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Uniform fluctuation and wandering bounds in first
passage percolation
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Abstract

We consider first passage percolation on certain isotropic random graphs in Rd.
We assume exponential concentration of passage times T (x, y), on some scale σ(r)

whenever |y − x| is of order r, with σ(r) “growning like rχ” for some 0 < χ < 1.
Heuristically this means transverse wandering of geodesics should be at most of order
∆(r) = (rσ(r))1/2. We show that in fact uniform versions of exponential concentration
and wandering bounds hold: except with probability exponentially small in t, there
are no x, y in a natural cylinder of length r and radius K∆(r) for which either (i)
|T (x, y) − ET (x, y)| ≥ tσ(r), or (ii) the geodesic from x to y wanders more than
distance

√
t∆(r) from the cylinder axis. We also establish that for the time constant

µ = limnET (0, ne1)/n, the “nonrandom error” ET (0, x)− µ|x| is at most a constant
multiple of σ(|x|).
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1 Introduction

In i.i.d. first passage percolation (FPP) on a graph G = (V,E), i.i.d. (edge) passage
times te are attached to the edges e ∈ E, and for a path Γ in G, the (path) passage time
T (Γ) is the sum of the times te over e ∈ Γ. For x, y ∈ V, the passage time from x to y is

T (x, y) = inf{T (Γ) : Γ is a path from x to y in G}. (1.1)

The geodesic from x to y is the path, denoted Γxy, which minimizes the path passage
time; when te is a continuous random variable (as we always assume), a unique geodesic
exists a.s. [22].

There are two exponents of primary interest in the study of FPP. First, the fluctuations
(i.e. standard deviation) of passage times T (x, y) for |y − x| of scale r in Zd are believed
to be of order rχ for some χ = χd < 1/2, with χ2 = 1/3. Second, the typical transverse
wandering of a geodesic, meaning the maximum distance from any point on Γxy to the
straight line (denoted Πxy) from x to y, is believed to be of order rξ for some ξ = ξd.
For |y − x| of order r, if Γxy contains a vertex z at distance of order rξ from Πxy (not
too near x or y), then the associated extra distance |z − x|+ |y − z| − |y − x| traveled by
the geodesic in order to pass through z is of order r2ξ−1. For such wandering to have
non-negligible probability, the passage time fluctuations rχ should be at least as large as
the extra distance; heuristically this leads to the relation χ = 2ξ − 1. There are various
ways to formally define the exponents χ, ξ; these must allow for the fact that the true
scales of fluctuations and wandering are not known to be pure powers of r. Chatterjee
[14] gave a rigorous version of the relationship χ = 2ξ − 1, under the assumption that
multiple possible definitions of each exponent actually agree.

Looking more finely than just at the level of exponents, the heuristic for χ = 2ξ − 1

says that if the fluctuation scale is σ(r) for |y − x| of order r, then the scale of transverse
wandering should be

∆(r) = (rσ(r))1/2.
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In [2] and (for d = 2) in [19] it was shown that under natural assumptions, the transverse
wandering with high probability does not exceed (rσ(r) log r)1/2. One of our main results
here is an upper bound on wandering: under somewhat weaker assumptions, for all
d ≥ 2, the probability of wandering greater than s∆(r) decays as e−cs

2

or faster, for
s ≤ r/∆(r). Previously such a result has only been known for integrable cases of last
passage percolation (LPP) in d = 2, from [13] (with e−cs in place of e−cs

2

) and [12]. The
bound is optimal in the sense of being on the scale ∆(r), though the second power of s
in the exponent may not be optimal, as suggested by LPP results in d = 2 in [20].

In fact we have this bound uniformly over many geodesics simultaneously, in the
following sense: Consider a cylinder of length r and radius K∆(r), and let ε > 0 and
s > 2K. Then under the assumptions we will make, the probability that there exists any
geodesic Γxy, with x, y in the cylinder and |y− x| ≥ εr, which wanders farther than s∆(r)

from the cylinder axis decays as e−cs
2

or faster, for s ≤ r/∆(r).
By comparison, in [2] it was shown roughly that if there is exponential concentration

on some scale σ(r) which “grows like a power of r,” uniformly for passage times over
distance r, then the probability of a transverse fluctuation of size t(log r)1/2∆(r) for a
single geodesic Γxy is bounded by C1e

−C2t
2 log t for all t > 0. This tells us nothing, though,

about transverse fluctuations of size t∆(r) with 1� t� (log r)1/2, which should also be
subject to exponential concentration, as in our present result.

It should be emphasized that in our transverse wandering (and other) results, σ(r)

is not necessarily the actual scale of the standard deviation—it need only be an upper
bound in the sense that exponential concentration holds for passage times T (x, y) on
scale σ(|y−x|). Then the corresponding value ∆(r) is the scale that appears in the upper
bound for transverse wandering.

Our uniform wandering bound will be a byproduct of another uniform-bound result
for passage times; to describe it we first discuss exponential bounds. For the lattice Zd,
Kesten [23] proved that, assuming

Eeλte <∞ for some λ > 0, and P (te = 0) < pc(Z
d) (1.2)

(where pc(Zd) is the bond percolation threshold for Zd), there is exponential concentra-
tion of T (x, y) on scale r1/2 for |x− y| ≤ r:

P (|T (x, y)− ET (x, y)| ≥ tr1/2) ≤ C3e
−C4t for all t ≤ C5r.

Talagrand [33] improved this: assuming just an exponential moment for te,

P (|T (x, y)− ET (x, y)| ≥ tr1/2) ≤ C6e
−C7 min(t2,tr1/2) for all t > 0.

Damron, Hanson, and Sosoe [16] improved the bound to a subgaussian scale: under (1.2),

P

(
|T (x, y)− ET (x, y)| ≥ t

(
r

log r

)1/2
)
≤ C8e

−C9t for all t > 0. (1.3)

None of these bounds are near-optimal, though—an optimal bound would be on the
scale of the standard deviation of T (x, y). What we will prove here is roughly as follows.
Suppose passage times satisfy exponential concentration on a scale σ(·), uniformly:

P
(
|T (x, y)− ET (x, y)| ≥ tσ(|y − x|)

)
≤ C10e

−C11t for all x, y, (1.4)

for some σ(r) which “grows like rχ” for some χ ∈ (0, 1), in a sense we will make precise.
Then for Gr(K) a cylinder of length r and radius K∆(r) for some fixed K, we have
concentration on the same scale, uniformly over x, y ∈ Gr(K):

P
(∣∣T (x, y)− ET (x, y)

∣∣ ≥ tσ(r) for some x, y ∈ GK(r) with |y − x| ≥ εr
)
≤ C12e

−C13t

(1.5)
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for all r large and t ≥ cK2. This has previously been proved for integrable models of LPP,
but only for d = 2 ([13, 11]), and even the non-integrable part of the proof there does
not carry over to FPP—see Remark 1.8.

For d ≥ 3 there is no generally-agreed-upon value of χ in the physics literature.
Heuristics and simulations suggest that χ should decrease with dimension; simulations
in [32] for a model believed to be in the same (KPZ) universality class as FPP show a
decrease from χ = .33 to χ = .054 as d increases from 2 to 7. Some have predicted the
existence of a finite upper critical dimension, possibly as low as 3.5, above which χ = 0

([18], [25]); others predict that χ is positive for all d ([4], [29]), with simulations in [24]
showing χ > 0 all the way to d = 12, decaying approximately as 1/(d+ 1). Our results
here require χ > 0 so they only have content below the upper critical dimension, should
it be finite. In fact, results in [3] strongly suggest that Theorems 1.3 and 1.5 below
should not be valid above the upper critical dimension, should such exist.

In the preceding and throughout the paper, c1, c2, . . . and C1, C2, . . ., and ε0, ε1, . . .

represent unspecified constants which depend only on the graph G (or its distribution,
if it is random) and the distribution of the passage times te (or speeds ηe, to be given
below.) We use Ci for constants which occur outside of proofs and may be referenced
later; any given Ci has the same value at all occurrences. We use ci for those which do
not recur and are only needed inside one proof. For the ci’s we restart the numbering
with c0 in each proof, and the values are different in different proofs.

As is standard, since passage times T (x, y) are subadditive, assumptions much weaker
than (1.2) guarantee the a.s. existence (positive and finite for x 6= 0) of the limit

g(x) = lim
n

T (0, nx)

n
= lim

n

ET (0, nx)

n
= inf

n

ET (0, nx)

n
a.s. and in L1 (1.6)

for x ∈ Zd; g extends to x with rational coordinates by considering only n with nx ∈ Zd,
and then to a norm on Rd by uniform continuity. We write Bg for the unit ball of this
norm. To obtain the optimal uniform results for wandering and (1.5) for fluctuations, we
need to understand both parts of the discrepancy

T (0, x)− g(x) =
(
T (0, x)− ET (0, x)

)
+
(
ET (0, x)− g(x)

)
. (1.7)

Here in the parentheses on the right are the random part and nonrandom part of the
discrepancy. In [1] it was shown that under (1.2),

g(x) ≤ ET (0, x) ≤ g(x) + C14|x|1/2 log |x| for all |x| > 1. (1.8)

In [34] the error term was improved to C14(|x| log |x|)1/2, and in [19] to cη|x|1/2(log |x|)η
for all η > 0. For the Euclidean first passage percolation of [21], the analog of (1.8) was
proved in [17] with an error term of C14Ψ(|x|) log(k) |x| for arbitrary k ≥ 1, where Ψ(|x|)
is a scale on which an exponential bound is known (analogous to σ(|x|) in (1.4)) and
log(k) |x| is the k-times-iterated logarithm; Ψ is subject to regularity conditions which are
incompatible with χ = 0. Here we will obtain an essentially optimal bound for the non-
random part: if σ(·) satisfies certain regularity (also incompatible with χ = 0) and (1.4)
holds, then a log factor as in the earlier bounds is unnecessary in our context: we have

g(x) ≤ ET (0, x) ≤ g(x) + C15σ(|x|). (1.9)

There is a strong interdependence among this result, our uniform wandering bounds,
and (1.5), as discussed in Remark 1.7.

Analogs of (1.9), of (1.5), and of of our uniform wandering result, with optimal scale
σ(|x|) = var(T (0, x))1/2 � |x|1/3, are known for certain integrable models of directed
last passage percolation (LPP) for d = 2. We note that an exponential bound like (1.4),
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but with centering at the analog of g(x) instead of at ET (0, x), shows that (i) (1.9) must
hold, and (ii) an exponential bound like (1.4) must also hold with centering at g(y − x).
Such a recentered bound appears in [13] (extracted from [5]) and in [26] for LPP on Z2

with exponential passage times, in [27, 28] for LPP based on a Poisson process in the
unit square, and in [15] for LPP on Z2 with geometric passage times. An analog of our
transverse wandering bound for LPP on Z2 with exponential passage times appears in
[12]. All of these require integral probability methods, which are not available for FPP.

1.1 Context of our results

For d = 2 it is useful to discuss further the relation of our work to recent LPP results.
For integrable models of LPP on Z2, from a probabilistic perspective, many important
results are “black boxes” in the sense that the proofs are based on ideas from algebraic
combinatorics and asymptotic analysis which frequently have no probabilistic interpre-
tation. A number of authors have recently employed the approach of taking certain of
these black-box results as inputs to proofs, which are otherwise purely probabilistic, of a
rich range of results. Some primary black-box inputs used this way (stated loosely) are
the following, with u denoting a unit vector:

(i) The standard deviation σ(T (0, ru)) is asymptotically ≈ Cr1/3.

(ii) Exponential bound for passage times over distance r:

P
(
|T (0, ru)− ET (0, ru)| ≥ λr1/3

)
≤ c1e−c2λ for (nearly) all r, λ, u.

The rate r1/3 is optimal, due to (i).

(iii) The asymptotic growth rate g(x) from (1.6) satisfies

g(ru)− ET (0, ru) ≈ Cr1/3.

(iv) g(ru) varies nicely both transverally as a function of u (e.g. the boundary of “g ≤
constant” has nontrivial curvature) and longitudinally as a function of r; therefore
by (iii), ET (0, ru) also varies nicely.

(v) The normalization (T (0, ru)− ET (0, ru))/Cr1/3 converges to a nondegenerate dis-
tribution (GUE Tracy–Widom.)

(vi) LPP paths are by definition directed (simplifying a number of proofs.)

The use of these inputs in this manner occurs for example in [7, 8, 9, 10, 11, 12, 20, 30,
36]. In particular, it has become clear in recent years that coalescence properties of
geodesics are central to the understanding of LPP and FPP, particularly in the context
of limiting objects like the directed landscape; several of these papers answer such
questions for LPP, using some of the inputs (i)–(vi). For FPP, for this and other questions,
it would certainly be desirable to derive a correspondingly rich set of consequences from
(i)–(vi), but no analog of any of these inputs is known. The closest would be (1.3) from
[16], which is like (ii) but with a far-from-optimal (r/ log r)1/2 in place of r1/3. Therefore
ever since the ’90’s, some authors have taken the path of assuming variants of some
of (i)–(vi), and seeing what follows from them. For example, some (e.g. [2, 31], and for
non-integrable LPP [20]) have assumed a form of (iv): the boundary of {x : g(x) ≤ 1} has
nontrivial curvature, either globally or in some direction. In [14] the full strength of the
main result requires the assumption that, in a certain sense, the powers of r appearing
in (i) and (ii) are “the same to within an arbitrarily small ε.”

It should be emphasisized that results established for LPP will not transfer readily
to FPP even if one were to assume or prove versions of all of (i)–(vi), as they are not
the only black-box inputs, just perhaps the primary ones. For example, [7, 11, 36] all

EJP 29 (2024), paper 10.
Page 5/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

explicitly exploit the fact that the limiting GUE Tracy–Widom distribution in (v) has a
negative mean. New approaches will be necessary, beyond what works for FPP, even
if (i)–(v) are proved or assumed. This paper is itself an example of the need for new
approaches—see Remark 1.8.

To access a richer understanding of FPP, it certainly seems undesirable to assume all
of the unproven inputs (i)–(vi), so what to do? Can the necessary assumptions at least
be minimized? Input (iv) can be obtained by working on a graph which is translation-
invariant and isotropic, instead of Z2; a random graph is most natural for this, and then
g(x) is necessarily a constant multiple of |x|. One of our main results says that in this
isoptropic context, a version of (iii) (with the two terms on the left interchanged, as
appropriate for FPP) is a consequence of mainly just a version of (ii): if (ii) holds (along
with certain milder assumptions) with r1/3 replaced by a function which “grows like rχ”
in a nice way for some χ ∈ (0, 1), then the FPP version of (iii) also holds for that function,
at least as a one-sided bound. Thus inputs (ii)–(iv) all become available with only (ii)
assumed—and this is true in all dimensions where χ > 0. One can hope that this widens
the door a bit for future results about the geometry of FPP. More broadly, the situation
for LPP points to the centrality of (i)–(v) as questions for FPP.

Fortunately, working on isotropic random graphs doesn’t increase technicalities
relative to the usual Zd in our context. In fact it decreases them substantially, as isotropy
is a precise and powerful tool. Technicalities are also reduced because we don’t try to
make the random graph as general as possible, in fact quite the opposite—we just need
to know that some random graph exists with certain properties convenient for FPP, such
as a finite radius of dependence (see A1 below), so that we can use input (iv). That finite
radius of dependence is not present in previously considered isotropic models of FPP, for
example in [21].

1.2 Definitions and assumptions

As mentioned we will consider isotropic models, built on a random graph G = (V,E)

embedded in Rd, to ensure a strong form of (iv) in Section 1.1. We want this random
graph to be “as lattice-like as possible,” as quantified in A1 below, despite being isotropic.
To that end, the dilation of such an embedded graph is the least C such that, for every
x, y ∈ V there is a path from x to y in G for which the total (Euclidean) length of the
edges is at most C|y−x|. We say that such a graph has bounded dilation if there exists C
such that with probability one the dilation of G is at most C. For A ⊂ Rd, the restriction
of G to A is the graph with vertex set VA = {x ∈ V : 〈x, y〉 ∈ E for some y ∈ V ∩A} and
edge set EA = {〈x, y〉 ∈ E : x ∈ A}.

We require that the graph G satisfy the assumptions A1 below, which are somewhat
stringent and include bounded dilation, but we will construct an example that works.
(We see no need to make the graph as general as possible; we simply need one to know
we can work with one that has certain properties that make it lattice-like.) That example
is built roughly as follows. We first construct a point process V to serve as vertices, with
V satisfying those parts of A1 which involve only the vertices. To make a graph from
V we use the Voronoi diagram, which divides Rd into closed polyhedrons {Qx : x ∈ V}
(called Voronoi cells), the interior of the polygon Qx consisting of those points which are
strictly closer to x than to any other point of V. We define ϕ by ϕ(y) = x for y ∈ Qx. To
produce the Delaunay graph (or Delaunay triangulation in d = 2) one places an edge
between each pair x, y ∈ V for which Qx and Qy have a face of positive (d− 1)-volume in
common. For d = 2, it is known that the dilation of the Delaunay graph of any locally
finite subset of R2 is at most 1.998 [35], ensuring A1 is fully satisfied, but such bounded
dilation for d ≥ 3 is not known. We therefore modify the Delaunay graph by adding
certain non-nearest-neighbor edges of uniformly bounded length, by a deterministic

EJP 29 (2024), paper 10.
Page 6/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

local rule, and show that bounded dilation then holds. Here and in what follows, by the
length of an edge e = 〈x, y〉 we mean the Euclidean distance |y − x|, which we denote |e|.

Our FPP proofs for isotropic random graphs should adapt to Zd, but (we expect) only
by assuming two unproven properties of FPP on Zd: first, uniform curvature of ∂Bg, and
second, a kind of smoothness of the mean as the direction changes:

sup
{
|ET (0, x)− ET (0, y)| : max(|g(x)− r|, |g(y)− r|) ≤ C16, |y − x| ≤ C17∆(r)

}
= O(σ(r)) as r →∞.

Results in [1] show that for lattice FPP, the left side is O(σ(r) log r). This is (implicitly)
improved to O(σ(r)(log r)1/2) in [34] and to O(σ(r)(log r)κ) for all κ > 0, in [19].

Here then are the assumptions G = (V,E) must satisfy.

A1. Acceptability of random graphs

(i) G = (V,E) is isotropic, stationary, and ergodic;

(ii) Bounded hole size: every open ball in Rd of radius 1 contains at least one vertex of
V;

(iii) Finite range of dependence: there exists β such that if A,B are Lebesgue-measur-
able subsets of Rd separated by distance d(A,B) ≥ β, then the restrictions of G to
A and to B are independent;

(iv) Bounded dilation: the dilation of G = (V,E) is bounded a.s. (and hence equal to
some nonrandom C18 a.s., by (i));

(v) Exponential bound for the local density: given r0 > 0 there exist C19, C20 such that
for all r > r0 and a ≥ 1, P (|V ∩Br(0)| ≥ ard) ≤ C19e

−C20a;

We say a random graph with these properties is acceptable. We will show that acceptable
random graphs exist. By rescaling, we may replace radius 1 in (ii) by any other positive
value. Condition (v) can be weakened from exponential to stretched exponential; we use
exponential to simplify the exposition.

Conditionally on G we define a collection of i.i.d. nonnegative continuous random
variables η = {ηe, e ∈ E}. Formally the pair ω = (V, η) is defined on a probability space
(Ω,F , P ), with G determined by V.

In contrast to the usual FPP on a true lattice, here we view ηe not as a time but as a
speed. We thus define the passage time of an edge e to be ηe|e|, and proceed “as usual”:
for x, y ∈ V, a path Γ from x to y is a finite sequence of alternating vertices and edges of
G, of the form Γ = (x = x0, 〈x0, x1〉, x1, . . . , xn−1, 〈xn−1, xn〉, xn = y). We may designate a
path by specifying only the vertices. The (path) passage time of Γ is

T (Γ) :=
∑
e∈Γ

ηe|e|,

and the passage time from x to y is

T (x, y) := inf{T (Γ) : Γ is a path from x to y in G}. (1.10)

More generally, for x, y ∈ Rd we define

T (x, y) := T (ϕ(x), ϕ(y)).

For technical convenience we do not require that paths be self-avoiding, but for the
moment this is irrelevant because geodesics are always self-avoiding. For general x, y
not necessarily in V, we take “a geodesic from x to y” to mean a geodesic from ϕ(x) to
ϕ(y). Let ζ(λ) = Eeληe . We assume the following.
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A2. ηe properties

(i) ηe is a continuous random variable.

(ii) There exists λ > 0 such that ζ(λ) <∞.

Here (i) guarantees that there is at most one geodesic from x to y a.s., for each x, y.

We do not assume that σ(r) in (1.4) is a power of r, but we do require that it “grows
like rχ” for some 0 < χ < 1 in a sense similar to [2], as follows. We call a nonnegative
function {σ(r), r > 0} powerlike (with exponent χ) if there exist 0 < χ1 < χ < χ2 and
constants Ci such that

lim
r→∞

log σ(r)

log r
= χ and for all s ≥ r ≥ C21, C22

(s
r

)χ1

≤ σ(s)

σ(r)
≤ C23

(s
r

)χ2

. (1.11)

If (1.11) holds with χ2 < 1 we say σ(·) is sublinearly powerlike.

The requirement that σ(·) be sublinearly powerlike is perhaps not as stringent as
it first appears, due to Lemma 1.2 below. It implies that if one is only interested in
fluctuations at the level of exponents χ, ξ, and one knows uniform the exponential
tightness (1.4) but not necessarily the powerlike property for σ(·), then there is a
sublinearly powerlike function with the same χ for which (1.4) holds.

Remark 1.1. If σ(·) is powerlike, then so is the increasing function σ̂(r) = sups≤r σ(s);
by further increasing σ̂ (though by at most a constant factor) we may make it strictly
increasing and continuous while preserving the powerlike property. Therefore we may
and do without loss of generality always assume σ(·) is strictly increasing and continuous.
The inverse function ∆−1 is well-defined, and for ξ = (1+χ)/2 ∈ ( 1

2 , 1) we have ∆(r) � rξ
and ∆−1(a) � a1/ξ in the sense that

lim
r→∞

log ∆(r)

log r
= ξ, lim

a→∞

log ∆−1(a)

log a
=

1

ξ
.

The following is proved in section 8.

Lemma 1.2. Let ρ : (1,∞)→ (0,∞) satisfy

lim
r→∞

log ρr
log r

= χ ∈ (0,∞).

Then there exist ρ− ≤ ρ ≤ ρ+ which are powerlike with this same exponent χ and strictly
increasing, and

(i) given ε > 0 we may take ρ± to satisfy (1.11) with |χi − χ| < ε, i = 1, 2,

(ii) if χ < 1 then given 0 ≤ δ < 1−χ we may take ρ± such that ρ±(r)/r1−δ is decreasing.

For general x, y ∈ Rd not necessarily in V, we write Γxy for Γϕ(x),ϕ(y). In general we
view Γxy as an undirected path, but at times we will refer to, for example, the first point
of Γxy with some property. Hence when appropriate, and clear from the context, we view
Γxy as a path from ϕ(x) to ϕ(y).

Our final standard assumption is the following.

A3. Uniform exponential tightness For some σ(·) which is sublinearly powerlike
with exponent χ ∈ (0, 1),

P
(
|T (x, y)− ET (x, y)| ≥ tσ(|y − x|)

)
≤ C24e

−C25t for all x, y ∈ Rd. (1.12)
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The isotropic property assumed for V in A1 means that g(x) = µ|x| for all x, where
µ = g(e1), and ET (0, x) depends only on |x|, so we define

h(r) = ET (0, re1).

Let Bd−1 be the Euclidean unit ball of Rd−1 and define the cylinders

Gr(K) = [0, r]×K∆(r)Bd−1.

1.3 Statement of results

Here is our first main result. We write xi for the ith coordinate of x ∈ Rd.
Theorem 1.3. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. Then given
ε > 0 there exist constants Ci = Ci(ε), 26 ≤ i ≤ 30, such that for all r ≥ 1,K ≥ 1, t ≥
C26K

2,

P
(∣∣∣T (x, y)− ET (x, y)

∣∣∣ ≥ tσ(r) for some x, y ∈ Gr(K) with |y − x| ≥ εr
)
≤ C27e

−C28t,

(1.13)

and

P
(
T (x, y) ≤ h(|(y − x)1|)− tσ(r) for some x, y ∈ Gr(K)

)
≤ C29e

−C30t. (1.14)

Equation (1.14) is weaker than (1.13) in the sense that h(|(y − x)1|) is “typically”
smaller than ET (x, y) = h(|y − x|) (and always bounded by a constant multiple of it, see
Lemma 3.6), but stronger in that it isn’t limited to |y − x| ≥ εr.

We can split (1.13) into upward and downward deviations:

T (x, y) ≥ ET (x, y) + tσ(r) and T (x, y) ≤ ET (x, y)− tσ(r).

Then the downward-deviations part of (1.13) is a consequence of (1.14) and Proposi-
tion 3.3 below, because

x, y ∈ Gr(K), |y − x| ≥ εr =⇒
∣∣∣|y − x| − |(y − x)1|

∣∣∣ ≤ C31K
2σ(r) (1.15)

for some C31(ε). In general, if we think of x to y as an increment a path might make within
Gr(K) in going from the one end to the other in the e1 direction, then (y − x)1 measures
progress made by that increment in the e1 direction, so it is a natural normalization of
T (x, y) in the context of such paths. It is also sufficient for application to the next two
theorems. We restrict to |y − x| ≥ εr in (1.13) so that we can use (1.15) as above, and
so that, even for the shorter geodesic segments considered in our multiscale argument,
the direction of the increment of the segment is always close to e1; see the discussion
around (4.25) and (7.2). But the restriction to |y − x| ≥ εr can be eliminated, as we now
describe.

Remark 1.4. For (1.13) in Theorem 1.3 we can replace the conditions K ≥ 1, t ≥ C26K
2

with K ≥ C32, t ≥ εK2. This is because there exists m such that Gr(K) is contained in
C32ε

−m “thin cylinders” (not necessarily oriented parallel to e1) of length between εr and
r and radius Kε∆(r) =

√
ε/C26K∆(r) such that every pair x, y as in (1.13) is contained

in one of these cylinders. Here C32 does not depend on K or r. We can apply the theorem
to each thin cylinder, since t ≥ C26K

2
ε , then sum over the thin cylinders.

This same idea of summing over small cylinders can be used to eliminate the con-
dition |y − x| ≥ εr in (1.13); to deal with pairs x, y with 2−(k+1) < |y − x| ≤ 2−k one
can use cylinders of length 2−(k−1)r and apply (1.13), with 2−(k−1)r in place of r and
tσ(r)/σ(2−(k−1)r) in place of t, to each cylinder. We omit the details, though, as it seems
not particularly natural to use σ(r) in (1.13) when |y − x| is much smaller than r.
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We will use Theorem 1.3 together with a coarse-graining scheme in establishing the
following.

Theorem 1.5. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exists
C33 such that

µ|x| ≤ h(|x|) ≤ µ|x|+ C33σ(|x|) for all x ∈ Rd. (1.16)

The regularity required on σ(·) in A3 is not compatible with a fluctuation exponent
χ = 0, which is as expected since (as noted above) results in [3] suggest that in that case
(1.16) should not hold with σ of the order of the standard deviation.

As we have noted, for |y − x| of order r, if Γxy contains a vertex z at distance
of order � ∆(r) from Πxy (not too near x or y), then the associated extra distance
g(z − x) + g(y − z)− g(y − x) traveled by the geodesic is of order� ∆(r)2/r = σ(r), and
by Theorem 1.5 the same is true for h in place of g. Since the corresponding passage
times satisfy T (x, z) + T (z, y)− T (x, y) = 0, this means that either

T (x, y)−ET (x, y)� σ(r), T (x, z)−ET (x, z)� −σ(r), or T (z, y)−ET (z, y)� −σ(r).

The assumption (1.12) says the first of these is unlikely, and Theorems 1.3 and 1.5 can be
used to show it is unlikely that there exists a z for which the second or third occurs. (Not
without complications, though, as we cannot assume z ∈ Gr.) This is the idea behind the
following. For r, s > 0 define intervals enlarging [0, r]:

Ir,s =


[−s2σ(r) log r, r + s2σ(r) log r] if s ≤ (C34 log r)1/2;

[−s2σ(r), r + s2σ(r)] if (C34 log r)1/2 < s ≤ r/∆(r);

[−s∆(r), r + s∆(r)] if s > r/∆(r),

(1.17)

where C34 “sufficiently large” will be specified later, and

Gr,s = Ir,s × s∆(r)Bd−1.

For s > K we have Gr(K) ⊂ Gr,s; in this case we may view Gr,s as being the cylinder
Gr(K) fattened transversally to width s∆(r), and lengthened by an amount which varies
with the size of s relative to r, chosen to be “enough to make wandering of geodesics out
of the cylinder end at least as unlikely as out of the sides.”

For x ∈ Rd we write x∗ for (x2, . . . , xd) so x = (x1, x
∗).

Theorem 1.6. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist
C35–C38 such that for all K ≥ C35,

P
(
Γxy 6⊂ Gr,s for some x, y ∈ Gr(K) with |(y − x)∗| ≤ (y − x)1

)
≤
{
C36e

−C37s
2

for all C38K ≤ s ≤ r/∆(r),

C36e
−C37s∆(r)/σ(s∆(r)) for all s > r/∆(r).

(1.18)

We include the condition |(y − x)∗| ≤ (y − x)1 because we are primarily interested
in transverse fluctuations of geodesics out the side of Gr,s, so we wish to avoid y − x
oriented in a direction too far from e1.

Remark 1.7. The strategy for proving Theorems 1.3–1.6 is as follows:

(1) prove Theorem 1.3 for downward deviations—this is the most difficult part;

(2) use Theorem 1.3 for downward deviations to prove Theorem 1.6 restricted to a
fixed (x, y);

(3) use Theorem 1.3 for downward deviations and the restricted Theorem 1.6 to prove
Theorem 1.5;

(4) use Theorem 1.5 to prove Theorem 1.3 for upward deviations;

(5) use the full Theorem 1.3 to prove the unrestricted Theorem 1.6.
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Step (1) occupies section 4; after some definitions and preliminary steps there we give a
proof sketch for (1) in Remark 4.4, with further elaboration in Remark 4.8.

Remark 1.8. In [13] and [11], an alternate strategy was used to prove LPP analogs
(in integrable cases) of Theorems 1.3 and 1.6 in d = 2. Theorem 1.5 was already
known for that context—see the comments following (1.9). Essentially the strategy
for the Theorem 1.3 analog in [13] is this, when translated to FPP: first the easier
upward-deviations half of Theorem 1.3 is proved. For downward deviations, consider
the points 0 and 3re1, and a cylinder Gr of radius ∆(r) with axis from re1 to 2re1.
Suppose there are (random) vertices u, v ∈ Gr with u1 < v1 for which the passage
time is fast: T (u, v) ≤ h(|v − u|)− 3tσ(r) for some large t. From the upward-deviations
half of Theorem 1.3, with high probability we have also T (x, u) ≤ h(|u − x|) + tσ(r)

and T (v, y) ≤ h(|y − v|) + tσ(r). From this, using that σ(r) is proportional to r1/3 and
h(r) = µr +O(σ(r)), assuming t is large enough,

T (x, y) ≤ h(|u− x|) + h(|v − u|) + h(|y − v|)− tσ(r) ≤ h(|y − x|)− t

2
σ(r). (1.19)

This has probability exponentially small in t, by (1.12), hence so does the probability of
such u, v existing. This strategy does not work for FPP, however, as it requires one to
already know Theorem 1.5 to obtain the second inequality in (1.19); we instead need to
establish the uniformity in Theorem 1.3 to obtain Theorem 1.5.

2 Existence of acceptable random graphs

We construct a random graph G = (V,E) satisfying A1. We begin by constructing
the point process V of vertices. We start with a “space-time” Poisson process V0 (which
we view as a random countable set) of density 1 with respect to Lebesgue measure in
Rd × (0,∞). We say a point v ∈ Rd appears at time t in V0 if (v, t) ∈ V0, and we say
A ⊂ Rd is empty at time t− if no point in A appears in V0 during (0, t). We then define

V =
{
v ∈ Rd : for some t > 0 and x ∈ Rd with v ∈ B1(x), v appears at time t in V0

and B1(x) is empty at time t−
}
.

In other words, we keep in V the Rd coordinate v of a point of V0 if v is the first point
to appear in some ball of radius 1. Then almost surely, for each v ∈ V there is a unique
point (v, t∗v) ∈ V0, and we view t∗v as the time at which v appeared in V0. With probability
one, every unit ball in Rd contains a point of V. We call V the available-space point
process.

For the set V recall that {Qv, v ∈ V} denotes the corresponding Voronoi cells.
More generally we write Qx for the Voronoi cell containing any x (with some arbitrary
convention if x is on the boundary of multiple cells), and ϕ(x) for the unique point of V
in Qx. When convenient we view e = 〈x, y〉 as the line segment joining x and y. Let Br(x)

denote the open Euclidean ball of radius r about x. For d = 2, the Delaunay graph of V
is our graph G. For d ≥ 3 we fix 0 < δG < 1 and use

E = {〈x, y〉 : d(Qx, Qy) ≤ δG}.

