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Abstract

Rough path theory [15] provides one with the notion of the signature, a graded family
of tensors which characterise, up to a negligible equivalence class, an ordered stream
of vector-valued data. In this article, we lay down the theoretical foundations for a
connection between signature asymptotics, the theory of empirical processes, and
Wasserstein distances, opening up the landscape and toolkit of the second and third in
the study of the first. Our main contribution is to show that the Hilbert-Schmidt norm
of the signature can be reinterpreted as a statement about the asymptotic behaviour
of Wasserstein distances between two independent empirical measures of samples
from the same underlying distribution. In the setting studied here, these measures
are derived from samples from a probability distribution which is directly determined
by geometrical properties of the underlying path. The general question of rates of
convergence for these objects has been studied in depth in the recent monograph of
Bobkov and Ledoux [2]. To illustrate this new connection, we show how the above
main result can be used to prove a more general version of the original asymptotic
theorem of Hambly and Lyons [19]. We conclude by providing an explicit way to
compute that limit in terms of a second-order differential equation.
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Signature asymptotics and empirical processes

1 Introduction

1.1 Previous work

The mathematical notion of a path captures the concept of a continuous time-ordered
sequence of values. These objects and their generalisations, occur widely throughout
both pure and applied mathematics. For example, the analysis of the sample paths of
a stochastic process forms a significant part of stochastic analysis, while time series
analysis is an established tool in modern statistics. Abstract paths are inherently infinite-
dimensional objects, and it is desirable to seek low-dimensional summaries which capture
some features of interest. A mathematically-principled approach to effecting this has
gained prominence in recent years and led several new developments in time-series
analysis [18, 26, 25, 30], machine learning [10, 31], deep learning [20, 21] and more
recently in kernel methods [11, 24, 33, 22]. This approach involves using the (path)
signature transform which, in distinction to traditional methods based on sampling,
is rooted in capturing the path by understanding its effects on any smooth non-linear
controlled differential system. To be more precise, if γ is a path of finite 1-variation
defined on the closed interval [a, b] ⊂ R into Rd, then given a smooth collection of
vector fields {Vi : i = 1, . . . , d} on Re, we can in some circumstances write the response
α : [a, b]→ Re of the controlled differential equation

dαt =

d∑
i=1

Vi (αt) dγ
i
t , started at αa

in terms of a convergent series of iterated integrals of γ; that is

αb − αa =

∞∑
k=1

e∑
i1···ik=1

Vi1Vi3 · · ·Vik Id|αa

∫
a<t1<t2<···<tik<b

dγi1t1 · · · dγ
ik
tk
,

where Id denotes the identity function on Re.
Using the above as motivation, we recall that the signature S(γ) of γ is defined as

the collection of all iterated integrals

S(γ) :=

(
1, S(γ)1

[a,b], S(γ)2
[a,b], . . .

)
∈ T ((Rd)) :=

∞∏
k=0

(Rd)⊗k (1.1)

where
S(γ)k := {S(γ)k; I}I∈J (1.2)

and J := {(i1, . . . , ik)| 1 ≤ i1, . . . , ik ≤ d} ⊂ Nk is a set of multi-indices and where

S(γ)k; i1,...,ik :=

(∫
a≤t1≤t2≤···≤tk≤b

dγi1t1 ⊗ dγ
i2
t2 ⊗ · · · ⊗ dγ

ik
tk

)
∈ (Rd)⊗k (1.3)

A key theorem of Hambly and Lyons [19] states that the map γ 7→ S(γ) is one-to-one up
to an equivalence relation on the space of paths which is called tree-like equivalence [6].
In this way, the signature offers a top-down summary of γ allowing one a practical and
efficient representation of the curve [25]. This approach has several pleasant theoretical
and computational consequences. For example, the signature transform satisfies a
universality property in that any continuous function f : J → R from a compact subset
J of signature features can be arbitrarily well approximated by a linear functional
[25]. This result inspired the development of several new methods and paradigms in
time-series analysis [18, 26, 25, 30], machine learning [10, 31] and more recently deep
learning [20, 21]. A notable use of the signature transform has been its application in
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Signature asymptotics and empirical processes

the popular field of kernel methods where the so-called signature kernel [22], consisting
of the inner product between two signatures, is introduced. In addition to being backed
up by a rich theory [27, 15], working with the inner product of signature features has
proved itself to be a promising and effective approach to many tasks [11, 33] and has
achieved state of the art performance for some of them [24]. This growing interest in
the use of the signature has also brought into focus methods for recovering properties
of the underlying path from the signature.

Some terms in the signature are explicitly relatable to properties of the original
path, e.g. the increment and the area can be recovered from the terms of order 1 and
order 2 respectively. Recovering more granular information on the path demands a
more sophisticated approach. A rich stream of recent work has tackled the explicit
reconstruction of a path from its signature, e.g. based on a unicity result of the signature
for Brownian motion sample paths [23], one can consider a polygonal approximation to
Brownian paths [23], diffusions [16], a large class of Gaussian processes [3] and even
some deterministic paths [17] based on the signature features only. These approaches
fundamentally exploit the full signature representation (and not a truncated version
of it) which may not be available in some cases. In parallel, there have been other
approaches to reconstruction. In [28], the hyperbolic development of the signature
is exploited to obtain an inversion scheme for piecewise linear paths. On the other
hand, [29] proposed a symmetrization procedure on the signature to which leads to a
reconstruction algorithm in some cases. Both approaches have the advantage of being
implementable.

Another branch of investigation has been the recovery of broad features of a path
using the asymptotics of its signature, or functions of terms of its signature. The study of
the latter has been an active area of research for the last 10 years [19, 5, 8, 4, 7]. Recall
that if γ is absolutely continuous its length is defined to be

L(t− a) := L(γ)[a;t] :=

∫ t

a

|γ′s|ds, (1.4)

and denoted by l := L(b − a). Such a curve admits a unit-speed parametrisation ρ :

[0, l]→ [a, b] defined as
ρ(s) = L−1(s) (1.5)

such that the path γ ◦ ρ is a unit speed curve. Hambly and Lyons [19] initially showed
that the arc-length of a unit-speed path can be recovered from the asymptotics of the
norm of terms in the signature under a broad-class of norms. To be more concrete, they
proved that if γ : [0, l]→ V is a continuously differentiable unit-speed curve (where V is
a finite dimensional Banach space), whose derivative satisfies a modulus of continuity
condition, then it holds that

lim
n→∞

n! ||S(γ)n||
ln

= 1, (1.6)

for a class of norms ||·|| on the tensor product V ⊗n which includes the projective tensor
norm, but excludes the Hilbert-Schmidt norm in the case where V is endowed with an
inner-product. This result has since been extended by Lyons and Xu [28] to all unit speed
C1 curves. For the same class of norms, this also implies the weaker statement

lim
n→∞

(n! ||S(γ)n||)1/n
= l. (1.7)

A natural question is whether other properties of the original path can also be recovered
in a similar fashion.

