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Abstract

We prove phase transitions for continuum percolation in a Boolean model based on
a Cox point process with nonstabilizing directing measure. The directing measure,
which can be seen as a stationary random environment for the classical Poisson–
Boolean model, is given by a planar rectangular Poisson line process. This Manhattan
grid type construction features long-range dependencies in the environment, leading
to absence of a sharp phase transition for the associated Cox–Boolean model. The
phase transitions are established under individually as well as jointly varying parame-
ters. Our proofs rest on discretization arguments and a comparison to percolation on
randomly stretched lattices established in [Hof05].
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Introduction

In continuum percolation, one is interested in the clustering behavior of point clouds
in Rd in which any pair of points is connected by an edge depending on their mutual
distance. The prototypical example is the Poisson–Boolean model, first introduced in
[Gil61], in which the point cloud is given by a homogeneous Poisson point process
X = {Xi}i∈I with intensity λ > 0 and any pair of points Xi, Xj ∈ X is connected iff
|Xi−Xj | < r. The celebrated phase transition of continuum percolation is then expressed
by the existence of a nontrivial critical threshold 0 < λc(r) <∞ such that for λ < λc(r),
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Continuum percolation in a nonstabilizing environment

the network contains almost surely no infinite connected component, and for λ > λc(r),
this is no longer the case.

The analysis of spatial models with respect to continuum percolation has flourished
ever since and critical behavior has been established in a multitude of generalizations
of the Poisson–Boolean model. For example, instead of a fixed connectivity threshold
r > 0, random radii can be used to define connected components [MR96, Gou08]. Also
in this direction, other local geometries have been used to define edges, see for example
[Roy91, BT16, Bro22]. Another line of research is concerned with generalizations
towards using other stationary point processes as the underlying set of vertices in
the network. Let us mention for example the continuum-percolation results for Gibbs
point processes in [Mür75, Stu13, Jan16, CD14, Mag18], for repelling point processes in
[GKP16, BY14], for negatively associated point processes in [BY13], or general stationary
point process [MR96, Gou09].

A particularly interesting class of stationary point process, for which continuum
percolation can be investigated, is given by Cox point processes. These can be seen
as Poisson point processes in random environments, where the environment enters
the definition via the (random) intensity measure. Recently, continuum percolation
and associated properties have been studied for the Cox–Boolean model with fixed and
random connectivity thresholds in [HJC19, JTC22]. Here, the key ingredient for the
proofs of nontrivial critical percolation behavior is a spatial mixing property of the
random environments called stabilization [SY13]. In short, stabilizing environments
have the feature that – with high probability and in sufficiently distant large boxes –
the environment behaves independently. This property is crucial in order to couple the
system with finite-range dependent Bernoulli percolation models as well as for the use
of multiscale arguments.

However, while still covering a large family of environments, such as Poisson–Voronoi
tessellations [OBSC00] or Poisson–Boolean models, the stabilization assumption also
excludes many natural examples, such as the Poisson line tessellation or infinite-range
shot-noise fields, see [JTC22] for more details. Another prominent example for which
stabilization fails is the rectangular Poisson line tessellation. Here, we consider two
independent homogeneous Poisson point processes on the axes of R2. We attach to any
point on the x-axis an infinite vertical line, and correspondingly we attach horizontal lines
to the points on the y-axis. The resulting environment resembles a random rectangular
street system and hence is often called a Manhattan grid. The infinite lines create
long-range correlations, for example in the horizontal direction, and in turn, standard
stabilization-based methods can not be used for the analysis.

The existence of long-range dependencies has serious consequences for percola-
tion in the Cox–Boolean model based on Manhattan grids. For example, there is no
sharp-threshold phenomenon [AB87, DCT16, HJM22]. More precisely, in the subcritical
percolation regime, the probability of the event that the cluster of the origin reaches
beyond a large ball does not decrease exponentially, see Proposition 1.5. However,
the existence of nontrivial sub- and supercritical regimes can be established via differ-
ent means, namely via couplings to discrete bond-percolation models with long-range
dependencies.

More precisely, the results in [Hof05] provide nontrivial thresholds for percolation
in a planar Bernoulli bond percolation model based on a randomly stretched lattice.
In this model, each column of horizontal edges

(
(i, j), (i+ 1, j)

)
j∈Z in the standard Z2-

lattice gets assigned an independent random variable N (x)
i and the same is done for

each row of vertical edges
(
(i, j), (i, j + 1)

)
i∈Z with independent random variables N (y)

j .

Then, for some fixed p ∈ (0, 1), conditioned on (N
(x)
i , N

(y)
j )i,j∈Z, the horizontal edge
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(
(i, j), (i+ 1, j)

)
is open independently with probability pN

(x)
i , respectively any vertical

edge
(
(i, j), (i, j + 1)

)
is open independently with probability pN

(y)
j . Now, for sufficiently

light-tailed variables (N
(x)
i , N

(y)
j )i,j∈Z, [Hof05] states the existence of a critical pc ∈ (0, 1)

for percolation. Recently, the result has been generalized all the way to pc = 1
2 in

[dLSV22] with a framework established in [KSV22]: For any p > pc = 1
2 , the randomly

stretched lattice percolates almost surely for sufficiently light-tailed (N
(x)
i , N

(y)
j )i,j∈Z.

The existence of infinite clusters on Z3 was obtained earlier in [JMP00]. On the other
hand, [HSST23] deals with the case Z2 where stretches only occur in one dimension.
They show that the existence of a phase transition is related to the moments of these –
not necessarily geometric – stretches. Other related lattice systems have been studied
in [MW68, MW69, BBS00].

Finally, we note that continuum percolation models have a natural application in the
rigorous probabilistic analysis of wireless networks, where randomly positioned network
components can exchange messages whenever they are sufficiently close to each other
[JK20, BB10a, BB10b]. In view of this, existence of a supercritical percolation regime of
the Cox–Boolean model based on Manhattan grids can be seen as a rough indication for
the existence of a regime in which sufficiently many network participants enable global
connectivity in an urban street system of Manhattan type.

The paper is organized as follows:

• In Section 1, we define our model of interest: the Manhattan grid model. We state
the main results about sub- and supercriticality on the Cox–Boolean model under
individually but also jointly varying parameters (Theorem 1.4 and 1.8), as well as
other interesting features such as the sub-exponential decay of large clusters in
the subcritical phase (Proposition 1.5). We also introduce the randomly stretched
lattice, a discrete auxiliary model that we heavily rely on.

• In Section 2, the existence of an infinite component of the Manhattan grid model is
shown for different choices of parameters.

• The second half of this paper deals with the complementary case: Under which
assumptions is the absence of infinite components guaranteed? We discretize our
model in Section 3 and show in Section 4 that we find blocking circuits in its dual
for a suitable choice of parameters.

• Section 4 builds up on [Hof05]. Due to its technicality, the finer details that are
independent of our proof idea are given in the appendix.

1 Setting and main results

1.1 The Manhattan grid model and main results

We introduce our model of interest. In short, the Manhattan grid model is a Boolean
model based on a Poisson point process defined on a rectangular Poisson line process,
see Figure 1.

Definition 1.1 (Manhattan grid model). Let r, µx, µy, λ > 0 and consider independent
homogeneous Poisson point processes Φ(x),Φ(y) ⊂ R with intensities µx and µy. Define
the random measure Λ, where for A ⊂ R2 Borel-measurable

Λ(A) :=

∫
R

∫
R

1A(x, y) dyΦ(x)( dx) +

∫
R

∫
R

1A(x, y) dxΦ(y)( dy).

Let Ψ ⊂ R2 be a Poisson point process on R2 with intensity measure λΛ. Then, the
Manhattan grid model (MGM) is defined as

Ξ(r, µx, µy, λ) := {x ∈ R2 | ∃P ∈ Ψ : ‖x− P‖ < r}.
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Continuum percolation in a nonstabilizing environment

Figure 1: Construction of the Manhattan grid model: First, generate a random Manhattan
grid (left). Second, place r balls with random centers on the grid.

Note that the MGM can be seen as a Boolean model based on a stationary Cox point
process with intensity λ(µx + µy).

Remark 1.2. We will often colloquially call the infinitely long lines generated by Φ(x)

and Φ(y) “streets” and the points of Ψ lying on these streets “pedestrians”.

We now concern ourselves with the question whether the MGM percolates, that is,
whether Ξ(r, µx, µy, λ) contains an infinite connected component. Let us first mention
the following scaling relation:

Lemma 1.3 (Scaling relations). For all α > 0, the Manhattan grid model Ξ(r, µx, µy, λ)

has the same distribution as αΞ( rα , αµx, αµy, αλ).

Proof. One verifies that 1
αΞ(r, µx, µy, λ) is a MGM with parameters ( rα , αµx, αµy, αλ), e.g.,

via coupling.

A direct consequence is that Ξ(r, µx, µy, λ) percolates if and only if Ξ( rα , αµx, αµy, αλ)

does so. Therefore, we will usually fix some r >
√

2 and suppress the explicit r-
dependency in the arguments.

As can be seen in Figure 2, the MGM really depends on the choice of parameters.
Therefore, the main result will consist of different phase transitions depending on which
parameter to vary:

Theorem 1.4 (Existence of sub-/supercritical regimes). 1. For every λ > 0, there ex-
ists µc(λ) > 0 such that:

(a) If µ > µc(λ), then almost surely, Ξ(µ, µ, λ) percolates.
(b) If µ < µc(λ),then almost surely, Ξ(µ, µ, λ) does not percolate.

2. For every µx, µy > 0, there exists λc(µx, µy) > 0 such that:

(a) If λ > λc(µx, µy), then almost surely, Ξ(µx, µy, λ) percolates.
(b) If λ < λc(µx, µy), then almost surely, Ξ(µx, µy, λ) does not percolate.

3. For every µx, λ > 0, Ξ(µx, µy, λ) percolates almost surely if µy is large enough.

Proof. The corresponding statements are represented in the Propositions 2.2, 2.4 and 2.7
for the supercritical phases, while the subcritical phases consist of Proposition 3.5 and
Corollary 3.6.

The proof ideas can be summarized as follows: The supercritical phase is shown
by discretizing the MGM to the so called randomly stretched lattice (RSL). Different
strategies are employed depending on the parameter regime. The subcritical phase
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Figure 2: Realizations of the MGM for different choices of parameters. Qualitative
differences in the behavior emerge, even though both models have an intensity of 2.

is similar, albeit slightly more complicated. Roughly, we first discretize the MGM to a
different (upper bound) model which surprisingly features a dual relation with the RSL.
By Peierls’ argument, the existence of arbitrarily large circuits in the RSL then shows
the subcritical phase.

1.2 No sharp thresholds and qualitative behavior

Before we present details on the discrete models, let us have a look at some peculiar-
ities of the MGM. First, we show a result on the slow decay of the percolation function
θn, that is,

θn := θn(r, µx, µy, λ) := P(Co ∩ ∂
(
[−n, n]2

)
6= ∅),

where Co ⊂ R2 is the connected component of Ξ(r, µx, µy, λ) containing the origin o ∈ R2.
We only state the result for r >

√
2. The general case can be obtained using Lemma 1.3.

Proposition 1.5 (No exponential decay). Let r >
√

2, µx, µy, λ > 0 and n ∈ N. Then,

lim inf
n→∞

bλ−1 log nc! · nλ
−1 log(min{µx,µy}) · θn > 0, (1.1)

in particular, for every ε > 0

lim inf
n→∞

n(1+ε)λ
−1 log(logn) · θn =∞.

Proof. Assume that µy = min{µx, µy} > 0, otherwise exchange the roles. We show the
claim by considering clusters that only grow to the right. We have that the event

{∀0 ≤ k ≤ n : Ψ
(
[k, k + 1)× [0, 1)

)
> 0}

implies the event
En := {Co ∩ ∂

(
[−n, n]2

)
6= ∅}.

Disregarding vertical lines, the probability of at least one pedestrian lying in one such
cube [k, k + 1)× [0, 1), given that there are s horizontal streets, is

1− exp(−λ)s,

while the probability of having these s horizontal streets in [0, 1) is

P
(
Φ(y)([0, 1)) = s

)
= exp(−µy) ·

µsy
s!
.
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The idea is that we only need to “pay” once to generate many streets, but all n cubes
benefit from that. (In slightly more quantitative terms: For the same cost, we have
exponential reach depending on the number of streets.) Therefore,

θn ≥ P(En) ≥ exp(−µy)

∞∑
s=0

µsy
s!
·
(
1− exp(−λ)s

)n
.

