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Time-reversal of multiple-force-point chordal SLEκ(ρ)

Pu Yu*

Abstract

Chordal SLEκ(ρ) is a natural variant of the chordal SLE curve. It is a family of random
non-crossing curves on the upper half plane from 0 to ∞, whose law is influenced
by additional force points on R. When there are force points away from the origin,
the law of SLEκ(ρ) is not reversible, unlike the ordinary chordal SLEκ. Zhan (2019)
gives an explicit description of the law of the time reversal of SLEκ(ρ) when all force
points lie on the same sides of the origin, and conjectured that a similar result holds
in general. We prove his conjecture. Specifically, based on Zhan’s result, using the
techniques from the Imaginary Geometry developed by Miller and Sheffield (2013), we
show that when κ ∈ (0, 8), the law of the time reversal of non-boundary filling SLEκ(ρ)

process is absolutely continuous with respect to SLEκ(ρ̂) for some ρ̂ determined by ρ,
with the Radon-Nikodym derivative being a product of conformal derivatives.
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1 Introduction

The Schramm-Loewner Evolution (SLEκ) with κ > 0 is an important family of random
non-self-crossing curves introduced by Schramm [Sch00]. They have been proved or
conjectured to described a large class of two-dimensional lattice models at criticality. We
refer the reader to [Law08, Sch11, Smi06] for basic properties of SLE and their relation
to 2D lattice models.

The most basic version of SLE is the chordal SLEκ curve, which is a random curve
between two boundary points of a simply connected domain characterized by confor-
mal invariance and the domain Markov property. It was conjectured by Rohde and
Schramm [RS05] that chordal SLEκ with κ ∈ (0, 8] satisfies reversibility. Namely, modulo
a time reparametrization the time reversal of a chordal SLEκ curve is also a chordal
SLEκ. The conjecture was first proved for κ ∈ (0, 4] by Zhan [Zha08b] using the so-called
commutation coupling. The κ ∈ (4, 8) case was proved by Miller and Sheffield [MS16c]
using the imaginary geometry theory. The chordal SLE8 is the scaling limit of UST Peano
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Time reversal of SLEκ(ρ)

curve with half free and half wired boundary conditions [LSW11] and therefore is also
reversible.

Chordal SLEκ(ρ) curves are important variants of chordal SLE. They are still curves
between two boundary points of a simply connected domain, but their laws depend on
some additional marked points called force points. They were introduced by Lawler,
Schramm and Werner [LSW03] in the theory of conformal restriction, and play a
fundamental role in imaginary geometry as flow lines emanating from a boundary
point [MS16a]. In [MS16b, MS16c], it was proved that chordal SLEκ(ρ) for κ ∈ (0, 8)

with at most two force points lying infinitesimally close to the starting point satisfy
the reversibility. When there are force points away from the origin, the law of chordal
SLEκ(ρ) is not reversible anymore. Recently, Zhan [Zha22] gave an explicit description
of the law of the time reversal of SLEκ(ρ) when κ ∈ (0, 4] and all force points lie on the
same side of the origin, and when κ ∈ (4, 8), all force points lie on the same side, and the
curve is not boundary touching on this side. In the same paper, he conjectured that a
similar result holds for general chordal SLEκ(ρ) with κ ∈ (0, 8) as long as the curve is
non-boundary filling; see [Zha22, Conjecture 1.3]. In this paper we prove his conjecture.

To state our main result, we introduce the necessary notations to describe chordal
SLEκ(ρ) curves with their precise definition postponed to Section 2.1. Let κ ∈ (0, 8]. Fix
the force points xk,L < · · · < x1,L < x0,L = 0− < x0,R = 0+ < x1,R < · · · < x`,R and for
each force point xi,q, q ∈ {L,R}, we assign a weight ρi,q ∈ R, such that

j∑
i=0

ρi,L > (−2)∨
(
κ

2
−4

)
for all 0 ≤ j ≤ k and

j∑
i=0

ρi,R > (−2)∨
(
κ

2
−4

)
for all 0 ≤ j ≤ `.

(1.1)
We refer to the vectors of force points and weights as x = (xL;xR) and ρ = (ρL; ρR).
Given an SLEκ(ρ) process η from 0 to∞ in the upper half plane H with force points x, for
each i ≥ 1 and q ∈ {L,R}, let Di,q

η be the connected component of H\η containing xi,q,
and σi,qη , ξi,qη be the first and the last point on ∂Di,q

η traced by η. Consider the conformal
map ψi,qη : Di,q

η → H sending (σi,qη , xi,qη , ξi,qη ) to (0,±1,∞) where we take the + sign when
q = R and take the − sign when q = L.

We now introduce a family of measures on curves describing the time reversal of
chordal SLEκ(ρ).

Definition 1.1. Suppose x and ρ satisfy (1.1). We associate a power parameter αi,q ∈ R
for each xi,q with α0,L = α0,R = 0. Define S̃LEκ(ρ;α) with force points x to be the

measure on continuous curves in H from 0 to ∞ which is absolutely continuous with
respect to SLEκ(ρ) with Radon-Nikodym derivative

dS̃LEκ(ρ;α)

dSLEκ(ρ)
(η) =

∏
q∈{L,R}

∏
i≥1

|xi,q · (ψi,qη )′(xi,q)|α
i,q

. (1.2)

Let us recall some statements on the time reversal of chordal SLEκ(ρ) processes from
existing literature. The first one is about the time reversal of SLEκ(ρL; ρR) processes,
which is shown in [MS16b, Theorem 1.1] and [MS16c, Theorem 1.2]. Let J : H→ H be
the map J(z) = −1/z. For a curve η, we write R(η) for its time reversal.

Theorem A. Let κ ∈ (0, 8] and ρL, ρR > −2 such that ρL, ρR ≥ κ
2 − 4 if κ ∈ (4, 8]. Let η be

an SLEκ(ρL; ρR) process in H from 0 to∞ with force points 0−; 0+. Then modulo time
parametrization, R(J ◦ η) is the SLEκ(ρR; ρL) process in H from 0 to∞ with force points
0−; 0+.

We comment that the κ = 8 case above is not stated in [MS16c, Theorem 1.2], yet it
readily follows from the reversibility of chordal SLE8 and [MS16b, Theorem 1.1] along
with SLE duality [Zha08a, MS16a] (see Proposition 3.6).
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Figure 1: An S̃LEκ(ρ;α) processes with force points x1,L, 0−; 0+, x1,R, x2,R. By definition
σ1,L
η = 0−, ξ1,L

η = ξ2,R
η = ∞. The conformal map ψi,Rη : Di,R

η → H sends (σi,Rη , xi,R, ξi,R)

to (0, 1,∞) for i = 1, 2, and the conformal map ψ1,L
η : D1,L

η sends (σ1,L
η , x1,L, ξ1,L) to

(0,−1,∞). Then the measure S̃LEκ(ρ0,L, ρ1,L; ρ0,R, ρ1,R, ρ2,R;α1,L;α1,R, α2,R) is abso-
lutely continuous w.r.t. SLEκ(ρ0,L, ρ1,L; ρ0,R, ρ1,R, ρ2,R) with Radon-Nikodym derivative
|x1,L(ψ1,L

η )′(x1,L)|α1,L |x1,R(ψ1,R
η )′(x1,R)|α1,R |x2,R(ψ2,R

η )′(x2,R)|α2,R

.

When all the force points lie on the same side of 0, the following theorem is shown in
Theorem 1.2 and Section 3.2 of [Zha22] via the construction of the reversed curve.

Theorem B. Let ` ≥ 0. Fix ρ0,R, . . . , ρ`,R ∈ R, such that κ ∈ (0, 4], min0≤j≤`
∑j
i=0 ρ

i,R >

−2 if κ ∈ (0, 4], and min0≤j≤`
∑j
i=0 ρ

i,R ≥ κ
2 − 2 if κ ∈ (4, 8). Let ρR be the vector of

ρi,R and η be a chordal SLEκ(ρR) curve in H from 0 to∞ with force points 0+ = x0,R <

x1,R < · · · < x`,R. Let x`+1,R = +∞ and ρ`+1,R = −
∑`
i=0 ρ

i,R. For 0 ≤ i ≤ `, let
x̂i,L = J(x`+1−i,R), ρ̂i,L = −ρ`+1−i,R. Here we use the convention J(±∞) = 0∓. For

1 ≤ i ≤ `, let α̂i,L = ρ̂i,L(κ−4)
2κ . Let x̂L, ρ̂L, α̂L be the vector of x̂i,q, ρ̂i,q and α̂i,q. Then up

to reparametrization, the law of R(J ◦ η) is equal to 1
Z S̃LEκ(ρ̂L; α̂L) with force points x̂L

for some normalizing constant Z ∈ (0,∞).