When V is an inner-product space and the Hilbert-Schmidt norm is considered,
[19] also show that Eq. (1.7) holds, but that statement Eq. (1.6) fails to be true in
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Signature asymptotics and empirical processes

general: indeed under the assumption that γ is three times continuously differentiable
the following result 1 is proved,

lim
n→∞

n! ||S(γ)n||
ln

= c (γ) : = E

[
exp

(∫ l

0

(B0,s)
2 〈γ′s, γ′′′s 〉 ds

)]1/2

, (1.8)

where (B0,s)s∈[0,l] is a Brownian bridge which returns to zero at time l. It is easily seen

that c (γ) < 1 unless γ is a straight line.
More recent articles have focused on proving statements similar to Eq. (1.7) under

the fewest possible assumptions on γ and on the tensor norms. In the article [8] for
example, it was proved that if γ is continuous and of finite 1-variation then, under any
reasonable tensor norm, we have that

lim
n→∞

(n! ||S(γ)n||)1/n
= sup
n≥1

(n! ||S(γ)n||)1/n
> 0 (1.9)

provided that the sequence {||S(γ)n|| : n = 1, 2, . . . ,∞} does not contain an infinite sub-
sequence of zeros. Boedhardjo and Geng [5] strengthened this result by proving that
the existence of such a subsequence is equivalent to the underlying path being tree-like,
see also [9]. Taken together, these articles prove that for the identity in Eq. (1.9) holds
true for a wide class of continuous bounded variation paths. It is conjectured that for a
tree-reduced path γ the limit is exactly the length of γ, see [9]. This question remains
open at the time of writing.

1.2 Contributions

In this article, we contribute to the effort of recovering the original path from its
signature by laying down a novel route. We do so by explicitly relating Hilbert-Schmidt
norm of projected signatures with p-Wasserstein distances between discrete probability
measures, allowing the study of the former using tools of the latter. These measures are
characterised in terms of γ only through an integral equation, making the contribution
of the geometrical properties of γ (such as its curvature) in the limit of the norm explicit.
To ease notation, from this point forwards, we consider unit speed paths parameterised
on [0, 1] rather than [0, l].

The core insight of this connection originated when realising that a theorem by
del Barrio, Giné, and Utze (see Theorem 2.3 below) can be recast to re-express the
Hambly-Lyons limit c(γ) as the limit of a 2-Wasserstein distance between empirical
measures (Section 2). Formally, for a twice-continuously-differentiable unit speed path
γ : [0, 1] → Rd that is regular enough (see exact conditions in Theorem 2.11), we
construct and show the existence of a measure µ on R, prescribed in terms of the
following integral equation for its cumulative distribution function F ,

F (t) =

∫ t

0

|γ′′F (s)|
−1ds ≥ ct, lim

s→0+
F (s) = 0, lim

s→b−
F (s) = 1, (1.10)

for some constants c, b ∈ R+. When coupled with the B-G-U Theorem, we show that

c(γ) = lim
n→∞

E
[
exp(−nW 2

2 (µn, µ))
]
, (1.11)

i.e. the Hambly-Lyons limit c(γ) can be seen as the limit of 2-Wasserstein distances
between µ and an empirical version µn :=

∑n
i=1 δF−1(Ui), where δ denote the Dirac

delta distribution and where {Ui}i∈{1,...,n} is a sample of n independent uniform random
variables on [0, 1].

1We refer to the right-hand side term c(γ) as the Hambly-Lyons limit.
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In Section 3, motivated by the above insight, we derive relationships between the
signature inner product 〈S(γ)n, S(σ)n〉 and a series of p-Wasserstein distances. As a
first application, we re-derive a generalised version of the Hambly-Lyons Limit Theorem
(Section 3.4) through the lens of discrete optimal transport by exploiting asymptotic
results of Wasserstein distances between empirical measures [2].

Theorem 1.1 (Generalised Hambly-Lyons Limit Theorem). Let γ : [0, 1]→ Rd be a twice-
continuously-differentiable unit-speed path such that the map s 7→ |γ′′s | is non-vanishing,
and differentiable with bounded derivative. Then,

lim
n→∞

n! ||S(γ)n|| = E

[
exp

(
−
∫ 1

0

(B0,s)
2 |γ′′s |

2
ds

)]1/2

. (1.12)

Section 3.5 concludes this article by presenting a way to practically compute that
limit through the solving of a second order distributional differential equation.

2 The Hambly-Lyons limit and Wasserstein distances

This section outlines the proof of Theorem 1.1. We do so by first recalling a theorem
by del Barrio, Giné, and Utze (Theorem 2.3 below) and observing that under some
conditions, the former allows the rewriting of the Hambly-Lyons limit c(γ) as a limit in
terms of the 2-Wasserstein distance between empirical measures. The rest of this section
will investigate the assumptions needed on γ for these conditions to be fulfilled.

2.1 The B-G-U Theorem

We now present the above-mentioned theorem by del Barrio, Giné, and Utze. We
start by recalling the definition of the p-Wasserstein distances; objects that form a core
part of our analysis.