Now, consider for some arbitrary c > 0

fc(n) := dλ−1 log
n

c
e.

Then, with σ := 1 if µy < 1 and σ := −1 else:

θn ≥ exp(−µy)
µ
fc(n)
y

fc(n)!
·
(
1− exp(−λ)fc(n)

)n
≥ exp(−µy)

µ
(λ−1 log nc+σ)
y

fc(n)!
·
(
1− c

n

)n
.

Choosing c large enough such that λ−1 log c ≥ 2, we have for some constant C > 0

θn ≥ Cn−λ
−1 log µy · bλ−1 log nc!−1 ·

(
1− c

n

)n
.

Therefore,

lim inf
n→∞

bλ−1 log nc! · nλ
−1 log µy · θn ≥ lim inf

n→∞
C
(
1− c

n

)n
= Ce−c > 0,

which proves Inequality (1.1). The second statement follows from Stirling’s formula.

Figure 2 suggests two things: If the street intensity µx, µy is high, then the MGM
looks locally like a homogeneous Poisson point process. Intuitively, an infinite cluster
should emerge if the pedestrian intensity, that is, (µx + µy) · λ, is sufficiently large, just
like in the homogeneous case. This is indeed the case, as seen in Proposition 1.6. Next,
for the same pedestrian intensity, it seems much easier to percolate when there are fewer
streets, i.e. if all the pedestrians are concentrated. Exploiting this, we can generate an
infinite cluster with arbitrarily low pedestrian intensity (Proposition 1.7).

Proposition 1.6 (Homogeneity). There exists µc > 0 and I0 > 0 such that the following
holds: Let µ := min{µx, µy} ≥ µc and 2µ · λ > I0. Then, Ξ(µx, µy, λ) percolates almost
surely.

The proof is given at the end of Section 2.1 since it is a consequence of Assumption 2.1
and Proposition 2.2.

Proposition 1.7 (Concentration in streets). There exists λ0 > 0 such that the following
holds: Let µ := min{µx, µy} and

λ ≥ max{λ0,−2 logµ+ λ0}.

Then, Ξ(µx, µy, λ) percolates almost surely.

Again, the proof is given at the end of Section 2.2. Note that the proposition holds in
particular for λ = I/(2µ) for any I > 0 and µ sufficiently low (depending on I).

We close up by combining these two propositions to establish a kind of phase transi-
tion in the pedestrian intensity:

Theorem 1.8 (Phase transition in critical intensity). Let µ, λ > 0 and I := 2µ · λ. There
exists Ic > 0 such that the following holds for the MGM Ξ(µ, µ, λ):
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1) If I > Ic, then the MGM percolates almost surely.

2a) If I < Ic, then there are µ, λ > 0 such that almost surely, the MGM does not
percolate.

2b) If I < Ic, then the MGM percolates almost surely for every sufficiently large λ.

Proof. Part (2b) follows from the comment after Proposition 1.7, while Part (2a) follows
from the existence of a subcritical regime. So we only need to show Part (1). Let Ĩ , µ0, λ0
as in the previous Propositions 1.6 and 1.7. First, take I0 > 0 such that for all µ ≤ µc

I0 ≥ 2µ ·
(
− 2 logµ+ λ0

)
.

We may do so since the right-hand side converges to 0 as µ → 0. Take Ic := max{2µ0 ·
λ0, Ĩ, I0}. Then, if µ ≥ µ0, Proposition 1.6 yields the claim. Otherwise, we have λ ≥ λ0
and

λ = I0/(2µ) ≥ −2 logµ+ λ0,

so employing Proposition 1.7 yields the claim in this case.

1.3 The randomly stretched lattice

The randomly stretched lattice is a bond percolation model on Z2 with the usual
neighborhood structure. There is a fixed parameter p ∈ (0, 1), which says how likely it is
for a simple bond to be open. In more precise terms:

Definition 1.9 (Randomly stretched lattice). LetN (x) := (N
(x)
i )i∈Z andN (y) := (N

(y)
j )j∈Z

be families of mutually independent positive random variables and fix p ∈ (0, 1). Given a
realization of N (x) and N (y), all the bonds in Z2 are open independently with probabilities

P
(

(i, j)↔ (i+ 1, j) is open |N (x), N (y)
)

:= pN
(x)
i

and
P
(

(i, j)↔ (i, j + 1) is open |N (x), N (y)
)

:= pN
(y)
j .

This model is called the randomly stretched lattice (RSL).

Example 1.10. A version of a RSL can be obtained by a random thinning of a Bernoulli
bond percolation model on the Z2-lattice with parameter p, see for illustration Figure 3.
The simplest way to do so is to delete rows and columns of bonds (while keeping the
vertices) with some probability qy, respectively qx. As a consequence, to pass from one
remaining 4-way crossing to the next 4-way crossing to the right, it is no longer sufficient
to walk distance 1, but a random distance N (x)

i . In particular, the probability that the

whole path between the 4-way crossings is open is given by pN
(x)
i . With this thinning

procedure, we would have that the random distances N (x)
i are iid geometric random

variables with P(N
(x)
i ≥ l + 1) = qlx.

We say that the RSL percolates if there exists an infinite self-avoiding path of open
bonds. The following result is due to [Hof05, Theorem 4.1]:

Theorem 1.11 (Existence of supercritical regime in the RSL). Consider a RSL as in
Definition 1.9. If for all i, j ∈ Z and all l ∈ N

P(N
(x)
i ≥ l + 1) ≤ 2−1000·l and P(N

(y)
j ≥ l + 1) ≤ 2−1000·l, (1.2)

then there exists pc ∈ (0, 1) such that the RSL percolates almost surely for every p ≥ pc.
The intuition behind Theorem 1.11 is fairly simple in sharp contrast to its proof:

Columns with large distances (i.e., large N (x)
i ) in the RSL are rare. In absence of these,

we have huge open clusters. In order to connect two neighboring clusters, they have to
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Figure 3: Left: Randomly delete rows/columns of edges. Right: Collapsing everything
back into the standard Z2-lattice with now random distances yields a RSL.

overcome a column with large distance. However, they have a lot of trials to do so due
to their size. Therefore, these clusters connect with high probability and we obtain an
infinite open cluster.

We conclude this section with the following observation:

Lemma 1.12 (RSL scaling relation). Let N (x) := (N
(x)
i )i∈Z and N (y) := (N

(y)
j )j∈Z be

families of mutually independent positive random variables and p ∈ (0, 1). Then for all
α > 0, the RSL with parameters N (x), N (y) and p has the same distribution as the RSL

for αN (x), αN (y) and p
1
α .

As a consequence, we notice that the tail Condition (1.2) can be guaranteed in the
case of geometric random variables:

Corollary 1.13 (Compensating heavy geometric tails). Let Ñ (x) := (Ñ
(x)
i )i∈Z and Ñ (y) :=

(Ñ
(y)
j )j∈Z be families of mutually independent geometric random variables. There exists

p̃ ∈ (0, 1) such that the RSL with parameters (Ñ (x), Ñ (y), p̃) has the same distribution as
a RSL satisfying the conditions of Theorem 1.11.

Proof. Since Ñ (x) and Ñ (y) are families of geometric random variables, we find a q ∈ (0, 1)

such that for all i ∈ Z and l ∈ N

P
(
Ñ

(x)
i ≥ l + 1

)
≤ ql and P

(
Ñ

(y)
i ≥ l + 1

)
≤ ql.

Then, using Lemma 1.12 with

α := −1000 log(2)/ log(q) > 0,

finishes the proof.

1.4 Outlook

As we could see in Proposition 1.5, the infinitely long dependencies of the Manhattan
grid introduce striking features. The interplay between the street intensities µx, µy and
λ is also particularly interesting even for fixed (total) pedestrian intensity (µx + µy) · λ
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(Figure 2). While we have established results for µx = µy, the behavior for differing
street intensities is still unproved, in particular establishing a subcritical phase:

Conjecture 1.14 (Differing street intensities).

1. For any λ > 0 and µx > 0, we find a µy(µx, λ) > 0 such that almost surely, the MGM
Ξ(µx, µy, λ) does not percolate. We have already established the corresponding
result in the supercritical phase but have yet to come up with an idea for the
subcritical regime.

2. We expect that balanced street clusters are beneficial for percolation, i.e.

(µx + µy) · λc(µx, µy) > (µ′x + µ′y) · λc(µ′x, µ′y)

whenever µx + µy = µ′x + µ′y but |µx − µy| > |µ′x − µ′y|.

Theorem 1.8 tells us that there is a phase transition in I = (µ+ µ) · λ. Since having a
large λ is much more beneficial to percolation (see Proposition 1.7), the critical Ic should
arise due to the “µ =∞” case.

Conjecture 1.15 (Critical intensity). The Ic > 0 in Theorem 1.8 is the critical intensity
for the Boolean model of a homogeneous Poisson point process in two dimensions.

Since our proof of the subcritical phase relies on Peierls’ argument, our current meth-
ods are unfortunately unable to establish a subcritical phase for any higher-dimensional
equivalent of the MGM. Lastly, we want to mention the next canonical model to study:
Instead of taking the (rectangular) Manhattan grid as the random environment, one
considers the Poisson line process instead. Here, we encounter an additional problem:
Not only does the environment feature infinitely long-range dependencies, there is no
(simple) nice discretization to a lattice either. In this regard, some new idea is needed to
tackle this problem.

2 Existences of supercritical regimes

Depending on which parameters we want to fix, we need different discretizations.
The goal is to arrive at an RSL dominated by a MGM. Due to Lemma 1.3, we may always
fix some r >

√
2. This has the benefit that, if a pedestrian lies inside some unit square,

Ξ(r, µx, µy, λ) will cover the whole square.

2.1 Fixed intensity of Poisson points, variable street intensities

We may compensate for the low intensity λ of Poisson points on the particular streets
by simply having an overwhelming amount of streets. We will choose our parameters as
follows.

Assumption 2.1 (Supercritical parameters (1)). Let r >
√

2 and λ > 0 arbitrary. Let
nλ ∈ N such that

1− exp(−nλ · λ) ≥ pc,

with pc as in Theorem 1.11. Let µc := µc(r, λ) > 0 such that

1− exp(−µc)
nλ∑
k=0

µkc
k!
≥ 1− 2−1000.

In words: nλ can be understood as the minimum number of streets in order to perco-
late and µc as the minimal parameter that ensures this number with high probability.

Proposition 2.2 (Existence of supercritical regime (1)). With parameters as in As-
sumption 2.1, we have that the MGM Ξ(r, µx, µy, λ) percolates almost surely for any
µx, µy ≥ µc(r, λ).
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Figure 4: Procedure for nλ = 2. Black circles correspond to points (i, j) ∈ R2. Left: We
check if there are enough horizontal streets in each horizontal strip. Middle: If so, we
draw horizontal edges between points in these rectangles. Right: Doing the same for
vertical streets yields a RSL.

Proof. The strategy of proof is also visualized in Figure 4. Let i, j ∈ Z. We draw an edge
between (i, j) and (i+ 1, j) if there are at least nλ horizontal streets in [j − 1

2 , j + 1
2 ), i.e.

if

Φ(y)
(

[j − 1
2 , j + 1

2 )
)
≥ nλ.

Since µy ≥ µc, for all j ∈ Z, these are independent events (of drawing edges) happening
with probability at least 1−2−1000. We call such an edge open if there exists a pedestrian
P on one of these horizontal streets inside the square [i, i + 1) × [j − 1

2 , j + 1
2 ). Since

r >
√

2, this implies that the ball of radius r around P contains both vertices (i, j) and
(i+ 1, j), in particular, it connects them. Conditioned that we have at least nλ streets,
the event that there is a pedestrian P on one of these streets happens with probability
at least

1− exp(−nλ · λ) ≥ pc.