In [Zha22], the time reversal of SLEκ(ρR) is described in terms of reversed interme-

diate SLEκ(ρ) (iSLErκ(ρ)) process, which agrees with S̃LEκ(ρ̂L; α̂L) when normalized to
be a probability measure. The iSLErκ(ρ) process is described explicitly using a Loewner
evolution based on Appell-Lauricella multiple hypergeometric function. The constant Z
can be traced via [Zha22, (3.16),(3.19)] and [Zha22, Remark 3.6], and can be expressed
by a hypergeometric function (in fact a product of the gamma functions) depending only
on κ, ρR but not on the location of the force points xR.

Our main result is the following.

Theorem 1.2. Let κ ∈ (0, 8]. Fix x, ρ with (1.1), and let η be a chordal SLEκ(ρ) curve in

H from 0 to∞ with force points x. Let xk+1,L = −∞, x`+1,R = +∞, ρk+1,L = −
∑k
i=0 ρ

i,L

and ρ`+1,R = −
∑`
i=0 ρ

i,R. For 0 ≤ i ≤ `, let x̂i,L = J(x`+1−i,R), ρ̂i,L = −ρ`+1−i,R. For
0 ≤ i ≤ k, let x̂i,R = J(xk+1−i,L), ρ̂i,R = −ρk+1−i,R. For i ≥ 1 and q ∈ {L,R}, let α̂i,q =
ρ̂i,q(κ−4)

2κ . Let x̂, ρ̂, α̂ be the vector of x̂i,q, ρ̂i,q and α̂i,q. Then up to reparametrization, the

law of R(J ◦ η) is equal to 1
Z S̃LEκ(ρ̂; α̂) with force points x̂ for some normalizing constant

Z := Z(ρ) ∈ (0,∞).

The κ = 4 case of Theorem 1.2 is covered by [WW17, Theorem 1.1.6] by realizing
SLE4(ρ) curves as level lines of Gaussian free field with appropriate boundary conditions.

In this case, the reversed curve is just SLEκ(ρ̂) with no weighting, i.e., S̃LEκ(ρ̂; α̂) with
α̂i,q = 0.

Based on Theorem A and Theorem B, our proof is mainly relying on the techniques
from the Imaginary Geometry [MS16a, MS16b, MS16c, MS17]. For κ ∈ (0, 4), we first
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Figure 2: An example of Theorem 1.2. Let αi,q = 0 in Figure 1 so that η is an
SLEκ(ρ0,L, ρ1,L; ρ0,R, ρ1,R, ρ2,R) process with force points 0−, x1,L, 0+, x1,R, x2,R. Let
J(z) = −1/z, x̂1,L = J(x2,R), x̂2,L = J(x1,R), x̂1,R = J(x1,L). Then the time reversal of J ◦
η is an S̃LEκ(ρ0,R+ρ1,R+ρ2,R,−ρ2,R,−ρ1,R; ρ0,L+ρ1,L,−ρ1,L; ρ

2,R(4−κ)
2κ , ρ

1,R(4−κ)
2κ ; ρ

1,L(4−κ)
2κ )

process with force points 0−, x̂1,L, x̂2,L, 0+, x̂1,R. When ρ1,L = ρ1,R = ρ2,R = 0, the law of
J ◦ η is SLEκ(ρ0,R; ρ0,L) with force points at 0− and 0+, as shown in [MS16b].

extend a commutation relation between two SLEκ(ρ)-type processes (i.e., two SLEκ(ρ)

with possibly different ρ values) from the theory of GFF flow lines to the setting of

two S̃LEκ(ρ;α)-type processes (Proposition 2.1), from which we are able to add a force
point located at 0− in Theorem B (Lemma 3.2). Using this extended result with the
commutation relation, we can construct a pair of S̃LEκ(ρ;α)-type processes (η1, η2), such
that conditioned on one curve, the time reversal of the other curve is the ordinary
SLEκ(ρ) process with only one degenerate force point (i.e. 0±) on the left or right side.
Then from the SLE resampling property [MS16b, Theorem 4.1], the two conditional
laws uniquely characterize the joint law of the reversal of (η1, η2), which finishes the
proof for κ ∈ (0, 4). For κ ∈ (4, 8], we apply the κ ∈ (0, 4) result along with the SLE
duality [Zha08a, Dub09, MS16a], which states that for κ > 4, the boundaries of SLEκ-
type processes are SLE 16

κ
-type processes (see Proposition 3.6).

For the κ > 8 regime, it has been shown in [MS17, Theorem 1.19] that the time
reversal of chordal SLEκ(ρL; ρR) with force points at 0−; 0+ is SLEκ(ρ̃R; ρ̃L) where
ρL, ρR ∈ (−2, κ2 − 2) and ρ̃q = κ

4 − 2− ρq for q ∈ {L,R}. The time reversal of SLEκ(ρ) is
not known when κ > 8 and there are force points located at R\{0}.

We comment that the reversibility of SLE processes can also be inferred from the con-
formal welding of Liouville quantum gravity surfaces (see e.g. [DMS21, AHS20, ASY22]).
For instance, by viewing the welding interface from the opposite direction, Theorem A
is a direct consequence of [AHS20, Theorem 2.2]. The time reversal of SLEκ(ρ−; ρ+, ρ1)

with force points 0−; 0+, 1 has also been discussed in [ASY22, Section 7.1] via the con-
formal welding of quantum triangles. We expect that this method can also be used to
describe the time reversal of other types of SLE curves, such as radial SLE with force
points and SLE on the annulus.

In Section 2.1, we recap the SLEκ(ρ) processes along with its coupling with the GFF
as imaginary geometry flow lines in [MS16a]. In Section 2.2, we establish a commutation
relation for S̃LEκ(ρ;α) processes and recap the SLE resampling properties. Finally in
Section 3, we prove Theorem 1.2.

2 Preliminaries

In this paper we work with non-probability measures and extend the terminology of
ordinary probability to this setting. For a finite or σ-finite measure space (Ω,F ,M), we
say X is a random variable if X is an F -measurable function with its law defined via
the push-forward measure MX = X∗M . In this case, we say X is sampled from MX and
write MX [f ] for

∫
f(x)MX(dx). Weighting the law of X by f(X) corresponds to working
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with the measure dM̃X with Radon-Nikodym derivative dM̃X

dMX
= f , and conditioning on

some event E ∈ F (with 0 < M [E] <∞) refers to the probability measure M [E∩·]
M [E] over

the space (E,FE) with FE = {A ∩ E : A ∈ F}.
Throughout this paper, for a continuous simple curve η from 0 to ∞ in H ∪ R, we

shall refer to the subset of H\η consisted of connected components whose boundaries
contain a subinterval of (−∞, 0) (resp. (0,∞)) as the left (resp. right) part of H\η. For
n ≥ 0, x = (x0, . . . , xn) ∈ Rn+1 and a ∈ R, we write a + x for (a + x0, x1, . . . , xn) and ax

for (ax0, . . . , axn). The formal notation is used for weights and latter is for the locations
of force points under dilation and SLE duality purposes (see Proposition 3.6).

2.1 SLEκ(ρ) process and the imaginary geometry

Fix κ > 0. We start with the SLEκ process on the upper half plane H. Let (Bt)t≥0 be
the standard Brownian motion. The SLEκ is the probability measure on continuously
growing curves (Kt)t≥0 in H, whose mapping out function (gt)t≥0 (i.e., the unique
conformal transformation from H\Kt to H such that lim|z|→∞ |gt(z) − z| = 0) can be
described by

gt(z) = z +

∫ t

0

2

gs(z)−Ws
ds, z ∈ H, (2.1)

where Wt =
√
κBt is the Loewner driving function. For the force points xk,L < · · · <

x1,L < x0,L = 0− < x0,R = 0+ < x1,R < · · · < x`,R and the weights ρi,q ∈ R, the SLEκ(ρ)

process is the probability measure on curves (Kt)t≥0 in H growing the same as ordinary
SLEκ (i.e., satisfies (2.1)) except that the Loewner driving function (Wt)t≥0 are now
characterized by

Wt =
√
κBt +

∑
q∈{L,R}

∑
i

∫ t

0

ρi,q

Ws − V i,qs
ds;

V i,qt = xi,q +

∫ t

0

2

V i,qs −Ws

ds, q ∈ {L,R}.

(2.2)

It has been proved in [MS16a] that the SLEκ(ρ) process a.s. exists, is unique and
generates a continuous curve until the continuation threshold, the first time t such that
Wt = V j,qt with

∑j
i=0 ρ

i,q ≤ −2 for some j and q ∈ {L,R}.
Now we recap the definition of the Gaussian Free Field. Let D ( C be a domain. We

construct the GFF on D with Dirichlet boundary conditions as follows. Consider the
space of smooth functions on D with finite Dirichlet energy and zero value near ∂D, and
let H(D) be its closure with respect to the inner product (f, g)∇ =

∫
D

(∇f · ∇g) dx dy.
Then the (zero boundary) GFF on D is defined by

h =

∞∑
n=1

ξnfn (2.3)

where (ξn)n≥1 is a collection of i.i.d. standard Gaussians and (fn)n≥1 is an orthonormal
basis of H(D). The sum (2.3) a.s. converges to a random distribution independent of the
choice of the basis (fn)n≥1. For a function g defined on ∂D with harmonic extension f in
D and a zero boundary GFF h, we say that h+ f is a GFF on D with boundary condition
specified by g. See [DMS21, Section 4.1.4] for more details.

