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Abstract

Motivated from option and derivative pricing, this note develops Edgeworth expan-
sions both in the Kolmogorov and Wasserstein metric for many different types of
discrete time volatility models and their possible transformations. This includes,
among others, Hölder-type functions of (augmented) Garch processes of any order,
iterated random functions or Volterra-processes.
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1 Introduction

Consider a strictly stationary sequence (Xk)k∈Z of real-valued random variables with
EXk = 0 and EX2

k <∞. If the sequence exhibits weak dependence in a certain sense,
then the distribution of

n−1/2Sn, where Sn = X1 +X2 + · · ·+Xn,

is asymptotically normal, see for instance [48] and the references therein. This fact has
made the central limit theorem one of the most important tools in probability theory and
statistics. On the other hand, it was already noticed by Chebyshev [11] and Edgeworth
[20] that normal approximations can be improved in terms of (Edgeworth) expansions
Ψn, implying the approximation

sup
x∈R

∣∣P(Sn ≤ x√n)−Ψn(x)
∣∣ = o

(
n−

1
2

)
(or even better) (1.1)

in the Kolmogorov metric, where we used the usual o, O Landau symbols, and

Ψn

(
x
)

= Φ
(
x/sn

)
+ (κn/sn)3

(
1− x2/s2n

)
φ
(
x/sn

)
, (1.2)

where Φ and φ are the distribution function and density of the standard normal distribu-
tion, respectively, and

s2n = n−1ES2
n, κ3n = n−3/2ES3

n. (1.3)
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Edgeworth expansions for volatility models

Motivated by applications in actuarial science, Cramér gave rigorous proofs in [12],
and ever since, Edgeworth expansions have been an indispensable tool in actuarial
science and finance, see the discussion below and for instance [15] for overviews
and further historic comments. They are also studied in the context of dynamical
system theory and Markovian setups, see e.g. [25, 36, 42] and the references therein
for some more recent results, and also [32, 45, 53] for a general, weakly dependent
framework and [29, 51, 44, 60] for some continuous time results.1 On the other hand, in
a very influential work, Efron [21] broadened the view on resampling techniques (e.g.
bootstrapping) and demonstrated their significant superior performance compared to
normal approximations, see [22, 34, 46] for an overview. Not surprisingly, among the
key tools for analysing, and, in particular, showing superiority of resampling methods,
are again Edgeworth expansions.

One of our main motivations here stems more from actuarial, finance and risk
management considerations. Very prominent models in these areas in a discrete time
setting are (augmented) Garch processes, e.g. [9, 17, 19, 27, 37]. It is well-known
that already the Black-Scholes formula for option pricing has serious shortcomings,
see e.g. [31]. To address these problems, a common and quite successful approach is
to employ more complex models and use (Edgeworth) expansions or large deviation
techniques to salvage comparatively simple and easy to evaluate formulas, both in the
continuous time and discrete time setting. A large body of literature with quite different
techniques has evolved around these ideas, for more details, we refer for instance to
[1, 3, 18, 23, 26, 28, 30, 38, 43, 59, 62], and the references therein. To illustrate this
further, consider the (standard) model

logPnt =

nt∑
k=1

Vk−1
εk√
n
− 1

2n

nt∑
k=1

h(V 2
k−1), t ∈ [0, 1], (1.4)

where logPnt is the log-price of some derivative under a martingale measure for appro-
priate function h. Here, εk are the innovations and V 2

k is some volatility process with
V 2
k ∈ σ(εk, εk−1, . . .). Then, one seeks an approximation of the type

Ef
(

logPnt
)
≈
∫
f(x)Λnt

(
dx
)
,

where the function f(x) describes the pay-off of some option and Λnt is a ‘convenient’,
signed measure. Since we may express logPnt in terms of a normalised (centred) sum
of dependent random variables, the connection to Edgeworth expansions is obvious.
A rather prominent example in this context are European Put-Options, where f(x) =

max{K−ex, 0} for some strike priceK > 0. Now |f(x)−f(y)| ≤ K|x−y|, and hence f(x) is
Lipschitz-continuous. The latter is true for many options, and thus another natural metric
to measure the quality of Edgeworth expansions is in terms of the Wasserstein metric
W1, using Kantorovich-Rubinstein duality. In the latter, a Gamma-type approximation is
more convenient in our setting, see (2.5) for more details and definitions. A nice feature
of the W1-metric is that it provides a uniform bound for different Lipschitz functions
without the necessity of deriving explicit bounds and constants. Another interesting
application of the W1-metric are approximation bounds for the conditional value at risk,
see for instance [54].

Our main contribution here is to establish the validity of Edgeworth expansions
both in the Kolmogorov and Wasserstein metric for various classes of popular volatility
type models. This includes in particular – for the first time, to the best of the author’s

1These lists of references are by no means complete and only represent a mere fraction of the vast literature
in this area.

EJP 28 (2023), paper 171.
Page 2/18

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1018
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Edgeworth expansions for volatility models

knowledge – functions of (augmented) Garch(p, q)-processes of any order. Previously,
only the case p = q = 1 appears to have been treated in the literature. In addition, it
seems that there are almost no results concerning Edgeworth expansions for weakly
dependent processes in terms of the Wasserstein distance in general. From a more
technical side, our key novelty is to handle higher Fourier frequencies with the help of
small-ball conditions.

This note is structured as follows. In Section 2, we present the setup and our main
global results. We then show how to use these to derive the validity of Edgeworth
expansions both in the Kolmogorov and Wasserstein metric for Hölder type functionals of
various volatility type models, see Section 3.1 (augmented Garch processes), Section 3.2
(iterated random functions), Section 3.3 (linear processes) and Section 3.4 (Volterra
processes) for details.

