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Abstract

We consider the inhomogeneous stochastic six vertex model with periodic weights
starting from step initial data. We prove that it converges almost surely to a determin-
istic limit shape. For the proof, we map the stochastic six vertex model to a deformed
version of the discrete Hammersley process [Sep97, BEGG16]. Then we construct a
colored version of the model and apply Liggett’s superadditive ergodic theorem. The
construction of the colored model includes a new idea using a Boolean-type product,
which generalizes and simplifies the method used in [DL22].
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1 Introduction

1.1 The S6V model

The stochastic six vertex (S6V) model [GS92] is a classical model in two-dimensional
statistical physics. It is a stochastic version of the six vertex model [Lie67, Bax16], which
is a natural model for crystal lattices with hydrogen bonds. We associate six possible
configurations to each lattice point on the first quadrant, as in Figure 1. We view the
lines from the south and the west as inputs and the lines to the north and the east as
outputs. The model is stochastic in the sense that when we fix the inputs, the weights of
possible configurations with those inputs sum up to 1. The configurations chosen for
neighboring vertices need to be compatible so that the output lines of a vertex are the
input lines of the vertices to its immediate north and east.
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Law of large numbers for the stochastic six vertex model

It was predicted by Gwa and Spohn [GS92] and proved by Borodin, Corwin and Gorin
[BCG16] that the S6V model belongs to the Kardar-Parisi-Zhang (KPZ) universality class—
a class of models that exhibit universal statistical behavior in their large time/large-scale
limits. See [KPZ86, Qua11, Cor12] for an overview of this topic. Some recent works
on the S6V model include [Agg17, Agg18, BG19, Lin19, ST19, Agg20, CGST20, Dim20,
Kua21, Lin22] and references therein.

In this paper, we view the S6V model as a stochastic path ensemble on the first
quadrant with the boundary condition that there is a line entering each of the vertices in
{1} ×Z≥1 from the left, and no lines entering Z≥1 × {1} from the bottom. This boundary
data is called step initial data. Fix a collection of parameters {b1(i, j), b2(i, j)}i,j that
take values in [0, 1]. Starting from (1, 1), we tile each vertex with one of the six vertex
configurations in Figure 1, where we only consider configurations whose input lines
match the input lines of the given vertex. We assign an allowed configuration with
probability given by the weight of the configuration. This tiling construction then
progresses sequentially in the linear order (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . to the entire
quadrant. Note that we can view the stochastic path ensemble as a family of upright
paths ordered in the northwest direction, as depicted in the left panel of Figure 2.

Let h be the height function of the S6V model defined on Z2
≥0 where h(x, y) records

the number of lines that pass through or to the right of (x, y), see the left panel of
Figure 2.

Type I II III IV V VI

Configuration

Weight 1 1 b1(i, j) 1− b1(i, j) b2(i, j) 1− b2(i, j)

Figure 1: Six types of configurations for the S6V model.

Assumption 1.1. There exist periods I, J ∈ Z≥1 such that bk(x + I, y) = bk(x, y) and
bk(x, y + J) = bk(x, y) for arbitrary x, y and k ∈ {1, 2}.
Theorem 1.2. There exists a Lipschitz function g such that with probability 1,

lim
n→∞

h(bnxc, bnyc)
n

= g(x, y), ∀x, y ∈ R≥0. (1.1)

Remark 1.3. The S6V model considered here is inhomogeneous and not integrable in
most cases. The parameters b1 and b2 have period I in space and period J in time. Hence,
there are IJ degrees of freedom. If I, J = 1, the S6V model is homogeneous and its
limit shape has been explicitly derived in [BCG16, Theorem 1.1] and [Agg20, Theorem
5.1] (also see [RS18] for a derivation of the limit shape using a variational principle).
Note that the derivations of explicit limit shapes in these two papers rely respectively
on integrability and the existence of explicit stationary distributions for the model. For
general I, J , due to the lack of these properties, we don’t think that there is an explicit
formula for g.

Remark 1.4. Take I = J = 1 and consider the homogeneous S6V model where b1(i, j)

and b2(i, j) do not depend on i, j. By [BCG16, Theorem 1.1] or [Agg20, Theorem 5.1], if
b1 ≤ b2, we have

g(x, y) =


(√

y(1−b1)−
√
x(1−b2)

)2
b2−b1

1−b2
1−b1 <

x
y <

1−b1
1−b2 ,

0 x
y ≥

1−b1
1−b2 ,

y − x x
y ≤

1−b2
1−b1 .

(1.2)
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Law of large numbers for the stochastic six vertex model

If b1 ≥ b2, we have

g(x, y) =

{
0 x ≥ y,
y − x x ≤ y.

With Theorem 1.2, we strengthen the convergence in probability in [BCG16, Agg20] to
the almost sure level.

1.2 The complemented S6V model

To prove Theorem 1.2, it is convenient to study the S6V model after horizontal
complementation. If there is a horizontal line, we erase it; if there is no horizontal line,
we add it, see Figure 2 for an example. This procedure converts an ensemble of upright
paths to an ensemble of downright paths. Note that this model has appeared in [ABW22]
without a specific name, and we call it the complemented S6V (CS6V) model.

Let H be the height function of the CS6V model defined on Z2
≥0, where H(x, y)

records the number of lines that pass through or to the left of (x, y). It is straightforward
that H(x, y) = y − h(x, y), see the right panel of Figure 2.

0 0 0 0 0 0 0 0

1 1 1 1 0 0 0 0

2 1 1 1 0 0 0 0

3 2 1 1 1 1 1 1

4 3 2 2 1 1 1 1

5 4 3 2 1 1 1 1

6 5 4 3 2 2 2 2

7 6 5 4 3 2 2 2

(0, 0)
0 0 0 0 0 0 0 0

0 0 0 0 1 1 1 1

0 1 1 1 2 2 2 2

0 1 2 2 2 2 2 2

0 1 2 2 3 3 3 3

0 1 2 3 4 4 4 4

0 1 2 3 4 4 4 4

0 1 2 3 4 5 5 5

(0, 0)

Figure 2: Left panel: A sampling of the S6V model on the first quadrant, with the
blue numbers denoting the height function. Right panel: The CS6V model obtained by
horizontally complementing the S6V model.

We can also sample the CS6V model on the first quadrant by sequentially tiling the
vertices with one of the six possible configurations in Figure 3, which are obtained
by horizontally complementing the configurations in Figure 1. Instead of step initial
data, we consider empty boundary data—the boundary data obtained by horizontally
complementing the step initial data. In other words, no lines enter the quadrant from
either the left boundary {1} ×Z≥1 or the bottom boundary Z≥1 × {1}.

