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Abstract

We study the number of connected components of non-Gaussian random spherical
harmonics on the two dimensional sphere S2. We prove that the expectation of the
nodal domains count is independent of the distribution of the coefficients provided it
has a finite second moment.
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1 Introduction

1.1 Nodal domains of Laplace eigenfunctions

Let (M, g) be a smooth, compact, connected surface and let ∆g be the associated
Laplace-Beltrami operators. We are interested in the eigenvalue problem

∆gfλ + λfλ = 0.

SinceM is compact, the spectrum of−∆g is a discrete subset ofRwith only accumulation
point at +∞. The eigenfunctions fλ are smooth and their nodal set, that is their zero set,
is a smooth 1d sub-manifold outside a finite set of points [17]. In particular, it is possible
to define the nodal domains counting function

N (fλ) := number of connected components of {x ∈M : fλ(x) = 0}.

Courant’s nodal domains theorem [16, Page 21] asserts that there exists some
constant C = C(M) > 0 such that

N (fλ) ≤ Cλ.

On the other hand, it is not possible to obtain any non-trivial lower bound for N (·). Lewis
[26] showed that there exists a sequence of eigenfunction on the two dimension sphere
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S2 with N (fλ) ≤ 3 and λ → ∞. Nevertheless, much of our physical understanding of
Laplace eigenfunctions, such as the RWM proposed by Berry [6, 7, 8] and the percolation
prediction of Bogomolny and Schmit [11, 12], suggests that, for “generic” Laplace
eigenfunctions, we should expect

N (fλ) ≥ cλ,

for some c = c(M).
In order to explore this speculation, Nazarov and Sodin [27] studied the number of

nodal domains of random Laplace eigenfunctions on S2. The eigenvalues on S2 are given
by λ = n(n+ 1) for any integer n > 0 and have multiplicity 2n+ 1, thus it is possible to
define random Laplace eigenfunctions on S2 as

fn(x) =
1√

2n+ 1

n∑
k=−n

akYk(x), (1.1)

where ak are i.i.d standard Gaussian random variables and the Yk’s are an orthonor-
mal base of the spherical harmonics of degree n, that is Laplace eigenfunction with
eigenvalue λ = n(n+ 1). In this setting, Nazarov and Sodin [27] found that

E[N (f)] = cNSn
2(1 + on→∞(1)),

where cNS > 0 is the Nazarov-Sodin constant, in agreement with the prediction of
Bogomolny and Schmit.

The purpose of this note is to explore what happens to the expected number of nodal
domains when the ak’s in (1.1) are not Gaussian random variables but i.i.d. with finite
second moment. In particular, we are interested in the case when ai are Bernoulli ±1

random variables. Since (normalized) Laplace eigenfunctions, such as the Yk in (1.1),
are defined up to sign, the ±1 case seems to be a very natural model to study “generic”
Laplace eigenfunctions.

1.2 Statement of the main result

Given some integer n > 0, let Hn = Hn(S2) ⊂ L2(S2) be the space of spherical
harmonics of degree n on S2, that is the restriction of homogeneous harmonic polynomials
of degree n to S2. Given an L2 orthonormal basis {Yk}−n≤k≤n for Hn, we consider the
function

fn(x) = cn

n∑
k=−n

akYk(x), (1.2)

where

E[ak] = 0 E[|ak|2] = 1 (1.3)

and cn = (2n+ 1)−1/2 is a normalising constant, which has no impact on the zero set, so
that E[|fn|2] = 1. With the above notation, we prove the following result:

Theorem 1.1. Let fn be as in (1.2). Suppose that the ak’s are i.i.d. random variables
such that E[|a0|2] <∞, then

E[N (fn)] = cNSn
2(1 + on→∞(1)).

Even though the study of N (·) and the related Nazarov-Sodin constant has seen much
attention (see Section 1.4 below), Theorem 1.1 seems to be the first result addressing the
universality of the nodal domains counting function. In particular, Theorem 1.2 seems to
provide further evidence to behavior of “generic” Laplace eigenfunctions conjectured in
the physics literature.
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1.3 Sketch of the proof

We would like now to briefly discuss the new ideas in the proof of Theorem 1.1.
One crucial difference between the Gaussian and the non-Gaussian case is that the
distribution of fn as in (1.2) is not base independent (see Claim B.1 below). Therefore,
most of the Gaussian tools which are pivotal to the “barrier method” in [27] are not
available in the non-Gaussian case. Our proof of Theorem 1.1 takes a different approach
which we will now briefly describe.

The proof of Theorem 1.1 comprises essentially of two steps:

1. The first, and main, step is to show the universality, that is independence from the
law of the ak’s in (1.2), of the local nodal domains counting function

N
(
x,

1

n

)
= number of connected components of

{
y ∈ B

(
x,

1

n

)
: fn(y) = 0

}
,

where B(x,O(n−1)) is a ball centered at x ∈ S2 of radius about n−1 (we are
purposely being slightly vague here). The counting function counts only nodal
components fully contained in B(x,O(n−1)). This step requires the most care and
its proof is essentially split into three parts:

(a) We show that, for most points x ∈ S2, each of the summands in (1.2) is o(n1/2).
Here we use some quite “elementary” bounds on the L4-norm of spherical
harmonics.

(b) Using (a), we can apply a Lindeberg-type CLT to fn to deduce its (asymptotic)
Gaussian behavior outside the aforementioned “bad” set of x ∈ S2. More
precisely, in light of the covariance structure of spherical harmonics (see
Section 2.2 below), we will show that, for most x ∈ S2, the rescalded field
in B(x,O(n−1)) is close in C2-norm to Berry’s random waves [6, 7, 8] on the
plane:

Fx(y) := fn(expx(y/n)) ≈ Fµ(y),

where Fµ are Berry’s random waves, expx(·) is the exponential map at the
point x ∈ S2 and y ∈ B(1) (again being slightly imprecise here). At this step,
it is important for the scaling factor to be roughly n−1, otherwise the rescaled
field would not be comparable with planar random waves.

(c) We conclude, using the stability of the nodal set under small perturbations, that

N (x, n−1)
d−→ N (Fµ) n→∞,

where the convergence is in distribution with respect to the product space Ω×
S2 (with Ω being the probability space where the random objects are defined).

