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Existence of a phase transition in harmonic activation
and transport

Jacob Calvert*

Abstract

Harmonic activation and transport (HAT) is a stochastic process that rearranges
finite subsets of Zd, one element at a time. Given a finite set U ⊂ Zd with at least
two elements, HAT removes x from U according to the harmonic measure of x in
U , and then adds y according to the probability that simple random walk from x,
conditioned to hit the remaining set, steps from y when it first does so. In particular,
HAT conserves the number of elements in U .

We study the classification of HAT as recurrent or transient, as the dimension d
and number of elements n in the initial set vary. In [CGH21], it was proved that the
stationary distribution of HAT (on sets viewed up to translation) exists when d = 2, for
every number of elements n ≥ 2. We prove that HAT exhibits a phase transition in
both d and n, in the sense that HAT is transient when d ≥ 5 and n ≥ 4.

Remarkably, transience occurs in only one “way”: The set splits into clusters of
two or three elements—but no other number—which then grow steadily, indefinitely
separated. We call these clusters dimers and trimers. Underlying this characterization
of transience is the fact that, from any set, HAT reaches a set consisting exclusively of
dimers and trimers, in a number of steps and with at least a probability which depend
on d and n only.
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1 Introduction

Harmonic activation and transport (HAT) is a Markov chain that rearranges finite
subsets of Zd with at least two elements. With each step, an element is removed from
the set (activation) and an element is added to the boundary of what remains (transport).
Activation occurs according to the harmonic measure of the set which, informally, is
the hitting probability of random walk “from infinity.” Transport occurs according to a
certain hitting probability of simple random walk from the activated element.
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A phase transition in harmonic activation and transport

HAT is interesting in part because of its remarkable behavior, and in part because
of its connections to Laplacian growth, programmable matter, and studies of collective
behavior. While HAT is not a growth model, it is related by harmonic measure to models
of Laplacian growth, like diffusion-limited aggregation (DLA) [WS81], which describe
the evolution of a variety of physical interfaces [LP17]. The value of this connection was
demonstrated in [CGH21], where HAT inspired a novel estimate of harmonic measure
that generalizes a prediction about DLA from the physics literature [LS88]. By virtue
of being a Markov chain that rearranges a finite subset of a graph, HAT is also related
to models of programmable matter, like the amoebot model [DDG+14, CDRR16]. The
amoebot model was used to design a self-organizing robot swarm that exhibits collective
transport of objects [LDC+21]. This functionality arises from a phase transition in the
model’s long-term behavior, which suggests that a phase transition in HAT could inspire
new functionality for progammable matter. More broadly, models like HAT can be used
to explore the possible behaviors of engineered and natural collectives [Cal23].

We use the following notation to define harmonic measure. For an integer i, we
denote Z≥i = {i, i + 1, . . . } and N = Z≥0 in particular. Fix a dimension d ∈ Z≥1. For
x ∈ Zd, we denote the distribution of random walk (Sj)j∈N from S0 = x by Px. Here and
throughout, “random walk” refers to simple, symmetric random walk in Zd. We denote
the first time that random walk returns to a set A ⊆ Zd by τA = inf{j ≥ 1 : Sj ∈ A}. We
denote the Euclidean norm by ‖·‖.

For finite A ⊂ Zd, we define the harmonic measure of y in A as a limit of conditional
hitting probabilities of A:

HA(y) = lim
‖x‖→∞

Px(SτA = y | τA <∞). (1.1)

This limit exists and does not depend on the sequence in Zd that is implicit in the notation
“‖x‖ → ∞,” so HA is well defined (see, e.g., [Law13, Chapter 2]).

The state space of HAT is Confd = {V ⊂ Zd : 2 ≤ |V | < ∞}, the collection of d-
dimensional configurations, or finite subsets of Zd with at least two elements. We denote
the HAT configuration at time t ∈ N by Ut. To obtain Ut+1 from Ut, we first remove an
element Xt from Ut according to HUt . Then, we consider a random walk from Xt that is
conditioned to hit Ut\{Xt}. If this random walk steps from Yt when it first does so, then
we add Yt to form

Ut+1 = (Ut \ {Xt}) ∪ {Yt}.
Note that, if Xt = Yt, then Ut+1 = Ut. Since Xt cannot be an interior site of Ut, Xt and
Yt differ with positive probability.

In other words, given Ut, the probability that activation occurs at x and transport
occurs to y is

pUt(x, y) = HUt(x)Px(Sτ−1 = y | τ <∞), (1.2)

where τ abbreviates τUt\{x}. We refer to the two factors in (1.2) as the activation and
transport components of the dynamics.