Next we introduce the notion of GFF flow lines. We restrict ourselves to the range
κ ∈ (0, 4). Heuristically, given a GFF h, η(t) is a flow line of angle θ if

η′(t) = ei(
h(η(t))
χ +θ) for t > 0, where χ =

2√
κ
−
√
κ

2
. (2.4)
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Figure 3: An SLEκ(ρ0,L, ρ1,L; ρ0,R, ρ1,R, ρ2,R) process coupled with the GFF h with illus-
trated boundary conditions as the (zero angle) flow line of h. The θ angle flow line of h
then has the law as SLEκ(ρ0,L − θχ

λ , ρ
1,L; ρ0,R + θχ

λ , ρ
1,R, ρ2,R) process.

To be more precise, let (Kt)t≥0 be the hull at time t of the SLEκ(ρ) process described by

the Loewner flow (2.1) with (Wt, V
i,q
t ) solving (2.2), and let Ft be the filtration generated

by (Wt, V
i,q
t ). Let h0

t be the bounded harmonic function on H with boundary values

− λ
(

1 +

j∑
i=0

ρi,L
)

on (V j+1,L
t , V j,Lt ), and λ

(
1 +

j∑
i=0

ρi,R
)

on (V j,Rt , V j+1,R
t ) (2.5)

and −λ on (V 0,L
t ,Wt), λ on (Wt, V

0,R
t ) where λ = π√

κ
, xk+1,L = −∞, x`+1,R = +∞. Set

ht(z) = h0
t (gt(z))− χ arg g′t(z). Let h̃ be a zero boundary GFF on H and

h = h̃+ h0. (2.6)

Then as proved in [MS16a, Theorem 1.1], there exists a coupling between h and the
SLEκ(ρ) process (Kt), such that for any Ft-stopping time τ before the continuation
threshold, Kτ is a local set for h and the conditional law of h|H\Kτ given Fτ is the same

as the law of hτ + h̃ ◦ gτ .
For κ < 4, the SLEκ(ρ) coupled with the GFF h as above is referred as a flow line of h

from 0 to∞, and we say an SLEκ(ρ) curve is a flow line of angle θ if it can be coupled
with h+ θχ in the above sense. For κ′ > 4, the SLEκ′(ρ) curve coupled with a GFF −h as
above is referred as a counterflow lines of h.

So far we have discussed SLEκ(ρ) processes on the upper half plane, and for general
simply connected domains, the definition can be extended via conformal mappings.
Namely, let x, y ∈ ∂D, x̃ ⊂ ∂D be the force points and ψ : D → H be a conformal map
with ψ(x) = 0, ψ(y) =∞. Then a sample from the chordal SLEκ(ρ) process in D from x

to y is obtained by first taking an curve η from SLEκ(ρ) with force points ψ(x̃) and then
output ψ−1(η). Observe that the term xi,q · (ψi,qη )′(xi,q) in (1.2) is invariant under dilations

of H, which implies that for a > 0 and an S̃LEκ(ρ;α) process η with force points x, the

law of ψ ◦ η is S̃LEκ(ρ;α) with force points ax. This implies that the notion of S̃LEκ(ρ;α)

can also be extended to general simply connected domains by the same way. Moreover,
if η is a flow line of some GFF h, then ψ−1(η) is the flow line of h ◦ ψ − χ argψ′ in D from
ψ−1(0) to ψ−1(∞).

To simplify our language, we are going to extend the notion of S̃LEκ(ρ;α) processes to
certain non-simply connected domains. Let D ⊂ C be some domain and x, y ∈ ∂D, such
that the boundary ∂D consist of two non-crossing simple curves ηLD, η

R
D running from x to

y which possibly intersect and bounce-off each other. Let xL := [(xk,L, . . . , x1,L, x0,L)] ⊂
ηLD and xR := [(x0,R, x1,R, . . . , x`,R)] ⊂ ηRD with x0,L = x− and x0,R = x+, such that for
i ≥ 1 and q ∈ {L,R}, none of the xi,q’s lies on ηLD ∩ ηRD. Further assume ηLD visits xL

in the order of x0,L, . . . , xk,L, and ηRD visits xR in the order of x0,R, . . . , x`,R. On each
connected component D̃ of D, let xD̃ (resp. yD̃) be the first (resp. last) point on ∂D̃
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traced by ηLD, and let iL
D̃

and jL
D̃

(resp. iR
D̃

and jR
D̃

) be the largest and smallest integer

such that ∂D̃∩ηLD (resp. ∂D̃∩ηRD) is between xiD̃,L and xjD̃,L (resp. xiD̃,R and xjD̃,R). Let

µD̃ be the measure S̃LEκ(
∑iL

D̃
i=0 ρ

i,L, ρi
L
D̃

+1,L, . . . , ρj
L
D̃
−1,L;

∑iR
D̃
i=0 ρ

i,R, ρi
R
D̃

+1,R, . . . , ρj
R
D̃
−1,R;

αi
L
D̃

+1,L, . . . , αj
L
D̃
−1,L; αi

R
D̃

+1,R, . . . , αj
R
D̃
−1,R) in ηD̃ for curves running from xD̃ to yD̃ with

force points x−
D̃
, xi

L
D̃

+1,L, . . . , xj
L
D̃
−1,L;x+

D̃
, xi

R
D̃

+1,R, . . . , xj
R
D̃
−1,R. Sample (ηD̃)D̃ from the

product measure
∏
D̃ µD̃. Concatenate all the ηD̃’s, and define the law of this curve from

x to y in by S̃LEκ(ρ;α) in D with force points x.
We remark that our definition above is natural in the following sense. Temporarily

assume α is zero. Let ψL : C\ηLD → C\(−∞, 0) and ψR : C\ηRD → C\(0,∞) be the
conformal maps sending x to 0 and y to ∞. Let V i,L0 = ψL(xi,L) and V i,R0 = ψR(xi,R).
Consider a GFF h on D with boundary conditions such that h ◦ (ψL)−1 − χ arg((ψL)−1)′

agrees with (2.5) on (−∞, 0) and h ◦ (ψR)−1 − χ arg((ψR)−1)′ agrees with (2.5) on (0,∞)

with t = 0. In each connected component D̃ construct the flow line ηD̃ of h from xD̃ to
yD̃, and the SLEκ(ρ) process in D can be understood as the concatenation of all the ηD̃’s.
For non-zero α we can further weight by the corresponding conformal derivatives.

The SLEκ(ρ) curve η satisfies the following Domain Markov property. Let τ be
some stopping time for η. On the event that τ is less than the continuation threshold,
the conditional law of η(t + τ)t≥0 given η([0, τ ]) is an SLEκ(ρ) on H\Kτ with force
points xτ , where xi,Lτ = inf{x : x ∈ {xi,L ∪ (η([0, τ ]) ∩ R)}} and xi,Rτ = sup{x : x ∈
{xi,R ∪ (η([0, τ ]) ∩ R)}}, and if two force points xi,q and xj,q are equal, they could be
merged into a single force point of weight ρi,q + ρj,q.

2.2 The coupling of the two flow lines

One important implication of the flow line coupling of SLE and the GFF is that, for
two SLEκ(ρ) processes η1 and η2 coupled within the same imaginary geometry, one can
easily read off the conditional laws of η1 given η2 and η2 given η1. Suppose η1 and η2 are
flow lines of h, then given η1, the conditional law of η2 is the same as the law of the flow
line (with some angle) of the GFF in H\η1 with the flow line boundary conditions (see
[MS16a, Figure 1.10] for more explanation) induced by η1, and vice versa for the law of
η1 given η2.

Now we state the following commutation relation between S̃LEκ(ρ;α) processes. See
Figure 4 for an illustration. Suppose (Ω,F) is a σ-finite measure space and X : Ω→ A is
a random variable with law µ. Also suppose (νx)x∈A is a family of σ-finite measures on
(Ω,F). By first sampling X from µ and then Y from νX , we refer to a sample (X,Y ) from
the measure νx(dy)µ(dx) on (Ω,F).