Analogously, we draw an edge between (i, j) and (i, j + 1) if there are at least nλ vertical
streets in [i − 1

2 , i + 1
2 ). This way, the distance from one 4-way crossing to the next in

horizontal direction (that is, the number of times we consecutively did not draw a vertical
edge plus 1) is a geometric random variable N (x)

i′ with

P(N
(x)
i′ ≥ l + 1) ≤ 2−1000·l.

The same holds for the vertical direction. This is now a RSL with parameters as in
Theorem 1.11. Since this RSL percolates almost surely, then so does the MGM.

Proof of Proposition 1.6. We see that the assumption on nλ in Assumption 2.1 is satisfied
by choosing

nλ = Cλ/λ

for some sufficiently large Cλ. Let us first consider the case where λ > 0 is small. We
now assume that I > 2Cλ, in particular, µ ≥ nλ. Then, µ satisfies Assumption 2.1 if it
satisfies

exp(−µ) ·
(
nλ ·

µnλ

nλ!
+ 1
)

= exp(−µ) ·
(
Cλ/λ ·

µCλ/λ

(Cλ/λ)!
+ 1
)
≤ 2−1000.

We may ignore the constant summand of 1 for large µ and by reducing the right-hand
side. Taking the logarithm and inserting µ = I/2λ yields

I
2λ − C ≥ − log λ+ Cλ

λ log I
2λ − log(Cλλ !)
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for some C > 0 independent of I, λ and µ that changes from line to line. Using Stirling’s
approximation and multiplying both sides with 2λ yields

I − 2λC ≥ −2λ log λ+ 2Cλ log I
2λ − 2Cλ log(Cλλ )− 2Cλ + 2λ · o(1/λ)

= 2Cλ ·
(

log I
2 − logCλ − 1

)
+ λ · o(1/λ),

where we consider λ→ 0. Cleaning up the terms, we get the condition

I − 2Cλ log I ≥ C̃ + λ · o(1/λ),

which is satisfied for all λ smaller than some λ0 > 0 once I is chosen sufficiently large.
On the other hand, if λ ≥ λ0, we simply satisfy

exp(−µ)

nλ∑
k=0

µk

k!
≤ exp(−µ)

nλ0∑
k=0

µk

k!
≤ 2−1000

by taking µ ≥ µ0 for some sufficiently large µ0.

2.2 Fixed intensities of streets, variable Poisson-point intensity

Assumption 2.3 (Supercritical parameters (2)). Let r >
√

2 and µx, µy > 0 be arbitrary.
Write µ := min(µx, µy). Let nµ > 2 such that

e−(nµ−2)·µ ≤ 2−1000.

Let λc := λc(r, µ) > 0 large enough such that for any D ∈ [2, 2nµ − 2]

P
(
∀x ∈ [0, D]∃Px ∈ Φλc ∩ [0, D] : ‖x− Px‖ < r

)
≥ pc, (2.1)

where Φλc is a Poisson point process on R of intensity λc.

The quantity nµ can be understood as the minimum size of an interval that ensures
the existence of a street with high probability. The intensity λc is then the minimum
intensity such that crossing a distance up to nµ is very likely. The proof for Inequality
(2.1) is given in Lemma 2.5.

Proposition 2.4 (Existence of supercritical regime (2)). With parameters as in Assump-
tion 2.3, the MGM Ξ(r, µx, µy, λ) percolates almost surely for any λ ≥ λc(r,min{µx, µy}).

Proof. The discretization scheme is quite different from the one in Section 2.1 and
sketched in Figure 5. We divide R2 into squares nµ · ([i, i+ 1)× [j, j + 1)) of side length
nµ and identify each such square as a vertex (i, j) ∈ Z2. We draw an edge between (i, j)

and (i + 1, j) if Φ(y)
([
nµ · j + 1, nµ · (j + 1) − 1

))
≥ 1, that is, if there is a street with

distance at least 1 from the boundary. By Assumption 2.3, this happens with probability
at least 1− 2−1000. Analogously, we do the same for vertical streets. Now, let (i, j) and
(i, j + s) be vertices in Z2 which have 4 neighbors (these exist almost surely). That
means that there is a crossing c0 ∈ R2 of a horizontal with a vertical street inside[
nµ · i + 1, nµ · (i + 1) − 1

)
×
[
nµ · j + 1, nµ · (j + 1) − 1

)
, respectively a crossing cs in[

nµ · i+1, nµ ·(i+1)−1
)
×
[
nµ ·(j+s)+1, nµ ·(j+s+1)−1

)
. Furthermore, we may assume

that the vertical streets of the crossings are the same, e.g., by picking the leftmost one.
We now want to see that these two intersection points c0 = (x′, y0), cs = (x′, ys) are
connected in the MGM with probability at least psc. This mainly follows from Inequality
(2.1):

Indeed, if s = 1, this follows immediately. Otherwise, for any k < s, we pick an
arbitrary ck = (x′, yk) ∈ R2 such that

yk ∈
[
nµ · (j + k) + 1, nµ · (j + k + 1)− 1

)
.
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Figure 5: R2 is discretized into squares. Left: Streets that are too close to parallel black
lines are discarded (green zones). We choose the lowest/leftmost remaining street (dark
blue) per square and discard all the others. Right: Circles indicate crossings (black) and
intermediate breakpoints (gray) in R2. The black circles correspond to vertices in the
RSL with gray circles indicating the distances.

For all 0 ≤ k ≤ s, the ck lie on the same line. The probability that ck, ck+1 are connected is
at least pc by Inequality (2.1) and all these events are independent. Therefore, we obtain
a RSL with parameters as in Theorem 1.11. Furthermore, since the RSL percolates
almost surely, then so does the MGM.

We have to work with intervals of the form [nµ · i + 1, nµ · (i + 1)− 1
)

to make sure
that there is always a minimal distance of 2 between two crossings in R2. Otherwise we
would not be able to establish Inequality (2.1):

Lemma 2.5 (Probability of line coverings). Let r, a, b > 0 with a ≤ b and p̃ ∈ (0, 1). Let Φλ
be a Poisson point process on R with intensity λ. There exists λc > 0 such that for every
λ ≥ λc and every D ∈ [a, b]

P
(
∀x ∈ [0, D]∃Px ∈ Φλ ∩ [0, D] : ‖x− Px‖ < r

)
≥ p̃.

Proof. By monotonicity, we may assume r ≤ a. Define the event

ED := {∀x ∈ [0, D]∃Px ∈ Φλ ∩ [0, D] : ‖x− Px‖ < r}.

We will show that

P(ED) ≥
(
1− exp(− r2λc)

)b2 br c,
which proves the claim for sufficiently large λc. Let

nD := b2Dr c ≤ b2
b
r c.

We see that ED is implied by the event{
∀0 ≤ i < nD : Φλ

(
[i · r2 , (i+ 1) · r2 )

)
≥ 1
}
.

Since all of these intervals are disjoint, we have

P(ED) ≥
nD−1∏
i=0

P
(
Φλ[i · r2 , (i+ 1) · r2 ) ≥ 1

)
= P

(
Φλ[0, r2 ) ≥ 1

)nD
=
(
1− exp(− r2λ)

)nD ≥ (1− exp(− r2λc)
)b2 br c,

as desired.
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Proof of Proposition 1.7. The claim follows from the proof of Proposition 2.4 by carefully
looking at the parameters: For simplicity, we will consider the case where r ≥ 1.
Assumption 2.3 is satisfied by choosing

nµ = C/µ

for some large C > 0. Then, we see that in Lemma 2.5, we need λ to satisfy(
1− exp(−λ/2)

)4nµ ≥ pc
in order to achieve percolation. First consider the case that µ is small and write k = 1/µ.
Then, for sufficiently large cλ > 0 and assuming λ ≥ −2 logµ+ 2 log cλ(

1− exp(−λ/2)
)4nµ

=
[(

1− ( 1
cλ·k )λ/(2 log cλk)

)k]4C ≥ [(1− 1
cλ·k

)k]4C
k→∞−−−−→ ec

−1
λ ·4C > pc,

which shows the claim for all µ smaller than some µ0 > 0. On the other hand, if µ ≥ µ0,
we choose some λ1 > 0 such that(

1− exp(−λ1/2)
)4nµ ≥ (1− exp(−λ1/2)

)4C/µ0 ≥ pc,

which proves the claim by taking λ0 := max{λ1, 2 log cλ}.

2.3 Fixed intensity of Poisson points, fixed intensity of horizontal streets, vari-
able vertical street intensity

Assumption 2.6 (Supercritical parameters (3)). Let r >
√

2, λ > 0 and µx > 0 be
arbitrary. Let nλ,x ∈ N such that

1− e−nλ,x·λ ≥ pc.

Let nµ ∈ N such that [
e−µx ·

nλ,x∑
k=0

µkx
k!

]nµ
≤ 2−1000.

Let nλ,y ∈ N such that [
1− e−nλ,y·λ

]2nµ ≥ pc
and finally µc := µc(r, µx, λ) > 0 large enough such that

e−µc ·
2nλ,y∑
k=0

µkc
k!
≤ 2−1000.

Proposition 2.7 (Existence of supercritical regime (3)). With parameters as in Assump-
tion 2.6, the MGM Ξ(r, µx, µy, λ) percolates almost surely for any µy ≥ µc(r, µx, λ).

Proof. The discretization scheme is sketched in Figure 6. nλ,x is the minimal number
of vertical streets that we need inside the unit square such that an edge is open with
probability at least pc. However, having this many streets is rather rare. After nµ trials,
there will be one such square with probability at least 1− 2−1000. This takes care of the
vertical edges. The problem with requiring nµ trials instead of 1 is that now horizontal
edges are distance up to 2nµ apart instead of 1. To cross up to 2nµ squares of side
length 1, we need nλ,y many horizontal streets. Choosing µy large enough, having this
many streets happens with probability at least 1− 2−1000. We again obtain a RSL with
parameters as in Theorem 1.11. Since the RSL percolates almost surely, so does our
MGM and we conclude.
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Figure 6: Procedure for nλ,µ = 3 and nµ = 3. We need 3 lines inside a box for it to be
useful. To achieve this, we need 3 trials, which are grouped by the bold black lines (left).
Afterwards (right), we draw the horizontal edges in boxes where we have sufficiently
many horizontal streets. The horizontal distance between circles is now not 1 but up
to 6.

3 Existence of a subcritical regime

3.1 The random highway model

We introduce another discrete model: the random highway model.

Definition 3.1 (Random highway model). Let N (x) := (N
(x)
i )i∈Z and N (y) := (N

(y)
j )j∈Z

be families of mutually independent positive random variables and fix p ∈ (0, 1). Given a
realization of N (x) and N (y), all the bonds in Z2 are closed independently with probabili-
ties

P((i, j)↔ (i+ 1, j) is closed |N (x), N (y)) = pN
(y)
j

and
P((i, j)↔ (i, j + 1) is closed |N (x), N (y)) = pN

(x)
i .

This model is called the random highway model (RHM).

Remark 3.2. The interpretation is as follows: At height j, there are N (y)
j many infinite

horizontal streets. In each segment, that is between (i, j) and (i+ 1, j), each street has a
probability 1− p of being intact. Then, (i, j) is connected to (i+ 1, j) if at least one of the

N
(y)
j street segments is intact. As an illustration, see e.g. the right picture of Figure 7.

Proposition 3.3 (MGM upper bounded by RHM). The RHM with parameters

p = e−2rλ, P(N
(x)
i ≥ l + 1) = P(N

(y)
i ≥ l + 1) =

(
1− e−2rmax{µx,µy}

)l ∀l ∈ N (3.1)

percolates almost surely if the MGM does.

The proof is given in Section 3.2. The RSL and the RHM share the following dual
relation: We obtain the RSL by making all open edges of the RHM’s dual lattice closed
and vice versa. Therefore, circuits in the RSL are of particular interest.

Proposition 3.4 (Existence of arbitrarily large circuits). With pc ∈ (0, 1) and N (x), N (y)

as in Theorem 1.11, the following holds almost surely: For every p ≥ pc and every finite
V ⊂ Z2, there exists an open circuit in the RSL such that V lies inside that circuit.

All of Section 4 is dedicated to the proof of Proposition 3.4. By Peierls’ argument,
both these propositions yield the absence of an infinite cluster in the following way:

Proposition 3.5 (Existence of subcritical regime (1)). For any µx, µy > 0, there exists
λc(µx, µy) > 0 such that the MGM Ξ(µx, µy, λ) almost surely does not percolate for any
λ ≤ λc(µx, µy).