Definition 1.1 (Harmonic activation and transport). HAT is the discrete-time Markov
chain (Ut)t≥0 on the state space Confd with transition probabilities given by

P
(
Ut+1 = (Ut \ {x}) ∪ {y}

∣∣ Ut) =

{
pUt(x, y) x 6= y,∑
z∈Zd pUt(z, z) x = y,

(1.3)

for x, y ∈ Zd.
Four key properties of HAT are apparent from its definition. To state them, we denote

the diameter of A ⊆ Zd by diam(A) = supx,y∈A ‖x− y‖ and the law of HAT from V (i.e.,
conditioned on U0 = V ) by PV .
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A phase transition in harmonic activation and transport

1. Conservation of mass. The number of elements in Ut is fixed by the initial con-
figuration U0. Consequently, every irreducible component of the state space is
contained in Confd,n = {V ⊂ Zd : |V | = n} for some n ∈ Z≥2.

2. Variable connectivity. If |U0| ≥ 3, then Ut eventually reaches a configuration with
two or more connected components.

3. Asymmetric behavior of diameter. The diameter of Ut increases by at most one
with each step: for every configuration V ,

PV (diam(Ut+1) ≤ diam(Ut) + 1) = 1. (1.4)

In contrast, the diameter of Ut can decrease by as much as diam(Ut) − 1 in one
step. For example, if |V | = 2, then PV (diam(U1) = 1) = 1.

4. Translation invariance. The transition probabilities satisfy

PW (U1 = V ) = PW+x(U1 = V + x)

for all V,W ∈ Confd and x ∈ Zd. This motivates the association of each set A ⊆ Zd
to the equivalence class Â consisting of the translates of A:

Â =
{
B ⊆ Zd : ∃x ∈ Zd : B = A+ x

}
.

For convenience, if V is a configuration, then we will also call V̂ a configuration.

This paper primarily concerns the classification of HAT as recurrent or transient, as
the dimension d and the number of elements n in the initial configuration vary. First,
note that there are n-element configurations that HAT cannot reach (i.e., realize as Ut
for some t ≥ 1). This is because, for pUt(x, y) to be positive, y must have a neighbor in
Ut\{x} and y must have positive harmonic measure in (Ut \ {x}) ∪ {y}. It is therefore
impossible for all elements with positive harmonic measure in Ut+1 to be neighborless.
This fact motivates the following definition.

Definition 1.2 (Isolated, non-isolated configurations). If A ⊂ Zd is finite and if x ∈ A,
then we say that x is exposed in A if HA(x) > 0. We say that A is isolated if every
element that is exposed in A has no neighbors in A; we say that A is non-isolated if
it is not isolated. We denote by Isod,n and NonIsod,n the collections of isolated and
non-isolated n-element configurations in Zd, respectively. We denote the collections of
the corresponding equivalence classes of configurations by Îsod,n and N̂onIsod,n.

It is easy to see that HAT is positive recurrent on N̂onIsod,n, for any dimension d,
when the number of elements n is two or three. When n = 3, isolated elements are
removed with uniformly positive probability, which prevents a configuration’s diameter
from steadily growing. This argument does not apply when n ≥ 4, because the diameter
of a configuration can grow without isolating an element. For example, when n = 4, two
pairs of adjacent elements can “walk” apart. Nevertheless, it is possible to prove that, in
two dimensions, HAT is positive recurrent on the class of non-isolated configurations for
every n ≥ 2.

Theorem 1.3 (Positive recurrence in two dimensions; Theorem 1.6 of [CGH21]). For
every n ≥ 2, from any n-element subset of Z2, HAT converges to a unique probability
measure, supported on N̂onIso2,n. In particular, HAT is positive recurrent on N̂onIso2,n

for every n ≥ 2.

Theorem 1.3 is a consequence of a phenomenon called collapse that HAT exhibits
in two dimensions. Informally, collapse occurs when the diameter of a configuration is
reduced to its logarithm over a number of steps proportional to this logarithm. When
a configuration has a sufficiently large diameter in terms of n, collapse occurs with
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A phase transition in harmonic activation and transport

high probability in n [CGH21, Theorem 1.5]. In other words, the diameter experiences
a negative drift in the sense of a Foster–Lyapunov theorem (e.g., Theorem 2.2.4 of
[FMM95]), which implies that HAT is positive recurrent.

In the context of Theorem 1.3, the first of our main results establishes that HAT
exhibits a phase transition, in the sense that HAT is transient in any dimension d ≥ 5, for
every n ≥ 4.