Definition 2.1 (Wasserstein Distance). Let µ and ν be probability measures supported
on R. The pth Wasserstein distance, Wp(µ, ν), between µ and ν is defined by

W p
p (µ, ν) := inf

π∈Γ(µ,ν)

∫
R

∫
R

|x− y|p dπ(x, y), (2.1)

where Γ(µ, ν) denotes the set of all couplings of µ and ν. If µ and ν have bounded support
then one may also define the p =∞ distance by

W∞(µ, ν) := lim
p→∞

Wp(µ, ν). (2.2)

Definition 2.2 (Jp functional and I-function I(t)). Let X be a non-constant random
variable with law µ. Suppose that µ has a density f w.r.t Lebesgue measure and let F be
the associated distribution function. The Jp functional is defined as

Jp(µ) :=

∫ ∞
−∞

[F (x)(1− F (x))]p/2

f(x)p−1
dx (2.3)

for p ∈ N. Moreover, if F admits an absolutely continuous inverse on (0, 1) (or equiva-
lently, by virtue of Proposition A.17 in [2], if µ is supported on an interval, finite or not,
and the absolutely continuous component of µ has on that interval an almost everywhere
positive density), define the I-function I(t) for almost all t ∈ (0, 1) as

I(t) := f(F−1(t))
(A.18)

=
1

(F−1)′(t)
. (2.4)

where the last equality exploited Proposition A.18 in [2].
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Signature asymptotics and empirical processes

For the rest of this section, we denote by µn the empirical measure defined as

µn :=
1

n

n∑
i=1

δXi (2.5)

where Xi, i ∈ {1, 2, . . . , n} is an i.i.d. sample of random variables sampled according to
µ.

Theorem 2.3 (B-G-U Theorem; [14]). Let µ be a measure supported on (a, b) ⊂ R such
that it admits a density f . Assume further that f is positive and differentiable and
satisfies

sup
a<x<b

F (x)(1− F (x))

f(x)2
|f ′(x)| <∞. (2.6)

and that J2(µ) <∞. Denote by F its distribution function. Then,

nW 2
2 (µn, µ)→

∫ 1

0

(B0,t)
2

I(t)2
dt (2.7)

as n → ∞ weakly in R where B0,t is a Brownian bridge starting at 0 and vanishing at
t = 1.

Remark 2.4 (Origin of assumption Eq. (2.6)). The condition in Eq. (2.6) has been a
recurrent assumption in several asymptotic results involving quantile processes and
ultimately goes back to Csorgo and Revesz [13]. To better understand its connection
with the B-G-U Theorem 2.3, recall the following identity

W 2
2 (µn, µ) =

∫ 1

0

(
F−1
n (s)− F−1(s)

)2
ds =

1

n

∫ 1

0

ξn(s)2ds (2.8)

with ξn(s) :=
√
n
(
F−1
n (s)− F−1(s)

)
denoting the quantile process. It is shown in [14]

that ξn converges weakly in L2(0, 1) to B0,t/I(t). For a slightly more general object, the
so-called normed sample quantile process ρn, it can be shown that requiring Eq. (2.6)
allows one to asymptotically control ρn. More details can be found in [12].

The following corollary will form a key component of our generalisation of the
Hambly-Lyons result.

Corollary 2.5. Let µ be a measure supported on (a, b) ⊂ R which satisfies the assump-
tions of Theorem 2.3, then

nW 2
2 (µ1

n, µ
2
n)→ 2

∫ 1

0

(B0,t)
2

I(t)2
dt (2.9)

weakly in R as n→∞, where µ1
n and µ2

n are independent copies of empirical measures
from µ.

Proof. Let ξ1
n and ξ1

n denote the quantile processes of µ1
n and µ2

n defined in Theorem 2.4.
Since L2(0, 1) is separable, [1, Theorem 2.8] implies that ξ1

n − ξ2
n converges weakly in

L2(0, 1) to (B1
0,t − B2

0,t)/I(t), for independent Brownian bridges B1 and B2. Since the
difference of independent Brownian bridges is itself a Brownian bridge with twice the
variance, we can apply the Continuous Mapping Theorem and Theorem 2.4 to conclude
that

nW 2
2 (µ1

n, µ
2
n) =

∫ 1

0

(ξ1
n(t)− ξ2

n(t))2dt→ 2

∫ 1

0

(B0,t)
2

I(t)2
dt

weakly in R.
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Signature asymptotics and empirical processes

The existence of a bridge between signature asymptotics and the theory of empirical
processes is hinted at when one considers a special instance of the B-G-U Theorem 2.3.
Indeed, when applied to a regular enough class of measures µ satisfying I(t) = |γ′′t |−1,
the right-hand side of B-G-U exactly coincides with the Hambly-Lyons limit. The following
remark formalises this observation.

Corollary 2.6 (Recovering the Hambly-Lyons limit). Let γ : [0, 1] → Rd be a twice-
continuously-differentiable unit-speed path with non-vanishing second derivative. Con-
sider a probability measure µ on R supported on (a, b) for some a, b ∈ R and having
density f . Assume that the following four conditions are satisfied:

A. The density function f is positive and differentiable,

B. Its associated I-function satisfies I(t) = |γ′′t |−1 almost everywhere,

C. The distribution function F and density function f satisfy

sup
a<x<b

F (x)(1− F (x))

f(x)2
|f ′(x)| <∞, (2.10)

D. J2(µ) <∞.

Then the B-G-U Theorem 2.3 implies that the Hambly-Lyons limit in c(γ) can be rewritten
as the limit of a 2-Wasserstein distance, i.e.

c(γ) = lim
n→∞

E
[
exp

(
−nW 2

2 (µn, µ)
)]1/2

. (2.11)

Proof. The assumptions for the B-G-U Theorem 2.3 are satisfied and the limit

lim
n→∞

nW 2
2 (µn, µ) =

∫ 1

0

B2
0,t|γ′′|2dt <∞ (2.12)

exists under the stated assumptions. If one further assumes that the assumptions of the
Hambly-Lyons limit Eq. (1.8) holds (i.e. that γ is of class C3), then the limits coincide as
γ is unit-speed and satisfies 〈γ′, γ′′′〉 = −|γ′′|2.

2.2 Existence and characterisation of admissible measures

The rest of this section will focus on characterising the paths, γ, for which a measure
µ exists satisfying conditions A, B, C and D of Theorem 2.6. First, we recast the
determination of such µ into the solving of an integral equation in terms of γ only.
Thereafter, we formulate assumptions on γ ensuring the existence of a solution to this
integral equation, whose associated measure µ satisfies the conditions A, B, C and D of
Theorem 2.6.

We start by rewriting condition B as an explicit condition on the cumulative distribu-
tion function F associated to the measure µ.