Proposition 2.1. Let κ ∈ (0, 4). Fix xk,L < · · · < x1,L < x0,L = 0− < x0,R = 0+ < x1,R <

· · · < x`,R, ρi,q ∈ R, αi,q ∈ R for q ∈ {L,R} and ρ > −2. Let ρ̃ = (ρ+ 2 + ρL;−ρ− 2 + ρR).
Suppose that ρ, ρ̃ both satisfy (1.1). The following three laws on pairs of curves (η1, η2)

agree:

• Sample η1 in H from 0 to ∞ as S̃LEκ(ρ;α) with force points x. Then sample an

S̃LEκ(ρ; ρ̃R; 0;αR) process η2 in the right part of H\η1 with force points (0−;xR);

• Sample η2 in H from 0 to ∞ as S̃LEκ(ρ̃;α) with force points x. Then sample an

S̃LEκ(ρL; ρ;αL; 0) process η1 in the left part of H\η2 with force points (xL; 0+);

• Sample η1 in H from 0 to ∞ as SLEκ(ρ) with force points x. Then sample an

SLEκ(ρ; ρ̃R) process in the right part of H\η1 with force points (0−;xR). For
i ≥ 1 and j = 1, 2, let Di,q

ηj be the connected component of H\ηj with xi,q on the

boundary, σi,qηj (resp. ξi,qηj ) be the first (resp. last) point on ∂Di,q
ηj traced by ηj , and

ψi,qηj : Di,q
ηj → H be the conformal map sending (σi,qηj , x

i,q, ξi,qηj ) to (0,±1,∞) where
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Figure 4: Let h be the GFF with illustrated boundary conditions and (η1, η2) be the
angle (0,− (ρ+2)λ

χ ) flow lines of h. Then conditioned on η1, η2 is an SLEκ(ρ;−ρ −
2 + ρ0,R, ρ1,R) process, and conditioned on η2, η1 is an SLEκ(ρ0,L, ρ1,L; ρ) process.
By Lemma 2.2, these two conditional laws uniquely characterize the joint law
(η1, η2). In Proposition 2.1, we prove that once we weight the law of (η1, η2) by
|x1,L(ψ1,L

η1
)′(x1,L)|α1,L · |x1,R(ψ1,R

η2
)′(x1,R)|α1,R

, a sample of (η1, η2) can be produced by first

sampling an S̃LEκ(ρ0,L, ρ1,L; ρ0,R, ρ1,R;α1,L;α1,R) process η1 and then an S̃LEκ(ρ;−ρ−2+

ρ0,R, ρ1,R; 0;α1,R) curve η2 in the right part of H\η1 (which possibly induces a weighting

on the law of η1), or equivalently first sampling an S̃LEκ(ρ + 2 + ρ0,L, ρ1,L;−ρ − 2 +

ρ0,R, ρ1,R;α1,L;α1,R) process η2 and then an S̃LEκ(ρ0,L, ρ1,L; ρ;α1,L; 0) process η1 in the
left part of H\η2.

wetake the + sign when q = R and the − sign when q = L. Now weight the law of
(η1, η2) by

k∏
i=1

∣∣xi,L · (ψi,Lη1
)′(xi,L)

∣∣αi,L · ∏̀
i=1

∣∣xi,R · (ψi,Rη2
)′(xi,R)

∣∣αi,R .
We remark that the topological configuration of the two curves (η1, η2) could be rather

complicated, as they may intersect other, and both intersect the boundaries (−∞, 0) and

(0,∞), and we shall apply the definition of S̃LEκ(ρ;α) processes in non-simply connected
domains as specified in the previous section.

Proof. If αi,q = 0 for all possible i and q, then as argued in [MS16a, Section 6], the
pairs (η1, η2) generated from the three ways can all be realized as sampling the angle
(θ1, θ2) = (0,− (ρ+2)λ

χ ) flow lines of the GFF with boundary conditions as (2.5) and (2.6)
and therefore the claim follows. Let P be the corresponding law of these two flow lines,
which agrees with the law of (η1, η2) constructed as in the third way before we do the
weighting.

Now for general αi,q we let L be the law on the pairs (η1, η2) constructed as in the
first way of the statement (i.e., first sample η1 and then η2). For each 1 ≤ i ≤ `, let ji,Rη1

be

the smallest j ≥ 1 such that xj,R ∈ Di,R
η1

, and let yi,Rη1
= ψ

ji,Rη1
,R

η1 (xi,R). Then by definition

of the S̃LEκ(ρ;α) processes, we have

dL
dP

(η1, η2) =

 ∏
q∈{L,R}

∏
i≥1

∣∣xi,q · (ψi,qη1
)′(xi,q)

∣∣αi,q · ∏̀
i=1

∣∣∣yi,Rη1
· (ψi,Rη2|η1

)′(yi,Rη1
)
∣∣∣αi,R (2.7)

where ψi,Rη2|η1
is the corresponding conformal map ψ

ji,Rη1
,R

η1 (Di,R
η2

)→ H with (ψ
ji,Rη1

,R
η1 (σi,Rη2

),

yi,Rη1
, ψ

ji,Rη1
,R

η1 (ξi,Rη2
)) mapped to (0, 1,∞). Now we observe that ψi,Rη2

= ψi,Rη2|η1
◦ ψ

ji,Rη1
,R

η1 , and
by definition we have

ψi,Rη1
(z) =

ψ
ji,Rη1

,R
η1 (z)

ψ
ji,Rη1

,R
η1 (xi,R)

=
ψ
ji,Rη1

,R
η1 (z)

yi,Rη1
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which implies that

(ψi,Rη2
)′(xi,R) = (ψi,Rη2|η1

)′(ψ
ji,Rη1

,R
η1 (xi,R)) · (ψ

ji,Rη1
,R

η1 )′(xi,R) = (ψi,Rη2|η1
)′(yi,Rη1

) · yi,Rη1
· (ψi,Rη1

)′(xi,R)

and therefore (2.7) can be rewritten as

dL
dP

(η1, η2) =

k∏
i=1

∣∣xi,L · (ψi,Lη1
)′(xi,L)

∣∣αi,L · ∏̀
i=1

∣∣xi,R · (ψi,Rη2
)′(xi,R)

∣∣αi,R . (2.8)

Using a similar argument, one can show that if we let L̃ be the law on the pairs (η1, η2)

constructed as in the second way of the statement, then dL̃
dP is also the same as (2.8).

Therefore the claim follows.

Proposition 2.1 gives three equivalent ways to characterize the joint law of (η1, η2).
On the other hand, at least when αi,q = 0, the two conditional laws η1|η2 and η2|η1 as in
Proposition 2.1 uniquely determines the joint law of (η1, η2).

Lemma 2.2. Let κ ∈ (0, 4), ρ, ρ, x be the same as Proposition 2.1. Suppose (η1, η2) are
random non-crossing curves in H from 0 to∞ sampled from some probability measure,
such that conditioned on η1, η2 is an SLEκ(ρ; ρ̃R) in the right part ofH\η1, and conditioned
on η2, η1 is an SLEκ(ρL; ρ) in the left part of H\η2. Then the joint law of (η1, η2) is the
same as in Proposition 2.1 with αi,q = 0 for all i, q.

Proof. When η1 a.s. does not intersect η2 (i.e., ρ ≥ κ
2 −2), the claim follows from the same

argument as in [MS16b, Section 4]. For the remaining case, we may first separate the
starting and ending points of (η1, η2) as in the first step of [MS16b, Proof of Theorem 4.1]
and then apply the same argument in [MSW19, Appendix A]. See also Appendix A
for an alternative proof based on Markov chain irreducibility results in [MT09] and
Lemma 3.1.

We are going to use the following variant of Lemma 2.2, which follows from exactly
the same Markov chain remixing argument in [MS16b, Theorem 4.1] and [MSW19,
Appendix A].

Lemma 2.3. Let κ ∈ (0, 4), ρ, ρ, x be the same as Proposition 2.1. For ε > 0, let
Dε =

⋃
q∈{L,R}

⋃
i≥1B(xi,q, ε). Fix ε sufficiently small such that 0 /∈ Dε. Let P be the

joint law of (η1, η2) as described in Lemma 2.2, and Pε be the probability measure given
by conditioning P on the event Eε := {η1 ∩Dε = η2 ∩Dε = ∅}. Now suppose (η̃1, η̃2) is a
sample from some probability measure on curves in H running from 0 to∞, such that
the conditional law of η̃2 given η̃1 is the SLEκ(ρ; ρ̃R) in the right part of H\η̃1 conditioned

on not hitting Dε, and the conditional law of η̃1 given η̃2 is the SLEκ(ρL; ρ) in the left part

of H\η̃2 conditioned on not hitting Dε. Then the joint law of (η̃1, η̃2) is the same as Pε
defined above.

3 Proof of Theorem 1.2

In this section, we prove our main result Theorem 1.2. We start with the κ ∈ (0, 4)

case, where we first extend Theorem B to SLEκ(ρ; ρR) curves (i.e. adding a force point
at 0− in Theorem B) and then apply the SLE resampling properties (Lemma 2.2). For
κ ∈ (4, 8) case, we shall use the SLE duality, and the κ = 4 case is covered in [WW17,
Theorem 1.1.6].