Proof. By Proposition 3.3, the MGM is upper bounded by a RHM with parameters as
in Equation (3.1). Due to the dual relation between the RHM and the RSL, Peierls’
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argument tells us that the RHM does not percolate if we find an open circuit surrounding
the [−1, 1]2 box in the RSL. Using Corollary 1.13, there exists λc(µ) such that this RSL has
the same distribution as a RSL with parameters as in Theorem 1.11 for every λ ≤ λc(µ).
Due to Proposition 3.4, we always find such an open circuit and conclude that the RHM
does not percolate almost surely. Therefore, the MGM does not percolate either.

If we put in some extra effort into the discretization scheme – see Section 3.3 – we
get a stronger version of Proposition 3.3, i.e. Proposition 3.8. Similarly, this yields the
following:

Corollary 3.6 (Existence of subcritical regime (2)). For every λ > 0, there exists µc(λ) > 0

such that the MGM Ξ(µ, µ, λ) almost surely does not percolate for any µ ≤ µc(µ).

Proof. Propositions 3.4 and 3.8 with κ large enough such that

p = 1−
(
1− e−2rλ

)κ ≥ pc
and then µx, µy small enough such that(

1− e−κ·2rmax{µx,µy}
)1/sκ ≤ 2−1000.

3.2 Discretizing the Manhattan grid model

We discretize the MGM in a way that yields a RHM with parameters as in Proposi-
tion 3.3. The procedure relies on grouping streets to clusters:

Definition 3.7 (Enumeration of r-clusters). Let r > 0 and φ ⊂ R. Then, C ⊂ φ is called
an r-cluster of φ if there exists a connected component A ⊂ R of⋃

x∈φ

(x− r, x+ r),

such that C = A ∩ φ. Given x ∈ φ, we write C(x, φ) for the cluster containing x. Now,
assume that φ ⊂ R is locally finite and unbounded in both directions. We can enumerate
the clusters in the following way: Let C0(φ) := C(x0, φ) where

x0 := min{x ∈ φ |x > 0, x = maxC(x, φ)}.

Given C0(φ), . . . , Ci(φ), let Ci+1(φ) := C(xi+1, φ) where

xi+1 = min{x ∈ φ |x > 0, x /∈ Ck(φ)∀0 ≤ k ≤ i}.

In this way, we have defined Ci(φ) for all i ∈ N. In a similar way, we can define C−i(φ).
We let C−i−1(φ) := C(x−i−1, φ) for

x−i−1 := max{x ∈ φ |x /∈ Ck(φ)∀k ≥ −i}.

Proof of Proposition 3.3. We look at clusters of streets in the MGM as in Definition 3.7.
Let C(x)

i := Ci(Φ
(x)) and C(y)

j := Cj(Φ
(y)), sketched in Figure 7. Since Φ(x) is a Poisson

point process of intensity µx ≤ µ, we have that N (x)
i := #C

(x)
i is a geometric random

variable with
P(N

(x)
i ≥ l + 1) = (1− e−2rµx)l ≤ (1− e−2rµ)l ∀l ∈ N

and all the N (x)
i are independent from each other. The same holds for Φ(y). For each

(i, j) ∈ Z2, we may look at the rectangle

Ci,j := [minC
(x)
i ,maxC

(x)
i )× [minC

(y)
j ,maxC

(y)
j ).
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Figure 7: Left: Realization of the street system. Around each street, we consider its
r neighborhood (blue) and distinguish the streets by clusters and enumerate them
(. . . , C(x)

−1 , C
(x)
0 , C

(x)
1 , . . . ). The red disk indicates the origin (0, 0). Middle: We identify the

crossings of vertical street clusters with horizontal street clusters as vertices (yellow
rectangles). Right: This results in a discretized model with multi-edges.

Each such rectangle Ci,j directly connects only to its neighbors Ci′,j′ , i.e. |i−i′|+|j−j′| =
1. Let us consider Ci,j and Ci+1,j for now. We know that

inf
x1∈C(x)

i , x2∈C(x)
i+1

‖x1 − x2‖ ≥ 2r,

otherwise they would have combined. Therefore, if Ci,j connects to Ci+1,j in the MGM,

it has to do so via one of the N (y)
j = #C

(y)
j horizontal streets. In particular, there needs

to be a pedestrian P = (xz, yz) ∈ Ψ of the MGM such that

xz ∈ (maxC
(x)
i ,maxC

(x)
i + 2r) and yz ∈ C(y)

j .

The probability that such a P exists under a realization of N (x) and N (y) is therefore

1− pN
(y)
j = 1− (e−2rλ)N

(y)
j .

If we collapse the rectangles Ci,j into nodes, we obtain a RHM on Z2 with parameters as
in Equation (3.1). Moreover, percolation of the MGM implies percolation of the RHM.

3.3 Finer discretization scheme

Proposition 3.8 (MGM upper bounded by RHM (2) ). Let κ ∈ N be arbitrary. There exists
sκ ∈ N satisfying the following: Consider a MGM with parameters λ, µx, µy. Then, the
RHM with parameters

p = 1−
(
1−e−2rλ

)κ
, P(N

(x)
i ≥ l+1) = P(N

(y)
i ≥ l+1) =

(
1−e−κ2rmax{µx,µy}

)l/sκ ∀l ∈ N
(3.2)

percolates almost surely if the MGM does.

Proof. The procedure is similar to the one in Proposition 3.3 in the previous section. The
difference will be that we do not group together street clusters into r-clusters but rather
κr-clusters. We will also use

N
(y)
j :=

{
1 if #C

(y)
j = 1

τκ ·#C(y)
j else

instead where τκ := d−2rλ/ log pe ∈ N, i.e.

pτκ ≤ e−2rλ.
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Under the new grouping scheme, the edge between the rectangles Ci,j and Ci+1,j when

#C
(y)
j = 1 is closed with probability at most

p = 1−
(
1− e−2rλ

)κ
since we need at least κ pedestrians in disjoint intervals of length 2r. If however
#C

(y)
j > 1, then the probability of the edge to be closed is at most

1−
(
1− e−2rλ·C

(y)
j
)κ ≥ 1−

(
1− e−2rλ·C

(y)
j
)
≥ pτκ·C

(y)
j .

Take sκ := 2τκ − 1. Given l ∈ N0 and knowing that N (y)
j only takes values in {1} ∪ τkN2,

we have for l ∈ {1, . . . , 2τκ − 1}

P(N
(y)
j ≥ l + 1) = P(N

(y)
j ≥ 2τk) = P(#C

(y)
j ≥ 1 + 1)

= 1− e−κ·2rmax{µx,µy} ≤
(
1− e−κ·2rmax{µx,µy}

)l/sκ
,

since l ≤ 2τκ − 1 = sκ. On the other hand, for l ∈ {nτκ, . . . , (n+ 1)τκ − 1}, we have again

P(N
(y)
j ≥ l + 1) = P(N

(y)
j ≥ (n+ 1)τk) = P(#C

(y)
j ≥ n+ 1)

= (1− e−κ·2rmax{µx,µy})n ≤
(
1− e−κ·2rmax{µx,µy}

)l/sκ
.

Therefore, we have shown that N (y)
j has at least the decay of a geometric random

variable with parameter (
1− e−κ·2rmax{µx,µy}

)1/sκ
.

4 Existence of arbitrarily large blocking circuits

As said before, the existence of circuits in the RSL will heavily depend on the
framework developed in [Hof05]. Therefore, we recapitulate the most relevant objects
and results for the reader’s convenience.

Notation 4.1. The x = (xi)i∈Z in [Hof05] corresponds to N = (N
(x)
i )i∈Z here. From now

on, [i, j] will be an interval of integers, i.e.

[i, j] := {i, i+ 1, . . . , j − 1, j}.

Remark 4.2 (Different framework). As mentioned in the introduction, [dLSV22] proved
a stronger result of Theorem 1.11. Said framework (or rather the one established in
[KSV22]) could also be used here instead of [Hof05] to achieve the same results, i.e.
establishing that the origin lies in a “center box” infinitely often and then creating
arbitrarily large circuits around it.

4.1 Bands and labels

The idea is to group columns into bands depending on how “bad” they are. A column
i is bad if N (x)

i is large. Bad columns merge into bands which are even “worse”. The
procedure is done in a way that the resulting bands are exponentially far apart depending
on their “badness”. A key result is that the resulting bands are finite if N (x)

i is sufficiently
light-tailed.

For now, let N := (Ni)i∈Z be an arbitrary sequence with Ni ∈ N≥1. We will consecu-
tively define the k bands of N , see Figure 8 for a rough illustration.

Definition 4.3 (k bands and k labels). A 1 band is {i} for i ∈ Z. The 1 label of {i} is

f1(i) := Ni.
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Figure 8: k bands and labels for k = 1, 2, 5, 6. The base height for labels in the diagrams
is 1. In picture 2, we indicate the order in which the k bands merge. After k = 6, nothing
combines inside this observation window anymore.

We now inductively define k+ 1 bands and their k+ 1 labels. Find i ∈ Z with the smallest
|i+ 0.1| (i.e., −i is preferred over i) such that there exists j ∈ Z satisfying

1. j is not in the same k band as i,

2. |j| ≤ |i|, and

3. min
(
fk(i), fk(j)

)
− 1

6 log2 |1 +Dk(i, j)| > 1 where

Dk(i, j) := #{k bands between i and j not containing either}.

As an example, we have 1 +D1(i, j) = |i− j|.

If no such i exists, set fk+1 := fk and all the k + 1 bands are the same as the k bands.
Otherwise, define the k + 1 bands in the following way:

1. If [m,n] is a k band with [min{i, j},max{i, j}]∩ [m,n] = ∅, then it is a k+ 1 band. In
this case, all s ∈ [m,n] have the k + 1 label fk+1(s) := fk(s).

2. Let [mi, ni] be the k band containing i and [mj , nj ] the k band containing j. Then,
[m̃, ñ] is a k + 1 band with m̃ := min{mi,mj} and ñ := max{ni, nj}. In this case, all
s ∈ [m̃, ñ] have the k + 1 label

fk+1(s) := fk(i) + fk(j)−
⌊

1
18 log2 |1 +Dk(i, j)|

⌋
.

Note that fk+1(s) ≥ max{fk(i), fk(j)}+ 2.

Remark 4.4 (Short summary). In each step, two k bands and all bands in between will
merge into a bigger k + 1 band of higher label. All elements inside a k band have the
same k label. Each k band will always consist of intervals of integers. Bands around the
origin will be combined before others. Since we will consider Ni generated by nontrivial
independent random variables, the merging procedure will never globally terminate.

Lemma 4.5 (Exponential decay of band labels, [Hof05, Lemma 3.4]). If the Ni are
independent random variables with P(Ni ≥ l + 1) ≤ 2−1000·l for all i ∈ Z and l ∈ N, then
for any j ∈ Z and k ∈ N

P
(
j lies in a k band of label ≥ l

)
≤ 2−399·l.

In particular, the following holds almost surely: For each j ∈ Z, there exists K ∈ N such
that for all k ≥ K, all the k bands containing j are identical.
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The idea of the proof is to use the light-tailedness of the random variables to suppress
certain combinatorial terms. This on the notion of (maximal) generators of k bands
which will be introduced later. The second statement follows from Borel–Cantelli.

Definition 4.6 (Bands and labels).

1. An (integer) interval [m,n] is called a band (without k in front) if there exists some
K ∈ N such that [m,n] is a k band for all k ≥ K. For j ∈ Z, the label of j is
f(j) := limk fk(j). The label of a band [m,n] is f(m).

2. If N = (Ni)i∈Z is such that Z decomposes into finite bands, then we call N good.

Note that bands and their labels are always finite, i.e. f(m) <∞. From now on, we
will only concern ourselves with good N = (Ni)i∈Z. The first thing we do is to enumerate
k bands as well as bands similar to the enumeration of clusters in Section 3.

Definition 4.7 (Enumeration of bands). Given N = (Ni)i∈Z, write BN0,k for the k band

containing 0. Set BN1,k to be the k band containing 1+maxBN0,k and BN−1,k to be the k band

containing −1 + minBN0,k. Inductively, this defines BNi,k for all i ∈ Z. Since N = (Ni)i∈Z
is good, we can analogously define BNi .