2 Setup and main global results

For a random variable X, we write EX for expectation, ‖X‖p for
(
E|X|p

)1/p
, p ≥ 1,

and sometimes EHX = E[X|H] for conditional expectation, and in analogy PH(·) for
conditional probabilities. ., &, (≈) denote (two-sided) inequalities involving a multiplica-
tive constant. For a, b ∈ R, we put a ∨ b = max{a, b}, a ∧ b = min{a, b}. For two random

variables X,Y , we write X
d
= Y for equality in distribution. For an i.i.d. sequence

(εk)k∈Z, let Ek = σ
(
εj , j ≤ k

)
, and E+k = σ

(
εj , j ≥ k

)
.

Consider a sequence of real-valued, measurable random variables X1, . . . , Xn. It is
well known (cf. [55]), that this sequence can be assumed to satisfy Xk ∈ Ek, that is, we
have

Xk = gk
(
εk, εk−1, . . .

)
(2.1)

for some measurable functions gk,2 where (εk)k∈Z is a sequence of independent and
identically distributed random variables. For notational convenience, we sometimes
assume gk = g, that is, the function g does not depend on k. Such processes are usually
referred to as (time-homogenous) Bernoulli-shift processes.

Representation (2.1) allows to give simple, yet very efficient and general dependence
conditions. Following [57], let (ε′k)k∈Z be an independent copy of (εk)k∈Z on the same

probability space, and define the ‘filter’ θ(l,∗)k as

θ
(l,∗)
k =

(
εk, εk−1, . . . , ε

′
k−l, ε

′
k−l−1, ε

′
k−l−2, . . .

)
. (2.2)

We write

θ∗k = θ
(k,∗)
k = (εk, εk−1, . . . , ε

′
0, ε
′
−1, ε

′
−2, . . .),

X
(l,∗)
k = gk(θ

(l,∗)
k ), and X∗k = X

(k,∗)
k . As dependence measure, one may then define

ϑ∗l (p) = sup
k∈Z
‖Xk −X(l,∗)

k ‖p. (2.3)

If g = gk does not depend on k (time-homogenous case), ϑ∗l (p) simplifies to

ϑ∗l (p) =
∥∥Xl −X∗l

∥∥
p
.

In the literature, a considerable number of other notions of mixing and (weak)
dependence coefficients have been established (cf. [13, 14]). A particular popular one is

2In fact, gk can be selected as a map from Rk to R.
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Edgeworth expansions for volatility models

α-mixing, which, however, can be difficult to verify and may fail to hold even for models
as simple as AR(1)-processes, see for instance [2, 14]. On the other hand, notions such
as (2.3) are not new and go back at least to [39] and [7]. In case of exponential decay,
they have also been employed in [33], see also [32].

Our basic condition regarding weak dependence is now the following.

Assumption 2.1. For p > 3, (Xk)k∈Z is stationary and satisfies

(A1) E|Xk|p <∞, EXk = 0,

(A2)
∑∞
k=1 k

2ϑ∗k(p) <∞,

(A3) s2 > 0, where s2 =
∑
k∈ZEX0Xk.

Our requirement of stationarity is more a convenience condition, and can be replaced
with quenched or locally stationary setups. Also note that s2 <∞ is implied by (A2), see
for instance [40].

Subject to the above conditions, Edgeworth expansions were recently characterised
in [40] in terms of the Berry-Esseen characteristic, which essentially encodes the higher
order Fourier frequencies of magnitude at least

√
n, see Section 4 for more details.

Unfortunately though, the results in [40] tell nothing about the (non-trivial) nature
of the Berry-Esseen characteristic or how to control it. However, as is well known,
validity of Edgeworth expansions is not for free and requires at the very least some
non-lattice condition to control Fourier frequencies of order

√
n and larger. In general,

this is a highly non-trivial task, see e.g. [33, 44, 62] for results based on the conditional
Cramér-method. A considerable difficulty that has to be overcome with this approach is
that conditioning has to be performed both on the ‘past’ and ‘future’, making it difficult
to implement and validate, see for instance [35, p. 901] for a comment. In this note,
we bypass some of the problems attached to a conditional Cramér-type argument by
utilising a method based on small-ball probabilities. To this end, we require the following
regularity asssumptions regarding the underlying distribution.

Assumption 2.2. Consider E ′l = σ(ε′k, k ≤ l), which is independent of El. For any δ > 0

and l ∈ Z, there exists a family of random variables (X+
k ) ∈ Gl

def
= σ(E+l ∪ E ′l ), such that

(B1) P
(∑

k≥lEGl
∣∣Xk −X+

k

∣∣ ≤ δ) > 0,

(B2) E
∣∣EEl−1

eiξXl
∣∣ < 1 for any ξ 6= 0.

Observe that condition (B2) is a non-lattice condition, and will be easy to verify in
case of our applications. The key to our results is (B1) though, which is a small-ball
condition. While it is not true in general, we show below that it does hold for a huge
class of volatility models and their Hölder-continuous transformations (and even more),
requiring only little additional regularity conditions. Note that validity of (B1) does not
imply that

∑
k≥lEE+l

∣∣Xk −X+
k

∣∣ or even Xk is non-lattice. Our first result is the following.

Theorem 2.3. Assume that Assumptions 2.1 and 2.2 hold. Then

sup
x∈R

∣∣P(Sn ≤ x√n)−Ψn

(
x
)∣∣ = o

(
n−1/2

)
.

In particular, there exists bn →∞ and δ > 0 such that for any (fixed) a > 0

sup
ξ∈[a,bn]

∣∣∣EeiξSn∣∣∣ ≤ Cn−1/2−δ, (2.4)

where C > 0 does not depend on n.
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Edgeworth expansions for volatility models

Recall that Assumption 2.2 (only) rules out non-lattice distributions, hence an error
term of magnitude o(n−1/2) is the maximum we can obtain here in general. This can be
seen by considering the case where (Xk)k∈Z are i.i.d., in which case (B1) is trivially true

and (B2) is equivalent with X
d
= Xk being non-lattice, see for instance Lemma 4 in [24].

