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Time-reversal of multiple-force-point chordal SLE,(p)
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Abstract

Chordal SLE,(p) is a natural variant of the chordal SLE curve. It is a family of random
non-crossing curves on the upper half plane from 0 to co, whose law is influenced
by additional force points on IR. When there are force points away from the origin,
the law of SLE,(p) is not reversible, unlike the ordinary chordal SLE,. Zhan (2019)
gives an explicit aescription of the law of the time reversal of SLE,(p) when all force
points lie on the same sides of the origin, and conjectured that a similar result holds
in general. We prove his conjecture. Specifically, based on Zhan’s result, using the
techniques from the Imaginary Geometry developed by Miller and Sheffield (2013), we
show that when « € (0, 8), the law of the time reversal of non-boundary filling SLE. (p)
process is absolutely continuous with respect to SLE, (p) for some p determined byz,

with the Radon-Nikodym derivative being a product of conformal derivatives.
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1 Introduction

The Schramm-Loewner Evolution (SLE,;) with x > 0 is an important family of random
non-self-crossing curves introduced by Schramm [Sch00]. They have been proved or
conjectured to described a large class of two-dimensional lattice models at criticality. We
refer the reader to [Law08, Sch11, SmiO6] for basic properties of SLE and their relation
to 2D lattice models.

The most basic version of SLE is the chordal SLE,, curve, which is a random curve
between two boundary points of a simply connected domain characterized by confor-
mal invariance and the domain Markov property. It was conjectured by Rohde and
Schramm [RS05] that chordal SLE, with « € (0, 8] satisfies reversibility. Namely, modulo
a time reparametrization the time reversal of a chordal SLE, curve is also a chordal
SLE,,. The conjecture was first proved for s € (0,4] by Zhan [Zha08b] using the so-called
commutation coupling. The k € (4, 8) case was proved by Miller and Sheffield [MS16c]
using the imaginary geometry theory. The chordal SLEg is the scaling limit of UST Peano
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Time reversal of SLE(p)

curve with half free and half wired boundary conditions [LSW11] and therefore is also
reversible.

Chordal SLE,(p) curves are important variants of chordal SLE. They are still curves
between two bouﬂdaw points of a simply connected domain, but their laws depend on
some additional marked points called force points. They were introduced by Lawler,
Schramm and Werner [LSWO03] in the theory of conformal restriction, and play a
fundamental role in imaginary geometry as flow lines emanating from a boundary
point [MS16a]. In [MS16b, MS16c], it was proved that chordal SLE(p) for x € (0,8)
with at most two force points lying infinitesimally close to the starting point satisfy
the reversibility. When there are force points away from the origin, the law of chordal
SLE(p) is not reversible anymore. Recently, Zhan [Zha22] gave an explicit description
of the law of the time reversal of SLE,;(p) when « € (0, 4] and all force points lie on the
same side of the origin, and when « € (4,78), all force points lie on the same side, and the
curve is not boundary touching on this side. In the same paper, he conjectured that a
similar result holds for general chordal SLE, (p) with « € (0, 8) as long as the curve is
non-boundary filling; see [Zha22, Conjecture 1.3]. In this paper we prove his conjecture.

To state our main result, we introduce the necessary notations to describe chordal
SLE,(p) curves with their precise definition postponed to Section 2.1. Let « e (O 8]. Fix
the force points 2% < - < gbl < 20L = 0~ < 20R = 0F < 2L < ... < 2R and for
each force point 29, ¢ € {L, R}, we assign a weight p? € R, such that

J J
Zp“‘ > (—2)\/(2—4) forall0 < j <k and Zpi’R > (—2)\/(2—4) forall0 <j < /.

= (1.1)
We refer to the vectors of force points and weights as z = (z%;2%) and p = (p%; p?).
Given an SLE, (p) process n from 0 to oo in the upper half plane H with forceipointis z, for
eachi>1and g€ {L, R}, let Di4 be the connected component of H\7 containing =",
and arZ °d 5}7‘1 be the first and the last point on 8D1 9 traced by 7. Consider the conformal
map W 4. DL — H sending (0}, 257, £57) to (0, il o0) where we take the + sign when
q=R and take the — sign when q= L.
We now introduce a family of measures on curves describing the time reversal of
chordal SLE, (p).

Definition 1.1. Suppose z and p satisfy (1.1). We associate a power parameter a1 e R

for each z*? with a%* = o%® = 0. Define gﬂﬁ,{(g; «) with force points z to be the

measure on continuous curves in H from 0 to co which is absolutely continuous with
respect to SLE,(p) with Radon-Nikodym derivative

dSLE,(
Zq lq o’
dSLE, ( = II 11 I (1.2)

ge{L,R}i>1

Let us recall some statements on the time reversal of chordal SLE (p) processes from

existing literature. The first one is about the time reversal of SLE, (p%; pt) processes,
which is shown in [MS16b, Theorem 1.1] and [MS16c, Theorem 1.2]. Let J : I — I be
the map J(z) = —1/z. For a curve 7, we write R(n) for its time reversal.
Theorem A. Let » € (0,8] and p”, p® > —2 such that p*, p® > & — 4 if s € (4,8]. Let 5 be
an SLE, (p’; p¥*) process in H from 0 to oo with force points 0~; 0. Then modulo time
parametrization, R(.J on) is the SLE, (p%; p*) process in H from 0 to oo with force points
0—;0%.

We comment that the x = 8 case above is not stated in [MS16c, Theorem 1.2], yet it
readily follows from the reversibility of chordal SLEg and [MS16b, Theorem 1.1] along
with SLE duality [Zha08a, MS16a] (see Proposition 3.6).
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Figure 1: An SLE, (p; o) processes with force points z1£,0~; 0%, 2%, 2>, By definition
oyt =07, &k = §2 R co. The conformal map ;" : DZ B H sends (obR, ozt R ¢hl)

to (0,1,00) for i = 1,2, and the conformal map z/)l Lo D1 L sends (o) %, zhl, £010) to

(0,—1,00). Then the measure gfﬁn(po’L,plL pOR p1 R p2 Boably ol o2 is abso-

lutely continuous w.r.t. SLE, (p*F, ptL; p%F pbR | p2R) with Radon leodyrn derivative
1,L 1,R 2R

[ () () [ (1 (1) a2 (2 2

When all the force points lie on the same side of 0, the following theorem is shown in
Theorem 1.2 and Section 3.2 of [Zha22] via the construction of the reversed curve.
Theorem B. Let ¢ > 0. Fix p®% ... p®® € R, such that s € (0,4], ming<;<; >7_, p"% >
—2if k € (0,4], and ming<j<¢ Y 7_,p"F > £ —2if k € (4,8). Let pf be the vector of

_ 2 P
pf and 1 be a chordal SLEK(BR) curve in H from 0 to co with force points 0% = 207 <

b < oo < 2B Let 2PV E = 400 and pfthE = _Zf:o pif. For 0 < i < 4, let

gl = J(gt 0 R), gl = pZ“*iR Here we use the convention J(4+o00) = 0F. For
. 5L (ki

1<i<{ letabl = 2(7:4) Let ¥ ﬁL A" be the vector of %9, p"? and &»9. Then up

to reparametrization, the law of R(J o n) is equal to ZSLE (AL a*) with force points z*

for some normalizing constant Z € (0, c0).
In [Zha22], the time reversal of SLE,(p") is described in terms of reversed interme-

diate SLE,(p) (iSLE},(p)) process, which agrees with SLE «(p";&") when normalized to
be a probability measure. The iSLE], (p) process is described exphcltly using a Loewner
evolution based on Appell-Lauricella multiple hypergeometric function. The constant Z
can be traced via [Zha22, (3.16),(3.19)] and [Zha22, Remark 3.6], and can be expressed
by a hypergeometric function (in fact a product of the gamma functions) depending only
on «, p' but not on the location of the force points z*.