The “size” of a band is limited by its label and also, as indicated before, bands will be
exponentially far apart depending on their labels:

Lemma 4.8 ([Hof05, Lemma 3.1, 3.6]).

1. Let [i, j] = BNm,k be a k band with label l. Then, |j − i+ 1| ≤ 32l−1.

2. If BNm and BNm′ are bands with labels ≥ l, then |m−m′| ≥ 64l−1 = (26)l−1.

4.2 Regular bands

We will now make the first modification to the work of [Hof05].

Definition 4.9 (Neighboring bands and regularity).

• Two bands BNm and BNm′ are called neighboring bands with labels ≥ l if they
both have labels ≥ l and there is no band with label ≥ l in between.

• The good sequence N = (Ni)i∈Z is called regular if for all l and all neighboring
bands BNm and BNm′ with labels ≥ l, we have |m−m′| ∈ [64l−1, 12 · 64l−1] and N is
unbounded in both directions.

A regular sequence is “regular” in the sense that bands with certain label sizes
regularly show up and are not spread too far apart. Next, we will show that a good
sequence N can always be made regular by making it larger. N being unbounded
guarantees the existence of bands of labels ≥ l for all l ∈ N and that each such band has
exactly 2 neighbors.

Definition 4.10 ((Maximal) generators of bands).

1. Let BNm,k = [i, j] be a k band. Then, the k generators of BNm,k are i and j. For

1 ≤ k̃ < k, the k̃ generators of BNm,k are the k̃ generators of the k̃ bands inside

[i, j] containing a k̃ + 1 generator of BNm,k. The 1 generators of BNm,k are called the

generators of BNm,k.

2. Let g be a generator of a band BNm . Then, g is called a maximal generator of BNm
if the following holds. If [i1, j1] and [i2, j2] are two k bands that combine into the
k + 1 band [i1, j2] with g ∈ [i1, j2], then the label of k band containing g (i.e., either
[i1, j1] or [i2, j2]) has label greater or equal to the label of the other k band used to
combine into [i1, j2].
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3. One verifies that a band always has at least one maximal generator. For each band
BNm , we will pick its smallest maximal generator g(BNm).

Lemma 4.11 (High labels near origin). Let N (x) and N (y) as in Theorem 1.11. Consider
the event

Al :=
{
∀bands BN

(x)

m , BN
(y)

m with |m| ≤ 12 · 64l, their labels are < l
}
.

Then,
lim
l→∞

P(Al) = 1.

In particular, we have that almost-surely infinitely many of the Al occur.

Proof. Let C > 0. Recall that N (x) = (N
(x)
i )i∈Z and N (y) = (N

(y)
i )i∈Z are families of

mutually independent random variables with max{P(N
(x)
i ≥ l + 1), P(N

(y)
i ≥ l + 1)} ≤

2−1000·l. By Lemma 4.5, we have

P
(
∀bands BN

(x)

m with |m| ≤ C · 64l, their labels are < l
)

≥ 1−
C·64l∑
|m|=0

P(BN
(x)

m has label ≥ l)

≥ 1− 2 · C · 64l · 2−399l ≥ 1− C · 2−350l.

N (x) and N (y) are independent, so for the event

Al(C) :=
{
∀bands BN

(x)

m , BN
(y)

m with |m| ≤ C · 64l, their labels are < l
}
,

we have that
P(Al(C)) ≥

(
1− C · 2−350l

)2
,

which proves limlP(Al(C)) = 1. The last statement follows from Borel–Cantelli.

Next, we want to find a regular Ñ (x) ≥ N (x) such that it generates the same bands as
N (x).

Lemma 4.12 (Raising labels of maximal generators, [Hof05, Lemma 3.7]). Let N =

(Ni)i∈Z be good. Let BNm be a band of label l and i′ ∈ Z be a maximal generator of BNm . If
for all bands BNm′ of label > l, we have that |m−m′| ≥ 64l, then the sequence

Ñi =

{
Ni i 6= i′

Ni + 1 i = i′

satisfies the following properties:

1. BNn,k = BÑn,k ∀n ∈ Z, k ∈ N, i.e. all k bands are identical and Ñ is also good.

2. If the k label of BNn,k is t, then the k label of BÑn,k is t+ 1{i′ ∈ BNn,k}.

In particular, i′ is still a maximal generator of BÑm .

Lemma 4.13 (Making N more regular, [Hof05, Lemma 3.8]). Let N be good. For each
L ≥ 1, there exists NL = (NL

i )i∈Z such that

1. N ≤ NL ≤ NL+1,

2. BNm,k = BN
L

m,k for all m ∈ Z, k ∈ N, and

3. if BN
L

m and BN
L

m′ are neighboring bands with label ≥ l and if l ≤ L, then

|m−m′| ∈ [64l−1, 3 · 64l−1).
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Furthermore, NL can be chosen such that (NL
i )L∈N is unbounded for at most one i.

Due to its relevance in Lemma 4.17, we will give the proof again here.

Proof. We only consider the case of N being unbounded in both directions. The general
case is proven similarly with slightly more technicalities. By Lemma 4.12, we may
artificially raise the labels of bands to make NL “more regular”. We show the claim via
induction on L. For L = 1, set N1 := N . Now, suppose the claim is true for L. Consider
the sets of indices

S(L) := {m ∈ Z |BN
L

m has label ≥ L} and S(L) := {m ∈ Z |BN
L

m has label ≥ L+ 1}.

Clearly S(L) ⊂ S(L). We now want to raise the labels of some bands in S(L) so that the
regularity condition holds for l = L. More explicitly, we define an index set S such that

1. S(L) ⊂ S(L) ⊂ S(L).

2. |m−m′| ≥ 64l for all m,m′ ∈ S(L).

3. For any m ∈ S(L), there exists m′ ∈ S(L) with |m−m′| ≤ 3 · 64l.

We do so in the following way. S(L) 6= ∅ since N is unbounded, so consider m ∈ S(L).
Let m′ := min{m̃ ∈ S(L) | m̃ > m}. Let m(0) := m. If m′ −m(0) > 3 · 64l, we choose a
m(1) ∈ S(L) such that m(0) + 64l ≤ m(1) ≤ m(0) + 64l + 3 · 64l−1. We can do so by the
induction hypothesis. We check that

m′ −m(1) ≥
(
m(0) + 3 · 64l

)
−
(
m(0) + 64l + 3 · 64l−1

)
> 64l.

If m′ − m(1) > 3 · 64l, we define again m(2) and proceed until we find m(s) such that
m′ −m(s) < 3 · 64l. Define Sm(L) := {m(0), . . . ,m(s)} and finally

S(L) :=
⋃

m∈S(L)

Sm(L).

This S(L) satisfies all of our 3 conditions. We now define NL+1 in the following way:

NL+1
i =

{
NL
i + 1 if i = g(BNm) for some m ∈ S(L)\S(L)

NL
i else.

By Lemma 4.12, NL+1
i is as desired. The unboundedness part is proven in the next

lemma.

Lemma 4.14 (Making sequences regular, [Hof05, Lemma 3.9]). Let N be good. There
exists a sequence Ñ ≥ N such that all the k bands for Ñ are identical to the k bands for
N and such that for neighboring bands Bm, Bm′ of label ≥ l, we have

|m−m′| ∈ [64l−1, 6 · 64l−1).

In particular, Ñ is regular. (The labels may differ.)

Proof. With NL from Lemma 4.13, we consider

N∞i := lim
L→∞

NL
i ∈ N ∪ {∞}.

We make the following observations:

1. If N∞i =∞, then i must be the maximal generator of some band BNm .
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2. N∞i =∞ for at most one i. Otherwise, we would find two separate bands BNm 3 i
and BNm′ 3 i′. The label of BN

L

m is bounded from below by NL
i , respectively NL

i′ for

BN
L

m′ . So for l > 0 such that |m −m′| < 64l and L such that min(NL
i , N

L
i′ ) ≥ l, we

would violate Lemma 4.13 Condition 3, on the minimal distance between bands.

Let i∞ be the value with N∞i∞ =∞. We set

Ñi =

{
limL→∞NL

i i 6= i∞

Ni i = i∞
.

By construction, we have that neighboring bands BÑm , B
Ñ
m′ always satisfy

|m−m′| ∈ [64l−1, 6 · 64l−1)

which shows the claim.

4.3 Segments and their interior

The following additions enable us to prove the existence of circuits in the RSL which
have not been a focus in the original work. We make the following observation: Let N
be regular and BNm , B

N
m′ be two neighboring bands of label ≥ l + 1. Let {m0, . . . ,mk} =

{m̃ ∈ [m,m′] |BNm̃ has label ≥ l}. Then, k ≥ 6 since mi −mi−1 < 12 · 64l−1 and m′ −m =

mk −m0 ≥ 64l. With the same reasoning, we have k ≤ 12 · 64 = 768. Our next object of
interest is “the space between neighboring bands”:

Definition 4.15 (l segments). Let N be good and [i1, i2], [i3, i4] be two neighboring
bands of label ≥ l (for N ). Then we call

[i2 + 1, i3]

an l segment. We will also call [i2 + 1, i3] an l segment if there is a good sequence M
such that

Mi = Ni ∀i ∈ [i2 + 1, i3]

and [i2 + 1, i3] is an l segment for M .

Definition 4.16 (Inside of an l segment). Let N be good. We say that i lies on the
inside of an l + 1 segment S if all of the following hold.

1. i lies in a band BNm of label < l.

2. There are 2 different bands BN
m+

1

, BN
m+

2

of label l inside S with m+
1 ,m

+
2 > m.

3. There are 2 different bands BN
m−1

, BN
m−2

of label l inside S with m−1 ,m
−
2 < m.

See Figure 9 for illustrations of l segments and their interior.
We will now use the proof of Lemmas 4.13, 4.14 and 4.11 to make sure that almost

surely, the origin will lie on the inside of an l + 1 segment for both N (x) and N (y) for
infinitely many l. The downside is that the sequence becomes less regular.

Lemma 4.17 (Regular sequence with origin inside segments (see Figure 10)). Almost
surely, there exist regular N̂ (x), N̂ (y) withN (x) ≤ N̂ (x) ≤ Ñ (x) with Ñ (x) from Lemma 4.14
(respectively for N̂ (y)) such that for infinitely many l, 0 lies on the inside of an l segment
for both N̂ (x) and N̂ (y).

Proof. All the constructions for N̂ (x), we also do for N̂ (y) with the symbols (x) and (y)

exchanged. First, set N̂ (0,x) := Ñ (x). From Lemma 4.14, we know that neighboring
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Figure 9: l + 1 bands and their l + 1 segments in between. The blue ball indicates the
origin 0. 0 is not on the inside of its l + 1 segment in the left picture, but it is on the
inside in the right picture.

Figure 10: Left: The origin does not lie on the inside of its l + 1 segment since it is too
close to the right band of label ≥ l + 1 (under the sequence Ñ (x)). The label of that band
has been raised in the construction of Lemma 4.13 (indicated in light green). However,
Lemma 4.11 tells us that for infinitely many l, the label under N (x) is lower than that
(black portion). Right: We can lower the value of the band to l without changing the
band structure but still being larger than N (x). Then, the l + 1 segment containing 0

becomes larger and 0 is now on the inside of its l + 1 segment.

bands of label ≥ l are at most 6 · 64l−1 bands apart. By Lemma 4.11, we know that almost
surely

Al = {∀bands BN
(x)

m , BN
(y)

m with |m| ≤ 12 · 64l−1, their labels are ≤ l}

happens for infinitely many l. Let l̃(x)0 be the label of BÑ
(0,x)

0 , l0 := max{l̃(x)0 , l̃
(y)
0 } and

l1 := min{l ≥ l0 + 1 |Al happens}.

