
E l e c t r o n i
c

J
o

u
r n a l

o
f

P
r

o b a b i l i t y

Electron. J. Probab. 28 (2023), article no. 157, 1–36.
ISSN: 1083-6489 https://doi.org/10.1214/23-EJP1042

Contact process on a dynamical long range
percolation*

Marco Seiler† Anja Sturm‡

Abstract

In this paper we introduce a contact process on a dynamical long range percolation
(CPDLP) defined on a complete graph (V, E). A dynamical long range percolation is
a Feller process defined on the edge set E , which assigns to each edge the state of
being open or closed independently. The state of an edge e is updated at rate ve and
is open after the update with probability pe and closed otherwise. The contact process
is then defined on top of this evolving random environment using only open edges for
infection while recovery is independent of the background. First, we conclude that an
upper invariant law exists and that the phase transitions of survival and non-triviality
of the upper invariant coincide. We then formulate a comparison with a contact
process with a specific infection kernel which acts as a lower bound. Thus, we obtain
an upper bound for the critical infection rate. We also show that if the probability that
an edge is open is low for all edges then the CPDLP enters an immunization phase,
i.e. it will not survive regardless of the value of the infection rate. Furthermore, we
show that on V = Z and under suitable conditions on the rates of the dynamical long
range percolation the CPDLP will almost surely die out if the update speed converges
to zero for any given infection rate λ.
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Contact process on a dynamical long range percolation

1 Introduction

The classical contact process on a fixed graph describes the spread of an infection
over time and space. It has been studied intensively and many variations have been
considered, see Section 3.1 for more background. In this article we study a contact
processes on a dynamical long range percolation (CPDLP), in which infections over any
distance are possible depending on whether the corresponding edge is present, which
also changes dynamically.

We assume that the underlying graph G = (V,E) is a connected and transitive graph
with bounded degree. The graph distance of G is denoted by d(·, ·) and the set of all
possible edges by E := {e = {x, y} : x, y ∈ V, x 6= y}. From now on we consider the
complete graph (V, E) which we also equip with the original graph distance d(·, ·).

There are several notions of transitivity for graphs in the literature. Thus, we specify
the notion briefly. Here a graph G is called transitive if for any pair of vertices x1, x2 ∈ V
and respectively for any pair of edges e1, e2 ∈ E, there exists a graph automorphism φ

which maps x1 to x2 and e1 to e2. A graph automorphism is a permutation on V which
preserves the graph structure, i.e. {x, y} ∈ E iff {φ(x), φ(y)} ∈ E. In the literature this is
sometimes called vertex and edge transitivity.

The CPDLP (C,B) = (Ct,Bt)t≥0 is a Markov process on P(V )×P(E), where P(V ) and
P(E) denote the power sets of V and E . We equip the space P(V )×P(E) with the topology
induced by pointwise convergence, i.e. (Cn, Bn) ∈ P(V ) × P(E) converges to (C,B) if
1{(x,e)∈(Cn,Bn)} → 1{(x,e)∈(C,B)} for all (x, e) ∈ P(V )× P(E). Note that P(V )× P(E) is a
partially ordered space with respect to “ ⊂ ”. Furthermore, we denote by “⇒ ” weak
convergence of probability measures on P(V ) × P(E). As usual we denote by |A| the
cardinality of a set A.

We call C the infection process, which takes values in P(V ). If x ∈ Ct then we call x
infected at time t. The process B describes an evolving edge random environment and
takes values in P(E). Thus, we call B the background process. If e ∈ Bt we call e open at
time t and closed otherwise. Furthermore, we assume that B evolves autonomously of C.
Given that B is currently in state B the transitions of the infection process C currently
in state C are for all x ∈ V ,

C → C ∪ {x} at rate λ · |{y ∈ C : {x, y} ∈ B}| and

C → C\{x} at rate r,
(1.1)

where λ > 0 denotes the infection rate and r > 0 the recovery rate. We write C = CC

when C0 = C. For the background dynamics we consider a dynamical long range
percolation. Let (p̂e)e∈E ⊂ [0, 1] and (v̂e)e∈E ⊂ (0,∞) be sequences of real numbers such
that p̂{x,y} = p̂{x′,y′} and v̂{x,y} = v̂{x′,y′} if d(x, y) = d(x′, y′). We exclude the trivial case
that p̂e = 0 for all e ∈ E . Now the dynamical long range percolation B currently in state
B has transitions

B → B ∪ {e} at rate v̂ep̂e and

B → B\{e} at rate v̂e(1− p̂e)
(1.2)

for all e ∈ E . As initial distribution we choose B0 ∼ π, where π is the invariant law of B
which means that the events ({e ∈ Bt})e∈E are independent and P(e ∈ Bt) = p̂e for all
e ∈ E and t ≥ 0.

We will in particular be interested in the behavior of our process when we scale the
percolation and speed kernels. For this we will assume that they are of the form

p̂e = p̂e(q) := qpe and v̂e = v̂e(γ) := γve (1.3)

for all e ∈ E for some γ > 0 and q ∈ (0, 1] and fixed kernels (pe)e∈E ⊂ [0, 1] and
(ve)e∈E ⊂ (0,∞). A long range percolation model assigns to every edge e ∈ E inde-
pendently the state of being open with probability p̂e and otherwise closed. The term
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Contact process on a dynamical long range percolation

“dynamical” means that we update the state of every edge e as time evolves. This is
done independently for every edge e = {x, y} at update speed v̂e which depends only on
the length d(x, y) of that edge. This yields a translation invariant background dynamic,
where we use that the graph G is transitive.

Since we are in a long range setting we need some assumptions regarding the flip
rates of the background process to ensure that the CPDLP is well-defined.

In order to ensure that the transition rates of the infection process are not infinite we
need that at any given time t the neighborhood of any vertex x remains finite. Therefore,
we assume that the sequence (p̂e)e∈E and (v̂e)e∈E satisfy∑

y∈V \{x}

v̂{x,y}p̂{x,y} <∞ and
∑

y∈V \{x}

v̂−1{x,y} <∞ for all x ∈ V. (1.4)

Note that if the kernels are of the form (1.3) then (pe)e∈E ⊂ [0, 1] and (ve)e∈E ⊂ (0,∞)

satisfy these assumptions iff (p̂e)e∈E ⊂ [0, 1] and (v̂e)e∈E ⊂ (0,∞) do.

Remark 1.1. The assumptions in (1.4) imply that v̂{x,y}p̂{x,y} → 0 and v̂{x,y} → ∞
as d(x, y) → ∞. Since we also have that v̂e > 0 for all e ∈ E it follows that C :=

infy:y 6=x v̂{x,y} > 0, where C does not depend on the choice of x ∈ V due to translation
invariance. This implies together with (1.4) that

0 < C
∑

y∈V \{x}

p̂{x,y} ≤
∑

y∈V \{x}

v̂{x,y}p̂{x,y} <∞,

i.e. that the sequence (p̂{x,y})y∈V \{x} is summable.

Thus, as a consequence of the assumptions in (1.4) the probability that a long edge is
open, i.e. an edge connecting two vertices over a long distance, becomes exceedingly
small. Broadly speaking this means that a successful infection over a long distance
is getting more and more unlikely as the distance increases. The second part of the
assumption can be seen as assuming that all edges attached to an arbitrary vertex
are updated after a finite time. This might seem a bit unintuitive, but we need this
assumption for technical reasons. We discuss the necessity of this rate assumption
briefly in Section 3 right after Problem 3.3.

In Section 5 we will explicitly construct the CPDLP via a graphical representation and
then show that under these assumptions the resulting process is in fact a well-defined
Feller process (see Proposition 5.7) with state space P(V ) × P(E) and that |Ct| < ∞
almost surely for all t ≥ 0 if |C0| < ∞, even if the background is started in E (see
Proposition 5.6).

We are interested in the survival behavior of the CPDLP as the parameter λ varies,
and later on also as γ > 0 and q ∈ (0, 1) vary for percolation and speed kernels of the
form (1.3). In the general setting, we denote by

θ(λ,C) := P(CC
t 6= ∅ ∀t ≥ 0)

the survival probability of a CPDLP with infection parameter λ and initial state C0 = C

and B0 ∼ π (and all other parameters fixed).
We denote the critical infection rate for survival by

λc := inf{λ ≥ 0 : θ(λ, {x}) > 0},

where x ∈ V is chosen arbitrary. Note that by translation invariance it follows that
θ(λ, {x}) = θ(λ, {y}) for all x, y ∈ V . Furthermore, this together with the additivity of the
infection process C implies that θ(λ,C) > 0 for some C ⊂ V with 0 < |C| <∞ then this
is true for all such sets. Thus, the definition of the critical rate λc does not depend on
the choice of the set of initially infected vertices as long as it is finite and non-empty.
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Furthermore, by standard methods and using the monotonicity of the system, see also
Remark 5.3, we get the existence of the upper invariant law ν, which is the weak limit
of the process started with (C0,B0) = (V, E). (Whenever relevant we will indicate the
dependence of ν on the parameters of the model with subscripts.) The upper invariant
law is the largest invariant law according to the stochastic order, i.e. if ν is an invariant
law of the CPDLP, then ν � ν, where “�” denotes the stochastic order. Of course, there
exists the trivial invariant law δ∅ ⊗ π. This poses the question for which parameters it
holds that ν = δ∅ ⊗ π. Since it is not difficult to see that δ∅ ⊗ π is the smallest invariant
law possible, ν = δ∅ ⊗ π is equivalent to ergodicity of the system, i.e. that there exists
a unique invariant law which is the weak limit of the process. We define the critical
infection rate for non-triviality of the upper invariant law by

λ′c := inf{λ > 0 : νλ 6= δ∅ ⊗ π}.

2 Main results

Our first result is that the critical infection rate of survival and the critical infection
rate for a non-trivial upper invariant law are the same.

Theorem 2.1. The two critical infection rates coincide, i.e. λ′c = λc.

The next result provides a coupling of the CPDLP with a contact process that has a
general infection kernel. As a consequence we obtain that if this contact process survives
then this implies survival of the CPDLP, and thus this leads to a sufficient criterion for a
positive survival probability of the CPLDP. We first define the contact process X with an
infection kernel (ae)e∈E ⊂ [0,∞) and recovery rate r > 0 on the complete graph (V, E).
We additionally assume that a{x,y} = a{x′,y′} if d(x, y) = d(x′, y′) and∑

y∈V \{x}

a{x,y} <∞ (2.1)

for all x ∈ V . If X is currently in the state C it has the transitions

C → C ∪ {x} at rate
∑
y∈C

a{x,y} and

C → C\{x} at rate r.

(2.2)

This process can again be constructed via a graphical representation and it is a well
known fact that if (2.1) is satisfied then X is a well-defined Feller process on the state
space P(V ), see for example [Lig12, Propostion I.3.2] and [Swa09]. As usual we indicate
the initial configuration C ⊂ V by adding a superscript XC , i.e. XC

0 = C.

Theorem 2.2. Let C ⊂ V and (CC
t ,Bt)t≥0 be a CPDLP with parameter λ, q and γ. Then

there exists a contact process (X
C

t )t≥0 with X
C

0 = C and with infection kernel

ae(λ) :=
1

2

(
λ+ v̂e −

√
(λ+ v̂e)2 − 4λv̂ep̂e

)
≥ 0

for all e ∈ E such that X
C

t ⊂ CC
t for all t ≥ 0. Thus, in particular

λc ≤ λc,

where λc := inf{λ > 0 : P(X
{x}
t 6= ∅ ∀t ≥ 0) > 0} is the critical infection rate for survival

of X (which is again independent of x ∈ V ).

The following results are concerned with the behavior of survival as we scale per-
colation probability and speed with the parameters q and γ. Thus, we assume that the
percolation and speed kernels are as in (1.3) and consider the survival probability θ and
the critical infection parameter λc as functions of γ and q.
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Remark 2.3. Note that in this setting a CPDLP with rates λ, r, γ, q has the same dynamics
as a CPDLP with rates λ/r, 1, γ/r, q when time is sped up by a factor of r, and the survival
probabilities are the same. Thus, the survival behavior of a CPDLP with rates λ, r, γ, q
can be deduced from the survival behavior of a CPDLP with rates λ, 1, γ, q. In other
words, it is not necessary to explicitly study the dependence on r.

As a consequence of Theorem 2.2 we obtain the following result for fast update speed.

Corollary 2.4. Let X∞ be a contact process with infection kernel (λqpe)e∈E and denote
the corresponding critical infection rate by

λ∞c (q) = inf{λ > 0 : Pλ,q(X
{x},∞ 6= ∅ ∀t ≥ 0) > 0}.

Then we have
lim sup
γ→∞

λc(γ, q) ≤ lim
γ→∞

λc(γ, q) = λ∞c (q) <∞.

The next result shows that for any fixed speed if we have overall a low probability
that an edge of any length is open, i.e. for q small enough, we are in the immunization
region for the CPDLP. This means that the critical infection rate is infinite and so no
matter how large the infection rate is the CPDLP will die out almost surely

Theorem 2.5. For any fixed γ > 0 there exists q0 = q0(γ) ∈ (0, 1] such that C dies out
almost surely for all q < q0, regardless of the choice of λ > 0, i.e. λc(γ, q) = ∞ for all
q < q0, and such that λc(γ, q) < ∞ for all q > q0. Moreover, the function γ 7→ q0(γ) is
monotone non-increasing on (0,∞).

As a corollary we can also get more insight into the behavior of the critical infection
rate λc(γ, q) as a function of γ and in particular into its asymptotic behavior as γ → 0.
Note that while it is clear due to monotonicity that q 7→ λc(γ, q) is a monotone non-
increasing function, see also Remark 5.3, this is not so clear for the function γ 7→ λc(γ, q).
Nonetheless, it can be shown (see Proposition 5.4) that λc(γ, q) can at most increase
linearly in γ which implies that there exists a γ0(q) such that λc(γ, q) =∞ for all γ < γ0(q)

and λc(γ, q) < ∞ for all γ > γ0(q). Note that γ0(q) must be finite for any q > 0 due to
Corollary 2.4 but that it may be 0. However, the following corollary states that for small
enough q we have γ0(q) > 0 such that a nontrivial immunization phase exists. For this
we now set

q1 := sup
γ∈(0,∞)

q0(γ) = lim
γ→0

q0(γ), (2.3)

where we have used the monotonicity of γ 7→ q0(γ) stated in Theorem 2.5. This means
that by Theorem 2.5 for every q < q1 there exists a γ > 0 such that q < q0(γ) < q1
which implies λc(γ, q) =∞ and thus also γ0(q) > 0. In summary, we have the following
statement:

Corollary 2.6. For every q ∈ (0, 1] there exists a γ0 = γ0(q) ∈ [0,∞) such that λc(γ, q) =

∞ for all γ < γ0 and λc(γ, q) <∞ for all γ > γ0. Furthermore, there exists a q1 ∈ (0, 1],
see (2.3), so that for every q < q1 we have γ0(q) > 0 while for every q > q1 we have
γ0(q) = 0. This implies in particular for every q < q1 that limγ→0 λc(γ, q) =∞.

