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Abstract

We study the level-set of the zero-average Gaussian Free Field on a uniform random
d-regular graph above an arbitrary level h ∈ (−∞, h?), where h? is the level-set
percolation threshold of the GFF on the d-regular tree Td. We prove that w.h.p as the
number n of vertices of the graph diverges, the GFF has a unique giant connected
component C(n)

1 of size η(h)n + o(n), where η(h) is the probability that the root
percolates in the corresponding GFF level-set on Td. This gives a positive answer to
the conjecture of [4] for most regular graphs. We also prove that the second largest
component has size Θ(logn).

Moreover, we show that C(n)
1 shares the following similarities with the giant com-

ponent of the supercritical Erdős-Rényi random graph. First, the diameter and the
typical distance between vertices are Θ(logn). Second, the 2-core and the kernel
encompass a given positive proportion of the vertices. Third, the local structure is a
branching process conditioned to survive, namely the level-set percolation cluster of
the root in Td (in the Erdős-Rényi case, it is known to be a Galton-Watson tree with a
Poisson distribution for the offspring).
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1 Introduction

1.1 Overview

The Gaussian Free Field (GFF) on a transient graph G is a Gaussian process indexed
by the vertices. Its covariance is given by the Green function of the simple random
walk on G, hence the GFF carries a lot of information on the structure of G and on the
behaviour of random walks, giving a base motivation for its study.

Level-set percolation of the GFF has been investigated since the 1980s ([10, 25]).
Lately, one important incentive has been to gain information on the vacant set of random
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Anatomy of a Gaussian giant

interlacements ([24, 31]), via Dynkin-type isomorphism theorems ([19, 28]). It was
subject to much attention in the last decade on Zd ([15, 16, 18, 17, 24, 26, 30]). On
such a lattice where the Green function decays polynomially with the distance between
vertices, it provides a percolation model with long-range interactions.

More recently, level-set percolation was studied on transient rooted trees ([3, 2, 32]).
There is a phase transition at a critical threshold h? ∈ R: if h < h?, the connected
component of the root in the level-set above h of the GFF has a positive probability to be
infinite, and if h > h?, this probability is zero.

One can define an analogous field on a finite connected graph, the zero-average
Gaussian Free Field, whose covariance is given by the zero-average Green function
(see Section 1.2). A natural question is whether some characteristics of the GFF on an
infinite graph G can be transferred to a sequence of finite graphs (Gn)n≥0 whose local
limit is G. For instance, one might ask whether a phase transition for the existence of
an infinite connected component of the level-set in G corresponds to a phase transition
for the emergence of a “macroscopic” component of size Θ(|Gn|)1 in the level set in Gn.
For G = Zd, a sharp phase transition was shown in [18], and Abächerli [1] studied the
zero-average GFF on the torus.

Abächerli and Černý recently investigated the GFF on the d-regular tree Td [3], and
the zero-average GFF on some d-regular graphs (large girth expanders) in a companion
paper [4]. In this setting, many essential questions (such as the value of h?, or the
sharpness of the phase transition at h? for the zero-average GFF) remain open. In this
paper, we answer some of them, and relate the percolation level-sets to other classical
random graphs, in particular the Erdős-Rényi model (Section 1.4).

1.2 Setting

In all this work, we fix an integer d ≥ 3. We denote Td the infinite d-regular tree
rooted at an arbitrary vertex ◦, and Gn a uniform d-regular random graph of size n for
n ≥ 1 (if d is odd, consider only even n). Let Vn be its vertex set and πn be the uniform
measure on Vn, i.e. πn(x) = 1/n for every x ∈ Vn.

Gaussian Free Field on regular trees
The GFF ϕTd on Td is a centred Gaussian field (ϕTd(x))x∈Td indexed by the vertices of
Td, and with covariances given by the Green function GTd : for all vertices x, y ∈ Td, we
set Cov(ϕTd(x), ϕTd(y)) = GTd(x, y). Recall that

GTd(x, y) = ETdx

∑
k≥0

1{Xk=y}


where (Xk)k≥0 is a discrete-time SRW (Simple Random Walk) on Td. In general, we
will denote PGµ the law of a SRW on a graph G with initial distribution µ, and EGµ the
corresponding expectation.

Gaussian Free Field on d-regular graphs
Assume first that Gn is connected. The zero-average GFF ψGn on Gn is a centred Gaussian
field (ψGn(x))x∈Gn indexed by the vertices of Gn, and with covariances given by the
zero-average Green function GGn on Gn: for all x, y ∈ Gn, we set

Cov(ψGn(x), ψGn(y)) = GGn(x, y) := EGnx

[∫ +∞

0

(
1{Xt=y} −

1

n

)
dt

]
1for two sequences (an)n≥1, (bn)n≥1, we say that an = Θ(bn) if there exists c > 0 such that for every large

enough n, c < an/bn < 1/c
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Anatomy of a Gaussian giant

where (Xt)t≥0 is a continuous time SRW on Gn started at x with Exp(1) independent
jump-times. Precisely, let (ζi)i≥1 be a sequence of independent exponential variables of
parameter 1. Let (Xk)k≥0 be a SRW started at x, independent of (ξi)i≥1. Then for all

t ≥ 0, we define Xt := Xk(t), with k(t) := sup{k ≥ 0,
∑k
i=1 ζi ≤ t}.

The function GGn is symmetric, finite and positive semidefinite. This ensures that ψGn
is well-defined (see [1] for details, in particular Remark 1.2).

If Gn is not connected, then we set arbitrarily ψGn(x) = 0 a.s. for all x ∈ Gn (this will
not play a significant role for our purpose, as Gn is connected w.h.p., see Proposition 2.1).

Two layers of randomness
Denote Pann and Eann the annealed law and expectation for the joint realization of Gn
and of ψGn on it. For a fixed realization of Gn, denote PGn and EGn the quenched law and
expectation.

1.3 Results

Define the level set E≥hϕTd := {x ∈ Td |ϕTd(x) ≥ h}. Let Ch◦ be the connected com-

ponent of E≥hϕTd containing the root ◦. Similarly, define the level sets E≥hψGn := {x ∈
Gn |ψGn(x) ≥ h} for n ≥ 1. For i ≥ 1, let C(n)

i be the i-th largest connected component
of E≥hψGn , by number of vertices. Break ties arbitrarily if several components have the
same size (this will not play a significant role in the paper). In [32], Sznitman showed
that there exists a constant h? ∈ (0,∞) such that

if h > h?, η(h) := PTd(|Ch◦ | = +∞) = 0, and if h < h?, η(h) > 0. (1.1)

In [3] (Theorems 4.3 and 5.1), Abächerli and Černý showed that if h > h?, the
size of Ch◦ has exponential moments, and if h < h?, Ch◦ has a positive probability to
grow exponentially. In [4] (Theorems 3.1 and 4.1), they found that if Gn satisfies some
deterministic conditions, which hold w.h.p. (with high probability), then the following
events hold PGn -w.h.p.: if h > h?, |C(n)

1 | = O(log n), and if h < h?, at least ξn vertices of
E≥hψGn

are in components of size at least nδ, for some constants δ, ξ > 0 depending on h.
Thus, in the supercritical case h < h?, a positive proportion of the vertices is in at

least “mesoscopic” components (there is no explicit lower bound for δ).
This work focusses exclusively on the supercritical case; recall that d can be any fixed

integer larger than 2. In the following results (and in the remainder of the paper), the
constants Ki, i ≥ 0 depend only on d and h.

We first prove the existence of a giant component:

Theorem 1.1. Let h < h?. The following holds:

|C(n)
1 |
n

Pann−→ η(h), (1.2)

where
Pann−→ stands for convergence in Pann-probability as n → +∞. Moreover, there

exists K0 > 0 such that

Pann

(
K−1

0 log n ≤ |C(n)
2 | ≤ K0 log n

)
−→

n→+∞
1. (1.3)

Note that by Markov’s inequality, for any ε > 0 and any sequence of events (En)n≥1

such that Pann(En) → 1, w.h.p. Gn is such that PGn(En) ≥ 1 − ε. Thus, w.h.p. on Gn,
the conclusions of Theorem 1.1 hold with arbitrarily large PGn -probability. After a first
preprint of this work, Černý [11] proved via a different approach that (1.2) also holds
under the deterministic conditions of [3] and [4], see Section 1.4 for a discussion.
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Anatomy of a Gaussian giant

We also establish some structural properties of C(n)
1 . Let C(n) be the 2-core of C(n)

1 ,

obtained by deleting recursively the vertices of degree 1 of C(n)
1 and their edges. Let

K(n) be the kernel of C(n)
1 , i.e. C(n) where simple paths are contracted to a single edge,

so that the vertices of K(n) are those of C(n) with degree at least 3.

Theorem 1.2. Global structure of C(n)
1

Fix h < h?. There exist K1,K2 > 0 such that

|C(n)|
n

Pann−→ K1 (1.4)

and
|K(n)|
n

Pann−→ K2. (1.5)

Moreover, there exists K3 > 0 such that if D(n)
1 is the diameter of C(n)

1 , then

Pann(D
(n)
1 ≤ K3 log n) −→

n→+∞
1. (1.6)

Last, there exists λh > 1 such that for every ε > 0,

π2,n({(x, y) ∈ (C(n)
1 )2, (1− ε) logλh n ≤ dC(n)

1
(x, y) ≤ (1 + ε) logλh n})

Pann−→ 1, (1.7)

where π2,n is the uniform measure on (C(n)
1 )2 and dC(n)

1
the usual graph distance on C(n)

1 .

In other words, the typical distance between vertices of C(n)
1 is logλh n.

We will see in Section 3 that λh is the growth rate of Ch◦ conditioned on being infinite.
Say that a random graph G is the local limit of the random graph sequence (Gn)n≥1

if Gn converges to G in distribution w.r.t to the local topology (see for instance the
lecture notes of Curien [13] for a precise definition). We prove that the local limit of C(n)

1

is Ch◦ conditioned to be infinite. Say that two rooted trees T, T ′ are isomorphic if there
is a bijection Φ : T → T ′ preserving the root, and such that for all vertices x, y ∈ T , there
is an edge between x and y if and only if there is an edge between Φ(x) and Φ(y).

Theorem 1.3. Local limit of C(n)
1

Fix h < h?. For every radius k ≥ 1, for every rooted tree T of height k, let V (T )
n :={x ∈

C(n)
1 , BC(n)

1
(x, k) is a tree isomorphic to T} and pT := PTd(BCh◦ (◦, k) = T | |Ch◦ | = +∞).

Then
|V (T )
n |
|C(n)

1 |
Pann−→ pT

1.4 Discussion and open questions

GFF percolation versus bond percolation
The graph E≥hψGn undergoes the same phase transition as some classical bond percolation
models for the size of the largest connected component. We draw a comparison with the
Erdős-Rényi random graph (i.e. bond percolation on the complete graph), introduced by
Gilbert in [21]: for a constant c > 0 and n ∈ N, ER(n, c/n) is the graph on n vertices such
that for every pair of vertices x, y, there is an edge between x and y with probability
c/n, independently of all other pairs of vertices. Erdős and Rényi [20] showed that
the supercritical regime corresponds to c > 1 and the subcritical regime to c < 1.
Theorems 1.1, 1.2 and 1.3 hold for ER(n, c/n) as n→ +∞, for any fixed c > 1, the tree
Ch◦ being replaced by a Galton-Watson tree whose offspring distribution is Poisson with
parameter c, and λh being replaced by c.
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Anatomy of a Gaussian giant

As for Bernoulli bond percolation on Gn (each edge of Gn is deleted with probability
1− p, independently of the others), the same phase transition holds for the size of the
largest connected component, the critical threshold being p = 1/(d− 1) (Theorem 3.2 of
[7]).

The structure of C(n)
1

It was shown recently in [14] that the distribution of the giant component of ER(n, c/n)

is continuous w.r.t. to a random graph which can be explicitly described. Its kernel is
a configuration model whose vertices have i.i.d. degrees with a Poisson distribution
(conditioned on being at least 3). In particular, it is an expander. The lengths of the
simple paths in the 2-core are i.i.d. geometric random variables. See Theorem 1 of [14]
for details. This implies a result analogous to Theorem 1.2 for ER(n, c/n).

We conjecture that the kernel K(n) is an expander for every h < h?. The main obstacle
to gathering information on its global structure is that if ψGn is revealed on a positive
proportion of the vertices of K(n) (and hence of Gn), then it could affect substantially
ψGn on the remaining vertices. In particular, if h > 0 is large enough, we could imagine
that the average of ψGn on the discovered vertices is positive. But by (2.9), the aver-
age of the GFF on the remaining vertices would be negative, hence below the threshold h.

Deterministic regular graphs
The results of [4] and [7] hold in fact for any deterministic sequence of large-girth
expanders (conditions (I) and (II) in Proposition 2.1), which is w.h.p. the case for Gn.
Very recently, Černý [11] gave another proof of (1.2) that holds under these deterministic
conditions. He also showed that |C(n)

2 | = o(n) w.h.p. His approach is very different, and
uses notably a decomposition of the GFF as an infinite sum of fields with finite range
interactions, introduced in [17].

In our proofs, averaging on the randomness of Gn is a crucial ingredient to control the
presence of cycles on large subgraphs of Gn, and allows us to extend some arguments
of [4], where ψGn is locally approximated by ϕTd .

We conjecture that those deterministic conditions are not sufficient for (1.3) to
hold. This was shown for the Bernoulli bond percolation in [23] (Theorem 2): for every
a ∈ (0, 1), one can build a sequence (Gn)n≥1 satisfying (I) and (II) such that the second
largest connected component has at least na vertices (the second largest component first
grows exponentially on a tree-like ball until it has a polynomial size, and then is “trapped”
in zones where the expansion of the graph is close to an arbitrarily small constant).

1.5 Proof outline

Our proofs rely on two main arguments:

1) An annealed exploration of E≥hψGn (Proposition 2.4), where the structure of Gn is
progressively revealed. There is a standard sequential construction of a uniform
d-regular multigraphMn, which, conditionned to be simple, yields Gn (this condi-
tionning has a non vanishing probability, see Section 2). Each newly discovered
vertex is given an independent standard normal variable. Then ψGn is built via a
recursive procedure, using these Gaussian variables (Proposition 2.3).

2) A comparison of ψGn and ϕTd (Proposition 4.1): on a tree-like subgraph T of Gn,
such that there are no cycles in Gn at distance κ log log n of T for a large enough
constant κ, there is a bijective map Φ between T and an isomorphic subtree of Td
and a coupling of ψGn and ϕTd so that

sup
y∈T
|ψGn(y)− ϕTd(Φ(y))| ≤ log−1 n.
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Anatomy of a Gaussian giant

We stress the fact that we reveal ψGn only after having explored Gn: if we reveal
ψGn at a given vertex, it conditions the structure of Gn and thus the pairings of the
still unmatched half-edges, so that we cannot use the sequential construction any more
to further explore the graph. Hence, during the exploration, we will need to build an
approximate version of ψGn , depending on the Gaussian variables of 1). This makes some
proofs tedious, in particular that of (1.3).

From Section 2 onwards, we will work exclusively onMn (and with the GFF on it,
ψMn

), proving that the statements of Theorems 1.1, 1.2 and 1.3 hold w.h.p. onMn. Since
the law of Gn is that ofMn under a non-vanishing conditioning, these statements hold
w.h.p. on Gn. For convenience, we continue this Section with Gn and ψGn instead ofMn

and ψMn
.

The base exploration
The exploration that we will perform in all proofs, with some modifications, is as follows:
pick x ∈ Vn, and reveal its connected component CGn,hx in E≥hψGn

in a breadth-first way,
as well as its neighbourhood up to distance an = κ log log n. Until we meet a cycle, the

explored zone is a tree Tx, growing at least like Ch+log−1 n
◦ , and at most like Ch−log−1 n

◦ by
2).

On one hand, Ch+log−1 n
◦ has a probability ' η(h+ log−1 n) = η(h) + o(1) to be infinite,

with a growth rate λh > 1 (Section 3.2). On the other hand, the probability to create
a cycle is o(1) as long as we reveal o(

√
n) vertices (since we perform o(

√
n) pairings of

half-edges having each a probability o(
√
n)/n to involve two already discovered vertices).

Thus, with Pann-probability at least η(h)+o(1), Tx and ∂Tx will reach a size Θ(
√
n log−κ

′
n)

for some constant κ′ > 0 (Proposition 5.1).

Conversely, Ch−log−1 n
◦ has a probability 1− η(h− log−1 n) = 1− η(h) + o(1) to be finite,

and with Pann-probability 1− η(h) + o(1), |CGn,hx | = o(
√
n) (Proposition 5.4).

Proof of (1.2).
First, we show that for any two vertices x, y ∈ Vn, there is a Pann-probability η(h)2 + o(1)

that they are connected in E≥hψGn
. To do so, we explore CGn,hx and CGn,hy , that we couple

with independent copies of Ch+log−1 n
◦ , so that with probability η(h)2 + o(1), ∂Tx and ∂Ty

have Θ(
√
n log−κ

′
n) vertices. The explorations from x and y are disjoint with probability

1−o(1), since o(
√
n) vertices have been explored. Then, we draw multiple paths between

Tx and Ty (with an “envelope” of radius Θ(log log n) around each of them to allow the
use of the approximation 2)), the joining balls (Section 6.1). The probability that E≥hψGn
percolates through at least one of these paths is 1− o(1).

Second, we prove by a second moment argument that Pann-w.h.p., the number of
couples (x, y) ∈ V 2

n such that y ∈ CGn,hx is (η(h)2 + o(1))n2 (Lemma 6.5).
Third, knowing that |CGn,hx | = o(

√
n) with Pann-probability 1− η(h) + o(1), we deduce

in the same way that at least (1− η(h) + o(1))n vertices are in connected components of
size o(

√
n) (Lemma 6.4).

Those two facts together force the existence of a connected component of size
(η(h) + o(1))n.

Proof of (1.3).
The most difficult part is the upper bound. We show that for K0 large enough, for x ∈ Vn,
Pann(K0 log n ≤ |CGn,hx | ≤ K−1

0 n) = o(1/n), and conclude by a union bound on x and a

corollary of the proof of (1.2), namely that |C(n)
2 |/n

Pann−→ 0.
The greater precision o(1/n) requires three additional ingredients:

• the size of Ch◦ conditioned on being finite has exponential moments (Proposition 3.4),
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in particular, PTd(|Ch◦ | ≥ c log n, |Ch◦ | < +∞) = o(1/n) for a large enough constant
c;

• when exploring k vertices around x, there is a probability Θ(k2/n) that a cycle
arises, so that we will need to handle at least one cycle to fully explore CGn,hx ;

• we need a better approximation of ψGn than log−1 n in 2): with probability at least
Θ(1/n), we will meet too many vertices with an approximate value of ψGn that are
in [h− log−1 n, h+ log−1 n], so that we can not tell whether they are in CGn,hx or not
before the end of the exploration. To remedy this, we replace the “security radius”
an in 2) by some rn = Θ(log n), so that we approximate ψGn up to a difference
n−Θ(1).

Other proofs.
The proofs of Theorems 1.2 and 1.3 are based on slightly modified explorations, and are
much simpler.

1.6 Plan of the rest of the paper

In Section 2, we review some basic properties of Gn. In Section 3, we study the GFF
on Td. In Section 4, we establish a coupling between recursive constructions of the
GFF on Td and on a tree-like neighbourhood of Gn. As these three sections consist of
preparatory work, most of their proofs are deferred to the Appendix. The core ideas of
the paper are in Sections 5 and 6. In Section 5, we explore the connected component of
a vertex in E≥hψGn . In Section 6, we prove (1.2). The most technical part of this article is
Section 7, in which we prove (1.3). In Section 8, we prove Theorems 1.2 and 1.3.

1.7 Further definitions

In this paper, graphs are undirected. For a graph G, denote dG the usual graph
distance on its vertex set V , and for every vertex x and every integer R ≥ 0, let
BG(x,R) := {y, dG(x, y) ≤ R} and ∂BG(x,R+1) = BG(x,R+1)\BG(x,R). For any S ⊆ V ,
let similarly BG(S,R) := ∪x∈SBG(x,R) and ∂BG(S,R+ 1) = BG(S,R+ 1)\BG(S,R). If A
is a subgraph of G with vertex set S, let BG(A,R) := BG(S,R). If x and y are neighbours,
we denote BG(x, y,R) the subgraph of G obtained by taking all paths of length R starting
at x and not going through y.

The tree excess of a finite graph G is tx(G) = e− v + 1, where v := |V | and e is the
number of edges in G, see Section A.3 for elementary facts on the tree excess that will
be useful throughout the paper.

A rooted tree is a tree T with a distinguished vertex ◦, the root. The height hT (x)

of a vertex x in T is dT (◦, x). If T is finite, its boundary ∂T is the set of vertices of
maximal height. The subtree from x is the subtree made of the vertices y such that x
is on any path from ◦ to y. The offspring of x is the set of vertices of its subtree. For
r ≥ 0, the r-offspring of x is its offspring at distance r of x, and its offspring up to
generation r is its offspring at distance at most r. If y is in the 1-offspring of x, then y
is a child of x, and x is its parent. In this case, write x = y.

If x, y are neighbours in T , the cone from x out of y is the rooted subtree of T with
root x and vertex set {z ∈ T | y is not on the shortest path from x to z}.

Unless mention of the contrary, all random walks are in discrete time. We will write
TA (resp. HA) for the first exit (resp. hitting) time of a set A by a SRW.

For two probability distributions µ, µ′ onR, we write µ ≤
st.
µ′ (or µ′ ≥

st.
µ) if µ′ dominates

stochastically µ, i.e. there exist two random variables X ∼ µ and X ′ ∼ µ′ on the same
probability space such that X ≤ X ′ a.s.
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2 Basic properties

2.1 From Gn to the multigraphMn

The graph Gn can be generated sequentially as follows: attach d half-edges to each
vertex of Vn. Pick an arbitrary half-edge, and match it to another half-edge chosen
uniformly at random. Then, choose a remaining half-edge and match it to another
unpaired half-edge chosen uniformly at random among the remaining half-edges, and so
on until all half-edges have been paired. The resulting multi-graphMn is not necessary
simple, i.e. it might have loops and multiple edges. The probability thatMn is simple
has a positive limit as n→ +∞, and conditionally on {Mn is simple},Mn is distributed
as Gn (see for instance Section 7 of [33], in particular Proposition 7.13 for a reference).

In particular, an event true w.h.p. onMn is also true w.h.p. on Gn, so that it is enough
to prove all our results onMn. In the rest of the paper, we will exclusively work onMn.

Note thatMn is not necessarily connected, but that it is d-regular. The SRW onMn

is as follows: if a vertex x has a loop, then a SRW starting at x goes through the loop
with probability 2/d, and if there is an edge with multiplicity ` ≥ 1 between x and an
other vertex y, the SRW moves to y with probability `/d. The uniform measure πn on its
vertices is still invariant for the SRW, and is the unique such probability measure ifMn

is connected. Also, the SRW is still reversible. These observations allow to transpose
readily the definitions in Section 1.2 from Gn toMn. WhenMn is connected, denote
GMn

the Green function (which is still symmetric, finite and positive semidefinite), and
ψMn

the GFF. WhenMn is not connected, we also impose ψMn
(x) = 0 for all x ∈ Vn.

The following proposition is the main result of this Section (recall that the constants
Ki’s implicitely depend on d and h). We postpone its proof to the Appendix.

Proposition 2.1. There exists K3 > 0 such that w.h.p. as n→ +∞,Mn satisfies:

(I) Mn is a K3-expander, i.e. the spectral gap λMn
ofMn is at least K3 (the spectral

gap is 1− λ2/d, where λ2 is the second largest eigenvalue of the adjacency matrix
ofMn),

(II) for all x ∈Mn, BMn(x, bK3 log nc) contains at most one cycle.