Our main result is the following.

Theorem 1.2. Let x € (0,8]. Fix z, p with (1.1), and let  be a chordal SLE(p) curve in

H from 0 to oo with force points z. Let z*+t1l = —oo, 2T = 400, phthl = — E?:o phl

and p'tHE = fo o PPE. For0 < i < ¢, let #%1 = J(z't1-0R), il = —pt+i=iR  For

0<i<k, let3"® = J(gkti=0L), pi = _ph+1=4R Fori > 1 and q € {L, R}, let 4" =

RICE
2K

law of R(J on) is equal to %S/I;Em (p; &) with force points & for some normalizing constant
Z = Z(p) € (0,00).

The k = 4 case of Theorem 1.2 is covered by [WW17, Theorem 1.1.6] by realizing
SLE4(p) curves as level lines of Gaussian free field with appropriate boundary conditions.

. Let &, p, & be the vector of &4, p"9 and &*7. Then up to reparametrization, the

In this case, the reversed curve is just SLE,(p) with no weighting, i.e., SLE (p; &) with
ab = 0.

Based on Theorem A and Theorem B, our proof is mainly relying on the techniques

from the Imaginary Geometry [MS16a, MS16b, MS16¢c, MS17]. For k € (0,4), we first
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Figure 2: An example of Theorem 1.2. Let a®? = 0 in Figure 1 so that 7 is an

SLE, (p%F, pbL; p% 8 plB p21) process with force points 0, zbE 0t 2V 228 Let

J(2) = —1/z, #VL = J(2*F), 221 = J(2VF), 28 = J(z1F). Then the time reversal of J o

. ST = 2R4_ g LR g 1L4N
nlsanSLEH(OR+p1R+p2R_p2R_p1RpOL+p1L_plLP ( )p ( )7 2(’{ ))

process with force points 0~, 2%, 2L 0+, 1%, When pht = pl R p2 7L =0, the law of
J onis SLE, (p%%; p%F) with force points at 0~ and 0%, as shown in [MS16b].

extend a commutation relation between two SLE (p)-type processes (i.e., two SLE,(p)
with possibly different p values) from the theory of GFF flow lines to the setting of

two ﬁﬁ(p; «)-type processes (Proposition 2.1), from which we are able to add a force
point located at 0~ in Theorem B (Lemma 3.2)./_\[5 sing this extended result with the
commutation relation, we can construct a pair of SLE, (p; a)-type processes (11,732), such
that conditioned on one curve, the time reversal of the other curve is the ordinary
SLE(p) process with only one degenerate force point (i.e. 0%) on the left or right side.
Then from the SLE resampling property [MS16b, Theorem 4.1], the two conditional
laws uniquely characterize the joint law of the reversal of (7, 72), which finishes the
proof for x € (0,4). For x € (4,8], we apply the x € (0,4) result along with the SLE
duality [Zha08a, Dub09, MS16a], which states that for x > 4, the boundaries of SLE-
type processes are SLE%G-type processes (see Proposition 3.6).

For the x > 8 regime, it has been shown in [MS17, Theorem 1.19] that the time
reversal of chordal SLE, (p%;pf*) with force points at 07;07 is SLE,(5%;5%) where
pl p € (2,45 —2) and p? = £ — 2 — p? for ¢ € {L, R}. The time reversal of SLE(p) is
not known when x > 8 and there are force points located at R\{0}.

We comment that the reversibility of SLE processes can also be inferred from the con-
formal welding of Liouville quantum gravity surfaces (see e.g. [DMS21, AHS20, ASY22]).
For instance, by viewing the welding interface from the opposite direction, Theorem A
is a direct consequence of [AHS20, Theorem 2.2]. The time reversal of SLE,(p™;p", p1)
with force points 07; 07, 1 has also been discussed in [ASY22, Section 7.1] via the con-
formal welding of quantum triangles. We expect that this method can also be used to
describe the time reversal of other types of SLE curves, such as radial SLE with force
points and SLE on the annulus.

In Section 2.1, we recap the SLE,(p) processes along with its coupling with the GFF
as imaginary geometry flow lines in [MS16a]. In Section 2.2, we establish a commutation
relation for SLE,(p; «) processes and recap the SLE resampling properties. Finally in
Section 3, we prov?e Theorem 1.2.

2 Preliminaries

In this paper we work with non-probability measures and extend the terminology of
ordinary probability to this setting. For a finite or o-finite measure space (2, 7, M), we
say X is a random variable if X is an F-measurable function with its law defined via
the push-forward measure Mx = X, M. In this case, we say X is sampled from Mx and
write Mx |f] for [ f(z)Mx (dx). Weighting the law of X by f(X) corresponds to working
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dMx _
de -

some event E € F (with 0 < M[E] < o) refers to the probability measure
the space (E, Fg) with Fg ={ANE: Aec F}.

Throughout this paper, for a continuous simple curve n from 0 to co in HU R, we
shall refer to the subset of H\7 consisted of connected components whose boundaries
contain a subinterval of (—o0,0) (resp. (0,00)) as the left (resp. right) part of H\7. For
n>0,z=(x,...,7,) € R"! and a € R, we write a + z for (a + x¢,71,...,7,) and ax
for (axy,...,az,). The formal notation is used for weights and latter is for the locations
of force points under dilation and SLE duality purposes (see Proposition 3.6).

with the measure dMx with Radon-Nikodym derivative f, and conditioning on
M[EN]
MIE]

over

2.1 SLE,(p) process and the imaginary geometry

Fix k > 0. We start with the SLE,, process on the upper half plane H. Let (B;):>0 be
the standard Brownian motion. The SLE, is the probability measure on continuously
growing curves (K;);>o in H, whose mapping out function (g;);>¢ (i.e., the unique
conformal transformation from H\K; to H such that lim|.|_, |9:(2) — 2| = 0) can be

described by

t
2

g z:z+/ —ds, z € H, 2.1)

+(2) o 95(2) — W,

where W, = \/kB; is the Loewner driving function. For the force points z*% < ... <
bl < 20 =07 < 2% =0T < 2F < ... < 25" and the weights p"? € R, the SLE,(p)
process is the probability measure on curves (K;);>o in H growing the same as ordinary
SLE, (i.e., satisfies (2.1)) except that the Loewner driving function (W;);>¢ are now
characterized by

ot i
W= VeBi+ > Z/O Wp_iqvwdsg

qe{L,R} (2.2)
. , t )
4,9 __ .0, S
v _xq—|—/0 s a € 1L R).

It has been proved in [MS16a] that the SLE.(p) process a.s. exists, is unique and
generates a continuous curve until the continuation threshold, the first time ¢ such that
W, = V" with $>7_ p»? < —2 for some j and ¢ € {L, R}.