Type I II III IV V VI

Configuration

Weight 1 1 b1(i, j) 1− b1(i, j) b2(i, j) 1− b2(i, j)

Figure 3: Six types of configurations for the CS6V model.

Due to the relationship H(x, y) = y − h(x, y), proving Theorem 1.2 is equivalent to
proving the following theorem.
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Law of large numbers for the stochastic six vertex model

Theorem 1.5. There exists a Lipschitz function g such that with probability 1,

lim
n→∞

H(bnxc, bnyc)
n

= y − g(x, y), ∀x, y ∈ R≥0.

1.3 Connections to the discrete Hammersley process and the t-PNG model

[Sep97] studied Ulam’s problem on the planar lattice. This model is also referred to
as the discrete Hammersley process in [BEGG16, CG19]. Consider the integer lattice
on Z2

≥0 and a random set ξ of integer points chosen independently with probability p.
Define the partial order ≺ such that (x1, y1) ≺ (x2, y2) if and only if x1 < x2 and y1 < y2.

Let Hd denote the height function defined on Z2
≥0:

Hd(x, y) = max
{
L : there exist integer points (x1, y1) ≺ · · · ≺ (xL, yL) ∈ ξ∩[1, x]×[1, y]

}
.

As noticed in [BEGG16], we can construct a collection of downright paths which play the
role of the level lines of Hd. We first use a downright path to connect the minimal points
of ξ under the order ≺. We remove these points from ξ and connect the new minima
to obtain the second line and so on. The height function starts from Hd(0, 0) = 0 and
whenever we cross a downright path from southwest to northeast, the height function
increases by 1, see Figure 4. It is straightforward to check that the CS6V model is a

×

×

×

×

×

×

×

×

×

0

1

2

3

4

Figure 4: Illustration of the discrete Hammersley process. The ×’s are chosen indepen-
dently on the lattice with probability p.

deformed version of the discrete Hammersley process:

Proposition 1.6. Take b1 = 0 and b2 = 1 − p. The CS6V model degenerates to the
discrete Hammersley process.

Using this, we recover the almost sure limit shape of the discrete Hammersley process
established in [Sep97, Theorem 1] and [BEGG16, Theorem 1].

Corollary 1.7. With probability 1, for all x, y ≥ 0,

lim
t→∞

Hd(tx, ty)

t
=

{
(1− p)−1

(
2
√
pxy − (x+ y)p

)
if p < min(xy ,

y
x ),

min(x, y) else.

Proof. One can readily check that the right-hand side above equals y − g(x, y) when
b1 = 0 and b2 = 1− p, using the formula of g in Remark 1.4. The corollary then follows
from a combination of Theorem 1.5 and Proposition 1.6.

Just like the CS6V model is a deformation of the discrete Hammersley process, the
t-PNG model introduced in [ABW22] is a deformation of the polynuclear growth (PNG)
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Law of large numbers for the stochastic six vertex model

model [PS00], a continuous version of the discrete Hammersley process. We will now
discuss the relationship between these two deformed models. To define the t-PNG model,
we fix a parameter t ∈ [0, 1] and place a Poisson point process with intensity 1 on the
upper-right quadrant representing nucleations. We draw lines emanating from each of
these nucleations in both the upward and rightward directions until they collide with one
another. We call these collision points intersection points. Given the Poisson nucleations,
we sample the outcomes of the intersection points (lines will either cross or annihilate
each other) starting with the intersection point which has the smallest sum of x- and y-
coordinates and moving sequentially outward. At an intersection point, the two lines
will cross each other with probability t and will annihilate each other with probability
1− t, forming a corner. Note that when lines cross, they might generate new intersection
points. We refer to Figure 5 for a sampling of the t-PNG model.

×

×

×
×

×

Figure 5: A sampling of the t-PNG model, where “×” are the Poisson nucleations.

Consider the CS6V model where b1 and b2 do not depend on i, j. As noticed by
[ABW22], if we take b1 = t and b2 = 1− ε2 and simultaneously scale the x- and y-axis by
ε−1, the CS6V model degenerates to the t-PNG model as ε→ 0.

Using integrable methods, [ABW22] proved a weak law of large numbers and a
fluctuation theorem for the height function of the t-PNG model. In [DL22], we proved a
strong law of large numbers of the t-PNG model by constructing a colored t-PNG model
and using Liggett’s superadditive ergodic theorem (one can easily go from the usual
subadditive ergodic theorem to the superadditive version by placing negative signs as
needed).

1.4 Generalization to the stochastic higher spin six vertex (SHS6V) model

In the definition of the S6V model, we only allow at most one line traveling in the
horizontal and vertical directions. Now we consider a generalization of the S6V model
called the SHS6V model which relaxes this restriction and allows multiple lines to travel
together. Our results will easily generalize to this setting.

The SHS6V model is a higher spin version of the S6V model that has been actively
studied in recent years, see [Man14, CP16, Bor17, CT17, OP17, BP18, Kua18, IMS20,
Lin20a, Lin20b] and the references therein. The model has two spin parameters I, J ∈
Z≥1, which will be fixed from now on. To define the SHS6V model, let us introduce the
matrix LI,Jα,q with rows and columns both indexed by {0, 1, . . . , I} × {0, 1, . . . , J}. Fix two
other parameters α, q ∈ R. For (i1, j1), (i2, j2) ∈ {0, 1, . . . , I} × {0, 1, . . . , J}, we define
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matrix entries

LI,Jα,q(i1, j1; i2, j2) := 1{i1+j1=i2+j2}q
2j1−j21

4 − 2j2−j22
4 +

i22+i21
4 +

i2(j2−1)+i1j1
2 (1.3)

× νj1−i2αj2−j1+i2(−αν−1; q)j2−i1
(q; q)i2(−α; q)i2+j2(qJ+1−j1 ; q)j1−j2

4φ3

(
q−i2 ; q−i1 ,−αqJ ,−qνα−1
ν, q1+j2−i1 , qJ+1−i2−j2

∣∣∣∣q, q),
where ν = q−I . The term (a, q)n that appears in the above expression is the q-Pochham-
mer symbol, and the function 4φ̄3 is the regularized terminating basic hyper-geometric
series. For more precise details see [CP16, Theorem 3.15].

We shall think of the four tuples (i1, j1; i2, j2) as the number of lines on the bottom,
left, top, and right of a vertex. We think of lines flowing into the vertex from the bottom
and the left, and flowing out of the vertex from the top and the right, see Figure 6.

j1 j2

i2

i1

output

input

Figure 6: The vertex configuration labeled by the four tuple (i1, j1; i2, j2) has weight
LI,Jα (i1, j1; i2, j2). The vertex absorbs i1 input lines from the bottom, j1 input line from
the left, and produces i2 output lines above and j2 output lines to the right.