Moreover, there exists K4 > 0 such that w.h.p. onMn, the following holds: for all
x ∈ Vn such that tx(BMn

(x, bK4 log log nc)) = 0,∣∣∣∣GMn
(x, x)− d− 1

d− 2

∣∣∣∣ ≤ log−6 n. (2.1)

If moreover y is a neighbour of x,∣∣∣∣GMn
(x, y)− 1

d− 2

∣∣∣∣ ≤ log−6 n. (2.2)

Say that a given realization of Mn is a good graph when (I), (II), (2.1) and (2.2)
hold. Remark that a good graph is necessarily connected, as the spectral gap of a
non-connected graph is 0 (see Section 2.3 of [22]). In particular,Mn (and thus Gn) is
connected w.h.p. The equations (2.1) and (2.2) illustrate the fact that GMn

is close to
GTd on a tree-like neighbourhood: it is well-known that for all x, y ∈ Td,

GTd(x, y) =
(d− 1)1−dTd (x,y)

d− 2
. (2.3)

A quick computation can be found in [34], Lemma 1.24.
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By Proposition 1.1 of [4] (whose proof also works with loops and multiple edges) (I)
and (II) imply that for some K5,K6 > 0 and for n large enough, for all x, y ∈ Vn,

|GMn(x, y)| ≤ K5

(d− 1)dMn (x,y)
∨ n−K6 . (2.4)

Throughout this paper, we will often make binomial estimates, because the number
of edges between two sets of vertices in Mn is close to a binomial random variable,
as highlighted in the Lemma below. We will use repeatedly the following classical
inequalities: for n ≥ m ≥ 0 and p ∈ (0, 1), if Z ∼ Bin(n, p), one has

P(Z ≥ m) ≤
(
n

m

)
pm, P(Z ≤ m) ≤

(
n

m

)
(1− p)m,

(
n

m

)
≤ nm

m!
≤ nm. (2.5)

The following Lemma is an important consequence of the sequential construction of
Mn.

Lemma 2.2 (Binomial number of connections). Let m ∈ N, let W0,W1 be disjoint
subsets of Vn. Write m0 := |W0| and m1 := |W1|. Suppose the only information we have
onMn is a set E of its edges that has been revealed. Let mE := |E| and denote PE the
law ofMn conditionally on this information. Repeat the following operation m times:
pick an arbitrary vertex v ∈W0 having at least one unmatched half-edge, and pair it with
an other half-edge. Add its other endpoint v′ in W0, if it was not already in it. Let s be
the number of times that v′ ∈W1. Suppose that mE +m+m1 < n. Then

s ≤
st.

Bin

(
m,

m1

n− (mE +m)

)
. (2.6)

In particular,
a) for any fixed k ∈ N, there exists C(k) > 0 so that for n large enough, if mE +m < n/2,

PE(s ≥ k) ≤ C(k)
(m1m

n

)k
. (2.7)

b) for k = k(n) → +∞ and n large enough, if we have mE + m < n/2 and kn >

6(m1 +m0 +mE)m, then
PE(s ≥ k) ≤ 0.99k. (2.8)

Proof. Pick v ∈ W0, such that v has an unmatched half-edge e. There are at most m1

vertices in W1, so that there are at most dm1 unmatched half-edges that belong to its
vertices. And the total number of unmatched half-edges is at least dn − 2(|E| + m) ≥
d(n −mE −m). Thus, the probability that e is matched with a half-edge belonging to
a vertex of W1 is not greater than dm1

d(n−mE−m) = m1

n−(mE+m) , and this bound does not
depend on the outcome of the previous matchings. (2.6) follows.

Let Z ∼ Bin
(
m, m1

n−(mE+m)

)
. By (2.5), for k ∈ N, we have

PE(Z ≥ k) ≤
(
m
k

) (
m1

n−(mE+m)

)k
≤
(
m
k

) (
m1

n/2

)k
≤ 2k

k!
mk1m

k

nk
.

This yields (2.7). Moreover, if k → +∞ as n→ +∞ and kn > 6(m1 +m0 +mE)m, by

Stirling’s formula, we have PE(Z ≥ k) ≤
(

(2e+0.1)m1m
kn

)k
< 0.99k for n large enough, and

(2.8) follows.

It is straightforward to adapt this when s counts the number of times that v′ was in
W0 (and there is no set W1). m1 is replaced by m0 +m in (2.6) and (2.7), and (2.8) does
not change. Throughout this paper, we will refer to these equations without mentioning
explicitly if we count the connections from W0 to W1 or from W0 to itself.
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2.2 GFF onMn

The name “zero-average” for the GFF onMn (or Gn) comes from the fact that a.s.,∑
x∈Vn

ψMn(x) = 0 (2.9)

since Var
(∑

x∈Vn ψMn
(x)
)

=
∑
x,y∈Vn GMn

(x, y) = 0.
Hence, there is no domain Markov property. However, there is a recursive construc-

tion of ψMn
:

Proposition 2.3 (Lemma 2.6 in [4]). Let A ( Vn and x ∈ Vn \ A. Define σ(A) :=

σ({ψMn(y), y ∈ A}). Let (Xk)k≥0 be a SRW onMn and let HA be the hitting time of A.
Conditionally on σ(A), ψMn(x) is a Gaussian variable, such that

EMn [ψMn
(x)|σ(A)] = EMn

x [ψMn
(XHA)]− EMn

x [HA]

EMn
πn [HA]

EMn
πn [ψMn

(XHA)] (2.10)

and

VarMn(ψMn
(x)|σ(A))= GMn

(x, x)−EMn
x [GMn

(x,XHA)] +
EMn
x [HA]

EMn
πn [HA]

EMn
πn [GMn

(x,XHA)].

(2.11)

Combining this Lemma and the sequential constructionMn, we obtain the following.

Proposition 2.4 (Joint realization of Mn and ψMn
). A realization of (Mn, ψMn

) is
given by the following process. Let (ξi)i≥1 be a sequence of i.i.d. N (0, 1) variables. A
move consists in:

• choosing an unpaired half-edge e and matching it to another unpaired half-edge
chosen uniformly at random (independently of (ξi)i≥1), or

• choosing x ∈ Vn and k ∈ N so that ξk has not yet been attributed, and attributing
ξk to x.

At each move, the choice of e, x or k might depend in an arbitrary way on the previous
moves, i.e. on the matchings and on the value of the normal variables attributed before,
but not on the value of the remaining normal variables. Perform moves until all half-
edges are paired, and every vertex x ∈ Vn has received a normal variable, that we denote
ξx.

To generate ψMn
, let x1, . . . , xn be the vertices of Vn, listed in the order in which

they received their normal variable. Let ψMn
(x1) :=

√
GMn

(x1, x1)ξx1
. For i = 2, . . . , n

successively, define Ai := {x1, . . . , xi−1}. Recall that we write σ(Ai) for σ({ψMn
(y), y ∈

Ai}). Let

ψMn
(xi) := EMn [ψMn

(xi)|σ(Ai)] + ξxi
√

Var(ψMn
(xi)|σ(Ai)).

It might be confusing that ψMn(xi) appears on both sides of the equation. Note
that the conditional expectation and variance on the RHS are σ(Ai)-measurable random
variables.

Proof. Clearly, the graph obtained after pairing all the half-edges is distributed asMn.
For every i ≥ 1, ξxi is a standard normal variable independent of the realization ofMn,
and of σ(Ai) for i ≥ 1, so that we can conclude by Proposition 2.3.

Last, we prove that the maximum of |ψMn
| onMn has a subexponential tail.
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Lemma 2.5 (Tail for the maximum of |ψMn
|). Suppose that maxx∈Vn GMn

(x, x) ≤ K5.
Then for all ∆ > 0, if n is large enough,

PMn

(
max
x∈Vn

|ψMn
(x)| ≥ log2/3 n

)
≤ n−∆. (2.12)

In particular, by Proposition 2.1 and (2.4), w.h.p. Mn satisfies (2.12).

Proof. Let N ∼ N (0,K5). If n is large enough, then for all x ∈ Vn,

PMn

(
|ψMn(x)| ≥ log2/3 n

)
≤ PMn

(
|N | ≥ log2/3 n

)
≤ 2 exp

(
− log4/3 n

4K5

)
≤ n−∆−1

by Markov’s inequality applied to the function u 7→ exp
(

log2/3 n
2K5

u
)

. By a union bound on

all x ∈ Vn, we get PMn

(
maxx∈Mn

|ψMn
(x)| > log2/3 n

)
≤ n−∆.

3 The Gaussian Free Field on Td

In Section 3.1, we characterize Ch◦ as a branching process, with a recursive con-
struction (Proposition 3.1). Then, in Section 3.2, we establish its exponential growth,
conditionally on the event {|Ch◦ | = +∞}. The main results are Propositions 3.3, 3.4
and 3.6.

3.1 Ch◦ as a branching process

There is an alternate definition of ϕTd , starting from its value at ◦ and expanding
recursively to its neighbours. It shows that Ch◦ is an infinite-type branching process, the
type of a vertex x being ϕTd(x).

Proposition 3.1 (Recursive construction of the GFF,(1.4)-(1.9) in [3]). Define a Gaus-
sian field ϕ on Td as follows: let (ξy)y∈Td be a family of i.i.d. N (0, 1) random variables.

Let ϕ(◦) :=
√

d−1
d−2ξ◦. For every y ∈ Td \{◦}, define recursively ϕ(y) :=

√
d
d−1ξy+ 1

d−1ϕ(y),

where y is the parent of y. Then

ϕ
d.
= ϕTd .

Proposition 3.1 is the corollary of a more general domain Markov property (see
for instance Lemma 1.2 of [27] where it is stated for Zd, but the proof works for any
transient graph).

Write PTd for the law of ϕTd , and PTda for PTd( · |ϕTd(◦) = a), a ∈ R (such conditioning
is well-defined, (ϕTd(x))x∈Td being a Gaussian process). This construction gives a
monotonicity property for ϕTd . A set S ⊂ RTd is said to be increasing if for any

(Φ
(1)
z )z∈Td , (Φ

(2)
z )z∈Td ∈ RTd such that Φ

(1)
z ≤ Φ

(2)
z for all z ∈ Td, (Φ

(1)
z )z∈Td ∈ S only if

(Φ
(2)
z )z∈Td ∈ S. Say that the event {ϕTd ∈ S} is increasing if S is increasing.

Lemma 3.2 (Conditional monotonicity). If E is an increasing event, then the map
a 7→ PTda (E) is non-decreasing on R.

Proof. Let a1, a2 ∈ R such that a1 > a2. It suffices to give a coupling between a GFF
ϕ

(1)
Td

conditioned on ϕ
(1)
Td

(◦) = a1 and a GFF ϕ
(2)
Td

conditioned on ϕ
(2)
Td

(◦) = a2 such that

a.s., for every z ∈ Td, ϕ(1)
Td

(z) ≥ ϕ(2)
Td

(z). To do this, let (ξy)y∈Td be i.i.d. standard normal

variables, and define recursively ϕ
(1)
Td

and ϕ
(2)
Td

as in Proposition 3.1. Then for every

z ∈ Td of height k ≥ 0, ϕ(1)
Td

(z) = ϕ
(2)
Td

(z) + (a1 − a2)(d− 1)−k.
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3.2 Exponential growth

All proofs of this section are postponed to the Appendix, Section A.2.
Let Zhk := Ch◦ ∩ ∂BTd(◦, k) be the k-th generation of Ch◦ . We first characterize the

growth rate of Zhk . The first statement of the proposition below is a variant of Theorem 4.3
in [3].

Proposition 3.3. There exists λh > 1 such that

lim
k→+∞

PTd(|Zhk | > λkh/k
2) = η(h)

and
lim

k→+∞
PTd(|Zhk | < kλkh) = 1.

Moreover, h 7→ λh is a decreasing homeomorphism from (−∞, h?) to (1, d− 1).

We now give finer results on the growth rate of |Ch◦ |. It turns out that |Ch◦ | conditioned
to be finite has exponential moments:

Proposition 3.4. There exists a constant K7 > 0 such that as k → +∞,

max
a≥h

PTda (k ≤ |Ch◦ | < +∞) = o(exp(−K7k)). (3.1)

Since {Zhk 6= ∅} ⊂ {|Ch◦ | ≥ k}, we have the following straightforward consequence:

Corollary 3.5. For k large enough, for every a ≥ h,
PTda (|Ch◦ | = +∞) ≤ PTda (Zhk 6= ∅) ≤ PTda (|Ch◦ | = +∞) + e−K7k.

In addition, there are large deviation bounds for the growth rate of Zhk :

Proposition 3.6. For every ε > 0, there exists C > 0 such that for every k ∈ N large
enough,

max
a≥h

PTda (k−1 log |Zhk | 6∈ [log(λh − ε), log(λh + ε) + k−1 logχh(a)] | Zhk 6= ∅) ≤ exp(−Ck).

(3.2)

Let ◦ be an arbitrary neighbour of ◦. Let T+
d be the cone from ◦ out of ◦. Write

Ch,+◦ := Ch◦ ∩T+
d . For k ≥ 1, let Zh,+k := Ch,+◦ ∩ ∂BT+

d
(◦, k). The last proposition also holds

when replacing Ch◦ by Ch,+◦ , and Zhk by Zh,+k .

4 Approximate recursive construction of ψMn

Let κ > 0 be a constant, and let

an := bκ logd−1 log nc. (4.1)

The following statement is the main result of this section. It shows that a recursive
construction of ψMn

, under some assumptions on the subset A ⊂ Vn of vertices where
ψMn

is already known, is very close to the construction of ϕTd in Proposition 3.1. It is
a crucial tool for comparing ψMn

and ϕTd in the exploration in the next section. It is
analogous to Proposition 2.7 of [4], where the assumptions on A are slightly different:
they are suited to a deterministic d-regular graph satisfying (I) and (II), while ours will
be adapted to an annealed exploration, where the randomness ofMn plays a role. The
proof is postponed to the Appendix, Section A.3.

Proposition 4.1. If the constant κ from (4.1) is large enough, then the following holds
for n large enough. Assume thatMn is a good graph as defined in Proposition 2.1, and
that A ⊂ Vn satisfies

• |A| ≤ n log−8 n,

EJP 28 (2023), paper 35.
Page 12/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP920
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anatomy of a Gaussian giant

• tx(BMn
(A, an)) = tx(A), and

• maxz∈A |ψMn
(z)| ≤ log2/3 n.

For every y ∈ ∂BMn
(A, 1), writing y for the unique neighbour of y in A, we have:∣∣∣∣EMn [ψMn(y)|σ(A)]− 1

d− 1
ψMn(y)

∣∣∣∣ ≤ log−3 n (4.2)

and ∣∣∣∣VarMn(ψMn(y)|σ(A))− d

d− 1

∣∣∣∣ ≤ log−4 n. (4.3)

We stress that the result holds for a fixed realization ofMn.

A

y

y
an

Ty

Figure 1: The unicity of y comes from the fact that when building BMn(A, an) from A,
no cycle appears and no connected components of A join, since tx(BMn(A, an)) = tx(A).

5 Exploration of ψMn around a vertex

5.1 Successful exploration

In this section, we prove that with Pann-probability arbitrarily close to η(h) as n→
+∞, |CMn,h

x | ≥ n1/2 log−κ−6 n, CMn,h
x being the connected component of a given vertex x

in E≥hψGn (Proposition 5.1), and κ the constant defined in (4.1).

To do so, we explore a tree-like neighborhood Tx of x in E≥hψGn . We reveal Tx generation

by generation, and couple it with a realization of Ch+log−1 n
◦ ⊂ Td that is independent of

the pairing of the half-edges ofMn. By Proposition 2.4, a realization of ψMn
is given by

a recursive construction with the same normal variables as those of the realization of
ϕTd . When:

• that realization of Ch+log−1 n
◦ is infinite (which happens with probability η(h +

log−1 n) ' η(h)), and
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• the conditions of Proposition 4.1 hold for each vertex of Tx, until a generation
at which |∂Tx| ≥ n1/2 log−κ−6 n (which happens with probability 1 − o(1), mainly
because we have a probability o(1) to create a cycle when pairing o(

√
n) half-edges),

we can apply Proposition 4.1 to bound the difference between ϕTd and ψMn
by log−1 n,

ensuring that Tx ⊆ CMn,h
x , the connected component of x in E≥hψGn .

The exploration. Fix x ∈ Vn. Let

bn := (d− 1)−an log−6 n, (5.1)

where we recall the definition of an from (4.1). Let (ξy)y∈Td be a family of independent
variables, each of law N (0, 1), independent of the pairing of the half-edges inMn. Define
the GFF ϕTd as in Proposition 3.1.

At every step of the exploration, Tx will be a tree rooted at x, Tx its respective
counterpart in Td, rooted at ◦, and Φ an isomorphism from Tx to Tx. At step k, we will
reveal the k-th generation of Tx and Tx.

Precisely, the exploration from x consists of the following steps:

• at step 0, Tx = {x} and Tx = {◦}. Reveal the pairings of the half-edges of
BMn

(x, an). Stop the exploration if tx(BMn
(x, an)) > 0 or if ϕTd(◦) < h+ log−1 n.

• at step k ≥ 1, reveal the edges of BMn
(Tx, an + 1) that were not known at step

k− 1. Let Ok−1 be the set of the vertices of Tx of height k− 1. Stop the exploration
if at least one of the following conditions holds:

C1 a cycle appears in BMn
(Tx, an + 1),

C2 |Ok−1| ≥ n1/2bn,

C3 Ok−1 = ∅ (i.e. no vertex was added to Tx during the (k − 1)-th step),

C4 k > logλh n.

Else, denote xk,1, xk,2, . . . , xk,m the neighbours (inMn) of vertices of Ok−1 that are
not in Ok−2, for some m ∈ N (note that m = (d − 1)|Ok−1|, each vertex of Ok−1

having one neighbour in Ok−2, its parent, and d− 1 other neighbours at distance k
of ◦). Add to Tx the vertices xk,i of Ok−1 such that ϕTd(Φ(xk,i)) ≥ h+ log−1 n. Add
to Tx the corresponding vertices Φ(xk,i).

If the exploration is stopped at some step k, at which only C2 is met, say that it is
successful. In this case, by Proposition 2.4, we can sample ψMn as follows: we reveal
the remaining pairings of half-edges in Mn. We set ψMn(x) = ξ◦GMn(x, x). For all
k, i ≥ 1, if Ak,i = {x} ∪ {x`,j |(`, j) ≺ (k, i)} where ≺ is the lexicographical order on N2,
let

ψMn
(xk,i) = EMn [ψMn

(xk,i)|σ(Ak,i)] + ξk,i

√
Var(ψMn

(xk,i)|σ(Ak,i)). (5.2)

Note that the conditional expectation and variance of the RHS are σ(Ak,i)-measurable
random variables, so that (5.2) makes sense, even if ψMn

(xk,i) appears on both sides of
the equation.

Let S(x) := {the exploration from x is successful}. We prove the following:

Proposition 5.1.
Pann(S(x) ∩ {Tx ⊆ CMn,h

x }) −→
n→+∞

η(h). (5.3)

Remark 5.2 (Exploration size). Denote Rx the set of vertices seen during the explo-
ration (i.e. such at least one of their half-edges has been paired). Note that for n large
enough, for every x ∈ Vn, by C2, C4 and (5.1), Tx contains less than
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'Td
(◦) = 0:7

0:6 0:2

0:53

2:4

1:71:8

x3;1 x3;2

x3;3
x3;4

x3;5

x3;6

0:1

an

an

Figure 2: Illustration of the exploration with k = 3, an = 2, h = 0.3 and n = 148 (so that
log−1 n ' 0.2). Thick vertices and edges represent Tx after two steps. Red vertices have
not been included in Tx because ϕTd at their counterparts in Td is below h+ log−1 n. Any
number near a vertex v is ϕTd(Φ(v)).

n1/2(d− 1)−an log−6 n logλh n ≤ n
1/2(d− 1)−an log−4 n

vertices, so that

|Rx| ≤ n1/2(d− 1)−an log−4 n× (1 + (d− 1) + . . .+ (d− 1)an+1) ≤ n1/2 log−3 n.

In order to prove Proposition 5.1, we first show that Ch+log−1 n
◦ either has an expo-

nential growth at rate >
√
λh with probability close to η(h), or dies out before reaching

height logλh n with probability close to 1− η(h). Although the proof is slightly technical,
it relies merely on Proposition 3.3 and on the continuity of the maps h′ 7→ λh′ and
h′ 7→ η(h′). It can be skipped at first reading. Recall the definition of Zhk at the beginning
of Section 3.2.

Lemma 5.3. Let F (n)
k := {n1/2bn ≤ |Zh+log−1 n

k | ≤ dn1/2bn} and F ′(n)
k := {Zh+log−1 n

k−1 = ∅}
for k ≥ 1. Let k0 := inf{k ≥ 1, F (n)

k or F ′(n)
k happens}, F∗(n) := {k0 ≤ logλh n}∩F

(n)
k0

and

F ′∗(n)
:= {k0 ≤ logλh n} ∩ F

′(n)
k0

. Then, as n→ +∞:

Pann(F∗(n))→ η(h) and Pann(F ′∗(n)
)→ 1− η(h). (5.4)

Proof. Remark first that by construction, Pann acts like PTd on events that only de-

pend on ϕTd . Note that for every n ≥ 1, F ′∗(n) ∩ F∗(n) = ∅, implying Pann(F ′∗(n)
) +

Pann(F∗(n)) ≤ 1. Hence it is enough to prove that

lim inf
n→+∞

Pann(F∗(n)) ≥ η(h) (5.5)

and

lim inf
n→+∞

Pann(F ′∗(n)
) ≥ 1− η(h) (5.6)

Let ε ∈ (0, η(h)). Let δ > 0 be such that |η(h+δ)−η(h)| ≤ ε and log λh+δ > (9 log λh)/10.
The map h′ → η(h′) is continuous on R\{h?} by Theorem 3.1 of [3] and the map h′ → λh′
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is an homeomorphism from (−∞, h?) to (1, d− 1) by Proposition 3.3, hence such δ exists.
It is clear that

lim inf
n→+∞

Pann

(
∃k ≤ logλh n, |Z

h+log−1 n
k | > n1/2bn

)
≥ lim inf

n→+∞
Pann

(
∃k ≤ logλh n, |Z

h+δ
k |> n1/2bn

)
≥ lim inf

n→+∞
Pann

(
|Zh+δ
blogλh

nc|> n1/2bn

)
≥ lim inf

n→+∞
Pann

(
|Zh+δ
blogλh

nc|> n9/10/ log2
λh
n
)
,

hence by the first equation of Proposition 3.3 applied to h+ δ,

lim inf
n→+∞

Pann

(
∃k ≤ logλh n, |Z

h+log−1 n
k | > n1/2bn

)
≥ η(h+ δ) ≥ η(h)− ε. (5.7)

Since each vertex of Td has at most d children, we have |Zh+log−1 n
k |≤d|Zh+log−1 n

k−1 |
deterministically for all k ≥ 1. Hence, letting k′ := inf{k ≥ 0, |Zh+log−1 n

k | ≥ n1/2bn}
when this set is non-empty, F (n)

k′ holds, so that {∃k ≤ logλh n, |Z
h+log−1 n
k | > n1/2bn} ⊆

∪k≤logλh
n F (n)

k . Thus

lim inf
n→+∞

Pann(F∗(n)) ≥ lim inf
n→+∞

Pann

(
∪k≤logλh

n F (n)
k

)
≥ η(h)− ε

by (5.7), and this shows (5.5).

For n ≥ e1/δ, Ch+δ
◦ ⊆ Ch+log−1 n

◦ ⊆ Ch◦ . Note that for n ≥ 1,

Pann(F ′∗(n)
)

≥ Pann
(
Zh+log−1 n
blogλh

nc−1 = ∅
)
−Pann

(
{Zh+log−1 n
blogλh

nc−1 = ∅} ∩ {∃k ≥ 1, |Zh+log−1 n
k | ≥ n1/2bn}

)
≥ Pann

(
Zhblogλh

nc−1 = ∅
)
− Pann

(
{|Ch+log−1 n
◦ | < +∞} ∩ {∃k ≥ 1, |Zh+log−1 n

k |≥ n1/2bn}
)

≥ Pann
(
Zhblogλh

nc−1 = ∅
)
− Pann

(
|Ch+log−1 n
◦ | < +∞ | ∃k ≥ 1, |Zh+log−1 n

k | ≥ n1/2bn

)
.

The first term of the RHS converges to 1− η(h) as n → +∞. For any k ≥ 1 and for

any v ∈ BTd(◦, k), denoting Tv the possible subtree from v in Ch+log−1 n
◦ (if v ∈ Zh+log−1 n

k )
and C◦(h, δ) the connected component of ◦ in ({◦} ∪ E≥h+δ

ϕTd
) ∩T+

d ,

Pann(|Tv| < +∞|v ∈ Zh+log−1 n
k ) ≤ PTdh (|C◦(h, δ)| < +∞)

by Lemma 3.2, independently of the other vertices of Zh+log−1 n
k . Thus,

Pann(|Ch◦ | < +∞ | ∃k ≥ 1, |Zhk | ≥ n1/2bn) ≤ PTdh (|C◦(h, δ)| < +∞)n
1/2bn .

By a straightforward adaptation of Remark A.3, we have PTdh (|C◦(h, δ)| < +∞) < 1,
and (5.6) follows.