We will now find N (x) ≤ N̂ (1,x) ≤ N̂ (0,x) such that 0 lies on the inside of the l1 +1 segment
for N̂ (1,x). Assume that 0 does not lie on the inside of its l1 + 1 segment under N̂ (0,x).
Since l1 ≥ l0 + 1, either condition 2 or 3 are violated. Assume that is is Condition 2; the
other case follows analogously. Let

m+
1 := min{m > 0 |BN̂

(0,x)

m has label > l1},

l̃
(x)
1 be the label of BN̂

(0,x)

m+
1

and i1 = g(BN
(x)

m+
1

) the chosen generator. By the construction

in Lemma 4.13 and violation of Condition 2, we have that
∣∣m+

1

∣∣ ≤ 2 · 6 · 64l. We then set

N̂ (1,x) =

{
N̂

(0,x)
i −

[
l̃
(x)
1 − l1

]
if i = i1

N̂
(0,x)
i else.

By this construction and the fact that Al1 occurs, we verify that N (x) ≤ N̂ (1,x) ≤ N̂ (0,x).

Furthermore, the label of BN̂
(1,x)

m+
1

is l1. Since the label of BN̂
(1,x)

m+
1

is now only l1, it
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no longer separates the l1 + 1 segments to its left and right, so they merge together.
Therefore, this new l1 + 1 segment for N̂ (1,x) has at least 6 or more l1 − 1 bands to the
right side of 0, i.e. Condition 2 is now satisfied. We have established that for N̂ (1,x), 0

lies on the inside the interior of the l1 + 1 segment. One easily verifies for neighboring
bands BN̂

(0,x)

m , BN̂
(0,x)

m′ of label ≥ l that for all l ≤ l̃(x)1 , we have

|m−m′| ∈ [64l−1, 12 · 64l−1]

and for all l > l̃
(x)
1

|m−m′| ∈ [64l−1, 6 · 64l−1).

Now, set l1 := max{l̃(x)1 , l̃
(y)
1 },

l2 := min{l ≥ l1 + 1 |Al happens}

and inductively continue the whole procedure. After setting N̂ (x) to be the monotone
limit of N̂ (L,x), the claim holds for all l ∈ {l1, l2, . . . }.

We conclude this section with some final remarks. Regularity alone is unfortunately
insufficient to utilize the framework of [Hof05]. There, the notion of “very regular” is
used to estimate the crossing probabilities along rectangular strips. The main statement
we need here is the following lemma. Since no new ideas come up in our setting, the
definition of “very regular” and the proof are moved to the appendix.

Lemma 4.18 (Very regular sequences). Let N be good and regular. Then, there exists
N ≥ N such that N is very regular (in particular regular) and such that all bands and
their labels are identical under both N and N . In particular, we may always replace a
regular sequence with a very regular sequence without changing its band structure.

4.4 Good boxes and conclusion

Due to the considerations made in this section so far, we may assume that N (x) and
N (y) are almost surely (very) regular. Next, we will finally introduce our central objects
in the Z2 lattice.

Definition 4.19 (n boxes). Suppose [i2 + 1, i3] is a vertical n segment and [j2 + 1, j3] is
a horizontal n segment. An n box is a product of these two segments, i.e. it is the graph
with vertices

V = [i2 + 1, i3]× [j2 + 1, j3]

and edges

E = {edges between two vertices in V with at most one edge in ∂V }.

(This definition of an n box also applies to the generalized definition of an n segment.)
We say that o = (0, 0) lies on the inside of an n box if 0 lies on the inside of both
generating n segments.

We will inductively define the notion of a good n box. For this, recall from the
definition of an RSL (Definition 1.9) that an edge (i, j)↔ (i+1, j) is open with probability

pN
(x)
i independent from all other edges. A cluster C in a subgraph G is a maximal

connected subgraph of G whose edges are all open.

Definition 4.20 (Good n boxes). Let Kn be an n box.

1. A crossing (cluster) is an open cluster inside Kn which contains vertices on all
four faces of Kn.

2. For n ≤ 200, Kn is called good if all edges in Kn are open.
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3. For n > 200, Kn is called good if a1 + a2 ≤ 1, where

a1 := #{bad n− 1 boxes inside Kn}
a2 := #{pairs of neighboring good n− 1 boxes s.t. the (n− 1, n− 1) strip between

does not have a crossing intersecting the respective crossing clusters}.

The definition of a (k, k) strip is given in Definition A.2 in the appendix. It can be
understood as the space between two adjacent n boxes, i.e. a product of an n segment
with a band of label n. For illustration, see Figure 11.

Figure 11: n boxes (green rectangles) inside a n+ 1 box (black boundary). Since each
good n box has an open crossing cluster, a good n+1 box will also have one. Furthermore,
n boxes on the inside of the good n+ 1 box are encircled by an open circuit (blue) even
if there is a bad n box or a missing connection (red rectangle).

Since there are at least 6 rows and columns of n− 1 boxes, each good n box has a
crossing cluster, so the definition above makes sense. We have the following estimate on
the probability of an n box to be good:

Lemma 4.21 (Probability of good n boxes). There exists pc ∈ (0, 1) such that for every
p ≥ pc, every very regular environment N (x), N (y), every n ∈ N and every n box Kn:

P(Kn is good |N (x), N (y)) ≥ 1− 4−n.

This follows immediately from Lemma A.10 in the appendix. The proof of that is
quite complicated and identical to the one in [Hof05, Lemma 4.3] except for different
numerical values coming from the fact that our notion of regularity is weaker.

Lemma 4.22 (Helpful lemma). The following statements are true:

1. If v ∈ Z2 lies in a good n box for every n ≤ N , then it lies in the crossing cluster
of its N box. In particular, v lies in an infinite cluster if v lies in a good n box for
every n ∈ N.

2. Let Kn be the n box containing the origin o = (0, 0) ∈ Z2. Then,

Kn ↗ Z2 as n→∞.

3. If V ⊂ Z2 with #V <∞, then there exists N0 ∈ N such that V lies completely in
an n box for all n ≥ N0.

4. If V ⊂ Z2 such that V lies on the inside of a good n + 1 box, then there exists a
circuit in the n+ 1 box with V lying inside that circuit.
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Proof. Part 1 follows inductively from the definition of good n boxes. Due to regularity,
the labels of bands are finite but unbounded. Therefore, Part 2 follows. Since V is finite,
Part 3 follows from Part 2. If V ⊂ Kn and Kn+1 is a good n + 1 box, then there exists
either a circuit along the outermost n boxes or the second outermost n boxes. This gives
Part 4.

Let us now collect the previous considerations into the main statement about good n
boxes.

Corollary 4.23 (Finitely many bad n boxes). Under the conditions of Theorem 1.11, there
exists pc ∈ (0, 1) such that for every p ≥ pc and almost every realization of N (x), N (y), it
holds almost surely that the origin o only lies in finitely many bad n boxes.

Proof. By the considerations made in Section 4, we may assume that N (x) and N (y)

are almost surely very regular. Then, the claim follows from Lemma 4.21 and Borel–
Cantelli.

We finally have all the tools needed to prove Proposition 3.4, that is, the almost sure
existence of arbitrarily large circuits.

Proof of Proposition 3.4. By Lemma 4.17, o lies on the inside of its n box Kn for infinitely
many n ∈ N. By Lemma 4.22 Part 3, there is an N0 ∈ N such that V ⊂ Kn for all n ≥ N0.
By Corollary 4.23, only finitely many Kn are bad. Let N1 ∈ N such that all Kn with
n ≥ N1 are good. Finally, choose N ≥ max {N0 + 1, N1} such that o lies on the inside
of KN . Then, by Lemma 4.22 Part 4, there exists an open circuit surrounding KN−1, in
particular V .

A Appendix

The appendix deals with the proof of Lemma A.10. Let us note that the following
section is to some extent a detailed reproduction of the results in [Hof05]. Due to
our manual construction of circuits, we lose out on regularity which in turn gives us
weaker estimates. Coupled with the technical challenges of the framework considered in
[Hof05], we decided to reformulate the procedure with greater detail and with additional
illustration.

A.1 Definitions: vertical/horizontal bands, boxes and strips

We first give the remaining definitions. They differ slightly from the original paper
due to the additional definition of a “segment” (see Definition 4.15).

Definition A.1 (Vertical/horizontal bands and segments).

1. A vertical band is a band that is generated from N (x) = (N
(x)
i )i∈Z. A vertical

segment is a segment generated from vertical bands.

2. A horizontal band is a band that is generated from N (y) = (N
(y)
i )i∈Z. A horizon-

tal segment is a segment generated from horizontal bands.

Next, we deal with more rectangular objects.

Definition A.2 (Vertical/horizontal strips). Let N (x) and N (y) be regular. Suppose [j5, j6]

is a horizontal band with label n and [i2 + 1, i3] is a vertical m segment. Then, we say
that

V = [i2 + 1, i3]× [j5, j6 + 1]
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is a horizontal (m,n) strip (first argument for the segment, second argument for the
band). This graph with vertices V has edges

E = {edges between two vertices in V with at most one edge in ∂V }.

We will also call V a horizontal (m,n) strip if there are M (x) and M (y) which are
regular such that

M
(x)
i = N

(x)
i and M

(y)
j = N

(y)
j ∀(i, j) ∈ V

and V is a horizontal (m,n) strip for M (x) and M (y). Analogously, we define the notion
of a vertical strip by exchanging the roles of horizontal and vertical.

A.2 Very regular bands and segments

Lastly, we need a bit more information about the internal structure of bands. This is
needed to obtain crossing probabilities of strips.

Definition A.3 (Very regular k bands and n segments). Let a regular sequence N be
given.

1. Any k band that is a singleton [i, i] is very regular.

2. Any 1 segment is very regular.

3. Any 2 segment [a, b] is very regular if a− b ∈ [6, 768].

4. Let [a, d] be a k band with label l which was formed by combining the k̃ bands
[a, b] and [c, d] into the k̃ + 1 band [a, b]. [a, b] is called very regular if there are
b1 = b, b2, . . . , bm as well as c1, c2 . . . , cm−1, cm = c with m ≤ 768 as well as a q > 0

such that

(a) All k̃ bands inside the interval [a, b] are very regular k̃ bands.
(b) For all s, we have that [bs, cs] is a very regular q segment.
(c) For all s < m, we have that [cs, bs+1 − 1] is a very regular k̃ band with label q.

5. An n segment S is called N if

(a) All k bands with labels n− 1 inside S are very regular.
(b) All l − 1 segments inside S are very regular.

6. A band is called very regular if it is a very regular k band for some k.

7. A regular sequence N is called very regular if all the bands generated by N are
very regular.

Proof of Lemma 4.18. This is [Hof05, Lemma 3.12] which is an analogon to Lemma 4.13
and is proven similarly. For that, one establishes the analogon of Lemma 4.12. The labels
of the final bands being unchanged follows from the construction: To make bands very
regular, one only needs to change the labels of the k bands “inside”. But these labels do
not contribute to the label of the final combined band.

We conclude this section with the following lemma which covers both the main aspect
from [Hof05] (being able to reduce the random sequence to a very regular one) and our
own priority (making sure that the origin is always on the inside of an n box):

Lemma A.4 (Very regular N with origin on the inside). For almost every realization of

N (x) and N (y) as in Theorem 1.11, there exists N
(x) ≥ N (x) such that N

(x)
is very regular

(analogously for N (y)) and such that for infinitely many l, 0 lies on the inside of an l

segment for both N
(x)

and N
(y)

.

This is a direct consequence of Lemmas 4.17 and 4.18.
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A.3 (4,m) trees and setting

Fix some very regular N (x) and N (y). Recall the definitions of (good) n boxes and
their crossing clusters (Definition 4.19). A crossing of a horizontal (m,n) strip [a, b]× [c, d]

is a cluster in the (m,n) strip which contains at least one vertex in [a, b]× [c] and at least
one vertex in [a, b]× [d].

We define the notion of a (4,m) tree in a horizontal (m,n) strip inductively. In the
end, a (4,m) tree will be a set of vertices on the vertical ends of the (m,n) strip.

Definition A.5 ((4,m) trees). Consider horizontal (m,n) strips.

• Let n ∈ N. Let [a, b]× [c, d] be a (2, n) strip (i.e., [a, b] is the 2-segment and [c, d] the
n band) and I ⊂ [a, b] with #I = 4. We then define two (4, 2) trees T and T ′ in a
(2, n) strip by

T := I × {c} and T ′ := I × {d}.

• Each (m,n) strip contains at least six disjoint (m− 1, n) strips. A (4,m) tree in an
(m,n) strip is a union of 4 of the (4,m− 1) trees within the (m,n) strip.