We begin with the following variant of [MS17, Lemma 3.9], which roughly states
that flow lines of the GFF can stay arbitrarily close to a given curve. Let x, ρ, η be as
in Theorem 1.2. Recall from [MS16a, Remark 5.3] and [MW17, Lemma 2.1] that, for
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Figure 5: An illustration of Lemma 3.1, where we show that flow lines of the GFF can
stay arbitraily close to some given curve. Left: the curve γ̃ intersects ∂D only at ±i,
and we construct the curves γ̃L, γ̃R within the ε-neighborhood of γ̃. Let Uγ be the region
between γ̃L and γ̃R, h̃γ be some GFF in Uγ with the same boundary conditions as h̃ on
∂D ∩ ∂Uγ and flow line boundary conditions on γ̃L, γ̃R such that the flow line η̃γ of h̃γ
from −i to i a.s. has positive distance to γ̃L ∪ γ̃R. Then by the GFF absolute continuity
argument, the flow line η̃ is contained in Uγ with positive probability. Right: γ̃ consists
of 4 arcs in D, namely γ̃0

1 , . . . , γ̃
0
4 . Let γ̃1 = γ̃0

1 and construct γ̃L1 , γ̃
R
1 , Uγ̃1

analogously. Let
I1 be the component of Uγ̃1

∩D with ψ(σ1,R
γ ) on the boundary. By the same argument,

the event where η̃ hits I1 at w1 at some time τ1 without hitting γ̃L1 ∪ γ̃R1 has nonzero
probability. Then conditioned on η̃([0, τ1]), we construct the curve γ̃2 from w1 to ψ(ξ1,R

γ )

staying close to γ̃0
2 and iterate the same argument.

fixed 0 ≤ j ≤ `, if ρ0,R + · · ·+ ρj,R ≥ κ
2 − 2, then η a.s. does not hit (xj,R, xj+1,R), while if

ρ0,R + · · ·+ ρj,R < κ
2 − 2, then η has positive probability of hitting (xj,R, xj+1,R). Let Jρ

be the collection of 0 ≤ j ≤ ` such that ρ0,R + · · ·+ ρj,R < κ
2 − 2. For a simple curve γ in

H from 0 to∞ with γ ∩ {x1,R, . . . , x`,R} = ∅, let Jγ = {0 ≤ j ≤ ` : γ ∩ (xj,R, xj+1,R) 6= ∅}.
We say that γ is admissible w.r.t. (ρR, xR) if Jγ ⊂ Jρ. In other words, γ is admissible if

it does not hit the intervals (xj,R, xj+1,R) where the SLEκ(ρ) process η a.s. does not hit.
Similarly, we can define the notion of admissibility for (ρL, xL). We define the domain
Di,R
γ to be the connected component of H\γ containing xi,R, and the points σj,Rγ and ξj,Rγ

analogously. Consider the conformal map ψ : H→ D sending (0, 1,∞) to (−i, 1, i).
Lemma 3.1. Let γ be an admissible curve w.r.t. (ρ, x) and γ̃ = ψ(γ). Let η be an SLEκ(ρ)

process in H with force points x, and η̃ = ψ(η). For ε > 0, define the event Eε where
(i) η̃ stays in the ε-neighborhood of γ̃ and (ii) for any 1 ≤ j ≤ `, |ψ(ξj,Rη ) − ψ(ξj,Rγ )| < ε

and |ψ(σj,Rη ) − ψ(σj,Rγ )| < ε. Then for any ε > 0, the event Eε happens with positive
probability.

Proof. We first comment that for each admissible γ, we may construct some admissible
curve γε such that (i) σj,Rγε = σj,Rγ and ξj,Rγε = ξj,Rγ for all 1 ≤ j ≤ ` (ii) ψ(γε) is contained
in the ε-neighborhood of γ̃ and (iii) γε ∩ (R ∪ {∞}) = {0, ξ1,R

γε , σ
1,R
γε , . . . , ξ

`,R
γε , σ

`,R
γε }. From

this point of view, without loss of generality we may assume that γ ∩ (R ∪ {∞}) =

{0, ξ1,R
γ , σ1,R

γ , . . . , ξ`,Rγ , σ`,Rγ }.
Let h be a GFF on H with boundary conditions (2.6) such that η is the flow line of h,

and h̃ = h ◦ ψ−1 − χ arg(ψ−1)′. Then η̃ is the flow line of h̃. Assume ε is sufficiently small
such that for 1 ≤ j ≤ `, ψ(xj,R) is not in the ε-neighborhood of γ̃. We begin with the
case where γ ∩R = {0}. We choose some simple path γ̃L (resp. γ̃R) in D\γ̃ connecting
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the points e(3π/2−ε/6)i and e(π/2+ε/6)i (resp. e(3π/2+ε/6)i and e(π/2−ε/6)i) such that γ̃L ∪ γ̃R
is contained in the ε-neighborhood of γ, and let Uγ be the component of D\(γ̃L ∪ γ̃R)

between γ̃L and γ̃R. Then as in the proof of [MS17, Lemma 3.9], we may construct a GFF
h̃γ in Uγ with the same boundary conditions on ∂D ∩ ∂Uγ as h̃ and flow line boundary
conditions (see e.g. [MS16a, Figure 1.10]) on γ̃L∪ γ̃R such that the flow line of h̃γ from −i
to i has the law as SLEκ(ρ0,L,−ρ0,L,

∑k
j=0 ρ

j,L; ρ0,R,−ρ0,R,
∑`
j=0 ρ

j,R) with force points

(0−, e(3π/2−ε/6)i, e(π/2+ε/6)i; 0+, e(3π/2+ε/6)i, e(π/2−ε/6)i) and thus a.s. has positive distance
from γ̃L ∪ γ̃R. We may choose some (non-random) constant ζ > 0 small such that this
distance is at least ζ with probability greater than 1/2. Therefore it follows from the
same argument of [MS17, Lemma 3.9] that, if we set Uζγ := {z ∈ Uγ ; dist(z, γ̃L ∪ γ̃R) > ζ},
by the GFF absolute continuous property [MS16a, Proposition 3.4], the law of h̃γ is
absolutely continuous w.r.t. h̃ when restricted to the domain Uζγ . Since flow lines are a.s.

determined by and local sets of the GFF [MS16a, Theorem 1.2], and the flow line of h̃γ is
contained within Uζγ with probability at least 1/2, it follows that, with positive probability
η̃ is contained in Uζγ and thus in the ε-neighborhood of γ̃, which finishes the case when
γ ∩R = {0}.

For rest of the case, we write γ̃ =
⋃m
i=1 γ̃

0
i where each γ̃0

i : [0, 1] → D is a subarc
of γ̃ intersecting ∂D only at the endpoints, and they are aligned in the order traced
by γ̃. Let γ̃1 = γ̃0

1 . We construct the simple curve γ̃L1 (resp. γ̃R1 ) in D\γ̃1 within the ε/m
neighborhood of γ̃1 connecting a point on ∂D on the left (resp. right) side of γ̃1 and a
point on ∂D on the same side of γ̃1. Let Uγ̃1 be the component of D\(γ̃L1 ∪ γ̃R1 ) between
γ̃L1 and γ̃R1 , and I1 be the component of ∂Uγ̃1 ∩ ∂D with γ̃1(1) on its boundary. Then as
above and [MS17, Lemma 3.9], we may construct a GFF h̃γ̃1 on Uγ̃1 with same boundary
conditions as h̃ on ∂Uγ̃1 ∩∂D and flow line condition on γ̃L1 ∪ γ̃R1 , such that the flow line of
h̃γ̃1 a.s. has positive distance to γ̃L1 ∪ γ̃R1 . Again using the same GFF absolute continuity of
h̃γ̃1 w.r.t. h̃ as above and in [MS17, Lemma 3.9], the event E1 where the flow line η̃ first
hits I1 at w1 at time τ1 without hitting γ̃L1 ∪ γ̃R1 has positive probability. On E1, we choose
a simple curve γ̃2 : [0, 1] → D such that γ̃2(0) = w1, γ̃2(1) = γ̃0

2(1), γ̃2((0, 1)) ∩ ∂D = ∅
and γ̃2 stays within the 2ε/m-neighborhood of γ̃0

2 . Define γ̃L2 , γ̃
R
2 , I2 analogously (with

ε/m replaced by 2ε/m). It follows from the same argument that, conditioned on E1 and
η̃|[0,τ1], the event E2 where η̃ first hits I2 at w2 at time τ2 without hitting γ̃L2 ∪ γ̃R2 has
positive probability. Now we can conclude the proof by iterating this process, except that
at the final step we construct the curve γ̃m and apply the argument from the γ ∩R = {0}
case.

Lemma 3.2. Theorem 1.2 holds for κ ∈ (0, 4), k = 0 and ρ0,L ≤ 0. That is, under
J(z) = −1/z, the law of time reversal of SLEκ(ρ0,L; ρR) processes in H with force

points (0−;xR) agrees with the 1
Z S̃LEκ(ρ̂; α̂) described in Theorem 1.2 for some constant

Z = Z(ρ, xR) ∈ (0,∞).

Proof. We sample an SLEκ(ρR) curve η2 in H from 0 to ∞ with force points xR, and
conditioned on η2, we sample an SLEκ(−ρ0,L − 2; ρ0,L) process η1 from 0 to ∞ in the
left part of H\η2 with force points 0− and 0+. Then it follows from the construction in
Proposition 2.1 that conditioned on η1, η2 is an SLEκ(ρ0,L; ρR) process in the right part
of H\η2 with force points (0−;xR).