We call G = (V,E) the augmented Delaunay graph of V. The edges in E which are not
in the Delaunay graph are called augmentation edges. We write x ∼ y to denote that x, y
are adjacent vertices in G, and x ∼Del y to denote adjacency in the Delaunay graph of V.
If y ∼Del z, then for all u ∈ Qy ∩Qz, B|y−z|/2(u) ∩V = ∅. Hence by A1(ii),

|z − y| < 2 whenever y ∼Del z. (2.1)
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Similarly if z ∈ Qy then B|z−y|(z) contains no point of V, so |z − y| < 1; thus

Qy ⊂ B1(y). (2.2)

Remark 2.1. The purpose of augmentation is roughly the following. Consider the line
segment Πxy between x, y ∈ V. It passes through a sequence of Voronoi cells Qx =

Qx0
, Qx1

, . . . , Qxm = Qy, and there is a corresponding path x = x0 → x1 → · · · → xm = y

in the Delaunay graph. If too many of the cells Qxj are “thin,” then the Delaunay path
length

∑m
j=1 |xj−xj−1| may be much greater than |y−x|, making it difficult to bound the

dilation. The augmentation effectively allows paths in G that skip over such problematic
sequences of cells, at least for a small distance, enabling us to prove bounded dilation
while preserving other properties of the Delaunay triangulation. We can reduce the
occurrence of augmentation to involve an arbitrarily small proportion of vertices by
using a small enough δ > 0, but we will not give details of that fact here.

For A ⊂ Rd and r > 0 let Ar = {x : d(x,A) < r}.
Proposition 2.2. The augmented Delaunay graph of the available-space point process
satisfies A1.

Proof. A1(i) for V follows from the same properties for V0; since G is constructed from
V via isotropic and translation-invariant local rules, A1(i) also holds for G. A1(ii) follows
from the fact that the first point of V0 to appear in any radius-1 ball is always a point
of V.

To prove A1(iii), observe first that by (2.1), given x ∈ V the cell Qx and all Delaunay
edges 〈x, y〉 are determined by V ∩ B2(x). Therefore the collection of Voronoi cells
intersecting B3(x) is determined by V ∩B5(x), and hence so are all augmentation edges
〈x, y〉. V ∩ B5(x), in turn, is determined by V0 ∩ (B7(x) × (0,∞)), so for A ⊂ Rd, the
restriction (VA,EA) is determined by V0 ∩ (A7 × (0,∞)). Since V0 is independent in
disjoint regions, A1(iii) follows with β = 14.

Turning to A1(v), let q = 1/(1+b3
√
dc) and r > r0 > 0, and let r1 = r0∧1. For x ∈ qr1Z

d

let Jx denote the cube
∏d
i=1[xi, xi + qr1) and Jx = {Jy : y ∈ qr1Z

d, |y − x|∞ = 2qr1}. This
means the 5d − 3d cubes in Jx form a shell around Jx, with a smaller shell of cubes in
between, and the diameter of Jx is less than 2r1. Then any radius-1 ball intersecting Jx
must contain a cube in Jx. Letting t∗(Jx) = max{t∗v : v ∈ V ∩ Jx} it follows that at time
t∗(Jx), for some Jy ∈ Jx, at least |V ∩ Jx| points of V0 have appeared in Jx but none in
Jy. Letting Nxy be the number of points of V0 appearing in Jx before the first point of
V0 appears in Jy, this says that Nx := maxJy∈Jx Nxy ≥ |V∩Jx|. Since |Jx| ≤ 5d it follows
that

P (|V ∩ Jx| ≥ n) ≤ P (Nx ≥ n) ≤
∑
Jy∈Jx

P (Nxy ≥ n) ≤ 5d2−n, (2.3)

and hence for λ < log 2,

EeλNx ≤ 5d

1− eλ

2

. (2.4)

Let I0 = {Jx : Jx ∩ [−r, r)d 6= ∅}, so |I0| ≤ (2(1 + r
qr1

))d and Br(0) ⊂ ∪Jx∈I0 Jx. Now

I0 is a lattice of cubes, and we divide it into 5d sublattices, each consisting of a cube Jx
together with all its translates by vectors in 5qr1Z

d which intersect [−r, r)d. We label
these sublattices of cubes as I0,1, . . . , I0,5d , and the cardinality satisfies

|I0,j | ≤
(

2

(
1 +

r

5qr1

))d
(2.5)
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for each j. We denote the corresponding union of cubes as I0,j = ∪Jx∈I0,jJx. The
spacing of the cubes in I0,j means that that the shells {Jx : Jx ∈ I0,j} are disjoint, so the
variables {Nx : Jx ∈ I0,j} are i.i.d.

For a ≥ 1, taking λ = 1/5 in (2.4) we obtain EeλNx ≤ 3 · 5d and hence using (2.5),
provided a is large (depending on r1),

P (|V ∩Br(0)| ≥ ard) ≤
5d∑
j=1

P

(
|V ∩ I0,j | ≥

ard

5d

)

≤
5d∑
j=1

P

 ∑
Jx∈I0,j

Nx ≥
ard

5d


≤ 5d

(
3 · 5d

)|I0,j |
e−ar

d/5d+1

≤ e−ard/2·5d+1

, (2.6)

proving A1(v).
Finally we consider A1(iv). Let x, y ∈ V. As in Remark 2.1, Πxy passes through a

sequence of Voronoi cells Qx = Qx0
, Qx1

, . . . , Qxm = Qy, and there is a corresponding
path x = x0 → x1 → · · · → xm = y in the Delaunay graph. (There is probability 0
that Πxy intersects some Qu in just a single point, so we will ignore this possibility,
meaning that “passes through” here is unambiguous.) For j < m let aj be the first
point of Qxj in Πxy and let am = y, so by convexity of cells, Qxj ∩ Πxy = [aj , aj+1] for
all 0 ≤ j < m. We select indices 0 = j(0) < j(1) < · · · < j(`) = m iteratively, taking
j(k + 1) as the least index j > j(k) for which either |aj+1 − aj(k)+1| > δG or j = m. Then
〈xj(k), xj(k+1)〉 is always a Delaunay or augmentation edge, so we consider the path
x = xj(0) → xj(1) → · · · → xj(`) = y in G; in particular we want to bound |xj(k+1) − xj(k)|
relative to |aj(k+1)+1 − aj(k)+1| for 0 ≤ k ≤ `− 2.

For k ≤ `− 1 we have using (2.2)

|xj(k+1) − xj(k)| ≤ |xj(k+1) − aj(k+1)|+ |aj(k+1) − aj(k)+1|+ |aj(k)+1 − xj(k)| ≤ 2 + δG

so for k ≤ `− 2,

|aj(k+1)+1 − aj(k)+1| > δG ≥
δG

2 + δG
|xj(k+1) − xj(k)|.

Therefore if ` ≥ 2,

`−2∑
k=0

|xj(k+1) − xj(k)| ≤
2 + δG
δG

`−2∑
k=0

|aj(k+1)+1 − aj(k)+1|

=
2 + δG
δG

|aj(`−1)−1 − a1| ≤
2 + δG
δG

|y − x|. (2.7)

Having ` ≥ 2 also ensures |y − x| ≥ |aj(1) − aj(0)| > δG so

|xj(`) − xj(`−1)| = |y − xj(`−1)| ≤ |y − aj(`−1)+1|+ |aj(`−1)+1 − xj(`−1)|

≤ |y − x|+ 1 ≤ 1 + δG
δG

|y − x|

which with (2.7) yields

`−1∑
k=0

|xj(k+1) − xj(k)| ≤
3 + 2δG
δG

|y − x|. (2.8)
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On the other hand, if ` = 1 then

`−1∑
k=0

|xj(k+1) − xj(k)| = |y − x|

so (2.8) still holds. This proves bounded dilation.

3 Straightness of geodesics and and regularity of means

For q > 0 and x ∈ Rd, let

ψq(x) = the point of qZd closest to x (with ties broken arbitrarily),

Fy = ψ−1
q (y), y ∈ qZd, (3.1)

the latter being a cube (ignoring the boundary.) More generally for u ∈ Rd we define Fu
to be the cube Fy containing u, with some arbitrary rule for cube-boundary points.

The bound (1.4) applies to deterministic x, y; we cannot for example take x, y ∈ V.
Instead for random x, y we can apply (1.4) to nearby points of qZd for some q, and use
the following. It is the only place the assumption A2(iv) of bounded dilation is used.

Lemma 3.1. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist
constants C39–C42 as follows.

(i) Let r ≥ 2 and t ≥ C39 log r. Then

P (there exist x, y ∈ Br(0) ∩V with T (x, y) ≥ tr) ≤ C40e
−C41t.

(ii) For all x, y ∈ Rd,
ET (x, y) ≤ C42(|y − x| ∨ 1).

Proof. To prove (i) we condition on V. Given x, y ∈ Br(0) ∩V, by A1(iv) there exists a
path x = x0, x1, .., xm = y in G with

m∑
j=1

|xj − xj−1| ≤ C18|y − x| ≤ 2C18r.

Writing ηj for η〈xj−1xj〉, for λ > 0 we have

P
(
T (x, y) ≥ t|y − x|

∣∣∣V) ≤ P
 m∑
j=1

|xj − xj−1|ηj ≥ t|y − x|
∣∣∣∣∣V


≤ e−λt|y−x|
m∏
j=1

ζ
(
λ|xj − xj−1|

)
≤ e−λt|y−x|ζ

(
C18λ|y − x|

)
, (3.2)

so using A2(ii) it follows that for some ci,

P
(
T (x, y) ≥ t|y − x|

∣∣∣V) ≤ e−Iη(t/C18) ≤ c0e−c1t, (3.3)

where Iη(t) = supγ>0(γt−log ζ(γ)) is the large-deviations rate function of the variables ηe.
From this, using A1(v),

P (there exist x, y ∈ Br(0) ∩V with T (x, y) ≥ tr) ≤
∞∑
n=2

P (|Br(0) ∩V| = n)

(
n

2

)
c1e
−c1t/2
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≤ c1E|Br(0) ∩V|2e−c1t/2

≤ c2r4e−c2t/2

≤ c2e−c3t, (3.4)

proving (i).
To prove (ii) we apply (3.3) to ϕ(x) and ϕ(y), and use the fact that |ϕ(x)− x| ≤ 1 for

all x.

Building on Lemma 3.1 we obtain the following.

Lemma 3.2. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist
constants C43–C45 as follows. For all r ≥ 2, u, v ∈ Rd and t > 0 with σ(|u − v|) ≥ r and
tσ(|u− v|) ≥ C43r log r,

P
(

there exist x ∈ Br(u) ∩V, y ∈ Br(v) ∩V with |T (x, y)− ET (u, v)| ≥ tσ(|u− v|)
)

≤ C44e
−C45t. (3.5)

Proof. Using Lemma 3.1(i) and (1.4) we have

P
(

there exist x ∈ Br(u) ∩V, y ∈ Br(v) ∩V with |T (x, y)− ET (u, v)| ≥ tσ(|u− v|)
)

≤ P
(

there exists x ∈ Br(u) ∩V with T (x, u) ≥ tσ(|u− v|)/3
)

+ P
(

there exists y ∈ Br(v) ∩V with T (y, v) ≥ tσ(|u− v|)/3
)

+ P
(
|T (u, v)− ET (u, v)| ≥ tσ(|u− v|)/3

)
≤ 2C40e

−C41tσ(|u−v|)/3r + C24e
−C25t/3

≤ c0e−c1t. (3.6)

We write
x→ y1 → · · · → yk → y in Γxy

to denote that the vertices yi ∈ V appear in the order y1, . . . , yk in traversing Γxy from x

to y. For a preceding b in Γxy we write Γxy[a, b] for the segment of Γxy from a to b. (Here
we do not require a, b ∈ V.) For v in a geodesic Γxy and 0 < s < |v − x|, let u be the first
vertex in Γxy ∩V before v satisfying Γuv ⊂ Bs(v). We then call Γuv the trailing s-segment
of v in Γxy. Note that by (2.1), s ≥ |u − v| ≥ s − 2. Define the hyperplanes, slabs, and
halfspaces

Hs = {(x1, x
∗) ∈ Rd : x1 = s}, H[r,s] = {(x1, x

∗) ∈ Rd : r ≤ x1 ≤ s},
H+
s = {(x1, x

∗) ∈ Rd : x1 ≥ s}, H−s = {(x1, x
∗) ∈ Rd : x1 ≤ s}.

We turn next to a weaker version of Theorem 1.5 similar to (1.8); we will need it
on the way to the proof of Theorem 1.5. The proof of (1.8) in [1] does not carry over
immediately to the present situation, as it uses translation invariance of the lattice. But
we can use radial symmetry here to give a distinctly shorter proof than that of (1.8)
in [1].

Recall h(r)− µr is nonnegative by subadditivity of h. For technical convenience we
assume β > 4 in A1(ii).

Proposition 3.3. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There
exists C46 such that for all r ≥ 2,

µr ≤ h(r) ≤ µr + C46σ(r) log r. (3.7)
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Proof. It is sufficient to prove the bound for all sufficiently large r, so we will tacitly
assume r is large, as needed.

We consider the geodesic Γ0,nre1 for a fixed large n. Let β be as in A1(iii). For
0 ≤ j ≤ n− 1 let vj be the first vertex v in Γ0,nre1 ∩V with the property that the trailing
(r − 2β)-segment of v in Γ0,nre1 is contained in H+

jr, and let uj be the starting point of
this trailing segment. From (2.1) it is easy to see that we must have jr ≤ (uj)1 ≤ jr + 2.
It follows that Γ0,nre1 [uj , vj ] ⊂ Br−2β(vj)∩H+

jr ∩H−(j+1)r−2β+2; we denote this last region
by Wvj . Note that any two sets Wvj are separated by distance at least 2β − 2.

We need to control the entropy of the collection of pairs {(uj , vj) : 0 ≤ j < n}. To do
this, we enlarge this collection in such a way that we can put a natural tree structure on
it. To that end, let vn be the first vertex in Γ0,nre1 ∩V, if one exists, which is at distance
at least r from ∪0≤j<nWvj . Then let un ∈ V be such that Γ0,nre1 [un, vn] is the trailing
(r− 2β)-segment of vn in Γ0,nre1 , and let Wvn = Br−2β(vn), which contains Γ0,nre1 [un, vn].
We repeat this to obtain (un+1, vn+1), . . . , (uN , vN ), stopping when no vN+1 exists. Note
this preserves the property of separation by distance at least 2β − 2. Also, each new vj is
within distance 2r − 2β + 2 of some already-existing vi.

We define the discrete approximations ûj = ψ1/
√
d(uj), v̂j = ψ1/

√
d(vj), and then let

Ŵj =

{
Br−2β+1(v̂j) ∩H+

jr−1 ∩H−(j+1)r−2β+3 if 0 ≤ j < n,

Br−2β+1(v̂j) if n ≤ j ≤ N.

which contains Wvj ; the sets Ŵj , 0 ≤ j ≤ N are separated from each other by distance
at least 2β − 6. We call {(ûj , v̂j) : 0 ≤ j < n} primary pairs, and {(ûj , v̂j) : n ≤ j ≤ N}
secondary pairs. Since r − 2β ≥ |uj − vj | ≥ r − 2β − 2, we have

r > r − 2β + 2 ≥ |ûj − v̂j | ≥ r − 2β − 4 > r − 3β. (3.8)

We now make a graph with vertices {(ûj , v̂j) : 0 ≤ j ≤ N} by placing an edge between
the ith and jth pairs if |v̂j − v̂i| ≤ 4r. The construction ensures that the resulting graph is
connected, and it is easy to see that the disjointness of the sets Ŵj means the number of
neighbors of any pair is bounded by some c0. We label (u0, v0) as the root, and by some
arbitrary algorithm, we take a spanning tree of the graph, which we denote T (Γ0,nre1).
For counting purposes, we view two such trees as the same if they have the same pairs
{(ûj , v̂j) : 0 ≤ j ≤ N}, and the same set of primary pairs. We define parents and offspring
in this rooted tree in the usual way: for a given pair (ûj , v̂j), its parent is the first pair
after (ûj , v̂j) in the unique path from (ûj , v̂j) to the root, and its offspring are those pairs
having (ûj , v̂j) as parent.

The tree T (Γ0,nre1) determines what we will call an abstract tree, in which all that
is specified is the number of offspring of the root, then the number of offspring of
each of these offspring, etc. The number of possible abstract trees here with N + 1

vertices is at most cN0 , and, provided r is large, for each such abstract tree the number
of corresponding actual trees T (Γ0,nre1) is at most ((8r)d)2N+2, so the number of trees
T (Γ0,nre1) consisting of N + 1 pairs is at most (c1r)

2d(N+1).
We now consider all possible trees T0, with vertices {(ûj , v̂j) : 0 ≤ j ≤ N}, and with

{(ûj , v̂j) : 0 ≤ j < n} primary. Let v(T0) denote the number of vertices in the tree T0. We
have

P
(
T (0, nre1) ≤ n(µr + 1)

)
=
∑
N≥n

∑
T0:v(T0)=N

P
(
T (0, nre1) ≤ n(µr + 1), T (Γ0,nre1) = T0

)
≤
∑
N≥n

(c1r)
2d(N+1) max

T0:v(T0)=N
P
(
T (0, nre1) ≤ n(µr + 1), T (Γ0,nre1) = T0

)
(3.9)
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We proceed by contradiction: we want to show that for some C46, if h(r) > µr +

C46σ(r) log r then the right side of (3.9) approaches 0 as n → ∞, which means that
lim supn T (0, nre1)/n ≥ µr + 1 a.s. , contradicting the definition of µ.

Thus suppose
h(r) > µr + 2C46σ(r) log r, (3.10)

with C46 to be specified, and fix T0 with vertices {(ûj , v̂j) : 0 ≤ j ≤ N} with N ≥ n. For
u, v ∈ V ∩ Ŵj let

TŴj
(u, v) = inf{T (Γ) : Γ is a path from u to v in G,Γ ⊂ Ŵj},

taking the value∞ when there is no such path. TŴj
(u, v) is determined by the configura-

tion in
Ŵ 1
j = {u ∈ R2 : d(u, Ŵj) < 1}.

There must exist uj , vj ∈ Ŵj ∩V satisfying |uj− ûj | ≤ 1, |vj− v̂j | ≤ 1,Γuj ,vj ⊂ Γ0,nre1 ∩Ŵj

and
N∑
j=0

TŴj
(uj , vj) ≤ T (0, nre1).

It follows that, letting

T̂j = inf{TŴj
(uj , vj) : uj , vj ∈ V, |uj − ûj | ≤ 1, |vj − v̂j | ≤ 1},

the T̂j ’s are independent (since the sets Ŵ 1
j are separated from each other by distance

more than 2β − 8 > β) and satisfy

N∑
j=0

T̂j ≤ T (0, nre1). (3.11)

Each T̂j is stochastically larger than

Tj = inf{T (uj , vj) : uj , vj ∈ V, |uj − ûj | ≤ 1, |vj − v̂j | ≤ 1}

From (1.11) and (3.8) we have for some c2 that σ(|ûj−v̂j |) ≤ c2σ(r). From (3.8), (3.10),
and subadditivity we also have

ET (ûj , v̂j) ≥ h(r)−h(r−|ûj−v̂j |) ≥ h(r)−c3 ≥ µr+2C46σ(r) log r−c3 ≥ µr+C46σ(r) log r.

Hence from Lemma 3.2 we obtain that provided r is large, for all t ≥ 1,

P
(
Tj ≤ µr + C46σ(r) log r − tσ(r)

)
≤ P

(
Tj ≤ ET (ûj , v̂j)− tσ(r)

)
≤ P

(
Tj ≤ ET (ûj , v̂j)− c−1

2 tσ(|ûj − v̂j |)
)

≤ C44e
−C45t/c2 . (3.12)

By increasing C44 we may make this valid for all t > 0. We then have for λ = C45/2c2σ(r)

and M = µr + C46σ(r) log r,

Ee−λT̂j ≤ Ee−λTj

=

∫ ∞
0

P (Tj ≤ x)λe−λx dx

= e−λM
∫ M/σ(r)

−∞
P (Tj ≤M − tσ(r))λσ(r)eλσ(r)t dt
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≤ e−λM
[∫ 0

−∞
λσ(r)eλσ(r)t dt+

∫ M/σ(r)

0

C44e
−C45t/c2λσ(r)eλσ(r)t dt

]
≤ (1 + C44)e−λM . (3.13)

Recalling (3.9) and (3.11) we then have

P
(
T (0, nre1) ≤ n(µr + 1), T (Γ0,nre1) = T0

)
≤ P

 N∑
j=0

T̂j ≤ n(µr + 1)


≤ eλ(µr+1)n(1 + C44)N+1e−λM(N+1), (3.14)

so by (3.9), provided r (and hence λM ) and C46 (in (3.10)) are large,

P
(
T (0, nre1) ≤ n(µr + 1)

)
≤
∑
N≥n

(c1r)
2d(N+1)eλ(µr+1)n(1 + C44)N+1e−λM(N+1)

≤ 2(c1r)
2d(n+1)eλ(µr+1)n(1 + C44)n+1e−λM(n+1)

≤ e−n log r. (3.15)

As we have noted, since this approaches 0 as n → ∞, it contradicts the fact that
T (0, nre1)/n→ µr a.s. Thus (3.10) must be false.

We need to use a result from [2] to the effect that “geodesics are very straight.” It is
proved there for FPP on a lattice, but the proof goes through essentially unchanged for
the present context. The heuristics are as follows: suppose the geodesic Γ0,re1 passes
through a vertex u = (u1, u

∗) at distance s from Π0,re1 ; by symmetry we may suppose u ∈
H−r/2. The geodesic then travels a corresponding extra distance g(u) + g(re1−u)− g(re1).

If the angle between u and re1 is small, this extra distance is of order |u∗|2/u1, and
from (1.12), the cost of this (meaning log of the probability) is of order |u∗|2/u1σ(u1). If
instead the angle between u and re1 is not small, the extra distance is of order |u| and
the cost is of order |u|/σ(|u|). We can combine these into a single statement by saying
the cost for general u should be whichever of these two costs is smaller, at least for
u ∈ H[0,r].

The exact formulation of the straightness result contains extra log factors relative to
the preceding heuristic, due to the need to bound the probability for all u simultaneously.
It is as follows, using the constants Ci, χi of (1.11). Define σ∗(s) and Φ(s) by

Φ(s) =
s

C23σ∗(s) log(2 + s)
=
sχ2

C23
sup
t≤s

t1−χ2

σ(t) log(2 + t)
.

Here factoring out a power of s on the right, and the use of the sup, ensure that Φ is
strictly increasing. Note that by (1.11) we have

C−1
23 σ(s) ≤ σ∗(s) ≤ σ(s). (3.16)

Then define

Ξ(s) = (sσ(s) log(2 + s))1/2, D(u) =

{
min

(
|u∗|2

Ξ(u1)2 ,Φ
(
max

(
|u1|, |u∗|

)))
if u1 ≥ 0,

Φ
(
max

(
|u1|, |u∗|

))
if u1 < 0.

(3.17)
Note that by (1.11) and (3.16), for large s,

1

C23Φ(s)
≤
(

Ξ(s)

s

)2

≤ 1

Φ(s)
. (3.18)
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The “min” in the definition of D is in accordance with our heuristic: from [2], we have
for large |u| that for C23 from (1.11),

D(u) =

{
Φ
(
max

(
|u1|, |u∗|

))
if |u∗| ≥ u1,

|u∗|2
Ξ(u1)2 if |u∗| ≤ C−1/2

23 u1.
(3.19)

Finally, define the symmetric version of D:

Dr(u) =

{
D(u) if u1 ≤ r

2

D(re1 − u) if u1 >
r
2 .

(3.20)

This makes the right half of the region {u : Dr(u) ≤ c} the mirror image of the left
half; this region is a “tube” (narrower near the ends) surrounding the line from 0 to re1

bounded by the shell {u : |u∗| = c1/2Ξ(u1)}, augmented by a cylinder of radius Φ−1(c)

and length 2Φ−1(c) around each endpoint, so we will call it a tube-and-cylinders region.
We will also consider tube-and-cylinders regions around general pairs u, v in place

of 0, re1. To that end, let Θuv : R2 → R2 be translation by −u followed by some unitary
transformation which takes v − u to the positive horizontal axis, so that Θuv(u) =

0,Θuv(v) = |v − u|e1. (The particular choice of unitary transformation does not matter.)
Then Θ−1

uv ({w : D|v−u|(w) ≤ c}) is a tube-and-cylinders region containing Πuv.
The proof of the acceptable-random-graphs version of the straightness bound is little

changed from the lattice-FPP version in [2]; we can readily use Lemma 3.1(i) to change
the result from “point-to-point” (say, 0 to re1) to “ball-to-ball” (B1(0) to B1(re1)), with
a sup over x and y. The proof in [2] uses only A3, not the additional assumption there
essentially that χ from A3 is the same as the value of lim|x|→∞ log(var(T (0, x))1/2)/ log |x|,
and not the fact that the FPP there is on a lattice. We omit the details of the direct
adaptation.

Proposition 3.4. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There
exist constants C47, C48 as follows. For all r, t > 0,

P

(
sup

x∈B1(0)∩V, y∈B1(re1)∩V
sup
u∈Γxy

Dr(u) ≥ t
)
≤ C47e

−C48t log t. (3.21)

We next bound transverse increments of passage times from 0, that is, increments
which are (approximately) along the boundary of a ball of large radius r, over distances
� ∆(r). The following lattice-FPP result from [2] carries over straightforwardly to the
present context with the help of Lemma 3.1(i), and again we omit details. Recalling the
cubes Fu of side q define

T̂ (u, v) = min{T (y, z) : y ∈ Fu, z ∈ Fv}, u, v ∈ Rd.

Proposition 3.5. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There
exist constants C49–C54 as follows. For all u, v ∈ qZd with

|u| ≥ C49, |g(u)− g(v)| ≤ C50, and 3 ≤ |u− v| ≤ C51∆(|u|), (3.22)

and all λ ≥ C52, we have

P
(
T̂ (v, 0)− T̂ (u, 0) ≥ λσ(∆−1(|u− v|)) log |u− v|

)
≤ C53e

−C54λ log |u−v|. (3.23)

We next prove a seemingly obvious fact: h(r) = ET (0, re1) is approximately increasing
in r.
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Lemma 3.6. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. Given 0 < ε < 1

there exist constants C55, C56 as follows.
(i) Let q > (1 + χ)/(1− χ). Let r, s > 0 satisfying min(r, s) ≥ C55ε

−q. Then

h(r + s) ≥ h(r) + (1− ε)h(s). (3.24)

Here C55 = C55(q).
(ii) For all r, s ≥ 0,

h(r + s) ≥ h(r) + (1− ε)h(s)− C56. (3.25)

Remark 3.7. We only need Lemma 3.6(ii); we include (i) because it is the main step in
proving (ii) and may be useful elsewhere. Part (i) can be reformulated as follows: given
γ > χ/ξ there exist C57(γ), C58(γ) such that

h(r + s) ≥ h(r) + h(s)− C57s
γ for all r ≥ s ≥ C58.

Also, from Proposition 3.3 we have for some C59

h(r + s) ≥ µ(r + s) ≥ h(r) + h(s)− 2C46σ(r) log r for all r ≥ s ≥ 2,

but when s ≤ σ(r) log r this does not yield (3.24).

Proof of Lemma 3.6. We prove (i), then obtain (ii) as a straightforward consequence. The
idea is to show that Γ0,(r+s)e1 must with high probability approach (r+s)e1 approximately
horizontally, which forces T (0, (r+ s)e1)− T (0, re1) to be near h(s) with high probability;
a non-horizontal approach would force the sup in (3.21) to be large.

Suppose (3.24) holds under the added condition s ≤ r/4. Then for s > r/4 we can take
n with s/n ≤ r/4 < s/(n− 1) and see that the hypotheses are satisfied with s/n in place
of s. (This may require increasing C55, but without dependence on n.) Applying (3.24) n
times then yields

h(r + s) = h
(
r + n

s

n

)
≥ h(r) + n(1− ε)h

( s
n

)
≥ h(r) + (1− ε)h(s).

Therefore it is sufficient to prove the lemma for s ≤ r/4. It is also sufficient to consider
0 < ε < ε0 for any fixed ε0 = ε0(q) > 0.

With c0 to be specified, define

m = inf

{
u > 0 : σ(u) log u >

εµs

16c0

}
∧ r

2
, t = εΦ(m)1/2, (3.26)

S1 = {w ∈ Rd : r + s−m ≤ w1 ≤ r + s−m+ 2, Dr+s(w) ≤ t},
S2 = {w ∈ Rd : r + s−m ≤ w1 ≤ r + s−m+ 2, |w∗| ≤ εm}.

Note that provided C55 (and hence s and m) is large, which we henceforth tacitly assume,
and provided ε0 is small, we have Φ−1(t) < m/2 and m ≥ 2s. Suppose w ∈ S1. We have
|w1− (r+ s)| ≥ m− 2 > Φ−1(t) (meaning w lies to the left of the cylinder around (r+ s)e1

in the tube-and-cylinders region {u : Dr+s(u) ≤ t}) and so by (3.18),

|w∗|
m
≤ t1/2Ξ(m)

m
≤ t

Φ(m)1/2
= ε. (3.27)

Thus S1 ⊂ S2. We let ŵ = (r + s−m,w∗), so |w − ŵ| ≤ 2 for w ∈ S2. See Figure 1. Then
for such w, recalling m ≥ 2s, we have

|ŵ−(r+s)e1|−|ŵ−re1| = (m2+|w∗|2)1/2−((m−s)2+|w∗|2)1/2 ≥ sm

(m2 + |w∗|2)1/2
≥ (1−ε2)s,
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re1 (r + s)e1
(r + s−m)e1
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Γ0,(r+s)e10
b bb
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bb

b

Figure 1: Diagram for the proof of Lemma 3.6. S1 is shaded.

so assuming C55 is large and ε0 is small,

|w − (r + s)e1| − |w − re1| ≥ (1− ε2)s− 2 ≥
(

1− ε

4

)
s. (3.28)

Also for w ∈ S2, m/2 ≤ m−s ≤ m−2 ≤ |w−re1| ≤ 2m and hence by (1.11), σ(|w−re1|) ≤
3C23σ(m− 2). It follows that provided we choose c0 large enough in (3.26),

C46σ(|w − re1|) log |w − re1| ≤ 4C23C46σ(m− 2) log(m− 2) ≤ ε

12
µs.

With (3.28) and Proposition 3.3, this yields that provided C55 is large,

h(|w−(r + s)e1|)− h(|w − re1|)
≥ µ|w − (r + s)e1| − µ|w − re1| − C46σ(|w − re1|) log |w − re1|
≥
(

1− ε

3

)
µs

≥
(

1− ε

2

)
h(s). (3.29)

We need a lower bound for t. Since q > q̂ = (1 +χ)/(1−χ), we can choose b > 0 small
enough so (q − 1)(1− b)2 > (1 + b)(q̂ − 1). Provided C55 is large enough (in the lemma
statement, and depending on b, q), since s ≥ C55ε

−q we have

m ≥ (εs)(1−b)/χ, Φ(m) ≥ m(1−b)(1−χ), t = εΦ(m)1/2 ≥ c1ε1−(1−b)2(q−1)(1−χ)/2χ ≥ c1ε−b.
(3.30)

Observe that for every vertex w ∈ Γ0,(r+s)e1 ∩V we have

T (0, (r+s)e1)−T (0, re1) = T (0, w)+T (w, (r+s)e1)−T (0, re1) ≥ T (w, (r+s)e1)−T (w, re1).

(3.31)
Let

T ∗ = min{T (w, (r + s)e1)− T (w, re1) : w ∈ S2 ∩ V }

and let W be the first vertex in Γ0,(r+s)e1 ∩V satisfying r + s−m ≤W1 ≤ r + s−m+ 2.
If W ∈ S2 then by (3.31) and subadditivity we have

T (0, (r + s)e1)− T (0, re1) ≥ T ∗, |T (0, (r + s)e1)− T (0, re1)| ≤ T (re1, (r + s)e1),

|T ∗| ≤ T (re1, (r + s)e1).

Hence

h(r + s)− h(r) = E[T (0, (r + s)e1)− T (0, re1)]

≥ E(T ∗1{W∈S2})− E(T (re1, (r + s)e1)1{W /∈S2})

≥ E(T ∗)− 2E(T (re1, (r + s)e1)1{W /∈S2}). (3.32)
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It follows from (1.4) that for some c2

E(T (re1, (r + s)e1)2)1/2 ≤ c2s.

Assuming ε0 is small, by Proposition 3.4 and (3.30) we have

P (W /∈ S2) ≤ P (W /∈ S1) ≤ C47e
−C48t log t ≤ C47e

−c3ε−b ≤
(
εµ

8c2

)2

. (3.33)

Combining these yields

E(T (re1, (r + s)e1)1{W /∈S2}) ≤ E(T (re1, (r + s)e1)2)1/2P (W /∈ S2)1/2 ≤ εµs

8
. (3.34)

To use (3.32) we also need a lower bound for E(T ∗). For y > 0, using (3.29),

P
(
T ∗ ≤

(
1− ε

2

)
h(s)− 2yσ(m) logm

)
≤ P

(
for some w ∈ S2 ∩V, T (w, (r + s)e1)− T (w, re1) ≤

h(|w − (r + s)e1|)− h(|w − re1|)− 2yσ(m) logm

)
≤ P

(
for some w ∈ S2 ∩V, T (w, (r + s)e1)− h(|w − (r + s)e1|) ≤ −yσ(m) logm

)
+ P

(
for some w ∈ S2 ∩V, T (w, re1)− h(|w − re1|) ≥ yσ(m) logm

)
. (3.35)

We consider the first probability on the right in (3.35); the second probability is similar.
For w ∈ S2 we have using (3.27) that

m− 2 ≤ |w − (r + s)e1| ≤
(
1 + ε2

)
m,

and then from (1.11),
σ(m)

σ(|w − (r + s)e1|)
≥ C22

2
.