For general countable vertex sets V we can only determine that λc(γ, q)→∞ when
γ → 0 if q < q1 is small enough. But in the special case V = Z and E = {{x, y} ⊂ Z :

|x−y| = 1}, i.e. when G = (V,E) is the 1-dimensional integer lattice we can conclude that
this is the case for all q < 1, under some further assumptions. In fact, these assumptions
even guarantee that for any fixed λ we cannot have survival if the update speed γ is
small enough.

Theorem 2.7. Consider G to be the 1-dimensional integer lattice. Let q < 1 be fixed and
C ⊂ V be non-empty and finite. Furthermore, assume that the sequences (pe)e∈E and
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(ve)e∈E satisfy ∑
y∈N

yv{0,y}p{0,y} <∞ and
∑
y∈N

yv−1{0,y} <∞. (2.4)

Then, for every λ > 0 there exists γ∗ = γ∗(λ, q) > 0 such that CC dies out almost surely
for all γ ≤ γ∗, i.e. θ(λ, γ, q, C) = 0 for all γ ≤ γ∗. Thus, in particular limγ→0 λc(γ, q) =∞.

Note that (2.4) is a stronger assumption than (1.4), and thus already implies the
latter assumption.

2.1 Outline

The rest of this paper is organized as follows. In Section 3 we discuss some related
literature in order to put our results into context with the current state of research. Then,
we state and discuss some open problems and possible directions for future research.

Since we will use on several occasions a comparison with an independent long range
percolation model we introduce this type of model in Section 4 and state some conditions
which imply the absence of an infinite connected component.

In Section 5 we construct the CPDLP via a graphical representation. Furthermore, in
Subsection 5.1 we show that this construction yields a well-defined Feller process. In
Subsection 5.2 we describe the construction of a dual infection process, which yields a
self-duality relation. We then use this relation to prove Theorem 2.1. In Subsection 5.3
we use the graphical representation to show Theorem 2.2 and Corollary 2.4.

In Section 6 we compare the dynamical long range percolation blockwise with an
independent long range percolation model and define a new infection process, which
dominates the original one. We use this newly defined process to show Theorem 2.5 in
Subsection 6.1. Lastly, we show Theorem 2.7 in Subsection 6.2.

3 Discussion

3.1 Related literature

The contact process was first introduced almost half a century ago by Harris [Har74]
on Zd. Since then this process and many variations of it have been studied intensively,
mostly on bounded degree graphs. To the best of our knowledge the first to introduce
a long range variation of the contact process, where there is no intrinsic bound on
the distance between two vertices for which a transmission of an infection can take
place, was Spitzer [Spi77]. He studied so-called nearest particles systems. Bramson
and Gray [BG81] studied in particular the phase transition of similar systems. See also
[Lig12, Chapter VII] for more results on nearest particles systems.

Swart [Swa09] studied a contact process with general infection kernel (ae)e∈E as in
(2.1) and (2.2), see also [AS10], [SS14] and [Swa18] for more results on this process.
For applications in certain areas of physics, see for example [Gin+06].

Another long range variation of the model is a contact process defined on a random
graph with unbounded degree. To be precise, the considered graph has almost surely
finite degree but there exists no uniform bound for the degree of a vertex. For example,
Can [Can15] studied a contact process on an open cluster generated by a long range
percolation, and Ménard and Singh [MS16] considered the phase transition of contact
processes on more general graphs of unbounded degree.

In this paper we study the spread of an infection in a dynamical random environment.
To the best of our knowledge the first to study such a model explicitly was Broman
[Bro07] followed by Steif and Warfheimer [SW08], who considered a contact process
with varying recovery rates. Remenik [Rem08] studied a related model and made
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connections to multi-type contact processes, which had been studied earlier, see for
example Durrett and Møller [DM91].

Linker and Remenik [LR20] explicitly considered a contact process on a dynamical
percolation, i.e. in the evolving random environment the edges of the underlying graph
of bounded degree open and close independently, and the closed edges cannot be used
by the infection. They studied the phase transition for survival. As a follow up we [SS22]
studied a contact process in a more general evolving edge random environment, but still
kept the assumption that the underlying graph has bounded degree. For more work in
this direction, see also Hilario et al. [Hil+21]. In the present article we consider a graph
with unbounded degree as a natural long range extension to these models on bounded
degree graphs.

Finally we mention recent work by Gomes and Lima [GL21] on the survival probability
of a dynamical long range contact process, which in contrast to our model includes a
vertex update mechanism. At update events a vertex independently has a radius assigned
according to some distribution. From this time on this vertex can infect every neighbor
inside the ball of this radius. Note that in this model the orientation of the edges is
important while in our model this is not the case since an edge is either open or closed
for infections in either direction.

3.2 Discussion and open problems

Theorem 2.2 states that a contact process X with a specific infection kernel acts as a
bound from below for the CPDLP such that survival of X implies survival of the CPDLP.
For this result we use a comparison result developed by Broman [Bro07]. Furthermore,
in Corollary 2.4 we show that the critical infection rate λ∞c (q) of a contact process X∞

with infection kernel (λqpe)e∈E is an upper bound for the limit of the critical infection
rate of the CPDLP, i.e.

lim sup
γ→∞

λc(γ, q) ≤ lim
γ→∞

λc(γ, q) = λ∞c (q) <∞.

But in fact we will see in Lemma 5.9 that the rates ae(λ, q, γ) of X converge to λqpe as
γ → ∞ from below. Thus, it seems plausible to assume that the following conjecture
holds true.

Conjecture 3.1. Fix q and assume that (1.4) is satisfied. Then we conjecture that

lim
γ→∞

λc(γ, q) = λ∞c (q).

The shape of the infection kernel (λqpe)e∈E does have a heuristic explanation. Let
us consider a particular edge e and a given infection rate λ. If the update speed v̂e is
chosen significantly larger than the infection rate, i.e. γ large enough, then with high
probability there will be an update event between two consecutive infection events,
and thus this results heuristically speaking in a thinning of the infection process such
that infection events take place at rate λp̂e as γ → ∞. Linker and Remenik made this
heuristic rigorous in the proof of [LR20, Theorem 2.3]. If we could extend their proof to
our model we would have shown Conjecture 3.1. But several steps of their proof rely
heavily on the fact that they only consider graphs with bounded degrees. Nevertheless
we believe that since we additionally assume that v̂{x,y} →∞ as d(x, y)→∞ it should
be possible to make this heuristic argument into a rigorous proof.

In Theorem 2.5, which is analogous to the result [LR20, Theorem 2.6(a)] in the
bounded degree case, we prove the existence of the so called immunization phase if
the sequences (ve)e∈E and (pe)e∈E satisfy (1.4). This means that for a given γ there
exists q0 = q0(γ) ∈ (0, 1] such that λc(γ, q) = ∞ for all q < q0 and λc(γ, q) < ∞ for all
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q > q0. In other words, if the parameter q of the background dynamics is chosen small
enough no survival is possible no matter how large the infection rate λ is. Linker and
Remenik [LR20] showed for the contact process on a one-dimensional nearest neighbor
percolation that a particular threshold value p1 ∈ (0, 1) exists such that an immunization
phase exists if p < p1 and that no such phase exist for p > p1. Thus, by a comparison
argument, if there exists an edge e ∈ E such that pe is larger than this threshold p1 then
also q0(γ) < 1. The value q1 of Corollary 2.6 was defined as the supremum over all values
of q0(γ) such that for all q > q1 we have λc(γ, q) < ∞ for all γ > 0. This leads to the
following question:

Problem 3.2. For which sequences (pe)e∈E and (ve)e∈E do we have q1 < 1 so that there
is a nontrivial phase transition in the parameter q?

It is clear from [LR20] that q1 = 1 in the nearest neighbor setting, namely if p{x,y} < p1
for d(x, y) = 1 (and equal to zero otherwise). In a truly long range setting (pe > 0 for
all e ∈ E) the proof of Theorem 2.5 suggests that if

∑
y∈V \{x} p{x,y} is small enough it

should hold that q1 = 1.

As a direct consequence of Theorem 2.5 we are able to characterize the survival
behavior for small q. To be precise Corollary 2.6 yields that the infection will almost
surely die out as γ → 0, i.e limγ→0 λc(γ, q) =∞ for q < q1. In the special case V = Z with
Theorem 2.7, which is analogous to the result [LR20, Theorem 2.4(a)] in the bounded
degree case, see also [Hil+21, Theorem 1.1(i)] for higher dimensions, we are able to
show that limγ→0 λc(γ, q) =∞ for all q < 1 if we sharpen the assumptions on (ve)e∈E and
(pe)e∈E from (1.4) to (2.4). As we will see in Section 6.2 these sharper assumptions are
crucial in the proof, where we use a comparison to a long range percolation model. The
assumption

∑
y∈N yv{0,y}p{0,y} <∞ implies in particular that this long range percolation

model has no infinite component. Thus, for Z as well as more general graphs a natural
question is what the asymptotic behavior is if we assume that the long range percolation
induced by (qpe)e∈E forms a infinite connected component? In this case, the background
process would contain an infinite connected component at any time point t. Then we
expect that this should imply the possibility of survival for any background speed, i.e.
that limγ→0 λc(γ, q) =∞ does not hold.

Problem 3.3. Assume that there exists a q ∈ (0, 1) such that the long range percolation
induced by (qpe)e∈E forms an infinite connected component almost surely and let q∗ ∈
[0, 1) denote the infimum over all such q. Do we have for all q > q∗ that sup{λc(γ, q′) :

γ ≥ 0, q′ ∈ (q, 1)} <∞?

In [Hil+21, Theorem 1.1(ii)] this was shown in the special case of the contact process
on a dynamical nearest neighbor percolation defined on the d-dimensional integer lattice.

Let us mention that the assumption
∑
y∈V \{x} v

−1
{x,y} <∞ for all x ∈ V in (1.4) implies

that every edge {x, y} attached to an arbitrary vertex x is almost surely updated after a
finite time. Heuristically speaking this means that the neighborhood of x is “reset” after
a finite time almost surely, i.e. all edges attached to x are updated at least once. This
assumption is necessary for the proof strategy of Theorem 2.5 and Theorem 2.7. But the
assumption also means that the update speed of an edge tends to infinity as the length
of the edge grows, i.e. v{x,y} → ∞ as d(x, y) → ∞ while it would seem more natural
to assume that ve is constant for all e ∈ E . However, in the case of constant speed we
would have to restrict the state space as the CPDLP will not be a well-defined Feller
process on the full state space P(V )× P(E). This is because if we start with every edge
e in the state open, i.e. B0 = E the infection process will explode in finite time since any
neighborhood will contain infinitely many neighbors almost surely. Nevertheless one
could consider this process with constant speed, i.e. ve = v for all e, on a smaller state
space. A possible choice for such a state space would be the set of edge configurations
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which are locally finite.

Finally, one may investigate whether λc = 0 may be possible for certain parameter
regimes. For contact processes on graphs with bounded degrees it is easy to see that
a subcritical phase exists, i.e. λc > 0, which can be proven via a comparison with a
continuous time branching process with binary offspring distribution. In general, such
a comparison can also be done for contact processes on the complete graph with a
summable infection kernel (ae)e∈E . The procedure is similar to that used in the proof of
Proposition 4.1 where we use such a comparison to show existence of a non-trivial phase
transition for a long range percolation model.

On the other hand if we consider a contact process with constant infection rate λ on a
locally finite random graph with unbounded degree this kind of a comparison might fail,
and in fact such systems do not always exhibit a phase transition. For example, Gomes
and Lima manage to show this for their model, see [GL21, Theorem 2]. They show that
if the typical radius of the region of vertices which may be infected is large enough, then
the infection survives for any infection rate λ. See also [Can15], [MS16] and [HD20],
where this type of question is studied for a contact process on static random graphs. For
our model we have the following conjecture:

Conjecture 3.4. If (ve)e∈E and (pe)e∈E satisfy (1.4) then λc(γ, q) > 0 for all γ > 0 and
q ∈ [0, 1]. In words, this means that for all choices of γ and q there exists a subcritical
phase for the infection.

Our intuition comes from a recent work by Jacob, Mörters and Linker who consider in
[JLM22] a related setting to ours but on finite graphs of sizeN . In [JLM22, Section 5] they
define an auxiliary process which they call the wait-and-see process which dominates
the infection process, and they show with a supermartingale argument that under some
conditions the process has a fast extinction regime if the infection rate λ is small enough,
i.e. the extinction time of the infection process is bounded by some power of log(N). We
believe that these techniques can be adjusted to infinite graphs in such a way that they
would imply Conjecture 3.4.

4 Long range percolation model

Several proofs rely on a comparison argument with a long range percolation model.
Thus, in this section we briefly introduce this model and show two results concerning
the absence of an infinite connected component. One of the first papers to mention
a long range percolation model is by Schulman [Sch83]. There, Proposition 4.1 and
Proposition 4.3 are shown in special cases. Since we could not find these results in the
literature in the generality that we need, we prove these results in this section, for the
sake of completeness.

The long range percolation model w takes values in
⊗

e∈E{0, 1} such that w =

(w(e))e∈E is a family of independent random variables with P(w(e) = 1) = be ∈ [0, 1]

for all e ∈ E . We declare an edge e = {x, y} ∈ E to be open if w(e) = 1. We assume for
every fixed x ∈ V that

∑
y∈V \{x} b{x,y} <∞ to guarantee that

(
V,w−1({1})

)
is a locally

finite graph, where w−1({1}) = {e ∈ E : w(e) = 1}. Furthermore, we again assume
translation invariance, i.e. that b{x,y} = b{x′,y′} if d(x, y) = d(x′, y′), where d(·, ·) is the
graph distance induced by G = (V,E). We denote by C(x) the connected component of
w containing x ∈ V . The following result provides a sufficient condition for absence of
percolation.