Proof of Proposition 5.1. We first establish that C1 happens with Pann-probability o(1).
Then, if there is no cycle in BMn(Tx, an), we can apply Proposition 4.1, to bound the
difference between ϕTd and ψMn .

By Remark 5.2, at most dn1/2 log−3 n matchings of half-edges are performed during
the exploration. By (2.7) with k = m0 = 1, mE = 0 and m ≤ dn1/2 log−3 n, the probability
to create at least one cycle during these matchings is less than log−1 n for large enough
n. Therefore,

Pann(C1 happens)→ 0. (5.8)
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Anatomy of a Gaussian giant

Note that if C1 does not happen, then on F∗(n), (resp. F ′∗(n)), C3 (resp. C2) is
satisfied, but not C4. Moreover, on F∗(n), (resp. F ′∗(n)), C2 (resp. C3) does not hold, so
that we have Pann(S(x)) ≥ Pann(F∗(n)) − Pann(C1 happens). Since F∗(n) ∩ F ′∗(n)

= ∅,
we get that

Pann(S(x)) ≤ Pann((F∗(n))c)+Pann(C1 happens) ≤ 1−Pann(F ′∗(n)
)+Pann(C1 happens).

Thus, by (5.4) and (5.8),
Pann(S(x))→ η(h). (5.9)

Suppose now that the exploration is over and that S(x) holds. We compare ψMn
with

ϕTd . Note that by C4, Tx has a maximal height logλh n so that by the triangle inequality,

{Tx 6⊆ CMn,h
x } ⊆ {∃y ∈ Tx, |ψMn

(y)− ϕTd(Φ(y))| ≥ log−1 n} ⊆ ∪y∈TxE(y),

where E(x) := {|ψMn
(x)− ϕTd(Φ(x))| ≥ log−3 n} and

E(y) := {|ψMn(y)− ϕTd(Φ(y))| ≥ |ψMn(y)− ϕTd(Φ(y))|+ 2 log−3 n} for y 6= x.

Suppose thatMn is a good graph. For xk,i ∈ Tx \ {x}, we can apply Proposition 4.1

on the event E(n)
k,i := {maxy′∈Ak,i |ψMn

(y′)|<log2/3n }, (since tx(BMn
(Ak,i, an)) = tx(Ak,i)

by C1 and since |Ak,i| ≤ n1/2 by Remark 5.2). Writing y = xk,i and ξ = ξΦ(xk,i), we get
for n large enough:

|ψMn(y)− ϕTd(Φ(y))| ≤

∣∣∣∣∣ψMn
(y)− ϕTd(Φ(y))

d− 1

∣∣∣∣∣+ log−3 n

+

∣∣∣∣∣
(√

VarMn(ψMn
(y)|σ(Ak,i))−

√
d− 1

d

)
ξ

∣∣∣∣∣
and ∣∣∣∣∣

√
VarMn(ψMn

(y)|σ(Ak,i))−
√
d− 1

d

∣∣∣∣∣ ≤
∣∣∣∣∣
√
d− 1

d
− log−4 n−

√
d− 1

d

∣∣∣∣∣
≤ 11

10

√
d− 1

d

d

2(d− 1)
log−4 n

≤ log−4 n.

Let E ′(y) := E(y) ∩ E(n)
k,i . We have

PMn(E ′(y)) ≤ P(|ξ| log−4 n ≥ log−3 n) ≤ n−3 (5.10)

by the exponential Markov inequality used as in the proof of Lemma 2.5. Moreover, by
(2.1), if κ is large enough, we obtain in the same manner:

PMn(E(x)) ≤ PMn(|ξ◦| log−4 n ≥ log−3 n) ≤ n−3. (5.11)

By Remark 5.2, we have |Tx| ≤ n1/2. By (5.10), (5.11) and a union bound on y ∈ Tx,

we have that PMn(∪y∈TxE ′(y)) ≤ n−5/2 with E ′(x) := E(x). And PMn(∪(k,i):xk,i∈TxE
(n)
k,i ) ≤

n−2 for large enough n, by Lemma 2.5.
Thus for n large enough, ifMn is a good graph,

PMn(Tx 6⊆ CMn,h
x ) ≤ PMn(∪y∈TxE(y)) ≤ n−5/2 + n−2 ≤ n−1,

so that by Proposition 2.1 and (5.9):

Pann(S(x) ∩ {Tx ⊆ CMn,h
x })→ η(h).
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5.2 Aborted exploration

For x ∈ Vn, the lower exploration is the exploration of Section 5.1, modified by

replacing h+ log−1 n by h− log−1 n, so that we compare Tx and Ch−log−1 n
◦ . If it is stopped

at some step k at which only C3 is met, say that it is aborted. Write
A(x) := {the lower exploration from x is aborted} ∩ {CMn,h

x ⊆ Tx}.
Proposition 5.4.

Pann(A(x)) −→
n→+∞

1− η(h). (5.12)

The proof follows from a direct adaptation of Lemma 5.3 and Proposition 5.1. Note

in particular that Pann(C1 happens) = o(1), and that Pann(A(x)) = Pann(Zh−log−1 n
k0−1 =

∅) + o(1) = 1− η(h) + o(1).

6 Existence of a giant component

In Section 6.1, we prove that two vertices x, y ∈ Vn are in the same connected compo-
nent of E≥hψGn with Pann-probability −→

n→+∞
η(h)2 (Proposition 6.2). Then in Section 6.2,

we use a second moment argument to get concentration and to show (1.2).

6.1 Connecting two successful explorations

Let us describe our strategy to establish Proposition 6.2. We perform explorations
as in Section 5.1 from x and y. If they are both successful and do not meet (which
happens with probability ' η(h)2), we develop disjoint balls, denoted “joining balls”,
from ∂Tx to ∂Ty (Section 6.1.1). Each of them is rooted at a vertex of ∂Tx, hits ∂Ty at
exactly one vertex, and has a “security radius” of depth an around its path from ∂Tx to
∂Ty (see Figure 3). The construction of the joining balls only depends on the structure
ofMn, and not on the values of ψMn

. Then, we realize ψMn
on Tx, Ty and those balls

(Section 6.1.2). If they are all disjoint and tree-like, once we have revealed ψMn
on Tx

and Ty, this security radius allows us to apply Proposition 4.1 to approximate ψMn
on

the paths from ∂Tx to ∂Ty by ϕTd .

Let us explain with a back-of-the-envelope computation how the joining balls allow to
connect Tx and Ty in E≥hψGn

. Since |Ty| ' n1/2bn by C2, the probability that for a given
z ∈ ∂Tx, exactly one of the vertices at distance bγ logd−1 log nc (and no vertex at distance
< bγ logd−1 log nc) from z is in ∂Ty is

' P(Bin((d− 1)γ logd−1 logn, n
1/2bn
dn ) = 1) ' logγ n× n−1/2bn.

And there are ' n1/2bn vertices in ∂Tx, hence we can expect that that the number
of joining balls is at least ' n1/2bn × logγ n× n−1/2bn = b2n logγ n, provided that we can
control some undesirable events (such as an intersection between balls, or a cycle in a
ball). This is the purpose of Lemma 6.1.

Moreover, we know that for large r ∈ N and v ∈ ∂BTd(◦, r), PTd(v ∈ Ch◦ ) is of order
(λh/(d − 1))r, by Proposition 3.6. Taking r = γ logd−1 log n, the probability that E≥hψGn
percolates from ∂Tx to ∂Ty through a given joining ball is ' logγ(logd−1 λh−1) n, if we can
approximate ψMn

by ϕTd . For γ large enough w.r.t κ (recall (5.1) and (4.1), and recall
that λh > 1),

b2n logγ n× logγ(logd−1 λh−1) n ≥ log−2κ−13 n × logγ logd−1 λh n >> 1,

so that with high probability, E≥hψGn percolates through at least one joining ball from ∂Tx
to ∂Ty.
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6.1.1 The joint exploration

For x, y ∈ Vn, write x
h↔ y if y ∈ CMn,h

x . Let (ξz,v)z∈{x,y},v∈Td be an array of i.i.d. standard
normal variables independent from everything else. Define the joint exploration from
x and y as the exploration from x (with the (ξx,v)’s), then the exploration from y (with
the (ξy,v)’s), as in Section 5.1, with the additional condition

C5 the exploration is stopped as soon as Rx ∩Ry 6= ∅,

where Rx (resp. Ry) is the set of vertices seen during the exploration from x (resp. from
y), as defined in Remark 5.2. Note that the families (ξx,v)v∈Td and (ξx,v)v∈Td generate
two independent copies of ϕTd .

If both explorations are successful and C5 does not happen (denote S(x, y) this event),
we add the following steps to the joint exploration. Let γ > 0 and

a′n := bγ logd−1 log nc. (6.1)

Denote z1, . . . , z|∂Tx| the vertices of ∂Tx. For j = 1, 2, . . . , |∂Tx| successively, build
B∗(zj , a

′
n) the subgraph of Mn obtained as follows (see Figure 3 for an illustration).

Write
B∗j := ∪j′<jB∗(zj′ , a′n) and Qj := Rx ∪Ry ∪B∗j , (6.2)

so that Qj is the set of vertices seen in the exploration before the construction of
B∗(zj , a

′
n).

Let initially B∗(zj , a′n) be the subtree from zj of height an in the tree BMn(Tx, an) (in
blue in Figure 3). For k ≤ a′n, write B∗(zj , k) := B∗(zj , a

′
n) ∩ BMn

(zj , k). If B∗(zj , an) ∩
B∗j 6= ∅, say that j is spoiled, and the construction of B∗(zj , a′n) stops.

Else, for k = an, an + 1, . . . , a′n− 2an− 2 successively, while tx(B∗(zj , k)∪Qj) = tx(Qj)

(i.e. no cycle has been discovered) and B∗(zj , k) ∩ BMn
(Ty, an) = ∅, add to B∗(zj , a

′
n)

the neighbours of B∗(zj , k) and the corresponding edges (in red in Figure 3). If for
some k ∈ {an, . . . , a′n − 2an − 2}, tx(B∗(zj , k) ∪ Qj) > tx(Qj) (i.e. at least one cycle is
discovered) or B∗(zj , k) ∩BMn

(Ty, an) 6= ∅, the construction of B∗(zj , a′n) stops.
If the construction has not been stopped for some k < a′n−2an−1, add the neighbours

of B∗(zj , a′n − 2an − 1) to B∗(zj , a′n) (also in red in Figure 3). If

|B∗(zj , a′n − 2an) ∩BMn
(Ty, an)| 6= 1,

the construction of B∗(zj , a′n) stops.
Else, let vj(0) be the unique vertex of B∗(zj , a′n − 2an) ∩BMn(Ty, an). If

tx((B∗(zj , a
′
n − 2an) ∪Qj) \ {vj(0)}) > tx(Qj),

the construction of B∗(zj , a′n) stops.
Else, for k = a′n−2an, . . . , a

′
n−1 successively, while tx(B∗(zj , k)∪Qj) = tx(B∗(zj , a

′
n−

2an)∪Qj), add the neighbours of B∗(zj , k) to B∗(zj , a′n) (in green in Figure 3). Then, the
construction of B∗(zj , a′n) is completed. In this case only, and if

tx(B∗(zj , a
′
n) ∪Qj) = tx(B∗(zj , a

′
n − 2an) ∪Qj),

say that B∗(zj , a′n) is a joining ball. In other words, we obtain a joining ball if, revealing
the offspring up to generation a′n of zj , the (a′n − 2an) offspring of zj intersects ∂Ty at a
unique vertex vj(0), and no cycle is discovered in the whole construction (except when
B∗(zj , a

′
n) reaches ∂BMn(Ty, an) at vj(0), if Tx and Ty were already connected in Qj by

B∗(zj′ , a
′
n) for some j′ < j).

Write J := {j ≤ |∂Tx|, B∗(zj , a′n) is a joining ball}. Recall the definition of S(x, y)

above (6.1). Let S ′(x, y) := S(x, y) ∩ {|J | ≥ logγ−3κ−18 n}.
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y

x

vj(0)

an

an

B∗(zj; a
0

n)

B∗(zj; an)

Figure 3: Illustration of a joining ball B∗(zj , a′n). Here an = 2 and a′n = 9. Dashed lines
represent subtrees that have not been fully pictured. The blue tree has total height an,
the red trees a′n − 3an, and the green trees 2an.

Lemma 6.1. Fix γ > 3κ+ 18.

Pann(S ′(x, y)) −→
n→+∞

η(h)2.

Proof. Denote F∗(n)(x) (resp. F∗(n)(y)) the event F∗(n) for x (resp. y). Remark that
the realization of F∗(n)(x) (resp. F∗(n)(y)) only depends on the version of ϕTd defined
by (ξx,v)v∈Td (resp. by (ξy,v),v∈Td) and not on the pairings ofMn. Hence, F∗(n)(x) and
F∗(n)(y) are independent. As in the proof of Lemma 5.3, we get that

Pann(F∗(n)(x) ∩ F∗(n)(y)) = Pann(F∗(n)(x))Pann(F∗(n)(y))→ η(h)2

and Pann(F ′∗(n)
(x) ∪ F ′∗(n)

(y))→ 1− η(h)2.
Moreover, Pann(C1 or C5 happens) → 0. Indeed, by Remark 5.2, less than

2dn1/2 log−3 n half-edges are revealed during the explorations from x and y, which
allows to control C5 as we did for C1 in (5.8). Thus,

lim sup
n→+∞

|Pann(S ′(x, y))− η(h)2| ≤ lim sup
n→+∞

Pann(S(x, y) ∩ {|J | < logγ−3κ−18 n})

and it remains to prove that

lim sup
n→+∞

Pann(S(x, y) ∩ {|J | < logγ−3κ−18 n}) = 0. (6.3)

EJP 28 (2023), paper 35.
Page 20/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP920
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anatomy of a Gaussian giant

We proceed in two steps: in step 1, we control the number of spoiled vertices, and
the number of vertices of ∂BMn

(Ty, an) that are hit when building the B∗(zj , a′n)’s (if a
large proportion of those vertices are in Qj , then it significantly affects the probability
that B∗(zj , a′n) is a joining ball). In step 2, we estimate the probability that for a given j,
B∗(zj , a

′
n) is a joining ball, provided that the bounds of step 1 hold. This gives a binomial

lower bound for |J |.
Step 1. By Remark 5.2 and (4.1), |∂BMn

(Tx, an)|+ |∂BMn
(Ty, an)| ≤ 2n1/2 log−1 n. Note

also that for every j ≤ |∂Tx|, B∗(zj , a′n) contains less than (d− 1)a
′
n ≤ logγ n half-edges.

Hence:

at every moment of the exploration, less than n1/2 logγ n half-edges have been seen.
(6.4)

Let
B∗ := ∪j≤|∂Tx|B

∗(zj , a
′
n). (6.5)

To reveal the edges of B∗, one proceeds to at most n1/2 logγ n pairings of half-edges
by (6.4). Any pairing that results in an edge e between some B∗(zj , k) and BMn(Ty, an)

then leads to at most

1 + (d− 1) + . . .+ (d− 1)2an ≤ 3(d− 1)2an ≤ log2κ+1 n ≤ logγ−1 n

vertices of B∗(zj , a′n) ∩ BMn(Ty, an), since the construction of B∗(zj , a′n) stops if such
an edge happens at distance less than a′n − 2an of zj (and recall that we choose γ >

3κ+ 18 > 2κ+ 2).
Thus, by (2.8) with k = blog2γ+1 nc, m < n1/2 logγ n and m1 +m0 +mE < n1/2 logγ n

(due to (6.4)), for n large enough:

Pann(S(x, y) ∩ {|BMn(Ty, an) ∩B∗| ≥ log3γ n}) ≤ 0.99log2 n ≤ n−3. (6.6)

Let N be the total number of spoiled vertices. By (2.8) with the same parameters,

Pann(S(x, y) ∩ {N ≥ log3γ n}) ≤ n−3. (6.7)

Step 2. Recall the definition of B∗j from (6.2). For j ≤ m, denote

Sj := S(x, y) ∩ {|BMn
(Ty, an) ∩B∗j | ≤ log3γ n} ∩ {zj is not spoiled}, (6.8)

and let Fj be the sigma-algebra of the whole exploration until B∗j−1 has been constructed.
Suppose that for every j ≥ 1 and every Fj-measurable event Ej ⊆ Sj ,

Pann(B∗(zj , a
′
n) is a joining ball | Ej) ≥ n−1/2 logγ−2κ−10 n. (6.9)

On E := {|BMn
(Ty, an) ∩B∗| < log3γ n} ∩ {N < log3γ n}, the number of j’s such that

Sj holds is at least

|∂Tx| − log3γ n ≥ n1/2 log−κ−7 n

by (C2) and (5.1). Thus, if Z ∼ Bin
(
bn1/2 log−κ−7 nc, n−1/2 logγ−2κ−10 n

)
,

Pann
(
S(x, y) ∩ {|J | ≤ logγ−3κ−18 n}

)
≤ P(Z ≤ logγ−3κ−18 n) + Pann(S(x, y) ∩ Ec).

For large enough n, Pann(S(x, y)∩ Ec) = o(n−2) by (6.6) and (6.7). Moreover, one checks
easily (using γ > 3κ+ 18 and (2.5)) that for n large enough, for all k ≤ logγ−3κ−18 n:

P(Z = k) ≤ (bn1/2 log−κ−7 nc)k(n−1/2 logγ−2κ−10 n)k(1− n−1/2 logγ−2κ−10 n)
n1/2

2 logκ+7 n

≤ exp
(
k log(logγ−3κ−17 n)− (logγ−3κ−17 n)/2

)
≤ 1/n.

This yields (6.3). Hence, it only remains to prove (6.9).
Remark that Pann(B∗(zj , a

′
n) is a joining ball | Ej) ≥ p1p2p3 where:
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• p1 := Pann(Ê1|Ej) and Ê1 := Ej ∩ {no cycle is created and no connection to Qj is
made when revealing B∗(zj , a′n − 2an − 1)},

• p2 := Pann(Ê2|Ê1) where Ê2 := Ê1 ∩ {exactly one edge connects B∗(zj , a′n − 2an − 1)

and D := ∂BMn
(Ty, an) \ {BMn

(BMn
(Ty, an) ∩ B∗j , 2an)} } ∩ {no cycle is created

and no connection to ∂BMn
(Ty, an) ∪B∗j is made when revealing the other edges

of B∗(zj , a′n − 2an)},

• p3 := Pann(Ê3|Ê2) where we set Ê3 := Ê2 ∩ {no cycle is created and no connection
to ∂BMn

(Ty, an) ∪B∗j is made when revealing the remaining edges of B∗(zj , a′n)}.

This definition of D guarantees that B∗(zj , a′n) will not intersect a previously realized
joining ball when growing the subtree from vj(0) in BMn

(Ty, an).

(2.7) with k = 1, m0,m ≤ logγ n and mE ,m1 ≤ n1/2 logγ n due to (6.4) yields for n
large enough:

pi ≥ 1− C(1) logγ n
max(n1/2 logγ n, 2 logγ n)

n
≥ 1− n−1/3 (6.10)

for i ∈ {1, 3}. Therefore, p1p3 ≥ 1/2 for n large enough.

On Ê1, reveal the pairings of the half-edges of ∂B∗(zj , a′n − 2an − 1) one by one. Ê2
holds if:

• a given half-edge is matched to a half-edge of D, which has probability at least |D|dn ,
and

• each other half-edge is matched to a half-edge that had not been seen before (by

(6.4), for each half-edge this happens with probability at least 1− n1/2 logγ n
dn−n1/2 logγ n

≥

1− n1/2 logγ n
n ).

Since ∂B∗(zj , a′n − 2an − 1) has (d− 1)|∂B∗(zj , a′n − 2an − 1)| unpaired half-edges,

p2 ≥ (d− 1)|∂B∗(zj , a′n − 2an − 1)| |D|dn
(

1− n1/2 logγ n
n

)|∂B∗(zj ,a′n−2an−1)|−1

By (4.1) and (6.1), one checks easily that on Ê1,

logγ−2κ−1 n ≤ |∂B∗(zj , a′n − 2an − 1)| ≤ logγ n,

and that on Sj (defined in (6.8)),

|D| ≥ |∂BMn (Ty,an)|
2 ≥ n1/2 log−7 n

by (5.1) and C2. Hence for n large enough,

p2 ≥ (d− 1) logγ−2κ−1 n
n1/2 log−7 n

dn

(
1− n1/2 logγ n

dn

)logγ n

≥ 1

2
n−1/2 logγ−2κ−9 n.

With (6.10), this entails for n large enough (uniformly on j and on Ej):

Pann(B∗(zj , a
′
n) is a joining ball | Sj) ≥ p1p2p3 ≥ n−1/2 logγ−2κ−10 n.

Then (6.9) follows, so that the proof of the Lemma is complete.
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6.1.2 The field ψMn
on the joint exploration

Suppose that we are on S ′(x, y). By Proposition 2.4, we can realize ψMn on Tx as in
(5.2) with the (ξx,v)v∈Td (hence we first reveal the remaining edges ofMn). Then we can
realize it in a similar way on Ty with the (ξy,v)v∈Td , letting recursively

ψMn
(yk,i) = EMn [ψMn

(yk,i)|σ(Ak,i)] + ξy,Φ(yk,i)

√
Var(ψMn

(yk,i)|σ(Ak,i))

where Ak,i := Tx ∪ {y`,j |(`, j) ≺ (k, i)}, ≺ being the lexicographical order on N2, and Φ is
the isomorphism between Ty and Ty.

Recall that J = {j ≥ 1, B∗(zj , a
′
n) is a joining ball} and that for j ∈ J , we denote

vj(0) the unique vertex of B∗(zj , a′n − 2an) ∩BMn
(Ty, an). Since no cycle is discovered

when revealing B∗(zj , a′n) \B∗(zj , a′n − 2an), the intersection of B∗(zj , a′n − an) and Ty is
a unique vertex vj(an), which is in the an-offspring of vj(0) in the tree B∗(zj , a′n) rooted
at zj . Then we realize ψMn

on B∗(zj , a′n − 2an) and on the shortest path Pj from v(0) to
v(an) as in (5.2), via a family of i.i.d. N (0, 1) random variables (ξj,k,i)k,i≥0. In the tree
Tj := B∗(zj , a

′
n− 2an)∪Pj with root zj , denoting zj,k,i the i-th vertex at generation k and

Aj,k,i := Tx ∪ Ty ∪ {∪j′<jT ′j} ∪ {yj,k′,i′ | (k′, i′) ≺ (k, i)} (6.11)

the set of vertices where ψMn
has already been revealed before zj,k,i, we let

ψMn(zj,k,i) = EMn [ψMn
(zj,k,i)|σ(Aj,k,i)] + ξj,k,i

√
Var(ψMn

(yj,k,i)|σ(Aj,k,i)). (6.12)

Write S∗(x, y) ⊆ S ′(x, y) the event that there exists j0 ≥ 1 and a path from zj0 to
vj0(an) such that ψMn(v) ≥ h for every vertex v of that path. In particular, on S∗(x, y),
x and y are in the same connected component of E≥hψGn . Recall the definitions of κ (4.1)
and γ (Lemma 6.1).

Proposition 6.2. If κ and γ/κ are large enough, then

Pann(S∗(x, y)) −→
n→+∞

η(h)2.

Proof of Proposition 6.2. Let γ > 3κ+ 18. By Lemma 6.1,

lim supn→+∞Pann(S∗(x, y)) ≤ limn→+∞Pann(S ′(x, y)) = η(h)2.

Let En := {Mn is not a good graph} ∪ {maxz∈Vn |ψMn
(z)| ≥ log2/3 n}. By Proposi-

tion 2.1 and Lemma 2.5, Pann(En)→ 0. Therefore, it is enough to show that

lim supn→+∞Pann(Ecn ∩ (S ′(x, y) \ S∗(x, y)) ) = 0.

By a straightforward adaptation of the reasoning below (5.9),

limn→+∞Pann(Ecn ∩ (S ′(x, y) \ S ′′(x, y)) ) = 0,

where S ′′(x, y) := S ′(x, y)∩ {∀z ∈ Tx ∪ Ty, ψMn
(z) ≥ h+ (log−1 n)/2}. Hence, we are left

with proving that
lim sup
n→+∞

Pann(Ecn ∩ (S ′′(x, y) \ S∗(x, y)) ) = 0. (6.13)

We use again a binomial argument. Fix a realization ofMn which is a good graph
(recall that x and y have already been fixed at the beginning of Section 6.1.1). For j ∈ J
in increasing order, generate the GFF on Tj as in (6.12). Denote Ej the event that zj
and vj(an) are in the same connected component of E≥hψGn ∩ Tj . Note that on S ′′(x, y),

Tx ⊆ CMn,h
x and Ty ⊆ CMn,h

y , so that S ′′(x, y) ∩ (∪j∈JEj) ⊆ S∗(x, y).
Note that Aj,0,1 = Tx ∪ Ty ∪ {∪j′<jTj′} by (6.11). By Lemma 6.3 below, if n is large

enough, then for any good graph Mn, for any j ∈ J and any event E ′j ⊆ S ′′(x, y) ∩
{maxz∈Aj,0,1 |ψMn

(z)| ≤ log2/3 n} that is measurable w.r.t. the exploration until the
revealment of ψMn

on Tj−1, we have
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PMn(Ej |E ′j) ≥ logγ(K8/3−1) n.