Thus we see that each (4,m) tree in a (m,n) strip consists of 4m−1 vertices. Furthermore,
for any m′ < m, we have that the 4m−1 vertices lie in 4m−m

′
different (4,m′) trees in

disjoint (m′, n) strips.
The following lemma shows why we need to work with 4 even though each n segment

contains at least six n− 1 segments:

Lemma A.6 ((4, n) trees given by pairs of good n boxes). Every pair of good n boxes
separated by an (n, n) strip defines at least one (4, n) tree on each side of the (n, n) strip
with all its vertices lying inside the crossing cluster of the n box. Furthermore, the tree
is the same except for the side it is located.

Proof. The proof is by induction. Every pair of good 2 boxes separated by a (2, 2) strip
has at least 4 pairs of vertices, one in each of the 2 boxes, such that every pair is
separated by one edge. This forms a (4, 2) tree in the (2, 2) strip. Every pair of good n
boxes separated by an (n, n) strip has at least 6 pairs of n− 1 boxes, one in each of the n
boxes, such that every pair is separated by an (n− 1, n− 1) strip. In each of the good
n boxes, at least 5 of these six n − 1 boxes are good. Thus every pair of good n boxes
separated by an (n, n) strip has at least 4 pairs of good n− 1 boxes, one in each of the
n boxes, such that every pair is separated by an (n− 1, n− 1) strip. With the induction
hypothesis, this forms a (4, n) tree in the (n, n) strip with all its vertices lying in good n′

boxes, n′ ≤ n. Therefore, these vertices lie in the crossing cluster of the n box.

Many calculations will require the following lemma:

Lemma A.7 ([Hof05, Lemma 4.2]). For any c, p1, . . . , pn with 0 < pi < 1 and a :=
∑n

1 pi,
we have

1−
n∏
i=1

(1− pi) ≥ min
{

1− e−c, ac (1− e−c)
}
.

Notation A.8. For any set T ⊂ Z2, we write for the rows spanned by T

R(T ) := {(x, y) ∈ Z2 | ∃x′ ∈ Z : (x′, y) ∈ T}.

For any set V ⊂ Z, we also write for the rows spanned by V

R(V ) := {(x, y) ∈ Z2 | y ∈ V }.

Analogously, consider C(T ) and C(V ) for columns.
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Figure 12: On the left, we have the two good n boxes B1 and B2 together with the (n, n)

strip S̄ between them. In the middle, we have the (b2n/3c, n) strip S (gray box). On the
right side, we divide the strip S even further into 3 parts. The main idea is to connect R1

and R2 in S̄. For this, we split S̄ into 4n−b2n/3c many (b2n/3c, n) strips S and try to find a
crossing in each of these.

Assumption A.9. For the rest of this section, we fix the following (see Figure 12):

• Let B be any n box.

• Let S̄ = [a, b]× [c̃, d̃] be a horizontal (n, n) strip between two good n boxes.

• Let R1 ⊂ R(d̃) and R2 ⊂ R(c̃) be two (4, n) trees defined by the crossing clusters of
these boxes (Lemma A.6).

• Let S = [ã, b̃]×[c̃, d̃] be a horizontal (b2n/3c, n) strip inside S̄, T ⊂ R1 be a (4, b2n/3c)
tree in S and T ′ ⊂ C(T ) ∩R(c̃) be a collection of (4, k) trees in S with k ≤ b2n/3c.

A.4 Proof of main lemma of the randomly stretched lattice

The rest of the paper deals with the proof of the following lemma:

Lemma A.10 (Main lemma, [Hof05, Lemma 4.3]). There exists pc ∈ (0, 1) such that in
the RSL

1. P(B is good) ≥ 1− 4−n.

2. P(∃ a crossing of S intersecting both T and T ′) ≥ #T ′

4b2n/3c
.

3. P(∃ a crossing of S̄ intersecting both R1 and R2) ≥ 1− 4−n.

As said before, we paraphrase [Hof05] and verify that all results hold with modified
values. The main intuition comes from the regularly stretched lattice, see [Hof05,
Chapter 2].

The proof is by induction with base case n = 200. Statement 2 is introduced because it
is possible to induct on this statement. Statement 3 then follows easily from Statement 2.
When the height of S is one (c̃ = d̃), the proof of Statement 2 is a simple calculation. The
proof of Statement 2 when the height of S is greater than one is the most complicated
part of the proof of Lemma A.10.

Consider now the case that the height of S is greater than one. Because N (x) and
N (y) are very regular, S has the following structure: We can break S up into 3 parts.
On the bottom, we have a (b2n/3c,m) strip S1 = [ã, b̃] × [c̃, c̃′]. On the top, we have a
(b2n/3c, r) strip S2 = [ã, b̃]× [d̃′, d̃]. In the middle are up to 768 rows of q boxes separated
by l bands with labels q (see Figure 12). We will use the following relation:
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Lemma A.11. The parameters m, r, q, n of the (b2n/3c, n) strip S satisfy m, r > q and

b2n/3c ≥ b2m/3c+ 1. (A.1)

Furthermore, for q > 100

b2n/3c > b2m/3c+ b2r/3c − q + 30. (A.2)

Proof. Inequality (A.1) follows directly from n ≥ m + 2 (by Definition 4.3). By the
definition of very regular and the way labels were assigned to bands, we have that
m, r > q and

n = m+ r − b 1
18 log2(L)c,

where

L := #{l bands between the label m and r bands}.

There exist at most 768 = 12 · 64 many very regular q segments (and at least 1), so there
are at most 768 bands with label q. One q segment contains between 64q−1 and 12 · 64q−1

many bands due to regularity. Therefore, for the number of bands in between, we have
the following chain of implications

64q−1 ≤ L ≤ 12 · 64q−1 · 12 · 64

1
3 (q − 1) ≤ 1

18 log2(L) ≤ 1
18 log2(24 · 24 · 26(q−1) · 26)

1
3 (q − 1) ≤ 1

18 log2(L) ≤ 1
3 (q − 1) + 1.

Therefore

bq/3c = b 1
18 log2

(
L
)
c+ either 0 or 1,

which is equivalent to

m+ r − bq/3c − n ∈ {0, 1}. (A.3)

Using r ≥ q + 1, we obtain r ≥ 2 + bq/3c. Then, Equation (A.3) implies Inequality (A.1).
For q > 100, Equation (A.3) directly implies Inequality (A.2).

The outline of the proof of Lemma A.10 is as follows. If

1. there are “enough” (Equation (A.4)) crossings of S1 which intersect T ′,

2. there is at least one crossing of S2 which intersects T ,

3. there exists a v contained in a crossing of S1 which intersects T ′ and w contained
in a crossing of S2 which intersects T such that v and w are contained in a column
of q boxes, and

4. v and w are connected,

then there exists a crossing of S intersecting T ′ and T .
In Lemma A.12, we bound from below the probability that there is at least one

crossing of S1 intersecting T ′. The probability of Event 1 in the list above is estimated in
Lemma A.13. Then, we use Lemma A.12 to bound the probability that Event 2 and 3 are
satisfied conditioned on Event 1 occurring. The probability of Event 4 being satisfied is
estimated in Lemma A.14. Finally, the proof of Lemma A.10 Part 2 is done by combining
all of the previous calculations.

Let S′ = [a′, b′]× [c′, d′] be a (J, j) strip with j ≤ n and J ≥ b2j/3c. Let Ŝ := ∪Ŝi be a
union of (b2j/3c, j) strips in S′, Ŝi = [fi, gi]× [c′, d′]. Let T ∗ ⊂ R(d′) be a (4, J) tree in S′

(same nodes as in Ŝ) which intersects each Ŝi in a (4, b2j/3c) tree. Let T̂ ⊂ C(T ∗) ∩R(c′)

be a union of (4, l) trees in disjoint (l, j) strips in Ŝ where l ≤ b2j/3c (see Figure 13).
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Figure 13: Situation of Lemma A.12. The dotted rectangle is S′.

Lemma A.12 (Long strip crossing). Suppose Lemma A.10 holds for j ≤ n− 1. Then,

P(∃ a crossing of Ŝ intersecting T̂ and T ∗) ≥ min

{
0.9,

#T̂

3 · 4b2j/3c

}
.

Each such crossing is confined to its respective (b2j/3c, j) strip.

Proof. T̂ is a union of (4, l) trees. Let T̂ = ∪T̂i where T̂i consists of the (4, l) trees
belonging to T̂ that lie inside the (b2j/3c, j) strip Ŝi (recall l ≤ b2j/3c). By the induction
hypothesis, we have

P(∃ a crossing of Ŝi intersecting T̂i and T ∗) ≥ #T̂i
4b2j/3c

.

These are independent events since all the Ŝi are disjoint. Lemma A.7 with c = 3 yields

P(∃ a crossing of Ŝ intersecting T̂ and T ∗)

≥ 1−
∏
i

(1− P(∃ a crossing of Ŝi intersecting T̂i and T ∗))

≥ min

{
1− e−3,

∑
i #T̂i

3 · 4b2j/3c

}
≥ min

{
0.9,

#T̂

3 · 4b2j/3c

}
which shows the claim. Furthermore, the crossing happens in one of the Ŝi.

In Assumption A.9, we have defined a (b2n/3c, n) strip S, a (4, b2n/3c) tree T , a union
of (4, k) trees T ′ with T ′ ⊂ C(T ) and constants q,m, k. Let

q∗ := max {100, q} M := max {b2m/3c, 100, q} k′ := min {k, b2m/3c} ,

and
T̄ := R(c̃′) ∩ C(T ).

Define T̃ to be the union of the (4, q∗) trees in T̄ satisfying the following: Let T̃i ⊂ T̄ be a
union of (4, q∗) trees inside a (M,m) strip. Then T̃i ⊂ T̃ if there are ṽi ∈ T̃i, vi ∈ T ′∩C(T̃i)

and a crossing of S1 containing ṽi and vi. Define the event

X :=

{
#T̃ ≥ max

{
4q
∗−1 ·#T ′

1000 · 4M
, 4q

∗−1
}}

. (A.4)

In short: #T̃ is the number of (4, q∗) trees reached by crossings of S1 times the number
of vertices per such tree (which is 4q

∗−1).
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Lemma A.13 (Probability of “sufficiently many” crossings). Suppose Lemma A.10 holds
for j ≤ n− 1. Then

P(X) ≥ min

{
0.9,

#T ′

10 · 4b2m/3c

}
.

Proof. Since T̃ consists of (4, q∗) trees and each such tree has 4q
∗−1 many vertices, we

have #T̃ ≥ 4q
∗−1 if and only if T̃ 6= ∅. We also have C(T ) = C(T̄ ) ⊃ C(T ′), so it suffices to

have that T ′ and T̄ are connected inside a (b2m/3c,m) strip in order to show #T̃ ≥ 4q
∗−1.

This will be used multiple times. The proof is broken up into cases based on the size of
#T ′ and the value of M .

1. #T ′ ≤ 1000 · 4b2m/3c and M = b2m/3c. In particular, b2m/3c ≥ q∗. Therefore, by
Lemma A.12 with S′ = S1, Ŝ to be a union of (b2m/3c,m) strips, T ∗ = T̄ and T̂ = T ′

P(X) ≥ P(#T̃ ≥ 4q
∗−1) ≥ P(∃crossing T ′ ↔ T̄ inside S1) ≥ min

{
0.9,

#T ′

3 · 4b2m/3c
}
.

2. #T ′ ≤ 1000 · 4M and M = q∗. Again

P(X) ≥ P(#T̃ ≥ 4M−1) = P(#T̃ ≥ 4q
∗−1).

Write T ′ = ∪Ni=1Ti where each Ti is a union of (4, k′) trees in a (b2m/3c,m) strip.
Then, for all i by Lemma A.12

P(∃crossing intersecting Ti and T̄ in (b2m/3c,m) strip) ≥ min

{
0.9,

#Ti
3 · 4b2m/3c

}
.

We are done if the minimum for one of the i is 0.9. Otherwise, Lemma A.7 concludes

P(∃crossing intersecting T ′ and T̄ in a (b2m/3c,m) strip)

≥min

{
0.9, 0.9 ·

∑ #Ti
3 · 4b2m/3c

}
≥ min

{
0.9,

#T ′

10 · 4b2m/3c

}
.