From these and Lemma 3.2 (see C45 there) we obtain that if c0 is large enough, then for
y ≥ c0,

P

(
for some w ∈ S2 ∩V, T (w, (r + s)e1)− h(|w − (r + s)e1|) ≤ −yσ(m) logm

)
≤

∑
ŵ∈S2∩d−1/2Zd

P

(
for some w ∈ B1(ŵ) ∩V,

T (w, (r + s)e1)− h(|ŵ − (r + s)e1|) ≤ h(|w − ŵ|)− yσ(m) logm

)
≤

∑
ŵ∈S2∩d−1/2Zd

P

(
for some w ∈ B1(ŵ) ∩V,

T (w, (r + s)e1)− h(|ŵ − (r + s)e1|) ≤ −
y

2
σ(m) logm

)
≤ c4md−1 exp

(
−C45C22y

4
logm

)
≤ 1

2
e−c5y logm. (3.36)
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The same bound holds for the second probability on the right in (3.35). With (3.35) and
the definition of m in (3.26) this shows that

ET ∗ ≥
(

1− ε

2

)
h(s)− 4c0σ(m) logm ≥

(
1− 3ε

4

)
h(s).

Combining this with (3.32) and (3.34) yields (3.24).
We now prove (ii). From (i), there exists c6 such that h(r + s) ≥ h(r) + (1 − ε)h(s)

whenever r, s ≥ c6; there then exists c7 such that h(s) ≤ c7 whenever 0 ≤ s ≤ c6. We
therefore have

h(r + s) ≥


h(r) + (1− ε)h(s) if r, s ≥ c6
h(r)− h(s) ≥ h(r) + (1− ε)h(s)− 2c7 if s < c6

0 ≥ h(r) + (1− ε)h(s)− 2c7 if r < c6

which proves (3.25).

4 Proof of Theorem 1.3—downward deviations

4.1 Proof sketch for (1.14)

The proof operates by making and comparing coarse-grain (CG) approximations on
multiple scales. Given a geodesic Γxy, which we take here to be approximately in the
e1 direction, we form a collection Hxy of hyperplanes perpendicular to e1, between x

and y, and we make a CG approximation in each hyperplane near the point where Γxy
crosses it. The nature of Hxy is illustrated in Figure 3—there are a small number of
black hyperplanes there, called “jth scale hyperplanes” and spaced apart by a multiple
of δjr for some j, where δ (small) is a parameter we choose. Then there are medium-gray
hyperplanes sandwiching the black ones; these are spaced apart by a multiple of δj+1r.
Finally there are light gray hyperplanes sandwiching the medium-gray ones, spaced
apart by a multiple of δj+2r. There are additional hyperplanes in Hxy, not shown, called
joining hyperplanes. There are also in general many more length scales j2 ≤ j ≤ j1 and
corresponding sets of hyperplanes in Hxy, beyond the three scales shown.

To coarse-grain on the jth scale, we approximate hyperplane-crossing points of Γxy
to within a multiple of βj∆(r) (“jth-scale approximation”), where β is another small
parameter. Initially, the CG is on the j1th (finest) scale in all hyperplanes. Our initial
goal—which occupies most of the proof—is to create a modified CG approximation
ΓCGxy : u0 → · · · → un using a small subset of Hxy, containing just two hyperplanes for
each scale j, without overly disrupting the probability (1.14) that we wish to bound. By
this notation for ΓCGxy we mean that T (ΓCGxy ) is defined to be

∑n
i=1 T (ui−1, ui). Such a

modified appromation ΓCGxy is illustrated by the path with vertices ui in Figure 3—as
we move from the endpoints u0, u7 towards the center of the path, the approximation
becomes coarser, being (j + 2)th-scale in the gray hyperplanes at u1, u6, then (j + 1)th-
scale in the medium-gray hyperplanes at u2, u5, and so on. To obtain the modified CG
approximation we iterate a process of coarsening to a jth-scale approximation and then
deleting unwanted (j+ 1)th-scale hyperplanes, one iteration each for j = j1, j1−1, . . . , j2.
Each iteration (except the initial j = j1 − 1, which has no deletions) has its two stages
illustrated in Figure 6. In the first stage of coarsening, called “shifting to the grid,” in
each hyperplane not being deleted, we shift the point from a jth-scale approximation
to (j − 1)th-scale; in Figure 6 this changes the black CG path to the dashed one, in
the section of path shown. In the second “point-deletion” stage, we remove the CG
approximation points in all hyperplanes to be deleted; in Figure 6 this changes the CG
path to the gray one.
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Of course we need to analyze how the passage time of the path changes through the
various iterations and stages; the very purpose of the iterative process is to have tight
control over these changes, which would be not be possible if we jumped directly from
original to fully CG path. We want to move from the need to bound

P
(
T (x, y)− h(|(y − x)1|) ≤ −tσ(r) for some x, y ∈ Gr(K)

)
, (4.1)

as in (1.14), to just the need to bound something like

P

(
T
(
ΓCGxy

)
− h((y − x)1) ≤ −1

2
tσ(r) + f(ΓCGxy ) for some (x, y)

)
, (4.2)

where the f(ΓCGxy ) (not too large) is there to allow the bound to depend on ΓCGxy . Let us
illustrate how the point-removal stage of an iteration moves toward this goal, with a
simplified example. For simplicity here we approximate h(p, q) by µ|q − p| for various p, q.
Consider just a single path Γ1

wz : w = v0 → v1 → v2 → v3 = z, with w1 < z1; it should
be emphasized that our actual computations are done uniformly over (x, y) as in (4.1).
Suppose that the probability we want to bound is P (T (Γ1

wz) ≤ h((z − w)1) − tσ(r) − a)

for some a (so (4.1) has a = 0, but this changes as iterations occur.) We define an
“intermediate path” in which (in some cases) only some of the scheduled points get
deleted; suppose this is Γintwz : v0 → v2 → v3. Let

Uh(Γ1
wz) =

3∑
i=1

h(|vi − vi−1|)

and analogously for Uh(Γintwz ). Let c, δ > 0 and define

b̃ = Uh(Γ1
wz)− Uh(Γintwz )− 3c, b = δ

(
Uh(Γ1

wz)− h(|z − w|)
)
− 3c,

and similarly for Uh(Γintwz ). Then (b+ 3c)/δ represents the extra h-length in Γ1
wz versus a

single-step path w to z. This extra length is related to what we call the bowedness of the
path. We always choose the intermediate path so that at least δ fraction of this extra
length is present when we compare Γ1

wz to Γintwz instead of to the single-step path, that is,
we choose so that b̃ ≥ b; we call this deterministic tracking. We then have

P
(
T (Γ1

wz)− h((z − w)1) ≤ −tσ(r)− a
)

≤ P
(
T (Γintwz )− h(|(z − w)1|) ≤ −tσ(r)− a− b̃

)
+ P

(
T (Γ1

wz)− T (Γintwz ) ≤ b̃
)

≤ P
(
T (w, z)− h(|(z − w)1|) ≤ −tσ(r)− a− b

)
+ P

(
T (Γ1

wz)− T (Γintwz ) ≤ Uh(Γ1
wz)− Uh(Γintwz )− 3c

)
≤ P

(
T (w, z)− h(|(z − w)1|) ≤ −tσ(r)− a− b

)
+ P

(
|T (u0, u1)− h(|u1 − u0|) ≥ c or |T (u1, u2)− h(|u2 − u1|) ≥ c

or |T (u0, u2)− h(|u2 − u0|) ≥ c
)

= (I) + (II). (4.3)

It should be noted that the use of the intermediate path means that the link u2 → u3

does not appear in (II), since it is common to both Γ1
wz and Γintwz . This is useful in a case

where u2 → u3 is much longer than the three links appearing in (II); excluding u2 → u3

therefore allows for a much smaller value of c necessary to make (II) small. We refer to c
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as an allocation; it is like a “tax” subtracted from δ
(
Uh(Γ1

wz)− h(|z − w|)
)

in defining b,
and allocated to one of the links ui → uu, so that (II) can be small.

We refer to the event on the fourth line of (4.3) as a tracking failure; it says that
when we remove a point from Γ1

wz to create Γintwz , the reduction in passage time T (·) is
significantly less than the reduction in h-length Uh(·). Provided we can make the tracking
failure probability (II) small while keeping c small enough, b will be positive and we
have then achieved an improvement from the left side of (4.3) to (I) in the sense that we
have replaced −tσ(r)− a with −tσ(r)− a− b. As we go through the iterations, starting
from (4.1), these improvements accumulate and we obtain something like (see (4.166))

P
(
T (x, y)− h(|(y − x)1|) ≤ −tσ(r) for some x, y ∈ Gr(K)

)
≤ P

(
T
(
ΓCGxy

)
− h((y − x)1) ≤ −1

2
tσ(r)− δµ

(
UEuc(Γ

(j1)
xy )− UEuc(ΓCGxy )

)
+ (sum of allocations) for some x, y

)
+ (sum of probabilities of tracking failures), (4.4)

where Γ
(j1)
xy denotes the initial finely-coarse-grained path. The sum of allocations here

contains a term which we split:

δµ
(
UEuc(Γ

(j1)
xy )− |(y−x)1|

)
= δµ

(
UEuc(Γ

(j1)
xy )−UEuc(ΓCGxy )

)
+ δµ

(
UEuc(Γ

CG
xy )− |(y−x)1|

)
,

with the first term on the right representing the decrease in path length due to iterations
and the second representing the remaining excess path length in the CG path, after
the iterations are complete. The first of these is cancelled by the similar term on the
right in (4.4), which came from the accumulated improvements, and the problem can
then be reduced (see (4.173)) to bounding a probability purely involving the final CG
approximation:

P

(
T (ΓCGxy )− Uh(ΓCGxy ) ≤ −1

3
tσ(r)− µ

2

(
UEuc(Γ

CG
xy )− |(y − x)1|

)
for some x, y ∈ Gr(K)

)
.

(4.5)

If we compare (4.5) to (4.1), we see that besides replacing the geodesic with its course-
grained approximation, we have improved the right side of the inequality to a factor
proportional to the excess length in the CG path. This improvement makes it possible to
sum where needed over all possible CG paths. A key tool in the bounding of (4.5), as
well as the various tracking failure probabilities, is Lemma 4.6, which says that with
high probability, there are no CG links (u, v) anywhere in G+

r for which T (u, v) deviates
from its mean by more than a specified allocation, which shrinks as the coarse-graining
scale becomes finer.

Most of the preceding is oversimplified from what we actually do; we give further
proof-outlining information in Remarks 4.4 and 4.8.

4.2 Step 0. Preliminaries and easy cases

As we have noted, it is sufficient to prove (1.14), thanks to (1.15) and Lemma 3.3. We
use a multiscale argument which is related to chaining. First we dispense with simpler
cases that only require Lemma 3.2 and Proposition 3.4; these allow us to take |y − x| at
least of order r/(log r)1/χ1 . The first such case is pairs x, y which are close together. For
technical convenience later, we prove the following also for geodesics with endpoints in
the set G+

r , satisfying G+
r ⊃ Gr(K) for K fixed and r large, given by

G+
r = [−C60(log r)2/(1−χ), r + C60(log r)2/(1−χ)]× C60∆(r)(log r)Bd−1, (4.6)

with C60 to be specified.
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Lemma 4.1. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist
constants C61–C64 such that for all r ≥ 2,K ≥ 1, and t > C61K

2,

P

(
T (x, y) ≤ ET (x, y)− tσ(r) for some x, y ∈ Gr(K) ∪G+

r with |y − x| ≤ C62r

(log r)1/χ1

)
≤ C63e

−C64t log r. (4.7)

Proof. We may assume t is large. We first discretize: by Lemma 3.1(ii), for x ∈ B1(x̂), y ∈
B1(ŷ), we have |ET (x, y)− ET (x̂, ŷ)| ≤ 2C42 ≤ tσ(r)/2, so for c0 > 0,

P

(
T (x, y) ≤ ET (x, y)− tσ(r) for some x, y ∈ G+

r with |y − x| ≤ c0r

(log r)1/χ1

)
≤

∑
x̂,ŷ∈d−1/2Zd∩(Gr(K)∪G+

r )

|x̂−ŷ|≤2c0r/(log r)1/χ1

P

(
T (x, y) ≤ ET (x̂, ŷ)− tσ(r)

2
for some x ∈ B1(x̂), y ∈ B1(ŷ)

)
.

(4.8)

From (1.11),

|x̂− ŷ| ≤ 2c0r

(log r)1/χ1
=⇒ σ(r)

σ(|x̂− ŷ|) ≥
c1

(2c0)1/χ1
log r,

so if we take c0 small enough then by Lemma 3.2,∑
x̂,ŷ∈d−1/2Zd∩(Gr(K)∪G+

r )

|x̂−ŷ|≤c0r/2(log r)1/χ1

P

(
T (x, y) ≤ ET (x̂, ŷ)− tσ(r)

2
for some x ∈ B1(x̂), y ∈ B1(ŷ)

)

≤ c2r(K∆(r) log r)d−1 max
{
e−C45tσ(r)/2σ(|x̂−ŷ|) : |x̂− ŷ| ≤ c0r/2(log r)1/χ1

}
≤ e−C45t log r, (4.9)

which with (4.8) proves (4.7).

Lemma 4.1 means we need only consider x, y ∈ Gr(K) satisfying

|y − x| > C62r

(log r)1/χ1
. (4.10)

Writing αuv for the angle between nonzero vectors u, v ∈ Rd, this means that for large r,

αy−x,e1 ≤ βr := c0
∆(r)(log r)1/χ1

r
≤ r−(1−χ)/4. (4.11)

A second simple case is small r. For fixed r0 and 1 ≤ r ≤ r0, from Lemma 3.1 for all
x, y ∈ Gr we haveET (x, y) ≤ c1r, so for t ≥ c2r0 we haveET (x, y)−tσ(r) ≤ c1r−tσ(r) < 0,
and hence the probability in (1.14) is 0. Therefore there exist C29, C30 such that (1.14) is
valid for all 1 ≤ r ≤ r0 and t > 0.

A third simple case is t ≥ c3 log(Kr), with c3 large enough. As in (4.8) and (4.9), for
C45 from Lemma 3.2 we then have

P
(
T (x,y) ≤ ET (x, y)− tσ(r) for some x, y ∈ Gr(K)

)
≤ c4r(K∆(r))d−1 max

u,v∈Gr(K)
e−C45tσ(r)/2σ(|u−v|)

≤ c4r(K∆(r))d−1e−c5t

≤ c6e−c5t/2. (4.12)
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It follows that, for C26 from Theorem 1.3, we need only consider C26K
2 ≤ t < c3 log(Kr),

and therefore also K ≤ c7(log r)1/2, which means Gr(2K) ⊂ G+
r .

A fourth simple case is pairs x, y for which Γxy goes well outside Gr(K), when r is
large and t < c3 log(Kr). For that we have the following.

Lemma 4.2. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. Then given
C > 0 there exist constants Ci = Ci(C) such that for c7 as above, for all r ≥ C65,K ≤
c7(log r)1/2 we have

P
(

Γxy 6⊂ G+
r for some x, y ∈ Gr(K) satisfying (4.10)

)
≤ C68e

−C69(log log r) log r. (4.13)

For cases of Theorem 1.3 not covered by the first three simple cases, since r ≥ r0

and (as noted above) C26K
2 ≤ t < c3 logKr, provided we take r0 and C26 large enough,

the exponent in (4.13) is greater than t, so (4.13) is in keeping with (1.14).

Proof of Lemma 4.2. Note the assumptions guarantee Gr(K) ⊂ G+
r . Let x̂, ŷ ∈ d−1/2Zd∩

Gr(K) with x̂1 < ŷ1, and let x, y ∈ Gr satisfy (4.10), with |x− x̂| < 1, |y − ŷ| < 1. Recall
the transformation Θx̂ŷ which takes Πx̂ŷ to Π0,|ŷ−x̂|e1 . Suppose w ∈ Γx̂ŷ\G+

r and let
w̃ = Θx̂ŷw; we may take w with d(w,G+

r ) ≤ 2. We claim that, for Dr from (3.20), we have
Dr(w̃) ≥ C60 log r, with C60 from the definition of G+

r . We consider several cases.
Case 1. −C60(log r)2/(1−χ) ≤ w1 ≤ r + C60(log r)2/(1−χ), that is, w is to the side of G+

r .
See Figure 2. From symmetry we may assume −C60(log r)2/(1−χ) ≤ w1 ≤ r/2. Note that
in the definition (3.17) of D(u), the case u1 ≥ 0 is the relevant one here if and only if
w̃1 ∈ [0, |ŷ − x̂|]. We have

d(w̃,Π0,|ŷ−x̂|e1) = d(w,Πx̂ŷ) ≥ d(w,Gr(K)) ≥ C60

2
∆(r) log r, |w∗| ≥ C60∆(r) log r,

(4.14)
and w̃1 ∈ [0, |ŷ − x̂|] =⇒ d(w̃,Π0,|ŷ−x̂|e1) = |w̃∗|, so

w̃1 ∈
[
0,
|ŷ − x̂|

2

]
=⇒ |w̃∗|2

Ξ(w̃1)2
≥ d(w̃,Π0,|ŷ−x̂|e1)2

Ξ
(

1
2 |ŷ − x̂|

)2 ≥ C2
60∆(r)2(log r)2

4Ξ(r)2
≥ C2

60

5
log r.

Also as in (4.14),

max(|w̃1|, |w̃∗|) ≥
1√
2
|w̃| = 1√

2
|w − x̂| ≥ 1√

2
d(w,Πx̂ŷ) ≥ C60

3
∆(r) log r

so
Φ
(
max

(
|w̃1|, |w̃∗|

))
≥ C60 log r.

Therefore under Case 1,

−∞ < w̃1 ≤
|ŷ − x̂|

2
=⇒ D|ŷ−x̂|(w̃) ≥ C60 log r, (4.15)

and symmetrically the same holds for w̃1 > |ŷ − x̂|/2.
Case 2. w1 < −C60(log r)2/(1−χ) with w̃1 > 0, or w1 > r + C60(log r)2/(1−χ) with

w̃1 < |ŷ − x̂|, that is, w is past the end of G+
r but w̃ is to the side of Π0,|ŷ−x̂|e1 . See

Figure 2. The two ends are symmetric so we need only consider w1 < −C60(log r)2/(1−χ)

with w̃1 > 0. Let H(x̂) be the hyperplane through x̂ perpendicular to ŷ − x̂, and let w
be the orthogonal projection of w into H(x̂), so |w − x̂| = |w̃∗| and |w − w| = |w̃1|. Since
K ≤ c7(log r)1/2, by (4.11) the angle αŷ−x̂,e1 is small enough that we have w1 < w1 < 0

and hence, for βr from (4.11),

C60(log r)2/(1−χ) ≤ x̂1 − w1 ≤ |w − x̂| sinαŷ−x̂,e1 ≤ |w̃∗|βr; (4.16)
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w
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ŷ
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Gr(K)
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b
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b

b

b
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Figure 2: Diagram for Case 1 (right) and Case 2 (left) in the proof of Lemma 4.2. On
the left, if we translate and rotate the picture so that x̂ becomes 0 and ŷ − x̂ becomes
horizontal, then w becomes w̃. Case 3 is like Case 2 except that w̃ is to the left of 0.

therefore

Φ
(
max

(
|w̃1|, |w̃∗|

))
≥ Φ

(
C60(log r)2/(1−χ)

βr

)
≥ C60 log r.

Further, similarly to (4.16), since the small angle αŷ−x̂,e1 ensures 1
2 w̃1 = 1

2 |w − w| ≤
(w − w)1, we have

1

2
w̃1 ≤ (w − w)1 ≤ (x̂− w)1 = |w − x̂| sinαŷ−x̂,e1 ≤ |w̃∗|βr (4.17)

and therefore using (1.11),

|w̃∗|2
Ξ(w̃1)2

≥ |w̃∗|2
Ξ(2βr|w̃∗|)2

≥ C22|w̃∗|
βχ1
r σ(|w̃∗|) log(2 + |w̃∗|) ≥

1

βχ1
r
≥ C60 log r.

This proves the right side of (4.15) under Case 2.
Case 3. w1 < −C60(log r)2/(1−χ) with w̃1 ≤ 0, or w1 > r + C60(log r)2/(1−χ) with

w̃1 ≥ |ŷ − x̂|, that is, w is past the end of G+
r and w̃ is past the end of Π0,|ŷ−x̂|e1 . The two

ends are again symmetric so we need only consider w1 < −C60(log r)2/(1−χ) with w̃1 ≤ 0.
Then |w̃| = |w − x̂| ≥ x̂1 − w1 ≥ C60(log r)2/(1−χ) so

Dr(w̃) = Φ
(
max

(
|w̃1|, |w̃∗|

))
≥ Φ

( |w̃|
2

)
≥ C60 log r.

Thus in all cases we have Dr(w̃) ≥ C60 log r, so by Proposition 3.4,

P
(

Γxy 6⊂ G+
r for some x, y ∈ Gr(K) satisfying (4.10)

)
≤

∑
x̂,ŷ∈d−1/2Zd∩Gr(K)

P
(

Γxy 6⊂ G+
r for some x, y ∈ Gr(K) satisfying (4.10)

with |x− x̂| < 1, |y − ŷ| < 1
)

≤
∑

x̂,ŷ∈d−1/2Zd∩Gr(K)

P

(
sup

x∈B1(x̂)∩V,y∈B1(ŷ)∩V
sup
w∈Γxy

D|ŷ−x̂|(Θx̂ŷw) ≥ C60 log r

)
≤ c0r(K∆(r))d−1e−C47(log log r) log r

≤ c1e−c2(log log r) log r.
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In summary, having handled the four simple cases we may restrict to the following
situation (still with x, y ∈ Gr(K)):

r ≥ r0, K ≤ c7(log r)1/2, c8 ≤ t ≤ c3 log r, |y − x| > C62r

(log r)1/χ1
, Γxy ⊂ G+

r , (4.18)

with C62 from Lemma 4.1.

4.3 Step 1. Setting up the coarse-graining

For purposes of coarse-graining and multiscale analysis of paths, we build grids
inside G+

r on various scales, using small parameters λ, δ, β satsfying

1� λ� δχ1 � δ(1+χ1)/2 � β (4.19)

in the sense that the ratio of each term to the one following must be taken sufficiently
large, in a manner to be specified. We choose these so 1/δ and 1/β are integers. There
is also a fourth parameter ρ > 1, and we further require

β

λρδ(1+χ2)/2
� 1,

ρβ

λδ(1−χ1)/2
� 1,

β2

λ2δ
� 1,

β2χ1/(1+χ1)

λδ3
� 1, ρ2λ� 1; (4.20)

all of (4.20) can be satisfied by taking β small enough after choosing ρ, λ, δ. For j ≥ 1, a
jth-scale hyperplane is one of form Hkδjr, k ∈ Z, and the jth-scale grid in G+

r is

Lj = Lj(r) =
{
u ∈ G+

r : u1 ∈ δjrZ, u∗ ∈ K0β
j∆(r)Zd−1

}
,

where K0 ∈ [1, 2] is to be specified. Note that larger j values correspond to smaller
scales, and since 1/δ is an integer, a jth-scale hyperplane for some j is also a kth-scale
hyperplane for k > j. A hyperplane is maximally jth-scale if it is jth-scale but not
(j − 1)th-scale.

The jth-scale grid divides a jth-scale hyperplane into cubes which we call jth-scale
blocks. For concreteness we take these blocks to be products of left-open-right-closed
intervals. Each point u of the hyperplane then lies in a unique such block. For a point u
in a jth-scale hyperplane, the jth-scale coarse-grain approximation of u is the point Vj(u)

which is the unique corner point in the block containing u. We abbreviate coarse-grain
as CG. The definition ensures that two points with the same jth-scale CG approximation
also have the same kth-scale CG approximation for all larger scales k < j.

A transverse step in the jth-scale grid is a step from some u ∈ Lj to some v ∈ Lj
satisfying v1 = u1, |v∗ − u∗| = K0β

j∆(r); a longitudinal step is from u to v satisfying
v1 = u1 + δjr, v∗ = u∗. Define

`1 = `1(j) =
∆(δjr)

βj∆(r)
, `2 = `2(j) = ρj`1(j),

so from (1.11),

`1 ≥
δ(1+χ2)j/2

C23βj
,

δ(1+χ2)j/2ρj

C23βj
≤ `2 ≤

δ(1+χ1)j/2ρj

C22βj
. (4.21)

Here `1(j) is chosen so that the typical transverse fluctuation ∆(δjr) for a geodesic
making one longitudinal step is of order `1(j) transverse steps.

On short enough length scales, coarse-graining is unnecessary because we can use
Proposition 3.5 and Lemma 4.1. More precisely, we will need only consider j ≤ j1 = j1(r)

where j1 is the least j for which(
λ

δχ1

)j1
≥ (log r)2, so j1(r) � log log r. (4.22)
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Provided r is large, this means the spacings δj1r and K0β
j1∆(r) of the j1th-scale grid

are large, and therefore we can choose q ∈ [4, 5] so that δj1r is an integer multiple of q,
and then choose K0 ∈ [1, 2] such that K0β

j1∆(r) is an integer multiple of q. Then (since
1/δ and 1/β are integers) for all j ≤ j1, the jth-scale grid in every jth-scale hyperplane
is contained in qZd, which we call the basic grid.

We say an interval in R has kth-scale length if its length is between 10δk+1r and
10δkr.

Given x, y ∈ Gr(K) with x1 < y1, satisfying (4.18), we define a hyperplane collec-
tion Hxy, which depends on the geodesic Γxy, constructed inductively as follows. All
hyperplanes Hs ∈ Hxy have s ∈ [x1, y1], and we view the hyperplanes as ordered by their
indices. Let j2(x, y) be the least j such that there are at least 4 jth-scale hyperplanes
between x and y. Subject always to the constraint s ∈ [x1, y1], at scale j2 we put in Hxy
the j2th scale hyperplanes Hs second closest to x and to y; we call these j2-terminal
hyperplanes. The gap between the j2-terminal hyperplanes is at least δj2r and at most
4δj2−1r. In general, when we have chosen the jth-scale hyperplanes in Hx,y for some
j ≥ j2, each gap between consecutive ones is called a jth-scale interval, and the hyper-
planes bounding it are the endpoint hyperplanes of the interval. The number of jth-scale
intervals in Hxy is at most |x̂− ŷ|/δjr ≤ δ−j . For any interval I we also call {Hs : s ∈ I}
an interval; which meaning should be clear from the context. A jth-scale interval is short
if it has jth-scale length, and long otherwise. We then add (j + 1)th-scale hyperplanes to
Hxy, of 3 types.

(i) The first type consists of two hyperplanes, which are the (j+1)th-scale hyperplanes
second closest to x and to y, which we call (j + 1)-terminal hyperplanes. A (j + 1)-
terminal hyperplane may also be a kth-scale hyperplane on some larger scale
k < j + 1, in which case we call it an incidental kth-scale hyperplane.

(ii) As a second type, for each non-incidental jth-scale hyperplane Hkδjr ∈ Hxy we
put in Hxy the closest (j + 1)th-scale hyperplanes on either side of Hkδjr, that is,
H(kδj−δj+1)r and H(kδj+δj+1)r, which we call sandwiching hyperplanes.

(iii) The third type is (j + 1)th-scale joining hyperplanes; we place between 1 and 4
of these in each long jth-scale interval, depending on the behavior of Γxy in the
interval in a manner to be specified below. Joining hyperplanes are always placed
in the “extremal 10ths” of the long interval; more precisely, if the jth-scale interval
has kth-scale length then they are placed at distance δ`r from one of the endpoints
for some k + 1 ≤ ` ≤ j, with at most 2 such hyperplanes at either end.

We use superscripts − and + for quantities associated with left-end and right-end joining
hyperplanes, respectively. In (iii), if we add 2 joining hyperplanes at one end of the
interval, then their distances from the endpoint have form δ`f and δ`+1r for some `; this
` corresponds to the scale where bowedness is maximal, in a sense we will describe
below.

We continue adding hyperplanes through all scales from j2 to j1; after adding j1th-
scale hyperplanes, Hxy is complete and we stop.

A terminal jth-scale interval in [x1, y1] is an interval between a terminal (j+1)th-scale
hyperplane and the terminal jth-scale hyperplane closest to it; the length of such an
interval is necessarily between δjr/2 and 2δjr, so it is short. In Figure 3, the interval
between the hyperplanes containing u2 and u3 is a terminal jth-scale interval.

At most 6 (j + 1)th-scale hyperplanes are added inside each jth-scale interval, and
only 1 if the interval is terminal. Therefore if Hxy contains n jth-scale hyperplanes, then
the number of (j + 1)th-scale hyperplanes is at most 7(n− 1) + 5. It follows that∣∣∣ {Hs : Hs is a jth-scale hyperplane in Hxy}

∣∣∣ ≤ 7j − 1. (4.23)
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x̂ = u0

u1

u2

u3

u4
u5

u6

ŷ = u7b

bb

b

b

b

b

b

Figure 3: Diagram showing 3 scales of hyperplanes in Hxy: jth-scale (black), (j + 1)th-
scale (medium gray), (j + 2)th-scale (light gray.) Points ui, 1 ≤ i ≤ 6, are in the terminal
hyperplanes; if these are all the scales (i.e. j1 = j2 + 2) then the path is an example of
a possible final CG path ΓCGxy , or a path Ωxy in Section 7. The other hyperplanes are
sandwiching ones. Joining hyperplanes are not shown.

In keeping with (iii) above, we will designate up to four random values µ−,1xy (I) <

µ−,2xy (I) < µ+,2
xy (I) < µ+,1

xy (I) in I for each long jth-scale interval I = [a, b], for each j,
depending on Γxy. These will satisfy

|I| ∈[δkr − 4δkr, δkr] =⇒ µ−,1xy (I) = a+ δ`+1r, µ−,2xy (I) = a+ δ`r for some k < ` ≤ j,
µ+,1
xy (I) = b− δ`′+1r, µ+,2

xy (I) = b− δ`′r for some k < `′ ≤ j.

We call the values µ±,1xy (I) outer joining points, and µ±,2xy (I) inner joining points; the inner
ones will represent locations where a certain other path traversing I can be guided to
coalesce with Γxy, and we call Hµ±,εxy (I) the (potential) joining hyperplanes of the interval
I. We say “potential” because not all are necessarily actually included in Hxy; which are
included, and with what values of `, `′, depend on rules to be described.

Recall that ψq(u) denotes the closest point to u in the basic grid, and Fy = ψ−1
q (y), y ∈

qZd. We need only consider the case in which x, y each share a Voronoi cell with a basic
grid point, that is,

x = ϕ(x̂), y = ϕ(ŷ) for some x̂, ŷ ∈ qZd; (4.24)

we readily obtain the general case from this via Lemma 3.1, since for every x0 ∈ V the
point x = ϕ(ψq(x0)) satisfies (4.24) and |x0 − x| ≤ q

√
d. Since q ≥ 2, (4.24) ensures that

ψq(x) = x̂, ψq(y) = ŷ. For 0 ≤ s ≤ r and γ a path in G from B1(0) to B1(re1), for v, w
vertices in γ, write γ[v,w] for the segment of γ from v to w and let us(γ) denote the entry
point of γ into H+

s , that is, the first vertex of γ in H+
s , necessarily next to Hs (in the

sense that its Voronoi cell intersects Hs.) Our aim is to approximate a general geodesic
Γxy (subject to (4.18)) by a CG one via certain marked (basic) grid points which we will
designate, lying in hyperplanes Hs ∈ Hxy. In the geodesic Γxy, the first and last marked
grid points are x̂ = ψq(x) and ŷ = ψq(y) (see (4.24)). Initially, the ones in between are
the discrete approximations ψq(us(γ)) of the entry points us(γ) corresponding to each
of the hyperplanes Hs ∈ Hxy. Here since q ≥ 4 and d(us(γ), Hs) ≤ 2, we always have
ψq(us(γ)) ∈ Hs. Later we will remove some of these initial marked grid points, and
replace others with their jth-scale CG approximations for various j. This means not
every Hs ∈ Hxy necessarily contains a marked grid point, in all our CG approximations.
When a path Γ has a marked grid point in some Hs, we denote that marked grid point as
ms(Γ). For all our CG approximations, the first and last marked grid points are ψq(x) and
ψq(y), and for some j the ones in between each lie in the jth-scale grid in some jth-scale
hyperplane Hkδjr ∈ Hxy. If such a CG path has marked grid points v, w in consecutive
jth-scale hyperplanes of Hxy, we say γ makes a jth-scale transition from v to w. Such
a transition involves one longitudinal step and some number mi of transverse steps in
direction i for each 2 ≤ i ≤ d, going from v to w. We say a jth-scale transition is normal
if mi ∈ [−`2, `2] for all 2 ≤ i ≤ d, and sidestepping otherwise. Even on the smallest scale
j1, every jth-scale transition with v, w ∈ G+

r is nearly in the e1 direction, in that its angle
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satisfies (similarly to (4.11))

αe1,w−v ≤
4C60

√
d− 1∆(r) log r

δj1r
≤ r−(1−χ2)/2, (4.25)

provided r is large, with C60 from the definition of G+
r .

We refer to a path γ from x to y, together with its marked grid points, as a marked
path ; the path alone, without the marked grid points, is called the underlying path. We
may write a marked path as ψq(x) = v0 → v1 → · · · → vm → vm+1 = ψq(y); here the vi

are grid points. The pairs (vi−1, vi) are called links of the path. If γ is the concatenation
of the geodesics Γvi−1,vi , we call it a marked piecewise-geodesic path ; we abbreviate
piecewise-geodesic as PG. (Recall that when v, w /∈ G, Γvw denotes Γϕ(v),ϕ(w).) Unless
otherwise specified, when we give a marked path by writing its marked points in this
way, we assume the path is the (unique) marked PG path given by those marked points.