2. In the second step, we will use the semi-local property of the nodal domains
counting functions

N (fn) = n(1 + o(1))

∫
S2
N (x, n−1)dρ(x),

where ρ(·) is the uniform measure on S2, to “reconstruct” N (fn) from our under-
standing of N (x,O(n−1)). This step uses some deterministic bounds on the nodal
length, i.e. volume of the zero set, of fn which follow from the fact that fn is a
polynomial. Finally, using the Faber-Krahn inequality and (c) above, we conclude
that

E[N (fn)] = n(1 + o(1))

∫
S2
E[N (x, n−1)]dρ(x) = n(1 + o(1))E[N (Fµ)],

where the r.h.s. is (asymptotically) cNS · n by the work of Nazarov and Sodin [28].

EJP 29 (2024), paper 27.
Page 3/21

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1059
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


On the universality of the Nazarov-Sodin constant

The proof of Theorem 1.1 uses only “elementary” tools coming from the theory of
orthogonal polynomials, as in [34], and the probability language of random functions, as
in [9]. In fact, the exposition in this note is fully self contained a part from a result from
[27], which we do not include for the sake of brevity of the article, and the well-known
Faber-Krahn inequality (Lemma 2.1).

1.4 Discussion and related results

The Nazarov-Sodin constant. Since the pioneering work of Nazarov and Sodin [28],
the Nazarov-Sodin constant has been object of much attention. In [27], Nazarov and
Sodin extended their work to the number of nodal domains of any ergodic Gaussian
stationary field on any (compact and sufficiently smooth) manifold and in [29] they
investigated the variance of N (fn) in the Gaussian setting. Beliaev, McAuley and
Murihead [3, 5, 4] studied, for certain Gaussian random fields F , the number of connected
components for the excursion sets {F ≥ `} and level sets {F = `} for ` 6= 0 and found
estimates for the variance and a Central Limit Theorem.

The precise value on the Nazarov-Sodin constant is currently unknown. Estimates
based on percolation [11, 12] suggest that

cNS
4π

=
3
√

3− 5

π
≈ 0.0624 . . . ,

however this seems slightly inconsistent with numerical simulations [2]. Pleijel’s nodal
domains Theorem [30], see also [14], asserts that

cNS
4π
≤
(

2

j0

)2

≈ 0.691,

where j0 is the smallest zero of the 0-th Bessel function. Using some curvature bounds
[8] it is possible to show the sharper bound

cNS
4π
≤ 1√

2π
≈ 0.0225.

As far as lower bounds are concern, the only result we are aware of is by Ingremeau and
Rivera [24],

cNS
4π
≥ 1.39× 10−4.

The number of nodal domains of Laplace eigenfunction. Finally, we would like
to discuss some deterministic lower bounds on the nodal domains counting function.
Results in this direction seem few and rare. Ghosh, Reznikov and Sarnak [22, 23] gave a
(non-trivial) lower bound for the number of nodal domains for Maass forms on a compact
part of the modular surface. Jung and Zelditch [25] gave a lower bound for a large class
of negatively curved surfaces.

We conclude by discussing the flat two dimensional torus T2 = R2/Z2. On T2, by
Fourier expansions, every Laplace eigenfunction with eigenvalue 4π2m can be expressed
as a linear combination of exponentials {exp(2πiξ · x)}|ξ|2=m, where ξ ∈ Z2. In particular,
it is possible to form linear combinations of eigenfunctions, with the same eigenvalue,
as in (1.2). Using some arithmetic information about the distribution of lattice points,
Bourgain [13], and the subsequently Buckley and Wigman [15], showed that, for certain
deterministic Laplace eigenfunctions

N (fn) = cNSn
2(1 + on→∞(1)).

In particular, Bourgain’s result [13] holds for linear combination of eigenfunctions, as
in (1.2), with Yk = exp(2πiξ·) and ±1 coefficients. In other words, on T2 when ak = ±1,
Theorem 1.1 holds deterministically.
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1.5 Notation

To simplify the exposition we adopt the following standard notation: we write A . B

and A & B or A = O(B) to designate the existence of an absolute constant C > 0 such
that A ≤ CB and A ≥ CB. If the said constant C > 0 depends on some parameter, β
(say), we write A .β B ecc, if no parameter is specified in the notation, then the constant
is absolute. The letters C, c will be used to designate positive constants which may
change from line to line. Finally, we write oβ→∞(1) for any function that tends to zero as
β →∞. The proof of this result heavily relies on arithmetic information regarding the
distribution of lattice points on circles, which cannot be applied in the case of S2.

2 Tools

2.1 Harmonic-analysis tools

A very useful tool in the study of the nodal set of Laplace eigenfunctions on surfaces
is the well-known Faber-Krahn inequality [16, Chapter 4], which we state here in a
convenient form for our purpose:

Lemma 2.1 (Faber-Krahn inequality). Let fn be as in (1.2) and Γ ⊂M be a nodal domain
of fn with inner radius r > 0, that is the radius of the largest geodesic ball inscribed in
Γ, then we have

r & n−1.

We will also need the following consequence of elliptic regularity [20, page 336]
for harmonic functions. Before stating the result, we need to introduce some notation.
Recall that Hn is the space of spherical harmonics of degree n and let B(x, r) be the
spherical disk centered at x ∈ S2 of radius r > 0. We will need the following result:

Lemma 2.2. Let f ∈ Hn, R ≥ 1 be some (large) parameter and k = 0, 1, 2, then

‖f‖2Ck(B(x,R/n)) . (nR)2k+2

∫
B(x,10R/n)

|f(y)|2dy,

where the constant implied in the .-notation does not depend on n, R or x.

For the sake of completeness, we will provide a proof of Lemma 2.2 in Appendix A.
We will also need the following bound on the L4-norm of spherical harmonics, see [33,
Theorem 2]:

Lemma 2.3. Let {Yk}nk=−n be an orthonormal base for Hn, then we have∫
S2
|Yk|4dρ(x) . n2/3 log n,

where dρ(·) is the uniform measure on S2.

Although much sharper bounds are known for the L4-norm of Laplace eigenfunction,
see for example the fundamental work by Sogge [32], Lemma 2.3 will suffice for our
purposes and its proof will be provided in Appendix A.