Then, letting Z ∼ Bin(blogγ−3κ−18 nc, logγ(K8/3−1) n), we have

Pann(Ecn ∩ (S ′′(x, y) \ S∗(x, y)) ) ≤ Pann(En) + P(Z = 0).

If κ and γ/κ are large enough so that γ−3κ−18 +γ(K8/3−1) = γK8/3−3κ−18 > 0,
we have limn→+∞P(Z = 0) = 0. Since Pann(En)→ 0, this yields (6.13).

It remains to prove the following. For a good graph Mn, denote FMn
j the sigma-

algebra of the exploration until the revealment of ψMn on Tj−1. In particular, note that
F ′j contains the information on σ(Aj,0,1), and that the structure of J is F ′j-measurable.

Lemma 6.3. Let K8 := logd−1((1 + λh)/2). For n large enough, we have for any good
graphMn, any j ∈ J and any FMn

j -measurable event

E ′j ⊆ S ′′(x, y) ∩ {maxz∈Aj,0,1 |ψMn
(z)| ≤ log2/3 n}:

PMn(Ej |E ′j) ≥ logγ(K8/3−1) n. (6.14)

Proof. All the inequalities in this proof hold for n large enough, uniformly in the choice
of a good graphMn, j ∈ J and E ′j ∈ FMn . We proceed in two steps. First, we prove that

PMn(vj(0) ∈ Czj |E ′j) ≥ log(γ−2κ)(K8/2−1) n, (6.15)

where Czj is the connected component of zj in E≥hψGn ∩B
∗(zj , a

′
n − 2an). Second, we show

that for some constant K9 > 0 (uniquely depending on d and h),

PMn(∀v ∈ Pj , ψMn(v) ≥ h | (E ′j ∩ {vj(0) ∈ Czj}) ) ≥ log−K9κ n. (6.16)

We prove that both hold for n large enough, uniformly in v ∈ Tj and on E ′j .
If γ/κ is large enough, (6.15) and (6.16) imply (6.15), since in this case, we have

PMn(Ej |E ′j) ≥ log(γ−2κ)(K8/2−1)−K9κ n ≥ logγ(K8/3−1) n.

Part 1: proof of (6.15).
Since |Aj,k,i| ≤ n2/3 and tx(BMn

(Aj,k,i, an)) = tx(Aj,k,i) for all k, i ≥ 0, we can apply
Proposition 4.1 as below (5.9) to bound the difference between ψMn

on Czj and ϕTd on
an isomorphic subtree of Td, with the following coupling: ϕTd(◦) := ψMn

(zj), and then
ϕTd is defined as in Proposition 3.1 via (ξj,k,i)k,i≥0. Recall that on S ′′(x, y), we have that
ψMn(zj) ≥ h+ (log−1 n)/2. By Proposition 3.6, for any δ > 0 and for large enough n,

min
a≥h+(log−1 n)/2

PTda

(
|Zh+(log−1 n)/2,+
a′n−2an

| ≥ (λh − δ)a
′
n−2an

)
≥ pPTd(E+)

2

where PTd(E+) > 0 (recall (A.3)) and

p := mina≥h+(log−1 n)/2P
Td
a (∃v ∈ BT+

d
(◦, 1), ϕTd(z) ≥ h+ 1) > 0.

Note in particular that for δ′ > log−1 n
2 such that λh+δ′ > λh − δ (such δ′ exists

by Proposition 3.3, if n is large enough), Zh+δ′,+
a′n−2an

⊆ Zh+(log−1 n)/2,+
a′n−2an

. Since Mn is a

good graph an E ′j ⊆ {maxz∈Aj,0,1 |ψMn
(z)| ≤ log2/3 n}, we can apply Proposition 4.1 as

below (5.9) to bound the difference between ψMn
on B∗(zn, a

′
n − 2an) and ϕTd on Td,

and we get:

Pann

(
|∂Czj | ≥ (λh − δ)a

′
n−2an

∣∣∣∣E ′j ) ≥ pP(E+)

2
+ o(1) ≥ pP(E+)

3
.
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By cylindrical symmetry of BT+
d

(◦, a′n − 2an), we even have

PMn

(
v(0) ∈ ∂Czj

∣∣∣∣E ′j ) ≥pP(E+)

3

(λh − δ)a
′
n−2an

|∂BT+
d

(◦, a′n − 2an)|
≥ pP(E+)

3

(
λh − δ
d− 1

)a′n−2an

.

Since K8 = logd−1((1 + λh)/2), taking δ small enough yields (6.15).
Part 2: proof of (6.16).
Denote vj(1), . . . , vj(an − 1) the vertices from vj(0) to vj(an) on the path Pj . Remark that
it suffices to prove that there exists a constant K9 > 0 such that for n large enough, for
every k ∈ {1, . . . , an},

PMn
(
ψMn

(vj(k)) ≥ h| (E ′j ∩ {ψMn
(vj(k − 1)) ≥ h})

)
≥ (d− 1)−K9 . (6.17)

In the notation of (6.12), vj(k) = yj,k+a′n−2an,1 for 1 ≤ k ≤ an. Write Ak :=

Aj,k+a′n−2an,1. Suppose that for n large enough and all k ∈ {1, . . . , an}, on E ′j∩{ψMn(vj(k−
1)) ≥ h}:

EMn [ψMn(vj(k))|σ(Ak)] > −|h| − 1, and (6.18)

VarMn(ψMn
(vj(k))|σ(Ak)) >

1

d− 1
. (6.19)

Then (6.17) holds with

K9 := − logd−1P(Y ≥ (|h|+ |h|+1
d−1 )/

√
d− 1 ),

where Y ∼ N (0, 1). Thus, it is enough to establish (6.18) and (6.19).
For k ≥ 1, note that by construction of B∗(zj , a′n), vj(k − 1) and vj(an) are the only

vertices of ∂Ak at distance less than an of vj(k). Let (Xs)s≥0 be a discrete time SRW
started at vj(k), and τ := inf{s ≥ 0, dMn

(vj(k), Xs) ≥ an}. Write H for the hitting time
of Ak by (Xs). Letting

a1 := PMn

vj(k)(XH = vj(k − 1), H < τ) and a2 := PMn

vj(k)(XH = vj(an), H < τ),

we get as in the proof of Proposition 4.1 that for ψMn
(Ak) in E ′j ∩ {ψMn

(vj(k − 1)) ≥ h}:

EMn [ψMn(vj(k))|σ(Ak)] > a1ψMn(vj(k − 1)) + a2ψMn(vj(an))− log−1 n.

Since 0 ≤ a1 + a2 ≤ 1 and min(ψMn(vj(k − 1)), ψMn(vj(an))) ≥ h ≥ −|h|, (6.18)
follows.

Using Proposition 2.3, we split V := VarMn(ψMn(vj(k))|σ(Ak)) in the following way:

V =GMn (vj(k), vj(k))−EMn

vj(k)

[
GMn (vj(k), XH)1{H<τ}

]
−EMn

vj(k)

[
GMn (vj(k), XH)1{H≥τ}

]
+

EMn

vj(k)[H]

EMn
πn [H]

EMn
πn [GMn (vj(k), XH)] .

By (2.4), (2.1) and (2.2), if κ is large enough, for n large enough,

GMn (vj(k), vj(k))− a1GMn (vj(k), vj(k − 1))−a2GMn (vj(k), vj(an))

>
d− 1

d− 2
− a1 + a2

d− 2
− log−1 n

≥ 1

d− 2
− log−1 n.

As below (A.20), we get that∣∣∣EMn

vj(k)

[
GMn (vj(k), XH)1{H<τ}

]
− a1GMn

(vj(k), vj(k − 1))− a2GMn
(vj(k), vj(an))

∣∣∣
≤ log−1 n
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and that∣∣∣∣∣EMn

vj(k)

[
GMn (vj(k), XH)1{H≥τ}

]
−

EMn

vj(k)[H]

EMn
πn [H]

EMn
πn [GMn

(vj(k), XH)]

∣∣∣∣∣ ≤ log−1 n.

These three inequalities imply that for ψMn(Ak) in E ′j ∩ {ψMn(vj(k − 1)) ≥ h}:

VarMn(ψMn
(vj(k))|σ(Ak)) ≥ 1

d−2 − 3 log−1 n > 1
d−1 .

This shows (6.19) and the proof is complete.

6.2 Average number of connections in E≥hψGn

Write x
h↔ y if x and y are in the same connected component of E≥hψGn , for x, y ∈ Vn.

In this section, we prove (1.2) of Theorem 1.1 via an argument on the number of pairs of

vertices such that x
h↔ y. Let Sn be the set of pairs of distinct x, y ∈ Vn such that x

h↔ y.
Let An ⊂ Vn be the set of vertices x such that |CMn,h

x | ≤ n1/2.
We first suppose that the following two lemmas hold, and show (1.2). Then, we derive

them from Propositions 5.4 and 6.2, using a second moment argument.

Lemma 6.4. For every ε > 0, limn→+∞Pann (|An| ≥ (1− η(h)− ε)n) = 1.

Lemma 6.5. For every ε > 0, limn→+∞Pann(|Sn| ≥ (η(h)2/2− ε)n2) = 1.

Proof of (1.2). Fix ε > 0. Remark that every connected component of E≥hψGn is either

included in An, or does not intersect An. Let (γ̂
(n)
i )i≥1 (resp. (γ

(n)
i )i≥1) be the sizes of

the connected components in An (resp. not in An), listed in decreasing order of size
(break ties arbitrarily).

Let En := {|An| ≥ (1− η(h)− ε)n} ∩ {|Sn| ≥ (η(h)2/2− ε)n2}. On En, we have that∑
i≥1 γ̂

(n)
i (γ̂

(n)
i − 1) +

∑
i≥1 γ

(n)
i (γ

(n)
i − 1) = 2|Sn| ≥ η(h)2n2 − 2εn2.

Moreover, we have by definition of An:∑
i≥1 γ̂

(n)
i (γ̂

(n)
i − 1) ≤

∑
i≥1 γ̂

(n)
i

√
n ≤ n7/4.

Thus, for n large enough,

γ
(n)
1 (|Vn| − |An|) ≥

∑
i≥1

γ
(n)
i (γ

(n)
i − 1) ≥ (η(h)2 − 3ε)n2.

But |Vn| − |An| ≤ (η(h) + ε)n, so that

γ
(n)
1 ≥ η(h)2 − 3ε

η(h) + ε
n ≥ ((η(h)− 4η(h)−1ε)n.

Since γ(n)
1 is the cardinality of a set included in Vn \ An, one has γ(n)

1 ≤ (η(h) + ε)n.

Note that for n large enough, γ(n)
1 >

√
n ≥ γ̂(n)

1 . Therefore, γ(n)
1 = |C(n)

1 |, and we have on
En:

((η(h)− 4η(h)−1ε)n ≤ |C(n)
1 | ≤ (η(h) + ε)n.

By Lemmas 6.4 and 6.5, limn→+∞Pann(En) = 1. Since ε was arbitrary, the proof is
complete.

Remark 6.6. Note that we have |C(n)
2 | = max(γ

(n)
2 , γ̂

(n)
1 ). Since on En, γ̂(n)

1 ≤
√
n and

γ
(n)
2 ≤ |Vn| − |An| − γ(n)

1 ≤ (1 + 4η(h)−1)εn, we get that |C(n)
2 |/n

Pann−→ 0.
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Proof of Lemma 6.4. Let A′n be the set of vertices such that their lower exploration
(Section 5.2) is aborted. By Remark 5.2, for n large enough, A′n ⊆ An, and it is enough
to prove the result for A′n instead of An.

Let ε ∈ (0, 1). By Proposition 5.4, for n large enough and every x ∈ Vn, we have

|Pann(x ∈ A′n)− (1− η(h))| ≤ ε. (6.20)

We claim that for n large enough, for all distinct x, y ∈ Vn,

|Covann(1x∈A′n ,1y∈A′n)| ≤ 4ε. (6.21)

Indeed, Covann(1x∈A′n ,1y∈A′n) = Pann(x, y ∈ A′n) − Pann(x ∈ A′n)Pann(y ∈ A′n). On
one hand, by (6.20), we have

|Pann(x ∈ A′n)Pann(y ∈ A′n)− (1− η(h))2| ≤ 2ε+ ε2 ≤ 3ε.

On the other hand, perform successively the lower explorations from x and then from
y as in Section 5.2 (with the additional condition C5). We get Pann(C5 happens) = o(1)

as in (5.8). Then, revealing ψMn
on Rx ∪Ry and comparing it to ϕTd as below (5.9), we

obtain

|Pann(x, y ∈ A′n)− (1− η(h))2| ≤ ε.

This shows (6.21). We now apply Bienaymé-Chebyshev’s inequality:

Pann(|A′n| ≤ (1− η(h)− 2ε1/4)n) ≤ Pann(| |A′n| − Eann[|A′n|] | ≥ ε1/4n)

≤ 1√
εn2

 ∑
x,y∈Vn

Covann(1x∈A′n ,1y∈A′n)


≤ n+ n(n− 1)4ε√

εn2

≤ 5
√
ε

for n large enough. Since ε can be taken arbitrarily small, the proof is complete.

Proof of Lemma 6.5. Let ε ∈ (0, 1). Denote S∗n the set of pairs x, y ∈ Vn such that S∗(x, y)

holds. Since S∗n ⊆ Sn, it is enough to prove the Lemma for S∗n instead of Sn. First, by
Proposition 6.2,

Eann[|S∗n|] ≥ (η(h)2 − ε)n(n−1)
2 ≥ (η(h)2/2− ε)n2

for large enough n. Second, we show that for n large enough and all distinct x, y, w, t ∈
Vn,

|Covann(1S∗(x,y),1S∗(w,t))| ≤ 2ε, (6.22)

from which we conclude by a second moment computation as in Lemma 6.4. We have

Covann(1S∗(x,y),1S∗(w,t)) = Pann(S∗(x, y) ∩ S∗(w, t))− Pann(S∗(x, y))Pann(S∗(w, t)).

By Proposition 6.2, for n large enough,

|Pann(S∗(x, y))Pann(S∗(w, t))− η(h)4| ≤ ε. (6.23)

Now, perform successively the exploration of Section 5.1 from x, then from y, then
from z and finally from t (via an array of i.i.d. standard normal variables
(ξu,v)u∈{x,y,w,t},v∈Td). We add the following condition: for any u ∈ {x, y, w, t}, the ex-
ploration from v is stopped as soon as it meets a vertex seen in a previous exploration.
The probability that this happens is o(1) by Remark 5.2 and (2.7), since o(

√
n) vertices
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and half-edges are revealed during these four explorations. Therefore, as for (5.9), we
get that for n large enough,

Pann(the explorations from x, y, z, t are all successful) ∈ (η(h)4 − ε/2, η(h)4 + ε/2).

(6.24)
If these explorations are successful, develop balls from ∂Tx to ∂Ty as described in

Section 6.1, with Qj := Rx ∪ Ry ∪ Rw ∪ Rt ∪ B∗j for zj ∈ ∂Tx. Then do the same from
∂Tw to ∂Tt, this time with Qj := Rx ∪Ry ∪ (∪z∈∂TxB∗(z, a′n))∪Rw ∪Rt ∪B∗j for zj ∈ ∂Tw.
Finally, reveal ψMn

on Tx, Ty, Tw, Tt and on the joining balls from Tx to Ty and from Tw
to Tt, in that order.

One can adapt readily the proof of Lemma 6.1 to show that with Pann-probability
1 − o(1), if the four explorations are successful then there are at least logγ−3κ−18 n

joining balls from ∂Tx (resp. ∂Tw) to ∂Ty (resp. ∂Tt). Note in particular that the
estimates of (6.4), (6.6) and (6.7) still hold. It is also straightforward to adapt the proof
of Proposition 6.2, and we finally have

|Pann(S∗(x, y)∩S∗(w, t))−Pann(the explorations from x, y, w, t are all successful)| ≤ ε/2.

Together with (6.23) and (6.24), this yields (6.22).

7 Uniqueness of the giant component

In this Section, we prove (1.3). We start by the lower bound in Section 7.1, showing
the existence Pann-w.h.p. of a component (different from C(n)

1 ) having Θ(log n) vertices.

Then, to show that |C(n)
2 | = O(log n) Pann-w.h.p., we perform an exploration of a new

kind, starting from some x ∈ Vn. It consists of three phases (Sections 7.2 to 7.4), during

which we assign a pseudo-GFF ψ̂Mn to the vertices that we visit. ψ̂Mn is defined via
a recursive construction that mimics Proposition 3.1, as long as there are no cycles
(like ϕTd on Tx in Section 5). If we meet one cycle, which can happen in the first phase
(Section 7.2, we use an ad hoc modification of these recursive formulas. Finally, in
Section 7.5, we reveal the true values of ψMn

one by one on the set of vertices we

have explored via Proposition 2.4, and check that they are close to ψ̂Mn . We show that

either |CMn,h
x | = O(log n), or |CMn,h

x | = Θ(n), in which case CMn,h
x = C(n)

1 by Remark 6.6.
Contrary to Section 5, we need this alternative to hold for every x ∈ Vn, Pann-w.h.p. By
a union bound, it is enough to prove that

for x ∈ Vn, Pann({|CMn,h
x | = O(log n)} ∪ {|CMn,h

x | = Θ(n)}) = o(1/n). (7.1)

Let us sketch this exploration in the lines below.
First phase (Section 7.2). We explore the connected component C of x ∈ Vn in the set
{y ∈ Vn, ψ̂Mn(y) ≥ h− n−a} for some constant a > 0. More precisely, we give a mark to

each vertex y such that |ψ̂Mn(y)− h| ≤ n−a, and explore each connected component C′
of C \M, whereM is the set of marked vertices, until
- (i) C′ is fully explored and has no more than O(log n) vertices, or
- (ii) bK10 log nc vertices of C′ have been seen but not yet explored, for some constant K10

fixed in the second phase.
We replace an of (4.1) by a “security radius” rn = Θ(log n). Adapting Proposition 4.1

(see Lemma 7.6), this will allow us in Section 7.5 to bound the difference between ψ̂Mn

and ψMn
by n−a with probability 1− o(1/n), so that for every connected component C′

of C \M, either C′ ⊆ CMn,h
x or C′ ∩ CMn,h

x = ∅.
If we kept an, ψ̂Mn

would approximate ψMn
only with precision log−Θ(1) n. With prob-

ability Θ(1/n), there would be too many vertices y such that |ψ̂Mn
(y)− h| ≤ log−Θ(1) n,

hence for which we cannot know by anticipation whether they will be in CMn,h
x or not.
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Moreover, we do not have P(C1 happens) = O(1/n) as soon as the number of vertices
explored goes to infinity with n. We will need to accept the possible occurrence of one

cycle. When this happens, we have to define ψ̂Mn
in a slightly different manner. In

Section 7.5, we need a variant of Lemma 7.6 to control the difference between ψ̂Mn and
ψMn in that case (Lemma 7.7).
Second phase (Section 7.3). If (i) happens for every component C′, the exploration is
over. In this case, |C| = O(log n) (see D2 and Proposition 7.2) and thus |CMn,h

x | = O(log n).
For each C′ such that (ii) happens, we explore its bK10 log nc remaining vertices, this
time in a fashion similar to Section 5.1. Each of these explorations has a probability
bounded away from 0 to be successful. If K10 is large enough, with probability at least
1− o(1/n), at least one of these explorations is successful, and has a boundary of size
Θ(n1/2bn).
Third phase (Section 7.4). For every C′ such that (ii) happens, we show that the
successful exploration of the second phase is connected to a positive proportion of the
vertices of Vn, via an adaptation of the joint exploration in Section 6.1. This yields (7.1).

7.1 Lower bound

In this section, we prove the existence of K0 > 0 such that

Pann(|C(n)
2 | ≥ K

−1
0 log n)→ 1. (7.2)

To do so, we first show that if K0 is large enough, then with probability at least n−1/4,
Ch◦ consists of a unique “line” Ln of length b2K−1

0 log nc (each vertex of Ch◦ having one
child, except the last one which has no children, Lemma 7.1). Thus, if we take n1/3

vertices of Vn and assign to each of them an independent copy of Ch◦ , the probability that
at least one of them is isomorphic to Ln is 1 − o(1). Then, we realize the component
of the corresponding vertex in E≥h, and check that it is indeed isomorphic to Ln with
Pann-probability 1− o(1), so that |C(n)

2 | ≥ b2K
−1
0 log nc ≥ K−1

0 log n.

Lemma 7.1. For n ≥ 1, let Eline,n be the event that Ch◦ has m := b2K−1
0 log nc vertices

x1, . . . , xm with x1 = ◦ and for 2 ≤ i ≤ m xi is the child of xi−1, and that for 1 ≤ i ≤ m,
for any other child y of xi in Td, ϕTd(xi) ∈ [h + 1, h + 2], ϕTd(y) < h − 1. If K0 is large
enough, then for n large enough,

PTd(Eline,n) ≥ n−1/4.

Proof. Let v1, . . . , vd be the children of ◦ in Td. Remark that for n large enough,

Pann(Eline,n) ≥ PTd(ϕTd(◦) ∈ [h+ 1, h+ 2])pp′b2K
−1
0 logncp′′, where

p := infa∈[h+1,h+2]P
Td
a ({ϕTd(v1) ∈ [h+ 1, h+ 2]} ∩ {∀i ∈ {2, . . . , d}, ϕTd(vi) < h− 1}),

p′ := infa∈[h+1,h+2]P
Td
a ({ϕTd(v1) ∈ [h+ 1, h+ 2]} ∩ {∀i ∈ {2, . . . , d− 1}, ϕTd(vi) < h− 1}),

p′′ := infa∈[h+1,h+2]P
Td
a (∀i ∈ {1, . . . , d− 1}, ϕTd(vi) < h− 1).

Using Proposition 3.1, one checks that p, p′, p′′ > 0. Taking K0 > −8 log p′ yields
the result.

Proof of (7.2). Fix K0 > 12 log(d−1) large enough such that the conclusion of Lemma 7.1

holds. Let x1, . . . , xbn1/3c ∈ Vn. For all 1 ≤ i ≤ bn1/3c, attach a family (ξ
(i)
y )y∈Td of

i.i.d. N (0, 1) variables, these families being themselves independent. For each i, let Ch◦ (i)

be the associated realization of Ch◦ built with the family (ξ
(i)
y ), using Proposition 3.1.

Then, pick a realization ofMn, and let E1,n be the event thatMn is a good graph and
that the balls BMn

(xi, b2K−1
0 log nc+ 2an)), 1 ≤ i ≤ bn1/3c are disjoint and have no cycle.
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By Proposition 2.1 and (2.7) with m0 = bn1/3c, m ≤ bn1/3c× (d− 1)b2K
−1
0 lognc+2an+10 and

k = 1, Pann(E1,n) = 1− o(1).

On E1,n, realize ψMn on BMn(xi, b2K−1
0 log nc) for i = 1, . . . , bn1/3c successively, using

the random variables (ξ
(i)
y )y∈BTd (◦,b2K−1

0 lognc) and the construction of Proposition 2.4.

For 1 ≤ i ≤ bn1/3c, let Φ(i) be a rooted isomorphism between BCMn,h
xi

(xi, b2K−1
0 log nc)

and Bi := BCh◦ (i)(xi, b2K−1
0 log nc). Let E2,n := {sup1≤i≤bn1/3c,y∈Bi |ψMn

((Φ(i))−1(y)) −
ϕTd(y)| < 1/2}. A direct adaptation of the reasoning below (5.9) to show thatPann(E2,n) =

1− o(1).

Let E3,n := {∃i0 ∈ {1, . . . , bn1/3c}, Bi0 is isomorphic to Ln}. By Lemma 7.1, we have

that Pann(E3,n) ≥ 1− (1− n−1/4)bn
1/3c = 1− o(1).

Finally, by (1.2), we have Pann(E4,n) = 1− o(1), with E4,n = {|C(n)
1 | ≥ 10 log n}.