Recall that
T̂ (u, v) = min{T (y, z) : y ∈ Fu, z ∈ Fv},

with Fu, Fv being cubes of side q ∈ [4, 5]. Suppose we have a marked PG path

ΓCG : v0 → v1 → · · · → vm → vm+1,

contained in G+
r . We associate four quantities to this path:

ΥEuc(Γ
CG) = ΥEuc(v

0, . . . , vm+1) =

m+1∑
i=1

|vi − vi−1|, Υh(ΓCG) =

m+1∑
i=1

h
(∣∣vi − vi−1

∣∣) ,
ΥT̂ (ΓCG) =

m+1∑
i=1

T̂ (vi−1, vi), Ψ(ΓCG) =

m+1∑
i=1

|(vi − vi−1)∗|2
|(vi − vi−1)1|

.

Using the standard fact that for some c9 ≤ 1,

3

8

|w∗|2
|w1|

≤ |w| − |w1| ≤
|w∗|2
2|w1|

whenever
|w∗|
|w1|

≤ c9, (4.26)

we see that provided r is large and all vi ∈ G+
r , Ψ(ΓCG) represents added length in ΓCG

relative to the lower bound |(vm+1 − v0)1|, in that

ΥEuc(Γ
CG) ≥

m+1∑
i=1

|(vi − vi−1)1|+
3

8
Ψ(ΓCG) = |(vm+1 − v0)1|+

3

8
Ψ(ΓCG). (4.27)

Informally we refer to ΥEuc(v
0, . . . , vm+1)− |(vm+1− v0)1| as the extra length of the path

ΓCG. From (4.26), subadditivity of h, and Lemma 3.6(ii) (applied with any ε < 3
8 − 1

3 ) we
obtain, after reducing c9 if necessary,

µ

3

|w∗|2
|w1|

− c10 ≤ h(|w|)− h(|w1|) ≤
2µ

3

|w∗|2
|w1|

+ c10 whenever
|w∗|
|w1|

≤ c9. (4.28)

In our applications of (4.28), the last condition will always be satisfied due to (4.25). In
general, provided r is large and all vi lie in G+

r , with (vi − vi−1)1 much larger than the
width 2C60∆(r) log r of G+

r , we have from (4.28) that

Υh(ΓCG)− h((vm+1 − v0)1) ≥
m+1∑
i=1

[
h
(∣∣vi − vi−1

∣∣)− h ((vi − vi−1)1

) ]
≥ µ

3
Ψ(ΓCG)− (m+ 1)c10. (4.29)
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We can now define the joining points µ±,εxy (I) in a long jth-scale interval I = [a, b] of
kth-scale length, where j2 ≤ k < j ≤ j1 − 1. We begin with µ−,εxy (I), ε = 1, 2, which lie in
the left part of I. We first define modified values of t which will appear in Lemmas 4.5
and 4.6:

t∗(v) =
1

3
t+

δµ

18

( |v∗|
∆(r)

)2

and t∗(v, w) =
1

3
t+

δµ

18

[( |v∗|
∆(r)

)2

+

( |w∗|
∆(r)

)2
]
. (4.30)

We consider a marked PG path with marked points in the (j + 1)th-scale grid: let

v0 = ma(Γxy) = Vj+1(ua(Γxy)), vfin = mb(Γxy) = Vj+1(ub(Γxy)),

and for each k + 1 ≤ ` ≤ j + 1 let

v` = ma+δ`r(Γxy) = Vj+1(ua+δ`r(Γxy)), w` = Πv0vfin ∩Ha+δ`r,

and let

α(`) =
|v` − w`|2

δ`r
, κ(`) =

|v` − w`|2
δ`rσ(δ`r)

. (4.31)

We may view α(`)/2 as an approximation of the “extra distance at scale δ`r,” that is,
of |v` − v0| + |vfin − v`| − |vfin − v0|; κ(`)/2 is this extra distance normalized by the
fluctuation size. For k + 1 ≤ ` < j + 1 let g`+1 = Πv0v` ∩Ha+δ`+1r, and let

θ(`+ 1) =
|g`+1 − w`+1|
|v`+1 − w`+1| = δ

|v` − w`|
|v`+1 − w`+1| ; (4.32)

see Figure 4. Then
|v`+1 − g`+1|2

δ`+1r
= (1− θ(`+ 1))2α(`+ 1) (4.33)

so in view of (4.25), there is an “extra distance”

ΥEuc(v
0, v`+1, v`)− |v` − v0| ≥ 1

3

|v`+1 − g`+1|2
δ`+1r

=
(1− θ(`+ 1))2

3
α(`+ 1). (4.34)

Suppose that for some ` ∈ [k + 1, j] we have

2j−`κ(j + 1) ≤ κ(`+ 1), 2κ(`+ 1) ≥ κ(`), (4.35)

as happens if 2mκ(m) is maximized at m = `. From (1.11), the second inequality ensures
that

θ(`+ 1)2 ≤ 2δ
σ(δ`r)

σ(δ`+1r)
≤ 1

4
and 2α(`+ 1) ≥ σ(δ`+1r)

σ(δ`r)
α(`) ≥ C−1

23 δ
χ2α(`), (4.36)

and the first inequality in (4.35) tells us that

α(`+ 1) ≥ 2j−`
σ(δ`+1r)

σ(δj+1r)
α(j + 1) ≥ C22

(
2

δχ1

)j−`
α(j + 1). (4.37)

It then follows from (4.34), (4.36), and (4.37) that the path from v0 to v` is bowed in the
sense that

ΥEuc(v
0, v`+1, v`)− |v` − v0| ≥ C22

12

(
2

δχ1

)j−`
α(j + 1). (4.38)

Motivated by this we let
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v0

vj+1
vj

vℓ+1

vℓ to vfin

wj+1 wj
wℓ+1

gℓ+1

wℓ

Ha Ha+δℓr

Γxy

b

b b

b

b

b
b

b

b

b b

Figure 4: The left end of a long jth-scale interval in which L−(I) = `. Starting from
the left, there is an endpoint hyperplane, then one of its sandwiching hyperplanes; the
rightmost two are the joining hyperplanes, containing v`+1 and v`. In the bowed case,
v`+1 (at distance δ`+1r from Ha) is “sufficiently far” from w`+1, creating more bowedness
than exists on other length scales δir.

L−(I) =


j if max(α(j + 1), δ−1α(j)) ≤ 1

16µ

(
λ
7

)j+1
t∗(v0)σ(r),

arg max`∈[k+1,j] 2`κ(`)− 1 if max(α(j + 1), δ−1α(j)) > 1
16µ

(
λ
7

)j+1
t∗(v0)σ(r)

and arg max`∈[k+1,j] 2`κ(`) > k + 1,

k + 1 otherwise.
(4.39)

We refer to the 3 options in (4.39) as the forward, bowed, and totally unbowed cases,
respectively. They may be interpreted as follows. In the forward case the initial steps
v0 → v1 → v2 have little sidestepping, and we will see that this eliminates the need
to exploit bowedness; this should be viewed as the “baseline” or “most likely” case.
Otherwise we look for a scale δ`r, with k + 1 ≤ ` ≤ j, on which Γxy is bowed as in (4.38),
by seeking a scale (the arg max) satisfying (4.35). In the bowed case such a scale exists;
see Figure 4. In the totally unbowed case there is no such scale, meaning 2·κ(·) is
maximized for essentially the full length scale of the interval I. By (4.37) this forces the
extra distance α(k + 1) to be very large. We define the inner and outer joining points as

µ−,2xy (I) = a+ δL
−(I)r; µ−,1xy (I) = a+ δL

−(I)+1r.

We define µ+,ε
xy (I) in a mirror image manner to µ−,εxy (I) in [a, b], going backwards from

b to a instead of forward from a to b. That is, we use the points v̂` = mb−δ`r(Γxy) in place
of the v`’s and t∗(vfin) in place of t∗(v0); otherwise the definition is the same, and the
analogs of (4.34), (4.36), and (4.37) are valid for the analog L+(I) of L−(I).

We now describe the rules for which of the four (j + 1)th-scale joining hyperplanes
Hs with s = µ±,εxy (I), in a long jth-scale interval I, are included in Hxy. We note again
that the endpoint and sandwiching hyperplanes at both ends of I are always included; in
some instances the sandwiching hyperplanes coincide with outer joining hyperplanes, so
these criteria never rule out the inclusion of such hyperplanes.

(i) If both ± ends of I have the forward case, then we include the inner joining
hyperplanes in Hxy; these are at distance δjr from the interval ends. The outer
ones coincide with the sandwiching hyperplanes at distance δj+1r from the interval
ends, so they are included as well.

(ii) If both ± ends have the bowed case, then we include both the inner and outer join-
ing hyperplanes in Hxy. We note that when either of L±(I) = j, the corresponding
outer joining hyperplane coincides with the sandwiching hyperplane as in (i), so it
is already in Hxy on that basis.

(iii) If both ± ends have the totally unbowed case, then we include only the inner joining
hyperplanes.
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(iv) If the two ends have different cases, we determine which end of the interval is
dominant according to the criterion described next. We then include the joining
hyperplane(s) only at the dominant end, 1 or 2 hyperplanes in accordance with
(i)–(iii) above. We call this the mixed case.

To determine the dominant end of a long jth-scale interval I = [a, b], necessarily having
kth-scale length for some k < j, in the mixed case, we first select those non-sandwiching
hyperplanes which are candidates for inclusion in Hxy, in accordance with (i)–(iii) above.
(For example, if the path has the bowed case with L−(I) 6= j at the left end and the
forward case at the right, we select the inner and outer joining hyperplanes on the left,
and only the inner on the right.) For these candidate hyperplanes, along with the 4
endpoint and sandwiching hyperplanes in I, we consider the corresponding “tentative”
marked PG path (part of Γxy) with a marked point in each of the hyperplanes: u0 → · · · →
un with n = 5 or 6, where u0 = Vj(m(u0)1(Γxy)) and ui = Vj+1(m(ui)1(Γxy)), 1 ≤ i ≤ n, are
jth and (j+1)th-scale CG approximations. The inner joining hyperplanes contain u`, u`+1,
with ` = 2 or 3; we call this ` the central index; the gap from u` to u`+1 is the longest in I,
at least 8δk+1r. Let wi⊥ be the orthogonal projection of ui into the line Πu0un ; see Figure 5.
We use the fact that the excess length E(u0, . . . , un) = ΥEuc(u

0, . . . , un) − |un − u0| can
be approximately split into components associated with the two ends, as follows. When
the central index is ` we have

E(u0, . . . , un) =
[
ΥEuc(u

0, . . . , u`)− |w`⊥ − u0|
]

+
[
|u`+1 − u`| − |w`+1

⊥ − w`⊥|
]

+
[
ΥEuc(u

`+1, . . . , un)− |w`+1
⊥ − un|

]
. (4.40)

For the first difference on the right we have from (4.26)

ΥEuc(u
0, . . . , u`)− |w`⊥ − u0| ≥ |u` − u0| − |w`⊥ − u0| ≥ |u

` − w`⊥|2
3δk+1r

,

and similarly for the third difference in (4.40), while for the middle one, by (4.26),

|u`+1 − u`| − |w`+1
⊥ − w`⊥| ≤

(|u` − w`⊥|+ |u`+1 − w`+1
⊥ |)2

2 · 8δk+1r

≤ 1

8

(
|u` − w`⊥|2
δk+1r

+
|u`+1 − w`+1

⊥ |2
δk+1r

)
(4.41)

so the middle difference in (4.40) is only a limited fraction of the whole:

|u`+1 − u`| − |w`+1
⊥ − w`⊥| ≤

3

8
E(u0, . . . , un). (4.42)

We designate the left end of I as dominant if the first of the 3 differences on the right
in (4.40) is larger than the third difference, and the right end in the reverse case. As
given in (iv) above, we include in Hxy only the candidate joining hyperplanes from the
dominant end; the non-dominant end has its endpoint and sandwiching hyperplanes but
no joining ones.

We note that if (for illustration) the left end is dominant, then, after excluding the
right-end joining hyperplanes, we are left with the marked PG path u0 → · · · → u` →
un−1 → un, for which the contribution of the right end to the extra length can be
bounded: we have

|un−un−1|−|un−wn−1
⊥ | ≤ ΥEuc(u

`+1, . . . , un)−|w`+1
⊥ −un| ≤ ΥEuc(u

0, . . . , u`)−|w`⊥−u0|
(4.43)
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u3 u4

u5 u6

w1
⊥ w2

⊥
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⊥
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⊥

w5
⊥Γxy

b

b

b
b

b

b
b

b
b

b

b b

Figure 5: The mixed case with the bowed case at the (dominant) left end of the interval,
and the forward case at the right end, showing the candidate hyperplanes (the 3 middle
ones) and tentative marked PG path. The central index is 3. Since the right end is not
dominant, the outer joining hyperplane there, containing v4, is not included in Hxy. The
full length of the interval is between 10δk+1r and 10δkr, and all hyperplanes lie in the
leftmost or rightmost 1/10 of the interval.

where the last inequality follows from dominance of the left end, so similarly to (4.42),

|un−1 − wn−1
⊥ |2

3δj+1r
≤ |un − un−1| − |un − wn−1

⊥ | ≤ 1

2
E(u0, . . . , u`, un−1, un). (4.44)

The same bound with |u1 − w1
⊥| in place of |un−1 − wn−1

⊥ | holds symmetrically when the
right end is dominant.

Remark 4.3. In the bowed case at the left end of a jth-scale interval I = [a, b], with
L−(I) = `, define

z0 = v0, zm = Πv0v` ∩Ha+δmr, ` ≤ m ≤ j + 1,

and symmetrically at the right end. See Figure 4; g`+1 there is z`+1 here. We have
from (4.37) and (4.39)

|v`+1 − w`+1|2
δ`+1r

σ(δj+1r)

σ(δ`+1r)
≥ max

(
2j−`

|vj+1 − wj+1|2
δj+1r

, 2j−`−1σ(δj+1r)

σ(δjr)

|vj − wj |2
δjr

)
≥ 2j−`−1 δ

16µ

σ(δj+1r)

σ(δjr)

(
λ

7

)j+1

t∗(v0)σ(r)

and
|v` − w`|2

δ`r
≤ 2σ(δ`r)

σ(δ`+1r)

|v`+1 − w`+1|2
δ`+1r

, (4.45)

and as in (4.36) it follows from these that |v`+1 − z`+1| ≥ 1
2 |v`+1 − w`+1| and then that

|v`+1 − z`+1|2
δ`+1r

≥ 2j−`
δ

128µ

(
λ

7

)j+1
σ(δ`+1r)

σ(δjr)
t∗(v0)σ(r). (4.46)

The advantage of (4.46) is that it depends only on (v0, v1, v2, v3) and not on vfin, whereas
in (4.45) the points wi do depend on vfin. What we have shown is that if there exists
vfin ∈ G+

r with (vfin − v0)1 ≥ δ`r for which (4.45) holds, then (4.46) holds, not involving
vfin. We further have wj+1 − zj+1 = δj−`(w`+1 − z`+1), while by the first half of (4.36)
we have |v`+1 − w`+1| ≤ 2|v`+1 − z`+1| and |w`+1 − z`+1| ≤ |v`+1 − z`+1|, so

|vj+1 − zj+1|2
δj+1r

≤ 2
|vj+1 − wj+1|2

δj+1r
+ 2
|wj+1 − zj+1|2

δj+1r

= 2
|vj+1 − wj+1|2

δj+1r
+ 2δ2(j−`) |w`+1 − z`+1|2

δj+1r

≤ 2−(j−`−3)σ(δj+1r)

σ(δ`+1r)

|v`+1 − z`+1|2
δ`+1r

+ 2δj−`
|v`+1 − z`+1|2

δ`+1r

≤ 2−(j−`−4)σ(δj+1r)

σ(δ`+1r)

|v`+1 − z`+1|2
δ`+1r

. (4.47)
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Again the left and right expressions in (4.47) depend only on (v0, vj+1, v`+1, v`), not
on vfin.

In (1.14) we may interpret tσ(r) as a reduction in the time allotted to go from x to y,
relative to h(|(y − x)1|). In place of the reduction tσ(r) relative to h(|(y − x)1|), we can
consider a modified reduction, call it R0, which is relative to Υh(ΓCG):

h(|(y − x)1|)− tσ(r) = Υh(ΓCG)−R0.

The modified reduction is larger: using (4.29) we see that

R0 ≥ tσ(r) +
µ

3
Ψ(ΓCG).

We will need to (roughly speaking) allocate pieces of R0 to the various transitions made
by ΓCG and certain related paths. Motivated by this, we define the jth-scale allocation
A0
j (v, w) of a transition v → w to be

A0
j (v, w) = λj

(
tσ(r)

7j
+ δµ

|(w − v)∗|2
|(w − v)1|

)
. (4.48)

In (4.48) the factor 7j is used due to (4.23). For a marked PG path ΓCG : v0 → v1 →
· · · → vm+1 as above, with some number m ≤ 7j − 1 of marks (in the jth-scale grid, in
cases of interest), we have from (4.27)

m+1∑
i=1

A0
j (v

i−1, vi) ≤ λj
[
tσ(r) + δµΨ

(
ΓCG

)]
≤ λj

[
tσ(r) + 3δµ

(
ΥEuc(Γ

CG)− (vm+1 − v0)1

)]
. (4.49)

Also, since j ≤ j1 = O(log log r), all A0
j (v, w) are large provided r is large and t ≥ 1.

Remark 4.4. We now add some detail to the proof sketch given in Section 4.1. Each
geodesic Γxy can be viewed as a marked PG path with marks in the basic grid in each
of the hyperplanes of Hxy. The goal is to gradually coarsen this approximation on
successively larger length scales until we obtain a final path ΓCGxy . The number of
possible final paths (outside of a collection of “bad” paths having negligible probability)
is small enough so that a version of (1.14) can be proved for final paths.

To perform the coarsening we iterate a two-stage process, with the exception that
the first iteration has only one stage. The first iteration is on the j1th scale, the second
on the larger (j1 − 1)th scale, and so on. For the j1th-scale iteration, we perform a set
of operations on the original marked PG path (essentially Γxy) called shifting to the
j1th-scale grid, replacing each marked grid point (located in the basic grid) in each
hyperplane in Hxy with a nearby point in the j1th-scale grid. Each further iteration has
two stages. For the (j1 − 1)th scale (second) iteration, in the first stage we shift those
marked points lying in (j1 − 1)th-scale hyperplanes in Hxy to the (j1 − 1)th-scale grid. In
the second stage of the iteration, we remove from the marked PG path those marked
points not lying in (j1 − 1)th-scale hyperplanes, with exceptions for points in terminal
hyperplanes. See Figure 6. In general, for the jth-scale iteration (j ≤ j1), at the start
of the iteration all the marked points in non-terminal hyperplanes are (j + 1)th-scale
grid points in (j + 1)th-scale hyperplanes; in the first stage we shift the ones in jth-scale
hyperplanes to the jth-scale grid, and in the second stage we remove the ones not in
jth-scale hyperplanes, again with exceptions in terminal hyperplanes.

The difficulty is that as we alter the marked PG path, the length ΥEuc(·) and corre-
sponding h-sum Υh(·) ≈ µΥEuc(·) change, with marked-point removals always reducing
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v

v′b
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Figure 6: Illustration of the two stages of the jth-scale iteration. The black path is
the current one at the start of the iteration. The points u, u′, v, v′ lie in the endpoint
hyperplanes of a long jth-scale interval; the adjacent hyperplanes close on either side
of these are the sandwiching ones, and the other three are joining hyperplanes. In the
first stage, we shift to the jth-scale grid in the endpoint hyperplanes, replacing u, v in
the marked PG path with u′, v′, thus updating to the dashed path. In the second stage,
the marked points between the endpoint hyperplanes are removed, updating to the gray
path with marked points u′, v′.

these sums, and we need to ensure that, with high probability, the corresponding sum of
passage times ΥT̂ (·) “tracks” these changes at least partly, to within a certain allocated
error related to the above-mentioned A0

jv, w). For shifting to a grid the tracking is not too
difficult to achieve, as the allowed error turns out to be larger than the change in h-sum
being tracked. But for removal of marked points the tracking requires multiple different
strategies, depending on the options in (4.39) for the marked grid point locations in the
gap between each two successive jth-scale hyperplanes in Hxy. The particular tracking
needed is that, with high probability to within the allocated errors, when marked points
are removed from a gap, the decrease in total passage time ΥT̂ (·) is at least a positive
fraction δ of the decrease in h-sum. The primary difficulty in achieving this is that
if the gap has a large length L, then the relevant passage time fluctuation size σ(L)

may overwhelm both the reduction in h-sum and the allocated errors; here the remedy
involves the “joining hyperplanes.” We also make use of what we call intermediate paths,
which (in most cases) have total passage time and h-sum in between the values that exist
before and after the marked-point removal, and are chosen so that they are relatively
easy to compare to the pre-removal path.

In (1.14) the passage time reduction for the full path is tσ(r), which a priori suggests
that the total of the allocated errors associated to a path should not exceed this amount.
There is no natural way to work with such a small total error yet achieve bounds uniformly
over all Γxy. However, as described in Section 4.1, the tracking enables us to increase
the total of the allocated errors by an amount proportional to the extra Euclidean length
ΥEuc(·) of the original marked PG path relative to the “horizontal” distance (y − x)1,
which gives the second term in parentheses in the formula (4.48). With this the necessary
uniformity can be achieved, both for the tracking and for the fluctuation bounds on
passage times of final paths ΓCGxy .

4.4 Step 2. Performing the j1th-scale (first) iteration of coarse-graining

As described in Remark 4.4, for the j1th-scale iteration we perform a sequence of
operations on marked PG paths called shifting to the jth-scale grid, in the hyperplanes of
Hxy. The j1th-scale iteration is different from those that follow, in that there is no second
stage of removing marked points, and no need for the “tracking” of Remark 4.4. In
general we will refer to the marked PG path existing before a shift or removal operation
as the current (marked) path, and the modified one resulting from the operation as the
updated (marked) path. The allocations A0

j (·, ·) of (4.48) are used only for the j1th-scale
iteration; we will define other allocations later.

For the j1th scale, every Hs ∈ Hxy is a j1th-scale hyperplane. Suppose Hxy =
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{Hsi , 1 ≤ i ≤ m} with x1 < s1 < · · · < sm < y1. Let xi = msi(Γxy) = ψq(usi(Γxy)), 1 ≤ i ≤
m, and define x0, p0, xm+1pm+1 by x0 = p0 = x̂ = ψq(x), xm+1 = pm+1 = ŷ = ψq(y). At the
start, the current path Γj1,0xy is Γxy with marks at the grid points xi:

Γj1,0xy : x0 → x1 → · · · → xm+1.

Note that Γj1,0xy is a marked path, but not necessarily a marked PG path, since Γxy need
only pass near ψq(xi), not necessarily through it. By near we mean that both usi(Γxy)

and ϕ(xi) lie in the same cube Fxi of the basic grid.
Recall that the blocks of Lj1 have side K0β

j1∆(r). The first shift to the j1th-scale grid
happens in Hs1 , replacing x1 with p1 = Vj1(x1) to produce the updated marked path

Γj1,1xy : p0 → p1 → x2 → · · · → xm+1,

with the underlying path being the concatenation of geodesics Γxp1 ,Γp1,us2 (Γxy),Γus2 (Γxy),y.
Next we repeat this in Hs2 , replacing x2 with p2 = Vj1(x2). We continue this way per-
forming shifts to the j1th-scale grid in Hs3 , . . . ,Hsm , producing the updated path

Γj1,mxy : p0 → p1 → · · · → pm → pm+1,

with the underlying path now (in view of (4.24)) being the marked PG path given by
these points.

Let us analyze the effect of these shifts on Υh(Γj1,·xy ). Consider the ith shift, replacing
xi with pi. From (4.11) and basic geometry we have

|pi − pi−1| ≥ |xi − pi−1| − c11
|(pi − xi)∗||(pi − pi−1)∗|+ |(pi − xi)∗|2

(pi − pi−1)1
. (4.50)

Consider first the “sidestepping” case: |(pi − pi−1)∗| ≥ `2(j1)βj1∆(r). Since |(pi − xi)∗| ≤√
d− 1K0β

j1∆(r), we have from (4.20), (4.21), and (4.50) that provided r is large, for
1 ≤ i ≤ m,

|pi − pi−1| ≥ |xi − pi−1| − 2c11K0

√
d− 1

`2(j1)

|(pi − pi−1)∗|2
(pi − pi−1)1

≥ |xi − pi−1| − 2c11K0

√
d− 1

(
β

ρδ(1+χ2)/2

)j1 |(pi − pi−1)∗|2
(pi − pi−1)1

≥ |xi − pi−1| − 1

32µ
A0
j1(pi−1, pi). (4.51)

Now consider the “normal” case: |(pi − pi−1)∗| < `2(j1)βj1∆(r). From (4.20), (4.21),
and (4.50) we have

|pi − pi−1| ≥ |xi − pi−1| − 2c11K0`2(j1)
√
d− 1

(βj1∆(r))2

δj1r

≥ |xi − pi−1| − c12

(
ρβ

δ(1−χ1)/2

)j1
σ(r)

≥ |xi − pi−1| − 1

32µ
A0
j1(pi−1, pi). (4.52)

We can interchange the roles of pi and xi and/or replace pi−1 with xi+1, so it follows
from (4.51) and (4.52) that replacing xi with pi does not change the path length much—
we have ∣∣∣|pi − pi−1| − |xi − pi−1|

∣∣∣ ≤ 1

32µ

(
A0
j1(pi−1, pi) +A0

j1(pi−1, xi)
)

(4.53)
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and ∣∣∣|pi − xi+1| − |xi − xi+1|
∣∣∣ ≤ 1

32µ

(
A0
j1(pi, xi+1),+A0

j1(xi, xi+1)
)

(4.54)

and then also, for the h-length,∣∣∣h(|pi − pi−1|)− h(|xi − pi−1|)
∣∣∣ ≤ 1

16

(
A0
j1(pi−1, pi) +A0

j1(pi−1, xi)
)

(4.55)

and ∣∣∣h(|pi − xi+1|)− h(|xi − xi+1|)
∣∣∣ ≤ 1

16

(
A0
j1(pi, xi+1) +A0

j1(xi, xi+1)
)
. (4.56)

We claim that

A0
j1(pi−1, pi) ≤

(
1 +

1

4
λj1
)
A0
j1(xi−1, xi). (4.57)

It is enough to show

|(pi − pi−1)∗|2 − |(xi − xi−1)∗|2 ≤ 1

4δµ
λj1

tσ(r)

7j1
(xi − xi−1)1 +

1

4
λj1 |(xi − xi−1)∗|2. (4.58)

To that end, we have from the definition of pi that

|(pi − pi−1)∗|
≤ |(xi − xi−1)∗|+ |(xi − pi)∗|+ |(pi−1 − xi−1)∗| ≤ |(xi − xi−1)∗|+ 2K0

√
d− 1βj1∆(r),

so

|(pi − pi−1)∗|2 − |(xi − xi−1)∗|2 ≤ 4K0

√
d− 1βj1∆(r)|(xi − xi−1)∗|+ 4K2

0 (d− 1)β2j1rσ(r).

(4.59)
From (4.20), the last term satisfies

4K2
0 (d− 1)β2j1rσ(r) ≤ 1

8

(
λδ

7

)j1
trσ(r) ≤ 1

8

(
λ

7

)j1
tσ(r)(xi − xi−1)1. (4.60)

If the ith transition has very small sidestep, that is,

|(xi − xi−1)∗| ≤ 32K0

√
d− 1

(
β

λ

)j1
∆(r), (4.61)

then provided r is large, since (xi − xi−1)1 ≥ δj1r, using (4.20) the first term on the right
in (4.59) satisfies

4K0

√
d− 1βj1∆(r)|(xi − xi−1)∗|

≤ 128K2
0 (d− 1)

(
β2

λ

)j1
rσ(r)

≤ 128K2
0 (d− 1)

(
β2

λδ

)j1
σ(r)(xi − xi−1)1 ≤

1

8δµ

(
λ

7

)j1
tσ(r)(xi − xi−1)1. (4.62)

If instead the ith transition has larger sidestep, meaning

|(xi − xi−1)∗| > 32K0

√
d− 1

(
β

λ

)j1
∆(r), (4.63)

then the first term on the right in (4.59) satisfies

4K0

√
d− 1βj1∆(r)|(xi − xi−1)∗| ≤ 1

8
λj1 |(xi − xi−1)∗|2. (4.64)
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Together, (4.59)–(4.64) prove (4.58), and thus also (4.57). This same proof shows that

A0
j1(pi−1, pi), A0

j1(pi−1, xi), A0
j1(xi−1, xi) are all within a factor of 1 +

1

4
λj1 ≤ 4

3
, (4.65)

and similarly for A0
j1

(xi, xi+1), A0
j1

(pi, xi+1), A0
j1

(pi, pi+1).
From (4.49), (4.53), (4.54), and (4.65) we bound the total change in length from all

shifts to the j1th-scale grid:

∣∣ΥEuc(Γ
j1,m
xy )−ΥEuc(Γ

j1,0
xy )

∣∣ ≤ 1

6µ

m+1∑
i=1

A0
j1(pi−1, pi)

≤ λj1

6µ

[
tσ(r) + 3δµ

(
ΥEuc(Γ

j1,m
xy )− (ŷ − x̂)1

)]
(4.66)

and similarly, using (4.55)–(4.56) instead of (4.53)–(4.54),

∣∣Υh(Γj1,mxy )−Υh(Γj1,0xy )
∣∣ ≤ λj1

3

[
tσ(r) + 3δµ

(
ΥEuc(Γ

j1,m
xy )− (ŷ − x̂)1

)]
. (4.67)

In view of (4.65), the derivation of (4.66) and (4.67) is also valid if we replace A0
j1

(pi−1, pi)

with A0
j1

(xi−1, xi), which gives the alternate bound

∣∣Υh(Γj1,mxy )−Υh(Γj1,0xy )
∣∣ ≤ λj1

3

[
tσ(r) + 3δµ

(
ΥEuc(Γ

j1,0
xy )− (ŷ − x̂)1

)]
, (4.68)

and we may similarly replace m with 0 on the right in (4.66).
For basic grid points u and the cubes Fu of (3.1), define

M(u) = max{T (y, z) : y, z ∈ Fu}.

We have

T (x, y) ≥
m+1∑
i=1

T̂ (xi−1, xi) = ΥT̂ (Γj1,0xy ) (4.69)

and a form of approximate subadditivity holds: for basic grid points u, v, w,

T̂ (u, v) ≤ T̂ (u,w) + T̂ (w, v) +M(w). (4.70)

From Lemma 3.1 we have for sufficiently large s that the event

J (0)(s) : M(u) ≥ s log r for some u ∈ qZd ∩G+
r

satisfies
P
(
J (0)(s)

)
≤ c13|G+

r |e−c14s log r ≤ c13e
−c15s log r. (4.71)

Before proceeding we stress that m, pi, and xi should always be viewed at functions of
(x, y, ω). From (4.49) we have

m+1∑
i=1

A0
j1(xi−1, xi) ≤ λj1

(
tσ(r) + 3δµ

[
ΥEuc(Γ

j1,0
xy )− (ŷ − x̂)1

] )
. (4.72)

Therefore using (4.66),{
T (x, y) ≤ h((ŷ − x̂)1)− tσ(r)

}
⊂
{

ΥT̂ (Γj1,0xy )− h((ŷ − x̂)1) ≤ −
(
1− 2λj1

)
tσ(r) + 4δµλj1

[
ΥEuc(Γ

j1,m
xy )− (ŷ − x̂)1

]
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−
m+1∑
i=1

A0
j1(xi−1, xi)

}

⊂
{

ΥT̂ (Γj1,mxy )− h((ŷ − x̂)1) ≤ −
(
1− 2λj1

)
tσ(r) + 4δµλj1

[
ΥEuc(Γ

j1,m
xy )− (ŷ − x̂)1

]}
⋃{

ΥT̂ (Γj1,mxy )−ΥT̂ (Γj1,0xy ) >

m+1∑
i=1

A0
j1(xi−1, xi)

}
. (4.73)

The key inclusion here is the second one, as it takes us from an event involving the
passage time of the original path Γj1,0xy to an event involving the j1th-scale CG approxi-
mation Γj1,mxy , up to the “tracking error event” given in the last line. The name is only
partly suitable here—bounding the last probability in (4.73) is related to the tracking of
Remark 4.4, in that we are ensuring that changing the path from Γj1,0xy to Γj1,mxy doesn’t
change ΥT̂ (·) too much, but the change in h-sum here is too small to require being
tracked.

4.5 Step 3. Bounding the tracking-error event for the j1th-scale-iteration

Consider next the tracking-error event

J (1)
xy : ΥT̂ (Γj1,mxy )−ΥT̂ (Γj1,0xy ) >

m+1∑
i=1

A0
j1(xi−1, xi)

from the right side of (4.73). Recalling Remark 4.4, this reflects the failure of the passage
time to track well when the path changes from Γj1,0xy to its j1th-scale CG approximation
Γj1,mxy . We have

ΥT̂ (Γj1,mxy )−ΥT̂ (Γj1,0xy ) ≤
m∑
i=1

[(
T̂ (pi−1, pi)− T̂ (pi−1, xi)

)
+
(
T̂ (pi, xi+1)− T̂ (xi, xi+1)

)]
(4.74)

and therefore using (4.65),

J (1)
xy ⊂

m⋃
i=1

{
T̂ (pi−1, pi)− T̂ (pi−1, xi) ≥ 3

8
A0
j1(pi−1, xi)

}

∪
m⋃
i=1

{
T̂ (pi, xi+1)− T̂ (xi, xi+1) ≥ 3

8
A0
j1(xi, xi+1)

}
. (4.75)

Let us consider any one of the events in the first union on the right in (4.75); we
prepare to apply Proposition 3.5. We assume |pi− pi−1| ≥ |xi− pi−1| as the opposite case
is similar. Define ε by

(1− ε)|pi − pi−1| = |xi − pi−1|
and let

pi = pi−1 + (1− ε)(pi − pi−1), p̃i = ψq(ϕ(pi)).