For i = 1, 2, let η̂i = R(J ◦ ηi). Recall the notion of x̂i,q, ρ̂i,q, α̂i,q in the statement of
Theorem 1.2. Now by Theorem B, we know that law of η̂2 is the probability measure
proportional to S̃LEκ(ρ̂L; α̂L) process from 0 to ∞ with force points x̂L. Moreover, by
Theorem A, the conditional law of η̂1 given η̂2 is the SLEκ(ρ̂0,R;−ρ̂0,R − 2) process in the
right part of H\η̂2 with force points 0− and 0+. Therefore it follows from Proposition 2.1
that the conditional law of η̂2 given η̂1 is a constant (possibly depending on η̂1) times

EJP 28 (2023), paper 140.
Page 11/19

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1040
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Time reversal of SLEκ(ρ)

Figure 6: An illustration of the proof of Lemma 3.2 for ` = 2. Left: We sample an
SLEκ(ρ0,R, ρ1,R, ρ2,R) process η2, and an SLEκ(−ρ0,L − 2; ρ0,L) process η1 in the left part
of H\η2. Then the conditional law of η2 given η1 is the SLEκ(ρ0,L; ρ0,R, ρ1,R, ρ2,R) process
in the right part of H\η1 with force points 0−; 0+, x1,R, x2,R. Right: For i = 1, 2, η̂i is the
time reversal of J ◦ηi, and x̂1,L = −1/x2,R, x̂2,L = −1/x1,R. By Theorem B, η̂2 has the law
1
Z S̃LEκ(ρ0,R+ρ1,R+ρ2,R,−ρ2,R,−ρ1,R; ρ

2,R(4−κ)
2κ , ρ

1,R(4−κ)
2κ ) with force points 0−, x̂1,L, x̂2,L.

By Theorem A, conditioned on η̂2, η̂1 is the SLEκ(ρ̂0,R;−ρ̂0,R− 2) process in the right part
of H\η̂2 with force points 0− and 0+. Therefore by Proposition 2.1, the conditional law of

η̂2 given η̂1 is 1
Z(η1) S̃LEκ(ρ0,R+ρ1,R+ρ2,R,−ρ2,R,−ρ1,R; ρ0,L; ρ

2,R(4−κ)
2κ , ρ

1,R(4−κ)
2κ ; 0) in the

left part of H\η̂1 with force points 0−, x̂1,L, x̂2,L; 0+, and the claim follows by comparing
the two figures. In Lemma 3.4, we further show that the constant Z(η1) is actually
independent of η1.

S̃LEκ(ρ̂L; ρ̂0,R; α̂L) in the left part of H\η̂1 with force points (x̂L; 0+). This justifies the
reversibility of an SLEκ(ρ0,L; ρR) process in the right part of H\η1 with force points
(0−;xR).

Now consider the conformal map ψ : H → D sending (0, 1,∞) to (−i, 1, i), and let
η̃j = ψ ◦ ηj for j = 1, 2. For ε > 0, let Aε be the partial annulus {z : π

2 − ε < arg z <
3π
2 + ε; 1− ε < |z| < 1}. Fix ε0 > 0 small such that Aε0 contains none of points in ψ(xR)

other than ψ(x0,R) = −i and let ε < ε0. Then by Lemma 3.1, the event E′ε where η̃1

is contained in the domain Aε has positive probability. On the event E′ε, let σε be the
last point on the arc {z : 3π

2 < arg z < 2π; |z| = 1} hit by η̃1, and ξε be the first point
on the arc {z : 0 < arg z < π

2 ; |z| = 1} hit by η̃1. Let Dε
1 be the connected component

of D\η1 with 1 on the boundary, and ψε : Dε
1 → D sending (σε, 1, ξε) to (−i, 1, i). Then

ψε ◦ η̃2 is an SLEκ(ρ0,L; ρR) process in D with force points ((−i)−;ψε ◦ ψ(xR)) (with
ψε((−i)+) identified as (−i)+), and the law of its time reversal is proportional to the

S̃LEκ(ρ̂L; ρ̂0,R; α̂L; 0) process. Therefore as we condition on E′ε and send ε → 0, Dε
1

converges to D in Caratheodory topology, and ψε◦ψ(xR) converges to ψ(xR). To conclude
the proof, we look at the time reversal result of ψε ◦ η2 in D, send ε→ 0 and apply the
continuity of SLEκ(ρ) processes w.r.t. the location of force points from [MS16a, Section 2].
To be more precise, suppose η and (ηε)ε>0 are SLEκ(ρ) processes in D from −i to i with
force points y and yε, such that y0,L,ε = (−i)−, y0,R,ε = (−i)+ and yj,q,ε → yj,q as ε→ 0.
Let h and (hε)ε>0 be the corresponding GFF on D such that η and (ηε)ε>0 are the flow
lines of h and (hε)ε>0 from −i. For δ > 0, let D′δ :=

⋃
q∈{L,R}

⋃
j≥1B(yj,L, δ). By [MS16a,

Proposition 3.4, Remark 3.5], the total variation distance between hε|D\D′δ and h|D\D′δ
goes to 0 as ε→ 0 for fixed δ. Since flow lines are deterministic functions and local sets
of the GFF [MS16a, Theorem 1.2], it follows that the law of ηε conditioned on not hitting
D′δ converges in total variation distance to that of η conditioned on not hitting D′δ as
ε → 0. From this argument, the law of the time reversal of an SLEκ(ρ0,L; ρR) process

conditioned on having distance δ to xj,R for j ≥ 1 agrees with S̃LEκ(ρ̂L; ρ̂0,R; α̂L; 0)

conditioned on the same event (up to a multiplicative constant), and the claim follows by
taking δ → 0.
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Corollary 3.3. Let ρ, x, x̂, ρ̂ be as in Lemma 3.2, and γ be a curve in H from 0 to ∞
which is admissible w.r.t. (2 + ρ0,L + ρR, xR). Let HR

γ be the right part of H\γ. Sample an
SLEκ(ρ) process η0 in HR

γ with force points x. Then there exists some constant Z(γ, ρ, x)

such that the law of the time reversal of J(η0) is equal to 1
Z(γ,ρ,x) times S̃LEκ(ρ̂; α̂) in

J(HR
γ ) with the force points x̂.

Proof. We apply Lemma 3.2 within (finitely many) connected components whose bound-
aries contain the force points x, and apply Theorem A for rest of the connected com-
ponents (where there are no constants). Then the constant Z(γ, ρ, x) is now a (finite)
product of the corresponding constants in each of the connected components.

The next lemma states that in some sense, the constant Z in Lemma 3.2 does not
depend on the choice of x. This follows by comparing the two ways of viewing the
marginal law of the η̂1 above: directly applying Lemma 3.2, and applying Proposition 2.1
to the pair (η̂1, η̂2).

Lemma 3.4. In the setting of Corollary 3.3, the constant Z(γ, ρ, x) does not depend on γ.

Proof. Let η1, η2, η̂1, η̂2 be as in the proof of Lemma 3.2 and P be the corresponding
background probability measure. Let P̂ be the probability measure describing the law of
(η0

1 , η
0
2) where η0

2 is an SLEκ(ρ̂L) with force points x̂L and η0
1 is an SLEκ(ρ0,L,−ρ0,L−2) in

the right part of H\η0
2 with force points (0−; 0+). Then by applying Lemma 3.2 (to η2) and

Proposition 2.1, the law of (η̂1, η̂2) is absolutely continuous w.r.t. P̂ with Radon-Nikodym
derivative

1

Z(ρR;xR)

∏̀
i=1

|x̂i,L · ψ′η̂2
(x̂i,L)|

ρ̂i,R(κ−4)
2κ . (3.1)

On the other hand, since the conditional law of η2 given η1 is SLEκ(ρ0,L; ρR), it follows
from the definition of the constant Z(γ, ρ, x) that the conditional law of η̂2 given η̂1 is

1
Z(η1,ρ,x) S̃LEκ(ρ̂; α̂) in the left part of H\η̂1. Moreover, we know from Proposition 2.1

that the marginal law of η1 is SLEκ(−ρ0,L − 2; 2 + ρ0,L + ρR) with force points 0−;xR. By
Lemma 3.2, there exists some constant Z1 := Z((−ρ0,L − 2; 2 + ρ0,L + ρR), xR) such that

the marginal law of the curve η̂1 is 1/Z1 times the S̃LEκ(ρ0,L + 2 + ρ̂L;−ρ0,L − 2; α̂L; 0)

with force points (x̂L; 0+). Together with Proposition 2.1, we infer that the law of (η̂1, η̂2)

is absolutely continuous w.r.t. P̂ with Radon-Nikodym derivative

1

Z(η1, ρ, x)Z((−ρ0,L − 2; 2 + ρ0,L + ρR), xR)

∏̀
i=1

|x̂i,L · ψ′η̂2
(x̂i,L)|

ρ̂i,R(κ−4)
2κ . (3.2)

It then follows by comparing (3.1) with (3.2) that Z(η1, ρ, x) =
Z(ρR;xR)

Z((−ρ0,L−2;2+ρ0,L+ρR),xR)

a.s.. We condition on the positive probability event Eε for (η1, γ) as in Lemma 3.1. Then
the domain Dj,R

η1
is converging in Caratheodory topology to Dj,R

γ as ε→ 0, and the claim
follows from a similar argument as in the end of the proof of Lemma 3.2 via SLEκ(ρ)

continuity over the location of force points.