All in all, we have shown that Pann(E1,n ∩ E2,n ∩ E3,n ∩ E4,n) = 1 − o(1). And on

E1,n ∩ E2,n ∩ E3,n ∩ E4,n for n large enough, |CMn,h
xi0

| ≥ K−1
0 log n and CMn,h

xi0
6= C(n)

1 , so that

|C(n)
2 | ≥ K

−1
0 log n.

7.2 First phase

In this section, we define the first phase of the exploration, and show that it is
successful with Pann-probability 1− n−5/4 (Proposition 7.2).

Let a > 0. For every n ∈ N, define

rn := b0.05 logd−1 nc (7.3)

Let δ ∈ (0, h? − h) and ` ∈ N be such that the conclusion of Remark A.3 holds.

The first phase of the exploration. Let x ∈ Vn. Let M be the set of marked ver-
tices. Initially,M = {x}. WhileM 6= ∅, pick y ∈M in an arbitrary way and proceed to
its subexploration, as detailed below.

There are three possible scenarios, according to the number of cycles discovered
during the first phase (zero, one, or more).

I - We first assume that we do not meet any cycle throughout the first phase of the
exploration of x.

Assume we have picked some vertex y ∈ M. We now define the subexploration
from y. Let Ty be the subexploration tree, that we will build by adding subtrees of depth
` in a breadth-first way. Initially Ty = {y}.

While 1 ≤ |∂Ty| ≤ K10 log n, perform a step: take y1 ∈ ∂Ty of minimal height and if

y1 6= x, let y1 be its only neighbour where ψ̂Mn
has already been defined. Note that if

y1 6= y, y1 is the parent of y1 in Ty. Reveal all the edges of BMn
(y1, y1, rn + `), where

we recall that BMn
(y1, y1, rn + `) is the graph obtained by taking all paths of length

rn + ` starting at y1 and not going through y1. Since we suppose that no cycle arises,
BMn

(y1, y1, `) is a tree, that we root at y1.

If y1 = y = x, replace BMn
(y1, y1, rn + `) and BMn

(y1, y1, `) by BMn
(x, rn + `) and

BMn
(x, `) respectively. Let ψ̂Mn

(x) ∼ N (0, d−1
d−2 ). If ϕTd(◦) < h − n−a, then the whole

exploration (not only the first phase) is over.

We construct Ty(y1), the subtree of BMn
(y1, y1, `) in {z, ψ̂Mn

(z) ≥ h+ n−a}. We start
with Ty(y1) = {y1}.

For k = 1, 2, ...` − 1 successively, denote yk,1, . . . , yk,m the children of the (k − 1)-th
generation of Ty(y1). Let (ξy1,k,i)k,i≥0 be an array of i.i.d. variables of law N (0, 1),
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independent of everything else. Set

ψ̂Mn
(yk,i) :=

1

d− 1
ψ̂Mn

(yk,i) +

√
d

d− 1
ξy1,k,i. (7.4)

Add yk,i to Ty(y1) if ψ̂Mn
(yk,i) ≥ h+ n−a, and give a mark to yk,i (and thus add it to

M) if h− n−a ≤ ψ̂Mn
(yk,i) < h+ n−a.

Finally, include Ty(y1) in Ty, add the vertices of ∂Ty(y1) to Ny and take y1 away from
∂Ty. The step is then over.

If |∂Ty| 6∈ [1,K10 log n], the subexploration is finished. Say that it is fertile if
|∂Ty| > K10 log n, and infertile else (hence if ∂Ty = ∅).

II - Suppose now that a unique cycle C arises in the subexploration of some vertex y,
when revealing the pairings of BMn

(y1, y1, rn + `) in the step from y1, for some y ∈ Vn
and y1 ∈ Vn \ {x} (we treat the special case x = y1 below). Let m := |C| be the number
of vertices in C. There are two cases.
Case 1: When C is discovered, there are already k consecutive vertices y1, . . . , yk of

C where ψ̂Mn has been defined, for some 1 ≤ k ≤ m − 1. Reveal BMn(C, rn). Denote
z1, . . . , zm−k the remaining vertices of C, such that z1 6= y2 is a neighbour of y1, and zi is
a neighbour of zi−1 for i ≥ 2. Give a mark to z1, . . . , zm−k and y1. Take y1 away from ∂Ty.
If yk was in ∂Tỹ for some ỹ whose subexploration was performed previously, take it away
from that set.

y1

y = y1

ey

yk

yk−1

zm−k

z1

z2

Ty(y1)

Ty

Tey

C

Figure 4: Case 1. Marked vertices are in red. C consists of the thick edges. Ty and Tỹ
are delimited by the purple contours. Remark that we could have y = ỹ (it is not the case
here).

We now define ψ̂Mn on the zi’s. To do so, we mimic a recursive construction of the
GFF on Gm, the infinite connected d-regular graph Gm having a unique cycle Cm of
length m (such a construction always exists on a transient graph, see for instance Lemma
1.2 in [27]). Gm consists of a cycle Cm of length m, with d− 2 copies of T+

d attached to
each vertex of Cm, thus it is clear that the SRW is transient and that the Green function
GGm and the GFF are well-defined.

Let uk, . . . , u1, v1, . . . , vm−k be the vertices of Cm, listed consecutively. Let U :=

Gm \ {u1, . . . , uk}, (Xj)j≥0 a SRW on Gm and recall that TU is the exit time of U . Define

α := PGmv1 (XTU= u1, TU<+∞), β := PGmv1 (XTU= uk, TU<+∞)1{k>1}
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and γ := EGmv1 [
∑TU−1
j=0 1{Xj=v1}],

and let (ξi)i≥1 be a family of i.i.d standard normal variables, independent of everything
else. Define

ψ̂Mn
(z1) := αψ̂Mn

(y1) + βψ̂Mn
(yk) +

√
γξ1.

Then for i ≥ 2, define recursively

ψ̂Mn
(zi) := αm−(k+i−1)ψ̂Mn

(zi−1) + βm−(k+i−1)ψ̂Mn
(yk) +

√
γm−(k+i−1)ξi (7.5)

where we set

Ui := Gm \ {u1, . . . , uk, v1, . . . , vi−1}, αm−(k+i−1) := PGmvi (XTUi
= vi−1, TUi < +∞),

βm−(k+i−1) := PGmvi (XTUi
= uk, TUi < +∞) and γm−(k+i−1) := EGmvi [

∑TUi−1

j=0 1{Xj=vi}].

Case 2: ψ̂Mn
has not been defined on any vertex of C. There exists a unique path of

consecutive vertices y1, . . . , yj for some j ≥ 2 such that yj ∈ C, and for 2 ≤ i ≤ j − 1,

ψ̂Mn
(yi) has not been defined and yi 6∈ C. Reveal BMn

({y1 . . . , yj−1} ∪ C, rn). Give a
mark to the vertices of {y1, . . . , yj−1} ∪ C. Take y1 away from ∂Ty.

y

C

yj

y1
y2

yj−1

y1

Figure 5: Case 2. Marked vertices are in red.

We define ψ̂Mn
on {y1, . . . , yj−1} ∪ C in a way similar to Case 1. Let (ξi)i≥1 be

a sequence of i.i.d. standard normal variables, independent of everything else. For
i = 1, 2, . . . , j, set

ψ̂Mn(yi) := α′j−iψ̂Mn(yi−1) +
√
γ′j−iξi, (7.6)

where α′j−i := PGmz (H{z′} < +∞) and γ′j−i := EGmz [
∑H{z′}−1

l=0 1{Xl=z}], z, z
′ being two

neighbours in Gm such that z (resp. z′) is at distance j − i (resp. j − i+ 1) of Cm. Then,

define ψ̂Mn
on C as in Case 1 with k = 1.

If C is discovered while revealing BMn
(x, rn + `), give a mark to all vertices of C,

and, if x 6∈ C, all vertices on the unique shortest path from x to C. Let k := dMn
(x,C).

Let uk ∈ Gm be at distance k of the cycle Cm. Let ψ̂Mn(x) ∼ N (0, GGm(uk, uk)). If
ϕTd(◦) < h− n−a, then the whole exploration (not only the first phase) is over.

After the discovery of C. Assume that no other cycle will be discovered during the first
phase of the exploration from x. Resume the subexploration from y, by picking a new
vertex y′ ∈ ∂Ty (recall that we have taken y1 away from ∂Ty) and proceeding to the step
from y′, and so on until the subexploration from y is over. After that, as long asM 6= ∅,
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pick a vertex y′′ inM and proceed to its subexploration as described in I (recall that no
new cycle is discovered), with the following amendment, if y′′ has several neighbours

y′′1 , . . . , y
′′
k (for some k ≥ 2) on which ψ̂Mn

has already been defined (see for instance y2

or yj in Figure 5). In this case, in the step from y′′ (the first step of the subexploration
from y′′), reveal only ∩1≤i≤kBMn

(y′′, y′′i , rn + `) instead of BMn
(y′′, y′′, rn + `) (not by the

way that y′′ is not properly defined). In words, perform the subexploration only in the
direction of non-marked vertices.

III - If a second cycle arises, the whole exploration from x is over, and is not successful.
We have now fully described how the first phase can unfold. Say that the first phase

is successful if at some point, the following holds:

D1 M = ∅,

D2 ψ̂Mn
has been defined on at most bK11 log nc vertices, and

D3 at most one cycle has been discovered.

Denote S1(x) this event. If all subexploration trees were infertile, then the whole
exploration from x is over, and said to be successful. Denote S1,stop(x) this event.

Proposition 7.2. Fix a > 0. For any fixed value of K10 > 0, if K11 is large enough, then
for large enough n and every x ∈ Vn, Pann(S1(x)) ≥ 1− n−5/4.

Proof. In a nutshell, the argument is as follows. We first show that with probability
1− o(n−5/4), we see at most one cycle after having explored n3/10 vertices (which will
turn out to be more than the number of vertices seen in the first phase). Then, we
show that for some large constant K > 0, with probability 1− o(n−5/4), the first K log n

subexplorations encompass less than K2 log n vertices. To this end, we use the fact that
during any subexploration, say of some vertex y, the increment of |∂Ty| during a step of
the subexploration from y has a positive expectation if ` is large enough, since Ch◦ has a
positive probability to have an exponential growth (see Lemma A.2 and Remark A.3, this
is why we explore subtrees of depth ` instead of individual vertices). Finally, we show that
with probability 1− o(n−5/4), the first K log n subexplorations generate less than K log n

marks. In particular, note that except for cycles, each vertex where ψ̂Mn is defined has
a chance O(n−a) to get a mark, and a cycle brings less than 2d`rn = Θ(log n) marked
vertices. This in turn ensures that there are indeed no more than K log n subexplorations
in the first phase.

We now proceed to the proof itself. Let E1,n be the event that two cycles are discovered
before n3/10 vertices have been seen during the exploration from x. By (2.7) with k = 2,
m0 = 1, mE = 0 and m ≤ n3/10,

Pann(E1,n) ≤ n−4/3. (7.7)

Next, let K > 0 be a constant; we bound the number N of steps during the first
bK log nc subexplorations (or on all subexplorations if there are less than bK log nc of
them). Let E2,n := {N ≥ K2 log n}, we now show that if K is large enough, then we have
for n large enough:

Pann(E2,n) ≤ n−2. (7.8)

Suppose that we perform the subexploration from some vertex y. Let y1 ∈ ∂Ty, with
y1 6= y. If no cycle arises when revealing the (rn + `)-offspring of y1, then |∂Ty(y1)| − 1,
the increment of |∂Ty| during that step, dominates stochastically ρ`,h,δ − 1, by definition
of ρ`,h,δ at Remark A.3, as soon as n−a < δ. If a cycle arises (which happens at most once
on Ec1,n), at most two vertices are marked and taken away from ∂Ty. If the subexploration
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is not over after j steps, then |∂Ty| ≥
st.

Sj−1 − 2, where Sj−1 is the sum of j − 1 i.i.d.

random variables of law ρ`,h,δ − 1, hence taking values in the bounded interval [0, d`],
and with a positive expectation by Remark A.3. The −1 in j − 1 comes from the fact that
we do not include the step from y (as it might be that we only explore a reduced number
of vertices once we have discovered a cycle, if y is a marked vertex with at least two
marked neighbours). The +2 comes from the possibility that up to two vertices can be
taken away from ∂Ty if there is a cycle (see Case 1 in particular). Hence

Pann(the subexploration from y lasts more than j steps) ≤ P(Sj−1 ≤ K10 log n+ 2)

By the exponential Markov inequality, there exist constants c, c′ > 0 such that

for every j ≥ 2K10(E[ρ`,h,δ]− 1)−1 log n, P(Sj−1 ≤ K10 log n+ 2) ≤ ce−c′j .

Therefore, N is stochastically dominated by a sum S of bK log nc i.i.d. variables of
some law µ (independent of n) such that

for every j ≥ 2K10(E[ρ`,h,δ]− 1)−1 log n, µ([j,+∞)) ≤ ce−c′j .

Hence, letting E2,n := {N ≥ K2 log n}, by the exponential Markov inequality,

Pann(E2,n ∩ Ec1,n) ≤ Pann(S ≥ KbK log nc) ≤ (E[ec
′Y/2]e−c

′Kµ/2)bK lognc

for large enough n and for Y ∼ µ. Thus (7.8) follows.
Finally, let E3,n be the event that more than 3rn + K

2 log n marks are given during the
first bK log nc subexplorations. Suppose that for n large enough,

Pann(Ec1,n ∩ Ec2,n ∩ E3,n) ≤ n−2. (7.9)

Taking K > 1, on Ec1,n ∩ Ec2,n ∩ Ec3,n (which holds with Pann-probability 1 − o(n−5/4)

by (7.7), (7.8) and (7.9)), less than 1 + 3rn + K
2 log n ≤ bK log nc vertices receive a

mark during the first bK log nc subexplorations, so thatM = ∅ after at most bK log nc
subexplorations. Moreover, in a step of a subexploration, less than d` vertices are added
to the subexploration tree. Hence if K11 > K2d`, on Ec2,n, D2 holds. In addition, less than

(d− 1)2rn ≤ n1/10 new vertices are seen in a step of a subexploration. When a cycle C is
revealed, there are at most 2rn new vertices in C (and on the path leading to C, in Case
2), so that less than 3rn(d− 1)rn ≤ n1/10 new vertices are seen. Therefore, on Ec1,n ∩ Ec2,n,

less than n3/10 vertices are seen during the first bK log nc subexplorations. Thus, on
Ec1,n ∩ Ec2,n ∩ Ec3,n, conditions D1, D2 and D3 are satisfied and this yields the conclusion.

Therefore, it only remains to show (7.9), which we now do. When a cycle C appears,
our construction implies that less than 3rn vertices receive a mark. When performing
m steps in a subexploration, the number of marked vertices obtained is stochastically
dominated by a binomial random variable Bin(m, d`n−a). Indeed, at each step, we

reveal ψ̂Mn
(and thus ϕTd) on less than d` vertices. And for any vertex y ∈ Td \ {◦}, by

Proposition 3.1,

max
a′≥h

PTd(ϕTd(y) ∈ [h− n−a, h+ n−a] |ϕTd(y) = a′) ≤ 2n−a√
2πd/(d− 1)

≤ n−a.

Hence, if Z ∼ Bin(dK2 log ne, C2d
`n−a),

Pann(Ec1,n ∩ Ec2,n ∩ E3,n) ≤ P
(
Z ≥ K

2
log n

)
≤
(
dK2 log ne
K
2 log n

)
(C2d

`n−a)
K
2 logn.

But by (2.5), for large enough n,
(dK2 logne

K
2 logn

)
≤ dK2 log neK2 logn. This yields (7.9), and

the conclusion follows.
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7.3 Second phase

If S1,stop(x) holds, i.e. all subexploration trees are infertile, the exploration is over. In
this Section, we suppose that S1(x)\S1,stop(x) holds. For every fertile tree, we perform an
exploration similar to that of Section 5.1 from each vertex of its boundary, and show that
with probability at least 1− n−6/5, at least one exploration per fertile tree is successful,
and hence has a boundary of size Θ(n1/2bn) (Proposition 7.3). We illustrate this second
phase in Figure 6 below.

Let T1, . . . Tm be the fertile subexploration trees for some positive integer m. For
every q ∈ {1, . . . ,m}, denote yq,1, yq,2, . . . the vertices of ∂Tq. For q = 1, 2, . . . successively,
we perform the explorations from yq,i, i ≥ 1 as defined in Section 5.1 (using an array of
independent standard normal variables (ξyq,i,k,j)k,j≥0). If y is the j-th vertex of the k-th
generation in the exploration tree of yq,i, let recursively

ψ̂Mn(y) :=
ψ̂Mn(y)

d− 1
+

√
d

d− 1
ξyq,i,k,j ,

so that ψ̂Mn
plays the role of ϕTd on Td in Section 5.1. We implement three modifications:

• we do not explore towards yq,i, the parent of yq,i in Tq (hence we generate ψ̂Mn
as

the GFF on a subtree of T+
d instead of Td),

• we do not stop the exploration if ψ̂Mn
(yq,i) < h + log−1 n (we only know a priori

from the first phase that ψ̂Mn
(yq,i) ≥ h+ n−a), and

• we stop the exploration if it meets a vertex already discovered in the first phase or
during the previous exploration of some yq′,j (thus with q′ < q, or q′ = q and j < i).

A vertex yq,i whose exploration is successful is back-spoiled if one vertex of its
exploration is seen later during the exploration of yq′,j . Let

E4,n := {∃q ≤ m, all successful explorations of yq,1, yq,2, . . ., are back-spoiled}

On S2(x) := (S1(x) \ S1,stop(x)) ∩ Ec4,n, say that the second phase is successful.

Proposition 7.3. If K10 is large enough (depending only on d and h), then for n large
enough and every x ∈ Vn,

Pann(S2(x) ∪ S1,stop(x)) ≥ 1− n−6/5 (7.10)

Proof. Say that yq,i is spoiled if it is met during the previous exploration of some yq′,j .
Define E5,n := {at least b1000 log nc vertices are spoiled or back-spoiled}. We claim that
for n large enough,

Pann(E5,n) ≤ n−2, (7.11)

and for some constant K12 > 0 (that only depends on d and h), for all q ≤ m and i ≤ |∂Tq|,
for every event Eq,i ⊆ {yq,i is not spoiled} that is measurable w.r.t. the whole exploration
until yq,i−1 (or yq−1,|∂Tq−1| if i = 1) has been explored:

Pann(the exploration from yq,i is successful | Eq,i) ≥ K12. (7.12)

On Ec5,n, there are at least (K10 − 1000) log n non-spoiled vertices on each ∂Tq (and at
most (K10 + 1) log n since each step of a subexploration brings less than log n vertices to
∂Tq). And, if more than b1000 log nc vertices of each ∂Tq are successful, one of them will
be successful and not back-spoiled, thus fulfilling the requirement of S2(x).

By (7.12), if K10 is large enough, for n large enough, the probability that no more
than b1000 log nc explorations from ∂Tq are successful is at most
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x

C

infertile subtree

infertile

subtree

T1

T2

T3

T4

y1;1 y1;2

y2;1

y3;1

y3;2
y3;3

y4;1

y4;2
y4;3

y2;2

y1

y2

y4

Figure 6: Marked vertices are in red. There are four fertile subexploration trees (T1

rooted at y1, T2 rooted at y2, T3 rooted at x and T4 rooted at y4), and two infertile ones.
Lightgray areas correspond to the explorations of the yq,i’s in the second phase. y2,2

is spoiled by y1,2. y3,2 is back-spoiled by y3,3. Each of the subxploration trees will be
either included in CMn,h

x or have no common vertex with CMn,h
x , depending on the value

of ψMn
on the marked vertices.

(b(K10+1) lognc
b1000 lognc

)
(1−K12)(K10−1000) logn ≤(

(K10+1)K10+1

10001000(K10−999)K10−999 (1−K12)K10−1000
)logn

≤ n−4

by Stirling’s formula. Hence by a union bound on 1 ≤ q ≤ m, noticing that m ≤ 2K11/K10

for n large enough by D2, we have:

Pann((S2(x) ∪ S1,stop(x))c) ≤ Pann(S1(x)c) + Pann(Ec5,n) +mn−4 ≤ 2n−5/4

by Proposition 7.2 and (7.11), and this concludes the proof. Hence, it remains to establish
(7.11) and (7.12).

Proof of (7.11). Note that by D2, by Remark 5.2 and by (7.3),

less than n1/2 log−1 n vertices and half-edges have been seen in the first two phases.
(7.13)

In particular, less than n1/2 log−1 n edges are built during second phase. Since by
D2, we have that |{yq,i, q ≤ m, i ≤ |∂Tq|} ≤ K11 log n, each new edge has a probability at
most

K11 log n/(n− n1/2 log−1 n) ≤ 2K11n
−1 log n
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to spoil a vertex. Thus, the number of spoiled vertices is stochastically dominated by a
random variable Z ∼ Bin(n1/2 log−1 n, 2K11n

−1 log n). For n large enough,

P(Z ≥ 10) ≤
(
n1/2 log−1 n

10

) (
2K11 logn

n

)10

≤ n5 log20 n
n10 ≤ n−3.

Moreover, by (2.8) with k = b999 log nc and m0,m1,mE ,m ≤ n1/2 log−1 n due to (7.13),

Pann(more than b999 log nc vertices are back-spoiled) ≤ n−3.

(7.11) follows.
Proof of (7.12). By (7.13) and (2.7) with k = 1 and m0,m1,mE ,m ≤ n1/2 log−1 n, for n
large enough,

Pann(a cycle is created during the exploration from yq,i) ≤ log−1 n.

The law of ψ̂Mn
on the exploration tree from yq,i is that of ϕTd on an isomorphical

subtree of T+
d (and not Td, since we do not explore towards yq,i), with ϕTd(◦) = ψ̂Mn

(yq,i).

Denote Cn◦ the connected component of ◦ in E≥h+log−1 n,+
ϕTd

∪{◦}, and Zk its k-th generation

for every k ≥ 0. Then for any event Eq,i ⊆ {yq,i is not spoiled} that only depends on the
exploration before we inspect yq,i,

Pann(the exploration from yq,i is successful|Eq,i) ≥ pn − log−1 n,

where pn := minb≥h+n−a P
Td
b (∃k ≤ logλh n, |Zk| ≥ n1/2bn) (recall that ψ̂Mn(yq,i) ≥ h +

n−a).
Let δ ∈ (0, h? − h). Clearly, there exists p′ > 0 such that for n large enough,

minb≥h+n−a P
Td
b (∃v ∈ Z1, ϕTd(v) ≥ h+ δ) > p′.

For ε > 0 small enough so that logd−1(λh+δ − ε) ≥ (3 logd−1 λh)/4 (such ε exists by
continuity of h′ 7→ λh′ , Proposition 3.3), for n ∈ N,

p′′n := min
b≥h+δ

PTdb (∃k ≤ logλhn −1, |Zh+log−1 n,+
k | ≥ n1/2bn)

≥ min
b≥h+δ

PTdb (|Zh+δ,+
blogλh

nc−1| ≥ n
1/2bn)

≥ min
b≥h+δ

PTdb (|Zh+δ,+
blogλh

nc−1| ≥ (λh+δ − ε)blogλh
nc−1).

By Proposition 3.6, lim infn→+∞ p′′n =: p′′ > 0. Since pn ≥ p′p′′n for all n ≥ 1,

Pann(the exploration from yq,i is successful|yq,i is not spoiled) ≥ pn − log−1 n ≥ p′p′′

2

for n large enough, and we can take K12 = p′p′′

2 . This shows (7.12).

7.4 Third phase

Suppose now that we are on S2(x). For 1 ≤ q ≤ m, denote yq one vertex of ∂Tq whose
exploration was successful and not back-spoiled in the second phase, Tyq its exploration
tree, and Bq the boundary of Tyq . In this section, we connect each Bq to Θ(n) vertices in
a fashion similar to Section 6.1. However, revealing the GFF on a positive proportion of
the vertices would prevent us to use an approximation of the GFF as in Proposition 4.1.

To circumvent this difficulty, denote R1,2 the set of vertices seen in the first two
phases, and partition Vn \R1,2 arbitrarily in sets D1, D2, . . . , Dr for some r ∈ N such that

|D1| = |D2| = . . . = |Dr−1| = bK14 log nc, (7.14)
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for some constant K14 > 0 to be determined in Proposition 7.4. We will connect each
Bq to a positive proportion of the vertices of D1 only, with Pann-probability 1 − n−3

(Proposition 7.4), before revealing the GFF on the vertices of the first two phases, and
on the connection from D1 to Bq in Section 7.5. The result will follow by symmetry of
the Di’s and a union bound on 1 ≤ i ≤ r − 1.