Now we recap the definition of the Gaussian Free Field. Let D C C be a domain. We
construct the GFF on D with Dirichlet boundary conditions as follows. Consider the
space of smooth functions on D with finite Dirichlet energy and zero value near 9D, and
let H(D) be its closure with respect to the inner product (f,g)v = fD(Vf -Vg) dz dy.
Then the (zero boundary) GFF on D is defined by

h=Y tufn (2.3)
n=1

where (§,)n>1 is a collection of i.i.d. standard Gaussians and (f,),>1 is an orthonormal
basis of H(D). The sum (2.3) a.s. converges to a random distribution independent of the
choice of the basis (f,,),>1. For a function g defined on 9D with harmonic extension f in
D and a zero boundary GFF h, we say that  + f is a GFF on D with boundary condition
specified by g. See [DMS21, Section 4.1.4] for more details.

Next we introduce the notion of GFF flow lines. We restrict ourselves to the range
k € (0,4). Heuristically, given a GFF h, n(t) is a flow line of angle 6 if

i (t) = G EE ) fort 0, where y = (2.4)

4
ol
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Figure 3: An SLE, (p%%, pbL; p% & pL Tt p2.) process coupled with the GFF h with illus-
trated boundary conditions as the (zero angle) flow line of h. The 6 angle flow line of h
then has the law as SLE, (p%F — &, pll; g0 R 4 Ox pLE p2.5) process.

To be more precise, let (K;);>¢ be the hull at time ¢ of the SLE(p) process described by

the Loewner flow (2.1) with (W, Vti’q) solving (2.2), and let F; be the filtration generated
by (W, V,"?). Let bY be the bounded harmonic function on H with boundary values

J J
_ /\(1 4 Z pi,L) on (‘/'tj-‘rl,L7 V;LL)’ and \ (1 + Z pi,R> on (‘/;5]7R7 ‘/t]-‘rl,R) (2.5)
i=0 i=0

=’

and —X on (VX W), X on (W, V2 T) where A = Z= oLl = oo LR = oo, Set

be(z) = h%(g¢(2)) — x arg g} (z). Let h be a zero boundary GFF on H and
h = h+ by. (2.6)

Then as proved in [MS16a, Theorem 1.1], there exists a coupling between h and the
SLE,(p) process (K;), such that for any F;-stopping time 7 before the continuation
threshold, K is a local set for h and the conditional law of h|]H\ Kk, given F. is the same
as the law of .- + ho gr-

For x < 4, the SLE,(p) coupled with the GFF h as above is referred as a flow line of h
from 0 to co, and we sagl an SLE(p) curve is a flow line of angle ¢ if it can be coupled
with h + 0y in the above sense. For x’ > 4, the SLE,(p) curve coupled with a GFF —h as
above is referred as a counterflow lines of h.

So far we have discussed SLE(p) processes on the upper half plane, and for general
simply connected domains, the definition can be extended via conformal mappings.
Namely, let z,y € 0D, & C D be the force points and ¢ : D — H be a conformal map
with ¢(x) = 0,9 (y) = co. Then a sample from the chordal SLE,(p) process in D from z
to y is obtained by first taking an curve 7 from SLE, (p) with force points 1(Z) and then

output ¢/~ '(n). Observe that the term z*4- (¢;7)(¢*%) in (1.2) is invariant under dilations
of H, which implies that for ¢ > 0 and an §L\E,{ (p; «) process 7 with force points z, the

law of ¢ oy is ﬁﬁ(p; «) with force points az. This implies that the notion of ﬁﬁ (p; @)
can also be extended to general simply connected domains by the same way. Moreover,
if 17 is a flow line of some GFF h, then 1)~1(n) is the flow line of h o ¢) — yarg®’ in D from
%=1(0) to ¥~ ().

To simplify our language, we are going to extend the notion of gfﬁﬁ(p; «) processes to
certain non-simply connected domains. Let D C C be some domain and z, y € 0D, such
that the boundary 9D consist of two non-crossing simple curves 5, n£ running from z to
y which possibly intersect and bounce-off each other. Let z© := [(z*L,... 211 2%L)] C
nE and z® = [(2%8 2B . 2b8)] C 9B with 207 = 2~ and 2%F = xT, such that for
i > 1and g € {L, R}, none of the 2"4’s lies on n5 N nk. Further assume 7k visits z’
in the order of %% ... %L, and n& visits z® in the order of 2*% ... 2%%. On each
connected component D of D, let x5 (resp. yp) be the first (resp. last) point on oD
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traced by 75, and let i% and j (resp. i} and jR) be the largest and smallest integer

such that D ﬂnD (resp. 8D ﬂnD) is between sl and zin-L (resp x'6-1 and ¢95-1), Let

iL
1 be the measure SLE, (32, pi pzD“L,...,pJD LL, D D piR pib LR iR LR,

L . .
QB thL L adpbE; gip LR ,a ~L8Y in n5 for curves runnlng from z 5 to yp with

force points xB,xlD“ L .. gi5~LL. ; #ptLR 5 -LR  gample (np)p from the
product measure []5 1 p. Concatenate all the 75’s, and define the law of this curve from
x to y in by SLE, (p;a) in D with force points z.

We remark that our definition above is natural in the following sense. Temporarily
assume q is zero. Let ¢X : C\n§ — C\(-00,0) and ¢¥ : C\nk — C\(0,00) be the
conformal maps sending z to 0 and y to co. Let V"' = ¢X(zL) and V) = B (z%R).
Consider a GFF h on D with boundary conditions such that h o (¥*)~! — yarg((»*)~1)’
agrees with (2.5) on (—00,0) and h o (1p®)~! — yarg((x*)~!)" agrees with (2.5) on (0, c0)
with ¢ = 0. In each connected component D construct the flow line 77 of h from z; to
Yp, and the SLE, (p) process in D can be understood as the concatenation of all the 7’s.
For non-zero a we can further weight by the corresponding conformal derivatives.

The SLE.(p) curve 7 satisfies the following Domain Markov property. Let 7 be
some stopping time for n. On the event that 7 is less than the continuation threshold,
the conditional law of 7(t + 7);>¢ given ([0, 7]) is an SLE,(p) on H\K, with force
points z,, where 25" = inf{z : z € {2%F U (([0,7]) N R)}} and 257 = sup{z : = €
{z48 U (n([0,7]) N R)}}, and if two force points x? and z7:¢ are equal, they could be
merged into a single force point of weight p»9 + p?4,

2.2 The coupling of the two flow lines

One important implication of the flow line coupling of SLE and the GFF is that, for
two SLE,(p) processes 7, and 7, coupled within the same imaginary geometry, one can
easily read off the conditional laws of 7; given 7> and 72 given 7;. Suppose 7; and 7 are
flow lines of h, then given 7, the conditional law of 7); is the same as the law of the flow
line (with some angle) of the GFF in H\#; with the flow line boundary conditions (see
[MS16a, Figure 1.10] for more explanation) induced by 7;, and vice versa for the law of
M given ns. .

Now we state the following commutation relation between SLE, (p; @) processes. See
Figure 4 for an illustration. Suppose (2, F) is a o-finite measure spaEe and X : Q — Ais
a random variable with law p. Also suppose (v;)zc4 is a family of o-finite measures on
(Q, F). By first sampling X from p and then Y from vy, we refer to a sample (X,Y’) from
the measure v, (dy)u(dz) on (2, F).