3. #T ′ > 1000 · 4M . Write T ′ = ∪N ′i=1T
′
i where each T ′i is now a union of (4, k′) trees

that belong to a union of (M,m) strips S̃i. Do this in a way such that for each i

3 · 4M ≤ #T ′i ≤ 4 · 4M

and such that for i 6= j, the corresponding unions of (M,m) strips S̃i and S̃j are
disjoint. This is possible since each (4, k′) tree has 4k

′−1 vertices andM ≥ b2m/3c ≥
k′. Thus, N ′ satisfies

N ′ ≥ #T ′

4 · 4M
≥ 1000 · 4M

4 · 4M
= 250 ≥ 100.

By Lemma A.12, we have with #T ′i ≥ 3 · 4M

P(∃ a crossing T ′i to T̄ in a (M,m) strip) ≥ min

{
0.9,

#T ′i
3 · 4b2m/3c

}
= 0.9.

Therefore, we have N ′ ≥ 100 independent events with probability greater or equal
to 0.9. The probability of at least dN ′/10e of these happening is greater than the
probability that at least 11 events happen with N ′ = 100. The latter probability is
> 0.9. Each such event gives us a contribution of 4q

∗−1 to #T̃ , so we see that under
the event of at least dN ′/10e crossings happening

#T̃ ≥ N ′

10
· 4q

∗−1 ≥ #T ′ · 4q∗−1

40 · 4M
.
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Therefore

P(X) ≥ P(#T̃ ≥ #T ′ · 4q∗−1

40 · 4M
) ≥ 0.9 = min

{
0.9,

#T ′

100 · 4b2m/3c

}
.

4. Finally, if M = 100 and #T ′ ≤ 1000 · 4M , then q ≤ 100 and m ≤ 150. The probability
that a straight vertical line in S1 is open is then bounded from below by 1−4−200 (the
probability of a 200 box being good) and we conclude: P(X) ≥ P(#T̃ ≥ 4q

∗−1) ≥
1− 4−200.

All cases have been covered, so the claim is proven.

Next, we will work with the part inside the strip S between S1 and S2. Assume that
q ≥ 200. Consider a column G := [e, f ] × [g1, hl] of alternating q boxes and (q, q) strips
where

• there are l ≤ 768 many q boxes [e, f ]× [gi, hi], i = 1, . . . , l, and

• each [e, f ]× [hi, gi+1] is a horizontal (q, q) strip.

Let v ∈ R(g1), w ∈ R(hl) be vertices on the top respectively bottom of G. We say that G
is normal for v and w if there is an open cluster in G connecting v and w.

Lemma A.14 (Probability of normal columns). Suppose Lemma A.10 holds for q ≤ n.
Then,

P(G is normal for v and w) ≥ 0.99.

Proof. A sufficient condition for G to be normal for v and w is:

1. All of the q boxes inside G are good.

2. v and w lie in the crossing clusters of their respective q boxes.

3. All of the (q, q) strips in G have a cluster which connects the crossing clusters of
the good q boxes on the top / bottom of the (q, q) strip.

By the induction hypothesis

P(all of the q boxes are good) ≥ (1− 4−q)768 ≥ 1− 768 · 4−200 ≥ 1− 2−100.

If the j box containing v is good for all j with 200 ≤ j ≤ q, then v is in the crossing
cluster of the q box (Lemma 4.22). The same holds for w. Thus,

P(Condition 2 is satisfied) ≥ 1− 2
∑
j≥200

4−j ≥ 1− 4−199.

By Lemma A.10 Part 3,

P(Condition 3 is satisfied) ≥ (1− 4−q)768 ≥ 1− 2−100.

Therefore,

P(G is normal for v and w) ≥ 1− 3 · 2−100 ≥ 0.99,

which shows the claim.

We are now able to proof Lemma A.10. As indicated before, we do so by induction.

Proof of Lemma A.10. Choose pc ∈ (0, 1) such that Lemma A.10 holds for every p ≥ pc
and n ≤ 200. This is the base case. Now assume that the lemma is true for all j < n.
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Part 1: Since N (x) and N (y) are regular, there are at most 7682 many n− 1 boxes inside
an n box. Therefore, we have that

P(a1 = 1) ≤ Pp(a1 ≥ 1) ≤ 7682 · 4−n+1 ≤ 411 · 4−n

and
P(a1 ≥ 2) ≤ (7682)2 · (4−n+1)2 ≤ 450 · 4−2n ≤ 4−50 · 4−n.

There are at most 2 · (768)2 many (n − 1, n − 1) strips in an n box. If such a strip
lies between two good n− 1 boxes, then the probability that there exists a crossing
which connects both crossing clusters of the good n boxes is calculated as follows:
By the induction hypothesis (statement 3)

P(a2 ≥ 2) ≤
(
2 · (768)2

)2 · (4−n+1)2 ≤ 450 · 4−2n ≤ 4−50 · 4−n

and
P(a2 ≥ 1 | a1 = 1) ≤ 2 · 7682 · (4−n+1) ≤ 425 · 4−n.

Combining everything yields

P(a1 + a2 ≥ 2) ≤ P(a1 ≥ 2) + P(a2 ≥ 2) + P(a1 = 1) · P(a2 = 1 | a1 = 1)

≤4−n ·
[
4−50 + 4−50 + 411 · 4−n · 425

]
≤ 4−n.

Part 2: First assume that the height of the (b2n/3c, n) strip S is 1. In this case, there
are #T ′ edges would form an appropriate crossing if they were open. Thus, using
Lemma A.7 and n ≥ 200

P(∃ a cluster in S connecting T and T ′) ≥ 1− (1− pn)#T
′

≥min
{

1− e−1, #T ′ · pn(1− e−1)
}
≥ #T ′

4b2n/3c
.

Next, one checks that if either m < 200 or r < 200, then also q < 200 and that the
induction hypothesis is then easily proven: WLOG, assume that it is r < 200. Recall
that T̄ = C(T ) ∩R(c̃′). By Lemma A.12, we have

P(∃ crossing of S1 intersecting T ′ and T̄ ) ≥ min{0.9, #T ′

3 · 4b2m/3c
}.

If this crossing exists and contains a v ∈ C(T )∩R(c̃′), then the probability of the q+1

box containing v inside S to be good is at least 1− 4−200. Since q + 1 ≤ 200, being
good means that all the edges are open. The same holds for the corresponding
m+ 1 box inside S2 that connects to the q + 1 box containing v. Therefore,

P(∃a cluster in S connecting T and T’)

≥P(∃ crossing of S1 intersecting T ′ and T̄ ) ·
(
1− 4−200

)2
≥min{0.8, #T ′

4b2m/3c+1
} ≥ min{0.8, #T ′

4b2n/3c
} =

#T ′

4b2n/3c
.

where we used Equation (A.1) and #T ′ ≤ #T ≤ 4b2n/3c−1 in the last line.

Now, consider the case when m, r ≥ 200 and the height of S is greater than 1.
Furthermore, assume q ≥ 100 (in particular, q = q∗) and consider the following
events:

1. X happens on S1. This event gives us a collection of (4, q) trees T̃ ⊂ C(T )∩R(c̃′).
Set T ∗ := C(T̃ ) ∩R(d̃′).
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2. There exists a crossing of S2 intersecting T ∗ and T . This event gives us some
v ∈ T̃ and w ∈ T ∗. These are separated by a column of q boxes.

3. The column of q boxes separating v and w is normal for v and w.

If all these events hold, then there exists a crossing of S that intersects T and T ′. By
Lemma A.13

P(event [a]) = P(X) ≥ min

{
0.9,

#T ′

10 · 4b2m/3c

}
.

Under X, we have

#T̃ ≥ max

{
4q
∗−1,

4q
∗−1 ·#T ′

1000 · 4M

}
.

If now #T ′ ≤ 1000 · 4M , then #T ∗ = #T̃ ≥ 4q
∗−1 and by Lemmas A.13 and A.14

P([b] & [c] | [a]) ≥ P(∃crossing of S2 intersecting T ∗ and T |#T ∗ = 4q
∗−1) · 0.99

≥0.99 ·min

{
0.9,

4q
∗−1

3 · 4b2r/3c

}
≥ min

{
0.8,

4q
∗−1

4 · 4b2r/3c

}
.

If additionally #T ′ < 100 · 4b2m/3c, then using n ≥ m ≥ 200, q ≥ 100 as well as
Equation (A.2) yields

P(∃ a cluster in S connecting T and T ′) ≥ P([a]) · P([b] & [c] | [a])

≥0.9 · #T ′

10 · 4b2m/3c
· min

{
0.8,

4q
∗−1

4 · 4b2r/3c

}
≥min

{
#T ′

20 · 4b2m/3c
,

#T ′ · 4q∗−1

50 · 4b2n/3c+q−30

}
≥ #T ′

4b2n/3c
.

If instead 100 · 4b2m/3c ≤ #T ′ ≤ 1000 · 4M , then

m+ r − bq/3c ≤ n+ 1

m+ r − q/3 ≤ n+ 1

2m/3 + 2r/3− 2q/9 ≤ 2n/3 + 1

b2m/3c+ b2r/3c − 2q/9 ≤ b2n/3c+ 2.

Since q < m, we have

M = max{b2m/3c, q} ≤ b2m/3c+ 1 + 1
3q,

which yields

P(∃ a cluster in S connecting T and T ′) ≥ P([a]) · P([b] & [c] | [a])

≥0.9 ·min

{
0.8,

4q
∗−1

4 · 4b2r/3c

}
≥ min

{
0.5,

4q
∗−1 · 4b2m/3c

42 · 4b2m/3c+b2r/3c

}
≥min

{
0.5,

4q
∗−1 · 4b2m/3c

4b2n/3c+2q/9

}
≥ min

{
0.5,

4b2m/3c+q/3+1 · 1000

4b2n/3c

}
≥min

{
0.5,

4M · 1000

4b2n/3c

}
≥ #T ′

4b2n/3c
,

where the last inequality follows from #T ′ ≤ #T ≤ 4b2n/3c−1.

If instead #T ′ ≥ 1000 · 4M , then using

#T̃ = #T ∗ ≥ #T ′ · 4q∗−1

1000 · 4M
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and Lemma A.12 gives

P([b] | [a]) ≥ P(∃ a crossing of S2 intersecting T ∗ and T |#T ∗ ≥ #T ′ · 4q∗−1

1000 · 4M
)

≥ min

{
0.9,

#T ′ · 4q∗−1

1000 · 4M
· 1

3 · 4b2r/3c

}
≥ min

{
0.9,

#T ′

3000 · 4b2m/3c+b2r/3c−2q/3+2

}
≥ min

{
0.9,

#T ′

3000 · 4b2n/3c+2q/9−2q/3+4

}
≥ 2

#T ′

4b2n/3c
,

where the minimum disappears again from #T ′ ≤ #T ≤ 4b2n/3c−1. Lemma A.14
yields

P([c] | [a] & [b]) ≥ 0.99.

Putting everything together, we conclude the #T ′ ≥ 1000 · 4M case:

P(∃ a cluster in S connecting T and T ′) ≥ P([a]) · P([b] | [a]) · P([c] | [a] & [b])

≥0.9 · 2 · #T ′

4b2n/3c
· 0.99 ≥ #T ′

4b2n/3c
.

The only thing left to prove in statement 2 is the case where m, r ≥ 200 and q < 100.
Here, replace the event [c] with

[c′] : ”All edges in the rectangle spanned by v and w are open.”

Then, the proof works as before since any such rectangle is a portion of a 200 box.

Part 3: We finally prove the last statement. The (4, n) trees R and R′ define a set of
4n−b2n/3c many (b2n/3c, n) strips in S̄. Let S̃ be one of those strips. By the induction
hypothesis, the probability of having a cluster in S̃ that intersects R and R′ is at
the very least 1

4 . There are 4n−b2n/3c many of those strips and all these events are
independent. Therefore, we have (using Lemma A.7 again)

P(∃ a crossing of S̄ intersecting both R1 and R2)

≥1−
(
3
4

)4n−b2n/3c ≥ min

{
1− e−2n, 4n−b2n/3c

2n

(
1− e−2n

)}
≥1− e−2n ≥ 1− 4−n.

This finishes the proof.
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