 10y (-0 ) 20 s

a

Tb
+ CE/ U2y, + A+ UM L2z, 1PN 74 ds,

a

Choosing ¢ and ¢ sufficiently small, we may apply the stochastic Gronwall lemma
(Lemma A.2) to get

E  sup [0 74 +E sup (=2 )97
s€[0, AT ATN] SE[0 AT * ATN]

t/\‘IJKUA/\TN 5
LE / 1315 D112 + [| A 022 ds
0

< CikE

t/\‘r;(” 4/\7'N
IBO)[74 + 11(—Ae ) /*0(0)[172 + 1+ / 10223, ds
w,4

AT ATN 9 2 tAT AT
+CkE / |7, as +/ 17122 ds
0 L4 0

Clearly, the right-hand side of the above estimate is uniformly bounded w.r.t. N. Passing
to the limit w.r.t. N — oo, we observe

fo

sup  [[ollza+ sup [[(—Am)V?0)7.
sC[0 AT IAE) sC[0 AT AE)

tATEANE )
+/ 0| Ve v 72 + || A T|3.ds < o0 (4.7)
0

almost surely. Recalling 7-[“;’4 — oo a.s. as K — oo and (4.7), we deduce

sup [[0f|74 + sup [[(—Au)"?0]|7-
s€[0,tAE) s€[0,tAE)

tAE
+ / 31V B2 + 11— ) /2312 ds < o0
0

almost surely. The proof is concluded by Lemma A.1 similarly as in the proof of
Lemma 4.2. O

Lemma 4.5 (improved L* bound for ©). Let ¢ > 4 and vy € L%(€; L*(M)). Let fo €
LY(Q; L} (0,00; LY(M))). Then the stopping time 7,27 defined for K € N and q € [4,00)

loc
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by

SANE
T}’(q inf {3 >0] sup ||9]|%. +/ ||5H%Z4 19| Vi ’ﬁHZLQ dr
0

ref0,sAE)

SAE a/2
+ ( / 1151V 31 ds> > K}
0

sat1sﬁes¢ 1 - oo P-a.s. as K — oc.
Proof. Recalling the cancellation property of the nonlinear term, the It6 formula applied
to ||0]|9, yields
~ ~1g—4 ~ ~ ~ ~
dlfoll3: + alallga® (I121Ve oll72 + 20101V [0]]122) db
< —ql[llF:* ([01*3, RE,(U) — 3 Vo + N (D)) dt,

- @nangs <Z<|v|2v Ro( )ek>>

k=1
3G od e ged e
+§qllv|\‘£44 (|1, (Rov(U)er)?) dt +q[|9]| %2 * ([0*7, Ro1 (U) dW)
k=1

almost surely. Nearly all the terms can be handled as in the previous proof, only the
correction term requires further treatment. Due to Lemma 4.4, we can now handle the
mixed term || Ay 7|72 [|0]|7,. Recalling (4.5), we have

Y ([P, (Ror(U)er)?) < (7 + )18V 072 + (1 + || A l|72) (L + 3] 4),
k=1

and, from (2.48), (2.43) and (2.45), we deduce

Z |v|2v Ro1(U)er) |
< 121V Ol 2110124

1/2 —nl/2
+ (o124 IV T 57 1 A Tl + 18]+ 0134 Vi o) 22 + 1)
< |51V T 22 70120 + e(1 + | A 0]l 22) (1 + 3]|50)-

Hence,

49D <Z<|v|% Ro(U >> + S (P, (Ren (0)er?)
k=1

q(q—1) ~11q—4 ||~ ~ _ -
< Tnzllvll‘b 1[21Va 0l|72 + (1 + [|Ag D)1 72) (1 + [0]1F4)-

Dealing with the remaining terms as in Lemma 4.4 and using the stochastic Gronwall
lemma (Lemma A.2), we obtain
tAE A )
sup 7%, + / 1718 181Va 532 ds < o0 as.
SE[0,tAE) 0

The proof is concluded by Lemma A.1 similarly as in the proof of Lemma 4.2. O

Analogously, adapting the estimates of the stochastic terms in Lemma 4.4, we may
also deduce higher integrability in the probability space for v. The proof is omitted.
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Lemma 4.6 (improved H' bound for v). Let ¢ > 2 and 75 € L9(Q; H)(G)). Let f, €
L4(; L2, (0,00; L2(G))). Then the stopping time 73" ! defined for K € N by

loc

_ SAE
TET = infds >0 sup |\@||;{p+/ Ve 0|95 || A |3 2 dr
rel0,sAE) 0

SNE a/2
+</ ||AH’U||%2dS> ZK}
0
Vu

satisfies T,/ "' — oo P-a.s. as K — cc.