Proposition 2.1. Let x € (0,4). Fix o8l < ... < 2bF < 200 =07 < 298 =0+ < 21 F <

c<abB, ph1eR, o™ € R forqg € {L,R} andp > —2. Let p = (p+ 2+ pLs—p— 24 pF).
Suppose that p, p both satisfy (1.1). The following three laws on pairs of curves (11, 12)
agree:

e Sample n; in H from 0 to o as gﬁﬁﬁ(g; «) with force points x. Then sample an
Ry,

7

SLE, (p;éR; 0; a®) process 1, in the right part of H\n, with force points (0~ ; x

* Sample 75 in H from 0 to co as ﬁﬁ(é; «) with force points x. Then sample an
SLE, (p*; p; a;0) process n in the left part of H\n, with force points (z*;07);

* Sample 7, in H from 0 to oo as SLE.(p) with force points z. Then sample an
SLEK(p;éR) process in the right part of H\n, with force points (0~;z%). For
i1 >1andj=1,2, let D”q be the connected component of H\n; with «*? on the
boundary, o 7‘1 (resp. 5“‘1) be the first (resp. last) point on 8D“q traced by n;, and
wZ;q : DW —> 'H be the conformal map sending (o, ’q , 5”‘1) to (0,+1, 00) where

EJP 28 (2023), paper 140. https://www.imstat.org/ejp
Page 7/19


https://doi.org/10.1214/23-EJP1040
https://imstat.org/journals-and-publications/electronic-journal-of-probability/

Time reversal of SLE(p)

_ (pt2)A

AT PE P 2 ML) 0 AL+ ) R AL+ PR )

Figure 4: Let h be the GFF with illustrated boundary conditions and (n;,72) be the

angle (0,—@) flow lines of h. Then conditioned on n;, 72 is an SLE(p;—p —

2 + pOf pLR) process, and conditioned on 7, 7; is an SLE(p%%, ptL;p) process.

By Lemma 2.2, these two conditional laws uniquely characterize the joint law

(m,7n2). In Proposition 2.1, we prove that once we weight the law of (n;,72) by
1,L 1,R

|z b L (B (at ) o e B (L RY (a17)|* 7, a sample of (11, 7) can be produced by first

sampling an gfﬁ,{(po’L, bk pOF pb R 1Ly o1 B) process 1 and then an gﬁﬁ(p; —p—2+

PO R p1E:0; ol 1) curve 1, in the right part of H\7»; (which possibly induces a weighting
on the law of 7;), or equivalently first sampling an SLE,(p + 2 + p%%, pbF;—p — 2 +
PO R pl B bl ol 1) process 1, and then an SLE, (p>F, p'%; p; a'£;0) process 7, in the

left part of H\7s.

wetake the + sign when q = R and the — sign when ¢ = L. Now weight the law of
(m,m2) by

H|sz zL H‘sz 7R xz,R)’ai'R

We remark that the topological configuration of the two curves (7, 72) could be rather
complicated, as they may intersect other, and both intersect the boundaries (—o0, 0) and
(0, 00), and we shall apply the definition of gﬁﬁﬁ(p; a) processes in non-simply connected
domains as specified in the previous section. a

Proof. If a»? = 0 for all possible i and q, then as argued in [MS16a, Section 6], the
pairs (71,72) generated from the three ways can all be realized as sampling the angle
(01,02) = (0, —WTQ)A) flow lines of the GFF with boundary conditions as (2.5) and (2.6)
and therefore the claim follows. Let P be the corresponding law of these two flow lines,
which agrees with the law of (71, 72) constructed as in the third way before we do the
weighting.

Now for general oY we let £ be the law on the pairs (7, 72) constructed as in the
first way of the statement (i.e., first sample 7; and then 73). Foreach 1 <: </, let jf]’lR be

i R R )
the smallest j > 1 such that 2% € DR, and let y}:* ﬁ,’l“ " (z"%). Then by definition

of the ﬁn(g; a) processes, we have

. L iR
dL i e
ﬁml’ N9) = H H|xz,q . (1/)727’1(1)/(111’(1)’ : iR | (wn,z‘m)/(y;,lR> 2.7)
q€{L,R}i>1 i=1
R PER,
where wn ‘n is the corresponding conformal map z/)]”l (D:F) — H with (¥ I m (ol:1),

i, R
R Jny R
y771 ,z/)J”l ( 7)) mapped to (0,1,00). Now we observe that wﬁﬁ = w;’ﬁm o Z,l” , and
by definition we have
inf R jn R

i, R( ) 771] (Z) _ 777171 (Z)

m - j,i’R,R X - "R
m (2 Ym
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which implies that

i i iR in R, iRy, 4 iR i i i i
(W) (@) = () (™ (@) - (it ) (@) = (Wl ) () -y () (7

and therefore (2.7) can be rewritten as
ai,R
7]1,772 H|le ZL H‘:ﬁR lR xl’R)| . (2.8)

Using a similar argument, one can show that if we let £ be the law on the pairs (m,m2)
constructed as in the second way of the statement, then 57‘; is also the same as (2.8).

Therefore the claim follows. O

Proposition 2.1 gives three equivalent ways to characterize the joint law of (71, 72).
On the other hand, at least when a%? = 0, the two conditional laws 7; |, and 7|7, as in
Proposition 2.1 uniquely determines the joint law of (71, 72).

Lemma 2.2. Let s € (0,4), p, p,z be the same as Proposition 2.1. Suppose (11,12) are
random non-crossing curves in H from 0 to oo sampled from some probability measure,
such that conditioned on 11, 1, is an SLE,(p; p*) in the right part of H\7,, and conditioned
on 1, n1 is an SLE, (p”; p) in the left part (;fIH\??g. Then the joint law of (n1,732) is the
same as in Proposjtio;l 2.1 with a*9 = 0 for all i, q.

Proof. When 7, a.s. does not intersect 1, (i.e., p > g —2), the claim follows from the same
argument as in [MS16b, Section 4]. For the remaining case, we may first separate the
starting and ending points of (71, 72) as in the first step of [MS16b, Proof of Theorem 4.1]
and then apply the same argument in [MSW19, Appendix A]. See also Appendix A
for an alternative proof based on Markov chain irreducibility results in [MT09] and
Lemma 3.1. O

We are going to use the following variant of Lemma 2.2, which follows from exactly
the same Markov chain remixing argument in [MS16b, Theorem 4.1] and [MSW19,
Appendix Al.

Lemma 2.3. Let k € (0,4), p,p,z be the same as Proposition 2.1. For ¢ > 0, let
De = Ugeqr,ry Uis1 B(x"4,¢). Fix ¢ sufficiently small such that 0 ¢ D.. Let P be the
Jjoint law of (n1,n2) as described in Lemma 2.2, and P. be the probability measure given
by conditioning P on the event E. := {n; N D.=mnND, = (}. Now suppose (7j1,72) is a
sample from some probability measure on curves in H running from 0 to co, such that
the conditional law of 7j, given 7); is the SLE,(p; p*) in the right part of H\#, conditioned
on not hitting D,, and the conditional law of 7j; g1ven 7)o is the SLEK(B ; p) in the left part
of H\7j, conditioned on not hitting D.. Then the joint law of (7j;, 1)) is the same as P-
defined above.

3 Proof of Theorem 1.2

In this section, we prove our main result Theorem 1.2. We start with the x € (0,4)
case, where we first extend Theorem B to SLE, (p; pf*) curves (i.e. adding a force point
at 0~ in Theorem B) and then apply the SLE resarﬁpling properties (Lemma 2.2). For
k € (4,8) case, we shall use the SLE duality, and the x = 4 case is covered in [WW17,
Theorem 1.1.6].