The exploration.
1) The w-explorations. Let w1, . . . , wbK14 lognc be the vertices of D1. We proceed suc-
cessively to the w-explorations of w1, w2, . . ., i.e. for i ≥ 1, we perform the exploration
from wi as in Section 5.1, but stop it if we reach a vertex seen in the first two phases or
in the w-exploration of some wj , j ≤ i− 1. In particular, if wi was discovered during the
exploration of some wj , j ≤ i− 1, say then that wi is w-spoiled and do not proceed to its
w-exploration. Denote Rw the set of vertices seen during all the w-explorations.

For i ≥ 1, if we explore wi and C2 happens, say that the w-exploration from wi is
w-successful. Let s0 be the number of w-successful vertices. Let wi1 , . . . , wis0 be the
w-successful vertices with i1 < . . . < is0 . Let Twij be the exploration tree of wij , for
j ∈ {1, . . . , s0}. Take away

• from each ∂Twij : the vertices that are seen in the w-exploration of some wi, for
i > ij ,

• from each Bq: the vertices z such that BMn
(z, z, an) intersects Rw.

Say that those vertices are w-back-spoiled.
2) The joining balls. For q = 1, . . . ,m successively, we develop balls from Bq to the
∂Twij ’s, 1 ≤ j ≤ s0, with a few modifications w.r.t the construction of Section 6.1.1: let
z1,q, z2,q, . . . be the vertices of Bq. For zi,q ∈ Bq, let

B∗i,q := ∪(i′,q′):q′<q or q′=q,i′<iB
∗(zi′,q′ , a

′
n),

and let Ri,q := R1,2 ∪Rw ∪B∗i,q be the vertices seen before building B∗(zi, a′n).
Replace B∗j , Qj and BMn(Ty, an) of Section 6.1 by B∗i,q, Ri,q and ∪s0j=1BMn(Twij , an)

respectively.
Say that B∗(zi,q, a′n) is a J-joining ball if it hits BMn(TwiJ , an) at one vertex after

a′n − 2an steps, and no other intersection with vertices seen previously is created.

Proposition 7.4. For n large enough, we have

Pann(S2(x) ∩ {∃(J, q), there are less than logγ−3κ−18 n J -joining balls from Bq}) ≤ n−4

(7.15)
and if K14 is large enough, then for large enough n:

Pann(S2(x) ∩ {s0 ≤ log n}) ≤ n−4. (7.16)

Proof. Proof of (7.15). We adapt the proof of Lemma 6.1. Since there are less than
log2 n wi’s (and |R1,2| is controlled by (7.13)), we can replace (6.4) by

less than n1/2 logγ+2 n vertices are seen during the three phases. (7.17)

Let B∗ := ∪mq=1 ∪z∈Bq B∗(z, a′n). (6.6) becomes

Pann(S2(x) ∩ { |B∗ ∩ (∪s0j=1BMn(Tzij , an))| ≥ log3γ n}) ≤ n−5 (7.18)

Let N be the number of vertices of ∪mq=1Bq that are spoiled, i.e. the vertices z such
that B∗(z, an) = BMn

(z, z, an) is hit by a previously constructed B∗(z′, a′n). (6.7) becomes

Pann(S2(x) ∩ {N ≥ log3γ n}) ≤ n−5. (7.19)

EJP 28 (2023), paper 35.
Page 38/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP920
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anatomy of a Gaussian giant

In addition, by (2.8) with k = log2 n, m0 = 1, m1,mE ,m ≤ n1/2 log−1/2 n,

Pann (E6,n) ≤ n−5, (7.20)

where E6,n := S2(x) ∩
{

more than log2 n vertices are w-back-spoiled
}

. Then, define

Si,q := S2(x) ∩ Ec6,n ∩ {|(∪
s0
j=1BMn

(Twij , an)) ∩B∗i,q| ≤ log3γ n} ∩ {zi,q is not spoiled}.

It is straightforward to adapt the proof of (6.9) to get that for every 1 ≤ J ≤ s0,
the probability that B∗(zi,q, a′n) is a J -joining ball, conditionally on Si,q, is at least
n−1/2 logγ−2κ−10 n. On S2(x) ∩ {N ≤ log3γ n} ∩ Ec6,n, at least

n1/2bn − log2 n− log3γ n ≥ n1/2blog−κ−7 nc

zi,q’s are neither spoiled nor w-back-spoiled by (5.1). As in the end of the proof of
Lemma 6.1, if γ > 3κ+ 18, we get that for n large enough: for every (J, q) ∈ ({1, . . . , s0}∩
{1, . . . ,m}) and Z ∼ Bin(n1/2blog−κ−7 nc, n−1/2 logγ−2κ−10 n):

Pann(S2(x) ∩ {there are less than logγ−3κ−18 n J -joining balls from Bq})

≤ Pann
(
S2(x) ∩ ({ |B∗ ∩ (∪s0j=1BMn

(Tzij , an))| ≥ log3γ n} ∪ {N ≥ log3γ n} ∪ E6,n)
)

+ P(Z ≤ logγ−3κ−18 n)

≤ 3n−5 + logγ n max
k≤logγ−3κ−18 n

P(Z = k) by (7.18), (7.19) and (7.20)

≤ 4n−5

as below (6.9). Since s0 ≤ |D1| ≤ log2 n by (7.14) and m ≤ K11 log n by D2, a union bound
on (J, q) yields (7.15).

Proof of (7.16). We now estimate the probability that at most log n w-explorations are
w-successful. Note that by Remark 5.2 and (7.13),

|R1,2|+ |Rw| ≤ n1/2 log−1/2 n. (7.21)

Hence if C > 0 is large enough, by (2.8) with k = bC log nc and m0,m1,mE ,m ≤
n1/2 log−1/2 n,

Pann (S2(x) ∩ {more than C log n wi’s are w-spoiled}) ≤ n−5. (7.22)

Moreover, for every i ≥ 1, conditionally on the fact that wi is not w-spoiled, the
probability that the w-exploration from wi is stopped because it reaches a vertex of R1,2

or a vertex seen in the exploration of some wj , j < i is o(1) by (2.7) with k = 1, m0 = 1,
m1,mE ,m ≤ n1/2 log−1/2 n. Hence, a straightforward adaptation of the proof of (5.9)
yields

Pann(the exploration from wi is w-successful | S2(x) ∩ {wi is not w-spoiled}) ≥ η(h)/2.

(7.23)
Take K14 > 3C. By (7.22), (7.23) and (7.14), if Z ∼ Bin(b(K14 log n)/2c, η(h)/2) and n

is large enough,

Pann(S2(x) ∩ {s0 ≤ log n})≤ n−5 + P(Z ≤ log n).

One checks via Stirling’s formula that if K14 is large enough, then for large enough n,

P(Z ≤ log n) ≤ 2 log n max
k≤logn

P(Z = k) ≤ 2 log n

(
K14 log n

log n

)
(1− η(h)/2)(K14−1) logn

≤ n−5,

and (7.16) follows.
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7.5 Revealing ψMn
on the three phases

Let Rψ1 (resp. Rψ2 ) be the set of vertices where ψ̂Mn
has been defined during the first

(resp. second) phase, and Rψ3 be the set of vertices in the w-successful w-explorations
and on the J -joining balls, for all 1 ≤ J ≤ m, on which we will realize ψMn

on the third
phase.

By Proposition 2.4, we can realize ψMn
jointly withMn by

• proceeding to the three phases of the exploration from x,

• revealing the remaining pairings of half-edges of theMn,

• defining ψMn on Rψ1 ∪R
ψ
2 , in the same order as ψ̂Mn has been defined, using the

same standard normal variables: we let

ψMn
(x) := ψ̂Mn

(x)
√

d−2
d−1

√
GMn

(x, x)

if BMn
(x, rn + `) has no cycle, and ψMn

(x) = ψ̂Mn
(x)
√
GMn

(x, x)/GGm(uk, uk) if
it has one cycle C, and dMn

(x,C) = k. For every y, we define the event

Ay := {z ∈ Vn, ψ̂Mn(z) was defined before ψ̂Mn(y)} and

ψMn
(y) := EMn [ψMn

(y)|σ(Ay)] + ξy
√

Var(ψMn
(y)|σ(Ay)),

for every y ∈ Rψ1 , where ξy is the normal variable used when defining ψ̂Mn
(y),

• revealing ψMn on Rψ3 , and finally on Vn \ (Rψ1 ∪R
ψ
2 ∪R

ψ
3 ).

Let E7,n := {Mn is a good graph} ∩ {maxz∈Vn |ψMn
(z)| ≤ log2/3 n},

Sψ1 (x) := S1(x) ∩ {supy∈Rψ1
|ψMn

(y)− ψ̂Mn
(y)| ≤ n−a/2},

Sψ2 (x) := S2(x) ∩ Sψ1 (x) ∩ {supy∈Rψ2
|ψMn

(y)− ψ̂Mn
(y)| ≤ (log−1 n)/2}, and

Sψ3,i(x) := Sψ2 (x) ∩
(⋂m

q=1 at least log n vertices of Di are connected to Tq in E≥hψGn

)
for

every i ≥ 1.
Suppose that for a > 0 (defined in the beginning of Section 7.2) small enough

(depending only on d and h), and for n large enough:

Pann((S1(x) \ Sψ1 (x)) ∩ E7,n) ≤ n−3, (7.24)

Pann((S2(x) \ Sψ2 (x)) ∩ E7,n) ≤ n−3, (7.25)

and for every 1 ≤ i ≤ r − 1,

Pann((S2(x) \ Sψ3,i(x)) ∩ E7,n) ≤ n−3. (7.26)

Letting Sψ1,stop(x) := S1,stop(x) ∩ Sψ1 (x), (7.24), (7.25), (7.26) and (7.10) imply that

Pann((Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)) ) ∩ E7,n) ≥ 1− n−7/6. (7.27)

On Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)), we have the following alternative:

• either CMn,h
x contains a subexploration tree Tq whose exploration was fertile, the

exploration from yq is successful and connected to at least log n vertices of every
Di, 1 ≤ i ≤ r − 1 in E≥hψGn ;
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• or CMn,h
x contains no such tree, and CMn,h

x ⊆ Rψ1 , so that |CMn,h
x | ≤ K0 log n, where

we take K0 ≥ K11.

Note that the second case comprises Sψ1,stop(x) but is a priori not included in it: there

could exist fertile subexploration trees not connected to x in E≥hψGn if ψMn is below h on
the appropriate marked vertices.

In the first case, CMn,h
x contains at least log n vertices of each Di, 1 ≤ i ≤ r − 1, so

that by (7.13) and (7.14) for n large enough:

|CMn,h
x | ≥ (r − 1) log n ≥ log n

n− |R1,2| − |Dr|
K14 log n

≥ n

2K14
.

Letting thus K15 := (2K14)−1, we have on Sψ1,stop(x) ∪ (∩r−1
i=1S

ψ
3,i(x)), for every n large

enough:

|CMn,h
x | ≤ K0 log n or |CMn,h

x | ≥ K15n.

By (7.27) and a union bound on all x ∈ Vn,

Pann(K0 log n ≤ |C(n)
2 | ≤ K15n) ≤ n−1/6 + Pann(Ec7,n).

By Remark 6.6, |C(n)
2 | ≤ K15n Pann-w.h.p. By Proposition 2.1 and Lemma 2.5, we have

Pann(Ec7,n)→ 0 so that

Pann(|C(n)
2 | ≤ K0 log n)→ 1,

yielding (1.3). Hence, it remains to show (7.24), (7.25) and (7.26).

7.5.1 The field ψMn on the first phase: proof of (7.24)

Proposition 7.5. Let a,K0, ` be such that Proposition 7.2 holds with K11 = K0 and K10

as in Proposition 7.3, and such that the conclusion of Lemmas 7.6 and 7.7 hold. Then for
n large enough, (7.24) holds.

To prove Proposition 7.5, we need two variants of Proposition 4.1, whose proofs are
postponed to the Appendix, Section A.4. The first consists in replacing the “security
radius” an = Θ(log log n) by rn = Θ(log n).

Lemma 7.6. If a > 0 is small enough (depending only on d and h), then the following
holds for n large enough. Assume thatMn is a good graph, that A ⊂ Vn satisfies

• |A| ≤ n2/3,

• tx(BMn
(A, rn)) = tx(A), and

• maxz∈A |ψMn
(z)| ≤ log2/3 n.

For every y ∈ ∂BMn
(A, 1), writing y for the unique neighbour of y in A, we have:∣∣∣∣EMn [ψMn

(y)|σ(Ay)]− 1

d− 1
ψMn

(y)

∣∣∣∣ ≤ n−2a (7.28)

and ∣∣∣∣VarMn(ψMn
(y)|σ(Ay))− d

d− 1

∣∣∣∣ ≤ n−2a. (7.29)
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The second variant of Proposition 4.1 corresponds to Case 1 and Case 2 of the first
phase of the exploration. Let us introduce some notations before stating the Lemma.
Recall that for m ≥ 3, Gm is the connected (and infinite) d-regular graph with a unique
cycle Cm of length m. Recall the definitions of αk, βk, γk, α′k and γ′k from (7.5) and (7.6).

For k ≥ 0, let zk be a vertex at distance k of the cycle Cm in Gm, and zk be a neighbour
of zk at distance k + 1 of Cm. Note that BGm(zk, zk, rn) (the subgraph of Gm obtained by
taking all paths of length rn starting at zk and not going through zk) contains Cm if and
only if k ≤ rn − dm/2e.
Lemma 7.7. If a > 0 is small enough (depending only on d and h), then the following
holds for n large enough (uniformly in m ≥ 3).

Assume thatMn is a good graph, that A ⊆ Vn is such that

• |A| ≤ n2/3,

• A is a tree, and

• maxz∈A |ψMn(z)| ≤ log2/3 n.

Case 1. Let y ∈ Vn, and suppose that

– y has a neighbour y in A,

– for some 1 ≤ k < m, there exists ŷ in A, a path P of length m − k from y to ŷ

whose only vertex in A is ŷ, and a path P ′ in A of length k − 1 from ŷ to y, so that
C := P ∪ P ′ ∪ (y, y) is a cycle of length m (and ŷ = y if k = 1), and

– tx(BMn
(A ∪ C, rn)) = 1.

Then ∣∣EMn [ψMn
(y)|σ(A)]− αkψMn

(y)− βkψMn
(ŷ)
∣∣ ≤ n−2a (7.30)

and ∣∣VarMn(ψMn
(y)|σ(A))− γk

∣∣ ≤ n−2a. (7.31)

Case 2. Let y ∈ Vn, and suppose that

– y has a unique neighbour y in A,

– for some 1 ≤ k ≤ rn − dm/2e, BMn(y, y, rn) is isomorphic to BGm(zk, zk, rn), and

– tx(BMn
(A ∪ P ∪ C, rn)) = 1, where C is the cycle in BMn

(y, y, rn) and P the path
from y to C.

Then ∣∣EMn [ψMn
(y)|σ(A)]− α′kψMn

(y)
∣∣ ≤ n−2a (7.32)

and ∣∣VarMn(ψMn
(y)|σ(A))− γ′k

∣∣ ≤ n−2a. (7.33)

Proof of Proposition 7.5. We proceed as below (5.9) in the proof of Proposition 5.1.
Denote

En := {∃y ∈ Rψ1 , |ψMn
(y)− ψ̂Mn

(y)| ≥ n−a} ∩ E7,n ∩ S1(x).

On En, ψ̂Mn is defined on at most K0 log n vertices by D2 (and our choice of K11 = K0),

so that by the triangle inequality, either |ψ̂Mn(x)−ψMn(x)| ≥ n−a log−2 n, or there exists
y such that

|ψ̂Mn
(y)− ψMn

(y)| ≥ n−a log−2 n+ supy∈Rψy |ψ̂Mn
(y)− ψMn

(y)|,

EJP 28 (2023), paper 35.
Page 42/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP920
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anatomy of a Gaussian giant

where Rψy is the set of vertices where ψ̂Mn
has been defined before ψ̂Mn

(y). Let

E(y) := {|ψ̂Mn
(y)− ψMn

(y)| ≥ n−a log−2 n+ supy∈Rψy |ψ̂Mn
(y)− ψMn

(y)|} ∩ En

For y 6= x, we can apply Lemma 7.7 (if ψ̂Mn
(y) is defined in Case 1 or Case 2) or

Lemma 7.6 (in the other cases), so that

Pann(E(y)) ≤ Pann(n−2a|ξy| ≥ n−a log−2 n− n−2a) ≤ Pann(|ξy| ≥ na/2) ≤ n−4

by the exponential Markov inequality, and Pann(E(x)) ≤ n−4 by the same argument,

where we set E(x) := {|ψ̂Mn
(x)− ψMn

(x)| ≥ n−a log−2 n} ∩ En. For the particular case
that there is a cycle C in BMn

(x, rn + `), at distance k ≥ 0 from x, a computation similar
to that of the variance in Lemma 7.7 shows that for a small enough (depending on d and
h only), maxk≥0 |GGm(uk, uk)−GMn

(x, x)| ≤ n−2a. Hence, we get by a union bound on
y ∈ Rψ1 that for large enough n,

Pann(En) ≤ n−4K0 log n ≤ n−3.

The conclusion follows.

7.5.2 The field ψMn
on the second phase: proof of (7.25)

It is enough to show that for each yq,i whose exploration in the second phase is successful,

Pann

(
{supz∈Tyq,i\{yq,i}

|ψ̂Mn(z)− ψMn(z)| ≥ log−1 n
2 } ∩ E7,n

)
≤ n−4,

where Tyq,i is its exploration tree, and to conclude by a union bound on yq,i. This follows
from a straightforward adaptation of the reasoning below (5.9). Note that the n−3 in the
RHS of (5.10) can be replaced by any polynomial in n.

7.5.3 The field ψMn
on the third phase: proof of (7.26)

By symmetry, it is enough to consider the case i = 1. Following readily the argument
of the proof of (6.14), we get that the probability that E≥hψGn percolates through a given

J -joining ball is at least logγ(K8/3−1) n, for any J . By (7.15) and (7.16), and a union bound
on every couple (J, q) ∈ {1, . . . , s0} × {1, . . .m},

Pann((S2(x) \ Sψ3,1(x)) ∩ E7,n) ≤ 2n−4 + s0mP(Z = 0),

where Z ∼ Bin(blogγ−3κ−18 nc, logγ(K8/3−1) n). If κ and γ/κ are large enough, then

P(Z = 0) = (1− logγ(K8/3−1) n)blogγ−3κ−18 nc ≤ n−4

for n large enough, and (7.26) follows.

8 Properties of C(n)
1

8.1 The local limit: proof of Theorem 1.3

Proof of Theorem 1.3. The proof mimics the reasoning of Lemma 6.4. Let k ≥ 0 and let
T be a rooted tree of height k, with no vertex of degree more than d. Let x ∈ Vn. We
perform an exploration as in Section 5.1. Denote ST (x) the event that the exploration is
successful, that ST (x) ⊆ CMn,h

x and that BMn
(x, k) is isomorphic to T . We claim that

Pann(ST (x)) −→
n→+∞

PTd(BTd(◦, k) = T, |Ch◦ | = +∞). (8.1)

The proof goes as those of Lemma 5.3 and Proposition 5.1. In the proof of Lemma 5.3,
replace F (n)

j by F (n)
T,j := F (n)

j ∩ {BCh◦ (◦, k) = T} and F ′(n)
j by F ′(n)

T,j := F ′(n)
j ∪ {BCh◦ (◦, k) 6=

T}, for every j ≥ 1. We also check easily that
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PTd(Ch+log−1 n
◦ ∩BTd(◦, k) = Ch−log−1 n

◦ ∩BTd(◦, k))→ 1

in order to determine BMn
(x, k) Pann-w.h.p., as Proposition 5.1 only ensures thatwe

have w.h.p. the inclusion Ch+log−1 n
◦ ∩ BTd(◦, k) ⊆ BMn

(x, k). Moreover, we get as for
(6.21):

sup
x,y∈Vn

|Covann(ST (x),ST (y))| −→
n→+∞

0. (8.2)

Let ε > 0. Applying Bienaymé-Chebyshev’s inequality as in Lemma 6.4, we get

Pann(| |ST | − PTd(BTd(◦, k) = T, |Ch◦ | = +∞)n| ≤ εn) −→
n→+∞

1, (8.3)

where ST is the set of vertices x ∈ Vn such that ST (x) holds. Let S ⊂ Vn be the set of
vertices such that their exploration is successful. By Theorem 1.1 and a reasoning as in
the proof of Lemma 6.4, with Pann-probability 1− o(1),

(i) |C(n)
2 | ≤ n1/3, so that ST ⊆ S ∩ C(n)

1 ,

(ii) | |C(n)
1 | − η(h)n| ≤ εn,

(iii) | |S| − η(h)n| ≤ εn.

By (i), ST = S ∩ V (T )
n . Thus, |ST | ≤ |V (T )

n | ≤ |ST |+ |C(n)
1 ∩ Sc|, so that by (ii), (iii) and

(8.3),

(PTd(BTd(◦, k) = T, |Ch◦ | = +∞)− ε)n ≤ |V (T )
n | ≤ (PTd(BTd(◦, k) = T, |Ch◦ | = +∞) + 3ε)n.

Moreover, | |C(n)
1 | − η(h)n| ≤ εn by (ii), so that for ε small enough,

PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
−
√
ε ≤ |V

(T )
n |
|C(n)

1 |
≤ P

Td(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
+
√
ε.

Since η(h) = PTd(|Ch◦ | = +∞), we have

PTd(BTd(◦, k) = T, |Ch◦ | = +∞)

η(h)
= PTd(BTd(◦, k) = T | |Ch◦ | = +∞).

And since we can take ε arbitrarily small, the conclusion follows.

8.2 The core and the kernel: proof of (1.4) and (1.5)

We now prove (1.4) and (1.5) of Theorem 1.2, starting with (1.4). Let K1 (resp. K2)
be the probability that ◦ has at least 2 (resp. 3) children with an infinite offspring in Ch◦ ,
under PTd . Then (1.4) follows by a second moment argument as in Lemma 6.4 once we
show that for x, y ∈ Vn,

Pann(x ∈ C(n)) −→
n→+∞

K1, and (8.4)

Covann(1x∈C(n) ,1y∈C(n)) −→
n→+∞

0. (8.5)

Proof of (8.4). We proceed in three steps: first, we show that with probability ' K1, the
exploration of Section 5.1 is successful for two children of x. Second, we prove that
some vertex w is connected to these two explorations, forming a cycle with x. Third, we
adapt the lower exploration of Section 5.2 to show reciprocally that x is not in C(n) with
probability & 1−K1.
First step. For x ∈ Vn, we perform the exploration in Section 5.1 from x, replacing C2
by the following condition: for every neighbour v of x, stop exploring the subtree from v
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at step k + 1 if the k-offspring of v has at least n1/2bn vertices. Stop the exploration if
this happens for at least two neighbours of x. In this case, say that the exploration is
successful.

We adapt easily the proofs of Lemma 5.3 and Proposition 5.1 to show that for x ∈ Vn,

Pann(the exploration from x is successful) −→
n→+∞

K1. (8.6)

Indeed, K1 is the probability that the realization of ϕTd to which we couple ψMn is
such that ◦ has at least two children with an infinite offspring. Then, as in Lemma 5.3,
there is a probability 1− o(1) that the offspring of these children grows at an exponential
rate close to λh (Proposition 3.6). Thus, letting

F (n)
v,k := ∪1≤j≤k{the j-offspring of v has at least n1/2bn vertices}

for every child v of ◦, and F (n)
core,k := ∪v1,v2 children of ◦(F (n)

v1,k−1 ∩ F
(n)
v2,k−1), we get that

Pann(∪1≤k≤blogλh
ncF

(n)
core,k) −→

n→+∞
K1, and

Pann(∪1≤k≤blogλh
nc{at most one child of ◦ has a non-empty k-offspring}) −→

n→+∞
1−K1.

As for (5.8), we do not meet any cycle with Pann-probability 1− o(1). This yields (8.6).
Second step. If the exploration from x is successful, let x1, x2 be two children of x such
that the exploration subtrees Tx1

and Tx2
from x1 and x2 satisfy min(|∂Tx1

|, |∂Tx2
|) ≥

n1/2bn. Then, let K > 0 and let w1, . . . , wbK lognc ∈ Vn be vertices that have not been met
in the exploration from x. Proceed to their w-exploration as described in the first part
of the construction in Section 7.4. By Remark 5.2, o(

√
n) vertices are seen during the

exploration from x and the w-explorations. By (2.7) with k = 1, m0,m1,mE ,m = o(
√
n),

with Pann-probability 1− o(1), no w-exploration intersects the exploration from x, and
no wi is spoiled or back-spoiled.