4.2 Estimate for |U|},

Before we proceed to estimates in L9, we establish an estimate on the pressure. We
emphasize that the estimate is possible by (2.49) since then there is no noise present
in the equation for the pressure and the desired bound can thus be obtained using a
standard (and essentially deterministic) argument.

Lemma 4.7 (Pressure bound). Let TXH” be the stopping time defined for K € N by

SAE
TZHP:inf{s>0|/ |VHps|2Ler>K}
0

Vu

satisfies 7,/ * — oo P-a.s. as K — oc.

Proof. Let K, N € IN. Applying 1 — Ps to (2.28) and recalling (2.49), we obtain
1 ~
p—VHps =(1—-Pg)(vAgv—7v-Vgv — N(@®) + AF,(U)).

0

Using the bounds

17 Vi vll7e < clAg TV lZ., (IN@IZ: < cllolVa o2,

AR @) < e (1B + 101320, ) -

integrating from 0 to s A 7y A T}ﬁ’Q A 7-}’}2 A TXH T2 A TEH U4 passing to the limit w.r.t.

N — oo and recalling the convergences of the stopping times established above, we get
fOSA§ IV ps||2LQ dr < oo for a.a. s > 0. The claim follows by Lemma A.1. O

Proposition 4.8 (L bound for v). Let 2 < p < q < o0, Up € L? (Q; L2H},) N LP (Q; L9)
and f, € L? (Q;L*(0,t; H1L2,)) N L (Q; L*(0,t; L?)). Then the stopping time 7*"
defined for K € IN by

T}v{,qm — inf {s >0| sup ||UH]ZQ 2 K}
r€[0,5A)

satisfies 7;;7" — oo P-a.s. as K — oo.

Proof. Assume for the moment that

E sup U}, <o0 (4.8)

s€[0,tATN]
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holds for all N € IN and let A(v) = 1+ |[v||%,. The It formula applied to A(-)?/? and the
cancellation property of the nonlinear term yields

dAw)"/ 4+ prA@) "0/ [[|[o] D2 vz + (g = Dlllv] D2 o] 2] at
< —pA(v p q)/q<v‘q 2, V(U )—VHps>dt

+ 21 ZA( )P0/ (19]972, (o (U)ex)?) dt

2
k=1
+ g(p - (]) Z A(,U)(;D—2q)/q <|U‘q_2v, Ul(U)6k>2 dt
k=1

+ pA(v)P=D/a ([v]97%v,01(U) dW) .

Integrating by parts, we obtain

0
’<U|q_2% BTQ/ Vu T(x,y,2") dz’>‘

0 2
jo](@2)/2 / T(,y, ) dz

0 2
/ T(z,y,2')dz
. L2a/(a+2)

2 —
< clUlgem, (L+Iollga) +vello] @272V o] 2.

<c +€|Hv|(q72)/2VH ’UH%z

L2

<c o]l + el[[o] =22V o] 7

Using ||v]|%, < A(v)7/4 for ¢ > 0, we get

< A@) P ol| T 1 foll

< A@) PV foll -

A('U)(piq)/” <|,U|qf2,u7 fv>

Hence, for 0 < 7, < 7, stopping times specified later, we obtain

Tb
/ A(0)P=0/9] ([o|i20, F,(U)) | ds

a

Th 1
gye/ A@) P10 /2T w3 ds + sup A(o)?/

SE€[Ta,Tb]

b Th p/2
boo [0 W1 0+ AP as e ([ IAIEas)

a a

Before we estimate the pressure term, we recall that the surface pressure p; is indepen-
dent of z and that we may shift it by a constant so that [ ps(t,z,y) d(z,y) = 0. Therefore,
we get
[ ([0"20, Vi ps) | < (¢ = 1)[ (J0]*7?Vir v], ps) |
< (q - 1) H |v|(q_2)/2vH UHLZ ||’U(q_2)/2 ||L2L24/(q*2) ||ps||L§°Lg.y

< vel|[o] 2V vl[72 + cq e

va6||L2||U||Lq )

with ¢, . ~ ¢*/?¢~1. The second part of the correction term is non-positive and thus it can
be dropped in the estimates. For the first part, we use (2.41), (2.43) and (2.45) to get
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> ([0l (01 (U)en)?)

k=1

=3 (o172, (Ui - Vi v + (B — Ur) - Vi 0+ hie(0))?)
k=1

<3 {72 (1 ——) Wy - Vi ol + (@5 — Uh) - Vi 02 + el (0)
1 q-2

k
3 _ — _
<1+ ﬁ)UQIIIUI(q 22398 0|22 + ell0 2 Losa- Vi 0| pora

+elllol"2 | para2 (1 + [[[of[] ar2)

€ _ _ -2
<1+ ﬁ)ﬁQIIIUI(q 22Th 0] + (1 + o)1) + cll A B2 |v]|95 2.
Hence, we obtain

5@ = DA 3 (o], (01 (U)er)?)
k=1

< 2= 1+ WP AWV o 22Ty s+ (AP + [ T AG) P D).