We begin with the following variant of [MS17, Lemma 3.9], which roughly states
that flow lines of the GFF can stay arbitrarily close to a given curve. Let z, p,n be as
in Theorem 1.2. Recall from [MS16a, Remark 5.3] and [MW17, Lemma 2.1] that, for
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Figure 5: An illustration of Lemma 3.1, where we show that flow lines of the GFF can
stay arbitraily close to some given curve. Left: the curve 7 intersects 0D only at +i,
and we construct the curves 7%, ¥ within the e-neighborhood of 7. Let U, be the region
between 7 and 7% h be some GFF in U, with the same boundary conditions as h on
0D N oU, and flow 11ne boundary conditions on 7,7 such that the flow line 7, of h
from —i to 4 a.s. has positive distance to 4% U #7. Then by the GFF absolute Continuity
argument, the flow line 7 is contained in U, with positive probability. Right: 7 consists
of 4 arcs in D, namely 7Y, ...,7}. Let 41 = 5) and construct ¥, 7%, Us, analogously. Let
I, be the component of Uz, N'D with z/)(a#R) on the boundary. By the same argument,
the event where 7 hits I; at w; at some time 7; without hitting ﬁllL U &f% has nonzero
probability. Then conditioned on 7([0, 71]), we construct the curve 7, from w; to ¥(£:F)
staying close to 49 and iterate the same argument.

fixed 0 < j < £, if p®F ... 4 pf > £ — 2, then 5 a.s. does not hit (277, 27 T1-5), while if
p* B 4. 4 piF < £ — 2, then 1 has positive probability of hitting («/-#, 2/ +1H). Let J,
be the collection of 0 < j < ¢ such that p*# + ... + pf < & — 2. For a simple curve v in
H from 0 to co with y N {z B ... 25F} =0, 1let J, = {0 < j < £: N (288 27 H0E) £ ()
We say that v is admissible w.r.t. (p®, z?) if J, C J,. In other words, v is admissible if
it does not hit the intervals (277, 27+1:%*) where the SLE,(p) process n a.s. does not hit.
Similarly, we can define the notion of admissibility for (pf, z%). We define the domain
DE* to be the connected component of H\y containing 2R, and the points ol and & F
analogously. Consider the conformal map ¢ : H — D sending (0, 1, 00) to (—i,1,1).

Lemma 3.1. Let v be an admissible curve w.r.t. (p,z) and ¥ = (7). Let n be an SLE(p)
process in H with force points z, and 7; = ¥ (n). Fore > 0, define the event E. where
(i) 7 stays in the e-neighborhood of 5 and (ii) for any 1 < j < £, [(&7) — ¢ (7)) < e
and [¢(03") — 1(c2")| < e. Then for any ¢ > 0, the event E. happens with positive
probability.

Proof. We first comment that for each admissible v, we may construct some admissible
curve 7. such that (i) 7% = o7 and &7 = ¢2:F for all 1 < j < ! (ii) 1/1(%) is contained
in the e-neighborhood of 5 and (iii) 7. N (R U {oo}) = {0,&1.7, 025, ... £LF, ol B}, From
this point of view, without loss of generality we may assume that ~ N ]R U{oo}) =
{0, gl,R 1,R7 N ,gé,R e,R}

Let h be a GFF on H with boundary conditions (2.6) such that 7 is the flow line of h,
and h = ho ™! — yarg(y)~!). Then 7 is the flow line of h. Assume ¢ is sufficiently small
such that for 1 < j < ¢, ¢(27f) is not in the e-neighborhood of 4. We begin with the
case where v N R = {0}. We choose some simple path ¥ (resp. %) in D\¥ connecting
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the points e(37/2-¢/6)i and (7/2+¢/6) (resp. (37/2+€/6)i and e(7/2-¢/6)) sych that ¢ U iR
is contained in the e-neighborhood of v, and let U, be the component of D\ (7 U 7%)
between 4 and #%. Then as in the proof of [MS17, Lemma 3. 9], we may construct a GFF
h,y in U, with the same boundary conditions on ob N oU, as h and flow line - boundary
conditions (see e.g. [MS16a, Figure 1.10]) on 7 U7 such that the flow line of h from —s
to i has the law as SLE, (p%, —p%L, Zf:o phly pO B g0 R Zﬁ.:o p»T) with force points
(0=, eB37/2=2/6)i (m/242/6)i, ()t o(37/24e/6)i ¢(m/2=¢/6)1) and thus a.s. has positive distance
from 7~ U 4%®. We may choose some (non-random) constant ¢ > 0 small such that this
distance is at least ( with probability greater than 1/2. Therefore it follows from the
same argument of [MS17, Lemma 3.9] that, if we set US := {z € U,;dist(z, 7% U5") > (},
by the GFF absolute continuous property [MS16a, Proposition 3.4], the law of ﬁ,y is
absolutely continuous w.r.t. h when restricted to the domain U§ . Since flow lines are a.s.
determined by and local sets of the GFF [MS16a, Theorem 1.2], and the flow line of /., is
contained within U§ with probability at least 1/2, it follows that, with positive probability
7 is contained in U§ and thus in the e-neighborhood of 74, which finishes the case when
yNR = {0}.

For rest of the case, we write ¥ = (J;~, 77 where each 7! : [0,1] — D is a subarc
of 4 intersecting 0D only at the endpoints, and they are aligned in the order traced
by 7. Let ;1 = 7). We construct the simple curve 7f (resp. 4{') in D\#¥; within the ¢/m
neighborhood of 4; connecting a point on dD on the left (resp. right) side of 4; and a
point on dD on the same side of 7;. Let U, be the component of D\ (7 U 5{*) between
7 and 7!, and I; be the component of U5, N OD with 7, (1) on its boundary. Then as
above and [MSl7 Lemma 3.9], we may construct a GFF iNLM on U;, with same boundary
conditions as / on 0U;, NOD and ﬂow line condition on ¥ U#{, such that the flow line of
h71 a.s. has positive distance to ¥ U7{*. Again using the same GFF absolute continuity of
hz, w.rt. h as above and in [MS17, Lemma 3.9], the event E; where the flow line 7 first
hits I; at w; at time 7; without hitting ¥& U4 has positive probability. On E;, we choose
a simple curve 75 : [0,1] — D such that 32(0) = wy, F2(1) = 39(1), 72((0,1)) N oD =
and 7, stays within the 2¢/m-neighborhood of 79. Define 74, 7%, I, analogously (with
¢/m replaced by 2¢/m). It follows from the same argument that, conditioned on E; and
iiljo,~], the event E, where 7 first hits I, at w, at time 7, without hitting 54 U 74 has
positive probability. Now we can conclude the proof by iterating this process, except that
at the final step we construct the curve 4,, and apply the argument from the vy N R = {0}
case. O

Lemma 3.2. Theorem 1.2 holds for k € (0,4), k = 0 and p*L < 0. That is, under

J(z) = —1/z, the law of time reversal of SLE,(p""; p®) processes in H with force

points (0~; z!?) agrees with the %gﬁ,{ (p; &) described in Theorem 1.2 for some constant
Z = Z(p,z") € (0,00).