Next, we turn to the Wasserstein metric W1. For two probability measures P1,P2,
let L(P1,P2) be the set of all probability measures on R2 with marginals P1,P2. The
Wasserstein metric (of order one) is defined as the minimal coupling L1-distance, that is,

W1(P1,P2) = inf
{∫

R2

|x− y|P(dx, dy) : P ∈ L(P1,P2)
}
. (2.5)

LetVn be the (signed) measure induced by Ψn. Then a priori, the distance W1(P1,Vn)

is not defined in general. In [8], generalized transport distances are introduced that
also allow for signed measures. In order to maintain the original definition in terms of
couplings, we follow [40] and replace Ψn with a probability measure that is induced by a
sequence of i.i.d. random variables. Let Z be a zero mean Gaussian random variable
N (0, σ2) with variance σ2 = s2n, and G follow a Gamma distribution Γ(α, β) with shape
parameter α = s2nβ and rate β = 2s2n(

√
nκn)−3 (if κn 6= 0), independent of Z (recall (1.3)

for sn, κn). Then, for 1 ≤ k ≤ n, let

Mk
d
=


(
Z +G− EG

)
/
√

2 if κ3n > 0,(
Z −G+ EG

)
/
√

2 if κ3n < 0,

Z if κ3n = 0

(2.6)

be i.i.d., and denote by PLn the probability measure induced by Ln = n−1/2
∑n
k=1Mk.

Observe that EL2
n = s2n and EL3

n = κ3n. Also note that
√

2Ln
d
= Z0 ± (G0 − EG0), with

Z0, G0 independent and Z0
d
= N (0, s2n), G0

d
= Γ(nα, β/

√
n) with α, β as above. We now

have the following result.

Theorem 2.4. Grant Assumption 2.1, and suppose that (2.4) holds. Then

W1

(
PSn/

√
n,PLn

)
= o
(
n−1/2

)
.

Due to Theorem 2.3, an immediate consequence is the following.

Corollary 2.5. Grant Assumptions 2.1 and 2.2. Then

W1

(
PSn/

√
n,PLn

)
= o
(
n−1/2

)
.

3 Volatility models

Over the past decades, the following basic model has emerged as a key building block
in econometrics, finance and actuarial science for an underlying process (Yk)k∈Z:

Yk = εkVk−1, k ∈ Z, (3.1)

where (εk)k∈Z are i.i.d. and Vk ∈ Ek is some volatility process. The actual models for asset
prices (and related) are then obtained by appropriate transformations, compensations or
by passing on to the limit to obtain stochastic differential equations. A sheer endless
amount of models and processes of this type have been established and discussed. Since
our focus here lies on discrete time, we mention for instance [9, 17, 19, 27, 37] which,
however, presents only an almost infinitesimal fraction of the literature.

Our basic setup here is the following. We consider processes Yk of type (3.1), where

we assume that Vk ∈ Ek is stationary. In the sequel, it will be convenient to use ε
d
= εk.

Let

Xk = f(Yk) + hn(Vk−1) (f, hn specified below, see (3.7)), (3.2)
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and Sk =
∑k
j=1Xj . Consider the price of an asset Pk = en

−1/2Sk . If we select hn ≡ 0 and
f such that

f(x) = x− x2

2
√
n
− 2x3

3n
+ r(x), r(Yk) = OP(n−3/2), (3.3)

then, given sufficiently many (exponential) moments,3 we obtain

E
[
Pk+1

∣∣Ek] = Pk +OP
(
n−2

)
. (3.4)

Hence Pk is almost a martingale, and the actual error in (3.4) can be made arbitrarily
small by further specifying r. On the other hand, formally letting

Xk = Yk − hn(Vk−1), hn(Vk−1) = n1/2 logE
[
en
−1/2Yk |Vk−1

]
, (3.5)

it follows that Pk is a martingale. Note in particular that if ε has a standard Gaussian
distribution N (0, 1), then we get the well-known form Xk = Yk − V 2

k−1/(2n
1/2). More

generally, a formal Taylor expansion around zero with Eε = 0 leads to

hn(Vk−1) =
V 2
k−1

2
√
n
Eε2 +OP(n−1). (3.6)

We wish to apply Theorem 2.3 to Xk = f(Yk) + hn(Vk−1), where we assume EXk = 0.
Having in mind (3.3), (3.6), but also statistical applications (power transformations), we
consider functions f, hn satisfying the generalised Hölder condition∣∣F (x)− F (y)

∣∣ ≤ L|x− y|β(1 + |x|α + |y|α
)
, α ≥ 0, β, L > 0. (3.7)

For future reference, we denote this class with H(L,α, β). Moreover, we assume that

lim
n→∞

E
∣∣hn(Vk)

∣∣ = 0, (3.8)

which in light of (3.6) is a mild condition.

Our basic condition to verify Assumption 2.2 is the following.

Assumption 3.1. Assume that Yk is stationary, is of the form (3.1), f, hn ∈ H(L,α, β)

(uniformly in n), s2 =
∑
k∈Z

(
Ef(Yk)f(Y0)− E2f(Y0)

)
> 0, and in addition:

(V1) For any δ > 0, we have P
(
|ε| ≤ δ

)
> 0.

(V2) There exists a compact set V with P(V0 ∈ V) > 0, such that for any v ∈ V and ξ 6= 0,
we have

∣∣Eeiξf(εv)∣∣ < 1.

Remark 3.2. If we strengthen (V1) a little bit, we can simplify condition (V2): Suppose
that P(|ε| ≤ δ, ε 6= 0) > 0 for all δ > 0. Then it is sufficient to demand that f is
non-constant in a surrounding of zero.