The indicator in (1.3) implies that the model is conservative, i.e. we only consider
vertex configurations where the number of lines entering the vertex from the bottom
and left is equal to that leaving the vertex above and to the right.

One can deduce from [CP16, Proposition 2.3] that LI,Jα,q is a stochastic matrix if either
1) q ∈ [0, 1), α < q−I−J+1 or 2) q > 1, α ∈ (−q−I−J+1, 0). In the following, we assume this
is satisfied when we talk about the SHS6V model.

We can define the SHS6V model and its height function hhs in a similar way to the
S6V model using the stochastic matrix LI,Jα,q to sequentially assign a configuration of
lines to each vertex on the first quadrant. Let ix,y and jx,y denote the number of lines
leaving the vertex (x, y) from above and from the right. Note that ix,y equals the number
of lines that enter (x, y + 1) from the bottom and jx,y equals the number of lines that
enter (x+ 1, y) from the left. We define the step initial condition where we set j0,y = J

for every y ∈ Z≥1 and ix,0 = 0 for every x ∈ Z≥1. In other words, we consider the
boundary condition where we let J lines enter each vertex on the left boundary and let
no lines enter the bottom boundary. The SHS6V model reduces to the S6V model with

b1 = L1,1
α,q(1, 0; 1, 0) = 1+αq

1+α and b2 = L1,1
α,q(0, 1; 0, 1) = α+q−1

1+α .

It turns out that using a procedure called fusion, the SHS6V model can be realized
as a fused inhomogeneous S6V model with periodicities. This procedure goes back to
[KR87]. We also recommend [CP16, Section 3] for a more probabilistic explanation.
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Define β(i, j) := (i mod I) + (j mod J) and

b1(i, j) := L1,1
αqβ(i,j),q

(1, 0; 1, 0) =
1 + αqβ(i,j)+1

1 + αqβ(i,j)
,

b2(i, j) := L1,1
αqβ(i,j),q

(0, 1; 0, 1) =
αqβ(i,j) + q−1

1 + αqβ(i,j)
.

It is clear that b1(·, ·), b2(·, ·) both have period I in the first coordinate and period J in
the second coordinate. As in Section 1.1, we use h to denote the height function of the
inhomogeneous S6V model with the parameters b1, b2 defined above. It turns out that
hhs and h have the same distribution if we fuse J number of rows into one row and I

number of columns into one column for the inhomogeneous S6V model.

Lemma 1.8. The stochastic process {hhs(x, y)}x,y is equal in distribution to {h(Ix, Jy)}x,y.

Proof. The result is due to fusion, see [CP16, Proposition 3.15] or [Lin22, Proposition 8.2].

Using the above lemma together with Theorem 1.2, we obtain that the SHS6V model
with the step initial condition converges almost surely to a deterministic limit shape.

Corollary 1.9. There exists a deterministic Lipschitz function ghs(x, y), such that with
probability 1, we have for all x, y ∈ R≥0,

lim
n→∞

hhs(bnxc, bnyc)
n

= ghs(x, y).

Remark 1.10. We did not see the expression of ghs written down in the literature.
However, using the techniques in [Agg20] which exactly compute the limit shape of the
S6V model, it is not hard to see that ghs(x, y) = Jy−

∫ x
0
u(y, r)dr, where u(t, x) represents

the density function of the vertical lines in the SHS6V model at time nt around location
nx as n→∞. In particular, u is the unique entropy solution to Burger’s equation

∂tu = ∂x(G(u)), u(0, x) = I1{x≤0}.

Here G(ρ) denotes the flux which records the density of horizontal lines if we start the
SHS6V model from a stationary distribution where the density of the vertical lines is ρ.
The function G can be explicitly computed since the stationary distribution of the SHS6V
model has been explicitly given in [IMS20, Lin20a].

1.5 Proof ideas

In this section, we explain the idea behind the proof of Theorem 1.5. For the discrete
Hammersley process defined in Section 1.3, the strong law of large numbers follows as
a direct consequence of the superadditive ergodic theorem (see Theorem 3.1 for the full
statement). To apply the superadditive ergodic theorem, one needs to construct a family
of superadditive random variables {Xm,n : 0 ≤ m ≤ n} where {X0,n, n ≥ 0} records the
height function. A subfamily of the random variables also needs to be ergodic. For the
discrete Hammersley process, one can simply define

Xm,n :=

max
{
L : there exist integer points (x1, y1) ≺ · · · ≺ (xL, yL) ∈ ξ∩[m+1, n]×[m+1, n]

}
.

(1.4)

It is straightforward to check that {Xm,n : 0 ≤ m ≤ n} satisfies the condition required by
the superadditive ergodic theorem.
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For the CS6V model, one can also define a family of random variables {Xm,n : 0 ≤
m ≤ n} by slightly modifying the above definition and setting

Xm,n :=

max
{
L : there exist integer points (x1, y1) � · · · � (xL, yL) ∈ η∩[m+1, n]×[m+1, n]

}
,

where (x1, y1) � (x2, y2) if x1 ≤ x2 and y1 ≤ y2, and η represents the set of vertices of
type III and VI in Figure 3. It is easy to verify that the definition of Xm,n above coincides
with that in (1.4) when b1 = 0 and b2 = 1− p.

We check whether the conditions in the superadditive ergodic theorem are still
satisfied for this modified family of random variables. Indeed, the random variables are
still superadditive, and {X0,n : n ≥ 0} records the height function as desired. However,
the ergodic (and even stationary) property no longer holds, since the random variable
Xm,n depends on the lines entering the box [m+1, n]× [m+1, n] from the left and bottom
boundaries, and the distribution of these lines varies with m,n.

To overcome this difficulty, we apply a similar idea as in [DL22] and construct a
colored CS6V model. The colored CS6V model is a generalization of the CS6V model,
where each line is assigned a color. We denote the different colors by integers i ∈ N,
and we say that the color i has higher priority than the color j if i < j. We allow
multiple (but only finitely many) lines with different colors to travel together, with the
restriction that lines traveling together must have different colors. Note that although
the SHS6V model introduced in Section 1.4 also allows multiple lines to travel together,
it is a single-colored model and does not have much relation to the colored CS6V model
discussed here.