[NVJ IS

For K € N, let T = ’7'}?2 /\TZHFQ/\TIZHPQ. Let NeNandlet0 <7, <7 <tATNATg
be stopping times. With (2.41), (2.43) and (2.45) and the Young inequality, we deduce

o0

(o]* o1 (U)ex] )
k=1

(q—2)/2 q/2 _ g—1 a \\2
< (Il /25 s o142 + ll T Tan ol + o2+ 0]5)
€ _ _ _
< (14 el 22l A) + g (A + B0 T A2,

Hence, employing the Burkholder-Davis-Gundy inequality (2.51) and assumptions (2.41)
and (2.45), we get

E sup /A(v)(pq)/q<|v|q2v,01(U)>dW‘
SE€E[Ta,Tp] |V 74
. o 1/2
< eppcE ( / Afw)X ey <vq1|al<U>ek|>2ds>
Ta k=1

Tb
< copaB( (14 5 ) [ Al ool 205 o ds
q— Ta
- 1/2
g [ AW+ B0l A0 ds)

Tb
< 5 sup AW+ eB / (14 [ An Bl[%) A(v)P/9 ds

SE€[Ta,Tp]

= =

€ e
# (14 57 oorPE [ APl 22T ol ds.
The claim follows by collecting the above and the stochastic Gronwall lemma (Lemma A.2)
similarly as in the previous lemmata provided we establish (4.8).

To that end, we consider the Galerkin approximations U™ = (v™,T") from Section 3.
Since @, € LY(M) for all k € Ny, m € IN and ¢ € [2,00], one has v™* € L*(0,¢; L).
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Using similar estimates as above, boundedness of the operator A and the deterministic
Gronwall lemma, we obtain

E sup A(™)P/7 < BAW™(0)P7 + ¢,

s€[0,t]
t p/2
sup 107y, + ([ 180071 5) ]
s€[0,t] e 0

t p/2 t p/2
(/ fﬁll%qu> +(/ ||vaz||%2ds) ]

Since U™ in L”(€%; L*(0,t; L2H2,)) and LP(2; L>(0,t; H')) can be controlled by Lemma 3.1,
it remains to deal with the pressure term. First, we observe that H!H, N L2H?,
Hg’/lew4 C L*° by the mixed derivative theorem [47, Proposition 3.2]. Thus since the
operator R is bounded, we have

+¢,E

+ 4B

t
[ s < ¢ s [0, [ 107 0
0 s€[0,t]

t 2
< sup [0 Lo +c( / I ds) +c( JA ds)
s€[0,t] 0 =y 0 e

The estimates in the proof of Lemma 4.7 and boundedness of .4 now imply

t t
Ve p?||2.ds < ¢ |14 sup ||U"[%. 1] e |07 2 g2 ds
s I L2H! L2H?
0 s€[0,t] 0 =
2 t
we( A 16" By, ) e [ IAIsds.
0 ’ 0

Hence, by the above and the Young inequality, we get

2

E sup A(v™)P/7 < BAW™(0)P9 + ¢,y

s€0,t]
Zl[lp]HUnHLzHl + </ ||Un||L2’H2 ds) ]

(f s, 05) + (] I|f§|%qu)p2].

Now, (4.8) follows from the construction of the solution provided

+¢p, B

+ cpqglE

Up € L (; L2H,, ) NLP (Q; LY), f e L* (Q; L*(0,t; HIL3,)) N LP (9 L*(0,¢; L9)) . O

Remark 4.9. We note that, after collecting the estimates in the above proof, the dissipa-
tion term A(v)P~9/9)|||v|(4=2)/2V; v||2, is present with coefficient

p € €
pv — 5((1 - 1) (1 + ql) n”’—p (1 + ql) ¢Bpa’-

Therefore, it is not possible to find n > 0 such that the estimates go through uniformly
w.r.t. ¢ € [2,00) for fixed p. This fact underlines the importance of the modified loga-
rithmic Sobolev inequality, see Proposition 4.1, in the stochastic setting with transport
noise. We also recall that the coefficient above also explains the additional smallness
assumption on 7 in the global existence result.