Proof. We sample an SLE, (BR) curve 72 in H from 0 to oo with force points 2%, and
conditioned on 7,, we sample an SLE, (—p%% — 2; p%%) process 7, from 0 to oo in the
left part of IH\7, with force points 0~ and 0%. Then it follows from the construction in
Proposition 2.1 that conditioned on 7, 72 is an SLE, (p%%; p*) process in the right part
of H\n, with force points (07; z%). B

Fori = 1,2, let §; = R(J o n;). Recall the notion of 29, "9, 4% in the statement of
Theorem 1.2. Now by Theorem B, we know that law of 7); is the probability measure
proportional to SLE,{(pAL;QL) process from 0 to oo with force points 2%, Moreover, by
Theorem A, the conditional law of 7j; given 7, is the SLE, (p%%; —p%% — 2) process in the
right part of H\ 7, with force points 0~ and 0". Therefore it follows from Proposition 2.1

that the conditional law of 7y given #); is a constant (possibly depending on 7)) times
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Figure 6: An illustration of the proof of Lemma 3.2 for / = 2. Left: We sample an
SLE, (p®%, pt#, p%1) process 1., and an SLE, (—p®* — 2; p%¥) process 7, in the left part
of H\7,. Then the conditional law of 7, given 7, is the SLE, (p%%; p*ft, p1- T, p?5) process
in the right part of H\7,; with force points 0~;0%, 21 22%, Right: Fori = 1,2, 7); is the
time reversal of Jon;, and #1F = —1/2%%, 3L = —1 /218, By Theorem B, 7j; has the law
LSLE, (p0 B 4+ ph By p2 R _p2 R _ LR pZ’RQ(:%) , pl’RZ(if")) with force points 0, 2%, 221,
By Theorem A, conditioned on 7, 7; is the SLE, (p%%; —5%% —2) process in the rlght part
of H\7j, with force points 0~ and 0. Therefore by Proposition 2.1, the conditional law of

flo given 7y is Z( SLE (p 0, R+p1,R+p2,R7 7p2,R7 *pl R’p() L.p> R2(: ,{)’ ol 32(4 k). :0) in the
left part of H\7); Wlth force points 0, &%, £2L: 0%, and the claim follows by comparing
the two figures. In Lemma 3.4, we further show that the constant Z(7;) is actually

independent of 7.

SLE, (p"; p*7; &%) in the left part of H\7; with force points (&";0%). This justifies the
revers1b111ty of an SLE, (p%%; p®) process in the right part of H\z; with force points
(07;z").

Now consider the conformal map + : H — D sending (0, 1,00) to (—i,1,%), and let
77] = omn;for j = 1,2. Fore > 0, let A. be the partial annulus {z : § —¢ < argz <

T regl—e<]z|< 1} Fix g9 > 0 small such that A., contains none of points in ¥ (z®)
other than ¢(2%%) = —i and let ¢ < g9. Then by Lemma 3.1, the event E. where j;
is contained in the domain A. has positive probability. On the event E., let 0. be the
last point on the arc {z : 3f < argz < 2m; |z| = 1} hit by 7;, and & be the first point
on the arc {z: 0 < argz < J; |z| = 1} hit by ;. Let Di be the connected component
of D\n; with 1 on the boundary, and . : D — D sending (o.,1,¢.) to (—¢,1,i). Then
Y. o 7o is an SLE,(p%; p®) process in D with force points ((—i)~; 4. o 1 (z®)) (with
1/}5(( i)T) identiﬁed as ( i)T), and the law of its time reversal is proportional to the
SLE «(p"; p";a";0) process. Therefore as we condition on E and send ¢ — 0, Df
converges to D in Caratheodory topology, and . ov(x*) converges to 1)(z%). To conclude
the proof, we look at the time reversal result of 1. o 72 in D, send ¢ — 0 and apply the
continuity of SLE, (p) processes w.r.t. the location of force points from [MS16a, Section 2].
To be more precise, suppose 7 and (n®)e>0 are SLE(p) processes in ID from —i to i with
force points y and y°, such that y*~< = (—i)~, y*° = (—i)" and y/7° — y?? as ¢ — 0.
Let h and (h®).~( be the corresponding GFF on D such that n and (7).~ are the flow
lines of & and (h%)»o from —i. For § > 0, let Dj := U,c 1 ry U;j51 B(y”",0). By [MS16a,
Proposition 3.4, Remark 3.5], the total variation distance between h°|p\ D} and h|p\ D}
goes to 0 as ¢ — 0 for fixed §. Since flow lines are deterministic functions and local sets
of the GFF [MS16a, Theorem 1.2], it follows that the law of * conditioned on not hitting
Dj converges in total variation distance to that of 7 conditioned on not hitting Dj as
€ — 0. From this argument, the law of the time reversal of an SLEK( 0L, R) process
conditioned on having distance § to z/® for j > 1 agrees with SLE (p  pO T L,O)
conditioned on the same event (up to a multiplicative constant), and the claim follows by
taking § — 0. O
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Corollary 3.3. Let p,z, %, p be as in Lemma 3.2, and -y be a curve in H from 0 to co
which is admissible w.r.t. (2+ p*% + pf, 2™). Let H'* be the right part of H\v. Sample an
SLE.(p) process 1o in H1 with force points x. Then there exists some constant Z(, p, )

such that the law of the time reversal of J(ny) is equal to ViG] times ﬁﬁ(é; &) in

1
JPsT)
J(HZ) with the force points .

Proof. We apply Lemma 3.2 within (finitely many) connected components whose bound-
aries contain the force points x, and apply Theorem A for rest of the connected com-
ponents (where there are no constants). Then the constant Z(v, p, z) is now a (finite)
product of the corresponding constants in each of the connected cBmponents. O

The next lemma states that in some sense, the constant Z in Lemma 3.2 does not
depend on the choice of z. This follows by comparing the two ways of viewing the
marginal law of the 7); above: directly applying Lemma 3.2, and applying Proposition 2.1
to the pair (7)1, 72).

Lemma 3.4. In the setting of Corollary 3.3, the constant Z(v, p, z) does not depend on +y.

Proof. Let 11, 2, N1, 72 be as in the proof of Lemma 3.2 and IP be the corresponding
background probability measure. Let P be the probability measure describing the law of
(n9,73) where 13 is an SLE, (") with force points #” and 7{ is an SLE, (p®*, —p** —2) in
the right part of H\»J with force points (0~;0"). Then by applying Lemma 3.2 (to 72) and
Proposition 2.1, the law of (7, 72) is absolutely continuous w.r.t. P with Radon-Nikodym

derivative
¢

1 i i P (k-9
Zomgm L1 o, 7= CRY
= 0= =1

On the other hand, since the conditional law of 7 given 7 is SLE, (p**; p%), it follows

from the definition of the constant Z(v, p,z) that the conditional law of 7}, given 7, is
R -

Zon D) SLE,(p; &) in the left part of H\7;. Moreover, we know from Proposition 2.1
that the marginal law of 7 is SLE,.(—p%F — 2;2 4 p%L + p™) with force points 0~; z*. By
Lemma 3.2, there exists some constant Z; := Z((—p”% — 2;2 + p** + pf), 2) such that
the marginal law of the curve 7 is 1/Z; times the ﬁ,{(po’]‘ +24 éL; —p%L —2:4%:0)
with force points (z%;07). Together with Proposition 2.1, we infer that the law of (1, 7))
is absolutely continuous w.r.t. P with Radon-Nikodym derivative

1
Z(m, p, ) Z((—p"F — 2,2 4 pOL + pht), k) -

5 R (1o a)
2r

¢
&l (390 - (3.2)
=1

Z(p"sz™)
PO L2240 L4 pF) )
a.s.. We condition on the positive probability event E. for (;,v) as in Lemma 3.1. Then
the domain D};* is converging in Caratheodory topology to DJ* as & — 0, and the claim
follows from a similar argument as in the end of the proof of Lemma 3.2 via SLE.(p)
continuity over the location of force points. O

It then follows by comparing (3.1) with (3.2) that Z(m,@ ) = 7=

Proposition 3.5. Theorem 1.2 holds for x € (0,4).