2.2 Orthogonal polynomials tools

We will also need the following two facts about the two points function of fn as
in (1.2). Again, we need to introduce some notation. Let Pn(·) be the classic Legendre
polynomial

Pn(x) =
1

2nn!

dn(x2 − 1)n

dxn
Pn(1) = 1. (2.1)
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Moreover, let J0(·) be the 0-th Bessel function

J0(x) =
1

2π

∫
S1
e(x · y)dy, (2.2)

where S1 ⊂ R2 is the unit circle and e(·) = exp(2πi·). We then have the following, see for
example [1, Page 454]:

Lemma 2.4 (Two point function). Let {Yk}nk=−n be an orthonormal base for Hn and
x, y ∈ S2, then we have

1

2n+ 1

n∑
k=−n

Yk(x)Yk(y) = Pn(cos Θ(x, y)),

where Θ(x, y) is the angle between x, y and Pn is as in (2.1).

The following is [34, Theorem 8.21.6]:

Lemma 2.5. Let Pn be as in (2.1) and J0 be as in (2.2). There exists some absolute
constant C > 0 such that

Pn(cos(θ)) =
θ

sin(θ)
J0

((
n+ 1

2

)
θ
)

+ E,

where

E .

{
θ1/2n−3/2 C/n ≤ θ ≤ π/2
θ2 0 ≤ θ ≤ C/n

.

2.3 Probabilistic tools

We will need a multi-dimensional version of Lindeberg-CLT, see for example [21,
Proposition 6.2]:

Lemma 2.6 (CLT). Let d > 0 be a positive integer and let {Vn,k}n,k be a triangular array
of Rd-valued random variables, so that the random vectors lying on each of its rows are
independent and of zero mean. That is, for any n, k, Vn,k = (V in,k)di=1 is a d-dimensional
random vector with zero mean, and for every n fixed and every k1 6= k2, the vectors Vn,k1
and Vn,k2 are independent. The random variables V in,k are normalized by setting

(sin)2 =
∑
k

E[(V in,k)2],

and
Ṽ in,k = (sin)−1V in,k.

We make the following two assumptions:

1. The covariance matrices
(Σn,k))ij = E[Ṽ in,kṼ

j
n,k]

of the k-th vector of {Ṽn,k}n,k satisfy

lim
n→∞

∑
k

Σn,k = Σ0,

for some positive definite d× d-positive matrix.

2. One has

max
i=1,...,d

1

(sin)2

∑
k

E
[
(Ṽ in,k)21Ṽ i

n,k>εs
i
n

]
→ 0, n→∞,

for any positive ε > 0, where 1 is the indicator function.
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Then, we have ∑
k

Ṽn,k
d−→ N(0,Σ0) n→∞,

where the convergence is in distribution, and the rate of convergence depends on
the rates of convergence in (1) and (2) only. That is, for every h : Rd → R bounded
continuous,

E[h(Wn)]→ E[h(Z)],

where Z ∼ N(0,Σ0), with rate of convergence depending on h, and the rate of conver-
gence in (1) and (2).

We will also need the Continuous Mapping Theorem in the following form, see for
example [9, Theorem 2.1.]:

Lemma 2.7 (Continuous mapping). Let Pn, P be probability measures on a metric space
(S,S), where S is the Borel σ-field. Suppose that

Pn
d−→ P n→∞,

where the convergence is in distribution, or, in other words, with respect to the weak?

topology. Moreover, let h : S → S be a map and let Dh be the set of discontinuity points
of h. If P (Dh) = 0, then

Pnh
−1 d−→ Ph−1 n→∞.

Finally, we need the following standard fact about uniform convergence, see [10,
Theorem 3.5]

Lemma 2.8. Let Xn be a sequence of random variables such that

Xn
d−→ X,

where the convergence is in distribution, for some random variable X. Suppose that
there exists some constants C,α > 0, independent of n such that E[X1+α

n ] ≤ C, then

E[Xn]→ E[X].

2.4 Gaussian fields tools

We will need the main result from [28]. Before stating it, we introduce some defini-
tions which will be useful throughout the script. Let Ω be an abstract probability space,
with probability measure P(·) and expectation E[·]. A (real-valued) Gaussian field F is a
map F : R2 × Ω→ R such that all finite dimensional distributions (F (x1, ·), . . . , F (xn, ·))
are multivariate Gaussian vectors and F (x, ·) is continuous in x. We say that F is cen-
tered if E[F ] ≡ 0 and stationary if its law is invariant under translations x→ x+ τ for
τ ∈ R2. The covariance function of F is

E[F (x) · F (y)] = E[F (x− y) · F (0)].

Since the covariance is positive definite, by Bochner’s theorem, it is the Fourier transform
of some measure µ on R2. So we have

E[F (x)F (y)] =

∫
R2

e (〈x− y, s〉) dµ(s).

The measure µ is called the spectral measure of F . Since F is real-valued, µ is symmetric,
that is µ(−A) = µ(A) for any (measurable) subset A ⊂ R2. By Kolmogorov’s theorem, µ
fully determines F . Thus, from now on, we will simply write F = Fµ for the centered,
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stationary Gaussian field with spectral measure µ. For the rest of the script µ will always
denote the uniform measure on S1 and also let N (Fµ, R) be the number of nodal domain
of Fµ fully contained, that is not intersecting the boundary, in B(R), the ball centered at
zero of radius R ≥ 1. We are finally ready to state the main result from [28] which we
will need:

Theorem 2.9 (Nazarov-Sodin). Let µ, Fµ and N (Fµ, R) be as above. Then, there exists
some constant cNS > 0 such that

E[N (Fµ, R)] = cNSπR
2 + o(R2).

2.5 Analysis tools

We will need the following well-known fact about the nodal length, that is the volume
of the zero set, of a function fn as in (1.2).

Lemma 2.10. Let fn be as in (1.2) and let L(fn) = H1(x ∈ S2 : f(x) = 0), where H1 is
the 1-dimensional Hausdorff measure, then we have

L(fn) . n.

Although Lemma 2.10 follows from the much more general result of Donnelly-
Fefferman [18], we will give an “elementary” proof in Appendix A. We will also need the
following consequence of Thom’s isotopy Theorem, see for example [19, Theorem 3.1]
and also [27, Claim 4.3]. We state it in a way convenient for our purposes and will
provide a proof, for completeness, in Appendix A:

Lemma 2.11. Let W ≥ 1 be some parameter, B(W ) be the ball of radius W centered at
the origin and ∂B(W ) be its boundary. Let us write

C1
?(W ) :=

{
g ∈ C1(B(2W ))||g(x)|+ |∇g(x)| > 0 for all x ∈ B(W )

and |g|+
∣∣∣∣∇g − x · ∇g

|x|2
x

∣∣∣∣ > 0 for all x ∈ ∂B(W )

}
,

and let N (g,W ) be the number of nodal domain of g fully contained in B(W ), that is
Γ ∩ B(W ) = ∅ for all nodal domains of g. Then, N(·,W ) is a continuous functional on
C1
?(W ).