The colored CS6V model is defined by specifying a sampling rule for when horizontal
lines and vertical lines meet. The sampling rule is given by a family of stochastic
matrices {Ln, n ∈ N} that are consistent. More concretely, the matrix Ln has both rows
and columns indexed by {0, 1}n × {0, 1}n. The matrix elements are given by Ln(i, j;k, l),
where the four vectors i, j,k, l ∈ {0, 1}n specify the number of lines (either zero or one) of
each color in {1, . . . , n} on the bottom, left, top, and right of an intersection, respectively
(see Figure 7). The stochastic matrices give a probability measure on the output lines
k, l from an intersection point given the input lines i, j. In Section 2, we will explicitly
define the matrices {Ln}n≥1 and show that they satisfy three properties. We will now
give a brief overview of these properties, and the precise statements will be given in
Propositions 2.6, 2.7, and 2.8.

i

j

k

l

i

j

k

l

Figure 7: Left panel: Fix n ∈ N. At an intersection point, we have lines with colors
in {1, . . . , n} in each direction, with at most one line per color in each direction. Let
i, j,k, l ∈ {0, 1}n denote the number of lines on the bottom, left, top and right directions,
respectively, where the m-th coordinate of each vector records the number of lines with
color m. Right panel: Take n = 3. Let red, blue, and orange denote the colors 1, 2, and
3. We illustrate an example of the configuration with i = (1, 0, 0), j = (0, 1, 1), k = (1, 1, 1),
and l = (0, 0, 0).
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Property 1 (Color Ignorance). Lines with higher priority colors ignore those with lower
priority colors. For instance, the lines with colors that belong to {1, . . . ,m} ignore
the behavior of lines with colors greater than m. This means that if we sample the
n-colored model and ignore the lines with colors greater than m, the remaining lines will
behave as the m-colored model. Because of this, we can define the random variables
{Xm,n, 0 ≤ m ≤ n} in a way that maintains ergodicity, as we will see in Section 3.

Property 2 (Mod 2 Erasure). Fix arbitrary integers 1 ≤ r1 < · · · < rm ≤ n. We can
project the matrix Ln to Lm if we replace the colors in {rk−1 + 1, . . . , rk} with color k
for each k ∈ {1, . . . ,m} and then erase every pair of lines with the same color traveling
together. Because of this property, we can project the colored CS6V model down to the
single-colored CS6V model. This will ensure that the random variables {X0,n, n ≥ 0}
will record the height function of the CS6V model, which is the quantity that we are
interested in studying.

Property 3 (Monotonicity of the Height Function). Suppose we have a sampling of the
two-colored CS6V configuration on a rectangle [1, x]× [1, y] where we assign the vertex
configurations in the rectangle using the matrix L2, and we allow only second color
lines to enter from the left and bottom boundary. We can naturally extend the definition
of H(x, y) to apply to the case of non-empty boundary data by defining H(x, y) as the
sum of the number of lines entering the box [1, x]× [1, y] from the left boundary and the
number of lines exiting the box [1, x]× [1, y] from the top boundary. Let H1(x, y) be the
height function when we only consider lines of the first color. Let H2(x, y) be the height
function of the projection of both colors to the single-colored model after we applied the
procedure of mod 2 erasure. Then

H1(x, y) ≤ H2(x, y).

In other words, adding a second color to the model does not decrease the height function.
This property will be important for proving the superadditivity of the random variables
{Xm,n, 0 ≤ m ≤ n}.

1.5.1 Novelty of the paper

In [DL22], we studied the t-PNG model, which is a one-parameter model. The con-
struction of the L-matrices therein comes from a sophisticated guess. The proof of
stochasticity of {Ln}n≥1 and Properties 1–3 for the t-PNG model is then based on a case
by case check. The CS6V model is a two-parameter model, so defining the colored
CS6V model via guessing is more challenging. One novelty of the paper is that we use a
Boolean-type product to define the L-matrices, which significantly simplifies both the
definition and the proof of the properties. This Boolean-type product construction can
also be applied to give a simpler definition of the colored t-PNG model, see Appendix A.

Other novelties come from working in a discrete setting and the inhomogeneity in
the weights. For the t-PNG model, due to a scaling property, we only need to prove
the strong law of large numbers in the diagonal direction. For the CS6V model, there
is no similar scaling property, so we need to prove the strong law of large numbers in
every direction. To this end, for each rational direction, we construct a colored model
on the first quadrant and prove the strong law of large numbers in that direction. The
convergence in all directions then follows from a density argument.

1.5.2 Another possible approach

We want to remark that it is also possible to prove Theorem 1.2 without complementing
the S6V model. Indeed, [BF87, AFS04] prove a law of large numbers for a family of
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translation invariant exclusion processes. Their proof also relies on the superadditive
ergodic theorem, but in a different way. An important ingredient is to couple the
exclusion processes so that we can run them under the same random environment,
starting at different times and initial data. The S6V model is also an exclusion-type
interacting particle system, and to apply their idea, we need to find such a coupling for
the S6V model. Another interesting question is to study the almost sure convergence of
the S6V model to the limit shape under general initial data. Note that this result has
been proved for a family of finite-range exclusion processes in [BGRS10]. We leave both
of these questions to future work.

Outline

In Section 2, we define a family of L-matrices using a Boolean-type product. Then
we prove that the L-matrices are stochastic and satisfy Properties 1–3. In Section 3, we
construct a colored CS6V model on the first quadrant using the L-matrices. We apply
Liggett’s superadditive ergodic theorem to the model and prove Theorem 1.5 (which is
equivalent to Theorem 1.2).

2 Definition of the L-matrices

In this section, we first define the L1-matrix, which encodes the weights of the usual
single-colored CS6V model. Then, we introduce the Boolean-type product and use it to
define the Ln-matrices. In the following, we take generic parameters b1, b2 ∈ [0, 1].

Definition 2.1. The matrix L1 is indexed by a 4-tuple i, j, k, l ∈ {0, 1}, where i, j, k, l

denote the number of lines (either zero or one) on the bottom, left, top, and right of a
vertex. We define

L1(1, 0; 1, 0) = 1, L1(0, 1; 0, 1) = 1, L1(0, 0; 0, 0) = b2,

L1(0, 0; 1, 1) = 1− b2, L1(1, 1; 1, 1) = b1, L1(1, 1; 0, 0) = 1− b1.

For all other i, j, k, l ∈ {0, 1}, we set L1(i, j; k, l) = 0. For fixed input lines i, j ∈ {0, 1},
L1(i, j; ·, ·) is a probability measure on the output lines.

We proceed to give a closed form to the matrices {Ln}n≥1. Let

W ′ := {0, 1, b1, b2, 1− b1, 1− b2}

denote the set of possible weights for the CS6V model. Note that we treat the elements
in W ′ as indeterminates, so the size of W ′ does not depend on the values of b1 and b2.
We define a product ∗ on the extended space

W := {0, 1, b1, b2, (1− b1), (1− b2), b1b2, b1(1− b2), (1− b1)b2, (1− b1)(1− b2)}. (2.1)

For x, y ∈ W , we define [x] to be the set of factors of x. More precisely, [x] = {x} if
x ∈W ′, [x] = {b1, b2} if x = b1b2 and similarly for other values. We define

x ∗ y :=

{
0 if {b1, 1− b1} ⊆ [x] ∪ [y] or {b2, 1− b2} ⊆ [x] ∪ [y],∏
z∈[x]∪[y] z otherwise.