Proof. The proof is organized as follows. We first construct a pair of reversed curves
(711, 72) by Proposition 2.1, and then apply Lemma 3.2 to get the conditional laws of
n; := R(n;) given n; for 1 <4 # j < 2. Finally we apply Lemma 2.3 to identify the law of
the forward curves (11, 72) with the usual SLE,(p).
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Let 7); be an SLE,(p) process in H from 0 to oo with force points . Pick 0 < a < 2
such that the weights j = (a + p%; —a + p%) also satisfy the bound (1.1). Conditioned
on 7j;, sample an SLEN(G —2; ER)iprocessiﬁg in the right component of H\7j; with force
points (0~;2). Fore > 0, let D, = Ugerz.m Uis1 B ¢), D. = J(D.) and suppose ¢
is sufficiently small such that 0,00 ¢ D.. Let F. be the event where (71, 7j2) are disjoint

from D.. Define the conformal maps 1/);;? as in Proposition 2.1. Let P be the law of
(71, 7)2), and define the probability measure Q. on pairs of non-crossing simple curves
from 0 to oo by

dQ. . . 1 O LT oIy (B8 T (ol oy oty 2=
7A(771,772)=71FE'H|$’ () @) [T (Y @ T 3.3)
€ i=1

dpP

j=1

where Z. is the normalizing constant making Q. a probability measure. Observe that on
the event £, by Koebe’s 1/4 theorem, there exists some constant M depending only on
¢ and z such that 1/M < |(w%’f)’(a§i’q) < M, which implies that the constant Z, is well-
defgl\e/d. Moreover, by Proposition 2.1, under the measure Q., conditioned on 7, 72 is
an SLE, (a — 2; ER; &™) process in the right component of H\7; with force points (0~;z%)

conditioned on not hitting D., while conditioned on flo, 71 iS an gﬂﬁﬁ(éL ja — 2;QL)
process in the left component of H\7, with force points @L ;0%) conditioned on not
hitting D., where 47 = %

Fori=1,2, let n; = R(J o1);). Then by Lemma 3.2, under the measure Q., given 7,
the conditional law of 7 is the SLE,(—a + BL; a — 2) process in the left component of
H\7; with force points (z;0%) conditioned on not hitting D., and the conditional law
of n; given 7 is the SLE,(a — 2; BR) process in the right component of H\ 7, with force
points (0~;z’*) conditioned on not hitting D.. Let 7j; be an independent SLE, (p) process
in H from 0 to co with force points z, and sample an SLE,(—a + p*;a — 2) process 1j;
in the left component of H\7; with force points (z¥;0%). Therefore (m,n2) and (71, 72)
satisfy the same resampling properties as in Lemma 2.3. Then by Lemma 2.3, the joint
law of (n1,72) agrees with that of (7j;,7) conditioned on {fj; N D. = 7, N D. = (}. In
particular, the marginal law of 7; under Q. is the SLE,(p) process conditioned on not
hitting D. and weighted by the probability where the SLE, (—a + BL; a — 2) process in
the left component of H\7; is disjoint from D..

On the other hand, by Proposition 2.1, a sample (7}, 7j2) from Q. can be produced by
(i) sampling 7; from @Eh (é, &) process conditioned on not hitting 155 (ii) weighting the
R

)

law of 7j; by Zy(7)1), where Zy(7);) is the measure of an gfljl,g(a —2;p™0;a™) process in

the right component of H\7; with force points (0~; z*) being disjoint from D, and (iii)
sampling an SLE, (a — 2; éR; 0; &™) process 7} in the right component of H\7; with force

points (0~; z%) conditioned on not hitting D.. Meanwhile, by Lemma 3.2, Zo(#;) is equal
to Z(m, (—a+ p";a — 2),2") times the probability of an SLE, (—a + p*;a — 2) process in
the left component of H\7; being disjoint from D.. By Lemma 3.1, the latter probability
is positive for any fixed n;, while by Lemma 3.4, the constant Z(7y, (—a —i—BL; a—2),zf)is
independent of 7;. Therefore by comparing the marginal laws of 7; and 7;, we conclude
that under J(z) = —1/%, the time reversal of an SLE,(p) process with force point z

conditioned on not hitting D, agree with the gﬁﬁn (é, &) process with force point &
conditioned on not hitting D.. Since ¢ > 0 can be arbitrarily small, the claim therefore
follows. m

For k € (4,8), the argument is based on the following SLE duality argument, which
follows from [Zha08a, Theorem 5.1] and [MS16a, Theorem 1.4, Proposition 7.30].
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Proposition 3.6. Let x € (4,8], & = 1@—6 and p satisfying (1.1) and 2% < ... < 20F =

0~ < 298 =0t < ... < 258, Let pPtll = _Zf:o pt and ptt1 i = _Zf:o pil. Let
pit = —p' 1=l for 0 < i < ¢ and pIF = —p**t1=3L for 0 < j < k. Let/ be an SLE,(p)
process in H from 0 to co. Then the left boundary iy, of ) is an SLEz (7—2+“pAL R—4+ ZﬁR)
process from oo to 0 with force points & := (+oo, 257, ... 2% —oco, 2% L .., xbt), and
the right boundary nr of ' is an SLEz(k — 4 + Z,éL, 52 —|— i) process from oo to 0
with force points . Moreover, conditioned on 7, and g, 77 ‘is an SLE, (5 —45—4)
process independently in each connected component of]H\(nL Ungr) between 1y, and R,

and conditioned on ny,, ng is an SLEz(k — 4 + ZﬁL, —%) process in H\ny, to the right of

nz, from oo to 0 with force points (+oc, 2%, ... 2z, —oo).

Proposition 3.7. Theorem 1.2 holds for x € (4, 8].

Proof. Let 1’ be an SLE,(p) process in I from 0 to oo with force point z, 7z, r be its
left and right boundary, and R(7’) be the time-reversal of /. Let & = E Fhl = gtH1-iR
for 0 < i < ¢ and #f = 2**1=3L for 0 < j < k, where zF*1'l = —x and x’“vR =
+00. Let p“? be as in the statement of Proposition 3.6. Note that £ = J(Z). Then
by Proposition 3.5 and Proposition 3.6, the law of the left boundary R(n.) of R(%) is
proportional to the SLE; (F—4+ Epl & —24 2pf; al; o) from 0 to co with force points

zand ol = Ephd. Bt = phadon L1kewise conditioned on R(nz), the law of the right

boundary R(nr) of R(7) is Z(n 3
the right of H\R () with force points (0~; ). Moreover, by Lemma 3.4, since —% < 0,
the constant Z(n,) does not depend on on 7)1