We conclude this section with an L?(M)-regularity result for the temperature.
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Lemma 4.10. Let 2 < p < ¢ < oo and Uy € L3/2 (Q; L2H} ) N LP (Q; L9). Let fr €

y
L3P/2(Q; L*(0,¢; HXL2,)) N LP (Q; L*(0,t; L9)). Then the stopping time 77" defined for
K € N by

T —int s 0] s T, > K
r€[0,sAE)

. T
satisfies 7,7 — oo P-a.s. as K — oo.

Proof. For K € IN, let Tg = 72> At "2 A7i%%, Let N € Nandlet 0 < 7, < 7, <

t ATy AT g be stopping times S1m11ar1y as above, we use (2.41) and (2.44) to deduce

D (T172 (2 (U)er)?)
k=1

< (P +ITI2Vy TIIE2 + 1+ [Aa T Za + [l Z) (1 + I TIE,) ds

Thus, by the Burkholder-Davis-Gundy ineuquality (2.51), we get

gl sup /<T|q1T,02(U)>dW‘
sE€[Ta ] 1/0
Tb
<B|5 s [T+ @ ehpon’ +2) [T 0 T s
SE|Ta,Tb Ta

Tb
iy / (L4 1A D12s + [0l2) (L + | T]%,) ds

a

T T q/2 T . .
with [ | (|T972T, fr)|ds < ¢ (fTb HfT||%q) + ¢ [T ||IT||1, ds, the claim follows as in

the previous proof by applying the Itd formula to (1 + ||T|%,)?/9, the stochastic Gronwall
lemma (Lemma A.2) and Lemma A.1. O

4.3 Higher order estimates

v,00

Lemma 4.11 (L bound for v). The stopping time 7,7~ defined for K € IN by

SANE
T;(»“’inf{szm/ ||v||2LoodszK}
0

satisfies 7,;°° — oo P-a.s. as K — oc.
Proof. We apply the Itd formula to log (e + |[(=Ag )*/%0|2, + ||0.v]|2 + ||0.v]/Ss ). Denot-
ing A(t) = e + (A )Y/20]2 + [0.0]2. + [19.0], we obtain

2v 2v

7||AHUIIZL2 + Ve .72 dt
At) A(t)

110:01* Vi 8,017 + 4/110-0* Vi [0-v]|72] dt

dlog(A(t)) +

6v
A()[

(—2g )20, (=D )V2F,(U) - (—Ax )l/%(v,v)> dt

+

=00 20 (O) ], 0.0) de+5 ((= )20, (=) 20 (V) W)
(0,v,0,F,(U) — 9,b(v,v)) dt

+

10-01 (V)13 04,12y dt +— - (D20, 8,01(U) AW)

A(t) <

EJP 28 (2023), paper 54. https://www.imstat.org/ejp
Page 46/56


https://doi.org/10.1214/23-EJP940
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Stochastic primitive equations with horizontal viscosity

6 4
_ m <|8Zv\ 0,v,0.F,(U) + b(@zv,v)> dt
+£§:<\8zv|4,(8zal( U)er)?) db -2 (|0.0]*0.v, 0,00 (U) AW)
A(t) 2= A(D)
Integrating by parts, we have
6 4 c 5 1/2
_ < _
i (00100, b0.00)| < 555 [ 1000 (=00 ) 200 0] d(x.v.2)
€ 1/2 2 Ce 2 6
A(t)ma ’U| ( AH) aZUHL?' + A(t)Hv||L°°||aZU”LG
€
(t)Hla L0 (=An )20 0l[72 + cel|v]|7
and
2
< n 2 <
¥10) (820, b(9:v,v))] e )HaZUHL Va2 <ec.

Similarly, since v = 0 = 9,v on I'y, the Holder, Young and two-dimensional Gagliardo-
Nirenberg inequalities yield

(a2, (-8 ) 00,0 )| =

c

A(t)
t

ﬁ [(Arr v, v - Vi v+ w(v)0,v)]

18 vllzz (ol 1V vlle + dive ol 2, 10-0l 221s, )

<

N

c

(t

3
At)
3

A )HAHU”L2 +ee(|lvlie + 1+ 1VE v]Zs).