Theorem 1.4 (Transience in high dimensions). HAT is transient for every d ≥ 5 and
n ≥ 4.

It is unnecessary to qualify that HAT is transient on N̂onIsod,n, because the states

of Îsod,n are transient for every d and n. At the end of this section, we briefly discuss a
heuristic which suggests that d = 5 is the critical dimension for the transience of HAT.
Figure 1 summarizes what is known about the phase diagram of HAT in the d–n grid.

Figure 1: The phase diagram for HAT in the d–n grid. HAT is positive recurrent on
N̂onIsod,n in the blue-shaded region and transient in the red-shaded region. The classifi-
cation of HAT has not been established in the unshaded region.

Our second main result, Theorem 1.7, is a detailed description of the way that tran-
sience occurs when d ≥ 5 and n ≥ 4. Informally, HAT eventually reaches a configuration
consisting of “clusters” of two or three elements, which grow apart indefinitely and never
exchange elements. We state this result in terms of partitions of the HAT configuration.
We refer to the parts of these partitions as clusters when the parts have small diameters
relative to their separation. The next two definitions make this precise.

By a partition V of a configuration V , we mean an ordered partition (V1, . . . ,Vk) of V
into k ≥ 2 nonempty, disjoint subsets. We use the following notation in this context.

• For i ∈ {1, . . . , k} and A ⊆ Zd, we denote by V ∪i A and V \i A the partitions with ith

parts Vi ∪A and Vi \A, and all other parts equal to those of V.

• If x ∈ V , then we denote the unique part of V to which x belongs by [x]V . In other
words, x ∈ V [x]V .

• The separation of a partition is the smallest distance between its parts:

sep(V) = min
1≤i≤k

dist(Vi,V 6=i).

Here, we use dist(A,B) = infx∈A,y∈B ‖x − y‖ to denote the distance between
A,B ⊆ Zd and we use V 6=i to denote the union ∪j 6=iVj .
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A phase transition in harmonic activation and transport

Given a partition of the HAT configuration at one time, there is a natural way to
obtain a partition of the configuration at every later time: with each step, assign the
transported element to the same part as the activated element.

Definition 1.5 (Natural partitioning). Given a partition V of the time-s configuration Us,
the natural partitioning (Ut)t≥s of (Ut)t≥s with V is inductively defined by Us = V and

Ut+1 =
(
Ut \it {Xt}

)
∪it {Yt}, t ≥ s, (1.5)

in terms of the time-t sites of activation Xt and transport Yt, and the part it = [Xt]Ut of
Ut to which Xt belongs.

A clustering is a partition such that each part has at least two elements and the parts
satisfy bounds on separation, in terms both absolute and relative to their diameter.

Definition 1.6 (Clustering). For a, b > 0, a partition V = (V1, . . . ,Vk) of a configuration
V is an (a, b) clustering of V , denoted V ∈ Clusta,b(V ), if

|Vi| ≥ 2, dist(Vi,V 6=i) ≥ a, and diam(Vi) ≤ b log dist(Vi,V 6=i), 1 ≤ i ≤ k. (1.6)

We refer to the parts of a clustering as clusters. In particular, we call Vi a dimer if
|Vi| = 2 and a trimer if |Vi| = 3. We say that V is an (a, b) dimer-or-timer (DOT) clustering,
denoted V ∈ Clust•a,b(V ), if V satisfies

|Vi| ∈ {2, 3}, 1 ≤ i ≤ k, (1.7)

in addition to (1.6).

Dimers and trimers have a special status in d ≥ 5 dimensions because they are the
only clusters that can “persist” over many steps, in a sense that we elaborate at the end
of the section. This is counterintuitive because smaller clusters are at greater risk of
losing all of their elements to other clusters. However, in d ≥ 3 dimensions, an activated
element would likely escape to infinity in the absence of the conditioning in the transport
component of the HAT dynamics (1.2). Consequently, when clusters are well separated,
the HAT dynamics biases the activated element to be transported to the cluster at which
it was activated. As d increases, this effect becomes more pronounced, enabling dimers
and trimers to persist over many steps despite comprising few elements. In contrast,
clusters of four or more elements cannot persist—not because they lose their elements
to other, distant clusters—but because they can split into dimers or trimers, which grow
apart as they persist.