Remark 2.7 (Reformulating condition B as an integral equation for F ). Let γ : [0, 1] →
Rd be a twice-continuously-differentiable unit-speed path with non-vanishing second
derivative. If F admits an absolutely continuous inverse on (0, 1) (which is the case
whenever condition A holds; see Proposition A.17 from [2]), then condition B holds if
and only if F satisfies the following integral equation,

F (t) =

∫ t

a

|γ′′F (s)|
−1ds, (2.13)

for all t ∈ (a, b) with boundary conditions lims→a+ F (s) = 0, lims→b− F (s) = 1. To see this,
first suppose that conditions A and B hold, then∫ t

a

I(F (s))ds
(2.4)
=

∫ t

a

f(s)ds = F (t)
B
=

∫ t

a

|γ′′F (s)|
−1ds.
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Signature asymptotics and empirical processes

Assume now that condition A and Eq. (2.13) hold, then the Lebesgue Differentiation
Theorem implies that the density function associated to F can be written as

f(s) = |γ′′F (s)|
−1, a.e.. (2.14)

And so

I(s) = f(F−1(s)) = |γ′′F (F−1(s))|
−1 = |γ′′s |−1, a.e..

Lemma 2.8. Let γ : [0, 1]→ Rd be a twice-continuously-differentiable unit-speed path
with non-vanishing second-derivative. Assume the existence of two constants a < b ∈ R
and a twice-differentiable function F : (a, b)→ [0, 1] satisfying

F (t) =

∫ t

a

|γ′′F (s)|
−1ds, lim

s→a+
F (s) = 0, lim

s→b−
F (s) = 1, (2.15)

with bounded second derivative F ′′. Then,

(i) F is a cumulative distribution function with support on (a, b) and admits an abso-
lutely continuous inverse F−1 on (0, 1).

(ii) F fulfills condition A, B, C, and D.

Proof. That F is a cumulative distribution function corresponding to some measure µ
supported on (a, b) follows immediately from Eq. (2.15) and differentiability of F . By
virtue of proposition A.17 in [2], F admits an absolutely continuous inverse on (0, 1) if
and only if µ is supported on an interval, finite or not, and the absolutely continuous
component of µ has on that interval has an a.e. positive density (with respect to Lebesgue
measure). We show that the latter statement holds. Indeed, since γ′′ is non-vanishing,
the Lebesgue Differentiation Theorem implies that the density function of the absolutely
continuous component of the probability measure µ associated to F is positive almost
everywhere and satisfies

f(s) = |γ′′F (s)|
−1, a.e.. (2.16)

implying the existence of an absolutely continuous inverse F−1. This concludes (i).

Regarding point (ii), as F is twice-differentiable, its underlying measure µ is abso-
lutely continuous and f is its density which is positive and differentiable, implying the
fulfillment of condition A. Condition B follows from Theorem 2.7. Finally, since |γ′′| is
bounded from below (since it is continuous and non-vanishing) and F ′′ is bounded from
above, it follows that conditions C and D are both satisfied.

The above result states that a twice-differentiable solution F prescribed by the
integral equation Eq. (2.15), with the property that F ′′ is bounded, is the cumulative
distribution function of a measure µ required for the application of Theorem 2.6. We
now determine the conditions on γ for which the existence of such an F is guaranteed.
Let γ be as in Theorem 2.8. Then the following observations can be made.

1. Since γ has bounded curvature, i.e. there exists a constant c > 0 such that
|γ′′s | ≤ 1

c ∈ R+ for all s ∈ [0, 1] (or equivalently said, if the map s 7→ |γ′′s |−1 is
bounded by below by c), then

F (t) ≥ ct =⇒ F (b) = 1 (2.17)

for a constant b ∈ [a, a+ c] as F is monotone increasing.
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2. Additionally, if the map s 7→ |γ′′s |−1 is Lipschitz continuous, the Picard-Lindelöf
Theorem ensures the existence of a unique differentiable function F : [a, b]→ [0, 1]

such that

F ′(t) = |γ′′F (t)|
−1 > c, F (a) = 0. (2.18)

3. To ensure that F is twice differentiable, requiring Lipschitz continuity on s 7→ |γ′′s |−1

is not enough. Indeed, the latter assumption only implies the differentiability of F ′

almost everywhere on any open subset of the definition domain by virtue of the
Rademacher’s Theorem (which is not sufficient as it can lead to the breaking of
condition A). However, if we assume the map s 7→ |γ′′s | to be differentiable, then F
is guaranteed to be twice-differentiable for all t ∈ (a, b) by the quotient rule and
non-vanishing property of γ′′.

4. As it is now assumed that s 7→ |γ′′s |−1 is differentiable, the fundamental theorem of
calculus implies that the probability density function f can be exactly written as

f(s) = |γ′′F (s)|
−1

(2.18)
≥ c+, s ∈ (a, b). (2.19)

Additionally, since γ′′ is non vanishing, the curvature |γ′′s | is bounded from below,
i.e. |γ′′s | ≥ 1

c−
∈ R+ for all s ∈ [0, 1] (or equivalently said, if the map s 7→ |γ′′s |−1 is

bounded above by c−), then the ODE Eq. (2.18) implies

F ′(t) ≤ c−. (2.20)

Assuming further that the derivative of the map s 7→ |γ′′s | is bounded implies the
boundedness of F ′′ by the chain and quotient rules.

These observations are collected and combined with the Theorem 2.8 in the following
lemma.

Lemma 2.9 (Condition on γ for existence of admissible F ). Let γ : [0, 1] → Rd be a
twice-continuously-differentiable unit-speed path such that the map s 7→ |γ′′s | is non-
vanishing, and is differentiable with bounded derivative. Then there exist constants
a, b ∈ R twice-differentiable function F : (a, b) → [0, 1] such that the integral equation
and boundary conditions Eq. (2.15) are satisfied and the conditions of Theorem 2.6 are
also satisfied.

Remark 2.10 (Boundedness of the derivative of |γ′′s | as a condition on the curvature).
Observe that the boundedness condition on (|γ′′s |)

′ (which we recall is there to ensure
the fulfillment of the boundary conditions in equation Eq. (2.15)) can be reformulated as
a condition on the total curvature T (t) :=

∫ t
0
|γ′′s |ds of γ as follows. For a c2 ∈ R+,

c2 ≥
(
|γ′′s |−1

)′
= − |γ

′′
s |′

|γ′′s |2
= −

[
log |γ′′s |

]′
· |γ′′s |−1 (2.21)

⇐⇒ |γ′′s | ≥ −
1

c2

[
log |γ′′s |

]′
(2.22)

Taking the integral from 0 to t gives

1

c2
log

(
|γ′′0 |
|γ′′t |

)
≤ T (t), ∀t ∈ [0, 1], (2.23)

Finally, the direct application of the existence Theorem 2.9 followed by Theorem 2.3
yields the following result.
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Proposition 2.11 (Hambly-Lyons limit as the limit of a Wasserstein distance). Let γ be
as in Theorem 2.9 and F the solution to the integral equation Eq. (2.15). Let µ be the
measure associated with F and let X1, . . . , Xn be a sample of n i.i.d. random variables
drawn from µ. Let µn be its associated empirical measure, i.e.