It is straightforward to check that W is closed under ∗. Moreover, we readily obtain the
following.

Proposition 2.2. The product ∗ satisfies the following three properties.

1. (commutativity) a ∗ b = b ∗ a, for a, b ∈W .
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2. (associativity) a ∗ (b ∗ c) = (a ∗ b) ∗ c, for a, b, c ∈W .

3. (distributivity) Suppose that a1, ..., an ∈W such that
∑n
i=1 ai ∈W . For any c ∈W ,

n∑
i=1

c ∗ ai = c ∗
n∑
i=1

ai.

Alternatively, we can also define ∗ first on W ′ and extend it to W . For x, y ∈W ′, we
define x ∗ x = x, and x ∗ y = 0 if {x, y} = {b1, 1− b1} or {b2, 1− b2}. This is why we call ∗
a Boolean-type product. For other choices of x, y ∈ W ′, we define x ∗ y = xy. We then
extend the product ∗ from W ′ to W using the commutative and associative properties.

Remark 2.3. This Boolean product structure can also be found when taking the ex-
pectation of products of independent Bernoulli random variables. For example, if we
let B0, B1, and B2 be independent Bernoulli random variables with parameters 0, b1,
and b2 respectively, then we have bi ∗ bj = E[BiBj ] and (1− bi) ∗ bj = E[(1− Bi)Bj ] for
0 ≤ i ≤ j ≤ 2.

We proceed to define the Ln-matrices, using W as the set of possible weights. For
x = (x1, . . . , xn) ∈ {0, 1}n and r ∈ {1, . . . , n}, we define the r-fold projection

sr(x) =
( r∑
m=1

xm

)
mod 2.

As an example, consider the vector x = (1, 0, 1, 1). We have

s1(x) = 1, s2(x) = 1, s3(x) = 0, s4(x) = 1.

Definition 2.4. Fix arbitrary n ∈ Z≥1. The matrix Ln is indexed by a 4-tuple i, j,k, l ∈
{0, 1}n, where i, j,k, l denote the number of lines (either zero or one) of each color in
{1, . . . , n} on the bottom, left, top, and right of an intersection, respectively. We define
the matrix Ln via

Ln(i, j;k, l) :=
∏∗

r∈{1,...,n}

L1(sr(i), sr(j); sr(k), sr(l)), (2.2)

where
∏∗ denotes the Boolean-type product of multiple terms under ∗.

2.1 Properties of Ln

We proceed to state and prove that the matrices Ln are stochastic and that they
satisfy the properties mentioned above. The key to the proofs of stochasticity, color
ignorance, and mod 2 erasure is the distributivity of the Boolean-type product, which
allows us to manipulate the sums and products as we normally would.

Proposition 2.5 (Stochasticity). Ln is a stochastic matrix, i.e., the entries of Ln are
non-negative, and for any i, j ∈ {0, 1}n,∑

k,l∈{0,1}n
Ln(i, j;k, l) = 1.

Proof. We prove this by induction. The case n = 1 follows from examination. Suppose
that Ln−1 is stochastic. Using the definition for Ln, we can factor it as follows:

Ln(i, j,k, l) = Ln−1(i[1,n−1], j[1,n−1],k[1,n−1], l[1,n−1]) ∗ L1(sn(i), sn(j); sn(k), sn(l)). (2.3)
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Note that (sn(k), sn(l)) equals each element of {0, 1}2 exactly once when we vary k, l

under the restriction k[1,n−1] = k and l[1,n−1] = l. Applying this and Proposition 2.2 to the
right-hand side of (2.3) yields∑

k,l∈{0,1}n
Ln(i, j,k, l)

=

 ∑
k,l∈{0,1}n−1

Ln−1(i[1,n−1], j[1,n−1]; k, l)

 ∗ ∑
k,l∈{0,1}

L1(sn(i), sn(j); k, l)

= 1.

The last equality follows from the stochasticity of both Ln−1 and L1.

Proposition 2.6 (Color Ignorance). Fix m ∈ {1, . . . , n} and i, j, k, l ∈ {0, 1}m. For all
i, j ∈ {0, 1}n such that i[1,m] = i and j[1,m] = j, we have∑

k[1,m]=k,
l[1,m]=l

Ln(i, j;k, l) = Lm(i, j; k, l). (2.4)

Proof. By Definition 2.4, we have

∑
k[1,m]=k,
l[1,m]=l

Ln(i, j;k, l) = Lm(i, j; k, l) ∗

 ∑
k[1,m]=k,
l[1,m]=l

n∏∗

i=m+1

L1(si(i), si(j); si(k), si(l))

 .

The last product can be rewritten as Ln−m(i, j, k, `) where i = (sm+1(i), . . . , sn(i)), and
where j, k, and ` are defined similarly. Summing Ln−m(i, j, k, `) over k[1,m] = k and
l[1,m] = l reduces to summing the same object over k, ` ∈ {0, 1}n−m, which equals 1 due
to stochasticity. This concludes the result.

We call π a partition of {1, . . . , n} if it takes the form of

π =
{
{1, . . . , r1}, {r1 + 1, . . . , r2}, . . . , {rm−1 + 1, . . . , rm}

}
for some m ≤ n and 1 = r1 < r2 < · · · < rm = n. We define a projection map
gπ : {0, 1}n → {0, 1}m such that

gπ(x1, . . . , xn) =

(( rk∑
i=rk−1+1

xi

)
mod 2

)m
k=1

.

We define `(π) = m to be the length of the partition π.

Proposition 2.7 (Mod 2 Erasure). Fix a partition π of {1, . . . , n} such that `(π) = m. Fix
i, j, k, l ∈ {0, 1}m. For all i, j ∈ {0, 1}n satisfying gπ(i) = i and gπ(j) = j, we have∑

gπ(k)=k
gπ(l)=l

Ln(i, j;k, l) = Lm(i, j; k, l).