<

NN

A ] 22 (anmanvuLz + 18 vl 51V vl 10zl ) 4.9)

1A mv][72 + Al )(||v||Loo||VHv||Lz +10:0l1%6 + Vi vllz2)

The linear terms are straightforward. We estimate
2
= (—ag) %0, (—A I/QFUU>’
A(t)|<< i) %0, (g ) V2 F,(U)

€ 2 Ce 2 2 1/2
< AN 2 TN 2 1 v 2 -
< o 1w ol o (I, + A0 + [ (-000)1%

2
L2

€ 2 2 2
< g 18 vz e (1T Wz, + 150052 +1)

2
< 2 2 vll72 2 2H1
A @0 0F0) < s (1001 + 10:0l 10:Fol 2 + 10:0] 22 [T 2y )
< (V4 10:Follpe + T e, )
6 4
2 ((0=01'0:0, 0. R (0)) |
= 10:02 9 Duvl3s + 5 (14 ITIZe + 10 full o) (1+ 0-050)
A(t) z z L A(t) L zJull, z L
€ 2 2 2
< 2 € 6 zJv 6 ]
< A 1100 Vi 00l + ec (14110 + 10: ol o)

where we used

0
<|azv4azv, [ T(x,y,z'>dz'>\ < [10-0[2Viz 0] 2 [9:0]%6 T 1o -

For K € IN, let Ty = 723 Let N € Nandlet 0 < 7, < 7, < t A7y A T be
stopping times. By the sub-linear growth of oy (2.33) and the Burkholder-Davis-Gundy
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inequality (2.51), we deduce

.

1/2
E /”m—@n”%@gw—&ﬂ”%ﬂU>iWL%@
. Als) Als)

sup
SE[Tq,Tb]

A Y20, (— Ay )20, (U) dW>‘

IN

a

Tb 1 2' 1/2
clE / 21 1124 viize HAHUHLZ ds
. AG)

a

Tb A
gs]E/ I Zullmd e E/ g s

|| Ag v
SEE/T | Z(.s')'m ds +c

and, similarly, we estimate the first correction term by

IA

a

1 1/2 2 g 1 2
m”(—AH) o1(U 1,02y <1 MHAHU”L’Z +c.

In the same way, we obtain

™ ||V 5ZU||%2
< g7 7z 0Le
/ Zv,azal(U)dVW’ EE/T ) ds +c.

sup
SE[Ta,Tb]

a

and
1 1/2 2 o 1 2
m”(—AH) o1 (Ul L,@n2) <0 mHVH d.v[[72 +c.
Recalling assumption on noise (2.46) and (2.43), we have

Z |<|8Zv\4azv, d.01(U)ex) |2

k=1
c(I10=0*Viz 0:v] L2 [18:0 || 22 + 11001 || o/ Vi Tl po + 1|01 2o

2
+ 10:0P Lo/ 0l zs + 11102017 1)
< e ([10:0 Vi 0:0[|7211020]126 + (L + Ve Tl 72 + VR Tl[76) (1 + 1020 £2)) ,
and hence, by the Burkholder-Davis-Gundy inequality (2.51) and (4.3),

6E sup

SE([Ta,Tb]

oo 1/2
Th 1 4 9
S clE <‘/Ta W ; | <‘azv| az'U; azal(U)ek> | dS)

™ )10,0]2 Vi D022 10:0]%
<@<l A(s)?

/OS ﬁ (10-0]*0.0, .01 (U)) dW‘

a

(1 +]|0.0]|}3) ik
——ZGT——u+wvam+wvHﬂm>
o 1002 Vi 012, - 1/2
s([ IR o

s |19 2v 82 2 b
< EE/ [19-2] A(H) Ullzs ds —|—cEIE/ 1+ || Ay 0|22 ds +c..
T S T

For the remaining correction term, we proceed similarly. By (4.3), (2.46), (2.43) and (2.45),
we obtain

a a
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15

(t)

NE

(|0:v]*, (9:01(U)er)?)

1
110:0* Ve O:v]22 ¢ .
< (150° +¢) A L +A(€t>(Illazvl4llL3/2IIIVHv|2\|L3+||3zv||6m

00 o2 [0l e + 10:0]74)
[10-|*Vr 9:v]Z
A(t)

(10:vl1zs (1 + ATz + vliZe) + 10:0[l%e +1)

>
Il

< (15n% +¢)

Ce

AW
920>V 00|72

< (15 +2) LT Lo (1t o)

Collecting the estimates above, we have

™ 2u—n? — 3¢

e 2
A(S) ||AHUHL2 ds

E sup log(A(s))+IE/

S€([Ta,To] Ta

T 2u —n? —3e 5 (6v — 15102 — 4¢) 5 5
+]E/7: THVH 8ZU||L2 + A(s) |||8ZU| VH azUHL2 ds