We comment that the condition
∣∣∣∇g − x·∇g

|x|2 x
∣∣∣ > 0 assures that the nodal set does not

touch the boundary of B(W ) tangentially at one point. In particular, it implies that all
the nodal domains that do not intersect ∂B(W ) are fully contained in B(W ) (and well
separated from the boundaries).

We will also need the following standard lemma, whose proof will be provided in in
Appendix A, see also [28, Lemma 6].

Lemma 2.12 (Bulinskaya’s lemma). Let F = Fµ, with µ be the Lebesgue measure on
the unit circle S1. Then, for any W ≥ 1, F ∈ C1

∗(W ) almost surely, where is C1
∗(W ) as in

Lemma 2.11.

3 Convergence in distribution

We are finally ready to begin the proof of Theorem 1.1. In order to state the main
result of this section, we need to introduce some notation. Let expx : TxS

2 ∼= R2 → S2 be
the exponential map, let use define

Fx(y) = Fx,R,n(y) =:= f(expx(Ry/n)), (3.1)
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where R ≥ 1 is some parameter and y ∈ B(0, 1), the ball centered at zero of radius 1.
In (3.1), we tacitly assume that n is much larger than R so that the exponential map is
a diffeomorphism. Now, we write N (Fx) for the number of nodal domains of Fx fully
contained in B(0, 1). Recalling that Ω is the abstract probability space where all the
objects in the script are defined, we can think of N (Fx) as a random variable Ω×S2 → R,
where Ω× S2 is equipped with the probability measure

dσ = dP⊗ dρ, (3.2)

where dρ is the uniform probability measure on the unit sphere.
The main result of this section is the following:

Proposition 3.1. Let µ, Fµ, N(Fµ, R) be as in Section 2.4 and R ≥ 1 some fixed parame-
ter. Then, we have

N (Fx)
d−→ N (Fµ, R) n→∞,

where the convergence happens in the cross space Ω× S2 equipped with the measure
dσ in (3.2) and the speed of convergence depends on R.

The proof of Proposition 3.1 relies the observation that Fx is suitable close Fµ, as a
random function from (Ω× S2, dσ) into C1(B(0, 1)), continuously differentiable functions
on B(0, 1). We rigorously express this claim in the next section after having introduced
the relevant notation and background.

3.1 Convergence of random functions

Before stating the main result of this section, we give a brief digression on the
convergence of random functions. Let Cs(V ) be the space of s-times, s ≥ 0 integer,
continuously differentiable functions on V , a compact subset of R2. Since Cs(V ) is
a separable metric space, Prokhorov’s Theorem, see [9, Chapters 5 and 6], implies
that P(Cs(V )), the space of probability measures on Cs(V ), is metrizable via the Lévy–
Prokhorov metric. This is defined as follows: for a (measurable) subset A ⊂ Cs(V ),
denote by A+ε the ε-neighborhood of A, that is

A+ε := {p ∈ Cs(V ) | ∃ q ∈ A, ‖p− q‖ < ε} =
⋃
p∈A

B(p, ε),

where ‖ · ‖ is the Cs-norm and B(p, ε) is the (open) ball centered at p of radius ε > 0.
The Lévy–Prokhorov metric dP : P(Cs(V ))× P(Cs(V )) → [0,+∞) is defined for two
probability measures µ and ν as:

dP (µ, ν) := inf {ε > 0 : µ(A) ≤ ν(A+ε) + ε, ν(A) ≤ µ(A+ε) + ε ∀ A ⊂ Cs(V )} .

Given an integer s ≥ 1, Fx(y), as in (3.1), induces a probability measure on Cs(B(1))

via the push-forward measure

(Fx)? Vol(A) = σ({(ω, x) ∈ Ω× S2 : Fx(·) ∈ A}),

where A ⊂ Cs(B(1)) is a measurable subset. Similarly, the push-forward of Fµ defines
a probability measure on Cs(B(1)) which we denote by (Fµ)?P. We can now measure
the distance between Fx and Fµ as the distance between their push-forward measures
in P(Cs(B(1)), the space of probability measures on Cs(B(1)), equipped with the Lévy–
Prokhorov metric. Therefore, to shorten notation, we will write

dP (Fx, Fµ) := dP ((Fx)?dσ, (Fµ)?P).

With the above notation, we have the following result:
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Proposition 3.2. Let R ≥ 1 be some parameter and Fx(·) be as in (3.1), Fµ be as in
Section 2.4. Then, we have

dP (Fx, Fµ)→ 0 n→∞,

where dp is defined with respect to the C1-norm.

Since the proof of Proposition 3.2 is somehow long and technical, we postpone it to
Section 4 below. In the rest of the section we will show how Proposition 3.1 follows from
Proposition 3.2.

3.2 Proof of Proposition 3.1

In this section we prove Proposition 3.1 assuming Proposition 3.2.

Proof of Proposition 3.1 given Proposition 3.2. In order to prove Proposition 3.1 we ap-
ply Lemma 2.7 to Pn = (Fx)?dσ and P = (Fµ)?dP with h = N (·). By Proposition 3.2, we
have

Pn
d−→ P n→∞.

Thanks to Lemma 2.12, applied with W = 10R (say), we may assume that Fµ(R·) ∈
C1
?(B(10)), where C1

? is as in Lemma 2.11. Therefore Lemma 2.11 implies that P (Dh) = 0.
Hence, the assumptions of Lemma 2.7 are satisfied and Proposition 3.1 follows.

4 Proof of Proposition 3.2

This section is entirely dedicated to the proof of Proposition 3.2. The main tool in the
proof will be Lemma 2.6. However, in order to apply the Lindeberg-CLT, we need all the
summands in (1.2) to have size, before normalization, o(n1/2). This is not always the case
as there exists spherical harmonics: writing (θ, ψ) for the spherical coordinates on S2,
the function g(θ, ψ) =

√
2n+ 1Pn(cos(θ)) satisfies maxS2 |g|2 & n. In order to circumvent

this difficulty, we show that the portion of space where spherical harmonics are large is
small. This will be the content of the next section.