Proposition 3.5. Theorem 1.2 holds for κ ∈ (0, 4).

Proof. The proof is organized as follows. We first construct a pair of reversed curves
(η̂1, η̂2) by Proposition 2.1, and then apply Lemma 3.2 to get the conditional laws of
ηi := R(ηi) given ηj for 1 ≤ i 6= j ≤ 2. Finally we apply Lemma 2.3 to identify the law of
the forward curves (η1, η2) with the usual SLEκ(ρ).
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Let η̂1 be an SLEκ(ρ̂) process in H from 0 to ∞ with force points x̂. Pick 0 < a < 2

such that the weights ρ̃ = (a + ρ̂L;−a + ρ̂R) also satisfy the bound (1.1). Conditioned

on η̂1, sample an SLEκ(a− 2; ρ̃R) process η̂2 in the right component of H\η̂1 with force

points (0−; x̂R). For ε > 0, let Dε =
⋃
q∈{L,R}

⋃
i≥1B(xi,L, ε), D̂ε = J(Dε) and suppose ε

is sufficiently small such that 0,∞ /∈ Dε. Let F̂ε be the event where (η̂1, η̂2) are disjoint

from D̂ε. Define the conformal maps ψi,qη̂j as in Proposition 2.1. Let P̂ be the law of
(η̂1, η̂2), and define the probability measure Qε on pairs of non-crossing simple curves
from 0 to∞ by

dQε
dP̂

(η̂1, η̂2) =
1

Zε
1F̂ε ·

k∏
i=1

|x̂i,L ·(ψi,Lη̂1
)′(x̂i,L)|

ρ̂i,L(κ−4)
2κ ·

∏̀
j=1

|x̂j,R ·(ψj,Rη̂2
)′(x̂j,R)|

ρ̂j,R(κ−4)
2κ (3.3)

where Zε is the normalizing constant making Qε a probability measure. Observe that on
the event F̂ε, by Koebe’s 1/4 theorem, there exists some constant M depending only on
ε and x such that 1/M < |(ψi,qη̂j )′(x̂i,q)| < M , which implies that the constant Zε is well-
defined. Moreover, by Proposition 2.1, under the measure Qε, conditioned on η̂1, η̂2 is
an S̃LEκ(a− 2; ρ̃R; α̂R) process in the right component of H\η̂1 with force points (0−;xR)

conditioned on not hitting D̂ε, while conditioned on η̂2, η̂1 is an S̃LEκ(ρ̂L; a − 2; α̂L)

process in the left component of H\η̂2 with force points (x̂L; 0+) conditioned on not

hitting D̂ε, where α̂i,q = ρ̂i,q(κ−4)
2κ .

For i = 1, 2, let ηi = R(J ◦ η̂i). Then by Lemma 3.2, under the measure Qε, given η1,
the conditional law of η2 is the SLEκ(−a + ρL; a − 2) process in the left component of

H\η1 with force points (xL; 0+) conditioned on not hitting Dε, and the conditional law
of η1 given η2 is the SLEκ(a− 2; ρR) process in the right component of H\η2 with force

points (0−;xR) conditioned on not hitting Dε. Let η̃1 be an independent SLEκ(ρ) process
in H from 0 to ∞ with force points x, and sample an SLEκ(−a + ρL; a − 2) process η̃2

in the left component of H\η̃1 with force points (xL; 0+). Therefore (η1, η2) and (η̃1, η̃2)

satisfy the same resampling properties as in Lemma 2.3. Then by Lemma 2.3, the joint
law of (η1, η2) agrees with that of (η̃1, η̃2) conditioned on {η̃1 ∩ Dε = η̃2 ∩ Dε = ∅}. In
particular, the marginal law of η1 under Qε is the SLEκ(ρ) process conditioned on not

hitting Dε and weighted by the probability where the SLEκ(−a + ρL; a − 2) process in

the left component of H\η1 is disjoint from Dε.
On the other hand, by Proposition 2.1, a sample (η̂1, η̂2) from Qε can be produced by

(i) sampling η̂1 from S̃LEκ(ρ̂; α̂) process conditioned on not hitting D̂ε (ii) weighting the

law of η̂1 by Z0(η̂1), where Z0(η̂1) is the measure of an S̃LEκ(a− 2; ρ̃R; 0; α̂R) process in

the right component of H\η̂1 with force points (0−;xR) being disjoint from D̂ε and (iii)

sampling an S̃LEκ(a− 2; ρ̃R; 0; α̂R) process η̂2 in the right component of H\η̂1 with force

points (0−;xR) conditioned on not hitting D̂ε. Meanwhile, by Lemma 3.2, Z0(η̂1) is equal
to Z(η1, (−a+ ρL; a− 2), xR) times the probability of an SLEκ(−a+ ρL; a− 2) process in

the left component of H\η1 being disjoint from Dε. By Lemma 3.1, the latter probability
is positive for any fixed η1, while by Lemma 3.4, the constant Z(η1, (−a+ρL; a−2), xR) is
independent of η1. Therefore by comparing the marginal laws of η1 and η̂1, we conclude
that under J(z) = −1/z, the time reversal of an SLEκ(ρ) process with force point x

conditioned on not hitting Dε agree with the S̃LEκ(ρ̂; α̂) process with force point x̂

conditioned on not hitting D̂ε. Since ε > 0 can be arbitrarily small, the claim therefore
follows.

For κ ∈ (4, 8), the argument is based on the following SLE duality argument, which
follows from [Zha08a, Theorem 5.1] and [MS16a, Theorem 1.4, Proposition 7.30].
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Proposition 3.6. Let κ ∈ (4, 8], κ̃ = 16
κ and ρ satisfying (1.1) and xk,L < · · · < x0,L =

0− < x0,R = 0+ < · · · < x`,R. Let ρk+1,L = −
∑k
i=0 ρ

i,L and ρ`+1,R = −
∑`
i=0 ρ

i,R. Let
ρ̂i,L = −ρ`+1−i,R for 0 ≤ i ≤ ` and ρ̂j,R = −ρk+1−j,L for 0 ≤ j ≤ k. Let η′ be an SLEκ(ρ)

process inH from 0 to∞. Then the left boundary ηL of η′ is an SLEκ̃( κ̃2−2+κ̃
4 ρ̂

L; κ̃−4+ κ̃
4 ρ̂

R)

process from∞ to 0 with force points x̂ := (+∞, x`,R, . . . , x1,R;−∞, xk,L, . . . , x1,L), and
the right boundary ηR of η′ is an SLEκ̃(κ̃ − 4 + κ̃

4 ρ̂
L; κ̃2 − 2 + κ̃

4 ρ̂
R) process from ∞ to 0

with force points x̂. Moreover, conditioned on ηL and ηR, η′ is an SLEκ(κ2 − 4; κ2 − 4)

process independently in each connected component of H\(ηL ∪ ηR) between ηL and ηR,
and conditioned on ηL, ηR is an SLEκ̃(κ̃− 4 + κ̃

4 ρ̂
L;− κ̃2 ) process in H\ηL to the right of

ηL from∞ to 0 with force points (+∞, x`,R, . . . , x1,R;−∞).

Proposition 3.7. Theorem 1.2 holds for κ ∈ (4, 8].

Proof. Let η′ be an SLEκ(ρ) process in H from 0 to ∞ with force point x, ηL, ηR be its
left and right boundary, and R(η′) be the time-reversal of η′. Let κ̃ = 16

κ , x̃i,L = x`+1−i,R

for 0 ≤ i ≤ ` and x̃j,R = xk+1−j,L for 0 ≤ j ≤ k, where xk+1,L = −∞ and x`+1,R =

+∞. Let ρ̂i,q be as in the statement of Proposition 3.6. Note that x̂ = J(x̃). Then
by Proposition 3.5 and Proposition 3.6, the law of the left boundary R(ηL) of R(η′) is

proportional to the S̃LEκ̃(κ̃− 4 + κ̃
4ρ

L; κ̃2 − 2 + κ̃
4ρ

R;αL;αR) from 0 to∞ with force points
x and αi,q = κ̃

4ρ
i,q · κ̃−4

2κ̃ = −ρi,q 4−κ
2κ . Likewise, conditioned on R(ηL), the law of the right

boundary R(ηR) of R(η′) is 1
Z(ηL) S̃LEκ̃(− κ̃2 ; κ̃ − 4 + κ̃

4ρ
R; 0;αR) process from 0 to ∞ to

the right of H\R(ηL) with force points (0−;xR). Moreover, by Lemma 3.4, since − κ̃2 < 0,
the constant Z(ηL) does not depend on ηL.