We now discuss three particular, yet quite general class of models. We note, however,
that the method of proof is more general and can also be applied to other classes of
models. At this stage, it should also be mentioned that (Edgeworth) expansions for
martingales are also present in the literature (cf. [49, 50, 60, 61]). However, it seems
that the results presented here require different arguments and cannot be derived from
the literature.

3Using smooth truncation functions, moment conditions can be drastically reduced here while maintaining
the result.
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3.1 Augmented Garch

Arch, Garch and augmented Garch models have had a huge impact both in theory
and practice, see [9, 19] and [27]. In one of its more general forms, it can be stated as

Λ(V 2
k ) =

p∑
i=1

gi(εk−i) +

q∑
i=1

ci(εk−i)Λ(V 2
k−i), (3.9)

where gi, ci ≥ 0 are positive functions, and gi0 ≥ ω > 0 for some 1 ≤ i0 ≤ p. Motivated
from the Box-Cox transformation, the function Λ(·) typically comprises the cases Λ(x) =

log x or Λ(x) = xλ, λ > 0. We will consider the latter. For q ≥ 1, an important quantity is

γc =

r∑
i=1

‖ci(ε0)‖q, with r = max{p, q},

where we replace possible undefined ci (and gi) with zero. If γc < 1, then (Vk)k∈Z is
stationary. In particular, one can show the representation

V 2λ
k =

∞∑
m=1

∑
1≤l1,...,lm≤r

glm(εk−l1−···−lm)

m−1∏
i=1

cli(εk−l1−···−li),

see [5] for comments and references on this matter. In particular, Vk is a time-
homogenous Bernoulli-shift process, that is, gk = g does not depend on k in repre-
sentation (2.1).

In the sequel, we will only treat the case λ ≥ 1/2, the case λ < 1/2 follows in essen-
tially the same manner, requiring more moment conditions though. Our assumptions are
now the following.

Assumption 3.3. Let q > max{(α ∨ β)/λ, 3(α + β)} (α, β as in (3.7)), λ ≥ 1/2. For all
1 ≤ i ≤ r, there exists δ > 0 such that sup|x|≤δ ci(x) ≤ ‖ci(ε0)‖q and sup|x|≤δ gi(x) ≤ Cg.
Moreover, we have γc < 1 and ‖gi(ε)‖q,E|ε|2∨q <∞.

We then have the following result.

Theorem 3.4. Grant Assumptions 3.1 and 3.3. Then both Assumptions 2.1 and 2.2 hold.
In particular, Theorem 2.3 and Corollary 2.5 apply.

3.2 Iterated random functions

An iterated random function system on the state space R is defined as

Vk = Fεk
(
Vk−1

)
, k ∈ N, (3.10)

where εk ∈ R are i.i.d. with ε
d
= εk. Here, Fε(·) = F (·, ε) is the ε-section of a jointly

measurable function F : R×R→ R. Many dynamical systems, Markov processes and
non-linear time series are within this framework, see for instance [16]. For y ∈ R, let
Vk(y) = Fεk ◦ Fεk−1

◦ · · · ◦ Fε0(y), and, given y, y′ ∈ Y and γ > 0, we say that the system is
γ-moment contracting if

sup
y,y′

E
∣∣Vk(y)− Vk(y′)

∣∣γ ≤ Cρk, ρ ∈ (0, 1). (3.11)

We note that some variations exist in the literature. A key quantity for verifying the
moment contraction (3.11) is

Lε = sup
y 6=y′

∣∣Fε(y)− Fε(y′)
∣∣

|y − y′|
.

Essentially (subject to some mild regularity conditions), (3.11) holds if ELγε < ∞ and
E logLε < 0, see [16, 58]. Note that (3.11) implies ϑ∗k(γ) ≤ Cρk for γ ≥ 1.
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Assumption 3.5. Let q > max{3(α+β), 1} (α, β as in (3.7)). There exists δ > 0, such that
sup|ε|≤δ Lε < 1 almost surely. Moreover, we have ‖Lε‖q < 1 and E|Fε(0)|q,E|ε|2∨q <∞.

We then have the following result.

Theorem 3.6. Grant Assumptions 3.1 and 3.5. Then both Assumptions 2.1 and 2.2 hold.
In particular, Theorem 2.3 and Corollary 2.5 apply.

3.3 Functions of linear processes

Linear processes and their transformations are key in time series analysis, see
e.g. [10]. For αk ∈ R and real-valued functions ci(·), we formally define the linear
process

Gk =

∞∑
i=0

aici(εk−i), k ∈ Z.

Let g ∈ H(L, γ, δ), and consider

Vk = g
(
Gk
)
, k ∈ Z.

The following is our main assumption.

Assumption 3.7. Let q > max{3(α + β)(γ + δ), 1} (α, β as in (3.7)) and suppose that
supi ‖ci(ε)‖q <∞,

∑
i≥1 i

2|ai|βδ <∞ and E|ε|2(α∨1) <∞.

We then have the following result.

Theorem 3.8. Grant Assumptions 3.1 and 3.7. Then both Assumptions 2.1 and 2.2 hold.
In particular, Theorem 2.3 and Corollary 2.5 apply.

3.4 Volterra processes

In the study of nonlinear processes, Volterra processes are of fundamental importance,
see for instance [4, 52] or [56]. We consider

Vk =

∞∑
i=1

∑
0≤j1<···<ji

ak(j1, . . . , ji)εk−j1 · · · εk−ji ,

where ‖εk‖p <∞ for p ≥ 2, and ak are called the k-th Volterra kernel. Let

Ak,i =
∑

k∈{j1,...,ji},0≤j1<···<ji

∣∣ak(j1, . . . , ji)
∣∣.

Then by the triangle inequality, there exists a constant C such that

∥∥Vk − V ∗k ∥∥p ≤ C ∞∑
i=1

‖ε0‖ip
∑
l≥k

Al,i.