As in (7.23), we get that for each wi, its w-exploration has probability at least η(h)/2 to
be w-successful. Hence with Pann-probability at least 1− (1− η(h)/2)bK lognc = 1− o(1),
there exists i0 such that the w-exploration from wi0 is successful. Denote ∂Twi0 the
boundary of its exploration tree. Write

Score(x) :={the exploration from x is successful}∩
{∃i0 ≥ 1, the w-exploration from wi0 is successful}.

We have just shown that

lim inf
n→+∞

Pann(Score(x)) ≥ lim inf
n→+∞

Pann(the exploration from x is successful) ≥ K1. (8.7)

Next, we grow joining balls from ∂Tx1
to ∂Twi0 , and then from ∂Tx2

to ∂Twi0 . We
proceed as in the second part of the construction in Section 7.4 with m = 2 and s0 = 1.
Similarly to (7.15), we get that

Pann(Score(x) ∩ (Score,joining,1 ∪ Score,joining,2)) = o(1),

with Score,joining,i := { there are less than logγ−3κ−18 n joining balls from ∂Txi to ∂Twi0 },
for i = 1, 2.

Finally, we reveal ψMn
on the exploration from x, on the w-exploration from wi0 , on

the joining balls from ∂Tx1
to ∂Twi0 , and on the joining balls from ∂Tx2

to ∂Twi0 , in that
order. Denote Score,connect the event that there exists a joining ball B1 from ∂Tx1

to ∂Twi0
and another B2 from ∂Tx2

to ∂Twi0 such that miny∈Tx1∪Tx2∪Twi0∪B1∪B2
ψMn

(y) ≥ h. As in

the proof of Proposition 6.2, we get that Pann(Score(x) ∩ Sccore,connect) = o(1). Hence

EJP 28 (2023), paper 35.
Page 45/60

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP920
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Anatomy of a Gaussian giant

lim infn→+∞Pann(x, x1, x2, z are in a cycle of CMn
x and |CMn

x | ≥ n1/3)

≥ lim infn→+∞Pann(Score(x)).

If |C(n)
2 | < n1/3, this cycle is in C(n)

1 , and thus in C(n) so that by (1.3), for large enough
n and any x ∈ Vn, one has by (8.7):

lim infn→+∞Pann(x ∈ C(n)) ≥ lim infn→+∞Pann(Score(x)) ≥ K1.

Third step. For x ∈ Vn, turn the exploration into a lower exploration, replacing
h + log−1 n by h − log−1 n (as in Section 5.2). Say that the lower exploration from
x is aborted if for some k ≤ log log n, at most one child of x has a non-empty (k − 1)-
offspring. Let Acore(x) := {the lower exploration from x is aborted}. We get as in the
proof of (8.6):

Pann(Acore(x)) −→
n→+∞

1−K1. (8.8)

Moreover, revealing ψMn
on Tx, we can apply Proposition 4.1 as below (5.9) to get

that

Pann(Acore(x) ∩ {CMn,h
x ∩BMn

(x, blog log nc) ⊆ Tx}) −→
n→+∞

1−K1. (8.9)

For each neighbour y of x, denote Cy its connected component in CMn
x \ {x}. If

the exploration is aborted and CMn,h
x ∩BMn(x, blog lognc)⊆Tx, then x has at most one

neighbour y such that Cy ∪ {x} is not a tree and x 6∈ C(n). Thus lim infn→+∞Pann(x 6∈
C(n))≥1−K1 and (8.4) follows.

Proof of (8.5). By (8.4), for x, y ∈ Vn,

Pann(x ∈ C(n))Pann(y ∈ C(n)) −→
n→+∞

K2
1 .

It remains to show that Pann(x, y ∈ C(n)) −→
n→+∞

K2
1 .

Perform the exploration from x as in the beginning of the proof of (8.4), then do the
same from y (and stop the latter if it reaches a vertex of the exploration from x). Since
o(
√
n) vertices are revealed during these explorations (see Remark 5.2), then by (2.7),

the probability that the exploration from y meets that of x is o(1). Thus by (8.6),

Pann(the explorations from x and y are both successful) −→
n→+∞

K2
1 .

Then, let x1, x2 (resp. y1, y2) be the children of x (resp. y) whose exploration is
successful. We complete the exploration in a fashion similar to that above (8.7). LetK > 0

and let w1, . . . , wbK lognc ∈ Vn be vertices that have not been met in the explorations
from x and y, and proceed to their w-exploration. If there exists i0 ≥ 1 such that
the w-exploration from wi0 is successful, build joining balls from ∂Tx1 , ∂Tx2 , ∂Ty1 and
∂Ty2 to Twi0 . Finally, reveal ψMn on Tx, on Ty, on Twi0 and on the joining balls from
∂Tx1 , ∂Tx2 , ∂Ty1 and ∂Ty2 , in that order. As in the proof of (8.7) and below, we get that

lim inf
n→+∞

Pann(x, y ∈ C(n)) ≥ K2
1 . (8.10)

Conversely, if we perform the lower explorations from x and y as defined in the end
of the proof of (8.4), we easily get that

Pann(∃z ∈ {x, y}, the lower exploration from z is aborted) −→
n→+∞

1−K2
1 .

Then, we reveal ψMn on Tz. Following the reasoning below (5.9), we get that Pann-
w.h.p., BCMn,h

z
(z, blog log nc) ⊆ Tz, and thus

Pann({the lower exploration from z is aborted} ∩ {z ∈ C(n)}) = o(1).
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This yields

lim infn→+∞Pann(∃z ∈ {x, y}, z 6∈ C(n)) ≥ 1−K2
1 .

Together with (8.10), this concludes the proof.

This reasoning can be readily adapted to prove (1.5), with a modification of the
exploration (requiring that at least three children of x have a successful exploration).

8.3 The typical distance: proof of (1.7)

The proof of (1.7) goes as that of (1.2), with a slight modification of the explorations
of Section 5. Those explorations were indeed stopped after at most logλh n steps. But
since around

√
n vertices were explored, and since the growth rate of Ch◦ is close to λh,

we can expect that a successful exploration lasts in fact (1/2 + o(1)) logλh n steps. Then,
connecting two such explorations as in Proposition 6.2 (adding an additional distance
Θ(log log n) = o(log n)) yields the typical distance (reciprocally, explorations lasting less
steps will be too small to be connected).

Proof of (1.7). Fix ε ∈ (0, 1).
Upper bound. In the exploration of Section 5.1, replace C4 by the following condition:
stop the exploration if k ≥ (1/2 + ε/3) logλh n. By Proposition 3.6,

limn→+∞P
Td

(
|Zh+log−1 n
b(1/2+ε/3) logλh

nc| > n1/2bn

∣∣∣∣ |Ch+log−1 n
◦ | = +∞

)
= 1.

Thus, Propositions 5.1, 6.2 and Lemma 6.5 remain unchanged. And if x, y are
connected in E≥hψGn via successful explorations from x and y and joining balls from ∂Tx to
∂Ty, then

d
E
≥h
ψGn

(x, y) ≤ 2(1/2 + ε/3) logλh n+ a′n ≤ (1 + ε) logλh n

for n large enough. Then, Lemma 6.5 implies that

Pann(E1,n) −→
n→+∞

1,

where E1,n := {|{(x, y) ∈ V 2
n , dE≥hψGn

(x, y) ≤ (1 + ε) logλh n}| ≥ (η(h)2 − ε)n2}.

We have to check that only o(n2) of the couples (x, y) described in E1,n are not in C(n)
1 ,

and that |C(n)
1 |/n is indeed close to η(h). Note that by (1.2) and (1.3),

Pann(E1,n ∩ E2,n ∩ E3,n) −→
n→+∞

1,

where E2,n := {∀i ≥ 2, |C(n)
i | ≤ K0 log n} and E3,n := {(η(h)− ε)n ≤ |C(n)

1 | ≤ (η(h) + ε)n}.

On E2,n, we have |{(x, y) ∈ V 2
n \ (C(n)

1 )2, d
E
≥h
ψGn

(x, y) ≤ (1 + ε) logλh n}| ≤ n
3/2, so that on

E1,n ∩ E2,n,

|{(x, y) ∈ (C(n)
1 )2, dC(n)

1
(x, y) ≤ (1 + ε) logλh n}| ≥ (η(h)2 − 2ε)n2.

Thus, on E1,n ∩ E2,n ∩ E3,n:

π2,n

(
{(x, y) ∈ (C(n)

1 )2, dC(n)
1

(x, y) ≤ (1 + ε) logλh n}
)
≥ η(h)2 − 2ε

(η(h) + ε)2
≥ 1− 2ε+ 2η(h)ε+ ε2

(η(h) + ε)2

≥ 1− (3 + 2η(h))

η(h)2
ε.
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Lower bound. It remains to show that the typical distance in C(n)
1 is at least (1−ε) logλh n.

Modify the lower exploration of Section 5.2 by saying that it is aborted if

• C1 did not happen, and

• it is stopped at some step k ≤ (1/2 − ε/2) logλh n, or less than n1/2−ε/10 vertices
and half-edges have been seen at step b(1/2− ε/2) logλh nc.

By Lemma 8.1 below,

Pann(the lower exploration from x is aborted) = 1− o(1). (8.11)

For x, y ∈ Vn, perform the lower exploration from x, then that from y, and stop it if
it meets a vertex of the exploration from x. This happens with Pann-probability o(1) by
(2.7) with k = 1, m0,m1,m,mE = o(

√
n) (recall Remark 5.2).Hence by (8.11):

Pann(Eab(x, y))=1− o(1), with
Eab(x, y):={the lower explorations from x and y are aborted},

Then, reveal ψMn
on the exploration trees Tx and Ty. Applying Proposition 4.1 as

below (5.9), we get that:

Pann(Eab(x, y) ∩ Ex ∩ Ey) = 1− o(1),

with Ez := {BCMn,h
z

(z, b(1/2− ε/2) logλh nc) ⊆ Tz} for z ∈ {x, y}.
On Eab(x, y) ∩ Ex ∩ Ey, if x, y ∈ C(n)

1 , then dC(n)
1

(x, y) ≥ (1 − ε) logλh n. Therefore, for

every x, y ∈ Vn, Pann(Ex,y) = o(1), with

Ex,y := {x, y ∈ C(n)
1 , dC(n)

1
(x, y) < (1− ε) logλh n}.

Similarly, for all distinct x, y, z, t ∈ Vn, we get that Pann(Ex,y ∩ Ez,t) = o(1), so that

Covann(1Ex,y ,1Ez,t) = o(1).

Thus by Bienaymé-Chebyshev’s inequality,

Pann(E3,n ∩ {|{(x, y) ∈ V 2
n , dC(n)

1
(x, y) ≤ (1− ε) logλh n}| ≥ εn

2}) −→
n→+∞

1.

For ε > 0 small enough and n large enough, on

E3,n ∩ {|{(x, y) ∈ V 2
n , dC(n)

1
(x, y) ≤ (1− ε) logλh n}| ≥ εn

2},

π2,n

(
{(x, y) ∈ (C(n)

1 )2, dC(n)
1

(x, y) ≤ (1− ε) logλh n}
)
≤ 2ε

η(h)2 . This concludes the proof of

(1.7).

It remains to establish the lemma below.

Lemma 8.1. We have

lim
n→∞

Pann(the lower exploration from x is aborted) = 1.

Proof. Note first that Pann(C1 happens) = o(1) by (2.7) with k = 1, m0 = 1, mE = 0 and
m = o(

√
n) by Remark 5.2. Therefore, it is enough to prove that

PTd(|BCh−log−1 n
◦

(◦, b(1/2− ε/2) logλh nc+ an)| < n1/2−ε/8)→ 1,
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since if this event happens, less than n1/2−ε/10 vertices and half-edges have been seen at
step b(1/2− ε/2) logλh nc. By (4.1), it suffices to show that

PTd(|BCh−log−1 n
◦

(◦, b(1/2− ε/2) logλh nc)| < n1/2−ε/7)→ 1, (8.12)

To do so, we first prove that for n large enough and every log log n ≤ k ≤ (1/2 −
ε/2) logλh n,

PTd
(
|Zh−log−1 n
k | ≥ n1/2−ε/6

)
≤ e−Ck + n−3. (8.13)

Let δ > 0 such that λh ≤ λh−δ ≤ λh+ε/10 (h′ 7→ λh′ being continuous, Proposition 3.3).

Since Zh−log−1 n
k ⊆ Zh−δk for n large enough and all k, a direct computation shows that

PTda

(
|Zh−log−1 n
k | ≥ n1/2−ε/5χh−δ(a)

)
≤ PTda

(
log |Zh−δk | ≥ λh−δ(1 + ε/5)k + logχh−δ(a)

)
.

Then by Proposition 3.6, there exists C > 0 (depending on ε) such that for n large
enough, for every log log n ≤ k ≤ (1/2− ε/2) logλh n and a ≥ h,

PTda

(
|Zh−log−1 n
k | ≥ n1/2−ε/5χh−δ(a)

)
≤ e−Ck.

By Proposition 2.1 of [4], there exists c > 0 such that for all h′ ≤ h? and a ≥ d − 1,
one has χh′(a) ≤ ca1−logd−1 λh′ ≤ ca. Since χh′ is continuous on [h,+∞) (Lemma A.1), we
have for n large enough maxh≤a≤log2 n χh−δ(a) < nε/30, so that

PTd
(
|Zh−log−1 n
k | ≥ n1/2−ε/6

)
≤ e−Ck + PTd(ϕTd(◦) ≥ log2 n)

Using the exponential Markov inequality as in Lemma 2.5, we get PTd(ϕTd(◦) ≥
log2 n) ≤ n−3. This yields (8.13). Then, for n large enough, this implies

PTd(|BCh◦ (◦, b(1/2− ε/2) logλh nc)| ≥ n
1/2−ε/7)

≤ PTd(∃k ∈ [log logn, (1/2− ε/2) logλh n], |Zh−log−1 n
k | ≥ n1/2−ε/6)

≤
b(1/2−ε/2) logλh

nc∑
k=blog lognc

(e−Ck + n−3)

≤ 1/ log log n.

(8.12) and the conclusion follow.

8.4 The diameter: proof of (1.6)

Recall that D(n)
1 is the diameter of C(n)

1 . In Section 7, we have in fact proven that there

exists a constant K16 > 0 such that for En := {∀x ∈ C(n)
1 , |BC(n)

1
(x, bK16 log nc)| ≥ K15n},

we have

Pann(En) −→
n→+∞

1.

Namely, one can take K16 = K0 + 3log−1 λh.
Hence it is enough to show that on En, D(n)

1 ≤ 6K−1
12 K13 log n, which will imply (1.6).

We do this by a short deterministic argument.
Let x1 ∈ C(n)

1 . If ∂BC(n)
1

(x1, 2bK16 log nc+ 1) = ∅, then D(n)
1 ≤ 4K16 log n+ 2.

Else, let x2 ∈ ∂BC(n)
1

(x1, 2bK16 log nc+ 1). For i = 1, 2, we have

|BC(n)
1

(xi, bK16 log nc)| ≥ K15n and BC(n)
1

(xi, bK16 log nc) ⊆ BC(n)
1

(x1, 4bK16 log nc).
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Moreover, BC(n)
1

(x1, bK16 log nc) ∩BC(n)
1

(x2, bK16 log nc) = ∅. Thus, we have

|BC(n)
1

(x1, 4bK16 log nc)| ≥ 2K15n.

For i ≥ 2, if ∂BC(n)
1

(x1, (3i− 4)bK16 log nc+ 1) = ∅, then D(n)
1 ≤ 2(3i− 4)K16 log n+ 2.

Else, let xi ∈ ∂BC(n)
1

(x1, (3i− 4)bK16 log nc+ 1). As for i = 2, we get that

|BC(n)
1

(x1, (3i− 2)bK16 log nc)| − |BC(n)
1

(x1, (3i− 5)bK16 log nc)| ≥ |BC(n)
1

(xi,K16 log n)|

≥ K15n.

Since |Vn| = n, ∂BC(n)
1

(x1, (3i0 − 4)bK16 log nc+ 1) = ∅ for some i0 ≤ K−1
15 , and

D
(n)
1 ≤ 6K−1

15 K16 log n.

This shows (1.6).

A Appendix

A.1 Proof of Proposition 2.1

Proof of Proposition 2.1. By Theorem 1 of [8], there exists c = (d) > 0 such thatMn has
an expansion ratio at least c(d) w.h.p., and thus satisfies (I) with K3 = (c(d)/d)2/2 by the
Cheeger bound (see for instance Theorem 2.4 in [22], the expansion ratio being defined
in Definition 2.1 of [22]).

As for (II), fix K3 > 0. For all x ∈ Vn, one obtains BMn
(x, bK3 log nc) by proceeding to

at most d(d− 1)bK3 lognc pairings of half-edges. If K3 is small enough, d(d− 1)bK3 lognc <

n1/5− 1 so that by (2.7) with m0 = 1, mE = 0, m = d(d− 1)bK3 lognc and k = 2, for n large
enough:

P(tx(BMn
(x, bK3 log nc)) ≥ 2) ≤ C(2)

(
n2/5

n

)2

≤ n−11/10.

By a union bound on x ∈ Vn, w.h.p. Mn is such that for all x ∈ Vn,

tx(BMn(x, bK3 log nc)) ≤ 1.

In the remainder of the proof, we fix a realization ofMn such that (I) and (II) hold. In
particular,Mn is connected and GMn

is well-defined.

Let us establish (2.1). Let x ∈ Vn be such that tx(BMn(x,K4blog log nc)) = 0. Note
that U := BMn(x, bK4 log log nc) and W := BTd(◦, bK4 log log nc) are isomorphic. Then
GUMn

(x, x) = GWTd(◦, ◦), where we let

GAMn
(y, z) := EMn

y [
∑TA
k=0 1{Xk=z}] for every y, z ∈ Vn and A ( Vn.

Recall that TA is the exit time of A by the SRW (Xk)k≥0. Similarly for every B ( Td
and y, z ∈ Td, we define

GBTd(y, z) := ETdy

[
TB∑
k=0

1{Xk=z}

]
. (A.1)

On one hand, by the strong Markov property applied to the exit time TW ,

GWTd(◦, ◦) = GTd(◦, ◦)−ETd◦ [GTd(◦, XTW )] = d−1
d−2 −ETd◦ [GTd(◦, XTW )].
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On the other hand, by Lemma 1.4 of [1], for all y, z ∈ Vn and A ( Vn:

GAMn
(y, z) = GMn

(y, z)−EMn
y [GMn

(z,XTA)] +
EMn
y [TA]

n
, (A.2)

so that GUMn
(x, x) = GMn

(x, x)−EMn
x [GMn

(x,XTU )] +
EMn
x [TU ]
n . Therefore,∣∣∣∣GMn

(x, x)− d− 1

d− 2

∣∣∣∣ ≤ |ETd◦ [GTd(◦, XTW )]|+ |EMn
x [GMn

(x,XTU )]|+ EMn
x [TU ]

n
.

By (2.3) and (2.4), if K4 is large enough, then for large enough n:

|ETd◦ [GTd(◦, XTW )]|+ |EMn
x [GMn(x,XTU )]| ≤ log−7 n.

Note that TU is stochastically dominated by the hitting time H of bK4 log log nc by a
SRW (Zk)k≥0 on Z starting at 0, whose transition probabilities from any vertex are d−1

d

towards the right and 1/d towards the left. By Markov’s exponential inequality, there
exists a constant c > 0 such that for n large enough and every k > n1/10,

P(H ≥ k) ≤ P(Zk ≤ bK4 log log nc) ≤ P(Zk ≤ (d−2
d − 1/100)k) ≤ e−ck.

Hence for n large enough, EMn
x [TU ] ≤ E[H] ≤ n1/10 +

∑
k≥n1/10 ke−ck ≤ n1/2. Thus,∣∣∣∣GMn(x, x)− d− 1

d− 2

∣∣∣∣ ≤ log−7 n+ n−1/2 ≤ log−6 n

for large enough n, and this yields (2.1). One proves (2.2) by the same reasoning.

A.2 Proof of Propositions 3.3, 3.4 and 3.6

We start with the proof of Proposition 3.3. We will need the following Lemma (whose
proof is immediate from Propositions 3.1 and 3.3 of [32] and Proposition 2.1 (ii) of [3]),
from which λh originates.

Lemma A.1. Fix h < h?. There exist λh > 1 and a function χh that is continuous with a
positive minimum χh,min on [h,+∞), that vanishes on (−∞, h) and such that

Mh
k := λ−kh

∑
x∈Zh,+k

χh(ϕTd(x))

is a martingale w.r.t. the filtration Fk := σ
(
ϕTd(x), x ∈ BT+

d
(◦, k)

)
, k ≥ 0, and has an a.s.

limit Mh
∞.

Proof of Proposition 3.3. We first establish that limk→+∞P
Td(|Zhk | > λkh/k

2) = η(h).
Clearly,

lim supk→+∞P
Td(|Zhk | > λkh/k

2) ≤ PTd(|Ch◦ | = +∞) = η(h).

Conversely, denote E+ = {|Ch,+◦ | = +∞} and E+
k = {|Zh,+k | ≥ λkh/k2}. By Theorem 4.3

of [3],

lim
k→+∞

PTd(E+
k ) = PTd(E+) > 0. (A.3)

Hence, for any ε > 0, for k large enough,

PTd(E+
k ) ≥ PTd(E+)− ε. (A.4)
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Let T−d be the cone from ◦ out of ◦, Ch,−◦ := Ch◦ ∩ T
−
d , and Zh,−k := Ch,−◦ ∩ ∂BT−d (◦, k)

for k ≥ 1. Let E− = {|Ch,−◦ | = +∞} and E−k = {|Zh,−k−1| ≥ λkh/k2}. Define E := {ϕTd(◦) ≥
h} ∩ { Ch,+◦ is finite} and Ek := {ϕTd(◦) ≥ h} ∩ { Zh,+k = ∅}. We have

PTd(E−k ∩ Ek) ≥ PTd(E− ∩ E)− PTd(E− ∩ E ∩ (Ek)c)− PTd(E− ∩ E ∩ (E−k )c).

Define Mh,−
∞ on Ch,−◦ as Mh

∞ on Ch,+◦ . From the proof of Theorem 4.3 in [3], we get that
PTd({Mh,−

∞ > 0} ∩ (E−k )c)→ 0. And, by Proposition 4.2 in [3], PTd(E− ∩ {Mh,−
∞ = 0}) = 0,

so that PTd(E− ∩ (E−k )c)→ 0. Moreover, (Ek)k≥0 is an increasing sequence of events and
E = ∪k≥1Ek, so that PTd(E ∩ (Ek)c)→ 0. Hence, for k large enough,

PTd(E−k ∩ Ek) ≥ PTd(E− ∩ E)− 2ε. (A.5)

Note that {|Ch◦ | = +∞} = E+ t (E− ∩ E), so that P(E+) + P(E− ∩ E) = η(h). And for
all k ≥ 2, E+

k t (E−k ∩ Ek) ⊆ {|Zhk | > λkh/k
2}, therefore, if k is large enough, by (A.4) and

(A.5), one has

PTd(|Zhk | > λkh/k
2) ≥ η(h)− 3ε.

Since ε > 0 was arbitrary, limk→+∞P
Td(|Zhk | > λkh/k

2) = η(h).
Now, we show that PTd(|Zhk | < kλkh)→ 1. For all k ≥ 1, by definition of Mh

k ,

Mh
k ≥ χh,minλ

−k
h

∣∣∣Zh,+k

∣∣∣.
From the proof of Proposition 3.3 in [32],Mh

∞ is a.s. finite. Therefore, k−1λ−kh

∣∣∣Zh,+k

∣∣∣→
0 a.s., and

PTd(|Zh,+k | ≥ kλkh/2)→ 0.

In the same way, PTd(|Zh,−k−1| ≥ kλkh/2)→ 0. Since Zhk ⊆ Z
h,+
k ∪ Zh,−k−1, we are done.

The last part of the Proposition comes directly from Propositions 3.1 and 3.3 in [32].

A crucial idea to prove Propositions 3.4 and 3.6 is to make a finite scaling, in order
to get a branching process that is uniformly supercritical w.r.t. to the value of ϕTd(◦).
Indeed, the fact λh > 1 does not ensure that the expected number of children of ◦ in T+

d

(or even in Td) conditionally on ϕTd(◦) = a is more than one for every a ≥ h, in particular
if a is small. However, due to the exponential growth of Ch◦ (and Ch,+◦ ) of Proposition 3.3,
it turns out that for ` ∈ N large enough, even conditionally on ϕTd(◦) = h, the expected
number of vertices in the `-offspring of ◦ is more than one, as stated in the Lemma below.