From (4.51) and (4.52) we have

|pi−pi−1| = |xi−pi−1|, |pi−pi| = ε|pi−pi−1| = |pi−pi−1|−|xi−pi−1| ≤ 1

32µ
A0
j1(xi−1, pi).

(4.76)
We split T̂ (pi−1, pi) into two corresponding increments, using (4.70):{
T̂ (pi−1, pi)− T̂ (pi−1, xi) ≥ 3

8
A0
j1(pi−1, xi)

}
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⊂
{
T̂ (pi−1, p̃i)− T̂ (pi−1, xi) ≥ 3

16
A0
j1(pi−1, xi)

}
∪
{
T̂ (p̃i, pi) +M(p̃i) ≥ 3

16
A0
j1(pi−1, xi)

}
(4.77)

and define the corresponding unions

J (1a)
xy =

m⋃
i=1

{
T̂ (pi−1, p̃i)− T̂ (pi−1, xi) ≥ 3

16
A0
j1(pi−1, xi)

}
,

J (1b)
xy =

m⋃
i=1

{
T̂ (p̃i, pi) +M(p̃i) ≥ 3

16
A0
j1(pi−1, xi)

}
,

so that (4.77) says the first union in (4.75) is contained in J (1a)
xy ∪ J (1b)

xy . Define the set of
(x, y) corresponding to (4.18):

Xr =

{
(x, y) ∈ V ×V : x, y ∈ Gr(K), |y − x| > C62r

(log r)1/χ1
, (4.24) holds

}
,

with C62 from (4.18), and define the events

J (1a) = ∪(x,y)∈XrJ
(1a)
xy , J (1b) = ∪(x,y)∈XrJ

(1b)
xy , J (1c) =

{
Γxy 6⊂ G+

r for some (x, y) ∈ Xr

}
.

For configurations ω /∈ J (1c), all pi−1, pi, xi, p̃i lie in G+
r , so the number of possible tuples

(pi−1, pi, xi, p̃i) arising from some (x, y) ∈ Xr is at most c16|G+
r |4. Define s, α by

∆(s) = 2K0

√
d− 1βj1∆(r), α =

3λj1tσ(r)

16σ(s) log(2K0

√
d− 1βj1∆(r))

,

so that |p̃i − xi| ≤ |pi − xi|+ |p̃i − pi| ≤ 2|pi − xi|+ q
√
d− 1 ≤ ∆(s). By (1.11),

rσ(r)

sσ(s)
=

∆(r)2

∆(s)2
≥ c17

β2j1
and hence

σ(r)

σ(s)
≥ c18

β2χ1j1/(1+χ1)
.

From this, (4.20), and (4.22),

α ≥ c19

(
λ

β2χ1/(1+χ1)

)j1 t

log r
≥ c20t(log r)2. (4.78)

Now

3

16
A0
j1(pi−1, xi) ≥ 3λj1tσ(r)

16
= ασ(s) log(2K0

√
d− 1βj1∆(r)) = ασ(s) log ∆(s)

so for ω ∈ J (1a)
xy , using ∆(s) ≥ |p̃i − xi| we have for some i that

T̂ (pi−1, p̃i)−T̂ (pi−1, xi) ≥ ασ(s) log ∆(s) ≥ ασ(s log ∆(s)) ≥ ασ
(

∆−1(|p̃i−xi|) log |p̃i−xi|
)
.

In view of (4.76) (first equality) and (4.78) we then get from Proposition 3.5 and
Lemma 4.2 (noting the comments following it) that

P
(
J (1a) ∪ J (1c)

)
≤ P

(
J (1a)\J (1c)

)
+ P

(
J (1c)

)
≤ c21|G+

r |4e−C54α + C68e
−t ≤ e−c22t.

(4.79)
Next, recalling (4.76), we observe that |p̃i − pi| ≤ q

√
d− 1 and provided r is large,

|u− v| ≤ 1

32µ
A0
j1(xi−1, pi) + q

√
d− 1 =⇒ h(|u− v|) ≤ 1

16
A0
j1(xi−1, pi),

EJP 29 (2024), paper 10.
Page 43/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

so, applying this to (u, v) = (pi, p̃i), using (4.76) and the bound on t in (4.18) we have
from Lemmas 3.1 and 3.2 that

P
(
J (1b)\J (1c)

)
≤ P

(
for some u, v ∈ qZd ∩G+

r and A ≥
(
λ

7

)j1
tσ(r) we have

h(|u− v|) ≤ A

16
and T̂ (u, v) ≥ A

8

)
+ P

(
for some u ∈ qZd ∩G+

r we have M(u) ≥ 1

16

(
λ

7

)j1
tσ(r)

)

≤ c23|G+
r |2 exp

−c24

[(
λ

7

)j1
tσ(r)

]1−χ2
+ c25|G+

r | exp

(
−c26

(
λ

7

)j1
tσ(r)

)
≤ c27e

−c28t. (4.80)

From (4.77), (4.79), and (4.80) the first union in (4.75) combined over (x, y), together
with J (1c), has probability bounded as

P
(
J (1a) ∪ J (1b) ∪ J (1c)

)
≤ e−c22t + c27e

−c28t,

and the same bound applies to the second union in (4.75), while from (4.18) and (4.71),
for large c29 we have

P
(
J (0)(c29)

)
≤ c30e

−c31t.

Hence from (4.73) we obtain

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂ (Γj1,mxy )− h((y − x)1) ≤ −

(
1− 2λj1

)
tσ(r) + 4δµλj1

(
ΥEuc(Γ

j1,m
xy )− (y − x)1

)
for some (x, y) ∈ Xr; ω /∈ J (0) ∪ J (1c)

)
+ c32e

−c33t. (4.81)

This completes the j1th-scale (first) iteration.
It should be noted that, due to (4.73), the terms with coefficients 2 and 4 in (4.81)

represent a reduction taken from the original bound tσ(r) in (1.14), used to bound errors
created in the j1th-scale iteration.

4.6 Step 4. Further iterations of coarse-graining: preparation

For the (j1 − 1)th-scale and later iterations of coarse-graining we use allocations
A1
j (Γ

cur
xy , u

i) associated not to a particular transition, but to the shifting of the marked
grid point ui in some (j + 1)th-scale current marked PG path Γcur

xy to the jth-scale grid.
Specifically, in such a shift the marked grid point ui in the (j+ 1)th-scale grid is replaced
by the jth-scale CG approximation Vj(u

i), and the other marked grid points are left
unchanged. Consider an initial marked PG path when an iteration of shifts to the
jth-scale grid begins:

Γ0 : u0 → u1 → · · · → un+1,

with n ≤ 7j+1 − 1. Suppose that for some I ⊂ {1, . . . , n} not containing two consecutive
integers, the marked grid points (ui, i ∈ I) are the ones shifted, one at a time, in the
iteration, updating the path from Γ0 via a sequence of intermediate paths Γ1, . . . ,Γ|I|−1
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to a final Γ|I|. Note that since I does not contain two consecutive integers, the shifts of
different ui’s do not “interact,” as shifting ui only affects the path between ϕ(ui−1) and
ϕ(ui+1) and only affects ui among the marks; we will refer to this aspect as noninteraction
of shifts. The need for such noninteraction is a primary reason we must create the final
CG path gradually over many iterations of coarsening.

Recall t∗(·, ·) from (4.30). The allocation we use most widely, in both stages of each
iteration, is A1

j (·, ·) which appears in the next lemma. A2
j (·, ·) is a variant of A1

j (·, ·).
Lemma 4.5. Let K ≥ 1 and 1 ≤ j ≤ j1. Consider a marked PG path

Γ : u0 → u1 → · · · → un+1

in G+
r with u0, un+1 ∈ Gr(K), n ≤ 7j − 1, all ui ∈ Lj , and (u0)1 < · · · < (un+1)1, and let

I ⊂ {1, . . . , n}, not containing two consecutive integers. Define

A1
j (Γ, i) = λj

[
1

7j
t∗(ui−1, ui)σ(r) +

δµ

9

( |(ui − ui−1)∗|2
|(ui − ui−1)1|

+
|(ui+1 − ui)∗|2
|(ui+1 − ui)1|

)]
,

and for v, w ∈ Lj with v1 < w1, let

A2
j (v, w) =

1

4
λj
[

1

7j
t∗(v, w)σ(r) +

δµ

9

|(w − v)∗|2
|(w − v)1|

]
. (4.82)

Then provided t/K2 is sufficiently large,∑
i∈I

A1
j (Γ, i) ≤

2

3
λj
[
tσ(r) + δµ

(
ΥEuc (Γ)− (un+1 − u0)1

)]
(4.83)

and
n+1∑
i=1

A2
j (u

i−1, ui) ≤ 1

4
λj
[
tσ(r) + δµ

(
ΥEuc (Γ)− (un+1 − u0)1)

)]
. (4.84)

The bound (4.83) would be trivial if we used t instead of t∗(ui−1, ui) the definition of
A1
j (Γ, i). The point of Lemma 4.5 is that when the transitions affected by the shifting

start or end at points ui which are at distance a large multiple of ∆(r) from Gr(K),
it increases the usable value of t by a multiple of (|(ui)∗|/∆(r))2, manifested in the
definition of t∗(ui−1, ui). Here by “usable” we mean “not so big that (4.83) or (4.84)
fails.”

Proof of Lemma 4.5. First note that, similarly to (4.25), every increment um − ui with
i < m is nearly horizontal; in particular the “whenever” in (4.26) applies to each
increment.

If uk /∈ Gr(2K) for some k then d(uk,Πu0un+1) ≥ |(uk)∗|/2 so we have from (4.26)

|un+1 − u0|+ |(u
k)∗|2
3r

≤ |u0 − uk|+ |uk − un+1|

≤
n+1∑
i=1

|ui − ui−1|

≤ (un+1 − u0)1 +

n+1∑
i=1

|(ui − ui−1)∗|2
2|(ui − ui−1)1|

, (4.85)

so
δµ|(uk)∗|2

18r
≤
n+1∑
i=1

δµ

12

|(ui − ui−1)∗|2
|(ui − ui−1)1|

, (4.86)
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while if uk ∈ Gr(2K), since t/K2 is large,

δµ|(uk)∗|2
18r

≤ 2δµK2σ(r)

9
≤ δtσ(r)

3
, (4.87)

so using (4.26),

n∑
k=0

δµ|(uk)∗|2
18r7j

≤ δtσ(r)

3
+

n+1∑
i=1

δµ

12

|(ui − ui−1)∗|2
|(ui − ui−1)1|

≤ 1

3

[
δtσ(r)+δµ

(
ΥEuc (Γ)−(un+1−u0)1

)]
.

(4.88)
From (4.26) we also get

1

3

∑
i∈I

( |(ui − ui−1)∗|2
|(ui − ui−1)1|

+
|(ui+1 − ui)∗|2
|(ui+1 − ui)1|

)
≤ ΥEuc (Γ)− (un+1 − u0)1

which with (4.88) yields (4.83). The proof of (4.84) is similar, the only (inconsequential)
difference being that when we sum the terms t∗(ui−1, ui) over all i ≤ n, most terms
δµ|(uk)∗|2/18r7j get counted twice, for k = i and k = i+ 1, whereas each was counted at
most once when we summed over i ∈ I in (4.83).

Lemma 4.6. There exist constants C70, C71 such that, provided (4.20) holds and t is
sufficiently large, we have for all j ≤ j1

P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j (v, w) for some v, w ∈ G+

r ∩ Lj

with δjr ≤ (w − v)1 ≤ 10δj−1r
)

≤ C70 exp

(
−C71

(
λ

7δχ1

)j
t

)
. (4.89)

Proof. Let

ν0 = ν0(r) = min{ν : (2νt)1/2 ≥ C60 log r},
`0 = `0(r, j) = min{` : 2`LjK0β

j ≥ 2C60 log r}

for C60 from the definition (4.6) of G+
r . We decompose the pairs (v, w) appearing in (4.89)

into subclasses according to the size of |v∗| and the degree of sidestepping |(w − v)∗|, as
follows. Fix 1 ≤ j ≤ j1. We use a variable ν to index the transverse scale of the starting
point v of the increment, and ` to index the transverse scale of the increment w − v.
Their maximum values ν0 and `0 are the largest ones compaitible with v, w ∈ G+

r . There
are only 10/δ posssible values of the longitudinal increment (w − v)1 in (4.89) so we do
not need to index scales for those increments. The value ` = 0 corresponds to transverse
increments |(w − v)∗| not more than an order-ρj factor larger than the typical scale-j
transverse increment ∆(δjr). In detail, let

Rν,`r,j =
{

(v, w)∈(G+
r ∩ Lj)2 : δjr≤(w − v)1≤10δj−1r, (2ν−1t)1/2∆(r)< |v∗|≤(2νt)1/2∆(r),

2`−1`2(j)K0β
j∆(r) < |(w − v)∗| ≤ 2``2(j)K0β

j∆(r)
}
,

defined for 1 ≤ k ≤ ν0, 1 ≤ ` ≤ `0(r, j + 1),

Rν,0r,j =
{

(v, w)∈(G+
r ∩ Lj)2 : δjr≤(w − v)1≤10δj−1r, (2ν−1t)1/2∆(r) < |v∗|≤(2νt)1/2∆(r),

|(w − v)∗| ≤ `2(j)K0β
j∆(r)

}
, defined for 1 ≤ k ≤ ν0,

R0,`
r,j =

{
(v, w) ∈ (G+

r ∩ Lj)2 : δjr ≤ (w − v)1 ≤ 10δj−1r, |v∗| ≤ t1/2∆(r),
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2`−1`2(j)K0β
j∆(r) < |(w − v)∗| ≤ 2``2(j)K0β

j∆(r)
}
, 1 ≤ ` ≤ `0(r, j + 1),

R0,0
r,j =

{
(v, w) ∈ (G+

r ∩ Lj)2 : δjr ≤ (w − v)1 ≤ 10δj−1r, |v∗| ≤ t1/2∆(r),

|(w − v)∗| ≤ `2(j)K0β
j∆(r)

}
.

First, for 1 ≤ ν ≤ ν0, 1 ≤ ` ≤ `0(r, j + 1), and (v, w) ∈ Rν,`r,j , from the definition of `2(j) we
have

A2
j (v, w)

σ(10δj−1r)
≥ 1

4
λj
[

1

7j
δµ

36
2νt

σ(r)

σ(10δj−1r)
+
δµ(2``2(j)K0β

j∆(r))2

360δj−1rσ(10δj−1r)

]
≥ λj

[
c0
7j

2νt
1

δχ1j
+ c122`ρ2j

]
, (v, w) ∈ Rν,`r,j

and from (4.21)

∣∣∣Rν,`r,j ∣∣∣ ≤ c2
δj

(
(2νt)1/2

βj

)d−1 (
2``2(j)

)d−1 ≤ c3(2νt)(d−1)/22(d−1)` 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

.

Hence by Lemma 3.2, provided t is large,

ν0∑
ν=1

`0∑
`=1

P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j (v, w) for some (v, w) ∈ Rν,`r,j

)
≤ c3

1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

·
ν0∑
ν=1

(2νt)(d−1)/2
`0∑
`=1

2(d−1)`C44 exp

(
−C45λ

j

[
c0
7j

2νt
1

δχ1j
+ c122`ρ2j

])

≤ c4
1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j ν0∑
ν=1

(2νt)(d−1)/2 exp

(
−c5

(
λ

7δχ1

)j
2νt

)

≤ c4
1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

exp

(
−c5

(
λ

7δχ1

)j
t

)
. (4.90)

Second, for 1 ≤ ν ≤ ν0, ` = 0 we can drop the second term in brackets in (4.82) and the
first term t/3 in the definition (4.30) of t∗(v, w):

A2
j (v, w)

σ(10δj−1r)
≥ 1

4

(
λ

7

)j
δµ

36
2νt

σ(r)

σ(10δj−1r)
≥ c6

(
λ

7δχ1

)j
2νt, (v, w) ∈ Rν,0r,j

and from (4.21)

∣∣∣Rν,0r,j ∣∣∣ ≤ c7
δj

(
(2νt)1/2`2(j)

βj

)d−1

≤ c8(2νt)(d−1)/2 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

.

Hence again using Lemma 3.2, provided t is large,

ν0∑
ν=1

P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j (v, w) for some (v, w) ∈ Rν,0r,j

)
≤ c8

1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j ν0∑
ν=1

(2νt)(d−1)/2 exp

(
−c9

(
λ

7δχ1

)j
2νt

)
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≤ c8
1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

exp

(
−c9

(
λ

7δχ1

)j
t

)
. (4.91)

Third, for ν = 0, 1 ≤ ` ≤ `0(r, j + 1), using t∗(v, w) ≥ t/3 we have

A2
j (v, w)

σ(10δj−1r)
≥ 1

4
λj
[

1

7j
t

3

σ(r)

σ(10δj−1r)
+
δµ(2``2(j)K0β

j∆(r))2

360δj−1rσ(10δj−1r)

]
≥ c10

(
λ

7δχ1

)j
t+ c1122`

(
λρ2
)j
, (v, w) ∈ R0,`

r,j

and from (4.21)

∣∣∣R0,`
r,j

∣∣∣ ≤ c12

δj

(
t1/2

βj

)d−1 (
2``2(j)

)d−1 ≤ c12t
(d−1)/22(d−1)` 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

.

so similarly to (4.91)

`0∑
`=1

P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j (v, w) for some (v, w) ∈ R0,`

r,j

)
≤ c13t

(d−1)/2 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j `0∑
`=1

2(d−1)` exp

(
−c14

[(
λ

7δχ1

)j
t+ 22`(λρ2)j

])

≤ c13
1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

exp

(
−c14

(
λ

7δχ1

)j
t

)
. (4.92)

Finally, for k = ` = 0 we can drop the second term in brackets in (4.82) and use
t∗(v, w) ≥ t/3, and we have analogously

A2
j (v, w)

σ(10δj−1r)
≥ 1

4

(
λ

7

)j
t

3

σ(r)

σ(10δj−1r)
≥ c15

(
λ

7δχ1

)j
t, (v, w) ∈ R0,0

r,j ,

and ∣∣∣R0,0
r,j

∣∣∣ ≤ c16

δj

(
t1/2`2(j)

βj

)d−1

≤ c17t
(d−1)/2 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

.

so

P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j (v, w) for some (v, w) ∈ R0,0

r,j

)
≤ c18t

(d−1)/2 1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

exp

(
−c19

(
λ

7δχ1

)j
t

)

≤ c20
1

δj

(
ρδ(1+χ1)/2

β2

)(d−1)j

exp

(
−c21

(
λ

7δχ1

)j
t

)
. (4.93)

Since t is large, (4.89) follows from (4.20) and (4.90)–(4.93).

For j2 ≤ j < j1 and j2 < ` ≤ j − 1, a (j, `)th-scale joining 4-path is a marked PG path
Γ : v0 → v1 → v2 → v3 with vi ∈ Lj+1 ∩G+

r , such that for some jth-scale hyperplane Ha,

v0 ∈ Ha, v1 ∈ Ha+δj+1r, v2 ∈ Ha+δ`+1r, v3 ∈ Ha+δ`r. (4.94)

In a jth-scale interval with left endpoint a, these four hyperplanes represent the hyper-
plane at a, a sandwiching (j+1)th-scale hyperplane, and two possible joining hyperplanes.
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The pairs (v0, v1), (v1, v2), (v2, v3) are the links of the joining 4-path. Let zi be the point
where Πv0v3 intersects the hyperplane H· containing vi. The intermediate path corre-
sponding to Γ is Γint : z0 → z1 → z2 → z3; note these points are collinear. Figure 4
contains a (j, `)th-scale joining 4-path v0 → vj+1 → v`+1 → v` and intermediate path
v0 → gj+1 → g`+1 → v`. Recalling Remark 4.3, we say the (j, `)th-scale joining 4-path is
internally bowed if

|v2 − z2|2
δ`+1r

≥ 2j−`
δ

128µ

(
λ

7

)j+1
σ(δ`+1r)

σ(δjr)
t∗(v0)σ(r) (4.95)

(compare to (4.46)) and

|v1 − z1|2
δj+1r

≤ 2−(j−`−4)σ(δj+1r)

σ(δ`+1r)

|v2 − z2|2
δ`+1r

(4.96)

(compare to (4.47)) or equivalently( |v1 − z1|
∆(δj+1r)

)2

≤ 2−(j−`−4)

( |v2 − z2|
∆(δ`+1r)

)2

. (4.97)

As an example, in Figure 4 the joining 4-path is internally bowed if v`+1 is sufficiently far
from g`+1, and vj+1 is not too far from gj+1, with “far” being expressed in terms of the
extra distance of a path v0 → x→ v` relative to v0 → v`.

We define special allocations to deal with internally bowed paths. For each (j, `)th-
scale joining 4-path Γ : v0 → v1 → v2 → v3 and intermediate path Γint : z0 → z1 → z2 →
z3 let

A3
j (Γ) =

δµ

324

( |v2 − z2|2
δ`+1r

+ λj
|(v3 − v0)∗|2

δ`r

)
.

Note that by (4.94), ` here is a function of Γ. We will need an analog of Lemma 4.6
which enables us to deal with joining 4-paths as single units. Normally for `th-scale
links (length of order δ`r), where the fluctuations of the passage time T̂ (vi−1, vi) are of
order σ(δ`r), we need `th-scale allocations (proportional to λ`) in the role of tσ(|u− v|)
in Lemma 3.2 to get a good bound, but in the next lemma we are able to use jth-scale
allocations A3

j (Γ) in that role even for much longer `th-scale lengths, by taking advantage
of bowedness.

Lemma 4.7. There exist constants Ci as follows. Let j2 ≤ j < j1 and j2 < ` ≤ j − 1.
(i) For every (j, `)th-scale joining 4-path Γ : v0 → v1 → v2 → v3 in G+

r , and C56

from (3.25),

6A3
j+1(Γ) ≤

3∑
i=1

A2
j+1(vi−1, vi) +

δµ

18

[
ΥEuc(Γ)− |v3 − v0|

]
− 6C56. (4.98)

(ii)

P
(

there exists an internally bowed (j, `)th-scale joining 4-path Γ : v0 → v1 → v2 → v3

in G+
r , and 1 ≤ i ≤ 3, for which

∣∣T̂ (vi−1, vi)− h(|vi − vi−1|)
∣∣ ≥ A3

j+1(Γ)
)

≤ C72

(
2

δχ2+1

)j−`(
δ

β2

)j
exp

(
−C73

(
λ

δχ1

)j+1

2j−`t

)
. (4.99)

(iii)

P

(
there exists an internally bowed (j, `)th-scale joining 4-path Γ in G+

r , with
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corresponding intermediate path Γint : u0 → u1 → u2 → u3,

and 1 ≤ i ≤ 3, for which
∣∣T̂ (ui−1, ui)− h(|ui − ui−1|)

∣∣ ≥ A3
j+1(Γint)

)

≤ C72

(
2

δχ2+1

)j−`(
δ

β2

)j
exp

(
−C73

(
λ

δχ1

)j+1

2j−`t

)
. (4.100)

Proof. (i). Using (4.26) and t∗(·, ·) ≥ t/3 we get

6A3
j+1(Γ) ≤ δµ

54

(
3
[
ΥEuc(v

0, v2, v3)− |v3 − v0|
]

+ 3λj
[
|v3 − v0| − (v3 − v0)1

])
≤ δµ

18

([
ΥEuc(Γ)− |v3 − v0|

]
+

1

2
λjΨ(Γ)

)
≤ δµ

18

[
ΨEuc(Γ)− |v3 − v0|

]
+

3∑
i=1

A2
j+1(vi−1, vi)− 1

4

(
λ

7

)j
tσ(r)

≤ δµ

18

[
ΨEuc(Γ)− |v3 − v0|

]
+

3∑
i=1

A2
j+1(vi−1, vi)− 6C56, (4.101)

where the last inequality follows from j ≤ j1 = O(log log r).
(ii) and (iii). The proof of (iii) is a slightly simplified version of the proof of (ii), so we

only prove (ii). We proceed as in Lemma 4.6. We decompose the set of joining 4-paths
according to the sizes of |(v0)∗| and |(v3 − v0)∗|, and the degree of bowedness, measured
by the left side of (4.95). From Remark 4.3, every internally bowed (j, `)th-scale joining
4-path Γ : v0 → v1 → v2 → v3 in G+

r satisfies

|v2 − z2|2
δ`+1r

≥ δ

128µ

(
λ

7

)j+1

t∗(v0)σ(r)
σ(δ`+1r)

σ(δjr)
. (4.102)

Thus define for ν,m2,m3 ≥ 1

Rr,j,`(ν,m2,m3)

=

{
Γ : v0 → v1 → v2 → v3

∣∣∣Γ is an internally bowed (j, `)th-scale joining 4-path in G+
r

such that (2ν−1t)1/2∆(r) ≤ |(v0)∗| ≤ (2νt)1/2∆(r),

2m2−12j−`
δ

128µ

(
λ

7

)j+1

t∗(v0)σ(r)
σ(δ`+1r)

σ(δjr)
<
|v2 − z2|2
δ`+1r

≤ 2m22j−`
δ

128µ

(
λ

7

)j+1

t∗(v0)σ(r)
σ(δ`+1r)

σ(δjr)
, and (4.103)

2m3−12j−`t∗(v0)σ(r)
σ(δ`r)

σ(δj+1r)
<
|(v3 − v0)∗|2

δ`r
≤ 2m32j−`t∗(v0)σ(r)

σ(δ`r)

σ(δj+1r)

}
.

Rr,j,`(0,m2,m3) is defined similarly with the first condition in (4.103) replaced by
|(v0)∗| ≤ t1/2∆(r). Rr,j,`(ν,m2, 0) is defined similarly with the last condition in (4.103)
replaced by

|(v3 − v0)∗|2
δ`r

≤ 2j−`t∗(v0)σ(r)
σ(δ`r)

σ(δj+1r)
.

Every internally bowed joining 4-path in G+
r is in one of these classes, since by (4.102)

we don’t need classes with m2 = 0.

EJP 29 (2024), paper 10.
Page 50/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

Suppose Γ : v0 → v1 → v2 → v3 is in Rr,j,`(ν,m2,m3) for some ν ≥ 0,m3 ≥ 0 and
m2 ≥ 1. Using t∗(v0) ≥ c0(|v∗0 |/∆(r))2 we obtain

A3
j+1(Γ)

σ(δ`r)
≥ δµ

324
2j−`

t∗(v0)σ(r)

σ(δjr)

(
δ

128µ

(
λ

7

)j+1

2m2−1σ(δ`+1r)

σ(δ`r)
+ λj+12m3−1

)

≥ c1
(

λ

7δχ1

)j+1

2j−`(2m2 + 2m3)2νt. (4.104)

Hence for each 1 ≤ i ≤ 3, by Lemma 3.2,

P
(∣∣T̂ (vi−1, vi)− h(|vi − vi−1|)

∣∣ ≥ A3
j+1(Γ)

)
≤ C44 exp

(
−C45

A3
j+1(Γ)

2σ(δ`r)

)

≤ C44 exp

(
−c2

(
λ

7δχ1

)j+1

2j−`(2m2 + 2m3)2νt

)
. (4.105)

(Strictly speaking, when m3 = 0 we need to remove the terms involving 2m3 in (4.104)
and (4.105), but this doesn’t change the validity of the bound on the right in each case,
possibly with different c0, c1.) Regarding the number of paths in Rr,j,`(ν,m2,m3), the
number of possible v0 (necessarily in Lj+1) for such a path in a given jth-scale hyperplane
is at most

2

(
2(2νt)1/2

K0βj+1

)d−1

.

The upper bound for |(v0)∗| in (4.103) gives t∗(v0) ≤ c32νt, which with the last upper
bound in (4.103) yields ( |(v3 − v0)∗|

∆(r)

)2

≤ c42m3

(
2

δχ2

)j−`
δ`2νt,

so for a given v0 the number of possible v3 is at most

2

(
c52m3

(
2

δχ2

)j−`
1

β2(j+1)
δ`2νt

)(d−1)/2

= 2

(
c5
β2

2m3

(
2

δχ2+1

)j−`(
δ

β2

)j
2νt

)(d−1)/2

.

The upper bound for |v2 − z2|2/δ`+1r in (4.103) implies( |(v2 − z2|
∆(r)

)2

≤ c62m2

(
2

δχ2

)j−`
δ`2νt

and for given v0, v3, the point z2 is determined, and then the number of possible v2 is at
most

2

(
c7
β2

2m2

(
2

δχ2+1

)j−`(
δ

β2

)j
2νt

)(d−1)/2

.

Combining these, we see that

|Rr,j,`(ν,m2,m3)| ≤ c8
δj

(
(2νt)1/2

βj+1

)d−1
(

2m2/22m3/2

(
2

δχ2+1

)j−`(
δ

β2

)j
2νt

)d−1

.

Multiplying this by (4.105) and summing over ν,m2,m3 gives (4.99).
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4.7 Step 5. First stage of the (j1 − 1)th-scale (second) iteration of coarse-
graining: shifting to the (j1 − 1)th-scale grid

The current marked PG path at the start of the (j1 − 1)th-scale iteration step is Γj1,mxy .
We rename it now as

Γj1−1,0
xy : p0 → p1 → · · · → pm → pm+1.

We shift certain points to the (j1 − 1)th-scale grid; the procedure is somewhat different
from the j1th-scale iteration step, as we are starting from a j1th-scale marked PG path
Γj1−1,0
xy . Fix (x, y) ∈ Xr and, recalling Hxy = {Hsi , 1 ≤ i ≤ m}, let

Ixy =
{
i ∈ {1, . . . ,m} : Hsi is a non-incidental (j1 − 1)th-scale hyperplane in Hxy

}
,

then relabel {si : i ∈ Ixy ∪ {1,m}} as a1 < · · · < an, so Ha1 = Hs1 and Han = Hsm

are the terminal j1th-scale hyperplanes, and define indices γ(N) by aN = sγ(N), so the
pγ(N), 2 ≤ N ≤ n−1, are the marked points in non-incidental (j1−1)th-scale hyperplanes.
Observe that every (j1 − 1)th-scale interval, including terminal ones, has at least one
j1th-scale hyperplane in its interior; hence γ(N + 1) ≥ γ(N) + 2 for all 1 ≤ N < n.

For each non-incidental (j1− 1)th-scale hyperplane in Hxy let bN = Vj1−1(pγ(N)). Also
let b0 = p0 = x̂, b1 = p1, bn = pm, and bn+1 = pm+1 = ŷ. We shift to the (j1 − 1)th scale
grid in each non-incidental (j1 − 1)th-scale hyperplane Hsi , i ∈ Ixy, replacing pγ(N) with
bN for 2 ≤ N ≤ n − 1, to create the updated path which we denote Γj1−1,1

xy . Letting

p̂i = msi(Γ
j1−1,1
xy ) (so p̂i = pi if i /∈ Ixy, p̂i = bη

−1(i) if i ∈ Ixy), we may equivalently write
this as

Γj1−1,1
xy : p̂0 → p̂1 → p̂2 → · · · → p̂m+1.

The black path from u′ to v′ in Figure 6 illustrates a segment of such a path, with
u′ = bN−1 = p̂γ(N−1), v′ = bN = p̂γ(N) for some N there; the vertices between u′ and v′

are points pi = p̂i with γ(N − 1) < i < γ(N). Viewing Γj1−1,0
xy as a CG approximation,

on the j1th scale, of the original Γxy, we may view Γj1−1,1
xy as a coarsening of the

approximation to the (j1 − 1)th scale, but only coarsened in the non-incidental (j1 − 1)th-
scale hyperplanes. In the second stage of the iteration we will remove marked points in
those non-terminal j1th-scale hyperplanes where coarsening did not occur, to create the
path

Γj1−1,2
xy : b0 → b1 → · · · → bn → bn+1

which is entirely a CG approximation on the (j1 − 1)th scale.
By Lemma 4.5 we have∑

i∈Ixy

A1
j1(Γj1−1,0

xy , i) ≤ 2

3
λj1
[
tσ(r) + δµ

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)]
, (4.106)

while similarly to (4.66) (noting the comment after (4.68)),∣∣∣ΥEuc

(
Γj1−1,1
xy

)
−ΥEuc

(
Γj1−1,0
xy

) ∣∣∣ ≤ λj1

2µ

[
tσ(r)

3
+ δµ

(
ΥEuc(Γ

j1−1,0
xy )− (ŷ − x̂)1

)]
(4.107)

and∣∣∣Υh

(
Γj1−1,1
xy

)
−Υh

(
Γj1−1,0
xy

) ∣∣∣ ≤ λj1 [ tσ(r)

3
+ δµ

(
ΥEuc(Γ

j1−1,0
xy )− (ŷ − x̂)1

)]
. (4.108)

(The only notable change from the derivation of (4.66) and (4.68) is that now, since we
are shifting to the (j1 − 1)th scale, we have the bound

|(pi − p̂i)∗| ≤
√
d− 1K0β

j1−1∆(r),
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larger only by a constant β−1 compared to the analogous bound in (4.51)–(4.52).)
Then (4.106) and (4.108) give∑

i∈Ixy

A1
j1(Γj1−1,0

xy , i) + Υh

(
Γj1−1,1
xy

)
−Υh

(
Γj1−1,0
xy

)
≤ λj1

[
tσ(r) +

5

3
δµ
(

ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)]
. (4.109)

From (4.107) and (4.109), analogously to (4.73), we have for the event on the right
in (4.81) that{

ΥT̂

(
Γj1−1,0
xy

)
− h((y − x)1) ≤ −

(
1− 2λj1

)
tσ(r) + 4δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)}
⊂
{

ΥT̂

(
Γj1−1,1
xy

)
− h((y − x)1) ≤ −

(
1− 4λj1

)
tσ(r) + 6δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,1
xy

) )}
∪
{

ΥT̂

(
Γj1−1,0
xy

)
−ΥT̂

(
Γj1−1,1
xy

)
≤ Υh

(
Γj1−1,0
xy

)
−Υh

(
Γj1−1,1
xy

)
−
∑
i∈Ixy

A1
j1(Γj1−1,0

xy , i)

}
.