4.1 Getting rid of large values

This section is dedicated to the proof of the following lemma:

Lemma 4.1. Let {Yk}nk=−n be an orthonormal base for Hn, spherical harmonics of
degree n, and let R,K ≥ 1 be some (large) parameters. Then there exists a subset
B ⊂ S2 of volume at most O(K4R10n−1/3 log n) such that:

1. We have

sup
x∈S2\B

max
−n≤k≤n

(
sup

B(x,R/n)

|Yk(·)|

)
. K−1n1/2

2. We have

sup
x∈S2\B

max
−n≤k≤n

(
sup

B(x,R/n)

|n−1∇Yk(·)|

)
. K−1n1/2.

Moreover, the constants implied in the O and .-notation are independent of K,R, n.

Proof. By Lemma 2.2, we have

sup
B(x,R/n)

|Yk(x)|2 . (nR)2

∫
B(x,10R/n)

|Yk(y)|2dy, (4.1)

sup
B(x,R/n)

|∇Yk(x)|2 . (nR)4

∫
B(x,10R/n)

|Yk(y)|2dy.
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Thus, in order to prove Lemma 4.1, it is enough to provide upper an bound on
∫
|Yk|2. To

this end, we first observe that∫
B(x,10R/n)

|Yk(y)|2dy . R2n−2

∫
B(0,10)

|Yk,x(y)|2dy,

where Yk,x(y) = Yk(expx(Ry/n)). Moreover, using Lemma 2.3 and switching the order of
integration, we have ∫

S2

∫
B(0,10)

|Yk,x(y)|4dydρ(x) . n
2
3 log n,

where ρ(·) is the uniform measure on S2. Furthermore, we observe that convexity of the
L2-norm (Jensen’s inequality) implies∫

S2

(∫
B(0,10)

|Yk,x(y)|2dρ(y)

)2

dρ(x) .
∫
B(0,10)

∫
S2
|Yk,x(y)|4dρ(x) . n

2
3 log n, (4.2)

where, in the first inequality, we have switched the order of integration. Thus, combining
Chebischev’s bound, (4.1) and (4.2), we have

ρ

(
sup

B(x,R/n)

|Yk(x)| > K−1n1/2

)
. K4n−2

∫
S2

sup
B(x,R/n)

|Yk(x)|4dx . K4R8n−4/3 log n

(4.3)

ρ

(
sup

B(x,R/n)

|n−1∇Yk(x)|2 > K−1n1/2

)
. K4R10n−4/3 log n

Hence, Lemma 4.1 follows by taking the union bound over the O(n) choices of k in
(4.3).

We are now ready to begin the proof of Proposition 3.2. We begin with a standard
reduction step, which shows that it is enough to consider finite dimensional distributions
to prove convergence of random functions (in our case).

4.2 Step I: reduction

In order to prove Proposition 3.2 we will first make a reduction step which relays on
the following, well-known, result about tightness of sequences of measures on P(C1(V )).
First, a sequence of probability measures {νm}∞m=0 on some topological space X is tight
if for every ε > 0, there exists a compact set K = K(ε) ⊂ X such that

νm(X\K) ≤ ε,

uniformly for all k ≥ 0. We will need the following lemma, borrowed from [31, Lemma 1],
see also [10, Chapters 6 and 7]:

Lemma 4.2 (Tightness). Let V be a compact subset of R2, and {νm} a sequence of
probability measures on the space C1(V ) of continuously differentiable functions on V .
Then {νm} is tight if the following conditions hold:

1. For every multi-index |α| ≤ 1, there exists some y ∈ V such that for every ε > 0

there exists K > 0 with

νm(g ∈ C2(V ) : |Dαg(y)| > K) ≤ ε,

where Dα := ∂α1
x1
∂α2
x2

.
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2. For every |α| ≤ 1 and ε > 0, we have

lim
δ→0

lim sup
n→∞

νm

(
g ∈ C2(V ) : sup

|y−y′|≤δ
|Dαg(y)−Dαg(y′)| > ε

)
= 0.

As a consequence of Lemma 4.2 we have the following:

Lemma 4.3. Let R ≥ 1 be some parameter and Fx(·) be as in (3.1) and let νm = (Fx)?dσ,
where dσ is the product measure on Ω×S2 and (Fx)? is the push-forward measure. Then,
the sequence νm is tight.

Proof. In order to check condition (1) in Lemma 4.2, we observe that, by Lemma 2.4, we
have

E[|DαFx(0)|2] . 1.

Thus, by Chebichev’s bound, we have

σ (|DαFx(0)| > K) ≤ P (|DαFx(0)| > K) . K−2,

which implies condition (1) in Lemma 4.2.

In order to check condition (2) in Lemma 4.2, we first observe that

sup
|y−y′|≤δ

|DαFx(y)−DαFx(y′)| . sup
B(0,1)

|∇DαFx|δ. (4.4)

By Lemma 2.2, we have

sup
B(0,1)

|∇DαFx|2 .R

∫
B(0,2)

|Fx(y)|2dy,

thus, by Lemma 2.4, we deduce

E[ sup
B(0,1)

|∇DαFx|2] .R 1.

Again by Chebichev’s bound and (4.4), we conclude that

σ

(
sup

|y−y′|≤δ
|DαFx(y)−DαFx(y′)| & Kδ

)
≤ K−2,

which, taking K = δ−1/2 say, implies condition (2) in Lemma 4.2.

In light of Lemma 4.3, in order to prove Proposition 3.2 it is enough to prove conver-
gence of the final-dimensional distributions, that is the following lemma:

Lemma 4.4. Let R ≥ 1 be some parameter and Fx(·) be as in (3.1), moreover let Fµ be
as in Section 2.4. Fix some integer d > 0 and let y1, . . . , yd be d fixed points in B(0, 1),
then

(Fx(y1), . . . , Fx(yd))
d−→ (Fµ(y1), . . . , Fµ(yd)) n→∞,

and for any multi-index |α| ≤ 1, we also have

(DαFx(y1), . . . , DαFx(yd))
d−→ (DαFµ(y1), . . . , DαFµ(yd)) n→∞.
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4.3 Step II: convergence of final dimensional distributions

In light of the reduction step, we are left with proving Lemma 4.4, this is the content
of this section.

Proof of Lemma 4.4. We are first going to focus on the first claim in Lemma 4.4. By
Portmanteau Theorem [9, Theorem 2.1] and [9, Theorem 2.6], we have can fix some
bounded continuous function g : Rk → R (say) and we have to show that∫

Ω×S2
g((Fx(y1), . . . , Fx(yd)))dσ

n→∞−→
∫

Ω

g(Fµ(Ry1), . . . , Fµ(Ryd))dP. (4.5)

This would follow from Lemma 2.6 provided, we can check its assumptions, which we
are going to do next.