Lemma A.2. There exists ` ∈ N such that for every a ≥ h,

ETda [|Zh` |] ≥ ETda [|Zh,+` |] ≥ ETdh [|Zh,+` |] > 1.

We will use it in the proofs of Propositions 3.4 and 3.6, looking at the branching
process whose vertices are those of Ch◦ at height 0, `, 2`, etc.

Proof of Lemma A.2. Write Ek := {|Zh,+k | ≥ λkh/k
2}. By (A.3), there exists ε > 0 small

enough such that for every k ≥ ε−1, PTd(Ek) ≥ ε. For a1 large enough, PTd(ϕTd(◦) ≥
a1) < ε/2. Note that Ek is an increasing event, so that by Lemma 3.2, the map a′ 7→
PTda′ (Ek) is non-decreasing. Therefore, for every a′ ≥ a1 and k ≥ M , if ν ∼ N (0, d−1

d−2 )

denotes the law of ϕTd(◦),

PTda′ (Ek) ≥ PTda1 (Ek) ≥
∫ a1

−∞
PTdb (Ek)ν(db) ≥ PTd(Ek)− PTd(ϕTd(◦) ≥ a1) ≥ ε/2. (A.6)
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From the construction of Proposition 3.1, it is straightforward that

p := PTdh (◦ has one child z in Ch,+◦ , and ϕTd(z) ≥ a1) > 0. (A.7)

Hence for ` ∈ N large enough,

ETdh [|Zh,+` |] ≥ pε

2
×

λ`−1
h

(`− 1)2
> 1.

In addition, for everyM ∈ R, {|{Zh,+` | ≥M} is an increasing event. By Lemma 3.2, for

every a ≥ h, ETda [|Zh,+` |] ≥ ETdh [|Zh,+` |]. Since Zh,+` ⊆ Zh` a.s., the conclusion follows.

Remark A.3. By a direct adaptation of this proof, in particular (A.6) and (A.7), one has
PTda [|Ch◦ | =∞] ≥ PTdh [|Ch◦ | =∞] > 0 for all a ≥ h. Also, the conclusion of the Lemma still

holds if for a fixed δ ∈ [0, h? − h), Zh,+` now denotes the `-th generation of the connected

component of ◦ in ({◦} ∪ E≥h+δ
ϕTd

) ∩T+
d : denoting ρ`,h,δ the law of |Zh,+` | conditionally on

ϕTd(◦) = h, we have ETdh [Zh,+` ] = E[ρ`,h,δ] > 1 if ` is large enough (depending on h and
δ).

Proof of Proposition 3.4. Fix a ≥ h, and let ` ∈ N be such that the conclusion of
Lemma A.2 holds. Let F1 := ∂BCh◦ (◦, `). For j ≥ 1, if Fj 6= ∅, choose an arbitrary
vertex zj ∈ Fj . Let Oj be the `-offspring of zj in Ch◦ and let Fj+1 := Oj ∪ Fj \ {zj}. Thus,
we explore Ch◦ by revealing subtrees of height ≤ `, so that at each step, we see at most
(d− 1) + . . .+ (d− 1)` ≤ d`+1 new vertices. Hence, if |Ch◦ | ≥ k for some k ∈ N, there will
be at least bk/d`+1c steps before Ch◦ is fully explored.

By Lemma 3.2 (applied to {|Zh,+` | ≥ k} for every k ≥ 1), for every j ≥ 1, |Fj | dominates
stochastically a sum Sj of j i.i.d. random variables of law ρ`,h − 1, where

ρ`,h is the law of |Zh,+` | conditionally on ϕTd(◦) = h. (A.8)

Therefore,

PTda (k ≤ |Ch◦ | < +∞) ≤
+∞∑

j=bk/d`+1c

P(Sj ≤ 0).

But a variable of law ρ`,h− 1 is bounded and has a positive expectation by Lemma A.2,
therefore there exist c, c′ > 0 such that P(Sj ≤ 0) ≤ ce−c′j for all j ≥ 1. Hence,

PTda (k ≤ |Ch◦ | < +∞) ≤ c
+∞∑

j=bk/d`+1c

e−c
′j ≤ c exp(−c′bk/d`+1c)

1− e−c′

and (3.1) follows.

Proof of Proposition 3.6. Let ε > 0. By definition of Mh
k and Lemma A.1,

{|Zh,+k | ≥ χh(a)(λh + ε)k} ⊂ {Mh
k ≥ λ

−k
h χh,minχh(a)(λh + ε)k}

so that by Markov’s inequality, for any a ≥ h,

PTda (|Zh,+k | ≥ χh(a)(λh + ε)k) ≤ PTda

(
Mh
k ≥ χh,minχh(a)

(
λh + ε

λh

)k)

≤ χ−1
h,min

(
λh

λh + ε

)k
χh(a)−1ETda [Mh

k ]

≤ χ−1
h,min

(
λh

λh + ε

)k
.
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This yields the upper large deviation for Zh,+k (and for Zhk , using the facts that

Zhk ⊆ Z
h,+
k ∪ Zh,−k−1 and that |Zh,−k−1| and |Zh,+k−1| have the same law).

It remains to prove that for some C > 0 and k large enough,

max
a≥h

PTda (k−1 log |Zhk | ≤ log(λh − ε) | Zhk 6= ∅) ≤ exp(−Ck). (A.9)

We proceed in two steps. We first initiate the growth of Ch◦ by showing that if Z`n 6= ∅,
the probability that |Z`n| = o(n) decays exponentially with n, where ` is such that
Lemma A.2 holds. Then, if Z`n has at least Θ(n) vertices, each of them has a positive
probability to have a Kn-offspring of size at least λKnh /n3 ≥ (λh − ε)k with k := (K + `)n

and for a large enough constant K, independently of the others vertices. Hence the
probability that |Zk| ≤ (λh − ε)k decays exponentially with n, and thus with k.
First step. Recall the exploration of Ch◦ of the proof of Proposition 3.4, but perform it in
a breadth-first way: reveal first the `-offspring of ◦, then the `-offspring of each vertex of
Zh` , then the `-offspring of each vertex of Zh2`, and so on. For n ≥ 1, if Zh`n 6= ∅, let j + 1

be the first step at which we explore the offspring of a vertex of Z`n. Note that j ≥ n.
As in the proof of Proposition 3.4, there exist ε, c, c′ > 0 such that P(Si ≤ εi) ≤ ce−c

′i for
every i ≥ 1. Hence, for every n ≥ 1,

min
a≥h

PTda (|Zh`n| ≥ εn |Zh`n 6= ∅) ≥ 1−
∑
i≥n

ce−c
′i ≥ 1− c

1− e−c′
e−c

′n. (A.10)

Second step. Let K be a positive integer constant, and let F be the set of vertices
z ∈ Zh`n such that the Kn-offspring of z has at least λKnh /n3 vertices. This step mainly
comes down to showing that the probability that F is empty decays exponentially with n.

Define the events

En := {|Zh,+Kn | ≥ λKnh /n3} and E ′n := {|Zh,+Kn−1| ≥ λKnh /n3}.

We first show that

p := min
a≥h

PTda (En) > 0. (A.11)

By (A.3), lim infn→+∞P
Td(E ′n) =: p′> 0. Let a1 be such that P(ϕTd(◦)≥a1)<p

′/4. For
n large enough,∫

a≥hP
Td
a (E ′n)ν(da) > p′/2, hence

∫ a1
h
PTda (E ′n)ν(da) > p′/4,

where we recall that ν is the density of ϕTd(◦). Since E ′n is an increasing event, by
Lemma 3.2:

mina≥a1 P
Td
a (E ′n) ≥ p′/4.

By Lemma 3.2 again,

mina≥hP
Td
a (∃z ∈ Zh,+1 , ϕTd(z) ≥ a1) = PTdh (∃z ∈ Zh,+1 , ϕTd(z) ≥ a1) =: p′′ > 0.

Hence p ≥ p′p′′/4 and (A.11) is proved. Note that |F | ≥
st.

Bin(|Zh`n|, p′′). Thus by (A.10),

min
a≥h

PTda (|F | ≥ 1|Zh`n 6= ∅) ≥ 1− PTda (|Zh`n| ≤ εn|Zh`n 6= ∅)− (1− p′′)εj ≥ 1− ce−c
′n

for n large enough, up to changing the values of the constants c and c′. Therefore,

max
a≥h

PTda

(
|Zh(K+`)n| < λKnh /n3 | Zh`n 6= ∅

)
≤ ce−c

′j ≤ ce−c
′n.
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If K is large enough, then for n large enough, λKnh /n3 > (λh − ε)(K+`)(n+1), so that

max
a≥h

PTda

(
|Zh(K+`)n| < (λh − ε)(K+`)(n+1) | Zh`n 6= ∅

)
≤ ce−c

′n.

We adjust the conditionning: {Zh(K+`)n 6= ∅} ⊂ {Z
h
`n 6= ∅}, and |Zh(K+`)n| < (λh −

ε)(K+`)(n+1) on {Zh`n 6= ∅} \ {Zh(K+`)n 6= ∅}. Therefore, there exists n0 ≥ 1 such that for
all n ≥ n0,

max
a≥h

PTda

(
|Zh(K+`)n| < (λh − ε)(K+`)(n+1) | Zh(K+`)n 6= ∅

)
≤ c exp(−c′(K + `)(n+ 1)),

(A.12)
where the new value of c′ depends on the constants K and `. This yields (A.9) for large
enough multiples of K + `. One can readily replace each Zhm by Zh,+m in this reasoning
(for any m ≥ 1), to get the same result for Zh,+(K+`)n instead of Zh(K+`)n.

It remains to show the result for non multiples of K + `. Let k ≥ (K + `)n0. Write
k = (K + `)n+m, with 0 ≤ m ≤ (K + `)− 1. Note that on {Zhk 6= ∅}, Zhm has at least one
vertex whose (k −m)-offspring is not empty. Hence

max
a≥h

PTda (|Zhk | < (λh − ε)k | Zhk 6= ∅) ≤ max
a≥h

PTda

(
|Zh,+k−m| < (λh − ε)k | Zh,+k−m 6= ∅

)
≤ max

a≥h
PTda

(
|Zh,+k−m| < (λh − ε)(k−m)+(K+`) | Zh,+k−m 6= ∅

)
≤ c exp(−c′(K + `)(n+ 1))

≤ ce−c
′k,

where the third inequality comes from (A.12). Adapting this last computation for Zh,+k is
immediate. This concludes the proof of (3.2).

A.3 Proof of Proposition 4.1

In the proof, we will use the following two facts on tree excesses, that we use
implicitely in other parts of the paper. First, for any subgraph A of any finite graph G
and R ∈ N, tx(BG(A,R)) ≥ tx(A), with equality if and only if BG(A,R) has the same
number of cycles and the same number of connected components as A. Second, if G is
connected, tx(G) = 0 if and only if G is a tree, i.e. has no cycle.

Let us give a short proof. For the first fact, it is enough to show that for any
choice of A and G, the sequence (tx(BG(A,R)))R≥0 is non-decreasing. Since BG(A,R+

1) = BG(BG(A,R), 1), it is enough to check that tx(BG(A, 1)) ≥ tx(A), without loss of
generality. Let a1, . . . , an be the vertices of A for some n ≥ 1. For i = 1, . . . , n, add to A
the neighbours of ai and the corresponding edges. This yields BG(A, 1). Each time we
add a neighbour x of ai, if x was not already in A, then the edge {ai, x} was not either.
Hence, the quantity (number of edges − number of vertices) is not decreasing during
this process, so that tx(BG(A, 1)) ≥ tx(A). As for the second fact, it is classical that if G
is a tree, then tx(G) = 0 (see e.g. Theorem 2.2 in [9]). Reciprocally, if G is connected, is
not a tree and tx(G) = 0, then there is a spanning tree T of G such that tx(T ) < 0 (since
T is obtained from G by deleting no vertex and at least one edge on a cycle of G), but
this contradicts the fact that if T is a tree, then tx(T ) = 0.

We will also need the lemma below, which is a consequence of Lemma 3.3 in [12] and
of the following observation. If (Xj)j≥0 is a SRW on Td, then the trajectory of its height
(hTd(Xj))j≥0 is distributed as a random walk on N ∪ {0} with transition probabilities 1/d

towards the left neighbour and (d− 1)/d towards the right neighbour, and reflected at 0.

Lemma A.4 (Geometric repulsion). Let s ∈ N, and A ⊂ Vn such that tx(BMn
(A, s)) =

tx(A). Let x ∈ Vn \ BMn
(A, s), let (Xj)j≥0 be a SRW started at x and τ its first hitting
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time of A. Then τ dominates stochastically a geometric random variable of parameter
(d− 1)−s.

We give a shortened proof of Proposition 4.1, due to the many similarities with the
proof of Proposition 2.7 in [4], and refer the reader to [4] for details.

Proof of Proposition 4.1. Let us first prove (4.2). By our assumptions on A and y Ty :=

BMn(y, y, an − 1) is a tree rooted at y. Let ∂Ty be the (an − 1)-offspring of y in Ty. Let τ
(resp. τ ′) be the hitting time of ∂Ty (resp. ∂Ty∪{y} by a SRW (Xj)j≥0. By Proposition 2.3,

EMn [ψMn
(y)|σ(A)] = EMn

y [ψMn
(XHA)1HA≤τ ] + EMn

y [ψMn
(XHA)1HA>τ ]

−
EMn
y [HA]

EMn
πn [HA]

Eπn [ψMn
(XHA)] .

(A.13)

By the reasoning leading to the domination of UGnA,x below (2.43) in [4], we get∣∣∣∣EMn
y [ψMn (XHA)1HA≤τ ]− 1

d− 1
ψMn

(y)

∣∣∣∣ ≤ log−4 n.

In particular, it is worth noting that in our context, (2.33) in [4] becomes∣∣∣∣PMn
y (HA ≤ τ)− 1

d− 1

∣∣∣∣ ≤ log−6 n and EMn
y [τ ′] ≤ 2 log n. (A.14)

Therefore, to establish (4.2), it is enough to show that∣∣∣∣EMn
y [ψMn

(XHA)1HA>τ ]− d− 2

d− 1
EMn
πn [ψMn

(XHA)]

∣∣∣∣ ≤ 3 log−5 n (A.15)

and ∣∣∣∣∣d− 2

d− 1
−

EMn
y [HA]

EMn
πn [HA]

∣∣∣∣∣EMn
πn [ψMn (XHA)] ≤ log−5 n. (A.16)

We start with (A.15). Following the proofs of (2.35) (using Lemma A.4 with s = an,
fixing κ large enough, instead of Lemma 3.4 of [12]) and (2.36) in [4], and using the fact
that maxz∈A |ψMn

(z)| ≤ log2/3 n, we get that

sup
z∈∂Ty

|EMn
z [ψMn

(XHA)]−EMn
πn [ψMn

(XHA)] | ≤ log−6 n.

Also, by (A.14),
∣∣∣PMn

y (HA > τ)− d−2
d−1

∣∣∣ ≤ log−6 n. Combining these two facts yields (A.15).

As for (A.16), we have EMn
y [HA] = EMn

y [τ ′] +
∑
z∈∂Ty P

Mn
y (Xτ ′ = z)EMn

z [HA]. By

(3.20) of [12], EMn
πn [HA] ≥ n

4|A| ≥ log8 n /4. Combining this with (A.14), we get∣∣∣∣∣∣E
Mn
y [HA]

EMn
πn [HA]

−
∑
z∈∂Ty

p′z
EMn
z [HA]

EMn
πn [HA]

∣∣∣∣∣∣ ≤ 8 log n

log8 n
≤ log−6 n,

where p′z := PMn
y (Xτ ′ = z). By (A.14),

∣∣∣∑z∈∂Ty p
′
z − d−2

d−1

∣∣∣ ≤ log−6 n. Therefore,∣∣∣∣∣EMn
y [HA]

EMn
πn [HA]

− d− 2

d− 1

∣∣∣∣∣ ≤ 2 log−6 n+ max
z∈∂Ty

∣∣∣∣EMn
z [HA]

EMn
πn [HA]

− 1

∣∣∣∣ .
Since maxz∈A |ψMn

(z)| ≤ log2/3 n, (A.16) and thus (4.2) follows once we show that

max
z∈∂Ty

∣∣∣∣EMn
z [HA]

EMn
πn [HA]

− 1

∣∣∣∣ ≤ 5 log−6 n. (A.17)
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Here lies the main difference with Proposition 2.7 in [4], which makes the stronger
assumption that |A| = O(log n). For all z ∈ ∂Ty, following the first part of the proof of
Proposition 3.5 in [12], we obtain the upper bound:

EMn
z [HA] ≤ log2 n+

∑
z′∈Vn

(
πn(z′) + e−λMn log2 n

)
EMn

z′ [HA]

≤ log2 n+ (1 + ne−λMn log2 n)EMn
πn [HA].

(A.18)

Recalling that EMn
πn [HA] ≥ log8 n/4; this yields

EMn
z [HA]

EMn
πn [HA]

≤ 4 log2 n

log8 n
+ 1 + ne−λMn log2 n ≤ 1 + 5 log−6 n. (A.19)

Conversely, the second part of the proof of [12] gives us that

EMn
z [HA]

EMn
πn [HA]

≥1− ne−λMn log2 n −PMn
z (HA ≤ log2 n)(1 + 5 log−6 n).

By Lemma A.4 applied as below (A.16), we have supz∈∂Ty P
Mn
z (HA ≤ log2 n) ≤ log−6 n.

Together with (I) and (A.19), this yields (A.17) and the proof of (4.2) is complete (note
that the required lower bounds on κ given by Lemma A.4 are uniform in y and A).

We prove (4.3) in the same fashion. Since HA ≥ τ ′ a.s., (2.11) yields∣∣∣∣VarMn(ψMn
(y)|σ(A))− d

d− 1

∣∣∣∣ ≤ ∣∣∣∣GMn
(y, y)−EMn

y [GMn
(y,XHA)1HA=τ ′ ]−

d

d− 1

∣∣∣∣
+

∣∣∣∣∣EMn
y [GMn(y,XHA)1HA>τ ′ ]−

EMn
y [HA]

Eπn [HA]
EMn
πn [GMn(y,XHA)]

∣∣∣∣∣ .
(A.20)

Following the reasoning at (2.47) and below in Proposition 2.7 of [4], one shows that
the first term of the RHS is O(log−5 n). Then, we apply to the second term of the RHS of
(A.20) the same reasoning as (A.15) and (A.16), the inequality maxx,y∈Vn |GMn

(x, y)| ≤
K5 (by (2.4), since Mn is a good graph) replacing the inequality maxz∈A |ψMn

(z)| ≤
log2/3 n.

A.4 Proof of Lemmas 7.6 and 7.7

Proof of Lemma 7.6. We follow the argument of Proposition 4.1, with a few adjustments.
First, the bounds in the first inequality of (A.14) and in (A.15) are in fact e−can for

some constant c > 0, and one can replace an by rn.
Second, the proof of (A.16) can be adapted by noting the following two facts. On one

hand, he condition |A| ≤ n2/3 implies that Eπn [HA] ≥ n1/3/4. On the other hand, the
second inequality of (A.14) still holds for large enough n, using the same comparison
with a biased random walk as in (2.33) in [4], since for k ≥ 0.3 log n and a constant γ > 0

that depends neither on k nor on n, P(τ ′ ≥ k) ≤ e−γk.

Proof of Lemma 7.7. We will only show (7.32) and (7.33). The other proofs are very
similar and left to the reader.

We start with the proof of (7.32). We follow the proof scheme of (4.2). Let τ be the
hitting time of ∂BMn

(y, y, rn) \ {y} by a SRW (Xk)k≥0. Note that {HA ≤ τ} ⊆ {XHA = y}.
We write

EMn [ψMn
(y)|σ(A)] =PMn

y (XHA = y,HA ≤ τ)ψMn
(y) + EMn

y [ψMn
(XHA)1HA>τ ]

−
EMn
y [HA]

EMn
πn [HA]

EMn
πn [ψMn

(XHA)].
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Since BMn
(y, y, rn) and BGm(zk, zk, rn) are isomorphic,

PMn
y (XHA = y,HA ≤ τ) = PGmzk (XH∂BGm (zk,zk,rn)

= zk) =: α′′k .

Since

{XH∂BGm (zk,zk,rn)
= zk} ⊆ {H{zk} < +∞}, we have α′′k ≤ α′k.

Reciprocally, on {H{zk} < +∞} \ {XH∂BGm (zk,zk,rn)
= zk}, a SRW starting at distance

rn of Cm has to reach Cm. As in the proof of (A.14), a comparison with a biased SRW
on Z shows that this happens with a probability O(e−crn) for some constant c > 0

uniquely depending on d and we get that if a small enough, then for large enough n,
|PMn

y (XHA = y,HA ≤ τ)− α′k| ≤ n−3a.
It remains to establish∣∣∣∣EMn

y [ψMn
(XHA)1HA>τ ]−

EMn
y [HA]

EMn
πn [HA]

EMn
πn [ψMn

(XHA)]

∣∣∣∣ ≤ n−3a. (A.21)

To do so, one adapts the proofs of (A.15) and (A.16) exactly as in the proof of
Lemma 7.6: if HA > τ , (Xk)k≥0 leaves BMn

(A∪C∪P, rn) before hitting A. By Lemma A.4
with s = rn, if a is small enough, (Xk) does not hit A within the next log2 n steps with
probability at least

(1− (d− 1)−rn)log2 n ≥ 1− 2 log2 n (d− 1)−rn ≥ 1− n−4a.

Then, we use Corollary 2.1.5 of [29] as in the proof of (2.36) of [4]: after blog2 nc steps,
the fact thatMn is an expander (i.e. λMn > K3 > 0) forces the empirical distribution of
Xk to be very close to the uniform distribution πn. (7.32) follows.

For (7.33), we follow the proof scheme of (4.3). If τ ′ is the exit time of BMn(y, y, rn),
we have

|VarMn(ψMn
(y)|σ(A))− γ′k| ≤

∣∣GMn
(y, y)−EMn

y [GMn
(y,XHA)1HA=τ ′ ]− γ′k

∣∣
+

∣∣∣∣∣EMn
y [GMn

(y,XHA)1HA>τ ′ ]−
EMn
y [HA]

Eπn [HA]
EMn
πn [GMn

(y,XHA)]

∣∣∣∣∣ .
(A.22)

We deal with the second term of the RHS as (A.21) to show that it is O(n−3a). As for
the first term, we have as in (2.47) and below in [4]:

EMn
y [GMn (y,XHA)1HA=τ ′ ] = EMn

y [GMn
(y,Xτ ′)]−O(n−3a)

if a is small enough, by (2.4). Now, by (A.2) applied to D := BMn
(y, y, rn) (note that

TD = τ ′) and the second inequality of (A.14) (which still holds, as remarked in the proof
of Lemma 7.6), we get

|GMn(y, y)−EMn
y [GMn (y,Xτ ′)]−GDMn

(y, y)| ≤ EMn
y [τ ′]

n = O(n−3a).

But D is isomorphic to E := BGm(zk, zk, rn), so that

GDMn
(y, y) = GEGm(zk, zk)

= GGm(zk, zk)−PGmzk (TE = zk)GGm(zk, zk)−PGmzk (TB 6= zk)GGm(zk, z)

for any z ∈ ∂BGm(E, 1) \ {zk}, by cylindrical symmetry of BGm(E, 1). One checks easily
that if a is small enough, then for n large enough,

GDMn
(y, y) = GEGm(zk, zk) = GGm(zk, zk)−PGmzk (TE = zk)GGm(zk, zk) +O(n−3a).
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One easily adapts the reasoning leading to (A.14), despite the presence of one cycle,
to get

PGmzk (TE = zk) = PGmzk (H{zk} < +∞) +O(n−3a) for a small enough.

Note indeed that {TE = zk} ⊆ {H{zk} < +∞}. Reciprocally, if z ∈ ∂BGm(E, 1) \ {zk},
a SRW starting at z has a probability decaying exponentially with rn to reach zk, since
there are at most two injective paths from z to zk, and each contains at least rn − 3

vertices where the SRW has a positive probability (only depending on d) to enter a
subtree isomorphic T+

d and to never leave it.
Since γ′k = GGm(zk, zk)−PGmzk (H{zk} < +∞)GGm(zk, zk), we obtain

|GDMn
(y, y)− γ′k| = O(n−3a).

All in all, we get that the first term of the RHS of (A.22) is O(n−3a), and (7.33)
follows.
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