(4.110)

Remark 4.8. To see the meaning of (4.110), let us momentarily rename the events there
as M1,M2,M3 (left to right) and rename the right side of the inequality in each event
as −tσ(r) + z1,−tσ(r) + z1 − z2, and z3, respectively. We have z1 > 0; z2, z3 may be
positive or negative. The validity of M1 ⊂M2 ∪M3 requires that z2 ≤ z3, which follows
from (4.109). The completed shifting to the grid may increase or reduce the h-length
Υh(·), its approximation µΥEuc(·), and/or the passage time ΥT̂ (·) of the path. Suppose
that the shifting reduces the h-length. The event M3 says that the passage time fails
to track (i.e. keep up with) this reduction, to within an allowed error given by the sum
of allocations in M3. If we can choose those allocations so that M3 is unlikely, we can
have z2 > 0 (or at least nearly so, as reflected in the increase in coefficients from 2,
4 to 4, 6 going from M1 to M2), which means the right side in M2 improves on (i.e. is
smaller than) the right side in M1, by an amount involving a multiple δ of the path length
reduction.

If we can successfully do this for all iterations, for both the shifting-to-the-grid and
point-removal stages, then in the left side of (4.81) we have effectively replaced Γxy
with the final CG path ΓCGxy (i.e. replaced T (x, y) with ΥT̂ (ΓCGxy )) and improved −tσ(r)

to a significantly more negative value, incorporating a positive fraction of the total
path-length reduction from all iterations. It is this improvement of −tσ(r) that will
enable us to sum the probability of an unusually fast ΥT̂ (ΓCGxy ) over all possible ΓCGxy .

Informally we refer to M3, and similar events, as tracking failure, and say we establish
tracking when we show the probability of tracking failure is small. Tracking error means
the difference between the increment of ΥT̂ and the increment of Υh, as in M3, for either
a path or a single link.

In the shifting-to-the-grid stage, (4.108) says that the change in h-length is small,
which makes it relatively easy to establish tracking—the primary part of z3 is the sum of
allocations. But for the point-removal stage, the (always positive) reduction in h-length
may be large, and establishing tracking becomes harder. Further, in (4.81) and in M1,
2λj1tσ(r) + 4δµλj1(ΥEuc(Γ

j1−1,0
xy )− (ŷ − x̂)1) represents roughly the accumulated error

allocations used in the completed j1th-scale iteration; the increase in coefficients from 2,
4 to 4, 6 going from M1 to M2 replresents additional accumulated error allocations used
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in the shifting-to-the-grid stage of the (j1 − 1)th-scale iteration. If these allocations are
too large, then the improvement z2 may be too small, or even negative.

We slightly change (4.110) in the point-removal stage (see (4.113) and (4.116))—in
M3 we use µΥEuc in place of Υh and a different term in place of the sum of allocations,
but the principle is the same.

We note that failure to track is a one-sided phenomenon—we only care about failure
of ΥT̂ (·) to track decreases in Υh(·) created by shifting to the grid, not increases.

The primary tool to establish tracking is Lemma 4.6, which tells us that with high
probability, there are no relevant links anywhere in G+

r for which tracking error exceeds
a certain allocation, as in our next step.

Using Lemma 4.6 we have for the last event in (4.110)

P

(
ΥT̂

(
Γj1−1,0
xy

)
−ΥT̂

(
Γj1−1,1
xy

)
≤ Υh

(
Γj1−1,0
xy

)
−Υh

(
Γj1−1,1
xy

)
−
∑
i∈Ixy

A1
j1(Γj1−1,0

xy , i)

for some (x, y) ∈ Xr; ω /∈ J (0) ∪ J (1c)

)
≤ P

(
max

(∣∣T̂ (p̂i−1, p̂i)− h(|p̂i − p̂i−1|)
∣∣, ∣∣T̂ (pi−1, pi)− h(|pi − pi−1|)

∣∣)
≥ 1

4
A1
j1(Γj1−1,0

xy , i) for some 1 ≤ i ≤ m+ 1 and (x, y) ∈ Xr

with {i− 1, i} ∩ Ixy 6= ∅; ω /∈ J (0) ∪ J (1c)

)
≤ P

(∣∣T̂ (v, w)− h(|w − v|)
∣∣ ≥ A2

j1(v, w)

for some j1th-scale transition v → w with v, w ∈ G+
r ∩ Lj1

)
≤ C70 exp

(
− C71

(
λ

7δχ1

)j1
t

)
, (4.111)

establishing tracking as desired. Combining this with (4.81) and (4.110) yields

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂ (Γj1−1,1

xy )− h((y − x)1) ≤ −
(
1− 4λj1

)
tσ(r) + 6δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,1
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ c32e

−c33t + C70 exp

(
−C71

(
λ

7δχ1

)j1
t

)
. (4.112)

4.8 Step 6. Second stage of the (j1 − 1)th-scale (second) coarse-graining itera-
tion: removing marked points

For the next update of the current marked PG path Γj1−1,1
xy , we remove all the marked

points in non-terminal j1th-scale hyperplanes to create the updated marked PG path

Γj1−1,2
xy : b0 → b1 → · · · → bn → bn+1.

Here we recall that b0 = x̂, bn+1 = ŷ, b1 and bn lie in terminal j1th-scale hyperplanes,
and b2, . . . , bn−1 lie in (j1 − 1)th-scale hyperplanes. As with pi, p̂i, etc., n and bi should be
viewed as functions of x, y, ω.
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In this second stage, the removal of marked points always reduces the Euclidean
length of the path (see Figure 5), meaning ΥEuc(Γ

j1−1,1
xy ) − ΥEuc(Γ

j1−1,2
xy ) ≥ 0, and on

average the reduction in passage time, ΥT̂ (Γj1−1,1
xy ) − ΥT̂ (Γj1−1,2

xy ), should be about µ
times the reduction in length. Here a tracking failure means the actual reduction in
passage time is at most δµ times the reduction in length, to within an allocated error;
see the last probability in (4.113).

From (4.107) we have

ΥEuc

(
Γj1−1,2
xy

)
−(ŷ−x̂)1 ≤ ΥEuc

(
Γj1−1,1
xy

)
−(ŷ−x̂)1 ≤

1

2
tσ(r)+

3

2

(
ΥEuc

(
Γj1−1,0
xy

)
−(ŷ−x̂)1

)
and therefore, assuming δ is small,

1

3

[
2tσ(r)+δµ

(
ΥEuc

(
Γj1−1,1
xy

)
− (ŷ − x̂)1 + ΥEuc

(
Γj1−1,2
xy

)
− (ŷ − x̂)1

)]
≤ tσ(r) + δµ

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
.

From this and (4.112) we obtain the setup to establish tracking:

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂ (Γj1−1,1

xy )−h((y − x)1) ≤ −
(
1− 4λj1

)
tσ(r) + 6δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
−(ŷ − x̂)1

)
− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,1
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ c32e

−c33t + C70 exp

(
−C71

(
λ

7δχ1

)j1
t

)

≤ P
(

ΥT̂ (Γj1−1,2
xy )−h((y − x)1) ≤ −

(
1− 5λj1

)
tσ(r)+7δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
−(ŷ − x̂)1

)
− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,2
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ P

(
ΥT̂ (Γj1−1,1

xy )−ΥT̂ (Γj1−1,2
xy )

≤ −1

3
λj1
[
2tσ(r) + δµ

(
ΥEuc

(
Γj1−1,1
xy

)
− (ŷ − x̂)1 + ΥEuc

(
Γj1−1,2
xy

)
− (ŷ − x̂)1

)]
+ δµ

(
ΥEuc

(
Γj1−1,1
xy

)
−ΥEuc

(
Γj1−1,2
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t + C70 exp

(
−C71

(
λ

7δχ1

)j1
t

)
. (4.113)

Let us consider the contribution to the difference of sums ΥEuc

(
Γj1−1,1
xy

)
−

ΥEuc

(
Γj1−1,2
xy

)
(which is nonnegative), appearing in the last probability in (4.113), from a

single (j1 − 1)th-scale interval IN = [bN , bN+1] = [p̂γ(N), p̂γ(N+1)]. Removing the marked
points from the two hyperplanes in the interior of IN changes the marked PG path from
the full path

ΓN,full : p̂γ(N) → p̂γ(N)+1 → p̂γ(N)+2 → p̂γ(N+1)

to the direct path p̂γ(N) → p̂γ(N+1) (that is, bN → bN+1.) We then have

ΥT̂ (Γj1−1,1
xy )−ΥT̂ (Γj1−1,2

xy ) =

n+1∑
N=1

[
ΥT̂

(
ΓN,full

)
− T̂ (p̂γ(N), p̂γ(N+1))

]
. (4.114)
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Given n ≥ 1 and Γ : u1 → · · · → un with (for some j) all ui in the grid Lj , we define

Sj(u0, . . . , un) = Sj(Γ) =

n∑
i=1

A2
j (ui−1, ui).

From Lemma 4.5 we have

n∑
N=0

Sj1
(
ΓN,full

)
=

m+1∑
i=1

A2
j1(p̂i−1, p̂i) ≤ 1

4
λj
[
tσ(r) + δµ

(
ΥEuc

(
Γj1−1,1
xy

)
− (ŷ − x̂)1)

)]
,

(4.115)

so the last probability in (4.113) is bounded above by

P

(
ΥT̂ (Γj1−1,1

xy )−ΥT̂ (Γj1−1,2
xy ) ≤ δµ

(
ΥEuc

(
Γj1−1,1
xy

)
−ΥEuc

(
Γj1−1,2
xy

) )
−

n∑
N=0

Sj1
(
ΓN,full

)
− 1

3
λj1
[
tσ(r) + δµ

(
ΥEuc

(
Γj1−1,2
xy

)
− (ŷ − x̂)1

)]
− 1

12
λj1tσ(r) for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
. (4.116)

This is the tracking-failure event (see Remark 4.4) for the marked-point-removal stage of
the iteration, and our main task is to bound its probability. The last of the 3 terms on the
right inside the probability can be viewed as part of the allocation of allowed errors. As
noted in Remark 4.8, the quantity

4λj1tσ(r) + 6δµλj1
(

ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
in the second probabilty in (4.113) represents the accumulated error allocations used
in the 1.5 iterations completed so far; the allocations for the present stage increase
the 4 and 6 to 5 and 7 in the third probability in (4.113). Our ability to bound the
tracking-failure event is what allows us to replace the quantity

δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,1
xy

) )
with δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−1,2
xy

) )
in that second probability in (4.113) to obtain the third probability. We need each
iteration to involve similar such replacement, so that when the iterations are complete
this term becomes

δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
ΓCGxy

) )
which is typically positive and can in part cancel the accumulated error allocations
(see (4.167)).

Let ŵi be the point Πp̂γ(N),p̂γ(N+1) ∩H(p̂i)1 (see Figure 7); note ŵi does not necessarily
lie in any jth-scale grid. Let wi⊥ be the orthogonal projection of p̂i into Πp̂γ(N),p̂γ(N+1) ,
noting that by (4.25), |wi⊥ − ŵi| is much smaller than |p̂i − ŵi|. (Note the indexing of
marked points differs here from that used in Step 1 in defining L−(I). Our ŵi here has
index i matching that of the point p̂i in the hyperplane, whereas w` in Step 1 has index
corresponding to the distance δ`r from the left end of the interval.)

We continue considering the contribution to the difference of sums ΥEuc

(
Γj1−1,1
xy

)
−

ΥEuc

(
Γj1−1,2
xy

)
in (4.116) from a single (j1 − 1)th-scale interval IN = [bN , bN+1] =

[p̂γ(N), p̂γ(N+1)]. As noted after (4.22), the number (call it m) of (j1 − 1)th-scale intervals
in Hxy satisfies m ≤ δ−j1 . We split into cases according to the type of interval IN .
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p̂γ(N)

p̂γ(N)+1

p̂γ(N)+2

p̂γ(N+1)

ŵγ(N)+1

ŵγ(N)+2

ŵγ(N)+1

w
γ(N)+1
⊥

w
γ(N)+2
⊥

b b b

b

b b

b

b

Figure 7: Diagram for Case 1 showing (j1 − 1)th-scale endpoint hyperplanes and j1th-
scale sandwiching hyperplanes in a short (j1 − 1)th-scale interval. The black path is
ΓN,full and the gray is ΓN,int.

Case 1. IN is a short non-terminal (j1 − 1)th-scale interval. Here Hxy includes
no joining hyperplanes in the interval, so it includes exactly two maximally j1th-scale
(sandwiching) hyperplanes there, at distance δj1r from each end; see Figure 7. We
introduce the intermediate path

ΓN,int : w
γ(N)
⊥ → w

γ(N)+1
⊥ → w

γ(N)+2
⊥ → w

γ(N+1)
⊥

which has the same endpoints and satisfies ΥT̂ (ΓN,int) ≥ T̂ (p̂γ(N), p̂γ(N+1)). To bound
(4.116) we use the expression on the right in (4.114). Applying Lemma 3.6(ii) with
ε = 1− δ yields

h(|p̂i − p̂i−1|)− h(|wi⊥ − wi−1
⊥ |) ≥ δµ

(
|p̂i − p̂i−1| − |wi⊥ − wi−1

⊥ |
)
− C56

and therefore

Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
≥ δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
− 3C56. (4.117)

This is the essential property of the intermediate path: when we look at the bowedness
of the full path relative to the intermediate path (represented by the left side of (4.117)),
and also relative to the direct path (right side of (4.117), without δ), the first is at least δ
fraction of the second, to within a constant. By (4.70), for ω /∈ J (0)(c29) the intermediate
path also satisfies

T̂ (p̂γ(N), p̂γ(N+1)) ≤ ΥT̂

(
ΓN,int

)
+ (γ(N + 1)− γ(N)− 1)c29 log r. (4.118)

Similarly to (4.115), since in Case 1 ΥEuc

(
ΓN,int

)
= |p̂γ(N+1) − p̂γ(N)| = |bN+1 − bN |, we

have

n∑
N=0

Sj1
(
ΓN,int

)
=

m+1∑
i=1

A2
j1(wi−1

⊥ , wi⊥) ≤ 1

4
λj1
[
tσ(r) + δµ

(
ΥEuc

(
Γj1−1,2
xy

)
− (ŷ − x̂)1)

)]
.

(4.119)

Using (4.22) we have

λj1tσ(r)

6m
≥ (λδ)j1σ(r) ≥ 2c29 log r + 2C56. (4.120)

From this and (4.114)–(4.119) it follows that the contribution to the tracking-failure
probability (4.116) from short non-terminal intervals is bounded by

P

(
T̂ (p̂γ(N), p̂γ(N+1))−ΥT̂

(
ΓN,full

)
≥ Sj1

(
ΓN,full

)
+ Sj1

(
ΓN,int

)
+
λj1tσ(r)

6m

+ δµ
(
|p̂γ(N+1) − p̂γ(N)| −ΥEuc

(
ΓN,full

) )
for some N with IN short

non-terminal (j1 − 1)th-scale, and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
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≤ P
(

ΥT̂

(
ΓN,int

)
−ΥT̂

(
ΓN,full

)
≥ Sj1

(
ΓN,full

)
+ Sj1

(
ΓN,int

)
+
λj1tσ(r)

6m
− 2c29 log r

+ Υh

(
ΓN,int

)
−Υh

(
ΓN,full

)
− 2C56 for some N with IN short non-terminal

(j1 − 1)th-scale, and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(∣∣ΥT̂

(
ΓN,full

)
−Υh

(
ΓN,full

)∣∣ ≥ Sj1 (ΓN,full) or
∣∣∣ΥT̂

(
ΓN,int

)
−Υh

(
ΓN,int

) ∣∣∣
≥ Sj1

(
ΓN,int

)
for some N with IN short non-terminal

(j1 − 1)th-scale, and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(∣∣∣T̂ (p̂i−1, p̂i)− h(|p̂i − p̂i−1|)

∣∣∣ ≥ A2
j1(p̂i−1, p̂i) or

∣∣∣T̂ (wi−1
⊥ , wi⊥)− h(|wi⊥ − wi−1

⊥ |)
∣∣∣

≥ A2
j1(wi−1

⊥ , wi⊥) for some γ(N) + 1 ≤ i ≤ γ(N + 1), for some N with IN short

non-terminal (j1 − 1)th-scale, and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
.

(4.121)

Since the corresponding intervals are short, all of the increments T̂ (u, v) in the last
event have δj1r ≤ (v − u)1 ≤ 10δj1−1r. We can therefore bound the last probability
similarly to Lemma 4.6, with the main difference being that in place of pairs (u, v)

in the definitions of R∗,∗r,j we need to consider 4-tuples (u, v, w, z) corresponding to

values of (p̂γ(N), p̂γ(N)+1, p̂γ(N)+2, p̂γ(N+1)) ∈ (Lj1 ∩ G+
r )4. This means the exponents

d − 1 in the bounds on |R∗,∗r,j | become 3(d − 1). The values wi⊥ are determined by

(p̂γ(N), p̂γ(N)+1, p̂γ(N)+2, p̂γ(N+1)) so their presence does not increase the necessary size
of R∗,∗r,j in the lemma. As with the sets Rν,`r,j in the lemma proof, we can decompose the

possible 4-tuples (p̂γ(N), p̂γ(N)+1, p̂γ(N)+2, p̂γ(N+1)) according to the size of |(p̂γ(N)+1 −
p̂γ(N))∗|, |p̂γ(N)+1 − w

γ(N)+1
⊥ |, and |p̂γ(N)+2 − w

γ(N)+2
⊥ | and sum over the possible size

ranges. Otherwise the proof remains the same, and we get that the last probability
in (4.121) is bounded by

c34 exp

(
−c35

(
λ

7δχ1

)j1
t

)
. (4.122)

Case 2. IN is a terminal (j1 − 1)th-scale interval (meaning either [p̂γ(1), p̂γ(2)] or
[p̂γ(n−1), p̂γ(n)]). The proof is similar to Case 1, except that the interval includes only one
maximally j1th-scale (sandwiching) hyperplane between the two terminal hyperplanes
that are at the ends of the interval, so the full path in the interval has form p̂γ(N) →
p̂γ(N)+1 → p̂γ(N+1). We obtain for the terminal-interval contribution to the tracking-
failure probability (4.116) the bound

P

(
T̂ (p̂γ(N), p̂γ(N+1))−ΥT̂

(
ΓN,full

)
≥ Sj1

(
ΓN,full

)
+ Sj1

(
ΓN,int

)
+ δµ

(
|p̂γ(N+1) − p̂γ(N)| −ΥEuc

(
ΓN,full

) )
for some N with IN terminal

(j1 − 1)th-scale, and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
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≤ c34 exp

(
−c35

(
λ

7δχ1

)j1
t

)
. (4.123)

Case 3. IN is a long non-terminal (j1 − 1)th-scale interval. Such an interval, and thus
also the middle increment p̂γ(N+1)−1− p̂γ(N)+1 of the 3 comprising ΓN,full in Case 1, may
be much longer than δj1−1r. Therefore the quantity A2

j1
(p̂γ(N)+1, p̂γ(N+1)−1) used on the

right side of (4.121) for that increment is no longer large enough to give a useful bound
on the probability. To avoid this problem we will sometimes use a different intermediate
path in IN which coincides with the full path between the inner joining hyperplanes, so
differs from the full path only near the ends of IN , while preserving the property (4.117)
(this preservation being the purpose of our choice of L±(I).) Equation (4.117) represents
what we may informally call deterministic tracking, a nonrandom analog of the tracking
of Remark 4.4 which facilitates our desired (random) form of tracking.

Fix a long non-terminal (j1 − 1)th-scale interval IN , and suppose it has kth-scale
length for some k < j1 − 1. The hyperplanes of Hxy in IN are the (j1 − 1)th-scale ones at
each endpoint, two sandwiching j1th-scale hyperplanes at distance δj1r from each end,
and between 2 and 4 j1th-scale joining hyperplanes between these. These hyperplanes
are at the joining points (p̂γ(N))1 + δL

−(I)+1r, (p̂γ(N))1 + δL
−(I)r, (p̂γ(N+1))1− δL

+(I)r, and
(p̂γ(N+1))1 − δL

+(I)+1r, with two exceptions. First, if L−(IN ) = j1 − 1 then the first of
these 4 joining hyperplanes coincides with the left-end sandwiching one, and similarly
for L+(IN ), which reduces the number of j1th-scale joining hyperplanes to fewer than 4,
as discussed in criterion (ii) after (4.39). In FIgure 8, L−(IN ) = j1 − 1 means the middle
two hyperplanes coincide.) Second, in the totally unbowed case (third option in (4.39))
at either end of IN , there is no outer joining hyperplane at that end, as in criterion (iii).
We define 4 ≤ V (N) ≤ 6 to be the number of j1th-scale hyperplanes in the interior of IN .

Case 3a. The bowed case (second option in (4.39)) for both L±(I), with V (N) = 6.
Since V (N) = 6 there are two joining hyperplanes at each end of IN , and we must have
L−(IN ) < j1 − 1 and L+(IN ) < j1 − 1. Here the full path is

ΓN,full : p̂γ(N) → p̂γ(N)+1 → · · · → p̂γ(N)+6 → p̂γ(N+1)

and the direct path again is p̂γ(N) → p̂γ(N+1). Define

ẑi =


the point Πp̂γ(N),p̂γ(N)+3 ∩H(p̂i)1 if i = γ(N) + 1, γ(N) + 2,

the point Πp̂γ(N)+4,p̂γ(N+1) ∩H(p̂i)1 if i = γ(N) + 5, γ(N) + 6,

p̂i if i = γ(N), γ(N) + 3, γ(N) + 4, γ(N + 1);

see Figure 8. This time the intermediate path is defined as

ΓN,int : ẑγ(N) → ẑγ(N)+1 → · · · → ẑγ(N)+6 → ẑγ(N+1),

which coincides with ΓN,full between the inner joining hyperplanes (i.e. from p̂γ(N)+3

to p̂γ(N)+4), which is “most” of IN . We denote the parts of the paths outside the inner
joining hyperplanes by

ΓN,full,− : p̂γ(N) → p̂γ(N)+1 → p̂γ(N)+2 → p̂γ(N)+3,

ΓN,full,+ : p̂γ(N)+4 → p̂γ(N)+5 → p̂γ(N)+6 → p̂γ(N+1),

with ΓN,int,± defined similarly with ẑi in place of p̂i, so that

ΥT̂

(
ΓN,full

)
−ΥT̂

(
ΓN,int

)
=
[
ΥT̂

(
ΓN,full,−

)
−ΥT̂

(
ΓN,int,−

) ]
+
[
ΥT̂

(
ΓN,full,+

)
−ΥT̂

(
ΓN,int,+

) ]
. (4.124)
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p̂γ(N)
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p̂γ(N)+2

p̂γ(N)+3
to p̂γ(N)+4

to p̂γ(N+1)

ŵγ(N)+1
w

γ(N)+2
⊥ ŵγ(N)+2

ẑγ(N)+2

w
γ(N)+3
⊥ ŵγ(N)+3

Ha Ha+δℓ+1r

Ha+δℓr
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b

b
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b

b

Figure 8: The left end of a long (j1 − 1)th-scale interval IN = [a, b] with the bowed case,
with L−(In) = `, showing the direct path (black) and intermediate path (gray.) The full
path has marked points at the p̂γ(N)+i.

For the corresponding quantities Υh(·), similarly to (4.117), but using ε = 1/2 in
Lemma 3.6(ii), we have

Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
=
[
Υh

(
ΓN,full,−

)
−Υh

(
ΓN,int,−

) ]
+
[
Υh

(
ΓN,full,+

)
−Υh

(
ΓN,int,+

) ]
≥ µ

2

[
ΥEuc

(
ΓN,full,−

)
− |p̂γ(N)+3 − p̂γ(N)|

]
+
µ

2

[
ΥEuc

(
ΓN,full,+

)
− |p̂γ(N+1) − p̂γ(N)+4|

]
− 6C56

=
µ

2

[
ΥEuc

(
ΓN,full

)
−ΥEuc

(
ΓN,int

) ]
− 6C56. (4.125)

We claim that deterministic tracking holds in the sense that

ΥEuc

(
ΓN,full

)
−ΥEuc

(
ΓN,int

)
≥ 3δ

[
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

]
. (4.126)

This says that at least 3δ fraction of the excess length in ΓN,full is not present in ΓN,int; it
comes instead from the bowedness of ΓN,full,− and/or ΓN,full,+. (4.125) and (4.126) give
the full analog of (4.117) for Case 3a. To prove the claim, suppose L−(IN ) = `− for some
k + 1 ≤ `− < j1 − 1, the first inequality being a property of the bowed case, from (4.39).
Recall α(·) and θ(·) from (4.31) and (4.32), noting that in our present notation, v, w, z
there have become p̂, ŵ, ẑ, with different superscript labeling. Using (4.34)–(4.36) with
j = j1 − 1,

α(`− + 1) =
|p̂γ(N)+2 − ŵγ(N)+2|2

δ`−+1r
, θ(`− + 1) =

|ẑγ(N)+2 − ŵγ(N)+2|
|p̂γ(N)+2 − ŵγ(N)+2| ≤

1

2

and hence

ΥEuc

(
ΓN,full,−

)
− |p̂γ(N)+3 − p̂γ(N)| ≥ ΥEuc

(
p̂γ(N), p̂γ(N)+2, p̂γ(N)+3

)
− |p̂γ(N)+3 − p̂γ(N)|

≥ |p̂
γ(N)+2 − ẑγ(N)+2|2

3δ`−+1r

≥ α(`− + 1)

12
. (4.127)

Here the second inequality uses (4.26) and the fact that p̂γ(N)+2 − ẑγ(N)+2 is nearly
perpendicular to Πp̂γ(N),p̂γ(N)+3 , by (4.25). In the other direction, recalling IN has kth-
scale length and supposing L+(IN ) = `+, since k + 1 ≤ `+ and k + 1 ≤ `− we have
(p̂γ(N)+3 − p̂γ(N))1 ≤ δk+1r and (p̂γ(N+1) − p̂γ(N)+4)1 ≤ δk+1r, so (p̂γ(N)+4 − p̂γ(N)+3)1 ≥
8δk+1r. Hence similarly to (4.41) and (4.42)

ΥEuc

(
ΓN,int

)
− |p̂γ(N+1) − p̂γ(N)| ≤ |p̂

γ(N)+3 − wγ(N)+3
⊥ |2

2δ`−r
+
|p̂γ(N)+4 − wγ(N)+4

⊥ |2
2δ`+r

EJP 29 (2024), paper 10.
Page 60/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

+
|(p̂γ(N)+3 − wγ(N)+3

⊥ )− (p̂γ(N)+4 − wγ(N)+4
⊥ )|2

16δk+1r

≤ |p̂
γ(N)+3 − ŵγ(N)+3|2

δ`−r
+
|p̂γ(N)+4 − ŵγ(N)+4|2

δ`+r
.

(4.128)

Now the first ratio on the right is α(`−), so it follows from (4.36) (last two inequalities)
and (4.127) that

|p̂γ(N)+3 − ŵγ(N)+3|2
δ`−r

≤ 24C23δ
−χ2

[
ΥEuc

(
ΓN,full,−

)
− |p̂γ(N)+3 − p̂γ(N)|

]
,

and similarly

|p̂γ(N)+4 − ŵγ(N)+4|2
δ`−r

≤ 24C23δ
−χ2

[
ΥEuc

(
ΓN,full,+

)
− |p̂γ(N+1) − p̂γ(N)+4|

]
.

Hence from (4.128) and the second equality in (4.26),

ΥEuc

(
ΓN,int

)
− |p̂γ(N+1) − p̂γ(N)| ≤ 24C23δ

−χ2

[
ΥEuc

(
ΓN,full

)
−ΥEuc

(
ΓN,int

) ]
(4.129)

which implies

ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)| ≤ (1 + 24C23δ

−χ2)
[
ΥEuc

(
ΓN,full

)
−ΥEuc

(
ΓN,int

) ]
,

(4.130)

proving the claim (4.126) when we take δ small.
From Lemma 4.7(i) we have

6A3
j1

(
ΓN,full,−

)
≤ Sj1

(
ΓN,full,−

)
+
δµ

18

[
ΥEuc(Γ

N,full,−)− |p̂γ(N)+3 − p̂γ(N)|
]
− 6C56,

(4.131)
and the equivalent “mirror image” of Lemma 4.7 covers ΓN,full,+ symmetrically, incorpo-
rating a symmetric definition of joining 4-path.

Inequality (4.118) remains valid, and we now have the ingredients for the ana-
log of (4.121), bounding the bowed-case contribution to the tracking-failure probabil-
ity (4.116)—see (4.133) below:

P

(
ΥT̂

(
ΓN,full

)
− T̂ (p̂γ(N), p̂γ(N+1)) ≤ −Sj1

(
ΓN,full,−

)
− Sj1

(
ΓN,full,+

)
− λj1tσ(r)

3m

+ δµ
(

ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
for some N with V (N) = 6

and IN long non-terminal (j1 − 1)th-scale, in the bowed case of (4.39)

for both of L±(IN ), for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
([

ΥT̂

(
ΓN,full,−

)
−ΥT̂

(
ΓN,int,−

) ]
+
[
ΥT̂

(
ΓN,full,+

)
−ΥT̂

(
ΓN,int,+

) ]
≤ −6A3

j1(ΓN,full,−)− 6A3
j1(ΓN,full,+) + Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
+ 6c29 log r − λj1tσ(r)

3m
for some N with V (N) = 6 and IN long non-terminal

(j1 − 1)th-scale, in the bowed case of (4.39) for both of L±(IN ),

and for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
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≤
j1−2∑

`−=k+1

j1−2∑
`+=k+1

P

(∣∣∣T̂ (p̂i−1, p̂i)− h(|p̂i − p̂i−1|)
∣∣∣ ≥ A3

j1(ΓN,full,±) or∣∣∣T̂ (ẑi−1, ẑi)− h(|ẑi − ẑi−1|)
∣∣∣ ≥ A3

j1(ΓN,full,±) for some γ(N) + 1 ≤ i ≤ γ(N + 1)

with i 6= γ(N) + 4, for some N with V (N) = 6 and IN long non-terminal

(j1 − 1)th-scale with L−(IN ) = `− and L+(IN ) = `+, in the bowed case of

(4.39) for both of L±(IN ), and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
. (4.132)

Here the second inequality uses a slight modification of (4.120), and the first inequality
uses (4.118), (4.124), and

T̂ (p̂γ(N), p̂γ(N+1)) ≤ ΥT̂

(
ΓN,int

)
+ 6c29 log r,

and that from (4.131), (4.126), and then (4.125),

−Sj1
(
ΓN,full,−

)
− Sj1

(
ΓN,full,+

)
+ δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
≤ −6A3

j1(ΓN,full,−)− 6A3
j1(ΓN,full,+)

+ 10
9 δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
− 12C56

≤ −6A3
j1(ΓN,full,−)− 6A3

j1(ΓN,full,+) + 10
27µ
[
ΥEuc

(
ΓN,full

)
−ΥEuc

(
ΓN,int

) ]
− 12C56

≤ −6A3
j1(ΓN,full,−)− 6A3

j1(ΓN,full,+) + Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
. (4.133)

For the ± symbol in the last event in (4.132), the − applies to γ(N) + 1 ≤ i ≤ γ(N) + 3

and the + applies to γ(N) + 5 ≤ i ≤ γ(N + 1). An application of Lemma 4.7(ii) and
(iii) with j = j1 − 1, followed by summing over `±, bounds the last (tracking-failure)
probability in (4.132) by[

j1−2∑
`=1

C72

(
2

δχ2+1

)j1−1−`(
δ

β2

)j1−1

exp

(
−C73

(
λ

δχ1

)j1−1

2j1−1−`t

)]2

≤ c36

(
δ

β2

)2(j1−1)

exp

(
−C73

(
λ

δχ1

)j1−1

t

)
. (4.134)

Case 3b. The bowed case (second option in (4.39)) for both L±(I), with V (N) < 6.
This means we have at least one of L±(IN ) = j1 − 1. If for example L−(IN ) = j1 − 1,
then what were in Case 3a the two points p̂γ(N)+1, p̂γ(N)+2 are now the same point, so
effectively there is no separate point p̂γ(N)+1. Instead we have only the equivalent of
p̂γ(N), p̂γ(N)+2, p̂γ(N)+3, so joining 4-paths become joining 3-paths. This has no significant
effect on the arguments, including Lemma 4.7, other than some simplifications, and the
bound in (4.134) still applies for the corresponding contribution to the tracking-failure
probability (4.116):

P

(
T̂ (p̂γ(N), p̂γ(N+1))−ΥT̂

(
ΓN,full

)
≥ Sj1

(
ΓN,full,−

)
+ Sj1

(
ΓN,full,+

)
+ δµ

(
|p̂γ(N+1) − p̂γ(N)| −ΥEuc

(
ΓN,full

) )
for some N with V (N) < 6

and IN long non-terminal (j1 − 1)th-scale, in the bowed case of (4.39)

for both of L±(IN ), and for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
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≤ c36

(
δ

β2

)2(j1−1)

exp

(
−C73

(
λ

δχ1

)j1−1

t

)
. (4.135)

Case 3c. The forward case (first option in (4.39)) for both L±(IN ). Here we have
V (N) = 4 as there are only inner joining points, at distance δj1r from each end of IN . As
before the direct path is p̂γ(N) → p̂γ(N+1), and the full path is

ΓN,full : p̂γ(N) → p̂γ(N)+1 → · · · → p̂γ(N)+4 → p̂γ(N+1);

by (4.70), for ω /∈ J (0)(c29) we have

ΥT̂

(
ΓN,full

)
− T̂ (p̂γ(N), p̂γ(N+1)) ≥ −4c29 log r. (4.136)

We claim that in the forward case we have

Sj1
(
ΓN,full

)
≥ δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
+ 4c29 log r. (4.137)

By (4.136), this means that in the forward case there is no tracking failure:

P

(
ΥT̂

(
ΓN,full

)
− T̂ (p̂γ(N), p̂γ(N+1)) ≤ −Sj1

(
ΓN,full

)
+ δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
for some N with

IN long non-terminal (j1 − 1)th-scale, in the forward case of (4.39)

for both of L±(IN ), and for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
= 0. (4.138)

To prove (4.137), we first observe that from the definitions (4.30) and (4.82),

Sj1
(
ΓN,full

)
≥ 1

4

(
λ

7

)j1 (
t∗(p̂γ(N)) + t∗(p̂γ(N+1)

)
σ(r). (4.139)

From (4.26) and (4.39), since IN long entails k < j1 − 1,

ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

≤ 1

2

γ(N+1)∑
i=γ(N)+1

|(p̂i − wi⊥)− (p̂i−1 − wi−1
⊥ )|2

|wi⊥ − wi−1
⊥ |

≤ 1

2

[
|p̂γ(N)+1 − wγ(N)+1

⊥ |2
δj1r

+
(|p̂γ(N)+1 − wγ(N)+1

⊥ |+ |p̂γ(N)+2 − wγ(N)+2
⊥ |)2

(1− δ)δj1−1r

+
(|p̂γ(N)+2 − wγ(N)+2

⊥ |+ |p̂γ(N)+3 − wγ(N)+3
⊥ |)2

10δk+1r − 2δj1−1r

+
(|p̂γ(N)+3 − wγ(N)+3

⊥ |+ |p̂γ(N)+4 − wγ(N)+4
⊥ |)2

(1− δ)δj1−1r
+
|p̂γ(N)+4 − wγ(N)+4

⊥ |2
δj1r

]

≤ |p̂
γ(N)+1 − wγ(N)+1

⊥ |2
δj1r

+
|p̂γ(N)+4 − wγ(N)+4

⊥ |2
δj1r

+
9

δj1−1r
max

1≤i≤4
|p̂γ(N)+i − wγ(N)+i

⊥ |2

≤ 1 + 9δ

16µ

(
λ

7

)j1 (
t∗(p̂γ(N)) + t∗(p̂γ(N+1)

)
σ(r). (4.140)

Since (4.22) ensures the right side of (4.139) is much larger than log r, the claim (4.137)
follows from (4.139) and (4.140).
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Figure 9: A long (j1 − 1)th-scale interval IN = [a, b] of kth-scale length with the totally
unbowed case, with L−(In) = k + 1, showing the full path (black) and intermediate path
(gray.) The full path has marked points at the p̂γ(N)+i.