< Elog(A(ra)) + ce

(4.10)

a

Tb
+ CsE/ ol + 120 D172 + 1T 176 + 102 Foll 1o s
Let B(t) = e+ |Ag v||2: + |VE 0:v]|22 + [|0:v]|$s. Now we employ an argument similar
to the logarithmic Sobolev inequality. By the Poincaré inequality, (4.3), the logarithmic
Sobolev inequality (4.2) with A = 1/2 and r; = 132 and the inequality logz < cz'/*
holding for z > 1, we obtain

lollZoe < e (1+IvlZa2) log (e + [IVa vlize + [vllco + [0:0]l 22 + [|v]l2)
< ¢ (1+ [[vll7s2) log B(t)

<c(1+ (o)) (logA(t) log B(t)>

A(t)
B(t 1/4
C (]. + ||U||%132) <IOg A(t) + (flgt))) >
1Arvllz> | 14110050
(1+||’UHL132) 1OgA +E A(t)L € A(t) B
A vl|2,
(1+||v\|L132) (log A(t) +a”j(t;|L

Thus, from (4.10), it follows

Tb 2 — 2 _ 4
E sup log(A(s))+ E/ %HAH v||32 ds
SE[Ta,Tb] Ta (8)

™ 2y —n? — 3¢ 9
E S SR — 0,01
+ /T A0s) Vi 0,v]|72 +

(6v — 1502 — 4¢
A(s)

)|||azv|2vH 9,032 ds
Tb

<E [1og<A<Ta>> b [T+ 101l + A ds

a

Tb
+ CEE/ (1 + ||v||8L/1§2) (1+41log A(s))ds

a
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By a similar argument as in the previous proofs relying on the stochastic Gronwall lemma
(Lemma A.2) and Lemma A.1, we deduce that the stopping time T}?gA defined for K € IN

by
SAE B
T}?gA: $s>0]| sup 1ogA(r)+/ (r) dr > K
rel0,sAE) 0 A(T)
satisfies T}?gA — oo IP-almost surely as K — oo.
Finally, similarly as above, for T = 7284 A 7121 8/3 and s > 0, we get
s/\‘rN/\'fK s/\'rN/\'fK B
IE/ 1o]12 drch/ (14 ol (1 +log A() + 20 4
0 0 A(r)

and the claim follows by Lemma A.1. O

Remark 4.12. The above Lemma can be shown by taking A(t) = e + ||(—=Ax )/?v|2, +
10.0]12, + [|05v ||4q/(q % for q € (2,6) instead of the case ¢ = 6. Taking ¢ large means

stronger integrability in the spacial variable, but less in the probability space. The only
estimate that has to be substantially adapted is (4.9) which is replaced it by

‘< ~ Ay )20, AH)l/Qb(v,v)>‘: (A v,0 - Vi v+ w(0)d.0))|

2
A(t)

C

< e oles (ol 19 ole + v vl 20 10:00 1203, )
C
)

2 -2
LA (||v\|LoouvHv||Lz 180 ol Vi ol S5 0z 1)

| /\

4. 2
1AmV]122 + o ([0l2 |V rr0l|22 + [18:0]| 77 97 + || Vi o]|£2)

At) A( )

S
= MHAHUHQE + (vl + 1+ Vi vllZ2)-

We chose to consider the case ¢ = 6 to keep the statement of Theorem 2.12 simpler.

Having established the L°° bound, we can prove the boundedness of 0,U and deduce
the boundedness of Ay U with estimates close to the ones used in Section 3 for the local
existence. In most cases, only the estimates on the nonlinear terms have to be changed.

Lemma 4.13 (L? bound for 0,v). Let ¢ > 2, 82110 € L) L?) and assume that f, €
L9(Q; L, (0,00; HLLZ,)). Then the stopping time ;7" defined for K € IN by

loc

ref0,sAE)

SAE q/2
+ (/ IV 8Zv||2L2 dr) > K}
0

satisfies 70" — oo P-a.s. as K — oo.

SANE
TR = inf{820| sup \IazvlquaJr/o 100727 Ve 02072 dr

Proof. Following Step 3 in Lemma 3.1, we employ the It0 formula and get

A0l + 020l 132 (D ) 20032
< —gl0.0]15% (9:0,0. F(U) + b0, v)) d
qlg—1 _
+ 1D 0 120,00 ()], 0,0
+q)|0.0]|957 (9.0, 0,0 (U) dW)..
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For the nonlinear term, similarly as in (4.9), we get
[ (820, b(82v,0)) | < el|divi 90|72 + cl|v]|F o |0z0] 72

For K e Nand N € N,let0 <7, <7, <t A7y A7? A 72°° be stopping times. By the
sub-linear growth of ¢; (2.32) and the Burkholder-Davis-Gundy inequality (2.51), we
follow the estimates in Step 3 in Lemma 3.1 and deduce

Th 1
® s | [ 10011 00000 W] < 1B s ool
$€[Ta,7v] |/ 74 4 SE€[Ta,Tb]
Tb Tb
e [ Lt ol dstatchpan’E [ ol I(-du) 0.0l ds
and

Tb B 1
/ 10-0]172" (00, 0= F(U))| ds < - sup, 10:v]72

s€[0,t
Ty Tb Q/2
18.0]1%, ds +e (/ 1. ful% ds) .