µn :=
1

n

n∑
i=1

δXi (2.24)

Then, the Hambly-Lyons limit in c(γ) is the limit of a 2-Wasserstein distance

c(γ) = lim
n→∞

E
[
exp

(
−nW 2

2 (µn, µ)
)]1/2

. (2.25)

3 Signature projections and Wasserstein distances

Because of the known connection between the Hambly-Lyons limit and the limit of
the Hilbert-Schmidt tensor norm of projected signatures [19], the insights developed in
the previous section naturally lead one to ask whether the Hilbert-Schmidt tensor norm
of projected signatures can be related to Wasserstein distances. This section answers
this question positively. By using this relationship, we are able to characterise a class of
curves larger than the C3 one originally considered in [19] that satisfies

lim
n→∞

n! ||S(γ)n|| = c(γ). (3.1)

We proceed as follows.

1. First, in Section 3.1, we prove a technical augmentation of a lemma in [19] and
then derive a probabilistic representation for the inner product of two signature
terms.

2. Once this is done, Section 3.2 will exploit the characterisation of the Wasserstein
distances between empirical measures to relate the quantities derived in the first
step to these Wasserstein distances and hence derive lower and upper bounds on
||S(γ)|| in terms of the former.

3. By leveraging the results of the previous section, we generalise the Hambly-Lyons
limit Eq. (1.8) in Section 3.4 and present the proof of Theorem 1.1.

4. Finally, we show a practical way to compute the limit in Section 3.5 and illustrate
it in a simple case.

3.1 A probabilistic expression for signature inner products

In this subsection, we generalise Lemma 3.9 in [19] to the inner product between
signatures before presenting a probabilistic formula in terms of the angles between the
derivatives of the two underlying curves.

Definition 3.1 (Uniform order statistics sample). Let {Ui}i∈{1,2...,n} and {Vi}i∈{1,2...,n} be
two independent collections of n i.i.d. uniform random variables in [0, 1]. Consider the
relabeling {U(i)}i∈{1,2...,n} where

0 ≤ U(1) ≤ U(2) ≤ · · · ≤ U(n) ≤ 1. (3.2)

and similarly for {V(i)}i∈{1,2...,n}. In the rest of this article, we will denote by
{U(i)}i∈{1,2...,n} and {V(i)}i∈{1,2...,n} two independent collections of i.i.d. uniform order
statistics on [0, 1].
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Lemma 3.2 (Generalisation of Lemma 3.9 in [19]). Let γ, σ : [0, 1] → Rn be two C1

unit-speed curves and let {U(i)}i∈{1,2...,n} and {V(i)}i∈{1,2...,n} be two i.i.d. uniform order
statistics collections (Theorem 3.1). Then,

〈S(γ)n, S(σ)n〉 =
1

(n!)2
E

[ n∏
i=1

〈γ′U(i)
, σ′V(i)

〉
]

(3.3)

Proof. It is known [19] that

n!S(γ)n = E

[
n⊗
i=1

γ′U(i)

]
(3.4)

Hence, for an orthonormal basis {eρ}ρ∈{1,...,n} of Rn, we have

(n!)2〈S(γ)n, S(σ)n〉 (3.4)
= E

[
n∏
i=1

〈γ′U(i)
, σ′V(i)

〉

]
(3.5)

For more details, we invite the reader to follow the arguments in [19].

This result states that the inner product between signatures of deterministic paths
can be represented statistically through the mean of the product of 〈γ′U(i)

, σ′V(i)
〉. Observe

that for unit-speed curves, the inner products 〈γ′U(i)
, σ′V(i)

〉 only encode the information

on the angles Θi between the vectors γ′U(i)
and σ′V(i)

, i.e.

〈γ′U(i)
, σ′V(i)

〉 = cos (Θi) := cos
(
∠(γ′U(i)

, σ′V(i)
)
)
. (3.6)

In this case, also observe that the angles Θi can be exactly recovered from the norm of
the difference between the two above random variables,

Θi = cos−1
(
〈γ′U(i)

, σ′V(i)
〉
)

= cos−1

(
1− 1

2

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2) . (3.7)

Proposition 3.3 (Inner product as a probabilistic expression). Suppose that γ, σ : [0, 1]→
Rd are two absolutely continuous curves such that |γ′t| = |σ′t| = 1 for almost every
t ∈ [0, 1]. Then for every n ∈ N we have

〈S(γ)n, S(σ)n〉 =
1

(n!)2
E

[
exp

(
−
∞∑
k=1

1

k2k

n∑
i=1

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2k) 1{max Θi<
π
2 }

]

+
1

(n!)2
E

[
1{max Θi≥π2 }

n∏
i=1

〈γ′U(i)
, σ′V(i)

〉

]
,

(3.8)

where Θi in [0, π] is defined by
〈
γ′U(i)

, σ′V(i)

〉
= cos Θi, for i = 1, . . . , n, and 1A denotes the

indicator function on a set A.

Proof. One the set
{

maxi=1,...,n Θi <
π
2

}
, it holds that

1

2

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2 < 1, for i = 1, . . . , n.

Consequently, on this set, we have the expansion

log

(
n∏
i=1

〈γ′U(i)
, σ′V(i)

〉

)
=

n∑
i=1

log

(
1− 1

2

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2)
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= −
n∑
i=1

∞∑
k=1

1

k

(
1

2

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2)k
= −

∞∑
k=1

1

k2k

n∑
i=1

∣∣∣γ′U(i)
− σ′V(i)

∣∣∣2k ,
where the second equality utilises the standard Talyor expansion for log(1− x), which is
valid for |x| < 1. Combining this expansion with Theorem 3.2 yields Eq. (3.8).