Proof. Define A = {r1, . . . , rm}. We define i, j to be the unique n−m dimensional vectors
such that

(s1(i), . . . , sn−m(i)) = (s1(i), . . . , ŝr1(i), . . . , ŝrm(i), . . . , sn(i)),

(s1(j), . . . , sn−m(j)) = (s1(j), . . . , ŝr1(j), . . . , ŝrm(j), . . . , sn(j)),
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where x̂ denotes the removal of x in the vector. We have∑
gπ(k)=k
gπ(l)=l

Ln(i, j;k, l)

=
∑

gπ(k)=k
gπ(l)=l

(∏∗

i∈A
L1(si(i), si(j); si(k), si(l))

)
∗

 ∏∗

i/∈A,i≤n

L1(si(i), si(j); si(k), si(l))

 .

(2.5)

Since gπ(k) = k and gπ(l) = l, we have
∏∗

i∈A
L1(si(i), si(j); si(k), si(l)) = Lm(i, j; k, l).

Using this and Proposition 2.2, the right-hand side of (2.5) can be rewritten as

Lm(i, j; k, l) ∗

 ∑
gπ(k)=k
gπ(l)=l

∏∗

i/∈A,i≤n

L1(si(i), si(j); si(k), si(l))


= Lm(i, j; k, l) ∗

 ∑
k,l∈{0,1}n−m

Ln−m(i, j, k, l)


= Lm(i, j; k, l).

The first equality is due to (2.2). The last equality follows from the stochasticity of
Ln−m.

The next proposition implies that if we start with a CS6V model on [1, x]× [1, y] with
empty boundary data and wish to add some boundary data (i.e., lines entering the box
from the bottom and the left), then we can use the colored model to sample the CS6V
model with the boundary data in a way so that the height function at (x, y) cannot
decrease with the addition of the boundary data.

Proposition 2.8 (Monotonicity of the height function). Suppose we have a two-colored
CS6V model on [1, x] × [1, y], where the vertex configurations are assigned using the
matrix L2, and the only lines entering from the bottom and left boundaries are lines of
the second color. Let H1(x, y) denote the height function when we only consider lines
of the first color (i.e., the lines of the 1-fold projection). Let H2(x, y) denote the height
function of the 2-fold projection of both colors to the single-colored model. Then

H1(x, y) ≤ H2(x, y).

Proof. Consider the rectangle [1, x]× [1, y]. Let A1 (resp. B1) be the number of first-color
lines leaving the top (resp. right) boundary. Let A2 (resp. B2) be the number of second-
color lines that leave the same boundary and are accompanied by a first-color line. Let
A3 (resp. B3) be the number of second-color lines that leave the same boundary without
accompanying first-color lines. Let A4 (resp. B4) be the number of second-color lines
entering the left (resp. bottom) boundary. We have

H1(x, y) = A1 = B1, H2(x, y) = A1 −A2 +A3 +A4 = B1 −B2 +B3 +B4.

By examining all possible two-color configurations in Figure 11, we know that for a
vertex configuration, the number of second-color lines entering from the left and bottom
is no smaller than the number of lines exiting above and to the right. This implies
that the number of second-color lines entering the rectangle from the left and bottom
boundaries is no smaller than the number of second-color lines exiting the top and right
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boundaries. Hence, A4 +B4 ≥ A2 +A3 +B2 +B3. Hence, we have either A4 ≥ A2 +A3

or B4 ≥ B2 +B3. Assume without loss of generality that the first inequality holds. Then
we have

H1(x, y) = A1 ≤ A1 −A2 +A3 +A4 = H2(x, y).

Remark 2.9. It is possible to define a colored model in the same way as in Definition 2.4,
using ordinary multiplication instead of the Boolean-type product. This will still yield
a model with the properties of color ignorance and mod 2 erasure. However, with
this definition, the colored model will no longer satisfy the monotonicity of the height
function. To see why this is, note that with the Boolean definition, we cannot have the
configurations in Figure 8. This is because these configurations have weights b1∗(1−b1) =

0 and b2 ∗ (1− b2) = 0. However, with the ordinary product, these configurations would
have non-zero weights. As demonstrated in Figure 9, these configurations will yield
samplings that fail the monotonicity of the height function.

Figure 8: The weights of the above configurations equal b1∗(1−b1) = b2∗(1−b2) = 0 using
the Boolean-type product, and equal b1(1− b1), b2(1− b2) using ordinary multiplication.

1-fold projection

0 0 00

0

0

0

1

1

2

2-fold projection

0 0 00

0

0

0

1

1

1

Figure 9: A sampling that violates the monotonicity of the height function since the
height function in the top-right corner of its 2-fold projection is smaller than the height
function in the top-right corner of its 1-fold projection.

3 The colored model and proof of Theorem 1.5

With the help of the matrices {Ln}n∈Z≥1
, we apply the superadditive ergodic theorem

to the colored CS6V model and prove the existence of the limit shape. The argument is
similar to [DL22, Section 3] with certain adaptations.

We are going to construct {Xm,n : 0 ≤ m ≤ n} as discussed in the introduction, using
the colored CS6V model. Before doing that, let us recall Liggett’s superadditive ergodic
theorem. For our purposes, we formulate it in the superadditive setting by placing
negative signs where necessary.

Theorem 3.1 ([Lig12, page 277]). Suppose {Xm,n} is a collection of random variables
that is indexed by integers 0 ≤ m ≤ n and satisfies:

(i) Almost surely X0,0 = 0 and X0,n ≥ X0,m +Xm,n for 0 ≤ m ≤ n.

(ii) For each k ≥ 1, {X(n−1)k,nk : n ≥ 1} is a stationary and ergodic process.

(iii) {Xm,m+k : k ≥ 0} d
= {Xm+1,m+k+1 : k ≥ 0} for each m ≥ 0.

(iv) E[X−0,1] <∞ where x− = max(−x, 0).
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Then there exists a constant γ = supn≥1
E[X0,n]

n ∈ (−∞,∞] satisfying

γ = lim
n→∞

X0,n

n
a.s.

We proceed to define a colored CS6V model on the first quadrant. Recall that I, J
are the periods of the weights of the CS6V model, as in Assumption 1.1. Fix a direction
(x, y) ∈ Q2

>0, and define

N := the smallest positive integer such that
Nx

I
,
Ny

J
∈ N. (3.1)

We have omitted the dependence of N on x, y. Assign color −k to the vertex (a, b)

if either a ∈ [N(k − 1)x + 1, Nkx] or b ∈ [N(k − 1)y + 1, Nky], see the left panel of
Figure 10. We use negative numbers to label the colors so that we can have infinitely
many colors of increasing priority. Given the input lines of a vertex with color −k,
we sample the output lines according to stochastic matrices Lk with parameters b1 =

b1(i, j) and b2 = b2(i, j). The colored CS6V model is then sampled sequentially at
the vertices (1, 1), (2, 1), (1, 2), (3, 1), (2, 2), (1, 3), . . . to the entire quadrant, using the L-
matrices assigned to different vertices. By definition, Lk is defined for the positive colors
1, . . . , k, so we just map the colors −k, . . . ,−1 to 1, . . . , k, preserving their order. One can
check that if a vertex of color −k has no input lines, then the only possible output lines
emanating from that vertex can be of color −k. See the right panel of Figure 10 for a
sampling of the colored CS6V model.