T a/2
—l—c(/ Ve T||32 ds) +c/

Collecting the above and using (2.32) for the correction term, we get

Tb

1 _
3B, 50 10:vlfs v, [ 100057 ) 2001
SE|(Ta,Th Ta

Tb

< B [0sotrallfs + 14 [ ol + (14 ol o

a

Th qa/2 Th q/2
B ([ Wy, ) e [ 10A 0)

a a

where c(q,v,e,1) = qlv—e—n*(qc% pe+45+)]. The claim follows as in the above proofs. O

Lemma 4.14 (L? bound for 9,T). Let ¢ > 2 and 0.1y € LY(Q; L?). Let the temperature
forcing satisfy fr € L9(€%; L7, (0,00; HL2,)). Then the stopping time 79:79 defined for
K € N by

. SAE
79T — inf {s >0] sup [0.T)%, +/ 0. 71957 | Ve 9.7 32 dr
0

rel0,sAE)

T q/2
+</ ||VH8ZT%2ds> >K

. 0,T
satisfies 70: 7 — oo P-a.s. as K — oc.

Proof. As in the previous Lemma, the estimates in Step 3 in Lemma 3.1 can be carried
over with the exception of the estimate of the nonlinear term. We replace it by

[(0.T,b(0,v,T))| =|(0,vVu T, 0,T) — (div gvd, T, 0.T) |
< (00l zrs, IVa Tl rz, 10-Tllzrs, + 1div ol rz, 10Tl )
< ¢l 0.0)|15%10- Vi o)l 12 1V TN 2V 0T34 + Vi T 2)
0T IV 0T 2 + 10:T | 12)

+ || Vi oll 2 10: Vi ol| 5 (10T 2| Vi 0T | 2 + [10-T13.2)

<e||Va 8ZT||L2 +e(1 4 ||Vh TH%Z + ||c’)zv\|ia|\anH v||2Lz
+ 1V wll 22110 Vi wl|z2) (1 + [10:T22)

< | Vi 0T\ + (1 + (1 + 0:0]32)110- Vi oll3z + U2 sz V(1 + [19-T32).
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For K € IN, let Tre = 722 A7"* Let N € Nandlet 0 < 7, < 7, < t A7y A Tx be

stopping times. We get

Tb

E

1
5 s [0.7]% + cla.ven) [

SE[Ta,Tb] Ta

10- 7112211 (~ A ) 20T 7. dS}

e

b
< cE IUNZ2 + ll0:v]Z- ds

10T (7a)l|32 + 1+ /

Ta

Th q/2 Th q/2 Tb q/2
S A R TR R R

a a

Tb
+ clE/ (L + Q+ 110001210V vll72 + ULz 11 )1 + [10:T72) ds

a

where again c(q,v,&,n) = qlv — e — n* (¢ po + %1)]. The claim follows as above. O

Lemma 4.15 (L? bound for Vg U). Let ¢ > 2 and Uy € L4(); L2H'). Let the forcing
satisfy Fyy € LY(S; L2,.(0,00; L?)). Then the stopping time " V? defined for K € N by

loc

r€[0,sAE)

Ty q/2
+ (/ 18m U2 ds) > K
Vu

satisfies T V9 — oo P-a.s. as K — oc.

SAE
Ty U = inf {S >0| sup [|[VuU|i- —l—/o |V UH‘IL;2 1Az U3, dr

Proof. We use estimates from Step 5 in Lemma 3.1 with the exception of the bound of
the nonlinear term which, recalling (2.25) and (2.7), we replace by

Ve UlI72°{B(U,U), A U) |

—2 1/2 3/2 1/2 1/2
< IV UI52 W0z 2, (1015500 100502, + 101 o, 10 Nz, 10 )

Y Y
-2 —2
<ellUlFemz, Ve UN% + eollUN e pe 10Nz mr [V U2
4/3 2/3 4/3 -2
el o WO 10N 190 UL
-2 -2
< elUl2p2 IVa U™ + cellUlFrape 102 1UNZ2 2 IVE Ul

2/3 4/3 4/3 —2
+ eI N0 WU E g Ve UNS

< e|An U721 Ve Ul72"

e (L4 U132) (L4 1002z, ) (L+ 10032y, + 1020, )
(14 IV US).