Let us first check the convergence of the relative covariance matrix. First, we observe
that, for all y1, y2 ∈ B(0, 1) and x ∈ S2 and fixed R ≥ 1, we have

Θ(expx(Ry1/n), expx(Ry1/n)) = R
|y1 − y2|

n
(1 + on→∞(1)),

where Θ(a, b) is the angle between a, b ∈ S2. Therefore, Lemma 2.4 together with
Lemma 2.5 and a straightforward differentiation gives that, uniformly for all x ∈ S2, we
have

E [DαFx(yi)D
αFx(yj)] −→ E [DαFµ(Ryi)D

αFµ(Ryj)] n→∞, (4.6)

for all i, j ∈ {1, 2, . . . , d} and all multi-indices |α| ≤ 1. Thus, we have show that the first
assumption of Lemma 2.6 holds.

Now, in light of the observation at the beginning of Section 4.1, the second assumption
of Lemma 2.6 is not satisfied uniformly for all x ∈ S2. Thus, we will use Lemma 4.1 to
get rid of a “bad” set of x ∈ S2, as follows. Let K = K(n) = log n (say), by Lemma 4.1,
applied with such K and R ≥ 1, there exists some set B = B(n) such that

ρ (B) .R n
−1/3(log n)10,

and for all x 6∈ B the conclusion of Lemma 4.1 holds. Thus, we may re-write the l.h.s.
of (4.5) as ∫

S2
dρ(x)

∫
Ω

g((Fx(Ry1), . . . , Fx(Ryd)))dP

=

∫
S2\B

dρ(x)

∫
Ω

g((Fx(Ry1), . . . , Fx(Ryd)))dP+ og,R(1),

where the error term tends to zero as n→∞. Thus, it is enough to prove that∫
S2\B

dρ(x)

∫
Ω

g((Fx(Ry1), . . . , Fx(Ryd)))dP→
∫

Ω

g(Fµ(Ry1), . . . , Fµ(Ryd))dP. (4.7)

Hence, it is enough to check the second assumption in Lemma 2.6 holds under the
conclusion of Lemma 4.1. This is what we are going to show next.

Re-writing the second assumption in Lemma 2.6, we have to show that

sup
x∈S2\B

max
i∈{0,...,d}

1

2n+ 1

n∑
k=−n

E[|aiYk(expx(Ryi))1|Yk(expx(Ryi))|>ε(2n+1)1/2 ]→ 0 n→∞.

(4.8)
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Since there are 2n+ 1 summands in (4.8) it enough to prove that,

sup
x∈S2\B

max
i∈{0,...,d}

max
k
E[|aiYk(expx(Ryi))1|aiYk(expx(Ryi))|2>ε(2n+1)1/2 ]→ 0 n→∞,

for all ε > 0 Since, as discussed above, it is enough to check that the second assumption
in Lemma 2.6 holds under the conclusion of Lemma 4.1, we may assume1 that

sup
x∈S2\B

max
k

max
i∈{0,...,d}

|Yk(expx(Ryi))| . n1/2(log n)−1.

Therefore, we have

E[|aiYk(expx(Ryi))1|aiYk(expx(Ryi))|2>ε(2n+1)1/2 ] ≤ E[|ai1|ai|>cε logn|2],

for some small numerical constant c ≥ 1. Since the ai’s have finite second moment their
probability distribution decays at infinity. In order words, we may write

E[|ai1|ai|>cε logn|2] =

∫
Ω

|ai|21|ai|>Cε logndP(ω) =

∫ ∞
0

t21t>cε logndP(|ai| > t). (4.9)

Since the ai’s have finite second moment, by the Dominated Convergence Theorem, we
may take the limit n→∞ inside the integral in (4.9), to see that

max
i
E[|ai1|ai|>cε logn|2]→ 0 n→∞,

for all ε > 0 (we can actually take ε = (log n)−1/2, say). This proves (4.8).
Hence, in light of (4.6) and (4.8), Lemma 2.6 implies (4.7), which, in turn, implies (4.5),

concluding the proof of the first claim in Lemma 4.4. In light of the second claim in
Lemma 4.1, Lemma 2.4 and Lemma 2.5, the second claim of Lemma 4.4 follows form an
identical argument and it is therefore omitted.

5 Proof of Theorem 1.1

We are finally ready to conclude the proof of Theorem 1.1:

Proof of Theorem 1.1. During the proof, we write N (Fx) = N (Fx, 1) and N (Fµ) =

N (Fµ, R). First, observe that, by Lemma 2.10, we have

L(fn) . n.

Therefore, the number of nodal domains with diameter, that is the largest distance
between two points on the said domain, larger than R/n is at most C1n

2/R for some
C1 > 0. Now suppose that Γ is a nodal domain with Diam(Γ) ≤ R/n, then the volume of
x ∈ S2 such that Γ ∩ B(x,R/n) 6= ∅ but Γ is not fully contained in B(x,R/n) is at most
O(L(Γ) ·R/n), that is the length of Γ times the boundary length of B(x,R/n). Therefore,
in light of Lemma 2.10, we obtain∣∣∣∣∣∣

∑
Diam(Γ)≤R/n

∫
1Γ⊂B(x,R/n)dx− π

R2

n2

∑
Diam(Γ)≤R/n

1

∣∣∣∣∣∣ . R

n

∑
Γ

L(Γ) . R,

where 1 is the indicator function, Γ ⊂ B(x,R/n) means that Γ ∩ ∂B(x,R/n) = ∅ and we
tacitly assumed that R > 100 (say). Thus, bearing in mind that the number of nodal

1Note that here, if necessary, we use the conclusion of Lemma 4.1 with 2R in place of R so that the image
of the exponential map is contained in B(x,R/n) ⊂ S2.
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domains with diameter larger than R/n is at most C1n
2/R, exchanging the order of

summation, we have

n2

πR2

∫
N (Fx)dρ(x) =

∑
Diam(Γ)≤R/n

n2

πR2

∫
1Γ∈B(x,R/n)dx

=
∑

Γ

1 +O

(
n2

R
+R

)
= N (fn) +O

(
n2

R

)
, (5.1)

as R is assumed to be much smaller than n.
Now, by Lemma 2.1, we have∫

Ω×S2
N (Fx)2dσ . R2.