The following two subsections leverage the preceding probabilistic expression to
attain upper and lower bounds for ||S(γ)n||. We first collate the recurrent objects and
assumptions that will be used in several subsequent arguments.

Assumptions 3.4 (Standing assumptions). Let (Ω,F ,P) be a probability space. The
standing assumptions will refer to the following set of recurring assumptions and
definitions,

(i) Let γ : [0, 1]→ Rd be a twice-continuously-differentiable unit-speed path such that
the map s 7→ |γ′′s | is non-vanishing, and is differentiable with bounded derivative.
Let F : [a, b] → [0, 1] be its associated cumulative distribution as prescribed in
Theorem 2.8.

(ii) Let {U(i)}i∈{1,...,n} and {V(i)}i∈{1,...,n} be two i.i.d. collections of uniform order
statistics (Theorem 3.1). Define the collections X(i) and Y(i) as

X(i) := F−1(U(i)), Y(i) := F−1(V(i)), i = 1, . . . , n. (3.9)

(iii) Let µXn and µYn be their respective empirical distributions defined by

µXn :=
1

n

n∑
i=1

δX(i)
, µYn :=

1

n

n∑
i=1

δY(i)
. (3.10)

(iv) Let µ and f respectively be the probability measure and density distribution
function associated with the cumulative distribution function F .

To conclude this subsection we state the explicit characterisation of the p-Wasserstein
distances in the case that µ and ν are both discrete measures.

Lemma 3.5 (Discrete characterisation of p-Wasserstein distance; Lemma 4.2 in [2]).
Let {Aj}j∈{1,...,n} and {Bj}j∈{1,...,n} be two samples of i.i.d. random variables. Denote
by {A(j)}j∈{1,...,n} and {B(j)}j∈{1,...,n} their respective order statistics and let µAn :=
1
n

∑n
i=1 δAi and µBn = 1

n

∑n
i=1 δBi be their associated empirical probability measures.

Then, for every p ≥ 1, we have

n∑
j=1

∣∣A(j) −B(j)

∣∣p = nW p
p

(
µAn , µ

B
n

)
,

where Wp is the p-Wasserstein distance. Moreover, for p =∞, we have

max
j=1,...,n

∣∣A(j) −B(j)

∣∣ = W∞
(
µAn , µ

B
n

)
.

3.2 Lower bound on signature norms in terms of Wasserstein distances

We now use the probabilistic expression of the signature inner product (Theorem 3.3)
when σ = γ, and derives a lower-bound on ||S(γ)|| in terms of Wasserstein distances.
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Proposition 3.6 (Lower bound on ||S(γ)|| in terms of Wasserstein distances). Let γ, µXn ,
µYn be as defined in Theorem 3.4. Then

(n!)2 ||S (γ)
n||2 ≥E

[
exp

(
−n

∞∑
k=1

1

k2k
W 2k

2k (µXn , µ
Y
n )

)
1{maxi=1,...,n|X(i)−Y(i)|<1}

]

− P
(

max
i=1,...,n

∣∣X(i) − Y(i)

∣∣ ≥ 1

)
,

(3.11)

for every n ∈ N.

Proof. We use the fact that∣∣γ′U(i)
− γ′V(i)

∣∣ =
∣∣g(X(i))− g(Y(i))

∣∣ (3.12)

where g := γ′ ◦ F . The assumptions on γ give that g is once continuously differentiable
and so the mean value inequality may be employed to see that

|γ′U(i)
− γ′V(i)

| ≤ |X(i) − Y(i)| · |g′(ξi)| for some ξi ∈ [X(i), Y(i)] for i = 1, . . . , n. (3.13)

Furthermore, as F satisfies the integral equation of Theorem 2.8 we have that

|g′(s)| = |γ′′F (s)| · |F
′(s)| = 1, ∀s ∈ [a, b]

By applying Theorem 3.5 we learn that

n∑
i=1

∣∣∣γ′U(i)
− γ′V(i)

∣∣∣2k ≤ n∑
i=1

∣∣X(i) − Y(i)

∣∣2k = nW 2k
2k (µXn , µ

Y
n ). (3.14)

Observe that maxi=1,...,n

∣∣X(i) − Y(i)

∣∣ < 1 is a strictly stronger condition than
maxi=1,...,n Θi <

π
2 , and that the product in the second term on the right-hand-side

of Eq. (3.8) may be lower bounded by −1 by the Cauchy-Schwarz inequality. The lower
bound Eq. (3.11) then follows by combining this observation, Eq. (3.8), and Eq. (3.14).

Remark 3.7. We can also multiply the sum inside the exponential term in Eq. (3.11)
by the indicator function on the set {maxi=1,...,n

∣∣X(i) − Y(i)

∣∣ < 1} without changing the
random variable inside the expectation. Doing so will prove convenient in the proof of
our main result Theorem 1.1.

3.3 Upper bound on signature norms in terms of Wasserstein distances

Similarly to Section 3.2, we use Theorem 3.3 to derive an upper bound on for ||S(γ)n||
in terms of a series of Wasserstein distances.

Proposition 3.8 (Upper bound on ||S(γ)|| in terms of Wasserstein distances). Let γ, µXn ,
µYn be as defined in Theorem 3.4. Then there exists an 0 < ε′ ≤ 1 so that for every n ∈ N
and 0 < ε < ε′

(n!)2 ||S (γ)
n||2 ≤E

[
exp

(
−n

∞∑
k=1

(1− φ(ε))k

k2k
W 2k

2k (µXn , µ
Y
n )

)
1{maxi=1,...,n|X(i)−Y(i)|<ε}

]

+ P

(
max

i=1,...,n

∣∣X(i) − Y(i)

∣∣ ≥ ε) , (3.15)

where φ (u) := sup|s−t|<u |g′ (t)− g′ (s)| is the modulus of continuity of the derivative of
g := γ′ ◦ F .
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Proof. An application of the fundamental theorem of calculus and Eq. (3.13) gives∣∣∣γ′U(i)
− γ′V(i)

∣∣∣2 =
∣∣g(X(i))− g(Y(i))

∣∣2
=

〈∫ Y(i)

X(i)

g′(r)dr,

∫ Y(i)

X(i)

g′(s)ds

〉

=

∫
[X(i),Y(i)]

2
〈g′(r), g′(s)〉 − |g′(r)|2 + 1drds

=
∣∣X(i) − Y(i)

∣∣2 +

∫
[X(i),Y(i)]

2
〈g′(r), g′(s)− g′(r)〉 drds.