Proposition 4.1. Let
∑
y∈V \{x} b{x,y} < 1 for one, and hence every x ∈ V . Then almost

surely there exists no infinite connected component. In this case |C(x)| is also integrable
for all x ∈ V .
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Proof. This can be proven via a coupling with a branching process. Since V is countable
we can enumerate all vertices such that V = {x0, x1, . . . }. We denote the set of all paths
of length n starting at x0 by

T := {(α0, α1, . . . , αn) ∈ V n+1 : n ∈ N0, α0 = x0 and αi−1 6= αi for all 0 < i ≤ n}.

For α = (α0, α1, . . . , αn) we define the generation of α as |α| = n (so that |(x0)| = 0).
Furthermore, we equip T with the lexicographical order with respect to the enumeration
of V .

Now we construct a family of random variables (Xα)α∈T with Xα ∈ {0, 1}. We set
X(x0) = 1 and define the remaining Xα successively with increasing |α|. When defining
Xα for a given |α| we proceed in lexicographical order, which also means that we “visit”
the parents with |α| − 1 in lexicographical order to define the values for their children.
We want Zn :=

∑
α∈T :|α|=nXα to define a branching process with Z0 = 1. We also want

to ensure that for any x ∈ C(x0) there is an n ∈ N0 and α ∈ T with |α| = n and αn = x

such that Xα = 1, which implies that |C(x0)| ≤
∑
n∈N Zn := T , where T is the total

progeny of the branching process. (However, an x ∈ C(x0) can appear multiple times in
the branching tree.)

As part of the construction we also successively define increasing sets Iα ⊂ E starting
with I(x0) = ∅. These sets contain all the edges that we have used in the definitions
prior to determining Xα. More precisely, suppose we have already constructed all Xα′

before now defining Xα with α = (α0, α1, . . . , αn). Then, Iα contains all edges {y, z} ∈ E
for which there exists an α′ ∈ T with Xα′ = 1 such that |α′| = k < n− 1 and α′k = y or
such that |α′| = n− 1, α′n−1 = y and α′ smaller than (α0, α1, . . . , αn−1) in lexicographical
order. We let wα be an independent copy of w for all α ∈ T . Now, we define Xα by

Xα :=


1 if {αn−1, αn} /∈ Iα, w({αn−1, αn}) = 1 and X(α0,...,αn−1) = 1,

1 if {αn−1, αn} ∈ Iα, wα({αn−1, αn}) = 1 and X(α0,...,αn−1) = 1,

0 otherwise.

This in particular implies thatXα′ = 0 for any descendant of an αwithXα = 0. Also, Xα =

1 is only possible if α|α| ∈ C(x0). On the other hand, for any x ∈ C(x0) there will be a Xα =

1 with α|α| = x. In order to get independence between different generations and between
the several offspring of the same generation we used independent copies wα instead
of w. In words if we have that X(α0,...,αn−1) = 1 and we have not used w({αn−1, αn})
yet ({αn−1, αn} /∈ Iα) then we set Xα = 1 if w({xm, αn}) = 1, otherwise we use the
independent wα({αn−1, αn}). This is why Z = (Zn)n∈N0

with Zn :=
∑
α∈T :|α|=nXα now

defines a branching process for which the offspring distribution is the same in every
step because of translation invariance. In particular, the offspring mean is given by
µ :=

∑
y∈V \{x} b{x,y}.

It is well known that for µ < 1 the branching process dies out almost surely which
provides the first claim. It also holds that E[T ] ≤ 1

1−µ for µ < 1 as for example shown
in [Van16, Theorem 3.5], which provides integrability of |C(x0)|. Because of translation

invariance this result does not depend on the choice of x0 since |C(x0)| d= |C(y)| for all
y ∈ V .

Next we consider the special case V = Z and E = {{x, y} ⊂ Z : |x− y| = 1}. Since we
assume translation invariance we can simplify notation and set b{n,n+k} = b{0,k} =: bk for
all k ∈ N and all n ∈ Z. Here, an infinite component can only exist if

∑
k∈N kbk =∞. The

reason for this is that if
∑
k∈N kbk < ∞ then the long range percolation is similar to a

finite range percolation in the sense that there appear so-called “cut-points”, see Figure 1,
which lead to a partition of the integer lattice Z into finite connected components. We
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will briefly show this result for the long range percolation before we continue with our
study of the CPDLP.

Definition 4.2. Let V = Z. A cut-point m ∈ Z is a point such that no edge {x, y} with
x ≤ m < y is present in the model, i.e. ω({x, y}) = 0.

In the proof of the following result ergodic theory is used. We give a brief summary
of some of the important notions. Let (Ω,F ,P) be a probability space and S : Ω 7→ Ω

be a measure-preserving map, i.e. PS = P. We denote by I = {A ∈ F : A = S−1(A)}
the invariant σ-algebra. We call (Ω,F ,P, S) an ergodic system if I is P-trivial, i.e. if
A ∈ I, then P(A) ∈ {0, 1}. Let X be the identity on Ω, i.e. X(ω) = ω and f : Ω→ R be a
measurable function. The mean ergodic theorem of Birkhoff, see [Kal06, Theorem 9.6],
in particular states that if (Ω,F ,P, S) is ergodic then

1

2n

n∑
k=−n

f(S−kX)→ E[f(X)] as n→∞. (4.1)

Proposition 4.3. Let (bk)k∈N ⊂ [0, 1) with
∑
k∈N kbk <∞. Then the following holds:

1. For m ∈ Z the probability P(m is a cut-point) = P(0 is a cut-point) > 0, and as a
consequence there exist almost surely infinitely many cut-points.

2. The subgraphs induced in the intervals between consecutive cut-points are inde-
pendent and identically distributed. In particular, this implies that the distances
between consecutive cut-points form a sequence of i.i.d. random variables as well.

3. Almost surely there exists no infinite connected component.

Proof. By translation invariance we know that

P(m is a cut-point) = P(0 is a cut-point) =
∏

x≤0<y

(1− b{x,y}).

The infinite product on the right hand side is strictly positive since

∑
x≤0<y

b{x,y} =

∞∑
k=1

k−1∑
l=0

b{−l,−l+k} =
∑
l∈N

kbk <∞,

where we used that b{−l,−l+k} = bk for every l ∈ Z. Thus, this yields the first claim. Next
let us define Xm := 1{m is a cut-point}. Let S be a shift operator on Ω =

⊗
e∈E{0, 1} such

that
(ω({x, y})){x,y}∈E 7→ (ω({x+ 1, y + 1})){x,y}∈E .

In words we shift all edges by one vertex to the right. Since we endow Ω with the
probability measure P such that (ω(e))e∈E is a family of independent random variables
it is clear that (Ω,F ,P, S) is ergodic. Also, it is not difficult to see that Xk = f(S−kω)

Figure 1: Illustration of a cut point.
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for all k ∈ Z for a measurable function f : Ω→ {0, 1}. Then by Birkhoff’s mean ergodic
theorem in (4.1) it follows that

1

2n

n∑
k=−n

Xk → E[X0] = P(0 is a cut-point) > 0

almost surely. This implies that infinitely many Xk are equal to 1 almost surely. The
second statement is immediate since there are no edges between disjoint intervals whose
boundary points are given by consecutive cut-points, and the edges contained in those
intervals are independent. This also means that with probability 1 there cannot exist an
infinitely large component.

5 Construction of the CPDLP via a graphical representation

In this section we formally construct the CPDLP via a graphical representation. First
let us define the dynamical percolation. We denote by ∆op = (∆op

e )e∈E and ∆cl = (∆cl
e )e∈E

two independent families of Poisson point processes on R such that ∆op
e has rate v̂ep̂e

and ∆cl
e has rate v̂e(1− p̂e). We define for each edge e ∈ E a two state Markov process

Xt(e) on the state space {0, 1}. Assume that the initial state is 0, i.e. X0(e) = 0. Set
T0(e) := 0 and define recursively

T2n+1(e) := inf{t > T2n : t ∈ ∆op
e },

T2n+2(e) := inf{t > T2n+1 : t ∈ ∆cl
e }.

for any n ∈ N0. Then we set Xt(e) = 0 if t ∈ [T2n, T2n+1) and Xt(e) = 1 if t ∈ [T2n+1, T2n+2)

for some n ∈ N0. If the initial state is 1, i.e. X0(e) = 1, then we can just interchange
the two Poisson point processes in the definition of the stopping times Tn(e). Since
the Poisson point processes are independent if e 6= e′ we get that X(e) and X(e′) are
independent as well. By construction we see that X(e) has the transitions

0→ 1 at rate v̂ep̂e and

1→ 0 at rate v̂e(1− p̂e).

Note that the stationary distribution of X(e) is a Bernoulli distribution with parameter p̂e.
Now we define Bt := {e ∈ E : Xt(e) = 1}, which is a Feller process with state space P(E)

and transitions as in (1.2). We add the set B ⊂ E of all initially open edges to indicate
the initial state, i.e. BB

0 = B. In most cases we choose the invariant distribution π as
initial distribution, i.e. P(e ∈ B0) = p̂e for any e. In this case we omit the superscript.

Next we define the infection process C. Let ∆inf = (∆inf
e )e∈E and ∆rec = (∆rec

x )x∈V be
two independent families of Poisson point processes on R such that for all e ∈ E , x ∈ V
fixed ∆inf

e has rate λ and ∆rec
x has rate r and the processes are independent. From

here on we intepret ∆inf and respectively ∆rec as Poisson random sets on E × R and
respectively on V ×R for the sake of a more transparent notation. We call (e, t) ∈ ∆inf

an infection event and (x, t) ∈ ∆rec a recovery event. Next we need to introduce the
notion of an infection path.

Definition 5.1. Let (y, s) and (x, t) with s < t be two space-time points and B a back-
ground process. We say that there is a B-infection path from (y, s) to (x, t) if there is a se-
quence of times s = t0 < t1 < · · · < tn ≤ tn+1 = t and space points y = x0, x1, . . . , xn = x

such that ({xk−1, xk}, tk) ∈ ∆inf as well as {xk−1, xk} ∈ Btk for all k ∈ {1, . . . , n} and

∆rec ∩
(
{xk} × [tk, tk+1)

)
= ∅ for all k ∈ {0, . . . , n}. We write (y, s)

B−→ (x, t) if there exists
a B-infection path.
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Now in order to define the infection process CC,B we choose a background process
BB with BB

0 = B and set CC,B
0 := C ⊂ V as well as

CC,B
t := {x ∈ V : ∃y ∈ C such that (y, 0)

BB

−→ (x, t)} for t > 0. (5.1)

Again, if the background is stationary we write simply (CC ,B). See Figure 2 for an
illustration of the graphical representation of the infection process C.

Remark 5.2. We use infection events which transmit infection from x to y as well as
from y to x as indicated by the double headed arrows. In the literature it is also common
to use oriented infection arrows instead, which only transmit from x to y. It is easy to
see that both constructions yield the same dynamics. In general, there is no unique
graphical representation, and thus there exists multiple ways to construct the same
process.

Remark 5.3. As for the standard contact process the graphical representation can be
used to show that the CPDLP is monotone increasing with respect to the initial conditions,

i.e. if C ⊂ C ′ and B ⊂ B′ we have for suitably coupled processes CC,B
t ⊂ CC′,B′

t and
BB
t ⊂ BB′

t for all t ≥ 0. Furthermore, the process is also monotone increasing with
respect to the infection rate λ and the parameter q. Finally, the process is additive with

respect to the initially infected vertices, i.e. CC∪C′,B
t = CC,B

t ∪CC′,B
t for all t ≥ 0 when

we are using the same Poisson point processes.

By Remark 5.3 it is clear that for infection kernels of the from (1.3) the critical
infection rate λc(γ, q) is non-increasing in q. This is not clear at all for γ. But via the
graphical representation we can conclude that at least the function γ 7→ γ−1λc(γ, q) is
non-increasing. This means that the critical infection rate λc(γ, q) can at most increase
linearly with respect to γ, as can be proven analogously to [LR20, Proposition 2.2].

Proposition 5.4. Let q ∈ (0, 1). The function γ 7→ γ−1λc(γ, q) is monotone non-increasing.

5.1 The CPDLP is a Feller process

By definition it is not clear yet if the CPDLP is a well-defined Feller process. For
example it is not clear if it might occur at some time t that a vertex x is connected to
infinitely many other vertices via open edges. Since along open edges we consider a
constant infection rate λ this would lead to an infinite transition rate if x is infected.

Figure 2: The arrows indicate infection events and crosses indicate recovery events. The
grey areas indicate closed edges and red lines indicate infection paths. Note that for the
sake of simplicity we illustrated this only for a nearest neighbor structure.
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Furthermore, it is also not clear that if we start with finitely many infected vertices that
the set of all infected vertices stays finite for the whole time.

Thus, in this section we show that if we assume (1.4) the CPDLP is a well-defined
Feller process. First, we will show that the set of all infections stays finite for all t > 0

(in expectation and thus almost surely) if we started with a finite number of infected
vertices C. The same is true for the set of vertices that may influence a finite set of
vertices at a later time.