We thus require the following assumption.

Assumption 3.9. Let E|ε|2∨q <∞, q > max{3(α+ β)} (α, β as in (3.7)), such that

∑
k≥1

k2
( ∞∑
i=1

‖ε0‖iq
∑
l≥k

Al,i

)β
<∞.

We then have the following result.

Theorem 3.10. Grant Assumptions 3.1 and 3.9. Then both Assumptions 2.1 and 2.2
hold. In particular, Theorem 2.3 and Corollary 2.5 apply.
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4 Proofs of Theorem 2.3 and Theorem 2.4

Throughout the proof, for notational convenience, we assume for simplicity that we
are in the time-homogenous Bernoulli-shift case. This means that gk = g in (2.1), and, in
particular, the quantities in Assumption 2.2 are invariant in l ∈ Z. The general case only
requires notational adjustments, the actual proof remains the same.

For 0 ≤ a ≤ b, define the Berry-Esseen tail

Tba(x) =

∫
a≤|ξ|≤b

e−iξxE
[
eiξSn/

√
n
](

1− |ξ|
b

)1

ξ
d ξ, (4.1)

which arises naturally in Berry’s smoothing inequality. Using Tba, for a > 0, we consider
the Berry-Esseen characteristic

Ca = inf
b≥a

(
sup
x∈R

∣∣Tba(x)
∣∣+ 1/b

)
. (4.2)

For m ∈ N, define the following σ-algebra

Fm = σ
(
ε−m+1, ..., ε0, εm+1, ..., ε2m, ε3m+1, ...

)
. (4.3)

Moreover, for 1 ≤ j ≤ n, let (ε
(j)
k )k∈Z be independent copies of (εk)k∈Z. For each

2(j − 1)m+ 1 ≤ k ≤ 2jm, define

Xk,m = f(εk, εk−1, . . . , εk−m+1, ε
(j)
k−m, ε

(j)
k−m−1, . . .), (4.4)

and note that Xk
d
= Xk,m. Finally, let us introduce the quantities

Ai:j =

j∑
k=i

Xk,m, Bj = A2(j−1)m+1:2jm =

2jm∑
k=2(j−1)m+1

Xk,m, Sn,m =

n∑
k=1

Xk,m.

We recall parts of Theorem 2.7 in [40], which we restate as the following lemma for
the sake of reference.

Lemma 4.1. Grant Assumption 2.1. Then there exists δ > 0, such that

sup
x∈R

∣∣P(Sn ≤ x√n)−Ψn(x)
∣∣ . n−

1
2−δ + CTn ,

where Tn ≥ c
√
n for some c > 0.

In addition, we require the following technical result in the sequel.

Lemma 4.2. Grant Assumption 2.1. Then there exists C > 0, such that∥∥Sn − Sn,m∥∥1 ≤ C√nm−2.
Proof of Lemma 4.2. This is an easy consequence of Equation (50) in [41] (observe that∑
k≥1 k

a‖Xk−X(l,′)
k ‖p .

∑
k≥1 k

a‖Xk−X(l,∗)
k ‖p, a ≥ 0, p ≥ 1, see also Theorem 1 in [47]).

Note that the construction of Xk,m is slightly different in [41], but the argument remains
equally valid.

Proof of Theorem 2.3. Let n = bn/mc for m ∈ N. The proof works with any choice
m � nm, m ∈ (1/2, 1). In order to establish the claim, it suffices to show that for any
a > 0, the Berry-Esseen Characteristic Ca

√
n (cf. (4.2)) satisfies

Ca
√
n . n−1/2−δ, δ > 0. (4.5)
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To this end, we will study EeiξSn more closely, subject to Assumptions 2.1 and 2.2.
Due to |eix − 1| ≤ |x|, |eix| = 1, and Lemma 4.2, we have∣∣EeiξSn − EeiξSnm ∣∣ ≤ ∣∣ξ∣∣∥∥Sn − Sn,m∥∥1

.
∣∣ξ√nm−2∣∣ . ∣∣ξ∣∣n−1/2−δ, δ > 0. (4.6)

Observe that (Bj)1≤j≤n is conditionally independent with respect to Fm, and is a
one-dependent sequence in general. Let I = {1, 3, . . . , 2bn/2c − 1}. Then (Bj)j∈I is an
independent sequence. Hence using |eix| = 1, we have

∥∥EFmeiξSnm∥∥1 ≤ ∥∥∥∥ n∏
j=1

∣∣EFmeiξBj ∣∣∥∥∥∥
1

≤
∥∥∥∥∏
j∈I

∣∣EFmeiξBj ∣∣∥∥∥∥
1

=
∏
j∈I

∥∥EFmeiξBj∥∥1. (4.7)

Next, put H = σ
(
E0 ∪ E ′m+1 ∪ E+m+1

)
, and observe that for 1 ≤ j ≤ n, we have the

identity ∥∥EFmeiξBj∥∥1 =
∥∥EHeiξB1

∥∥
1
.

Let A+ ∈ Gm+1, where we recall that Gm+1 = σ(E ′m+1 ∪ E+m+1). Since |eix| = 1, it
follows that ∣∣EHeiξB1

∣∣ ≤ ∣∣EHeiξ(B1−A+)
∣∣

≤
∣∣EHeiξA1:m

∣∣+
∣∣EHeiξA1:m(eiξ(Am+1:2m−A+) − 1)

∣∣
≤
∣∣EHeiξA1:m

∣∣+ EH
∣∣eiξ(Am+1:2m−A+) − 1

∣∣.
Observe that Am+1:2m −A+ is independent of E0. Using |eix − 1| ≤ |x|, we thus further
obtain

EH
∣∣eiξ(Am+1:2m−A+) − 1

∣∣ ≤ ∣∣ξ∣∣EGm+1

∣∣Am+1:2m −A+
∣∣.