And hence, by applying the Cauchy-Schwarz inequality to the integrand in the last line∣∣∣∣∣∣∣γ′U(i)
− γ′V(i)

∣∣∣2 − ∣∣X(i) − Y(i)

∣∣2∣∣∣∣ ≤ ∣∣X(i) − Y(i)

∣∣2 φ (∣∣X(i) − Y(i)

∣∣) , (3.16)

and so, in particular∣∣∣γ′U(i)
− γ′V(i)

∣∣∣2 ≥ (1− φ (∣∣X(i) − Y(i)

∣∣)) ∣∣X(i) − Y(i)

∣∣2 . (3.17)

To ensure that the series inside the exponential in Eq. (3.15) is finite, we note that φ
is a modulus of continuity, and so there exists some 0 < ε′ ≤ 1 for which φ(ε) < 1 for
any ε < ε′. Now, the product in the second term on the right-hand-side of Eq. (3.8) may
be upper bounded by 1 by the Cauchy-Schwarz inequality, so it follows from Eq. (3.17),
Theorem 3.5 and Theorem 3.3 that Eq. (3.15) holds provided ε < ε′.

3.4 Generalising the Hambly-Lyons Limit Theorem

Combined, Theorems 3.6 and 3.8 provide lower and upper bounds for ||S(γ)n|| in
terms of a series of Wasserstein distances. What remains is to show that the lower bound
converges to the square of the Hambly-Lyons limit as n→∞, and that the same applies
to the upper bound when taking n→∞ and then ε→ 0. The following pair of lemmas
provide the necessary results for this conclusion.

Lemma 3.9. Let µ, µXn , and µYn be as in the standing assumptions, then for any ε > 0

lim
n→∞

P

(
max

i=1,...,n

∣∣X(i) − Y(i)

∣∣ ≥ ε) = 0. (3.18)

Proof. Using mean value and inverse function Theorems, we may deduce that

X(i)−Y(i) = F−1
(
U(i)

)
−F−1

(
V(i)

)
=
(
F−1

)′
(ηi)

(
U(i) − V(i)

)
=
∣∣γ′′ηi∣∣ (U(i) − V(i)

)
(3.19)

for some ηi ∈
[
U(i), V(i)

]
. An application of Markov’s inequality gives that

P

(
max

i=1,...,n

∣∣X(i) − Y(i)

∣∣ ≥ ε) ≤ ε−1 ||γ′′||∞E
(

max
i=1,...,n

∣∣U(i) − V(i)

∣∣) ≤ 2Cε−1 ||γ′′||∞
1√
n
,

for some absolute constant C > 0. The first inequality utilises Eq. (3.19), and the second
uses Theorem 3.5, the triangle inequality, and Theorem 4.9 of [2]. Taking the limit as
n→∞ in the above inequality concludes the proof.

Lemma 3.10. Let µ, µXn , and µYn be as in the standing assumptions and 0 < a, ε ≤ 1,
then

∆n := n1{maxi=1,...,n|X(i)−Y(i)|<ε}
∞∑
k=2

ak

k2k
W 2k

2k (µXn , µ
Y
n )→ 0 (3.20)

in L1 as n→∞.

EJP 28 (2023), paper 150.
Page 14/19

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1048
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Signature asymptotics and empirical processes

Proof. We have that

E [∆n] = nE

[
1{maxi=1,...,n|X(i)−Y(i)|<ε}

∞∑
k=2

ak

k2k
W 2k

2k (µXn , µ
Y
n )

]

= E

[
1{maxi=1,...,n|X(i)−Y(i)|<ε}

∞∑
k=2

ak

k2k

n∑
i=1

∣∣X(i) − Y(i)

∣∣2k]

≤ E

[ ∞∑
k=2

ak

k2k

n∑
i=1

∣∣X(i) − Y(i)

∣∣4]

≤ E

[
nW 4

4 (µXn , µ
Y
n )

∞∑
k=1

ak

k2k

]

= E
[
nW 4

4 (µXn , µ
Y
n )
]

log

(
2

2− a

)
.

Using the following inequality (Section 4.1, [2]) for p ∈ N \ {0},

E
[
W p
p (µXn , µ

Y
n )
]
≤ 2pE

[
W p
p (µXn , µ)

]
,

together with the bounds from Theorem 5.3 in [2] gives

E
[
W 4

4 (µXn , µ
Y
n )
]
≤ 24

(
20√
n+ 2

)4

J4(µ),

where J4(µ) is finite since µ is compactly supported with density f bounded below by
Theorem 2.9. It follows that

lim
n→∞

E [∆n] ≤ lim
n→∞

404 log

(
2

2− a

)
n

(n+ 2)2
J4(µ) = 0.

We are now ready to prove our main result.

Theorem 3.11 (Generalisation of the Hambly-Lyons Limit Theorem). Let γ, µ, µXn , and
µYn be as in the standing Theorem 3.4. Then,

lim
n→∞

n! ||S(γ)n|| = E

[
exp

(
−
∫ 1

0

(B0,s)
2|γ′′s |2ds

)]1/2

. (3.21)

Proof. For 0 < ε ≤ 1, define Aεn to be the set {maxi=1,...,n |X(i) − Y(i)| < ε}. Then, by
Theorem 3.9, 1Aεn converges to 1 in probability, and that P ((Aεn)c) converges to 0. It
follows from Theorems 2.5 and 2.6, and Slutsky’s Theorem that

n

2
1AεnW

2
2 (µXn , µ

Y
n )→

∫ 1

0

(B0,s)
2|γ′′s |2ds (3.22)

in distribution as n→∞. As such, by Eq. (3.22), Theorem 3.10, and another application
of Slutsky’s Theorem we obtain the following convergence in distribution

n1Aεn

∞∑
k=1

1

k2k
W 2k

2k (µXn , µ
Y
n )→

∫ 1

0

(B0,s)
2|γ′′s |2ds. (3.23)

For the lower bound, the combining of Eq. (3.23) with Theorem 3.6, Theorem 3.7,
Theorem 3.9, yet another application of Slutsky’s Theorem, and the Continuous Mapping
Theorem, results in the lower bound

lim
n→∞

(n!)2 ||S(γ)n||2 ≥ E
[
exp

(
−
∫ 1

0

(B0,s)
2|γ′′s |2ds

)]
. (3.24)
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Similar analysis for the upper bound from Theorem 3.8 shows that

lim
n→∞

(n!)2 ||S(γ)n||2 ≤ E
[
exp

(
−(1− φ(ε))2

∫ 1

0

(B0,s)
2|γ′′s |2ds

)]
, (3.25)

for suitably small ε. Using the fact that φ is continuous at zero, we may take the limit in
the preceding as ε→ 0 and combine it with the lower bound Eq. (3.24) to conclude that
Eq. (3.21) holds.