We proceed to define the random variables {Xm,n,m, n ∈ Z≥0,m ≤ n} that satisfy
the condition of Theorem 3.1. Let vz,Nny denote the number of vertical lines exiting the
vertex (z,Nny) with colors that belong to {−n, . . . ,−m− 1}. We define

Xm,n :=

Nnx∑
z=Nmx+1

(
vz,Nny mod 2

)
. (3.2)

The next proposition encodes the height function of the CS6V model in terms of {Xm,n :

0 ≤ m ≤ n}.
Proposition 3.2. We have {X0,k, k ∈ Z≥0} = {H(Nkx,Nky), k ∈ Z≥0} where H is the
height function of the single-colored CS6V model with periods I and J .

Proof. It suffices to show that for each n ∈ N, {X0,k, k = 0, . . . , n} d
= {H(Nkx,Nky), k =

0, . . . , n}. The lines in the square [ 12 , Nnx+ 1
2 ]× [ 12 , Nny + 1

2 ] have colors that belong to
{−n, . . . ,−1}. Replace these colors with a single color. Then, by the property of mod 2
erasure, the resulting model reduces to the single-colored CS6V model. Note that X0,k

in (3.2) is equal to the number of vertical lines that cross the segment [ 12 , Nkx+ 1
2 ]×{Nky+

1
2}, which is H(Nkx,Nky). This implies that {X0,k, k = 0, . . . , n} d

= {H(Nkx,Nky), k =

0, . . . , n}.

Proposition 3.3. The stochastic process {Xm,n : m,n ∈ Z≥0,m ≤ n} satisfies condi-
tions (ii)–(iv) of Theorem 3.1.

Proof. We first prove (ii). Consider the square [Nmx+ 1
2 , Nnx+ 1

2 ]× [Nmy+ 1
2 , Nny+ 1

2 ].
There are lines flowing inside through the left boundary {Nmx+ 1

2}× [Nmy+ 1
2 , Nny+ 1

2 ]

and the bottom boundary [Nmx + 1
2 , Nnx + 1

2 ] × {Nmy + 1
2}. These lines have colors

belonging to {−m, . . . ,−1}. The vertices in [Nmx + 1
2 , Nnx + 1

2 ] × [Nmy + 1
2 , Nny + 1

2 ]

have colors in {−n, . . . ,−m− 1}. Note that the color i takes priority over j if i < j, so
the lines that emanate from the vertices in [Nmx+ 1

2 , Nnx+ 1
2 ]× [Nmy + 1

2 , Nny + 1
2 ]
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Figure 10: Left panel: We illustrate how we color the vertices on the first quadrant
when I = 3, J = 2, x = 2, and y = 1. In this case, N = 6. Let blue, red, and olive
represent the colors −1,−2, and −3. Each rectangle contains 12× 6 vertices with the
same color. Right panel: A sampling of the colored CS6V model. The lines emanating
from a vertex inherit the color of that vertex. Due to the property of color ignorance,
the red lines can be sampled ignoring the blue lines, and the olive lines can be sampled
ignoring both the blue and red lines. Note that lines of different colors can travel
together across the same vertices.

have higher priority than the lines entering through the left and bottom boundaries.
Therefore, by Proposition 2.6, the behavior of the lines with colors {−n, . . . ,−m − 1}
in the rectangle [Nmx + 1

2 , Nnx + 1
2 ] × [Nmy + 1

2 , Nny + 1
2 ] does not depend on the

lower priority lines entering from the left and bottom. Hence, the distribution of Xm,n

is independent of the number and location of the lines entering the bottom and left
boundaries of [Nmx+ 1

2 , Nnx+ 1
2 ]× [Nmy+ 1

2 , Nny+ 1
2 ]. This implies that for each k ≥ 1,

the random variables {X(n−1)k,nk, n ≥ 1} are independent. It is straightforward to see
that X(n−1)k,nk has the same distribution as H(Nkx,Nky) for all n ≥ 1, therefore this
sequence is i.i.d, and hence it is stationary and ergodic.

We proceed to prove (iii). It suffices to show that for arbitrary m ∈ Z≥0,

{Xm,m+k, k ≥ 0} d
= {X0,k, k ≥ 0}. (3.3)

We look at the colored CS6V model restricted to [mNx + 1
2 ,∞) × [mNy + 1

2 ,∞). Note
that there are lines with colors in {−m, . . . ,−1} entering from the left and bottom
boundaries of [mNx+ 1

2 ,∞)× [mNy + 1
2 ,∞). By Proposition 2.6, the behavior of lines

in [mNx+ 1
2 ,∞)× [mNy + 1

2 ,∞) with colors less than −m is not affected by the lower
priority lines entering from the boundary. Since b1(mNx + ·,mNy + ·) = b1(·, ·) and
b2(mNx+ ·,mNy + ·) = b2(·, ·), this implies that after a shift by (mNx,mNy), the lines
with colors i1, . . . , ik ∈ Z≤−m−1 in [mNx + 1

2 ,∞) × [mNy + 1
2 ,∞) behave the same (in

distribution) as the lines with colors i1 + m, . . . , ik + m in [ 12 ,∞) × [ 12 ,∞). Hence, we
conclude (3.3).

Finally, we have X−0,1 = 0 because X0,1 is non-negative. Hence, (iv) holds.

Let us proceed to prove that {Xm,n,m, n ∈ Z≥0,m ≤ n} also satisfies the superad-
ditive condition (i) in Theorem 3.1. We begin with some preparation. In the square
[ 12 , Nnx+ 1

2 ]× [ 12 , Nny + 1
2 ], we replace the colors {−m, . . . ,−1} with the color −1 and
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replace the colors {−n, . . . ,−m− 1} with the color −2. After that, as long as there are
two lines with the same color that travel together, we erase them. By Proposition 2.7,
the resulting model is a two-colored CS6V model. In particular, the vertices have color
−1 in the L-shaped area [ 12 , Nmx+ 1

2 ]× [ 12 , Nny + 1
2 ] ∪ [ 12 , Nnx+ 1

2 ]× [ 12 , Nmy + 1
2 ]. The

vertices have color −2 in the square [Nmx+ 1
2 , Nnx+ 1

2 ]× [Nmy + 1
2 , Nny + 1

2 ].