To this end we build a CPDLP (0C
C,B ,BB) via the same graphical representation used

to build (CC,B ,BB), just that we only use the infection arrows and ignore all recovery
events. This yields that (0C

C,B ,BB) is a CPDLP with recovery rate 0 and (CC,B ,BB)

has recovery rate r. Naturally, we then have CC,B
t ⊂ 0C

C,B for all t ≥ 0. We are also
interested in the set of vertices in the past that have influenced the state of a particular
vertex x at time t > 0. Fix an 0 < s < t. For any background process B we set more
generally for C ∈ P(V )

ĈC,t
s = ĈC,t

B,s := {y ∈ V : (y, t− s) B−→ (x, t) for some x ∈ C}, (5.2)

which describes the set of vertices at time t− s relevant for vertices x ∈ C at time t. We
write 0Ĉ

C,t
s if for the B-infection paths we ignore recovery events (r = 0). Note that this

process is increasing in s.
Now we will formulate a comparison of 0C

{x},E
t as well as 0Ĉ

C,t
s to a connected

component of a long range percolation model. Let us define for every e ∈ E the random
variables Xt(e) := 1{e∈BEt } and

Yt(e) :=

{
1 if ∃s ≤ t such that (e, s) ∈ ∆inf and Xs(e) = 1,

0 otherwise.
(5.3)

Obviously, (Yt(e))e∈E is a family of independent Bernoulli random variables with be :=

P(Yt(e) = 1). We declare an edge e to be open if Yt(e) = 1 and closed otherwise so
that we obtain a long range percolation model. We denote for this model the connected
component containing x by CYt(x). Recall from Definition 5.1 that a BE -infection path
only consists of infection events (s, e) ∈ ∆inf with e ∈ BEs . Thus, it is easy to see that

0C
{x},E
t ⊂ CYt(x) since at least all vertices at time t which are connected to (0, x) via an

BE -infection path are contained in CYt(x) by the definition of (Yt(e))e∈E . This also implies

together with monotonicity that 0C
{x},B
t ⊂ CYt(x) for any B ⊂ E . Likewise, since in (5.3)

infection events in both directions are included we have with an analogous argument
that 0Ĉ

{x},t
BE ,t

⊂ CYt(x).

Lemma 5.5. For every ε > 0 there exists a T > 0 such that E[|CYt(x)|] < 1 + ε for
all t ≤ T and every x ∈ V . This implies in particular that E[| 0C

C,E
t |] < ∞ as well as

E[| 0Ĉ
C,t
BE ,t
|] < ∞ for all t ≤ T if C ⊂ V is finite. We also have 0Ĉ

{x},t
BE ,t

⊂ CYt(x) ↘ {x}
almost surely as t↘ 0.

Proof. Due to translation invariance it suffices to consider an arbitrary x ∈ V for the
first statement of the lemma. Since the rate of potential infections due to ∆inf along e is
λ we see that

be = P(Yt(e) = 1) = 1− E
[
e−λ

∫ t
0
Xs(e)ds

]
≤ E

[
λ

∫ t

0

Xs(e)ds
]
,

for every e ∈ E , where we used that 1 − e−x ≤ x for all x ∈ R. The process X(e) is
obviously a two-state continuous time Markov chain with jump rates v̂ep̂e and v̂e(1− p̂e),
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and thus
∫ t
0
Xs(e)ds is the occupation time of state 1, i.e. the total time e was open until

time t. The first moment can be calculated explicitly, see Pedler [Ped71], to give

E
[ ∫ t

0

Xs(e)ds
]

= p̂et+
1− p̂e
v̂e

(1− e−v̂et) ≤ p̂et+
1− e−v̂et

v̂e
.

By Remark 1.1 we know that the right hand side is summable over edges connected to
x and each term convergences to 0 as t → 0. By Lebesgue’s dominated convergence
theorem the sum also converges to 0, and thus, for t small enough

∑
y∈V \{x} b{x,y} < 1.

Hence, by Proposition 4.1 there exists almost surely no infinitely large connected
components and moreover E[|CYt(x)|] <∞ for every x ∈ V . Furthermore, t 7→ CYt(x) is
a.s. monotone decreasing as t→ 0 and so CYt(x)↘ {x}. Thus, by monotone convergence
the first claim follows.

Since C is finite it suffices by additivity to conclude that E[| 0C
{x},E
t |] < ∞ and

E[| 0Ĉ
{x},t
BE ,t
|] < ∞ for t ≤ T for some arbitrary x ∈ V . But since we already know that

0C
{x},E
t ⊂ CYt(x) and 0Ĉ

{x},t
BE ,t

⊂ CYt(x) for all t ≥ 0 the second part of the lemma follows
immediately from what we have already shown above.

Proposition 5.6. Let C ⊂ V be non-empty and finite and B ⊂ E . Then E[|CC,B
t |] ≤

E[| 0C
C,B
t |] <∞ for all t ≥ 0 as well as E[| 0Ĉ

C,t
BB ,s
|] <∞ for all t ≥ s ≥ 0.

Proof. By monotonicity it suffices to show the claim for B = E . Fix t > 0 and let T > 0

be as in Lemma 5.5. Then choose u ≤ T and k ∈ N such that t = ku. We have due to
additivity that

E
[
| 0CC,E

u |
]

= E
[
|
⋃
x∈C

0C
{x},E
u |

]
≤
∑
x∈C

E
[
| 0C{x},Eu |

]
= |C| · E

[
| 0C{x},Eu |

]
<∞,

where the expectation on the right hand side is independent of x and finite due to |C| <∞
and due to our choice of u according to Lemma 5.5. On subsequent time intervals
[lu, (l+ 1)u] we can use the Markov property and iterate the same argument conditioned

on (C
{C},E
lu ,BElu). Note that in any case BElu ⊂ E and so because of monotonicity (with

respect to the background) we obtain

E
[
| 0C

C,E
(l+1)u|

∣∣(0CC,E
lu ,BElu)

]
≤ | 0C

C,E
lu | · E[| 0C{x},Eu |].

Putting this together we arrive at

E
[
| 0C

C,E
t |

]
≤ |C| · E

[
| 0C{x},Eu |

]k
<∞.

The argument is completely analogous for 0Ĉ
C,t
BB ,s

⊂ 0Ĉ
C,t
BE ,s

. In this case we subdivide
the time interval [t− s, t] into k subintervals of length u ≤ T from Lemma 5.5. We again
use that BEt ⊂ E for any t ≥ 0, in particular at the start of each subinterval. Due to
additivity in the sense that

0Ĉ
C,t
BE ,s

=
⋃
x∈C

0Ĉ
{x},t
BE ,s

,

we obtain analogously with the help of Lemma 5.5 that

E
[
| 0Ĉ

C,t
BE ,s
|
]
≤ |C| · E

[
| 0Ĉ

{x},u
BE ,u

]k
<∞.

Now we want to show that the CPDLP is a Feller process. We consider the transition
kernel of the CPDLP denoted by Pt

(
(C,B), ·

)
:= P((CC,B

t ,BB
t ) ∈ · ) for any t ≥ 0. The

transition semigroup is defined by

Ttf(·) =

∫
f(y)Pt(·, dy)
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for any t ≥ 0. In order to show that (Tt)t≥0 is a Feller semigroup it suffices to show for any
fixed t ≥ 0 that (C,B) 7→ Pt

(
(C,B), ·

)
is continuous (as a mapping intoM1(P(V )×P(E))

the space of all probability measures on P(V ) × P(E) equipped with the topology of
weak convergence). This then implies that Tt maps continuous functions to continuous
functions, as well as point-wise convergence, i.e. Ttf(C,B) → f(C,B) as t → 0 for
every C ⊂ V and B ⊂ E , see [Kal06, Lemma 17.3]. From this strong continuity already
follows, i.e. sup(C,B) |Ttf(C,B) − f(C,B)| → 0 as t → 0 for continuous f , see [Kal06,
Theorem 17.6].

Proposition 5.7. The map ((C,B), t) 7→ Pt
(
(C,B), ·

)
is continuous seen as a mapping

from (P(V )×P(E))× [0,∞) toM1(P(V )×P(E)), and thus (Tt)t≥0 is a Feller semigroup.

Proof. To prove the claim it suffices to show (using the graphical representation) that

(CCn,Bn

tn ,BBn
tn )→ (CC,B

t ,BB
t ) (5.4)

almost surely as ((Cn, Bn), tn) → ((C,B), t). Since we equipped P(V ) × P(E) with the
topology which is induced by pointwise convergences it thus suffices to show that

1{(x,e)∈(CCn,Bn
tn

,BBn
tn

)} → 1{(x,e)∈(CC,B
t ,BB

t )}

almost surely as ((Cn, Bn), tn)→ ((C,B), t) for every (x, e) ∈ V × E . Since 1{e∈BB
t } and

1{e′∈BB
t } are independent if e 6= e′ it is clear that

1{e∈BBn
tn
} = 1{e∈BB

t } (5.5)

if neither ∆op
e nor ∆cl

e have points between tn and t and 1{e∈Bn} = 1{e∈B}. This will
almost surely be the case as soon as (Bn, tn) is close enough to (B, t). Thus, it just
remains to show convergence of the infection process. Let us first consider tn ↗ t. Fix
an ε > 0 and let Bε be a background process that is restarted at time t− ε in the state E
and consider Ĉ

{x},ε
Bε,ε .

Then, Lemma 5.5 yields that Ĉ
{x},ε
Bε,ε is finite almost surely and Ĉ

{x},ε
Bε,ε ↘ {x} as

ε ↘ 0. Since the process is monotone there are fewer infection paths for the actual
process because at time t − ε fewer edges are open. Likewise, as ε ↘ 0 we will have
∆rec
x ∩ [t− ε, t] = ∅. Thus, almost surely for n large enough we have

1{x∈CCn,Bn
tn

} = 1{x∈CC,B
tn
} ⇒ 1{x∈CCn,Bn

tn
} = 1{x∈CC,B

t }.

It now remains to show that the condition on the left hand side is fulfilled as n becomes
large. For this we note from the above that a.s. for n large enough Ĉ

{x},tn
BE ,tn

= Ĉ
{x},t
BE ,t

.

We now use that by Proposition 5.6 0Ĉ
{x},t
BE ,t

is a.s. a finite set which for all 0 ≤ s ≤ t

includes Ĉ
{x},t
BBn ,s

for all n and Ĉ
{x},t
BB ,s

. Because we have for n possibly larger still that Cn

and C agree on 0Ĉ
{x},t
BE ,t

the claim now follows. Thus, we have shown left continuity. Right
continuity follows by an analogous argument. Together with (5.5) this shows (5.4) and
so the claimed continuity. As pointed out before the proposition this implies that (Tt)t≥0
is a Feller semigroup and hence the CPDLP a Feller process.

5.2 Phase transition with respect to the non-trivial upper invariant law

In this subsection we study the phase transition with respect to the non-trivial upper
invariant law ν. To be precise we will show Theorem 2.1 which states that the critical
infection rate for survival agrees with the critical infection rate for non-triviality of the
upper invariant law, i.e. λ′c = λc.
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In the last section we proved that the CPDLP (C,B) is a well-defined Feller process
on the state space P(V )×P(E) with corresponding Feller semigroup (Tt)t≥0. We denote
by νTt the distribution of the CPDLP at time t ≥ 0 when the initial distribution is ν.

Recall that the upper invariant law ν is the weak limit of
(
(δV ⊗δE)Tt

)
t≥0 as t→∞, and

that it dominates every other invariant law ν of the CPLDP with respect to the stochastic
order. In fact, even if we start the background process stationary, i.e. B0 ∼ π, instead of
in E the CPLDP still convergences towards the upper invariant law ν. Analogously to
[SS22, Lemma 6.2] one can show that if µ is a probability measure such that π � µ then
(δV ⊗ µ)Tt ⇒ ν as t→∞.

Recall the definition of the process Ĉ from (5.2), i.e. for any fixed t ≥ 0 and C ⊂ V

we have
ĈC,t

B,s = {y ∈ V : (y, t− s) B−→ (x, t) for some x ∈ C}.
One way of interpreting this definition is the following. First we fix a time t and a set of
infected vertices C. Next we fix the background B and let the graphical representation
run backwards in time from t to t− s. By this train of thought it is easy to see that the
following duality relation holds. Let A,C ⊂ V and B ⊂ E , then

P
(
CC,B
t ∩A 6= ∅

∣∣B) = P
(
CC,B
t−s ∩ ĈA,t

BB ,s
6= ∅
∣∣B) = P

(
C ∩ ĈA,t

BB ,t
6= ∅
∣∣B) (5.6)

holds almost surely for all s ≤ t. For a contact process without background this procedure
yields a so called self-duality relation. For the infection process C this is not always
the case since if the background is started in an arbitrary initial condition B ⊂ E ,
then (Ĉt, B̂t) will in general not be a CPDLP. Only if we start the background process
stationary, i.e. B0 ∼ π, can we recovery the self-duality. The main reasons for this is that

B is reversible with respect to π, i.e. if B0 ∼ π, then (Bs)s∈[0,t]
d
= (Bt−s)s∈[0,t]. Thus, we

get that
P(CC

t ∩A 6= ∅) = P(CA
t ∩ C 6= ∅).

For a detailed proof of this equality see [SS22, Proposition 6.1]. Note that as already
mentioned in the beginning of Section 5 we dropped the super and subscripts concerning
the background process since we consider it to be stationary.

This self duality relation enables us to deduce the following connection between the
survival probability θ and the particle density of the upper invariant law ν.

θ(C) = P(CC
t 6= ∅ ∀t ≥ 0) = ν({A ⊂ P(V ) : C ∩A 6= ∅} × P(E)).

which can be used to show that the two critical infection rates agree, i.e. λ′c = λc, and
therefore show Theorem 2.1. For a detailed proof see [SS22, Proposition 6.3].

Remark 5.8. While the results in [SS22, Section 6] that we refer to in this subsection
are stated there for graphs with uniformly bounded degrees, which is not the case for
the CPDLP, the proofs of these specific results do not rely on this property and can thus
be applied in the exact same way in this setting.

5.3 Comparison with a contact process

In this subsection we prove Theorem 2.2, which provides a comparison between a
contact process with a specific infection kernel and the CPDLP, and Corollary 2.4. We
will see that this contact process acts as a lower bound with respect to survival, i.e if the
contact process survives so does the CPDLP.

Recall the contact process with general infection kernel from (2.2). Now we show
Theorem 2.2, which states that we can couple the CPDLP (CC ,B) with a contact process

X
C

with infection kernel (ae(λ))e∈E , where

ae(λ) =
1

2

(
λ+ v̂e −

√
(λ+ v̂e)2 − 4λv̂ep̂e

)
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and the same recovery rate such that X
C

t ⊂ CC
t for all t ≥ 0.

Proof of Theorem 2.2. Recall the independent two state Markov processes (X(e))e∈E ,
where Xt(e) = 1{e∈Bt} for all t ≥ 0. The process X(e) has transitions

0→ 1 at rate v̂ep̂e and

1→ 0 at rate v̂e(1− p̂e).

We now set for all e ∈ E

Yt(e) :=|{s ≤ t : (e, s) ∈ ∆inf and Xs(e) = 1}|.