This generalisation allows us to compute the limit of the signature norm for curves
that are not C3.

Remark 3.12. Due to our restrictions on γ, it is not possible to exhibit 2-dimensional
examples satisfying our assumptions that are not C3.

Example 3.13 (3-dimensional non-C3 curves). Let αt : [0, 1] → R be a continuous
function which is non-differentiable at t = 1

2 . Define

θt :=
π

2
+

∫ t

0

cos(αs)ds, ϕt :=

∫ t

0

sin(αs)

sin(θs)
ds.

By the Fundamental Theorem of Calculus, θ and ϕ are continuously differentiable but not
twice-differentiable at t = 1

2 provided α is chosen carefully. Note that ϕ is well defined
since π

2 − 1 ≤ θt ≤ π
2 + 1 so that sin(θt) is bounded away from 0. Construct the curve

γ′ : [0, 1]→ R3 using spherical coordinates:

γ′1(t) := sin(θt) cos(ϕ(t)), γ′2(t) := sin(θt) sin(ϕt), γ′3(t) = cos(θt),

and set γ(t) :=
∫ t

0
γ′(t)dt. Then by construction:

1. γ is twice continuously differentiable.

2. γ is unit speed and so of length 1.

3. γ′′3 = −θ′t sin(θt) which is not differentiable at t = 1
2 .

4.
∣∣γ′′(t)∣∣2 = θ′t

2
+
(
ϕ′t sin(θ′t)

)2
= cos2(αs) + sin2(αs) = 1, which is differentiable with

bounded derivative.

3.5 Computing the Hambly-Lyons limit explicitly

Finally, we propose a way to practically compute the limit presented in Theorem 1.1.
Using the work of Yor and Revuz on Bessel bridges [32], we relate the computation of
the expected integral c(γ) to the solving of a second order distributional differential
equation.

Lemma 3.14 (High order term and curvature). Let V be a finite dimensional inner
product space. Suppose that γ : [0, l]→ V is parameterised at unit speed and is three-
times continuously differentiable (under this parameterisation). Let µ denote the finite
Borel measure on R+ which is absolutely continuous with respect to the Lebesgue
measure λ = λR+ with density given by dµ

dλ (t) = l2 |γ′′tl|
2

1[0,1] (t) a.e. Then,

(i) There exists a unique continuous function φ : [0, 1] → R which solves, in the
distributional sense, the second-order differential equation

ψ′′ = 2ψµ,with ψ0 = 0, ψ′0 = 1. (3.26)

(ii) This solution satisfies

ψ
−1/4
1 = E

[
exp

(
−
∫ 1

0

(B0,t)
2
µ (dt)

)]1/2

= c(γ). (3.27)
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Proof. Define the unit-speed curve γ̃t := 1
l γlt over [0, 1] and let the terms in its signature

be given by
(
1, S(γ̃)1, . . . , S(γ̃)n, . . .

)
. It suffices to prove the result under the assumption

that l = 1 since the general result can then be recovered by noticing

(n! ||S(γ)n||)1/n
= l (n! ||S(γ̃)n||)1/n ∼ l +

l

n
log c

(
1
l γ
)

+ o

(
1

n

)
,

so that c (γ) = c
(

1
l γ
)
, and by noting that

∣∣γ̃′′t ∣∣2 = l2
∣∣γ′′lt∣∣2. We therefore assume that

l = 1, and seek to prove that c (γ) = ψ
−1/4
1 . To this end, we first observe that the

unit-speed parameterisation of γ gives that 〈γ′t, γ′′′t 〉 = − |γ′′t |
2 for every t in [0, 1]. When

used together with Eq. (1.8) this gives that

c (γ) = E

[
exp

(
−
∫ 1

0

(B0,t)
2
µ (dt)

)]1/2

.

By noticing that (B0,·)
2 is a squared Bessel bridge of dimension 1 which returns to zero

at time 1, we can then use Theorem 3.2 of [32] to see that

c (γ) =

(
φ1

∫ 1

0

1

φ2
t

dt

)−1/4

, (3.28)

where φ is the unique continuous positive function solving the distributional equation
φ′′ = 2φµ, with φ0 = 1, φ′0 = 0. Using Exercise 1.34 in [32], we know that the function ψ
in the statement and φ are related by

ψt = φt

∫ t

0

1

φ2
s

ds,

and therefore Eq. (3.28) becomes c (γ) = ψ
−1/4
1 .

This result reduces the computation of c(γ) for a planar circle to the solving of a
simple differential equation.

Example 3.15 (The planar circle). Let γt = 1
2π (sin(2πt), cos(2πt)) for t in [0, 1], then γ is

a smooth unit-speed curve of length l = 1 and |γ′′t | = 2π so that µ (dt) = 2π1[0,1] (t) dt. By
solving the differential equation Eq. (3.26) we find that

c (γ) =

(
2
√
π

sinh 2
√
π

)1/4

. (3.29)

Remark 3.16 (Role of c(γ) in the asymptotics of the norm). By starting from Eq. (1.7) and
Eq. (1.8), we notice the latter statement can be rewritten as a statement of asymptotic
equivalence, namely(

n! ||S(γ)n||HS

)1/n ∼ l +
l

n
log c (γ) + o

(
1

n

)
as n→∞, (3.30)

where we write ||·||HS for the moment to emphasise the dependence of this expansion
on the choice of tensor norm. By contrast for the projective tensor norm it follows from
Eq. (1.6) that we have(

n! ||S(γ)n||proj

)1/n

∼ l + o

(
1

n

)
as n→∞.

When written in this way, the c(γ) limit has the interpretation of being the second
term in the asymptotic expansion of (n! ||S(γ)n||HS)1/n as n → ∞. Natural questions
would be to explore the higher order terms in these asymptotic expansions, and to relate
them to geometric features of the underlying curve.
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