For the resulting two-colored CS6V model, let Q1 be the number of vertical lines with
color −1 that cross the segment [ 12 , Nmx + 1

2 ] × {Nmy + 1
2}, let Q2 be the number of

vertical lines with color −2 that cross the segment [Nmx+ 1
2 , Nnx+ 1

2 ]×{Nny+ 1
2}, and

let P1 be the number of horizontal lines with color −1 that cross {Nmx+ 1
2} × [Nmy +

1
2 , Nny+ 1

2 ]. Finally, let R be the number of single vertical lines of either color that cross
[Nmx+ 1

2 , Nnx+ 1
2 ]× {Nny + 1

2} (i.e., lines that do not travel in a pair).

Lemma 3.4. The following result holds:

X0,m = Q1, (3.4)

Xm,n = Q2, (3.5)

X0,n = Q1 + P1 +R. (3.6)

Proof. Recall that we obtain the two-colored CS6V model in [ 12 , Nnx + 1
2 ] × [ 12 , Nny +

1
2 ] by replacing the colors {−n, . . . ,−m − 1} with the color −2, replacing the colors
{−m, . . . ,−1} with the color −1, and erasing pairs of lines with the same color. The
erasure corresponds to the mod 2 erasure procedure in (3.2). Hence, equations (3.4)
and (3.5) directly follow from (3.2).

We proceed to prove (3.6). Note that X0,n is the number of single vertical lines
that cross the segment [ 12 , Nnx + 1

2 ] × {Nny + 1
2} in the two-colored CS6V model. We

decompose

X0,n = Y1 +R, (3.7)

where Y1 equals the number of vertical lines with the color −1 that leave [ 12 , Nmx +
1
2 ]× {Nny + 1

2}. We turn to the rectangle [ 12 , Nmx+ 1
2 ]× [Nmy + 1

2 , Nny + 1
2 ], in which

there are only lines with color −1. The CS6V model is conservative in the sense that the
number of lines on the right and bottom of a vertex equals the number of lines on the top
and left of that vertex. Therefore, the number of lines that cross the bottom and right
boundaries of the rectangle [ 12 , Nmx+ 1

2 ]× [Nmy + 1
2 , Nny + 1

2 ] is equal to the number
of lines that cross the top and left boundaries, hence,

Y1 = Q1 + P1. (3.8)

Using this together with (3.7) and (3.8), we conclude (3.6).

Proposition 3.5. We have X0,0 = 0 and X0,n ≥ X0,m + Xm,n for 0 ≤ m ≤ n. Hence,
{Xm,n,m ≤ n ∈ Z≥0} satisfies (i) of Theorem 3.1.

Proof. By definition, we have X0,0 = 0. We proceed to show that X0,n ≥ X0,m +Xm,n. By
Lemma 3.4, this is equivalent to R+ P1 ≥ Q2. This follows from applying Proposition 2.8
to the rectangle [Nmx + 1

2 , Nnx + 1
2 ] × [Nmy + 1

2 , Nny + 1
2 ], where only lower priority

lines enter from the bottom-left boundary.

Proposition 3.6. Fix arbitrary x, y ∈ Q≥0, there exists a constant g̃(x, y) ∈ R≥0 such
that almost surely,

lim
n→∞

H(bnxc, bnyc)
n

= g̃(x, y).
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Proof. If x = 0 or y = 0, we know that H(bnxc, bnyc) = 0 for all n, thus g̃(x, y) = 0.
Now we can assume that x, y ∈ Q>0. Recall the definition of Xm,n from (3.2). By
Propositions 3.3 and 3.5, {Xm,n,m ≤ n ∈ Z≥0} satisfy the conditions of the super-
additive ergodic theorem. Therefore, there exists a constant γ(x, y) such that al-
most surely, limn→∞

X0,n

n = γ(x, y). By Proposition 3.2, we know that almost surely,

limn→∞
H(nNx,nNy)

n = γ(x, y). Recall that N is the positive integer defined in (3.1). Since
the height function h : Z≥0×Z≥0 → Z≥0 is a Lipschitz function, we conclude that almost
surely,

lim
n→∞

H(bnxc, bnyc)
n

= γ(x, y)/N := g̃(x, y).

Proof of Theorem 1.5. Using the fact that Q2
≥0 is countable and Proposition 3.6, almost

surely,

lim
n→∞

H(bnxc, bnyc)
n

= g̃(x, y)

for all (x, y) ∈ Q2
>0. By definition, H is a Lipschitz function, hence g̃ : Q2

≥0 → R is also
a Lipschitz function. We can thus extend g̃ to be a Lipschitz function on R2

≥0. By the
density of Q2

≥0 in R2
≥0 and the Lipschitz property, we have that almost surely,

lim
n→∞

H(bnxc, bnyc)
n

= g̃(x, y)

for all (x, y) ∈ R2
≥0. Taking g(x, y) = y − g̃(x, y), we conclude the proof.

A The Boolean-type product for the t-PNG model

Taking b1 = t and b2 = 1, the set W in (2.1) reduces to {0, t, 1− t, 1}. The Boolean-type
product reduces to the following: for a, b ∈ {0, t, 1− t, 1},

a ∗ b :=


0 if {a, b} = {t, 1− t},
a if a = b,

ab else.

Recall from [DL22, Definition 1.7] that the Ln-matrix of the t-PNG model is defined as

Ln(i, j;k, l) := minr∈{1,...,n}

(
L1(sr(i), sr(j); sr(k), sr(l))

)
,

where min is a modified version of the minimum. For x1, . . . , xn ∈ {0, t, 1− t, 1},

min
(
x1, . . . , xn

)
:=

{
0 if xi = t and xj = 1− t for some i, j ∈ {1, . . . , n},
min

(
x1, . . . , xn

)
else.

It is straightforward to verify that min(a, b) = a ∗ b for a, b ∈ {0, t, 1 − t, 1}, and thus
min(x1, . . . , xn) = x1 ∗ · · · ∗ xn. Hence, the definition [DL22, Definition 1.7] is equivalent
to Definition 2.4 when b1 = t and b2 = 1.

B Two-colored CS6V configurations

In this section, we list the configurations of the two-colored CS6V model. Note that
the weights of the vertex configurations are given by the matrix L2.
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1 1 b1 b2 1− b1 1− b2

1− b1 b1 1 b1 1− b1 b1

1− b1 1 b1 1− b1 b2 1− b2

b2 1− b2 b2 1− b2 b2 1− b2

b1b2 (1− b1)(1− b2) b1(1− b2) (1− b1)b2 b1b2 (1− b1)b2

(1− b2)b1 (1− b1)(1− b2)

Figure 11: The two-colored CS6V configurations with non-zero weight given by L2. Red
has a higher priority than blue.
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