Note that the intensity measure of the process Y (e) depends on X(e). The process Y (e)

is sometimes called a doubly stochastic Poisson process. Given that X(e) is currently in
state x ∈ {0, 1} the transitions of Y (e) which is currently in state n are

n→ n+ 1 at rate λx.

Now [Bro07, Theorem 1.4] together with Strassen’s theorem yields that there exist
independent Poisson processes (Y (e))e∈E with rate

ae =
1

2

(
λ+ v̂e −

√
(λ+ v̂e)2 − 4λv̂ep̂e

)
such that Yt(e) ≥ Y t(e) almost surely for all t ≥ 0 and e ∈ E . This means that we can find

a family of independent Poisson point processes (∆
inf

e )e∈E such that ∆
inf

e has rate ae for

e ∈ E and such that (e, t) ∈ ∆
inf

implies that (e, t) ∈ ∆inf and e ∈ Bt.
Thus, we can construct a contact process X on P(V ) via the graphical representation,

with respect to the Poisson point process ∆
inf

such that it has the required transition

rates and X
C

t ⊂ CC
t for all t ≥ 0. It only remains to show that X is a well-defined Feller

process. To show this it suffices to verify (2.1). We see that

0 ≤ ae =
λ+ v̂e

2

(
1−

√
1− 4v̂ep̂eλ

(λ+v̂e)2

)
≤ 2λv̂ep̂e
λ+ v̂e

, (5.7)

where we used that 1− x ≤
√

1− x for x ∈ [0, 1] as well as 4v̂ep̂eλ
(λ+v̂e)2

∈ [0, 1] which follows

from the fact that (λ + v̂e)
2 ≥ 4v̂eλ is equivalent to (λ − v̂e)2 ≥ 0 and p̂e ∈ [0, 1]. Since

v̂e
λ+v̂e

≤ 1 we see that ae ≤ 2λp̂e. But by (1.4) the sequence (p̂{x,y})y∈V is summable
for every x ∈ V , and thus (2.1) is satisfied. The last claim of the theorem follows
immediately.

Next, we work towards the proof of Corollary 2.4. We thus assume kernels of the
form given in (1.3). As a first result we show that the rates (ae)e∈E = (ae(γ))e∈E viewed
as functions of γ converge to (λp̂e)e∈E as γ →∞.

Lemma 5.9. Let the sequence (ae(γ))e∈E be chosen as in Theorem 2.2. Then, it follows
that for every x ∈ V

lim
γ→∞

∑
y∈V \{x}

|a{x,y}(γ)− λp̂{x,y}| → 0. (5.8)

as well as ae(γ)↗ λp̂e for all e ∈ E as γ →∞.

Proof. Let us consider the function x 7→
√

1− x for x ∈ [0, 1]. The Taylor expansion at
x = 0 yields that √

1− x = 1− x

2
−O(x2).
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Thus, since 4v̂ep̂eλ
(λ+v̂e)2

∈ [0, 1] we obtain

1−

√
1− 4γvep̂eλ

(λ+ γve)2
=

1

2

4γvep̂eλ

(λ+ γve)2
+O(γ−2),

where O(γ−2) is meant with respect to γ →∞. This implies that

ae(γ) =
λ+ γve

2

(
1−

√
1− 4γvep̂eλ

(λ+ γve)2

)
=

γvep̂eλ

λ+ γve
+O(γ−1).

The remainder vanishes and γve
λ+γve

→ 1 as γ → ∞ so that ae(γ) → λp̂e. Next let us
consider the derivative of ae(γ) with respect to γ, which is

∂γae(γ) =
1

2

(
ve −

ve(λ+ γve)− 2vep̂eλ√
(λ+ γve)2 − 4vep̂eλγ

)
.

One can directly calculate that the fraction on the right hand side is always smaller than
ve, and therefore ∂γae(γ) > 0 for all γ > 0. This implies that ae(γ) is monotone increasing
for all e ∈ E , and thus 0 ≤ ae(γ)↗ λp̂e as γ →∞. This implies∣∣∣ae(γ)− λp̂e

∣∣∣ = λp̂e − ae(γ) ≤ λp̂e

for every e ∈ E , which yields that (a{x,y}(γ) − λp̂{x,y})y∈V \{x} is summable for every
x ∈ V . Together with the pointwise converge we proved above we get (5.8).

We have shown that the rates (ae)e∈E converge to the sequence (λp̂e)e∈E from below.
Heuristically speaking this justifies to some extend the believe that the infection C

converges to the process X̂ in the sense of Conjecture 3.1, i.e. that the respective critical
values converge. We were not able to show this claim, but we show now that λ∞c at least
acts as an upper bound, i.e. lim supγ→∞ λc(γ) ≤ λ∞c .

Proof of Corollary 2.4. We fix q and omit it as an index throughout the proof. We first
observe that by Theorem 2.2

λ′ := lim sup
γ→∞

λc(γ) ≥ lim sup
γ→∞

λc(γ).

Thus, in order to prove the inequality in the claim of the corollary it suffices to show
λ′ ≤ λ∞c . That λ′ = limγ→∞ λc(γ) = λ∞c follows then also because by Lemma 5.9 we
know that ae(λ, γ) ↗ λp̂e for every e ∈ E , and hence we get λ∞c ≤ lim infγ→∞ λc(γ). In
order to show λ′ ≤ λ∞c we first need another bound on the rates ae = ae(λ, γ).

We know that
√

1− x ≤ 1− x
2 for 0 ≤ x ≤ 1, and thus analogously to (5.7) we see that

ae(λ, γ) =
λ+ v̂e

2

(
1−

√
1− 4v̂ep̂eλ

(λ+v̂e)2

)
≥
( v̂e
λ+ v̂e

)
λp̂e. (5.9)

We know that γve
λ+γve

↗ 1 as γve ↗∞ for all e ∈ E and since (ve)e∈E is uniformly bounded
below due to (1.4) there exists for every ε > 0 a γ′ large enough such that γve

λ+γve
> 1− ε

for all e ∈ E and all γ > γ′. Thus, we get from (5.9) for all e ∈ E that ae(λ, γ) ≥ (1− ε)λp̂e
for all γ > γ′, and so λ′ ≤ 1

1−ελ
∞
c . By letting ε tend to zero λ′ ≤ λ∞c follows.

Finally, since we are assuming spatial translation invariance for the kernel (p̂e)e∈E as
well as p̂e′ > 0 for at least one e′ ∈ E we will have survival of our contact process X∞ if
the classical contact process on Z with infection parameter λp̂e′ survives. But for this
contact process the critical infection rate for survival is known to be finite which implies
λ∞c <∞.
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6 Comparison of the background with a long range percolation
model

The aim of this section is to prove Theorem 2.5 and Theorem 2.7. These proofs can
be found respectively in Subsection 6.1 and Subsection 6.2. In order to prove these
results we need a another infection process C̃, which dominates the original infection
process C, i.e. Ct ⊂ C̃t for all t ≥ 0, and which is somewhat easier to analyze.

The idea, which was already used by [LR20] for graphs with bounded degree, is to
compare the dynamical long range percolation B blockwise to a long range percolation
model. We partition the time axis [0,∞) into equidistant intervals [nT, (n+ 1)T ), where
T > 0 and n ∈ N0. We also define for each edge e ∈ E ,

wn(e) :=

{
1 if e /∈ Bt for all t ∈ [nT, (n+ 1)T ),

0 otherwise,
(6.1)

which indicates whether an edge e is closed for the whole time period [nT, (n + 1)T ).
To simplify notation we write wn(x, y) instead of wn({x, y}) for {x, y} ∈ E . Now if we
accept all infection events (e, t) ∈ ∆inf with t ∈ [nT, (n+ 1)T ) such that wn(e) = 0, this
leads to an infection process, which survives more easily than C, see also the illustration
of the graphical representation in Figure 3, where we have for the sake of simplicity
only drawn the process with nearest neighbor interactions. A problem is that obviously
(wn(e))(n,e)∈N0×E is not a family of independent random variables. But at least we know
that wn(e) and wm(e′) are independent for all n,m ∈ N0 as long as e 6= e′. In order to
deal with the dependence that occurs along the time line for a fixed edge e we need
a lower bound on the conditional probability that wn(e) = 1 given all previous states
wn−1(e), . . . , w0(e), which was shown in [LR20, Proposition 3.9].

Proposition 6.1. Let T > 0 be fixed. Then we have for all n ∈ N and e ∈ E that

P(wn(e) = 1|wn−1(e), . . . , w0(e))

≥ (1− p̂e)e−p̂ev̂eT
e−v̂eT + (1− p̂e)(1− e−v̂eT )− e−p̂ev̂eT

1− e−p̂ev̂eT

= (1− p̂e)e−p̂ev̂eT
(

1− p̂e
1− e−v̂eT

1− e−p̂ev̂eT
)

=: δe(γ, q, T ) = δe.

(6.2)

Figure 3: On the left hand side we illustrate the graphical representation with respect to
the background B. On the right hand side we modified the background in such a way that
the edges are only closed if they are closed throughout a whole interval [nT, (n+ 1)T ).
In both pictures red lines indicate infection paths.
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The next lemma allows us to compare a family of dependent Bernoulli random
variables with an independent family provided that we have a lower bound on the
conditional probabilities.

Lemma 6.2. Let (Xn)n∈N0
be a family of Bernoulli random variables such that

P(Xn = 1|Xn−1, . . . , X0) ≥ q ∈ (0, 1), n ∈ N0.

Then there exists a family of i.i.d. Bernoulli random variables (X ′n)n∈N0 such that
P(X ′n = 1) = q and Xn ≥ X ′n almost surely for every n ∈ N0.

Proof. First of all we set p0 := P(X0 = 1) and for n ≥ 1 and xn−1, . . . , x0 ∈ {0, 1},

pn(xn−1, . . . , x0) := P(Xn = 1|Xn−1 = xn−1, . . . , X0 = x0),

which are by assumption all bounded below by q. Let (χn)n∈N0
be an i.i.d. family of

random variables, which are uniformly distributed on [0, 1] and also independent of the
family (Xn)n∈N0

.
Next we iteratively define the desired family of random variables (X ′n)n∈N0

along
with a family of auxiliary random variables (Yn)n∈N0

. First, let Y0 := 1{χ0≤q0} for
q0 := q

p0
∈ [0, 1]. Now set X ′0 := X0Y0 such that that X ′0 ≤ X0 and

P(X ′0 = 1) = P(X0 = 1)P(Y0 = 1) = p0q0 = q.

Next suppose that we already defined X ′n−1, . . . , X
′
0 as a function of Xn−1, . . . , X0 and

χn−1, . . . , χ0. We set p′0 := p0 and for n ≥ 1 and xn−1, . . . , x0 ∈ {0, 1},

p′n(xn−1, . . . , x0) := P(Xn = 1|X ′n−1 = xn−1, . . . , X
′
0 = x0) ≥ q

by our assumption on (Xn)n∈N0
and the construction of X ′n−1, . . . , X

′
0 as a function of

Xn−1, . . . , X0 and another independent input from (χn)n∈N0
. This implies that

qn(xn−1, . . . , x0) := q ·
(
p′n(xn−1, . . . , x0)

)−1 ∈ [0, 1].

We now set Yn := 1{χn≤qn(X′n−1,...,X
′
0)} and X ′n := XnYn. It is again immediately clear

that X ′n ≤ Xn. Also,

P(X ′n = 1|X ′n−1, . . . , X ′0) = P(Yn = 1, Xn = 1|X ′n−1, . . . , X ′0).

By choice χn is independent of (X ′k)k≤n−1 and (Xk)k≤n. The random variable Yn is a func-
tion of χn and all (X ′k)k≤n−1. This yields that Yn and Xn are conditionally independent
given (X ′k)k≤n−1, i.e.

P(X ′n = 1|X ′n−1, . . . , X ′0) =P(Xn = 1|X ′n−1, . . . , X ′0)P(Yn = 1|X ′n−1, . . . , X ′0)

=p′n(X ′n−1, . . . , X
′
0)qn(X ′n−1, . . . , X

′
0) = q

due to our choice of qn. Since the right hand side is independent of the values of
X ′0, . . . , X

′
n−1 it follows that X ′n is independent of (X ′k)k≤n−1 and that P(X ′n = 1) = q.

This concludes the proof.

As a direct consequence of the bounds derived in Proposition 6.1 together with
Lemma 6.2 as well as the independence of wn(e) and wm(e′) for all n,m ∈ N as long as
e 6= e′ we obtain the following comparison of (wn(e))n≥0 with a family of i.i.d. Bernoulli
random variables.

Corollary 6.3. Let T > 0 and let (wn(e))(n,e)∈N0×E be defined as in (6.1) as well as δe as
in (6.2). Then there exists a family of independent Bernoulli variables (w′n(e))(n,e)∈N0×E
such that P(w′n(e) = 1) = δe and wn(e) ≥ w′n(e) almost surely for all (n, e) ∈ N0 × E .
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Figure 4: Illustration of the first and second rule. Solid lines indicate present edges and
dashed lines absent edges.

Finally we are able to define the new infection process C̃. We do this analogously
to the original process C, just that we use infection events (e, t) ∈ ∆inf whenever
w′bt/Tc(e) = 0. This corresponds to the definition of an infection process as in (1.1) with
the background process B′ given by

B′t = 1− w′bt/Tc(e), t ≥ 0. (6.3)

We call a B′-infection path as in Definition 5.1 a connecting path.
Recall that in the definition of C we only consider infection events (e, t) ∈ ∆inf

whenever e ∈ Bt. But by definition this implies that wbt/Tc(e) = 0, and by Corollary 6.3

also w′bt/Tc(e) = 0. Hence, we only get more infection events for C̃ and thus CC
t ⊂ C̃C

t

for all t ≥ 0.

6.1 Existence of an immunization phase

In this subsection we prove Theorem 2.5 which states that for given speed parameter
γ > 0 there exists a q0 ∈ (0, 1) such that C dies out almost surely for all q < q0 regardless
of the choice of λ > 0, i.e. λc(γ, q) =∞ for all q < q0, and that λc(γ, q) <∞ for all q > q0.