Accordingly, we deduce a suitable inequality from the stochastic Gronwall lemma
(Lemma A.2)rfor stopping times 0 < 7, < 7, < t A8y ATk for K,N € N and

Tr = 79% A 7072, The claim then follows similarly as in the above proofs. O

We remark that above Lemma can be established in an easier manner if one considers
T =712%A T%”’G instead of the stopping time Y i above.
The last auxiliary step is to bound ||0,.U||2, which also follows similarly as the

corresponding bound for the finite-dimensional approximations.
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Lemma 4.16 (L2 bound for 0,.U). Let ¢ > 2 and Uy € L(; H?L?). Let Fy €

zy

L9(Q; L}, (0,00; HZL?,)). Then the stopping time ngzU’q defined for K € N by

loc

SNE
T%ZU,q =infqs>0] sup [0..U||%- +/ ||3ZZU||%§2 Ve aZZUHi2 dr
r€[0,5AE) 0

Tb Q/z
+ (/ Vi 0..U|2, ds> > K
9. U.

satisfies 7,77 — oo P-a.s. as K — cc.

Proof. We can proceed as in Lemma 3.4 by replacing the factor p* by ||U||%,.,. in the
13,
estimate for I%. Using \|U||‘}{;L§y < cHU||fH§L%y \|U||§{;H;y, we can argue as in the proof

above by taking stopping times 0 < 7, < 7, <t ATy A T%”’q. O

4.4 Proof of Theorem 2.12

The proof closely follows the proof of [12, Theorem 3.2] and we include it mainly for
completeness. Let px be the stopping time (collected from Lemmata 4.13, 4.14 and 4.15)
defined for K € IN by

PK = T%v’2 A T%T’Q A TXH v2,
Our aim is to show that px < ¢ for all K € IN. Since px — oo as K — oo a.s. by the
results above, this will yield global existence.

From the proofs of Lemmata 4.13, 4.14 and 4.15 (see the final part of the proof of
Lemma 4.4 for a detailed explanation), we get

tApKNE

sip U2 +/ U IZ2me + 1Ty ds < 00 P-as. @.11)
s€[0,tAprAE) 0 A B

For contradiction, let P({px > £}) > 0 for some K € IN. Then, since {px > &} =

Uiso{pkx Nt > £}, there exists ¢ > 0 such that P({px At > £}) > 0. By Definition 2.9

and (2.55) in particular, this leads to

tApKNE
sup HW%+/ 1Uems + 1012 ds
s€[0,tApK AE) 0 Y Y

tA

> sup ULt [ U, + U By, ds = oc
s€[0,tNE) 0 Y =y

on a set of positive measure, which contradicts (4.11). This concludes the proof of

Theorem 2.12.

A Auxiliary results

Lemma A.1l. Let f : Q x [0,00) — [0,00] be such that f(-,w) is non-decreasing and
continuous for a.a. w € § and f(t,w) is measurable and a.s. finite for allt > 0. For K € IN,
let px = inf{s > 0| f(s,w) > K}. Then px — oo as K — oo almost surely.

Moreover, if @ : [0,00) — [0, 00) is a non-decreasing function such that ®(s) — oo as
s — 0o, then p% — o0 as K — oo almost surely, where p%- = {s > 0| ®(f(s,w)) > K}.

Proof. The first claim is established in e.g. [5, Lemma 4.1], see also [23, Proposition A.1].
To prove the second claim, we argue by contradiction. Assuming p := limg p% < oo on
a measurable set Qy C Q with P(Qg) > 0, we observe f(px,w) > ®~!(K). In particular,
f(-,w) is unbounded on the (random) interval [0, p] a.s. on {2y. On the other hand, from
px — 00, we deduce that f(-,w) is a.s. bounded on [0, p], a contradiction. O
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Lemma A.2 (stochastic Gronwall lemma, [26, Lemma 5.3]). Lett >0 and let X,Y,Z, R :
[0,00) x © — [0,00) be stochastic processes on a probability space (2, F,P). Let 7 : Q —
[0,t) be a stopping time such that E [ RX + Zds < oo and [; Rds < x P-a.s. for some
k > 0. Assume that there exists a constant ¢y > 0 such that

E

Tb
sup X+/ Y ds

SG[TG 77'17] a

Tb
< o l:X(Ta) —|—/ RX + st]
for all stopping times 7., 1 satisfying 0 < 7, < 1, < 7. Then

E

sup X+/ Y ds
s€[0,7] 0

< Copi [X(O) +/ st} .
0
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