SLE( £k —4+ 5pf0;af) process from 0 to co to

On the other hand, let 77/ be an SLE (p; &) process in H from oo to 0 with force
points Z, and %9 = %. Note that by definition, for each point 2%9, its assigned
power parameter is precisely a*9. Then by Proposition 3.6, the law of the left and right
boundaries (7., 7g) of 7} can be produced by the following procedure:
(i) Sample an SLE; (K — 4+ -2 + ) process 11 from 0 to co with force points
z, and given 7, sample an SLE ( %, R — 4 + p™) process 7, to the right of H\n; with
force points (07, z%);
(i) Fori > land j = 1,2, let Di 7 be the connected component of H\7; with 2% on
the boundary, o 1 ‘1 (resp. fl q) be the first (resp. last) point on 8DZ ‘9 traced by n;, and
f]iq : DW —H be the conformal map sending (o, ’q , 5“‘1) to (0, :l:l ,00) where we take

the + 31gn when q = R;
(iii) Weight the law of (71,72) by

H|x1L 1L H‘le zR (xi,R)lai'R

We conclude by Proposition 2.1 that up to a finite multiplicative constant, the law of
(R(nL), R(nr)) agrees with that of (7, 7r). Moreover, by Proposition 3.6 and Theorem A,
conditioned on (R(n.), R(nr)), R(n') is an SLE.(§ — 4; 5§ — 4) process independently
in each connected component of H\(R(n) UR(nr)) between R(n.) and R(nr), which
agrees with the conditional law of 77’ given (7., 7r). Therefore the law of R(n’) agrees
up to a multiplicative constant with that of 7}/, which finishes the proof of Theorem 1.2

for k € (4,8]). O

Proof of Theorem 1.2. The theorem follows directly by applying Proposition 3.5 for
€ (0,4), Proposition 3.7 for x € (4, 8] along with [WW17, Theorem 1.1.6] for k =4. O
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A Proof of Lemma 2.2

In this section, we give an alternative proof of Lemma 2.2 based on Lemma 3.1 and the
irreducibility of Markov chain argument from [MT09]. Let (X, F) be a state space where
F is a o-algebra. For a Markov chain {X,,},>0 and a measure ¢ on (X, F), if for any
z € X and A € F, P(X,, € A for some n|Xy = z) > 0 whenever p(A) > 0, then {X,,},>0
is said to be gp-irreducible. By [MT09, Theorem 4.0.1], there exists a unique maximal
irreducibility measure ¢ on (X, F) such that {X,,},,>o is ¢-irreducible. Then [MT09,
Proposition 10.1.1, Theorem 10.0.1] tells us that a v-irreducible Markov chain with an
invariant probability measure is recurrent, and thus admit a unique invariant measure.

Without loss of generality, we take a conformal map H — D and assume that we
are in the setting where 71,7, are continuous curves in D from —: to ¢ such that given
one curve 7;, the other curve is the SLE, (p’) process in D\7; (recall the definition of
SLE,(p) processes in non-simply connected domains in Section 2.1) as in the statement
of Lemma 2.2. By an identical argument of the first step of the proof of [MS16b,
Theorem 4.1] (i.e., draw counterflowlines 7} by SLE duality, run 7;,n} for a small amount
of time and look at the remaining parts of n;,72), we may work on the case where the
starting and ending points of 71, 72 are distinct. To be more precise, let a,b, ¢,d € D be
4 points in counterclockwise order, %%, ..., %% d’ be some marked points on the da
arc of 0D, and %%, ... 2" be some marked points on the bc arc of 9D with 2% = o+,
Let X be the space of non-crossing continuous curves (v1,72) connecting (a,b) with
(d,c) in D such that v; (resp. 72) is disjoint from z? U {c} (resp. z* U {d}) and does not
trace any segment of the arc bc (resp. da), and F be the Borel o-algebra on X generated
by Hausdorff topology. We are going to show that there exists at most one probability
measure y on (X,F) such that, for a sample (71,72) from p, conditioned on 7y, 72 is
an SLE.(p — 2; BR) curve in the right component of D\7; with force points b~;z%, and
conditioned on 75, ; is an SLE, (p*, & —2 — p%;p — 2,k — 2 — p) in the left component of
D\7, with force points z”, d"; a”?, c®, where p* = Zf:o pL, and af* (resp. c®) is the left

most point of 75 N ab (resp. 72 N cd). See Figure 7 for an illustration.

a =Yz

Figure 7: First step of the proof of Lemma 2.2, where we first run 7; and its asso-
ciated counterflowline 7] until they hit 9B(—i,¢) and 9B(i,e) as in [MS16b, Proof of
Theorem 4.1] and map back to D by a conformal map . Given ¥(m1), ¥ (n2) is an
SLE,(p — 2; p®) process in the right component of D\ (1), while given 1 (n2), 1(n;) is
an SLE,{(BL;% —2—7p% p—2,k—2— p) in the left component of D\¢(n2) with the force
points on the right located at a’*, c®. Note that since 7, a.s. merges into 7}, ¥(n;) a.s.
terminates between c and d.
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Figure 8: The Markov chain resampling in Proof of Lemma 2.2. Left: Initial phase for the
two given curves (n?,73), with Do r, D1 g, D2 g being the connected components of D\r
whose boundary intersects both the da arc and bc arc. Right: By applying Lemma 3.1
in each of Dy r, D1 ,r, D2, r, when we sample 77% in the right component of ]D\n(f, with
positive probability 73 is disjoint from the ad arc. It then follows by applying Lemma 3.1
twice more P(X3 € Xq|Xo = (n{,719)) > 0.

We construct a Markov chain on (X, F) as follows. Let Xy = (n?,73) € X, and for
given n > 0 and X,, = (0}, n%), we first uniformly pick ¢ € {1,2} and sample nf“ in
D\n%_, from the conditional law induced by . as described in the previous paragraph.
Let ny™! = 5, and set X,11 = (nf™', ni™). Pick o/, on the arc ab, and ¢,d’ on

the arc cd and draw two disjoint simple curves (v%,7f) in D connecting (a’,b') with
(d',c'). Let QL be left component of D\vX, and Q be right component of D\y#. Let
Xo ={(1,12) € X : 1 C QL, Yo C ﬁ}. We are going to show that {X,},>0 is ¢-
irreducible for ¢ = u|x, and thus admits a unique invariant probability measure, which
concludes the proof by [MTO09].

Given (n?,79) € X, let Do g, ..., Dy, r be the connected components of D\7,} whose

boundary has nonempty intersection with both da and bc. Note that the number of
such components is finite by the continuity of 1. Then by applying Lemma 3.1 in
each of Dy g, ..., D, r, when we sample n3 in the right component of D\7,? from the
conditional law induced by y, there is a positive probability such that 73 is disjoint from

the arc da. Under this event, by Lemma 3.1, when we sample 7? from the corresponding
conditional law in the left component of ID\7J, there is positive chance that 1? is disjoint

from the arc bc and stays in the domain QL. (Note that although n? merges with the

arc cd before reaching the target ¢, Lemma 3.1 extends to this setting and is still
applicable.) Applying Lemma 3.1 once more, under this event, when we sample 73 from
the corresponding conditional law in the right component of D\7?, there is a positive
probability that 73 is contained in QF. Therefore we conclude that for any (1?,79) € X,
P(X3 € Xqo|Xo = (n?,19)) > 0. Note that this also implies that u(Xq) > 0. See also
Figure 8.

Finally, from the GFF flow line local absolute continuity [MS16a, Proposition 3.4]
and [MS16a, Theorem 1.2], given any curves 79, 72 in QF, when we sample N1, 71 in the
left component of D\~, and D\7, according to the conditional law described by u, when
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restricted to the event 7, 7j; are contained in QF, the laws of 7; and 7j; are mutually
absolutely continuous w.r.t. each other. In particular, this implies that for any A € F with
plxq(A) >0, P(X5 € A|Xo = (n?,73)) > 0. This justifies the irreducibility of {X,,},>0

and thus concludes the proof. O
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