The idea is that, if q is small enough, then an arbitrary vertex will eventually be
isolated for a long time, and therefore a potential infection cannot spread to another
vertex before the isolated vertex is affected by a recovery event. To make this precise
we recall (w′n(e))(n,e)∈N0×E from Corollary 6.3 and define X = (Xe,n)(e,n)∈E×N0

where
Xe,n := 1− w′n(e), as well as U = (Ux,n)(x,n)∈V×N0

by

Ux,n :=

{
1 if ∆rec ∩ ({x} × [nT, (n+ 1)T )) = ∅,
0 otherwise.

(6.4)

If Ux,n = 0 and
∑
y∈V \{x}X{x,y},n = 0, then an infection on vertex x cannot possibly sur-

vive in the time interval [nT, (n+1)T ), for any λ > 0. This follows since
∑
y∈V X{x,y},n = 0

implies that for the whole time interval all edges attached to x are closed. Therefore,
since Ux,n = 0 we know that the vertex x will recover and cannot be reinfected. Further-
more, between time nT and (n+ 1)T no infection can spread from x. Now we define a
random graph G1 with vertex set V ×N0 and add edges according to the following rules.

1. If Ux,n = 1, add an oriented edge from (x, n) to (x, n+ 1).

2. If Xe,n = 1 for e = {x, y}, add edges as if Ux,n = 1, Uy,n = 1 and add an unoriented
edge between (x, n) and (y, n).

The rules are visualized in Figure 4. Note that all “horizontal” edges are unoriented
such that they can be used in both directions, but all “vertical” edges are oriented and
only point upwards.
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Definition 6.4. Let G1 be the random graph constructed above and C ⊂ V be the
set of all initially infected individuals. We say that there exists a valid path from
C × {0} to a point (x, n) if there exists a sequence x0, x1, . . . , xm = x with x0 ∈ C and
0 = n0 ≤ n1 ≤ · · · ≤ nm = n such that there exist edges in G1 from (xk, nk) to (xk+1, nk+1)

for all k ∈ {0, . . . ,m− 1}.
For every n ∈ N we denote by Yn = Yn(U,X) the set of all vertices x ∈ V such that

there exists a valid path from Y0 × {0} to (x, n).

Note that a valid path travels along edges in the direction of their orientation,
respectively in both directions in the case of unoriented edges. In Figure 5 we visualize
a part of the graph G1 with a valid path.

Lemma 6.5. Let T > 0, n ∈ N0 and C ⊂ V . Then if C = Y0 we have C̃C
nT ⊂ Yn for any

λ > 0. Thus, if Yn = ∅ then C̃C
nT = ∅ and hence also CC

nT = ∅ for any λ > 0.

Proof. In this proof we need the notion of a connecting path which is using the B′

background defined in (6.3) via the w′n(e). If x ∈ C̃C
nT then there exists a sequence

of times 0 = t0 < t1 < · · · < tn′ < tn′+1 = nT and space points x0, x′1, . . . , x
′
n′ = x

with x0 ∈ C such that ({x′k−1, x′k}, tk) ∈ ∆inf and w′nk
({x′k−1, x′k}) = 0, respectively

X{x′k−1,x
′
k},nk

= 1, where nk := btk/T c, for all k ∈ {1, . . . , n′} and ∆rec∩
(
{x′k}×[tk, tk+1)

)
=

∅ for all k ∈ {0, . . . , n′}. Let for m ∈ {1, . . . n} the position of the path at time mT be
denoted by xm, i.e. xm = x′m′ if mT ∈ [tm′ , tm′+1) so that xm ∈ C̃mT for m ∈ {0, . . . , n}.
Now if we can show that xm−1 ∈ C̃(m−1)T and xm ∈ C̃mT imply that xm ∈ Ym the claim
follows since x0 ∈ Y0 = C by assumption.

So if xm−1 6= xm it means that the infection must have spread from xm−1 to xm in the
time interval [(m− 1)T,mT ). But we already assumed the existence of a connecting path.
Thus, we can find 0 ≤ m′ ≤ n′ and l ≥ 1 such that xm−1 = x′m′ and xm = x′m′+l such that(
{x′m′+k, x′m′+k+1}, tm′+k+1

)
∈ ∆inf and X{x′

m′+k
,x′

m′+k+1
},m−1 = 1 for all k ∈ {0, . . . , l − 1},

and thus by the second rule xm ∈ Ym.
If xm−1 = xm then either there was no recovery event in the whole time interval[

(m − 1)T,mT
)
, and so by the first rule xm ∈ Ym or the infection must have spread to

another vertex and the vertex xm got reinfected. Then there must have been a vertex x′m′
and a time tm′+1 ∈ [(m− 1)T,mT ) such that x′m′+1 = xm and

(
{x′m′ , x′m′+1}, tm′+1

)
∈ ∆inf

Figure 5: Illustration of a part of G1. The red lines indicate a valid paths.
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as well as X{x′
m′ ,x

′
m′+1

},m−1 = 1, and therefore xm ∈ Ym by the second rule.

The second claim follows by the fact that CC
t ⊂ C̃C

t for all t ≥ 0. Thus, if C̃C
nT = ∅

then this implies that CC
nT = ∅.

Obviously (Ux,n)(x,n)∈V×N0
from (6.4) is a family of i.i.d. random variables with

P(Ux,n = 1) = e−rT and independent of the family (Xe,n)(e,n)∈E×N0
, which consists

of independent Bernoulli random variables such that P(Xe,n = 1) = 1 − δe. The next
result states a sufficient condition for the extinction of Y , which can be proven in exactly
the same way as [LR20, Lemma 3.7].

Lemma 6.6. Let x ∈ V . If E[|Y1||Y0 = {x}] < 1 then Y goes extinct almost surely for any
finite A ⊂ V as initial state.

Now we can finally show Theorem 2.5.

Proof of Theorem 2.5. We fix γ > 0 and let λ > 0 be arbitrary. Since Lemma 6.5 states
that extinction of Y implies extinction of the CPDLP, Theorem 2.5 follows from Lemma 6.6
if we can prove the condition stated in that lemma. Fix an arbitrary x ∈ V and set
Y0 = {x} as initial value. We can calculate that

E[|Y1|] = E[1{∃y∈V :X{x,y},0=1}|Y1|] + P
( ⋂
y∈V
{X{x,y},0 = 0}

)
E[Ux,0]. (6.5)

Let us choose 0 < ε < 1 arbitrarily but fixed. For the last term, we find a T1 > 1 large
enough such that

E[Ux,0] = e−T <
ε

3
(6.6)

for all T > T1. For the first term we see that Y1 is actually the connected component
containing x formed by a long range percolation model with probabilities (1 − δe)e∈E
with δe as in Proposition 6.1, which implies that

1− δe = 1− e−p̂ev̂eT + p̂ee
−p̂ev̂eT + (1− p̂e)p̂e

1− e−v̂eT

ep̂ev̂eT − 1
≤ p̂ev̂eT + p̂e +

1

v̂eT
, (6.7)

for all e ∈ E . Here, we have used that 1− x ≤ e−x and 1 + x ≤ ex for x ≥ 0. Recall that
p̂k = qpk. For the remainder of this proof we choose q = q(T ) := T−2 and see that

1− δe(q(T ), T ) ≤ 1

T
pev̂e +

1

T 2
pe +

1

v̂eT
=: be(T ) (6.8)

for all e ∈ E . We attach T as an index to Y1(T ) since by the choice of q the probabilities
(1− δe)e∈E determining the connected components only depend on the choice of T . Next
we will show that there exists T2 > 0 and an M = M(ε, T2) > 0 such that

E[1{|Y1(T )|>M}|Y1(T )|] < ε

3
(6.9)

for all T > T2. For this, let Z(T ) be the connected component containing x formed by a
long range percolation model with probabilities (be(T ))e∈E such that Y1(T ) ⊂ Z(T ) for
every T > 0. This coupling is possible since (6.8) holds for all e ∈ E . By Assumption (1.4)
and Remark 1.1 it follows that (b{x,y}(T ))y∈V is summable for all x ∈ V and T > 0.
Furthermore, be(T ) is decreasing in T and be(T )→ 0 as T →∞ for all e ∈ E . Therefore,
by Lebesgue’s dominated convergence theorem we see that there exists a T2 ≥ T1 large
enough such that ∑

y∈V
b{x,y}(T ) < 1
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for all T ≥ T2. For this choice of T2 the integrability of |Z(T2)| follows by Proposition 4.1,
i.e. E[|Z(T2)|] <∞. Thus, for every ε > 0 there exist an M = M(ε, T2) > 0 such that

E[1{|Z(T2)|>M}|Z(T2)|] < ε

3
.

Since be(T ) is monotone decreasing in T for all e ∈ E

E[1{|Z(T )|>M}|Z(T )|] ≤ E[1{|Z(T2)|>M}|Z(T2)|] < ε

3

for all T > T2. Furthermore, since by definition Y1(T ) ⊂ Z(T ) for all T we see that

E[1{|Y1(T )|>M}|Y1(T )|] < ε

3
.

for all T > T2. Using this and the bounds (6.6) and (6.9) in (6.5) we obtain

E[|Y1|] <E[1{∃y∈V :X{x,y},0=1}|Y1|] +
ε

3

≤E[1{|Y1|>M}|Y1|] + E[1{|Y1|≤M}1{∃y∈V :X{x,y},0=1}|Y1|] +
ε

3

<
ε

3
+M P({∃y ∈ V : X{x,y},0 = 1} ∩ {|Y1| ≤M})︸ ︷︷ ︸

≤P(∃y∈V :X{x,y},0=1)

+
ε

3
(6.10)

for all T > T2. By using subadditivity of the measure P we get that

P(∃y ∈ V : X{x,y},0 = 1) = P
( ⋃
y∈V
{X{x,y},0 = 1}

)
≤
∑
y∈V

(
1− δ{x,y}(q(T ), T )

)
→ 0

as T → ∞ by Lebesgue’s dominated convergence theorem since 1 − δ{x,y}(q(T ), T ) ≤
b{x,y}(T2) for all T ≥ T2 and (b{x,y}(T2))y∈V is summable for every x ∈ V . This implies
that there exists a T3 ≥ T2 such that

P(∃y ∈ V : X{x,y},0 = 1) ≤
∑
y∈V

(1− δ{x,y}(q(T ), T )) <
ε

3M
(6.11)

for all T > T3. Now (6.10) and (6.11) imply that for all T > T3 and thus for all q = q(T ) =

T−2 < q′0 if we set q′0 := q(T3) = T−23 > 0 we have

E[|Y1|] < ε < 1.

We now let q0 ≥ q′0 > 0 be maximal such that λc(γ, q) = ∞ for all q < q0. By the fact
that q 7→ λc(γ, q) is monotone non-increasing we then know that λc(γ, q) < ∞ for all
q > q0. To complete the proof it now only remains to show that γ 7→ q0(γ) is a monotone
non-increasing function on (0,∞), i.e. that for 0 < γ1 < γ0 we have q0(γ1) ≥ q0(γ0). For
this suppose that we have q0(γ1) < q0(γ0). Then for any q ∈ (q(γ1), q(γ0)) we have that
λc(γ0, q) =∞ while λc(γ1, q) <∞. But this contradicts the fact that by Proposition 5.4
we have γ−11 λc(γ1, q) > γ−10 λc(γ0, q), and so we are done.

6.2 Extinction for slow background speed

In this subsection we study the behavior of the survival probability as γ → 0 and show
Theorem 2.7. On general graphs G = (V,E) we already obtained partial results on the
behavior of the critical infection rate for slow speed of the background process, which
we stated in Corollary 2.6: There exists a q1 ∈ (0, 1] so that for every q < q1 there exists
a γ0 = γ0(q) > 0 such that λc(γ, q) =∞ for all γ < γ0. Now we restrict ourselves to the
one dimensional integer lattice G = (V,E) with V = Z and E = {{x, y} ⊂ Z : |x− y| = 1}.
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In this case we can fully characterize the behavior of the critical infection rate as γ → 0

if we assume that (2.4) is satisfied, i.e.∑
y∈N

yv{0,y}p{0,y} <∞ and
∑
y∈N

yv−1{0,y} <∞.

Obviously this assumption already implies (1.4). Furthermore by (6.7) it follows that∑
y∈N

y(1− δ{x,y}) ≤
∑
y∈N

y
(
p̂{x,y}v̂{x,y}T + p̂{x,y} +

1

v̂{x,y}T

)
<∞ (6.12)

for all x ∈ Z due to (2.4). In the remainder of this section we focus on proving Theo-
rem 2.7. We achieve this by modifying and adapting the strategy used in [LR20].

Recall C̃ with background B′ defined in (6.3), which is characterized by the w′n(e)

of Corollary 6.3. As in the previous section we construct a type of oriented long range
percolation model which will be coupled to C̃ in such a way that if this model goes
extinct so does C̃. Since we know that extinction of C̃ implies extinction of the CPDLP C

this will lead to the proof of Theorem 2.7.
One key point of the arguments used in [LR20] was that in an independent percolation

model on Z with p < 1 no infinite connected component occurs, and thus the percolation
almost surely partitions Z into finite connected components. As we saw in Proposition 4.3
the long range percolation exhibits a similar behavior if

∑
y∈N y(1− δ{0,y}) <∞.

Recall from Definition 4.2 that a cut-point m for a long range percolation model is a
point such that no edge {x, y} with x ≤ m < y is present. In comparison to the nearest
neighbor case one major problem is that in the long range percolation model that we
will use, which is defined via the w′n(e) of Corollary 6.3, the presence of cut points at
two different vertices is not independent. In fact the events ({k is a cut-point})k∈Z are
decreasing events, and thus positively correlated by the FKG inequality, see [Gri99,
Theorem 2.4]. But this implies that also the events ({k is no cut-point})k∈Z are positively
correlated. Therefore, we need to adjust the construction in such a way that we can deal
with these correlations.

Definition 6.7. Let n,K0 ∈ N and T > 0. We call m ∈ V an (n,K0)-cut if w′n({x, y}) = 1

for all x ≤ m < y with |x− y| ≤ 2K0.

We call all edges e = {x, y} with length |x− y| ≤ 2K0 short edges and denote by BK0
n

the σ-algebra containing information of all w′n(e) of all short edges in time step n, i.e.

BK0
n := σ

({
w′n({x, y}) : |x− y| ≤ 2K0

})
. (6.13)

Note that for any m the event that m is an (n,K0)-cut is contained in BK0
n .