Case 3d. The totally unbowed case (third option in (4.39)) for both L±(IN ). Here
we have V (N) = 4 as there are the sandwiching hyperplanes at distance δj1r from
each end of IN , and inner joining hyperplanes at distance δk+1r from each end, with
k + 1 ≤ j1 − 1 (since IN is long) such that IN is of kth-scale length; there are no outer
joining hyperplanes. See Figure 9. From (4.37) (valid now for k + 1 in place of ` + 1)
and (4.39), this means that

|p̂γ(N)+2 − wγ(N)+2
⊥ |2

δk+1r
≥ 1

2
max

(
2j1−k−1σ(δk+1r)

σ(δj1r)

|p̂γ(N)+1 − wγ(N)+1
⊥ |2

δj1r
,

2j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r)

)
. (4.141)

Here the second term in the max comes from the fact that to come under the third
(totally unbowed) option in (4.39), we must have 2k+1κ(k + 1) ≥ 2j1−1κ(j1 − 1). We note
that the definition of the totally unbowed case gives (4.141) for ŵi in place of wi⊥, but
by (4.25) this only changes each of the 4 terms in (4.141) by a factor 1 + o(1) as r →∞,
so we have accounted for this via the factor 1/2 in front of the max. The bound (4.141) is
for the left end of IN ; a symmetric bound is valid for the right end. As before, the direct
path is p̂γ(N) → p̂γ(N+1), and the full path is

ΓN,full : p̂γ(N) → p̂γ(N)+1 → · · · → p̂γ(N)+4 → p̂γ(N+1),

but this time the intermediate path is

ΓN,int : w
γ(N)
⊥ → w

γ(N)+1
⊥ → · · · → w

γ(N)+4
⊥ → w

γ(N+1)
⊥

These points are collinear so ΥEuc(Γ
N,int) = |p̂γ(N+1) − p̂γ(N)|.

We use a special allocation for the totally unbowed case, the same for all 10 links of
ΓN,full and ΓN,int, defined (when IN is of kth-scale length) as

A4
j (Γ

N,full)

=
δµ

540

(
|p̂γ(N)+2 − wγ(N)+2

⊥ |2
δk+1r

+
|p̂γ(N)+3 − wγ(N)+3

⊥ |2
δk+1r

+ λj
|(p̂γ(N+1) − p̂γ(N))∗|2

3δkr

)
.

Now ΥEuc

(
ΓN,int

)
= |p̂γ(N+1) − p̂γ(N)| so by Lemma 3.6(ii), applied with ε = 1/4,

Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
≥ µ

2

[
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

]
− 4C56.

while from (4.26),

Sj1(ΓN,full) ≥ λj1 δµ
18

[
ΥEuc

(
ΓN,full

)
− (p̂γ(N+1) − p̂γ(N))1

]
+

1

3

(
λ

7

)j1
tσ(r). (4.142)
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From these we get deterministic tracking:

10A4
j1(ΓN,full)

≤ δµ

54

(
3
[
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

]
+ 3λj1

[
|p̂γ(N+1) − p̂γ(N)| − (p̂γ(N+1) − p̂γ(N))1

])

≤
(

1

2
− δ
)
µ
[
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

]
+ λj1

δµ

18

[
ΥEuc

(
ΓN,full

)
− (p̂γ(N+1) − p̂γ(N))1

]
≤ Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
− δµ

[
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

]
+ Sj1(ΓN,full)− 1

3

(
λ

7

)j1
tσ(r) + 4C56. (4.143)

We now can establish the analog of (4.121) and (4.132) for the totally-unbowed-case
contribution to the tracking-failure probability (4.116), using (4.70) and (4.143):

P

(
ΥT̂

(
ΓN,full

)
− T̂ (p̂γ(N), p̂γ(N+1)) ≤ −Sj1

(
ΓN,full

)
+ δµ

(
ΥEuc

(
ΓN,full

)
− |p̂γ(N+1) − p̂γ(N)|

)
for some N with IN long non-terminal

(j1 − 1)th-scale, in the totally unbowed case of (4.39) for both of L±(IN ),

for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(

ΥT̂

(
ΓN,full

)
−ΥT̂

(
ΓN,int

)
≤ Υh

(
ΓN,full

)
−Υh

(
ΓN,int

)
− 10A4

j1(ΓN,full)

− 1

3

(
λ

7

)j1
tσ(r) + 4c29 log r + 4C56 for some N with IN long

non-terminal (j1 − 1)th-scale, in the totally unbowed case of (4.39)

for both of L±(IN ), for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(∣∣∣T̂ (p̂γ(N)+i−1, p̂γ(N)+i)− h

(
|p̂γ(N)+i − p̂γ(N)+i−1|

)∣∣∣ ≥ A4
j1(ΓN,full) or∣∣∣T̂ (w

γ(N)+i−1
⊥ , w

γ(N)+i
⊥ )− h

(
|wγ(N)+i
⊥ − wγ(N)+i−1

⊥ |
)∣∣∣ ≥ A4

j1(ΓN,full)

for some 1 ≤ i ≤ 5 and some N with IN long non-terminal (j1 − 1)th-scale,

in the totally unbowed case of (4.39) for both of L±(IN ),

for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
. (4.144)

Here we have again used j1 = O(log log r), from (4.22), to ensure (λ/7)j1tσ(r)/6 ≥
4c29 log r + 4C56. With the second term of the max in (4.141) in mind, suppose that for
some N and some ν,m0,m

∗ ≥ 1 we have

(2ν−1t)1/2∆(r) < |(p̂γ(N))∗| ≤ (2νt)1/2∆(r), (4.145)

EJP 29 (2024), paper 10.
Page 65/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

2m0−12j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r)

≤ |p̂
γ(N)+2 − wγ(N)+2

⊥ |2
δk+1r

+
|p̂γ(N)+3 − wγ(N)+3

⊥ |2
δk+1r

≤ 2m02j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r), (4.146)

and

2m
∗−12j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r)

≤ λj1−1 |(p̂γ(N+1) − p̂γ(N))∗|2
δkr

≤ 2m
∗
2j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r). (4.147)

Then using (1.11),

A4
j1

(ΓN,full)

σ(δkr)
≥ c37(2m0 + 2m

∗
)2j1−k

(
λ

7δχ1

)j1
2νt, (4.148)

and by Lemma 3.2, for every possible value (u1, . . . , u6) of (p̂γ(N), . . . , p̂γ(N+1)) and every
link (ui−1, ui), we have

P

(∣∣∣T̂ (ui − ui−1)− h
(
|ui−1 − ui|

)∣∣∣ ≥ A4
j1(u1, . . . , u6)

)
≤ C44 exp

(
−C45

A4
j1

(u1, . . . , u6)

σ(δkr)

)
.

(4.149)
It is important here that the lower bound (4.148) not depend on the length scale k of
IN , except through the factor 2j1−k which is always at least 1. Similarly to the entropy
bounds in the proofs of Lemmas 4.6 and 4.7, and in Case 3c, we see that the number of
possible choices of ΓN,full satisfying (4.145)–(4.147) is at most

c38

δ2j1
·
(

2νt

β2j1

)(d−1)/2

·
(

2m
∗
2ν
(

2

δ1+χ2

)j1−k ( δ

7β2

)j1
t

)(d−1)/2

·
(

2m02ν
(

2

δ1+χ2

)j1−k ( λδ

7β2

)j1
t

)2(d−1)

. (4.150)

Here the dots separate bounds for the number of choices (up to a constant) first of
endpoint hyperplanes ((p̂γ(N))1, (p̂

γ(N+1))1), and then of p̂γ(N), of p̂γ(N+1), and finally
of (p̂γ(N)+1, . . . , p̂γ(N)+4). For |(p̂γ(N))∗| ≤ t1/2∆(r), (4.148) and (4.150) remain valid for
m0,m

∗ ≥ 1 with 2ν replaced by 1. For p̂γ(N), p̂γ(N+1) with

λj1−1 |(p̂γ(N+1) − p̂γ(N))∗|2
δkr

≤ 2j1−k−2 σ(δk+1r)

σ(δj1−1r)

δ

16µ

(
λ

7

)j1
t∗(p̂γ(N))σ(r)

(i.e. the left side too small to satisfy (4.147) for any m∗ ≥ 1) they remain valid with 2m
∗

replaced by 1. (Note that by (4.141), m0 ≥ 1 covers all cases.) Hence as in previous
cases, inserting the bound (4.148) into (4.149), multiplying by the entropy factor (4.150),
and summing over ν ≥ 0,m∗ ≥ 0,m0 ≥ 1, and k ≤ j1 − 2 we get that the right side
of (4.144) is bounded by

c39

(
2λ

75β12δ5χ2

)(d−1)j1/2

t3(d−1) exp

(
−c40

(
λ

7δχ1

)j1
t

)
. (4.151)
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We have thus bounded the totally-unbowed-case contribution to the tracking-failure
probability (4.116).

Case 3e. Mixed cases, which we subdivide as mixed forward case, mixed bowed
case, and mixed totally unbowed case, according to the condition at the dominant
end (as defined after (4.42)) of IN . In Cases 3a–3d we have assumed that the same
option in (4.39) occurs at both ends of the interval IN , but this is strictly for clarity of
exposition. As explained in Step 1, in mixed cases we have joining hyperplanes only
at the dominant end of IN . The situation is symmetric so let us assume the left end is
dominant. In mixed cases the full path in IN is always p̂γ(N) → p̂γ(N)+1 → · · · → p̂γ(N+1),
with γ(N + 1) − γ(N) = 4 or 5. Suppose IN is a (j1 − 1)th-scale interval of kth-scale
length. The intermediate paths are analogous to those in Cases 3a–3d, as follows. If
the dominant left end has the forward case then there is one joining hyperplane in IN ,
containing p̂γ(N)+2, at the left end at distance δj1−1r from p̂γ(N), and the intermediate
path is

ΓN,int : p̂γ(N) → w
γ(N)+1
⊥ → p̂γ(N)+2 → p̂γ(N)+3 → p̂γ(N+1).

If the (dominant) left end has the totally unbowed case then there is one (inner) joining
hyperplane in IN , containing p̂γ(N)+2, at the left end at distance δk+1r from p̂γ(N), and
the intermediate path follows the line from p̂γ(N) to p̂γ(N+1):

ΓN,int : p̂γ(N) → w
γ(N)+1
⊥ → · · · → w

γ(N)+3
⊥ → p̂γ(N+1),

similar to Figure 9 but without the third hyperplane from the right. If the left end has
the bowed case with L−(N) = ` < j1 − 1 then there are two joining hyperplanes in IN ,
containing p̂γ(N)+2 and p̂γ(N)+3, at the left end at distances δ`+1r and δ`r from p̂γ(N), and
the intermediate path is

ΓN,int : p̂γ(N) → ẑγ(N)+1 → ẑγ(N)+2 → p̂γ(N)+3 → p̂γ(N)+4 → p̂γ(N+1);

see Figure 8. If the left end has the bowed case with L−(N) = j1 − 1 then there is one
(inner) joining hyperplane in IN , containing p̂γ(N)+2, at the left end at distance δj1−1r

from p̂γ(N), and the intermediate path is

ΓN,int : p̂γ(N) → ẑγ(N)+1 → p̂γ(N)+2 → p̂γ(N)+3 → p̂γ(N+1),

similar to Figure 8 but with the middle two hyperplanes coinciding. In each case, we
define the subpaths ΓN,full,− and ΓN,int,− between the left end of the interval and the left
inner joining hyperplane. In all cases the arguments are essentially the same as in the
analogous non-mixed case, with the addition that for the final transition ending at p̂γ(N+1),
one uses (4.44) to bound |p̂γ(N+1)−1 − wγ(N+1)−1

⊥ |. We will not reiterate the arguments
here, but simply state that the result is again the analog of (4.121) and (4.132), bounding
the mixed-case contribution to the tracking-failure probability (4.116):

P

(
T̂ (p̂γ(N), p̂γ(N+1))−ΥT̂

(
ΓN,full

)
≥ Sj1

(
ΓN,full

)
+ δµ

(
|p̂γ(N+1)−p̂γ(N)|−ΥEuc

(
ΓN,full

) )
+

1

3
λj1
[
tσ(r)+δµ

(
ΥEuc

(
Γj1−1,2
xy

)
−(ŷ − x̂)1

)]
+
λj1tσ(r)

6m
for some N with IN non-terminal long (j1 − 1)th-scale, in the

mixed case of (4.39) for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(∣∣∣T̂ (u, v)− h(|v − u|)

∣∣∣ ≥ A for some link (u, v) of ΓN,full,− or ΓN,int,−
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(or ΓN,full,ΓN,int in the mixed totally unbowed case) for some N with IN

long non-terminal (j1 − 1)th-scale, in the mixed case of (4.39)

for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
, (4.152)

where

A =


∞ in the mixed forward case for IN ,

A3
j1

(ΓN,full,−) in the mixed bowed case for IN ,

A4
j1

(ΓN,full) in the mixed totally unbowed case for IN .

As in Cases 3a–3d, the right side of (4.152), and thus the mixed-case contribution to the
tracking-failure event (4.116), is bounded above by

f(λ, δ, β)j1 exp

(
−c41

(
λ

7δχ1

)j1
t

)
(4.153)

for some f(λ, δ, β).

We have now bounded all contributions to (4.116), by the sum of (4.122), (4.123),
(4.134), (4.135), (4.138), (4.151), and (4.153). From this and (4.113) we have the com-
pletion of the (j1 − 1)th-scale iteration:

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂

(
Γj1−1,2
xy

)
− h((y − x)1)≤−

(
1− 5λj1

)
tσ(r) + 7δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
+ δµ

(
ΥEuc

(
Γj1−1,2
xy

)
−ΥEuc

(
Γj1−1,0
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t + c42 exp

(
−c43

(
λ

7δχ1

)j1
t

)
. (4.154)

As in the comments after (4.81) and (4.112), the increase of the coefficients 4, 6
in (4.81) to be 5, 7 in (4.112), together with an increment to the “length-change” term
with coefficient δµ, represent a further reduction taken from the original bound tσ(r)

in (1.14), and allocated to bound errors in the second stage of the (j1 − 1)th-scale
iteration, just completed. In this second stage, however, the increment of the length-
change term, due to replacing Γj1−1,1

xy with Γj1−1,2
xy , is negative (removing points reduces

path length) and may compensate at least in part for the increases from 4, 6 to 5, 7.
This compensation, made possible by control of tracking errors, is what allows the
total allocation through all iterations to potentially exceed the entire original bound
tσ(r)—see (4.167).

4.9 Step 7. Further iterations of coarse-graining

The further iterations proceed quite similarly to the (j1 − 1)th-scale iteration; for the
most part, to do the jth-scale iteration we simply replace j1 − 1, j1 throughout by j, j + 1.
We will sketch the (j1 − 2)th-scale (third) iteration to make the pattern clear.

For the first stage of the (j1 − 2)th-scale iteration, the current marked PG path at the
start is Γj1−1,2

xy : b0 → b1 → · · · → bn+1, which we rename Γj1−2,0
xy . Letting

I2
xy = {i ∈ {3, . . . , n− 2} : bi lies in a non-incidental (j1 − 2)th-scale hyperplane in Hxy}

EJP 29 (2024), paper 10.
Page 68/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

we shift each bi, i ∈ I2
xy, to the (j1 − 2)th-scale grid, creating the updated marked PG

path
Γj1−2,1
xy : b̂0 → b̂1 → · · · → b̂n → b̂n+1.

Removing those bi which lie in non-terminal (j1 − 1)th-scale hyperplanes then creates
the marked PG path

Γj1−2,2
xy : ζ0 → ζ1 → · · · → ζn2 → ζn2+1,

in which (recalling (4.24)) ζ0 = x̂, ζn2+1 = ŷ, ζ1 and ζn2 lie in terminal j1th-scale
hyperplanes, ζ2, ζn2−1 lie in terminal (j1− 1)th-scale hyperplanes, and ζ3, . . . , ζn2−2 lie in
(j1 − 2)th-scale hyperplanes. Noninteraction of shifts again applies (see Step 4), since if
bi and bk both lie in (j1−2)th-scale hyperplanes then there are sandwiching (and possibly
also joining) hyperplanes in between, ensuring |i− k| ≥ 2. For N ≤ n2 we write Γ2,N,full

for the portion of Γj1−2,1
xy in the interval (denoted I2

N ) from (ζN )1 to (ζN+1)1, and define

γ(2, N) by ζN = b̂γ(2,N), N ≤ n2 + 1, analogous to γ(N) used in the previous iteration.
Similarly to (4.106)–(4.108) we have∑
i∈Ixy

A1
j1−1(Γj1−2,0

xy , i) ≤ 2

3
λj1−1

[
tσ(r) + δµ

(
ΥEuc

(
Γj1−2,0
xy

)
− (ŷ − x̂)1

)]
, (4.155)

δµ
∣∣∣ΥEuc

(
Γj1−2,1
xy

)
−ΥEuc

(
Γj1−2,0
xy

) ∣∣∣ ≤ δλj1−1

2

[
tσ(r)

3
+ δµ

(
ΥEuc(Γ

j1−2,0
xy )− (ŷ − x̂)1

)]
,

(4.156)

and∣∣∣Υh

(
Γj1−2,1
xy

)
−Υh

(
Γj1−2,0
xy

) ∣∣∣ ≤ λj1−1

[
tσ(r)

3
+ δµ

(
ΥEuc(Γ

j1−2,0
xy )− (ŷ − x̂)1

)]
. (4.157)

These lead to a tracking bound like (4.111) for the first stage (shifting to the (j1 − 2)th-
scale grid) using Lemma 4.6:

P

(
ΥT̂ (Γj1−2,0

xy )−ΥT̂ (Γj1−2,1
xy ) < −

∑
i∈I2xy

A1
j1−1(Γj1−2,0

xy , i) + Υh

(
Γj1−2,0
xy

)
−Υh

(
Γj1−2,1
xy

)
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(

max
(∣∣T̂ (b̂i−1, b̂i)− h(|b̂i − b̂i−1|)

∣∣, ∣∣T̂ (bi−1, bi)− h(|bi − bi−1|)
∣∣)

>
1

4
A1
j1−1(Γj1−2,0

xy , i) for some 1 ≤ i ≤ n+ 1 and (x, y) ∈ Xr

with {i− 1, i} ∩ I2
xy 6= ∅;ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(∣∣T̂ (v, w)− h(|w − v|)

∣∣ ≥ A2
j1−1(v, w)

for some (j1 − 1)th-scale transition v → w with v, w ∈ G+
r ∩ Lj1−1

)

≤ C70 exp

(
−C71

(
λ

7δχ1

)j1−1

t

)
. (4.158)

As with (4.81) and (4.112), with (4.154) this yields

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
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≤ P
(

ΥT̂ (Γj1−2,1
xy )−h((y − x)1) ≤ −

(
1− 2λj1

)
tσ(r)+4δµλj1

(
ΥEuc

(
Γj1−1,0
xy

)
−(ŷ−x̂)1

)
+ 3λj1

(
tσ(r) + δµ

[
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

])
+ 2λj1−1

(
tσ(r) + δµ

[
ΥEuc

(
Γj1−2,0
xy

)
− (ŷ − x̂)1

])
− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−2,1
xy

) )
for some (x, y) ∈ Xr;

ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t + c42 exp

(
−c43

(
λ

7δχ1

)j1
t

)
+ C70 exp

(
−C71

(
λ

7δχ1

)j1−1

t

)
. (4.159)

Remark 4.9. The second probability here contains three quantities of the form

λj+1
(
tσ(r) + δµ

[
ΥEuc

(
Γj,0xy

)
− (ŷ − x̂)1

])
,

with certain additional integer coefficients: 2 and 4 in the first quantity, 3 in the
second quantity, and 2 in the third. As noted in Remark 4.8 and after (4.112), (4.116),
and (4.154), these represent the accumulated error allocations from the j1th, (j1 − 1)th,
and (first-stage) (j1 − 2)th-scale iterations, respectively. We have split these out here
for clarity; in (4.113) and (4.154) the first two of the three quantities are combined,
giving the terms with coefficients 5 and 7. In general after the first stage of the jth-
scale iteration (which is the source of the third quantity), the second quantity would
represent allocations from all stages j1 − 1 through j + 1. With this in mind we define
the accumulated-allocations upper bounds

A1
j (Γxy) =2λj1

(
tσ(r) + 2δµ

[
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

])
+

j1−1∑
k=j+1

3λk+1
(
tσ(r) + δµ

[
ΥEuc

(
Γk,0xy

)
− (ŷ − x̂)1

])
+ 2λj+1

(
tσ(r) + δµ

[
ΥEuc

(
Γj,0xy

)
− (ŷ − x̂)1

])
(4.160)

and

A2
j (Γxy) =2λj1

(
tσ(r) + 2δµ

[
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

])
+

j1−1∑
k=j

3λk+1
(
tσ(r) + δµ

[
ΥEuc

(
Γk,0xy

)
− (ŷ − x̂)1

])
, (4.161)

with A1
j (Γxy) a valid upper bound for accumulated allocations after the first stage of

the jth-scale iteration, and A2
j (Γxy) valid after the second stage. Comparing (4.160)

to (4.112), in this case we have j = j1 − 1, the sum in (4.160) has no terms, and the
other two terms on the right in (4.112) merge into one. Comparing (4.161) to (4.154),
in this instance also j = j1 − 1, and the sum in (4.161) has one term which in (4.154)
is merged with the other term on the right. Equation (4.161) may also be compared
to (4.81), where j = j1 and the sum in (4.161) has no terms. We can rewrite the second
probability in (4.159) as

P

(
ΥT̂

(
Γj1−2,1
xy

)
− h((y − x)1) ≤ −tσ(r) +A1

j1−2(Γxy)
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− δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−2,1
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
.

(4.162)

Moving on to the second stage of the (j1 − 2)th-scale iteration, from (4.159), using
the form (4.162), we have similarly to (4.113) and (4.116)

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂

(
Γj1−2,2
xy

)
− h((y − x)1) ≤ −tσ(r) +A2

j1−2(Γxy)

− δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−2,2
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

+ P

(
ΥT̂

(
Γj1−2,1
xy

)
−ΥT̂

(
Γj1−2,2
xy

)
≤ −

n2∑
N=0

Sj1−1(Γ2,N,full)

− 1

3
λj1−1

(
tσ(r) + δµ

[
ΥEuc

(
Γj1−2,2
xy

)
− (ŷ − x̂)1

])
+ δµ

(
ΥEuc

(
Γj1−2,1
xy

)
−ΥEuc

(
Γj1−2,2
xy

) )
for some (x, y) ∈ Xr;

ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t + c42 exp

(
−c43

(
λ

7δχ1

)j1
t

)
+ C70 exp

(
−C71

(
λ

7δχ1

)j1−1

t

)
, (4.163)

the last probability being the tracking-failure probability. We now divide into Cases 1–5
as in the (j1 − 1)th-scale iteration. In each case (excluding 3c) there is an intermediate
path Γ2,N,int in each (j1 − 2)th-scale interval I2

N , which is slower than the direct path (up
to a multiple of log r), satisfying

ΥT̂ (Γ2,N,int) ≥ T̂ (b̂γ(2,N), b̂γ(2,N+1))−
(
γ(2, N + 1)− γ(2, N)− 1

)
c29 log r

assuming ω /∈ J (0)(c29), and hence

n2∑
N=0

ΥT̂ (Γ2,N,int) ≥ ΥT̂

(
Γj1−2,2
xy

)
− (n− n2)c29 log r,

and which satisfies deterministic tracking in a form like (4.117), sometimes with extra
terms in the form of error allocations, as in (4.143); this deterministic tracking says that
the intermediate path is sufficiently shorter relative to the full path, to within the error
given by the allocations. This enables us to bound the last probability in (4.163) by a
tracking-failure probability of the form

P

(
ΥT̂

(
Γ2,N,full

)
−ΥT̂

(
Γ2,N,int

)
≤ Υh

(
Γ2,N,full

)
−Υh

(
Γ2,N,int

)
− (allocations)

for some N for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
, (4.164)

differently for each of the 5 cases; see for example (4.144) for the totally-unbowed case.
This is then bounded by summing probabilities of form

P
(∣∣∣T̂ (v, w)− h(|w − v|)

∣∣∣ ≥ A)
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over all possible links (v, w) of paths Γ2,N,full,Γ2,N,int for allN , using Lemmas 4.6 and 4.7.
The end result of the (j1 − 2)th-scale iteration is that

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂

(
Γj1−2,2
xy

)
− h((y − x)1) ≤ −tσ(r) +A2

j1−2(Γxy)

− δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj1−2,2
xy

) )
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t +

j1−1∑
j=j1−2

c42 exp

(
−c43

(
λ

7δχ1

)j+1

t

)
. (4.165)

After all iterations are completed through the j2th scale, this becomes

P
(
T (x, y) ≤ h((y − x)1)− tσ(r) for some (x, y) ∈ Xr

)
≤ P

(
ΥT̂

(
Γj2,2xy

)
−h((y − x)1) ≤ −tσ(r)+A2

j2(Γxy)−δµ
(

ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj2,2xy

))
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

+ c32e
−c33t +

j1−1∑
j=j2

c42 exp

(
−c43

(
λ

7δχ1

)j+1

t

)
. (4.166)

We claim that

A2
j2(Γxy)− δµ

(
ΥEuc

(
Γj1−1,0
xy

)
−ΥEuc

(
Γj2,2xy

) )
≤ 1

2
tσ(r) + δµ

(
ΥEuc

(
Γj2,2xy

)
− (ŷ − x̂)1

)
.

(4.167)
This says that the second term on the left, representing part of the cumulative effects
of tracking, cancels enough of the cumulative allocations A2

j2
(Γxy); see the comments

after (4.116) and (4.154). To prove (4.167) we make the subclaim

D := max
j2≤j≤j1−1

ΥEuc

(
Γj,0xy

)
− (ŷ − x̂)1 ≤ 2

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
+ tσ(r). (4.168)

Assuming (4.168) and assuming λ satisfies 7λ/(1 − λ) < 1/4 we have from the defini-
tion (4.161)

A2
j2(Γxy) ≤ 7λ

1− λ

(
tσ(r) + δµ

[
max

j2≤j≤j1−1
ΥEuc

(
Γj,0xy

)
− (ŷ − x̂)1

])

≤ 1 + δµ

4
tσ(r) + δµ

(
ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1

)
(4.169)

and (4.167) follows. To prove (4.168) we use (4.107) (which generalizes to all j in
place of j1 − 1) and the fact that, since removing points reduces length, we have
ΥEuc(Γ

j,2
xy ) ≤ ΥEuc(Γ

j,1
xy ) for all j. This yields that for all j ≥ 1,

ΥEuc

(
Γj,0xy

)
≤ ΥEuc

(
Γj1−1,0
xy

)
+

j1−1∑
k=j+1

∣∣∣ΥEuc

(
Γk,1xy

)
−ΥEuc

(
Γk,0xy

) ∣∣∣
≤ ΥEuc

(
Γj1−1,0
xy

)
+

j1−1∑
k=j+1

λk+1

2µ

[ tσ(r)

3
+ δµD

]
(4.170)
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and therefore

D ≤ ΥEuc

(
Γj1−1,0
xy

)
− (ŷ − x̂)1 +

λ3

6µ(1− λ)
tσ(r) +

δλ3

2(1− λ)
D, (4.171)

from which (4.168) follows, and hence also (4.167). The right side of (4.166) is therefore
bounded above by

P

(
ΥT̂

(
Γj2,2xy

)
− h((y − x)1) ≤ −1

2
tσ(r) + δµ

(
ΥEuc

(
Γj2,2xy

)
− (ŷ − x̂)1

)
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ c44 exp

(
−c45

(
λ

7δχ1

)j2+1

t

)
.

(4.172)

4.10 Step 8. Final marked CG paths

In Γj2,2xy , only terminal hyperplanes contain marked points (excluding x̂, ŷ), one near
each end of [x̂1, ŷ1] for each scale j2 ≤ j ≤ j1. The marked point in the j-terminal
hyperplane is in the grid Lj for all j. As noted in Step 1, the gap between the j2-terminal
hyperplanes is at least 4δj2r and at most 5δj2−1r. Now Γj2,2xy is our final CG path, so we
rename it

ΓCGxy : x̂ = u0 → · · · → uR+1 = ŷ,

where R = 2(j1 − j2 + 1). We also define a projected path with collinear marked points

ΓCG,prxy : v0 → · · · → vR+1,

where vi = (ui)1e1 is the projection onto the e1 axis. For j1 − 1 ≤ j ≤ j2, the links
(uj1−j , uj1−j+1) and (uR−j1+j , uR−j1+j+1) each have one end in a j-terminal hyperplane
and the other in a (j + 1)-terminal hyperplane; these will be called the jth-scale links of
ΓCGxy . The links (u0, u1) and (uR, uR+1) are called final links, and the link (uR/2, uR/2+1)

between j2-terminal hyperplanes is called a macroscopic link. See Figure 3 in Section 4.3,
where u0, . . . , u7 are the marked points in ΓCGxy and (u3, u4) is the macroscopic link, which
(by definition of j2) always covers at least 1/6 the length of [x̂1, ŷ1].

We have ΥEuc

(
ΓCG,prxy

)
= (ŷ − x̂)1 so by Lemma 3.6(ii) (applied with ε = 1/4 and

assuming, as we may, that δ < 1/4), since R ≤ 2j1,

Υh

(
ΓCGxy

)
−Υh

(
ΓCG,prxy

)
≥
(

1

2
+ δ

)
µ
(

ΥEuc

(
ΓCGxy

)
− (ŷ − x̂)1

)
− 2j1C56.