Then due to (B1), for any δ > 0, there exists a set Aδ ∈ Gm+1 with P(Aδ) ≥ cδ > 0,
such that for appropriate choice of A+

EGm+1

∣∣Am+1:2m −A+
∣∣1Aδ ≤ δ. (4.8)

Since Aδ ∈ H, we obtain from the above and |eix| = 1∣∣EHeiξB1
∣∣ ≤ ∣∣EHeiξB11Aδ

∣∣+ EH1Acδ

≤
(∣∣EHeiξA1:m

∣∣+ δ|ξ|
)
1Aδ + 1Acδ .

Next, observe

EHe
iξA1:m = EE0e

iξA1:m .

Since Aδ is independent from E0, we get

E
∣∣EHeiξB1

∣∣ ≤ E(∣∣EE0eiξA1:m
∣∣+ δ|ξ|

)
1Aδ + E1Acδ

=
(
E
∣∣EE0eiξA1:m

∣∣+ δ|ξ|
)
P
(
Aδ
)

+ P
(
Acδ
)
. (4.9)
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Edgeworth expansions for volatility models

We next deal with E
∣∣EE0eiξA1:m

∣∣. To this end, let E(1)m = σ(ε
(1)
k , k ≤ m). Since

Xk,m
d
= Xk and |eix| = 1, we have

E
∣∣EE0eiξA1:m

∣∣ ≤ E∣∣E
σ(Em−1,E(1)m−1)

eiξA1:m
∣∣

≤ E
∣∣EE−1

eiξX0
∣∣.

One readily shows that the map g : R→ [0, 1], given by

g
(
ξ
)

= E
∣∣EE−1

eiξX0
∣∣,

is continuous. Let I = [a, b], 0 < a < b. Then by compactness, there exists ξ∗ ∈ I such
that

sup
ξ∈I

g
(
ξ
)

= g
(
ξ∗
)
< 1,

where we used (B2) for the last inequality. Hence for any 0 < a < b, there exists ηab < 1

such that

sup
ξ∈[a,b]

E
∣∣EE−1e

iξX0
∣∣ ≤ ηab < 1. (4.10)

Setting δ = (1− ηab)/2b, we obtain from (4.9) and (4.10) that for any ξ ∈ [a, b], there
exists ρab < 1 such that (recall P(Aδ) ≥ cδ > 0)

E
∣∣EHeiξB1

∣∣ ≤ (E∣∣EE0eiξA1:m
∣∣+ δ|ξ|

)
P
(
Aδ
)

+ P
(
Acδ
)

≤ 1 + ηab
2

P
(
Aδ
)

+ P
(
Acδ
)
≤ ρab.

Consequently, since |I| ≥ n/3 for n large enough, we get

sup
ξ∈[a,b]

∏
j∈I

∥∥EFmeiξBj∥∥1 ≤ ρn3ab.
Combining (4.7) and the above, we conclude that there exists bn →∞ such that for any
a > 0, we have

sup
ξ∈[a,bn]

∏
j∈I

∥∥EFmeiξBj∥∥1 . n−1/2−δ
′
, δ′ > 0.

Using (4.6) and selecting bn →∞ sufficiently slow, it follows that

sup
ξ∈[a,bn]

∣∣∣EeiξSn ∣∣∣ . n−1/2−δ
′
, (4.11)

and hence

Ca
√
n ≤

(
sup
x∈R

∣∣Tbn√n
a
√
n

(x)
∣∣+ 1/(bn

√
n)
)

= o
(
n−1/2

)
,

which, by virtue of Lemma 4.1, completes the proof.

For the proof of Theorem 2.4, we require some additional notation. For e > 0 and
f ∈ N even, let Ge,f be a real valued random variable with density function

ge,f (x) = cfe
∣∣∣ sin(ex)

ex

∣∣∣f , x ∈ R, (4.12)

EJP 28 (2023), paper 171.
Page 11/18

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1018
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


Edgeworth expansions for volatility models

for some constant cf > 0 only depending on f . It is well-known (cf. [6], Section 10) that
for even f the Fourier transform ĝe,f satisfies

ĝe,f (t) =

{
2πcfu

∗ f [−e, e](t) if |t| ≤ ef,
0 otherwise,

(4.13)

where u∗ f [−e, e] denotes the f -fold convolution of the density of the uniform distribution

on [−e, e], that is u[−e, e](t) = 1
2e1[−e,e](t). For f ≥ 6, let (Hk)k∈Z be i.i.d. with Hk

d
= Ge,f

and independent of Sn. For η > 0, define

X�k = Xk + ηHk − ηHk−1, S�n =

n∑
k=1

X�k = Sn + ηHn − ηH0, (4.14)

and L�n in analogy.

Proof of Theorem 2.4. Using standard properties of the Wasserstein distance and the
triangle inequality, we arrive at

W1

(
PSn/

√
n,PLn

)
≤W1

(
PS�n/

√
n,PL�n

)
+ 4ηE

∣∣Ge,f ∣∣/√n. (4.15)

For f ≥ 6 and small enough e > 0, we get, using (2.4), for any c, η > 0

sup
|ξ|≥c

∣∣EeiξS�n∣∣ ≤ sup
c≤|ξ|≤ef/η

∣∣EeiξSn∣∣ ≤ Cc,δn−1/2−δ, δ > 0. (4.16)

Following the proof of Theorem 3.6. in [40], we obtain

W1

(
PS�n/

√
n,PL�n

)
. n−p/2+1 +

∫
|x|≤τn

∣∣P(S�n ≤ x
√
n)− P(L�n ≤ x)

∣∣dx, (4.17)

where τn .
√

log n. By (4.16), we have for Tba(x) (defined with respect to S�n)∣∣Tb√n
a
√
n
(x)
∣∣ ≤ ∫

a≤|ξ|/
√
n≤b

∣∣∣e−iξxEeiξS�n/√n(1− |ξ|
b
√
n

)1

ξ

∣∣∣d ξ ≤ Ca,δ log(nb)

n−1/2−δ
,

which does not depend on x. Hence for Ca
√
n (defined with respect to S�n)

Ca
√
n = inf

b≥a

(
sup
x∈R

∣∣Tb√n
a
√
n
(x)
∣∣+ 1/(b

√
n)
)
≤ C ′a,δ

log(n)

n−1/2−δ
.