On the other hand, let η̃′ be an S̃LEκ(ρ̂; α̂) process in H from ∞ to 0 with force

points x̃, and α̂i,q = ρ̂i,q(κ−4)
2κ . Note that by definition, for each point xi,q, its assigned

power parameter is precisely αi,q. Then by Proposition 3.6, the law of the left and right
boundaries (η̃L, η̃R) of η̃′ can be produced by the following procedure:

(i) Sample an SLEκ̃(κ̃−4 + κ̃
4ρ

L; κ̃2 −2 + κ̃
4ρ

R) process η1 from 0 to∞ with force points
x, and given η1, sample an SLEκ̃(− κ̃2 ; κ̃− 4 + κ̃

4ρ
R) process η2 to the right of H\η1 with

force points (0−, xR);

(ii) For i ≥ 1 and j = 1, 2, let Di,q
ηj be the connected component of H\ηj with xi,q on

the boundary, σi,qηj (resp. ξi,qηj ) be the first (resp. last) point on ∂Di,q
ηj traced by ηj , and

ψi,qηj : Di,q
ηj → H be the conformal map sending (σi,qηj , x

i,q, ξi,qηj ) to (0,±1,∞) where we take
the + sign when q = R;

(iii) Weight the law of (η1, η2) by

k∏
i=1

|xi,L · (ψi,Lη1
)′(xi,L)|α

i,L

·
∏̀
i=1

|xi,R · (ψi,Rη2
)′(xi,R)|α

i,R

.

We conclude by Proposition 2.1 that up to a finite multiplicative constant, the law of
(R(ηL),R(ηR)) agrees with that of (η̃L, η̃R). Moreover, by Proposition 3.6 and Theorem A,
conditioned on (R(ηL),R(ηR)), R(η′) is an SLEκ(κ2 − 4; κ2 − 4) process independently
in each connected component of H\(R(ηL) ∪R(ηR)) between R(ηL) and R(ηR), which
agrees with the conditional law of η̃′ given (η̃L, η̃R). Therefore the law of R(η′) agrees
up to a multiplicative constant with that of η̃′, which finishes the proof of Theorem 1.2
for κ ∈ (4, 8]).

Proof of Theorem 1.2. The theorem follows directly by applying Proposition 3.5 for
κ ∈ (0, 4), Proposition 3.7 for κ ∈ (4, 8] along with [WW17, Theorem 1.1.6] for κ = 4.
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A Proof of Lemma 2.2

In this section, we give an alternative proof of Lemma 2.2 based on Lemma 3.1 and the
irreducibility of Markov chain argument from [MT09]. Let (X,F) be a state space where
F is a σ-algebra. For a Markov chain {Xn}n≥0 and a measure ϕ on (X,F), if for any
x ∈ X and A ∈ F , P(Xn ∈ A for some n|X0 = x) > 0 whenever ϕ(A) > 0, then {Xn}n≥0

is said to be ϕ-irreducible. By [MT09, Theorem 4.0.1], there exists a unique maximal
irreducibility measure ψ on (X,F) such that {Xn}n≥0 is ψ-irreducible. Then [MT09,
Proposition 10.1.1, Theorem 10.0.1] tells us that a ψ-irreducible Markov chain with an
invariant probability measure is recurrent, and thus admit a unique invariant measure.

Without loss of generality, we take a conformal map H → D and assume that we
are in the setting where η1, η2 are continuous curves in D from −i to i such that given
one curve ηi, the other curve is the SLEκ(ρj) process in D\ηi (recall the definition of
SLEκ(ρ) processes in non-simply connected domains in Section 2.1) as in the statement
of Lemma 2.2. By an identical argument of the first step of the proof of [MS16b,
Theorem 4.1] (i.e., draw counterflowlines η′1 by SLE duality, run η1, η

′
1 for a small amount

of time and look at the remaining parts of η1, η2), we may work on the case where the
starting and ending points of η1, η2 are distinct. To be more precise, let a, b, c, d ∈ ∂D be

4 points in counterclockwise order, x0,L, . . . , xk,L, dL be some marked points on the
_

da

arc of ∂D, and x0,R, . . . , x`,R be some marked points on the
_

bc arc of ∂D with x0,R = a+.
Let X be the space of non-crossing continuous curves (γ1, γ2) connecting (a, b) with
(d, c) in D such that γ1 (resp. γ2) is disjoint from xR ∪ {c} (resp. xL ∪ {d}) and does not

trace any segment of the arc
_

bc (resp.
_

da), and F be the Borel σ-algebra on X generated
by Hausdorff topology. We are going to show that there exists at most one probability
measure µ on (X,F) such that, for a sample (η1, η2) from µ, conditioned on η1, η2 is
an SLEκ(ρ − 2; ρR) curve in the right component of D\η1 with force points b−;xR, and
conditioned on η2, η1 is an SLEκ(ρL, κ2 − 2− ρL; ρ− 2, κ− 2− ρ) in the left component of

D\η2 with force points xL, dL; aR, cR, where ρL =
∑k
i=0 ρ

i,L, and aR (resp. cR) is the left

most point of η2 ∩
_

ab (resp. η2 ∩
_

cd). See Figure 7 for an illustration.

Figure 7: First step of the proof of Lemma 2.2, where we first run η1 and its asso-
ciated counterflowline η′1 until they hit ∂B(−i, ε) and ∂B(i, ε) as in [MS16b, Proof of
Theorem 4.1] and map back to D by a conformal map ψ. Given ψ(η1), ψ(η2) is an
SLEκ(ρ− 2; ρR) process in the right component of D\ψ(η1), while given ψ(η2), ψ(η1) is
an SLEκ(ρL, κ2 − 2− ρL; ρ− 2, κ− 2− ρ) in the left component of D\ψ(η2) with the force
points on the right located at aR, cR. Note that since η1 a.s. merges into η′1, ψ(η1) a.s.
terminates between c and d.
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Figure 8: The Markov chain resampling in Proof of Lemma 2.2. Left: Initial phase for the
two given curves (η0

1 , η
0
2), with D0,R, D1,R, D2,R being the connected components of D\η0

1

whose boundary intersects both the da arc and bc arc. Right: By applying Lemma 3.1
in each of D0,R, D1,R, D2,R, when we sample η1

2 in the right component of D\η0
1, with

positive probability η1
2 is disjoint from the ad arc. It then follows by applying Lemma 3.1

twice more P(X3 ∈ XΩ|X0 = (η0
1 , η

0
2)) > 0.

We construct a Markov chain on (X,F) as follows. Let X0 = (η0
1 , η

0
2) ∈ X, and for

given n ≥ 0 and Xn = (ηn1 , η
n
2 ), we first uniformly pick i ∈ {1, 2} and sample ηn+1

i in
D\ηn3−i from the conditional law induced by µ as described in the previous paragraph.

Let ηn+1
3−i = ηn3−i and set Xn+1 = (ηn+1

1 , ηn+1
2 ). Pick a′, b′ on the arc

_

ab, and c′, d′ on

the arc
_

cd and draw two disjoint simple curves (γL, γR) in D connecting (a′, b′) with
(d′, c′). Let ΩL be left component of D\γL, and ΩR be right component of D\γR. Let
XΩ := {(γ1, γ2) ∈ X : γ1 ⊂ ΩL, γ2 ⊂ ΩR}. We are going to show that {Xn}n≥0 is ϕ-
irreducible for ϕ = µ|XΩ and thus admits a unique invariant probability measure, which
concludes the proof by [MT09].

Given (η0
1 , η

0
2) ∈ X, let D0,R, . . . , Dm,R be the connected components of D\η0

1 whose

boundary has nonempty intersection with both
_

da and
_

bc. Note that the number of
such components is finite by the continuity of η0

1. Then by applying Lemma 3.1 in
each of D0,R, . . . , Dm,R, when we sample η1

2 in the right component of D\η0
1 from the

conditional law induced by µ, there is a positive probability such that η1
2 is disjoint from

the arc
_

da. Under this event, by Lemma 3.1, when we sample η2
1 from the corresponding

conditional law in the left component of D\η1
2 , there is positive chance that η2

1 is disjoint

from the arc
_

bc and stays in the domain ΩL. (Note that although η2
1 merges with the

arc
_

cd before reaching the target c, Lemma 3.1 extends to this setting and is still
applicable.) Applying Lemma 3.1 once more, under this event, when we sample η3

2 from
the corresponding conditional law in the right component of D\η2

1, there is a positive
probability that η3

2 is contained in ΩR. Therefore we conclude that for any (η0
1 , η

0
2) ∈ X,

P(X3 ∈ XΩ|X0 = (η0
1 , η

0
2)) > 0. Note that this also implies that µ(XΩ) > 0. See also

Figure 8.

Finally, from the GFF flow line local absolute continuity [MS16a, Proposition 3.4]
and [MS16a, Theorem 1.2], given any curves γ2, γ̃2 in ΩR, when we sample η1, η̃1 in the
left component of D\γ2 and D\γ̃2 according to the conditional law described by µ, when
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restricted to the event η1, η̃1 are contained in ΩL, the laws of η1 and η̃1 are mutually
absolutely continuous w.r.t. each other. In particular, this implies that for any A ∈ F with
µ|XΩ

(A) > 0, P(X5 ∈ A|X0 = (η0
1 , η

0
2)) > 0. This justifies the irreducibility of {Xn}n≥0

and thus concludes the proof.
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