Therefore, using (4.70), the probability in (4.172) is bounded above by

P

(
ΥT̂

(
ΓCGxy

)
−Υh

(
ΓCGxy

)
≤ −1

3
tσ(r) + δµ

(
ΥEuc

(
ΓCGxy

)
− (ŷ − x̂)1

)
−
[
Υh

(
ΓCGxy

)
−Υh

(
ΓCG,prxy

) ]
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)

≤ P
(

ΥT̂

(
ΓCGxy

)
−Υh

(
ΓCGxy

)
≤ −1

3
tσ(r)− µ

2

(
ΥEuc

(
ΓCGxy

)
− (ŷ − x̂)1

)
for some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
. (4.173)
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To bound this we use allocations

ACGj (v, w) =
1

4
λj
[
t∗(v, w)σ(r) +

δµ

18

|(w − v)∗|2
|(w − v)1|

]
for jth-scale links, ACGj1 (v, w) for final links, and ACGj2 (v, w) for macroscopic links. From
(4.86) and (4.87) we have

δµ

18
max
k≤R+1

|(uk)∗|2
rσ(r)

≤ δt

3
+

δµ

12σ(r)

R+1∑
i=1

|(ui−1 − ui)∗|2
|(ui−1 − ui)1|

Therefore using also (4.27) the total of these for all links in a path ΓCGxy satisfies

ACGj2 (uR/2, uR/2+1) +ACGj1 (u0, u1) +ACGj1 (uR, uR+1)

+

j1−1∑
j=j2

[
ACGj+1(uj1−j , uj1−j+1) +ACGj+1(uR−j1+j , uR−j1+j+1)

]

≤ 4

j1−1∑
j=j2−1

λj+1

4

[(
t

3
+ 2

δµ

18
max
k≤R+1

|(uk)∗|2
rσ(r)

)
σ(r) +

δµ

18

R+1∑
i=1

|(ui−1 − ui)∗|2
|(ui−1 − ui)1|

]

≤
j1∑
j=j2

1

3
λj (1 + 2δ) tσ(r) +

j1∑
j=j2

λj
(
δµ

6
+
δµ

18

)R+1∑
i=1

|(ui−1 − ui)∗|2
|(ui−1 − ui)1|

≤ λ

1− λtσ(r) +
16δµλ

27(1− λ)

(
ΥEuc

(
ΓCGxy

)
− (ŷ − x̂)1

)
≤ 1

3
tσ(r) +

µ

2

(
ΥEuc

(
ΓCGxy

)
− (ŷ − x̂)1

)
. (4.174)

Therefore the last probability in (4.173) is bounded above by

j1∑
j=1

P

(∣∣∣T̂ (ui−1, ui)− h(|ui−1 − ui|)
∣∣∣ ≥ ACGj+1(ui−1, ui) for some jth-scale link

(ui−1, ui) of ΓCGxy and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ P

(∣∣∣T̂ (ui−1, ui)− h(|ui−1 − ui|)
∣∣∣ ≥ ACGj2 (ui−1, ui) for some macroscopic link

(ui−1, ui) of ΓCGxy and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
+ P

(∣∣∣T̂ (ui−1, ui)− h(|ui−1 − ui|)
∣∣∣ ≥ ACGj1 (ui−1, ui) for some final link

(ui−1, ui) of ΓCGxy and some (x, y) ∈ Xr; ω /∈ J (0)(c29) ∪ J (1c)

)
. (4.175)

Considering the probability for final links (v, w), the number of possible such links in
G+
r is at most c46r

2d and for each such link we have from Lemma 3.2 and (4.22), using
ACGj1 (v, w) ≥ λj1tσ(r)/12,

P
(∣∣∣T̂ (v, w)− h(|w − v|)

∣∣∣ ≥ ACGj1 (v, w)
)
≤ C44 exp

(
−C45

ACGj1 (v, w)

σ(2δj1r)

)

≤ c47 exp

(
−c48

j1

(
λ

δχ1

)j1
t

)
≤ c47 exp (−c49t log r) . (4.176)
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The probabilities for jth-scale and macroscopic links can be bounded using minor
modifications of Lemma 4.6, showing that (4.175) (and hence also the probability on the
right in (4.166)) is bounded above by

j1∑
j=1

c50 exp

(
−c51

(
λ

7δχ1

)j
t

)
+ c50 exp

(
−c51

λ

7δχ1
t

)
+ c46c47r

2d exp (−c49t log r)

≤ c52e
−c53t. (4.177)

With (4.166) this completes the proof of (1.14). As noted after Theorem (1.3), the
downward-deviations part of (1.13) is a consequence, so the proof of the downward-
deviations part of Theorem (1.3) is complete.

5 Proof of Theorem 1.6 for fixed (x, y)

We move on to step (2) of the strategy in Remark 1.7. As with the proof of Theorem 1.3
(downward deviations), there are simpler cases which can be proved from Lemma 3.2
and do not require Theorem 1.3. These we can handle uniformly over (x, y); after dealing
with these, in Lemma 5.1 we will handle the main case, for the moment only for fixed
(x, y).

Let
r0 =

c0r

(log r)1/(1+χ1)
, (5.1)

with c0 to be specified; we will consider separately short geodesics (meaning |ŷ− x̂| ≤ r0)
and longer ones. When Γxy 6⊂ Gr,s for some x, y ∈ V ∩Gr(K) with |(y − x)∗| ≤ (y − x)1,
taking u to be the first vertex in Γxy outside Gr,s, we see that one of the following cases
must hold.

Transverse wandering cases (see Figure 10):

(i) (non-transverse wandering) there exist x̂, ŷ, û ∈ qZd with x̂, ŷ ∈ Gr(K), û /∈ Gr,s
with d(û, Gr,s) ≤ 5, and x, y, u ∈ V with

max(|x− x̂|, |y − ŷ|, |u− û|) ≤ 5
√
d− 1, u ∈ Γxy, û1 /∈ [x̂1, ŷ1],

(ii) (wandering by short geodesics) there exist x̂, ŷ, û ∈ qZd with x̂, ŷ ∈ Gr(K), û /∈ Gr,s
with d(û, Gr,s) ≤ 5, and x, y, u ∈ V with

max(|x− x̂|, |y − ŷ|, |u− û|) ≤ 5
√
d− 1, u ∈ Γxy, û1 ∈ [x̂1, ŷ1], |ŷ − x̂| ≤ r0,

(iii) (large wandering) s > c1(log r)1/2 and there exist x̂, ŷ, û ∈ qZd with x̂, ŷ ∈ Gr(K),
û /∈ Gr,s with d(û, Gr,s) ≤ 5, and x, y, u ∈ V with

max(|x− x̂|, |y− ŷ|, |u− û|) ≤ 5
√
d− 1, |y−x| > r0, u ∈ Γxy, u1 ∈ [x1, y1], (5.2)

(iv) (moderate wandering) s ≤ c1(log r)1/2 and there exist x, y, u ∈ V with

x, y ∈ Gr(K), u /∈ Gr,s, d(u,Gr,s) ≤ 2, |y − x| > r0, u ∈ Γxy, u1 ∈ [x1, y1],

(5.3)

where c1 is to be specified. In all cases (i)–(iv) we assume |(y − x)∗| ≤ (y − x)1.
Cases (i)–(iii) are the ones which do not require Theorem 1.3 and can be proved from

Lemma 3.2. This is because the exponent obtained from that lemma is at least of order
log r, meaning it dominates the entropy from the number of possible choices of x̂, ŷ, û.
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Figure 10: The inner box Gr(K) has height 2K∆(r), and the outer box Gr,s has height
2s∆(r). The dotted line shows Γxy in transverse wandering case (i), the solid line shows
case (ii), and the dashed line shows cases (iii) and (iv), for large and small s, respectively.

It follows from routine geometry that under (i), for C34 from (1.17) we have

|û− x̂|+ |ŷ− û| − |ŷ− x̂| ≥ d(Gr(K), Gcr,s) ≥


s2σ(r) log r if s ≤ (C34 log r)1/2,

s2σ(r) if (C34 log r)1/2 < s ≤ r/∆(r),

s∆(r) if s > r/∆(r)

so also, using Lemma 3.6(ii),

h(|û− x̂|) + h(|ŷ− û|)− h(|ŷ− x̂|) ≥


µ
2 s

2σ(r) log r if s ≤ (C34 log r)1/2,
µ
2 s

2σ(r) if (C34 log r)1/2 < s ≤ r/∆(r),
µ
2 s∆(r) if s > r/∆(r),

(5.4)

while ∣∣∣T̂ (x̂, û) + T̂ (û, ŷ)− T̂ (x̂, ŷ)
∣∣∣ ≤M(x̂) +M(ŷ) +M(û).

Therefore one of the following 6 quantities∣∣∣T̂ (x̂, û)−h(|û− x̂|)
∣∣∣, ∣∣∣T̂ (û, ŷ)−h(|ŷ− û|)

∣∣∣, ∣∣∣T̂ (x̂, ŷ)−h(|ŷ− x̂|)
∣∣∣, M(x̂), M(ŷ), M(û)

exceeds 1/6 of the right side of (5.4). There are at most c2sdr2d possible values of (x̂, ŷ, û)

under (i), so from Lemmas 3.1 and 3.2, provided C34 is sufficiently large we have

P
(

(i) holds
)

≤


c2s

dr2d · C44 exp
(
−c3 s

2σ(r) log r
σ(2r)

)
≤ c4e−c5s

2

if s ≤ (C34 log r)1/2

c2s
dr2d · C44 exp

(
−c3 s

2σ(r)
σ(2r)

)
≤ c4e−c5s

2

if (C34 log r)1/2 < s ≤ r/∆(r),

c2s
dr2d · C44 exp

(
−c3 s∆(r)

σ(s∆(r))

)
≤ c4e−c5s∆(r)/σ(s∆(r)) if s > r/∆(r).

(5.5)

Under (ii) we have for some c6

|û− x̂|+ |ŷ − û| − |ŷ − x̂| ≥
{
c6s

2∆(r)2/r0 if s ≤ r0/∆(r),

c6s∆(r) if s > r0/∆(r).

Further, for s ≤ r/∆(r) we have 1/s∆(r)σ(s∆(r)) ≤ c7/∆(r)2 or equivalently s∆(r)/

σ(s∆(r)) ≥ c7s2. Hence similarly to (i), provided we take c0 large in (5.1),

P
(

(ii) holds
)

EJP 29 (2024), paper 10.
Page 76/86

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1036
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Uniform bounds in FPP

≤


c8s

dr2d · C44 exp
(
−c9 s

2rσ(r)
r0σ(r0)

)
≤ c10e

−c11s2 log r if s ≤ r0/∆(r)

c8s
dr2d · C44 exp

(
−c9 s∆(r)

σ(s∆(r))

)
≤ c10e

−c11s2 if r0/∆(r) < s ≤ r/∆(r),

c8s
dr2d · C44 exp

(
−c9 s∆(r)

σ(s∆(r))

)
≤ c10e

−c11s∆(r)/σ(s∆(r)) if s > r/∆(r).

(5.6)

Under (iii) we have

|û− x̂|+ |ŷ − û| − |ŷ − x̂| ≥
{
c12s

2σ(r) if c1(log r)1/2 ≤ s ≤ r/∆(r),

c12s∆(r) if s > r/∆(r).

Hence as in (i) and (ii) we get

P
(

(iii) holds
)

≤

c13s
dr2d · C44 exp

(
−c14

s2σ(r)
σ(2r)

)
≤ c15e

−c16s2 if c1(log r)1/2 ≤ s ≤ r/∆(r)

c13s
dr2d · C44 exp

(
−c14

s∆(r)
σ(s∆(r))

)
≤ c14e

−c15s∆(r)/σ(s∆(r)) if s > r/∆(r).

(5.7)

To deal with (iv) and complete the proof for fixed (x, y), we have the following lemma.
We note the difference from Lemma 4.2, which covered many x, y simultaneously but
considered only larger transverse wandering, of order ∆(r) log r or more. Note that so
far we have not had to impose any conditions on c1 appearing in (iii) and (iv), so we can
take c1 to be C78 from the lemma.

Lemma 5.1. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist Ci
such that for all K ≥ C74 and all x, y ∈ Gr(K) with |(y − x)∗| ≤ (y − x)1,

P
(

Γxy 6⊂ Gr,s
)
≤ C75e

−C76s
2

for all C77K ≤ s ≤ C78(log r)1/2. (5.8)

Proof. Fix x, y ∈ Gr(K) and let r1 = (y − x)1. We consider first the case of r1 < r/2. To
facilitate application of (1.14) in Theorem 1.3, we need to replace Gr,s with a cylinder
of length only 2r1. To that end, let m ≥ 0 satisfy mr1 ≤ x1 < y1 ≤ (m+ 2)r1, and for C22

from (1.11) let

s1 = 2C22s

(
r

2r1

)(1+χ1)/2

, G
(m)
r,2s = [mr1, (m+ 2)r1]× 2s∆(r)Bd−1,

the latter being a slice of Gr,2s. Define s2 by 2s∆(r) = s2∆(2r1). Then s2 ≥ s, and

from (1.11) we have s2 ≥ s1, and G(m)
r,2s is a translate of G2r1(s2).

In view of (5.5) and (5.6), we need only consider (x, y, u) as in (5.3); in particular
r1 ≥ r0/2, with r0 from (5.1). Here we have for some c0

|u−x|+ |y − u| − |y − x| ≥ c0s2
2σ(2r1)

and hence h(|u− x|) + h(|y − u|)− h(|y − x|) ≥ c0µ

2
s2

2σ(2r1),

so as in transverse wandering cases (i)–(iii), since u ∈ Γxy one of the quantities

h(|u− x|)− T (x, u), h(|y − u|)− T (u, y), T (x, y)− h(|y − x|)

must exceed c0µs
2
2σ(2r1)/6. It follows from (1.12) and the downward-deviations part

of Theorem 1.3 (with ε, r,K, t there taken as 1/2, 2r1,Ks2/2s, c0µs
2
2/6 here) that for

x0 = x−mr1e1, y0 = y −mr1e1 we have

P (Γxy contains a vertex u as in (5.3))
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≤ P
(

max
(
h(|u− x|)− T (x, u), h(|y − u|)− T (u, y)

)
≥ c0µ

6
s2

2σ(2r1) for some u ∈ G(m)
r,2s

)
+ P

(
T (x, y)− h(|y − x|) ≥ c0µ

6
s2

2σ(2r1)

)
≤ P

(
max

(
h(|ũ− x0|)− T (x0, ũ), h(|y0 − ũ|)− T (ũ, y0)

)
≥ c0µ

6
s2

2σ(2r1) for some ũ ∈ G2r1(s2)

)
+ P

(
T (x, y)− h(|y − x|) ≥ c0µ

6
s2

2σ(2r1)

)
≤ C27e

−c1s22

≤ C27e
−c1s2 . (5.9)

The proof in the case r1 ≥ r/2 is the same but without the need to shorten Gr,s.

This completes the proof of Theorem 1.6 for fixed (x, y), and thus of (2) in Remark 1.7.

6 Proof of Theorem 1.5

We move to (3) of Remark 1.7. We begin with an extension of a consequence of
Theorem 1.3, removing the requirement that y lie in the same tube Gr(K) as x, to create
a bound on the probability of a fast “hyperplane-block to hyperplane” passage time.
Define

Λr = [0, 2]× [−∆(r),∆(r)]d−1.

Lemma 6.1. Suppose G = (V,E) and {ηe, e ∈ E} satisfy A1, A2, and A3. There exist
constants Ci such that for all r ≥ C79 and t ≥ C80,

P
(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V and y ∈ H+

r

)
≤ C81e

−C82t. (6.1)

Proof. It is enough to consider y ∈ H[r,r+2] and t ≤ h(r)/σ(r). We first deal with large |y∗|.
With c0 to be specified we have

P

(
T (x, y)≤h(r)−tσ(r) for some x∈Λr∩V and y ∈ H[r,r+2] with |y∗| > c0(log r)1/2∆(r)

)

≤
∞∑
k=1

P

(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V and y ∈ H[r,r+2]

with 2k−1c0(log r)1/2∆(r) < |y∗| ≤ 2kc0(log r)1/2∆(r)

)

≤
∞∑
k=1

P

(
T̂ (x̂, ŷ) ≤ h(r)− tσ(r) for some x̂ ∈ Λr ∩ qZd and ŷ ∈ Hr ∩ qZd

with 2k−1c0(log r)1/2∆(r) < |ŷ∗| ≤ 2kc0(log r)1/2∆(r)

)
. (6.2)

For c9 from (4.26), let k0 = max{k : 2kc0(log r)1/2∆(r) ≤ c9r}. For k ≤ k0, and for x̂, ŷ of
the last event, we have from (4.26) and Lemma 3.6(ii) that

|ŷ − x̂| ≥ r +
|ŷ∗|2
3r
≥ r +

22kc20σ(r) log r

12
so h(|ŷ − x̂|) ≥ h(r) +

µc20
24

22kσ(r) log r, (6.3)
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and the number of allowed x̂, ŷ is at most c1(2k(log r)1/2)d−1∆(r)2(d−1) ≤ 2kdr2d. There-
fore by Lemma 3.2, provided c0 is large, the sum up to k0 on the right side of (6.2) is
bounded above by

k0∑
k=1

P

(
T̂ (x̂, ŷ) ≤ h(|ŷ − x̂|)− tσ(r)− µc20

24
22kσ(r) log r for some x̂ ∈ Λr ∩ qZd

and ŷ ∈ Hr ∩ qZd with 2k−1c0(log r)1/2∆(r) < |ŷ∗| ≤ 2kc0(log r)1/2∆(r)

)

≤
k0∑
k=1

2kdr2dC44 exp

(
−C45

σ(r)

σ(2r)

(
t+ 22k µc

2
0

24
log r

))
≤ c2e−c3t. (6.4)

For k > k0, in place of (6.3) we have

|ŷ−x̂|≥r+c4|ŷ∗| ≥ r+c42k−1c0(log r)1/2∆(r) so h(|ŷ−x̂|)≥h(r)+
c4c0µ

4
2k(log r)1/2∆(r),

and we obtain similarly that the sum from k0 +1 to∞ on the right side of (6.2) is bounded
above by

∞∑
k=k0+1

P

(
T̂ (x̂, ŷ)≤h(|ŷ − x̂|)− tσ(r)− c4c0µ

4
2k(log r)1/2∆(r) for some x̂ ∈ Λr ∩ qZd and

ŷ ∈ Hr ∩ qZd with 2k−1c0(log r)1/2∆(r) < |ŷ∗| ≤ 2kc0(log r)1/2∆(r)

)

≤
∞∑

k=k0+1

2kdr2dC44 exp

(
− C45

σ(r + 2kc0(log r)1/2∆(r))

(
tσ(r) +

c4c0µ

4
2k(log r)1/2∆(r)

))
≤ c5 exp

(
−c6(tσ(r) + r)

σ(2r)

)
≤ c2e−c3t. (6.5)

The last inequality uses t ≤ h(r)/σ(r), which we may assume, as noted above.
We now deal with the remaining case |y∗| ≤ c0(log r)1/2∆(r). For C26 from Theo-

rem 1.3, we take K =
√
t/C26(d− 1) and subdivide H[r,r+2] into blocks of side K∆(r):

Ym = [r, r + 2]×
d−1∏
i=1

[(mi − 1)K∆(r),miK∆(r)], m ∈ Zd−1.

Let zm denote the center point of Ym and let

M =
{
m ∈ Zd−1 : 0 /∈ Ym, ∃y ∈ Ym with |y∗| ≤ c0(log r)1/2∆(r)

}
.

Given m ∈M, there exists a cylinder Cm, with axis containing Π0zm , radius 2
√
d− 1K∆(r),

and length 2r, which contains Λr and Ym. See Figure 11. Further, d∞(Ym, [r, r+ 2]×{0})
is a positive integer multiple of K∆(r), and for x ∈ Λr and y ∈ Ym satisfying d∞(Ym, [r, r+

2]× {0}) = jK∆(r) for some j, we have using (4.26) and Lemma 3.6(ii) that

|y − x| ≥ r +
(jK∆(r))2

3r
= r +

(jK)2

3
σ(r) and hence h(|y − x|) ≥ h(r) +

µ(jK)2

6
σ(r).

The definition of K says t = C26(d− 1)K2, so by rotational invariance we can now apply
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re1
Λr

Y(0,1)

C(0,1)
z(0,1)

Hr

0
b b

b

Figure 11: The block Λr in H0 (“fattened” slightly to thickness 2), the similar but smaller
block Ym of Hr, and the cylinder Cm containing both, for m = (0, 1). The gray blocks in
Hr are those with j = 1.

Theorem 1.3 (for downward deviations) to the cylinder Cm and obtain

P
(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V and y ∈ Ym

)
≤ P

(
T (x, y) ≤ h(|y − x|)−

(
t+

µ(jK)2

6

)
σ(r) for some x ∈ Λr ∩V and y ∈ Ym

)
≤ C27 exp

(
−C28

(
t+

µ(jK)2

6

))
. (6.6)

Summing over j ≤ j0 = max{j : jK∆(r) ≤ c0(log r)1/2∆(r)} gives

P
(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V, y ∈ H[r,r+2] with |y∗| ≤ c0(log r)1/2∆(r)

)
≤ P

(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V, y ∈ Ym, and m ∈M

with d∞(Ym, [r, r + 2]× {0}) ≤ j0K∆(r)
)

≤
j0∑
j=0

P

(
T (x, y) ≤ h(r)− tσ(r) for some x ∈ Λr ∩V, y ∈ Ym, and m ∈M

with d∞(Ym, [r, r + 2]× {0}) = jK∆(r)

)
≤

j0∑
j=0

(2j + 2)d−1C27 exp

(
−C28

(
t+

µ(jK)2

6

))
≤ c7e−c8t. (6.7)

With (6.2), (6.4), and (6.5) this completes the proof of Lemma 6.1.

Define the “small box”

Gr = [0, r]× [−∆(r),∆(r)]d−1.
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0 kre1Gr

Gr,(3,1)Λr

kr

b b

Figure 12: The big box G+, of size kr×(4j+2)∆(r) ≈ kr×K∆(kr), here with k = 5, j = 2.
Each small box Gr,m has size r × 2∆(r). Λr,(3,1) is a fast source if some path like the
dashed one is “sufficiently fast” relative to h(r).

We now tile a region of Rd with translates of Gr. Fix k,K to be specified and let
j = j(r, k,K) be the least j for which (2j + 1)∆(r) ≥ K∆(kr). Define the “big box”

G+ = [0, kr]× [−(2j + 1)∆(r), (2j + 1)∆(r)]d−1,

so the width of G+ is near 2K∆(kr). For m ∈ Zd let Gr,m,Λr,m be Gr,Λr translated by
(rm1, 2∆(r)m∗), and letM = {m ∈ Zd : Gr,m ⊂ G+}; see Figure 12. Then the number of
small boxes comprising G+ is

|M| = k(2j + 1)d−1 ≤ 2k

(
K∆(kr)

∆(r)

)d−1

≤ c0Kd−1k1+(d−1)χ2 ,

and we have G+ ⊃ Gkr,K ∩ H[0,kr]. Let Em(t) be the event in (6.1) translated to Gr,m,
that is, we replace Λr with Λr,m and H+

r with H+
(m1+1)r. Fix C to be specified; when

ω ∈ Em(C log k) we say Λr,m is a fast source. Let L(r) = (h(r)− rµ)/σ(r), so

0 ≤ L(r) ≤ C46 log r (6.8)

by Proposition 3.3.
We now consider the passage time between the ends of the big box. If Γxy ⊂ Gkr,K

then Γ0,kre1 must intersect at least k of the regions Λr,m, one for each 0 ≤ m1 < k.
If there are no fast sources, this means T (0, kre1) > krµ + kL(r)σ(r) − Cσ(r)k log k.
Provided K is large, it then follows from Lemmas 5.1 and 6.1 that

P
(
T (0, kre1) ≤ krµ+ kL(r)σ(r)− Cσ(r)k log k

)
≤ P

(
Γ0,kre1 6⊂ Gkr,K

)
+ P

(
∪m∈M Em(C log k)

)
≤ C75e

−C76K
2

+ C81|M|e−C82C log k

≤ C75e
−C76K

2

+ c1K
d−1k1+(d−1)χ2e−C82C log k. (6.9)

By taking K large and then C large, we can make the right side of (6.9) less than 1/2 for
all k ≥ 3. On the other hand, from (1.12) for large c > 1 we have

P
(
T (0, kre1) ≤ krµ+ L(kr)σ(kr) + cσ(kr)

)
≥ 1− C24e

−C25c >
1

2
.

From this and (6.9) it follows that

(L(kr) + c)σ(kr) > k(L(r)− C log k)σ(r) for all r large and k ≥ 3. (6.10)

Fix k ≥ 3 large enough so k1−χ2 ≥ 3C23c, with C23 from (1.11), and, to get a contradiction,
suppose there exists r arbitrarily large with L(r) ≥ 2C log k. By (1.11) and (6.10) we
then have

L(kr) ≥ σ(r)

σ(kr)

kL(r)

2
− c ≥ k1−χ2

3C23
L(r) ≥ cL(r).
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Then iteration and (6.8) give that for all n ≥ 1, C46(n log k + log r) ≥ L(knr) ≥ cnL(r).
Since this is false for large n, we must have L(r) < 2C log k for all large r, so L(·) is
bounded, which completes the proof of Theorem 1.5, and thus (3) of Remark 1.7.

7 Proof of Theorem 1.3—upward deviations

We move on to (4) of Remark 1.7. The proof is similar to the LPP proof for d = 2

in ([13] Proposition 10.1). As with downward deviations, we need only consider x, y as
in (4.24). Let Hxy be as in the downward-deviations proof, and

Hterxy = {all terminal hyperplanes in Hxy},

so Hterxy = {Hs1 , . . . ,Hsn} for some n, s1, . . . , sn depending on (x, y). Note that Hterxy
does not depend on Γxy; the j-terminal hyperplane at each end of [x̂1, ŷ1] is just the
second-closest jth-scale hyperplane to the endpoint. We form a marked PG path

Ωxy : x̂ = u0 → · · · → un+1 = ŷ

by taking ui as the closest point to wi = Πx̂ŷ ∩Hsi in the jth-scale grid, when Hsi is a
j-terminal hyperplane; this means |ui − wi| ≤

√
d− 1βj∆(r) and n ≤ 2j1 (from (4.22)).

Thus the CG approximation gets coarser as we move away from the endpoints of the
interval. See Figure 3.

We proceed generally as in Step 8 of the proof for downward deviations (Section 4.10).
Let wi⊥ be the orthogonal projection of ui into Πx̂ŷ. We use the terminology jth-scale
link, final link, and macroscopic link from there. For j ≤ j1, for a jth-scale link (ui−1, ui)

we have (ui − ui−1)1 ≥ (1− δ)δjr and

|ui − ui−1|≤|wi⊥ − wi−1
⊥ |+

(|ui−1 − wi−1
⊥ |+ |ui − wi⊥|)2

δjr
≤|wi⊥ − wi−1

⊥ |+
2(d− 1)β2j∆(r)2

δjr
.

(7.1)

Further, the angle α between e1 and ŷ − x̂ satisfies tanα ≤ 2K∆(r)/εr and therefore

|wi − wi⊥| ≤ c0
K∆(r)

εr
|ui − wi| ≤ c1

Kβj

ε
σ(r), (7.2)

and similarly for i−1 in place of i. We have also δjr/2 ≤ (ui−ui−1)1 ≤ 2δjr so from (4.26)
and the bound on tanα we also get

|wi − wi−1| − (wi − wi−1)1 =
(wi − wi−1)1

(ŷ − x̂)1

(
|ŷ − x̂| − (ŷ − x̂)1

)
≤ 2δj

ε

2K2

ε
σ(r).

Combining this with (4.19), (7.1), and (7.2) and using (ui − ui−1)1 = (wi −wi−1)1 we see
that

|ui − ui−1|
≤ (ui − ui−1)1 +

(
|ui − ui−1| − |wi⊥ − wi−1

⊥ |
)

+ |wi − wi⊥|+ |wi−1 − wi−1
⊥ |

+
(
|wi − wi−1| − (wi − wi−1)1

)
≤ (ui − ui−1)1 +

(
2(d− 1)β2j

δj
+

2c1Kβ
j

ε
+

4δjK2

ε2

)
σ(r) ≤ (ui − ui−1)1 +

8δjK2

ε2
σ(r)

and therefore by Theorem 1.5, using (4.19) and the assumption t ≥ C26K
2,
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h(|ui − ui−1|)

≤ h((ui − ui−1)1) +
16µδjK2

ε2
σ(r) ≤ µ(ui − ui−1)1 + 2C33σ(2δjr) +

16µδjK2

ε2
σ(r)

≤ µ(ui − ui−1)1 +
c2δ

jχ1K2

ε2
σ(r) ≤ µ(ui − ui−1)1 +

λj

2
tσ(r). (7.3)

It follows using Lemma 3.2 that

P
(
T̂ (ui−1, ui)− µ(ui − ui−1)1 ≥ λjtσ(r)

)
≤ P

(
T̂ (ui−1, ui)− h(|ui − ui−1|) ≥ λj

2
tσ(r)

)
≤ C44 exp

(
−C45

λjtσ(r)

σ(2δjr)

)
≤ C44 exp

(
−c3

(
λ

δχ1

)j
t

)
. (7.4)

The same is valid for a final link, with j = j1. For macroscopic links it is valid with σ(2δjr)

replaced by σ(r), giving

P
(
T̂ (ui−1, ui)− µ(ui − ui−1)1 ≥ λtσ(r)

)
≤ C44e

−c4λt. (7.5)

The numbers of possible links inside Gr(K) are as follows:

(i) jth-scale links: at most c5K2(d−1)/δ2jβ2j(d−1),
(ii) final links: at most c6r2d,

(iii) macroscopic links: at most c7K2(d−1).

Since t ≥ C26K
2, provided C26 is taken large enough it follows from these bounds

and (4.20), (4.22), (7.4), (7.5) that

P
(

for some x̂, ŷ ∈ Gr(K) and j ≤ j1, there is a jth-scale link (v, w) in Ωxy

satisfying T̂ (v, w)− µ(w − v)1 ≥ λjtσ(r)
)
≤ c8 exp

(
−c10

(
λ

δχ1

)j
t

)
,

P
(

for some x̂, ŷ ∈ Gr(K) there is a final link (v, w) in Ωxy

satisfying T̂ (v, w)− µ(w − v)1 ≥ λj1tσ(r)
)
≤ c8 exp

(
−c10

(
λ

δχ1

)j1
t

)
,

P
(

for some x̂, ŷ ∈ Gr(K) the macroscopic link (v, w) in Ωxy

satisfies T̂ (v, w)− µ(w − v)1 ≥ λtσ(r)
)
≤ c8e−c10λt. (7.6)

If ω is not in any of the events in (7.6), and ω /∈ J (0)(c29), then for all x, y as in (1.13),

T (x, y) = T (x̂, ŷ) ≤
n+1∑
i=1

T̂ (ui−1, ui) + c29n log r

≤ µ(y − x)1 + c29j1 log r + (λ+ λj1)tσ(r) +

j1∑
j=1

λjtσ(r)

≤ h(|y − x|) +
2λ

1− λtσ(r).

Taking λ < 1/3 it follows that

P
(
T (x, y)− ET (x, y) ≥ tσ(r) for some x, y ∈ Gr(K) with |y − x| ≥ εr

)
≤ c10e

−c11t,

which completes the proof of Theorem 1.3 for downward deviations.
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8 Proofs of Theorem 1.6 and Lemma 1.2

We finish with (5) of Remark 1.7 by proving Theorem 1.6. In the proof in section 5 for
fixed x, y, transverse wandering cases (i)–(iii) were dealt with uniformly over x, y, so we
need only consider the case there:

(iv) s ≤ c0(log r)1/2 and there exist x, y, u ∈ V with

x, y ∈ Gr(K), u /∈ Gr,s, d(u,Gr,s) ≤ 2, |y − x| > r0, u ∈ Γxy, u1 ∈ [x1, y1]. (8.1)

See the dashed line in Figure 10. As in section 5, this means that, for C56 from Lemma 3.6,

|u−x|+ |y−u|− |y−x| ≥ s2σ(r), so h(|u−x|) +h(|y−u|)−h(|y−x|) ≥ µs2

2
σ(r)−C56

while
T (x, u) + T (u, y)− T (x, y) = 0

so by Theorem 1.3 and Remark 1.4,

P
(

(iv) holds
)
≤ P

(
there exist v, w ∈ Gr(2s) with

∣∣T (v, w)− h(|w − v|)
∣∣ ≥ µs2

7
σ(r)

)
≤ C36e

−c1s2 . (8.2)

Together with cases (i)–(iii) in section 5, this completes the proof of Theorem 1.6.

Proof of Lemma 1.2. We consider ρ+ first. Fix M (large) and ε > 0, and define

f(r) = log ρ(er)− χr, r ≥ 0,

β0 = sup{f(r) : 0 < r ≤M}, βk = sup{f(r) : 2k−1M < r ≤ 2kM}, k ≥ 1,

so f(r) = o(r) and hence βk = o(2k). Letting

ak =
(2k−1 + 2k)M

2
, k ≥ 0,

we define the piecewise linear function f+ as follows. First let f+ ≡ β1 on [0, a0]. Then
for those k ≥ 0 with βk ≥ βk+1, define f+ on (ak, ak+1] by

f+(t) =


βk if t ∈ (ak, 2

kM ]

βk+1 if t = ak+1

linear on [2kM,ak+1].

For k ≥ 0 with βk < βk+1, define f+ on (ak, ak+1] by

f+(t) =


βk+1 if t ∈ [2kM,ak+1]

βk if t = ak

linear on [ak, 2
kM ].

Since βk = o(2k) it is easily seen that if we take M sufficiently large, then |(f+)′| < ε

everywhere (f+)′ exists, and (f+)′(r)→ 0 as r →∞. Defining ρ+ on [1,∞) by

log ρ+(er) = f+(r) + χr

it follows that for all s ≥ r > 1,

log ρ+(s)− log ρ+(r)

log s− log r
=
f+(log s)− f+(log r)

log s− log r
+ χ ∈ [χ− ε, χ+ ε],

and the powerlike property follows with |χi − χ| ≤ ε, i = 1, 2. From the definition, ρ+

is increasing provided |(f+)′| ≤ χ everywhere, and ρ+(r)/r1−δ is decreasing provided
|(f+)′| ≤ 1− χ− δ everywhere. Both of these are valid provided M is large enough.

The proof for ρ− is similar—we simply replace f with −f starting with the definition
of the βk’s.
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