An application of Lemma 4.1 then yields

sup
x∈R

∣∣P(S�n ≤ x
√
n)− P(L�n ≤ x)

∣∣ ≤ C ′′a,δn−1/2−δ′ , δ′ > 0.

Plugging this into (4.17), we obtain

W1

(
PS�n/

√
n,PL�n

)
≤ C ′′′δ,δn−1/2−δ

′(
1 + log n

)
. (4.18)

Selecting η = ηn → 0 sufficiently slow ((2.4) must be valid, see (4.16)), the claim follows
by combining (4.15) and (4.18).

5 Proofs of volatility models

We first state the following elementary lemma.

Lemma 5.1. Suppose that the function f satisfies (3.7), and assume ‖Y0‖p(α+β) +∑
k∈N k

2‖Yk − Y ∗k ‖
β
p(α+β) <∞ for p ≥ 3. Then Xk = f(Yk)− Ef(Yk) satisfies (A2).

Proof of Lemma 5.1. Using Hölders inequality with r = α/β + 1, s = (α+ β)/α, we get∥∥Xk −X∗k
∥∥
p
≤
∥∥|Yk − Y ∗k |β(L+ |Yk|α + |Y ∗k |α

∥∥
p
≤
∥∥Yk − Y ∗k ∥∥βrpβ(L+ 2

∥∥Yk∥∥αspα)
=
∥∥Yk − Y ∗k ∥∥βp(α+β)(L+ 2

∥∥Yk∥∥αp(α+β)).
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5.1 Proof of Theorem 3.4

Proof of Theorem 3.4. In order to apply Theorem 2.3, we need to validate both Assump-
tions 2.1 and 2.2, based on Assumptions 3.1 and 3.3. We will do so below. Since, as
mentioned above, Vk is a time-homogenous Bernoulli-shift process, the quantities in
Assumption 2.2 do not depend on l ∈ Z, simplifying the notation. We first consider the
case hn ≡ 0.

(B1): We first validate (B1), which requires most attention. To this end, we first
introduce some necessary quantities. Let

(V +
k )2λ =

∞∑
m=1

∑
1≤l1,...,lm≤r

glm(εk−l1−···−lm)1(k > l1 + · · ·+ lm)

×
m−1∏
i=1

cli(εk−l1−···−li)1(k > l1 + · · ·+ li),

and X+
k = f(εkV

+
k ) ∈ E+1 for k ≥ 1 (note that Vk ∈ Ek−1 here by construction). Observe

the bound

∣∣(V +
k )2λ − V 2λ

k

∣∣ ≤ ∑
m>bk/rc

∑
1≤l1,...,lm≤r

glm(εk−l1−···−lm)

m−1∏
i=1

cli(εk−l1−···−li), (5.1)

which we will repeatedly use. For δ > 0, denote with

A1jδ =
{ j∑
k=1

EE+1
|Xk −X+

k | ≤ δ
}
,

and let Eij = σ(εk, i ≤ k ≤ j) (note E1∞ = E+1 and A1jδ ∈ E1j). Then

P
( ∞∑
k=1

EE+1
|Xk −X+

k | ≤ 2δ
)
≥ P

( ∞∑
k>j

EE+1
|Xk −X+

k | ≤ δ ∩ A1jδ

)
= EPE1j

( ∞∑
k>j

EE+1
|Xk −X+

k | ≤ δ
)
1A1jδ

≥ E
(

1− δ−1
∞∑
k>j

EE1j |Xk −X+
k |
)
1A1jδ

, (5.2)

where we used Markov’s inequality in the last step. This simple lower bound is the key
for establishing (B1).

Let B1jη = {|εk| ≤ η, 1 ≤ k ≤ j}. Select 0 < η ≤ 1 such that sup|ε|≤η ci(ε) ≤ ‖ci(ε0)‖q,
sup|x|≤η gi(x) ≤ Cg for 1 ≤ i ≤ r, which is always possible by Assumption 3.3. Assume
without loss of generality ‖gi(ε)‖q ≤ Cg. Then by Assumption 3.3, we have on the
event B1jη

(
EE1j

∣∣∣ ∑
1≤l1,...,lm≤r

glm(εk−l1−···−lm)

m−1∏
i=1

cli(εk−l1−···−li)
∣∣∣q)1/q ≤ Cgrγm−1c ,

where we recall ‖c1(ε)‖q + · · · ‖cr(ε)‖q ≤ γc < 1. From the above, we conclude (on the
event B1jη),

(
EE1j

∣∣V 2λ
k − (V +

k )2λ
∣∣q)1/q ≤ Cgr γbk/rcc

1− γc
, (5.3)
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and similarly, one obtains (still on the event B1jη)(
EE1j

∣∣V 2λ
k

∣∣q)1/q ≤ Cgr 1

1− γc
. (5.4)

In the following derivations below, all norms ‖ · ‖r are taken with respect to PE1j .
Since Vk ≥ V +

k and λ ≥ 1/2, we have from f ∈ H(L,α, β), |x1/(2λ)− y1/(2λ)| ≤ |x− y|1/(2λ)
and Cauchy-Schwarz∥∥Xk −X+

k

∥∥
1
≤ L

∥∥|εk|β |Vk − V +
k |

β
(
1 + |2εkVk|α

∥∥
1

)
≤ L

∥∥|εk|β |V 2λ
k − (V +

k )2λ|β/(2λ)
(
1 + |2εkVk|α

∥∥
1

)
≤ L

∥∥|εk|β |V 2λ
k − (V +

k )2λ|β/(2λ)
∥∥
2

∥∥1 + |2εkVk|α
∥∥
2
. (5.5)