Therefore, in light of Proposition 3.1, we may apply Lemma 2.8 with Xn = N (Fx),
X = N (Fµ(R·)), where µ is the uniform measure on S1, to see that∫

Ω×S2
N (Fx)dσ = E[N (Fµ)](1 + on→∞(1)). (5.2)

Combining (5.1) and (5.2), we deduce that

E[N (fn)] =
n2

πR2
E[N (Fµ)](1 + on→∞(1)) +O

(
n2

R2

)
.

Hence, thanks to Theorem 2.9, we have

E[N (fn)] = cNSn
2(1 + on→∞(1))(1 + oR→∞(1)) +O

(
n2

R2

)
,

and Theorem 1.1 follows by taking R→∞ sufficiently slowly compared to n.

A Proof of auxiliary lemmas

We will now prove Lemma 2.2.

Proof of Lemma 2.2. Let us consider the “harmonic lift” h(x, t)=exp(−n(n+1)1/2t)fn(x) :

S2 × [−2, 2] → R. Note that, ∆h = 0 on (say) any ball contained in the product space
S2 × [−2, 2]. Thus, by the mean value property of harmonic functions, for all y ∈ S2, we
have

fn(y) = h(y, 0) . Vol(B̃((y, 0), n−1))−1

∫
B̃((y,0),n−1)

h,

where B̃(·) denotes a ball in the product space. Integrating over the auxiliary variable
(t), we obtain

|fn(y)| . n

(∫
B(y,n−1)

|fn|2
)1/2

. (A.1)

Applying (A.1) (squared) to every point in y ∈ B(x,R/n), we conclude

sup
B(x,R/n)

|fn|2 . (nR)2

∫
B(x,10R/n)

|fn|2.

We now consider bounds on the the derivatives of fn. Since h (as above) is harmonic,
we also have Dαh is harmonic for all multi-indices |α| ≤ 1 say. Therefore, by the
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mean-value property of harmonic functions and the Divergence Theorem, for all points
w ∈ S2 × [−1, 1] and a ball B̃(W ) = B̃(w,W ) with W > 0, writing Dα = D, we find

Dh(w) = Vol(B̃(W ))−1

∫
B̃(W )

Dh = Vol(∂B̃(W ))−1

∫
∂B̃(W )

h · n,

where n is the outward pointing unit-norm vector. In particular, we have

|Dh(w)| . sup
B̃(2W )

|h|.

Taking w = (y, 0), W = 1/(2n), bearing in mind the factor of n coming from differentiating
the exponential in the definition of h, and using (A.1), we obtain

|Dfn(y)|2 . n4 sup
B(y,1/n)

|fn|2.

Another covering argument as above concludes the proof of Lemma 2.2 for the C1-norm.
To see Lemma 2.2 for the C2-norm we simply use the mean-value property and the
Divergence Theorem with Dβ(Dαh), for |α| ≤ 1 and |β| ≤ 1, to obtain

Dβ(Dαh)(y, 1) . n2 sup
B((y,1),n−1)

|Dαh| ≤ n6 sup
B(y,1/n)

|fn|2,

and repeat the covering argument.

We will now prove Lemma 2.3 following [33, Theorem 2], we claim no originality.

Proof of Lemma 2.3. Let us suppose that u is a function which maximizes
∫
S2
u4 among

all functions u ∈ Hn with ‖u‖L2 = 1 (note that u exists since Hn is a finite dimensional
vector space). Now, let us consider the integral kernel of the spectral projector operator
πn : L2(S2)→ Hn which, in light of Lemma 2.4, is given by

n∑
k=−n

Yk(x)Yk(y) = (2n+ 1)Pn(〈x, y〉) := ϕn(〈x, y〉),

where 〈·, ·〉 is the standard inner-product on S2 so that cos(Θ(x, y)) = 〈·, ·〉. Then, by our
choice of u, we claim that

πn(u3)(y) := ϕn ? u
3(y) =

∫
S2
ϕn(〈x, y〉)u(y)3dρ(y) = cu(x), (A.2)

for some constant c > 0. Indeed, for f ∈ L2(S2), we have∫
S2
f · u =

∫
S2
πn(f) · u+

∫
S2

(f − πn(f)) · u =

∫
S2
πn(f) · u, (A.3)

as u ∈ Hn and (f−πn(f)) is orthogonal to it. Thus, since the integral on the r.h.s. of (A.3)
is maximized for πn(f) = cu and f = u3 by definition maximizes the integral on the l.h.s.
of (A.3), we conclude (A.2).

In order to find c > 0 in (A.2), we multiply both sides by u(x) and integrate with
respect to x ∈ S2. Thus, bearing in mind that ‖u‖L2 = 1, we find

c = ‖u‖4L4 .

Therefore, (A.2) and Hölder inequality (for the L1-norm) implies

‖u‖4L4‖u‖L∞ = ‖ϕn ? u3‖L∞ ≤ ‖ϕn‖L4‖u3‖L3/4 = ‖ϕn‖L4‖u‖3L4 .
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In particular, we obtain the pair of bounds

‖u|L4‖u‖L∞ ≤ ‖ϕn‖L4 ‖u‖4L4 ≤ ‖u‖2L∞ . (A.4)

Hence, if ‖u‖L∞ ≤ n1/3, then (A.4) implies the bound ‖u‖4L4 ≤ n2/3. If ‖u‖L∞ > n1/3,
since a straightforward computation using Lemma 2.5 implies ‖ϕn‖L4 . n1/2 log n, (A.4)
implies ‖u‖4L4 . n2/3 log n, as required.

We will now prove Lemma 2.10:

Proof of Lemma 2.10. First, since spherical harmonics are restrictions of homogeneous
polynomials to the sphere, by passing to polar coordinates, we may identify fn with a
bi-variate trigonometric polynomial gn (say) so that

H1(x ∈ S2 : fn(x) = 0) � H1(x ∈ [−1/2, 1/2]2 : gn(x) = 0).