Now let r0 ∈ N and define for k ∈ Z,

Mk := [k(2K0 + r0), (k + 1)(2K0 + r0)− 1] ∩Z
M left
k := [k(2K0 + r0), k(2K0 + r0) +K0 − 1] ∩Z

Mmid
k := [k(2K0 + r0) +K0, k(2K0 + r0) +K0 + r0 − 1] ∩Z

M right
k := [k(2K0 + r0) +K0 + r0, (k + 1)(2K0 + r0)− 1] ∩Z

The collection (Mk)k∈Z forms a disjoint partition of Z. Furthermore, for every k ∈ Z the
sets M left

k ,Mmid
k and M right

k are disjoint and Mk = M left
k ∪Mmid

k ∪M right
k . We also want to

remark that |Mk| = 2K0 + r0, |Mmid
k | = r0 and |M left

k | = |M
right
k | = K0. See Figure 6 for a

illustration. Next we define for k ∈ Z and n ∈ N0 the random variables

Xk,n :=

{
1 if no (n,K0)-cut lies in Mmid

k ,

0 otherwise.
(6.14)
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If Xk,n = 0 then there exists a barrier in Mmid
k during the time interval [nT, (n + 1)T )

which the infection C̃ cannot overcome via short edges.
We will now partition the space-time strip Z × [nT, (n + 1)T ) for every n, where

T > 0, according to the presence of (n,K0)-cuts. Let ck,n be the rightmost (n,K0)-cut in
Mmid
k × [nT, (n+ 1)T ) and if none is present, then set it equal to the right boundary of

Mmid
k . Now set Dk,n := [ck−1,n + 1, ck,n] ∩Z. We see that Sk,n := Dk,n × [nT, (n+ 1)T ) is

a disjoint space-time partition of Z× [0,∞), which depends only on BK0
n . See Figure 7

for an illustration.
The boxes can only be of bounded size and we see from the construction that

Dk,n ⊃ Dmin
k :=M right

k−1 ∪M
left
k ,

Dk,n ⊂ Dmax
k :=Mmid

k−1 ∪M
right
k−1 ∪M

left
k ∪Mmid

k = Mmid
k−1 ∪Dmin

k ∪Mmid
k .

(6.15)

This provides us with an upper and lower bound on the number of vertices contained
in Dk,n, namely 2K0 ≤ |Dk,n| ≤ 2K0 + 2r0. We define Smin

k,n := Dmin
k × [nT, (n+ 1)T ) and

Smax
k,n := Dmax

k × [nT, (n+ 1)T ) as the minimal and maximal possible space-time box with

Smin
k,n ⊂ Sk,n ⊂ Smax

k,n .
Recall that Xk,n provides us with the information whether it is possible for the

infection to traverse Mmid
k via short edges. So if Xk−1,n = 0 and Xk,n = 0 then the

boundaries of Sk,n are (n,K0)-cuts and the infection can only leave this box via long
edges e = {x, y} with length |x− y| ≥ 2K0. In this case we call the box Sk,n isolated. In

order to describe the possibility of infection in C̃ via long edges between Sk,n and Sl,n
we define for k 6= l ∈ Z and n ∈ N0,

W{k,l},n :=


1 if there exists a long edge e = {x, y} with |x− y| > 2K0

which connects Sk,n to Sl,n at some t ∈ [nT, (n+ 1)T ),

0 otherwise.

(6.16)

See Figure 8 for a visualization in the case l = k + 1.
Note that by definition W{k,l},n = W{l,k},n, and thus we will assume k < l. The idea is

that for large K0 a transmission of the infection via a long edge will be unlikely since
they will most likely not be open. In addition, we intend to control the survival via short
edges in (isolated) boxes Sk,n for k ∈ Z and n ∈ N0. Recall that a connecting path is a

B′-infection path used by C̃. We define

Uk,n :=


1 if there exists a connecting path starting at nT that

is ending at (n+ 1)T and is contained in Sk,n,

0 otherwise,

(6.17)

see Figure 9 for an illustration. If Uk,n = 0 then an infection contained in an isolated box
Sk,n can only survive via transmission along long edges.

Remark 6.8. Let us summarize some properties of the variables we just defined.

Figure 6: Illustration of the sets Mk−1, M left
k ,Mmid

k and M right
k .
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Figure 7: An illustration of a possible partition. The thick black lines represent (n,K0)-
cuts and the blue boxes the resulting partition.

1. The intervals Dk,n and boxes Sk,n for k ∈ Z are measurable with respect to BK0
n .

For n 6= n′ we have that Dk,n and Dl,n′ are independent (and thus also Sk,n and
Sl,n′ are independent) for all k, l ∈ Z.

2. The Xk,n variables from (6.14) depend only on short edges of maximal length 2K0.
Since the minimal distance between Mmid

k and Mmid
l is larger than 2K0 for k 6= l we

see that Xk,n and Xl,n′ are independent if k 6= l for all n, n′ ∈ N0.

3. Uk,n from (6.17) only depends on edges {x, y} with x, y ∈ Dk,n (and recovery
events). On the other hand, W{k,l},n from (6.16) only depends on edges {x′, y′}
such that x′ ∈ Dk,n and y′ ∈ Dl,n. Since Dk,n∩Dl,n = ∅ for k 6= l we have that Uk′,n′

and W{k,l},n are conditionally independent given BK0
n for all k′, k, l ∈ Z (k < l) with

n = n′ ∈ N0. If n 6= n′ then they are independent.

4. By definition Uk,n and Ul,n′ are conditionally independent given BK0
n for all k, l ∈ Z

with n = n′ ∈ N0. If n 6= n′ then they are independent.

5. Analogously, the variables W{l,k},n and W{l′,k′},n′ are conditionally independent
given BK0

n for all {l, k} 6= {l′, k′} if n = n′ ∈ N0. If n 6= n′ then they are independent
for all choices of {l, k} and {l′, k′}.

Note that in points 3 to 5 conditioning on BK0
n serves the purpose of knowing what the

partition (Sk,n)k∈Z in step n look like.

We will again define a random graph G2 with vertex set Z × N0 whose edges are
placed according to the following rules which are illustrated in Figure 10:

1. If Uk,n = 1 add oriented edges from (k, n) to (k−1, n+1), (k, n+1) and (k+1, n+1).

Figure 8: The thick black line represents again a (0,K0)-cut and the blue boxes a part of
the resulting partition. Here we visualize the case when W{k,k+1},0 = 1.
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Figure 9: The thick black lines represent again (0,K0)-cuts and the blue boxes are part
of the resulting partition. Here we illustrated the case when Uk,0 = 1.

Figure 10: Visualization of the three rules regarding the construction of the graph G2.
Solid lines are present edges and dashed lines absent edges.

2. If Xk,n = 1 add edges as if Uk,n = 1, Uk+1,n = 1 and additionally an unoriented
edge between (k, n) and (k + 1, n).

3. If W{k,l},n = 1 add an edge as if Uk,n = 1, Ul,n = 1 and additionally an unoriented
edge from (k, n) to (l, n).

If Uk,n = 1 then the infection survives through the space-time box Sk,n and it could
possibly spread in at least one of the boxes Sm,n+1 for m ∈ {k − 1, k, k + 1}. If Xk,n = 1

then it could possibly spread to its right neighbor in the time period [nT, (n+ 1)T ) via
short edges. If W{k,l},n = 1 for any l 6= k the infection could spread from Sk,n to Sl,n (or
vice versa) via long edges. Note that in the latter two cases we add oriented edges as in
the first case because even if there is no connecting path contained within the respective
space-time box the infection could still survive (and spread to the nearest neighbours)
via open edges between the boxes. Analogous to Definition 6.4 in the previous section
we define a valid path as a path that traverses edges in the direction of their orientation,
as well as a corresponding process.

Definition 6.9. Let G2 be the above constructed random graph. Let Z0 ⊂ Z denote
the indices of the boxes which contain the initially infected vertices C ⊂ Z. We say
that there exists a valid path from Z0 × {0} to a point (k, n) if there exists a sequence
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k0, k1, . . . km = k with k0 ∈ Z0 and 0 = n0 ≤ n1 ≤ · · · ≤ nm = n such that there exist an
edge in G2 between (xk, nk) and (xk+1, nk+1) for all k ∈ {0, . . . ,m− 1}.

We define the process Z = (Zn)n≥0 by letting for all n ≥ 1 the random set Zn =

Zn(U,X,W ) contain all points x ∈ Z for which there exists a valid path from Z0 × {0} to
(x, n) in G2.

This following lemma and its proof is similar to Lemma 6.5 in the previous section.

Lemma 6.10. Let T > 0, n ∈ N0 and C ⊂ V . We choose Z0 such that k ∈ Z0 if
C ∩Dk,0 6= ∅. If x ∈ C̃C

nT then there exists a k ∈ Z so that x ∈ Sk,n and k ∈ Zn. Thus, if

Zn = ∅ then C̃C
nT = ∅, which in particular implies CC

nT = ∅.

Proof. Recall the definition of C̃ and of a connecting path from (6.3). If x ∈ C̃C
nT then for

some x0 ∈ C there must exist a connecting path from (x0, 0) to (x, nT ). For m ∈ {0, . . . , n}
we denote the position of the connecting path at time mT by xm so that xm ∈ C̃C

mT with
xn = x. Since the (Sk,n)(k,n)∈Z×N0

form a disjoint partition of Z × [0,∞) for every xm
there exists a km = km(xm) such that (xm,mT ) ∈ Skm,m. To prove the claim it again

suffices to show that xm ∈ C̃C
mT and xm+1 ∈ C̃C

(m+1)T imply that km+1 ∈ Zm+1 because
we have k0 ∈ Z0 by the definition of Z0.

1. Let us start with the case that km 6= km+1. Let e1, . . . er for some r ∈ N be the edges
present in the connecting path from (xm,mT ) to (xm+1, (m + 1)T ) that connect
vertices in different space-time boxes. Let em′ = {x′, y′} and t′ ∈ [mT, (m + 1)T )

with (x′, t′) ∈ Sk′,m and (y′, t′) ∈ Sl′,m for some k′ < l′.

If |x′ − y′| > 2K0 then W{k′,l′},m = 1 since the edge em′ must have been open at
time t′ ∈ [mT, (m + 1)T ). Thus, by the third rule l′ ∈ Zm+1 if k′ ∈ Zm (and vice
versa).

On the other hand if |x′ − y′| ≤ 2K0 then l′ = k′ + 1 because for any space box
|Dk,n| ≥ 2K0. Hence, the boundary between Sk′,m and Sl′,m is no (m,K0)-cut since
this would prevent an infection to spread via the short edge em′ . This implies that
Xk′,m = 1. Thus, by the second rule l′ ∈ Zm+1 if k′ ∈ Zm (and vice versa).

By applying a combination of the second and third rule to e1, . . . , er it follows that
km+1 ∈ Zm+1.

2. Now we consider the case that km = km+1. In this case the infection path is
either contained in Sk,m, and this would imply that Uk,m = 1, or it leaves the box
and returns at a later time. By arguing as in point 1. we see that either there
exists an l ∈ Z such that W{k,l},m = 1 or we have Xk,m = 1 or Xk−1,m = 1. Thus,
km+1 ∈ Zm+1.

We again find ourselves in the situation that the process Z is somewhat easier to
handle than the original infection process, but it still hides a lot of dependency structure.
For the remainder of this section we choose T := 1

γ . By the definition of δe in Lemma 6.1
this yields

δe(γ, q, γ
−1) = (1− qpe)e−qpeve

(
1− qpe

1− e−ve
1− e−qpeve

)
, (6.18)

which is now independent of γ.

Next we will show that we can choose r0,K0 and γ (or equivalently T ) in such a way
that the probabilities that any of the X,W or U variables are 1 are small. With this we
will then show that we can choose r0,K0 and γ∗ in such a way that Zn goes almost surely
extinct for all γ < γ∗.
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Bound on the X variables Let us recall that

{Xk,n = 1} = {no (n,K0)-cut lies in Mmid
k } =

⋂
z∈Mmid

k

⋃
x≤z<y,
|x−y|≤2K0

{w′n({x, y}) = 0}. (6.19)

The probability P(Xk,n = 1) does not depend on γ because of (6.18). This is important
since later, in order to find a bound on P(Uk,n = 1), we need to vary γ. Since (w′n(e))e∈E
is a family of independent Bernoulli random variables we can use these variables to
define a long range percolation model with probabilities bk := (1− δ{0,k}) for all k ∈ Z.
Therefore, we see with (6.19) that in the terms of the long range percolation model it
holds that

{Xk,n = 1} ⊂
⋂

z∈Mmid
k

⋃
x≤z<y

{w′n({x, y}) = 0} = {no cut point lies in Mmid
k }.

We set
P(Xk,n = 1) ≤ P

( ⋂
z∈Mmid

k

⋃
x≤z<y

{w′n({x, y}) = 0}
)

=: ε1(r0). (6.20)

Note that the right hand side only depends on the size r0 ofMmid
k and not its exact location.

By (6.12) we know that
∑∞
k∈Z kbk =

∑∞
k∈Z k(1− δ{0,k}) <∞. Thus, by Theorem 4.3 there

exist almost surely infinitely many cut points. But this means that

ε1(r0)→ 0 as r0 →∞. (6.21)

Note that this bound is independent of the choice of K0. This is important since in
the next step we derive a bound for the probability P(W{k,l},n = 1) by choosing K0

accordingly. But the choice of K0 will depend on the choice of r0.

Bound on the W variables For these random variables describing transmission along
long edges we have W{l,k},n = W{k,l},n, which is why we only need to consider k < l. We
see that

{W{k,l},n = 1} =
⋃

x∈Dk,n,y∈Dl,n

|x−y|>2K0

{w′n({x, y}) = 0} ⊂
⋃

x∈Dmax
k ,y∈Dmax

l

|x−y|>2K0

{w′n({x, y}) = 0}

with the sets Dmax
k and Dmax

l defined in (6.15). Note that the right hand side is indepen-
dent of BK0

n defined in (6.13). Thus, for a given r0 we can conclude that

P(W{k,l},n = 1|BK0
n ) ≤

∑
x∈Dmax

k ,y∈Dmax
l

|x−y|>2K0

(1− δ{x,y}) =: ak,l(K0, r0), (6.22)

with the right hand side independent of γ due to (6.18). By subadditivity and (6.22) we
get

P(∃l 6= k : W{k,l},n = 1|BK0
n ) ≤

∑
l 6=k

ak,l(K0, r0).