By independence, (5.3) and Jensen’s inequality (if β/λ < 1, we again apply Jensen’s
inequality in addition)

∥∥|εk|2β |V 2λ
k − (V +

k )2λ|β/λ
∥∥λ/β
1
≤
∥∥ε2k∥∥λ1Cgr γbk/rcc

1− γc
. (5.6)

Similarly, by independence and (5.4)∥∥1 + |2εkVk|α
∥∥
2
≤ 1 + 2

∥∥εk∥∥α2α(Cgr 1

1− γc

) α
2λ

. (5.7)

All in all, on the event B1jη, combining (5.5), (5.6), and (5.7), we arrive at

EE1j |Xk −X+
k

∣∣
1
≤ C+ρ

k
(
EE1j |εk|2

)β/2
,

where C+ does not depend on η, and ρ < 1 only depends on γc, λ and β. Moreover, we
have EE1jε

2
k = ε2k ≤ η2 for 1 ≤ k ≤ j on the event B1jη, and consequently

j∑
k=1

EE1j |Xk −X+
k | ≤ C+η

β 1

1− ρ
. (5.8)

Hence, selecting η such that C+η
β 1
1−ρ < δ, we conclude B1jη ⊆ A1jδ, and (V1) yields

P
(
A1jδ

)
≥ P

(
B1jη

)
> 0. (5.9)

Similarly, we obtain on B1jη, for k > j, the estimate

∑
k>j

EE1j |Xk −X+
k | ≤ C+

ρj

1− ρ
(
E|ε0|2

)β/2
.

Selecting j0 sufficiently large, we get for j ≥ j0

E
(

1− δ−1
∞∑
k>j

EE1j |Xk −X+
k |
)
1A1jδ

≥ E
(

1− δ−1C+
ρj

1− ρ
(
E|ε0|2

)β/2)
1B1jη

≥ E
(

1− 1

2

)
1B1jη

=
P(B1jη)

2
> 0.

Hence (B1) holds. Let us now consider the case hn 6≡ 0, which turns out to be just a
minor extension. Arguing as above in (5.5), (5.6), and (5.7), we obtain

∑∞
k=1 ‖hn(Vk)−
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hn(V +
k )‖1 ≤ C, where C does not depend on n. Hence by the triangle and Jensen’s

inequality

∥∥∥ ∞∑
k=1

EE+1

∣∣hn(Vk)− hn(V +
k )
∣∣∥∥∥

1
≤ C. (5.10)

On the other hand, (3.8), the triangle and Jensen’s inequality imply that there exists
ln →∞, such that

∥∥∥ ln∑
k=1

EE+1

∣∣hn(Vk)
∣∣∥∥∥

1
≤

ln∑
k=1

E
∣∣hn(Vk)

∣∣→ 0 (5.11)

as n increases. Setting h+n (Vk) = hn(V +
k ) for k ≥ ln and h+n (Vk) ≡ 0 otherwise, we

conclude from the above

lim
n→∞

∥∥∥ ∞∑
k=1

EE+1

∣∣hn(Vk)− h+n (Vk)
∣∣∥∥∥

1
= 0. (5.12)

Piecing everything together, the validity of (B1) follows.

(B2): Note that v 7→ Eeiξf(vε) is continuous in v. Then by compactness of V and (V2),
we have supv∈V

∣∣Eeiξf(vε)∣∣1V < 1, and due to |eiz| = 1, hn(Vk) ∈ Ek−1 and (V2), we thus
conclude

E
∣∣EE−1e

iξX0
∣∣ ≤ E sup

v∈V

∣∣Eeiξf(vε)∣∣1V + P
(
V0 ∈ Vc

)
< P

(
V0 ∈ V

)
+ P

(
V0 ∈ Vc

)
= 1.

Hence (B2) holds.

(A2): Arguing similarly as above for establishing (B1), one derives

‖εkVk − εkV ∗k ‖q, ‖Vk − V ∗k ‖q ≤ Cρk, ρ < 1. (5.13)

The claim now follows from Lemma 5.1 and the triangle inequality.

(A1): We may repeat arguments employed in (A2) (resp. (B1)).

5.2 Proof of Theorem 3.6

Proof of Theorem 3.6. Let V +
k = Fεk ◦ Fεk−1

◦ · · · ◦ Fεl(0). Then V +
k ∈ E

+
l . Although we

are no longer in the time-homogenous Bernoulli-shift setup, it is obvious that we can
repeat the proof of Theorem 3.4, almost verbatim. In fact, due to the more explicit
iterative structure, some computations are even simpler.

5.3 Proof of Theorem 3.8

Proof of Theorem 3.8. As for augmented Garch sequences, we are again in the time-
homogenous Bernoulli-shift case. Let

G+
k =

k−1∑
i=0

aici(εk−i), V +
k = g(G+

k ).

Then V +
k ∈ E

+
1 . It is again obvious that we can repeat the proof of Theorem 3.4, almost

verbatim. As in the case of Theorem 3.6, the actual proof is even simpler.
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5.4 Proof of Theorem 3.10

Proof of Theorem 3.10. As for augmented Garch sequences and functions of linear pro-
cesses, we are again in the time-homogenous Bernoulli-shift case. Let

V +
k =

∞∑
i=1

∑
0≤j1<···<ji≤k

ak(j1, . . . , ji)εk−j1 · · · εk−ji .

Since clearly V +
1 ∈ E

+
1 , we may now repeat the proof of Theorem 3.4. As in previous

cases, the actual proof is even simpler.
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