Therefore, it is enough to prove

H1(x ∈ [−1/2, 1/2]2 : gn(x) = 0) . n. (A.5)

Now we claim that there exists either an horizontal line `h (say) or a vertical line `v (say)
such that

H1(x ∈ [−1/2, 1/2]2 : gn(x) = 0) . |{x ∈ `h : g(x) = 0}|+ |{x ∈ `v : g(x) = 0}|. (A.6)

Since the zero set of gn is an union of smooth curves, it is, in particular, rectifiable
(approximable by line segments). So it is enough to show that for any line segment C
with length ` claim (A.6) holds. Indeed, let us write N(x1) for the number of intersections
of C with the vertical line going through x1 ∈ [−1/2, 1/2] (the lower side of the square
[−1/2, 1/2]2) and, similarly, N(x2) for the number of intersections of C with the horizontal
line going through x2 ∈ [−1/2, 1/2] (the left side of the square [−1/2, 1/2]2). Then, we
have ∫

N(x1)dx1 +

∫
N(x2)dx2 ≥ P1(C) + P2(C) ≥ `

10
,

where P1, P2 are the length of the projection of C on the X and Y -axis respectively,
and (A.6) follows. Since gn is a bi-variate polynomial of degree at most n, its restriction
to any vertical or horizontal line is an uni-variate polynomial of degree n, thus, by (A.6),
we have

Vol(x ∈ [−1/2, 1/2]2 : gn(x) = 0) . n,

as required.

We are now going to prove Lemma 2.11, the proof follows [28, Claim 4.2], we claim
no originality.

Proof of Lemma 2.11. Let {gk}∞k=1 ∈ C1
? be a sequence of functions converging to some

g ∈ C1
?(W ) with respect to the C1-topology. Since g ∈ C1

? , g has finitely many nodal
domains in B(2W ). In particular, it has finitely many nodal domains which do not touch
∂B(W ) and, in light of the definition of C1

? , there exists some a > 0 such that

min Dist(Γ, ∂B(W )) > a,

where the minimum is take over all nodal domains Γ of g contained in B(W ). Moreover,
there exists some b such that

|g|+ |∇g| > b.
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Now, we claim that each connected component Γ(t) of the level set |g| ≤ t contains
precisely one nodal domain Γ and the Γ(t)’s are disjoint, provided we choose t = t(a, b)

sufficiently small. Let’s start by showing that the Γ(t)’s are disjoint. If they were not,
they would meet at a point x (say) where |∇g(x)| = 0, since x ∈ B(2W ), this implies that
|g(x)| > b and thus it does not belong to Γ(b/2).

Let us now snow that each connected component Γ(t) of the level set |g| ≤ t contains
precisely one nodal domain Γ, provided we choose t = t(a, b) sufficiently small. Let
us first show that each Γ(t) contains at least one nodal domain. Indeed, since g is
continuous, taking t sufficiently small depending on a, we may assure that

min Dist(Γ(t), ∂B(W )) > a/2.

So all Γ(t) are sufficiently well separated from the boundaries. Now, let x ∈ ∂Γ(t), then
|g(x)| = t and, taking t < b/2, we see that |∇g(x)| > b/2, thus moving in the direction of
∇g(x) if g(x) = −t and in the direction ∇g(x) if g(x) = t, we will find a point (within Γ(t)

for appropriately small t depending on a, b) such that g(x) = 0.
We are left to show that Γ(t) contains at most one nodal domain. Since |g|+ |∇g| > b,

there are exists some c = c(b) > 0 such that

min Dist(Γi,Γj) > c.

By continuity of g, we may choose t sufficiently small such that Γ(t) ⊂ Γ+(c/2), the
(c/2)-neighborhood of Γ (and all this neighborhood are well within B(W ), provided we
also choose t small compared to a). Thus, Γ(t) contains precisely one nodal domain.

To conclude the proof we take k sufficiently large so that each nodal domains of gk is
contained in Γ(t), for some Γ(t), which implies, as N (·) is integer values, that

N (gk,W ) = N (g,W ),

as required.

We are now going to prove Lemma 2.12:

Proof of Lemma 2.12. During the proof, we write a point x ∈ R2 as x = (x1, x2). First,
we observe that since F is stationary the distribution of (F (x),∇F (x)) is independent
of the particular point x ∈ B(2W ). Moreover, by the spectral representation of the
covariance function, for i, j = 1, 2, we have

E[∂xi
F (x) · F (x)] = 2πi

∫
S1
λ1dλ = 0,

and, similarly,
E[∂xi

F (x)∂xj
· F (x)] = 4π2δij ,

where δij = 1 if i = j and 0 otherwise. Therefore, the covariance matrix of (F,∇F ) is
non-degenerate, which implies that

|F |+ |∇F | > 0,

almost surely. To see the condition at the boundary, we observe that, since the distribu-
tion of (F,∇F ) is invariant under rotations, it is enough to consider the point x = (1, 0)

(say).Thus, since the distribution of (F, ∂x2
F ) is non-degenerate, the condition

|F |+
∣∣∣∣∇F − x · ∇F

|x|2
x

∣∣∣∣ > 0,

holds almost surely, as required.
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B Not base-independent

We prove that the distribution of fn as a random function on C0(S2) (say) is not base
independent:

Claim B.1. Given and orthogonal {Yk} for Hn let vn = (fn)?P (on C0(S2), say) be as in
Section 3.1 with

fn(x) = cn

n∑
k=−n

akYk,

where the ak’s are i.i.d. Bernulli ±1. There exists two (different) orthonormal basis
{Yk}nk=−n and {Ỹk}nk=−n such that their associated pushfoward measures, vn and ṽn (say),
have different distributions.

Proof. Suppose, by contradiction that vn = ṽn, in the sense of distributions. Then, their
finite dimensional distributions also agree, in particular, taking x = (0, 0) to be the north
pole, in polar coordinates on the sphere, we should have

P(fn(x) ≤ t) = P(f̃n(x) ≤ t), (B.1)

for all t ∈ R. Let us now take Yk(θ, ψ) = exp(ikψ)P kn (cos θ), where (θ, ψ) are polar
coordinates on S2 and

P kn (x) =

(
n(n− k)!

(n+ k)!

)1/2
(−1)k

2kk!
(1− x2)k/2

dn+k

dxn+k
(x2 − 1)n,

are the (normalized) associated Legendre polynomials. Moreover, let us take

Ỹk = Yk k 6= 0, 1, Ỹ0 =
1√
2

(Y0 + Y1), Ỹ1 =
1√
2

(Y0 − Y1).

By definition, at the north pole Yk(x) = 0 for all k 6= 0 and Y0(x) =
√

2n+ 1, thus, bearing
in mind the normalization constant in the definition of fn, we obtain

P(fn(x) ≤ t) = P(a0 ≤ t),

and
P(f̃n(x) ≤ t) = P(2−1/2(a0 + a1) ≤ t),

which contradicts (B.1).
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