Next we take a closer look at Dmax
k defined in (6.15). We see that Dmax

k ∩Dmax
k+1 = Mmid

k

and if l > k + 1 then Dmax
k ∩ Dmax

l = ∅. Thus, the term 1 − δ{x,y} appears at most
twice in the above sum for any particular edge {x, y} with x ∈ Dmax

k . Noting also that
|Dmax

k | = 2(r0 +K0) and using symmetry and translation invariance we see that∑
l 6=k

ak,l(K0, r0) = 2
∑
l>k

ak,l(K0, r0) ≤ 4|Dmax
k |

∑
y>2K0

(1− δ{0,y})

= 8(K0 + r0)
∑

y>2K0

(1− δ{0,y}).
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Thus, in summary we obtain for any k ∈ Z,

P(∃l 6= k : W{k,l},n = 1|BK0
n ) ≤ 8(K0 + r0)

∑
y>2K0

(1− δ{0,y}) =: ε2(K0, r0). (6.23)

But since we know from (6.12) that
∑
y∈N y(1 − δ{0,y}) < ∞. We also obtain that∑

y>2K0
y(1− δ{0,y})→ 0 as K0 →∞, and thus it is not difficult to see that ε2(K0, r0)→ 0

as K0 →∞ for every r0. In addition, if we choose K0 = r0 then we see that also

ε2(r0, r0)→ 0 as r0 →∞ (6.24)

Bound on the U variables Recall that on every finite graph the classical contact
process dies out. We denote by τ r0,K0

ext the extinction time of a classical contact process
with infection rate and recovery rate as the CPDLP (C,B) on a complete graph with
2(K0 + r0) vertices, where every vertex is initially infected. Since |Dk,n| ≤ 2(K0 + r0) it
holds that

P(Uk,n = 1|BK0
n ) ≤ P(τ r0,K0

ext > γ−1) =: ε3(K0, r0, γ). (6.25)

For every ε > 0 we can choose γ∗ = γ∗(K0, r0) > 0 small enough such that P(τ r0,K0

ext >

γ−1) < ε for all γ < γ∗, and thus in particular ε3(K0, r0, γ)→ 0 as γ → 0.
We observe now that (Xk,n)(k,n)∈Z×N0

are independent random variables and that for
any n ∈ N0 the random variables (Xk,n)k∈Z are measurable with respect to BK0

n . But the
family of random variables (Uk,n)(k,n)∈Z×N0

are only independent in time (for different n),
but for a fixed n in the spatial direction (for different k) only independent conditionally
on BK0

n , see Remark 6.8. The analogous statement holds for {W{k,l},n : k, l ∈ Z, k < l, n ∈
N0}. Our next aim is therefore to construct independent upper bounds of the W and U
variables, which are also independent of the X variables.

Proposition 6.11. Let ak,l(K0, r0) and ε3(K0, r0, γ) be as in (6.22) and (6.25) and
r0,K0>0 large enough as well as γ>0 small enough such that ak,l(K0, r0), ε3(K0, r0, γ) <

1. Then there exist independent families

U ′ := {U ′k,n : k ∈ Z, n ∈ N0} and W ′ := {W ′{k,l},n : k, l ∈ Z, k < l, n ∈ N0}

of independent Bernoulli random variables with P(W ′{k,l},n = 1) = ak,l(K0, r0) and
P(U ′k,n = 1) = ε3(K0, r0, γ) for all k 6= l and all n ∈ N0 such that W{k,l},n ≤ W ′{k,l},n
and Uk,n ≤ U ′k,n almost surely and such that they are independent of the family
(Xk,n)(k,n)∈Z×N0

.

Proof. Recall that BK0
n = σ

({
w′n({x, y}) : |x − y| ≤ 2K0

})
from (6.13). We will now

explicitly construct the U ′ and W ′ variables. For that we define the random variables

pUk,n := P(Uk,n = 0|BK0
n ) and pW{k,l},n := P(W{k,l},n = 0|BK0

n )

for l, k ∈ Z with k 6= l and n ∈ Z0. Now let

{χUk,n : k ∈ Z, n ∈ N0} and {χW{k,l},n : k, l ∈ Z, k 6= l, n ∈ N0}

be two independent families of uniform random variables on [0, 1], which are also
independent of the X, U and W variables. Furthermore, we define the random variables

sUk,n :=
1− ε3(K0, r0, γ)

pUk,n
and sW{k,l},n :=

1− ak,l(K0, r0)

pW{k,l},n
,

which are measurable with respect to BK0
n . Note that by (6.22) and (6.25) it follows that

pW{k,l},n ≥ 1− ak,l(K0, r0) > 0 and that pUk,n ≥ 1− ε3(K0, r0, γ) > 0. This yields that sW{k,l},n
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and sUk,n have values in [0, 1]. Now let U ′ = {U ′k,n : k ∈ Z, n ∈ N0} be a family of Bernoulli

random variables such that U ′k,n = 0 if and only if Uk,n = 0 and χUk,n ≤ sUk,n. By definition
it is clear that U ′k,n ≥ Uk,n and we see that

P(U ′k,n = 0|BK0
n ) = P(Uk,n = 0, χUk,n ≤ sUk,n|BK0

n ) = pUk,ns
U
k,n = 1− ε3(K0, r0, γ), (6.26)

where we used in the second equality conditional independence given BK0
n , which follows

since sUk,n is BK0
n measurable and χUk,n independent of Uk,n. Note that the right hand side

is deterministic, and thus it follows that the variables U ′k,n are independent of BK0
n for all

k ∈ Z and n ∈ N0.
Analogously, we define the family W ′ by setting W ′{k,l},n = 0 if and only if W{k,l},n = 0

and χW{k,l},n ≤ sW{k,l},n (and otherwise W ′{k,l},n = 1). Analogously as in (6.26) it follows
that

P(W ′{k,l},n = 0|BK0
n ) = pW{k,l},ns

W
{k,l},n = 1− ak,l(K0, r0), (6.27)

which implies that W ′k,n is also independent of BK0
n for all k, l ∈ Z with l 6= k and n ∈ N0.

By taking the expectation in (6.26) and (6.27) we get that

P(U ′k,n = 0) = 1− ε3(K0, r0, γ) and P(W ′{k,l},n = 0) = 1− ak,l(K0, r0), (6.28)

and therefore U ′k,n and W ′{k,l},n have the correct marginal distribution for all k, l ∈ Z
with l 6= k and n ∈ N0.

It is left to show that these variables are two independent families of independent
random variables. We already know by construction that the U ′ and W ′ of different time
steps n 6= n′ are independent. Thus, it suffices to show independence of the variables in
the same time step. Therefore, we fix some n and omit the subscript n in the following.

Let m1,m2 ∈ N0. Let u1, . . . um1
and w1, . . . wm2

be in {0, 1}, and let k1, . . . , km1
be

distinct integers as well as e1, . . . , em2
be distinct edges. We need to show that

P(U ′k1 = u1, . . . , U
′
km1

= um1 ,W
′
e1 = w1, . . . ,W

′
km2

= wm2)

=P(U ′k1 = u1) . . .P(U ′km1
= um1

)P(W ′e1 = w1) . . .P(W ′km2
= wm2

).

Since we are considering Bernoulli random variables it suffices to consider u1 = · · · =
um1

= w1 = · · · = wm2
= 0. Now we see that

P(U ′k1 = 0, . . . , U ′km1
= 0,W ′e1 = 0, . . . ,W ′km2

= 0)

=E
[
P
( m1⋂
i=1

{Uki = 0} ∩ {χUki ≤ s
U
ki} ∩

m2⋂
j=1

{Wej = 0} ∩ {χWej ≤ s
W
ej }
∣∣∣BK0

)]
=E
[
P
( m1⋂
i=1

{Uki = 0} ∩
m2⋂
j=1

{Wej = 0}
∣∣∣BK0

) m1∏
i=1

P(χUki ≤ s
U
ki |B

K0)

m2∏
j=1

P(χWej ≤ s
W
ej |B

K0)
]
,

where we again used conditional independence analogously to (6.26) and (6.27). Thus,
we have that

P(U ′k1 = 0, . . . , U ′km1
= 0,W ′e1 = 0, . . . ,W ′km2

= 0)

=
(
1− ε3(K0, r0, γ)

)m1

m2∏
j=1

(
1− aej (K0, r0)

)
× E

[
P
( m1⋂
i=1

{Uki = 0} ∩
m2⋂
j=1

{Wej = 0}
∣∣∣BK0

) m1∏
i=1

1

pUki

m2∏
j=1

1

pWej

]
=
(
1− ε3(K0, r0, γ)

)m1

m2∏
j=1

(
1− aej (K0, r0)

)
=P(U ′k1 = 0) · · ·P(U ′km1

= 0)P(W ′e1 = 0) · · ·P(W ′km2
= 0),
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where we have used in the second to last equality that the U and W variables are
conditionally independent given BK0 and (6.28) in the last equality. Note that since the
families U ′ and W ′ are independent of BK0 it follows immediately that they are also
independent of the X variables since those are measurable with respect to BK0 . This
concludes the proof

Now we define a process (Z ′n)n∈Z as in Definition 6.9 but as a function of the random
variables X, U ′ and W ′, which we obtained in Proposition 6.11, instead of X, U and W
used to define Z. Due to the monotonicity in the definition of those processes it follows
that Zn ⊂ Z ′n for all n ∈ N0. Thus if (Z ′n)n∈Z goes extinct almost surely, then the same
follows for (Zn)n∈Z.

Lemma 6.12. If E[|Z ′1||Z ′0 = {0}] < 1, then Z ′ dies out almost surely for any finite A ⊂ V
as initial state.

Proof. Analogously to Lemma 6.6, respectively to [LR20, Lemma 3.7].

Now we are ready to show Theorem 2.7, which states that for any q ∈ (0, 1), C ⊂ V
non-empty and finite, and λ > 0 there exists γ∗ > 0 such that CC dies out almost surely
for all γ ≤ γ∗, i.e. θ(λ, γ, q, C) = 0 for all γ ≤ γ∗. We will also show that this implies that
λc(γ, q)→∞ as γ → 0.

Proof of Theorem 2.7. The proof strategy is similar to that of the proof of Theorem 2.5,
and it again suffices to consider Z ′0 = {0} since the general case follows analogously
as in the proof of Theorem 2.5. We see that |Z ′1| ≤ 3|Z|, where Z is the connected
component containing the origin 0 of a long range percolation model (see Section 4) with
probabilities given by

b{k,l} = P(W ′{k,l},n = 1) and b{k,k+1} = P({W ′{k,k+1},n = 1} ∪ {Xk,n = 1})

for all k, l ∈ Z with |k − l| ≥ 2. Note that the constant 3 comes from the fact that any
vertex in Z, which is connected to the origin at time 0 via unoriented edges, connects to
3 vertices at time 1 via oriented edges, see Figure 10. We see that we can again split up
the expectation such that

E[|Z|] =E
[
1{X1,0=1}∪{X−1,0=1}∪{∃j∈Z:W ′{0,j},0=1}|Z|

]
+ E

[
1{X1,0=0}∩{X−1,0=0}∩

⋂
j∈Z{W ′{0,j},0=0}U

′
0,0

]︸ ︷︷ ︸
≤E[U ′0,0]

. (6.29)

We also know that by (6.20) and (6.22) combined with Proposition 6.11

P(Xk,n = 1) ≤ ε1(r0) and P(W ′{k,l},n = 1) ≤ ak,l(K0, r0)

so that the b{k,l} have bounds that are independent of the choice of γ, namely, we have
for any fixed k that ∑

l 6=k

b{k,l} ≤ 2ε1(r0) +
∑
l 6=k

ak,l(K0, r0).

From here onwards for the remainder of the proof we choose K0 = r0. Now by (6.21)
and (6.24) it follows that∑

l 6=k

b{k,l} ≤ 2ε1(r0) +
∑
l 6=k

ak,l(r0, r0)→ 0

as r0 → ∞. Hence, there exists a constant R1 > 0 such that
∑
l 6=k b{k,l} < 1 for all

r0 ≥ R1. Thus, by Proposition 4.1 we know that |Z| is integrable. We add r0 as an index,
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i.e. Z(r0). We can show analogously as in the proof of Theorem 2.5 that for every ε > 0

there exists an M = M(ε,R1) such that

E[|Z(r0)|1{|Z(r0)|>M}] <
ε

3

for all r0 ≥ R1. Thus, we can conclude that

E[1{X1,0=1}∪{X−1,0=1}∪{∃j∈Z:W ′{0,j},0=1}|Z(r0)|]

≤E[1{|Z(r0)|>M}|Z(r0)|] +M
(
P(X1,0 = 1) + P(X−1,0 = 1) +

∑
j∈Z

P(W ′{0,j},0 = 1)
)

≤ε
3

+M
(

2ε1(r0) +
∑
l 6=k

ak,l(r0, r0)
)
.

Next we again use (6.21) and (6.24) to see that there must exist a constant R2 > R1

such that M
(
2ε1(r0) +

∑
l 6=k ak,l(r0, r0)

)
< ε

3 for all r0 > R2. By (6.25) we can choose
γ∗ > 0 small enough such that E[U0,0] < ε

3 for all γ < γ∗. Then it follows with (6.29) that
E[|Z|] < 3ε. Thus, if we choose ε < 1

3 we see that

E[|Z ′1|] ≤ 3E[|Z|] < 1.

By Lemma 6.12 it follows that (Z ′n)n∈N goes extinct almost surely, which implies the
same for (Zn)n∈N since Zn ⊂ Z ′n for all n almost surely. Then by Lemma 6.10 it follows
that C{x} goes extinct almost surely and so also CC for all finite C ⊂ Z and all γ < γ∗.
In formulas this means that θ(λ, γ, q, C) = 0 for all γ < γ∗.

Finally this implies that limγ→0 λc(γ, q) = ∞ since otherwise there would exist a
λ < ∞ and a sequence γn → 0 such that supn λc(γn, q) < λ. But this would imply that
for this λ fixed θ(λ, γn, q, C) > 0 for all 0 < |C| < ∞ in contradiction to what we just
proved.
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