By viewing dimers and trimers at consecutive return times to a given orientation, we
can model their individual motions as d-dimensional random walks (albeit not simple
ones), which suggests that their separation grows at a rate of roughly t1/2. These return
times will be exponentially tight and so, because diameter increases at most linearly in
time (1.4), the clusters’ diameters should never exceed roughly log t. These observations
suggest that, after t steps, the clusters should constitute a (t1/2, 1) DOT clustering of the
HAT configuration. This is the heuristic behind our second main result.

Theorem 1.7 (The mechanism that produces transience). Let d ≥ 5 and n ≥ 4, and
let V ∈ Confd,n. There exists b = b(d, n) > 0 such that, for any δ ∈ (0, 1

2 ), there exist
a = a(d, n, δ) > 0 and a PV -a.s. finite random time θ = θ(d, n, δ) ∈ N at which there is a
clusteringW ∈ Clust•a,b(Uθ) such that the natural partitioning (Ut)t≥θ of (Ut)t≥θ withW
satisfies

Ut ∈ Clust•g(t−θ),b(Ut), t > θ, (1.8)

where g(s) = s
1
2−δ for s ≥ 0.
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A phase transition in harmonic activation and transport

Theorem 1.7 identifies an a.s. finite random time θ at which there is a clustering of
Uθ into dimers or trimers and forever after which the same dimers or trimers become
steadily, increasingly separated—in terms both absolute and relative to their diameters.
In particular, (1.8) is stronger than

Clust•g(t−θ),b(Ut) 6= ∅, t > θ,

because it rules–out the exchange of elements between clusters after time θ. According
to the preceding heuristic (which the proof makes precise), a growth rate of s

1
2 would be

tight.
Theorem 1.7 implies Theorem 1.4, because HAT is irreducible on non-isolated config-

urations.

Theorem 1.8 (Irreducibility). HAT is irreducible on N̂onIsod,n, for every d ≥ 5 and n ≥ 2.

In fact, there is no barrier to establishing irreducibility for other values of d; we
simply assume that d ≥ 5 to facilitate the reuse of inputs to the other theorems.

Proof of Theorem 1.4. Let d ≥ 5 and n ≥ 4, and let V be the n-element segment
{(j, 0, . . . , 0) : 1 ≤ j ≤ n} ⊂ Zd. It suffices to show that V̂ is transient, since V̂ ∈ N̂onIsod,n
and since HAT is irreducible on N̂onIsod,n by Theorem 1.8. Theorem 1.7 implies that there

is a PV -a.s. finite time θ such that diam(Ut) ≥ n for t ≥ θ. Because diam(V̂ ) = n− 1 < n,
this implies that there are PV -a.s. finitely many returns to V̂ , hence V̂ is transient.

A key input to the proof of Theorem 1.7 is the fact that HAT reaches a configuration
with an (a, 1) DOT clustering in a number of steps N and with a probability of at least
p that depend only on a, d, and n. A conceptually minor but useful fact is that this
clustering consists of line segments parallel to e1 = (1, 0, . . . , 0) ∈ Zd. Specifically, we
define Ref to be the collection of reference dimers and trimers

Ref =
{
{x, x+ e1} : x ∈ Zd

}
∪
{
{x, x+ e1, x+ 2e1} : x ∈ Zd

}
and denote the collection of tuples of such configurations by Ref×.

Theorem 1.9 (Formation of dimers and trimers). Fix d ≥ 5 and n ≥ 4. For every a > 0,
there exist N = N(a, d, n) ∈ N and p = p(a, d, n) ∈ (0, 1] such that, for any V ∈ Confd,n,

PV
(
Clust•a,1(UN ) ∩ Ref× 6= ∅

)
≥ p. (1.9)

The important feature of Theorem 1.9 is that N and p do not depend on the diameter
of V . The proof takes the form of an analysis of three algorithms, which sequentially:
(i) rearrange the configuration into well separated, connected clusters with at least
two elements each; (ii) organize each cluster into a line segment; and (iii) split the
segments into dimers and trimers. Collectively, the algorithms take as input an arbitrary
configuration V and desired separation a, and return a configuration W that has an (a, 1)

DOT clustering. It does not seem possible to appreciably simplify this process without
introducing into p a dependence on the diameter of V .

A heuristic which suggests that d = 5 is the critical dimension for transience

We address the role of the assumption that d ≥ 5 in Theorem 1.4 with a discussion
of a heuristic. Consider a pair of dimers. Until they exchange elements, we can model
the distance between them by the norm of a d-dimensional random walk. If they never
exchange elements, then, because random walk is transient in d ≥ 3 dimensions, their
separation will grow steadily and without bound, as Theorem 1.7 predicts.

This basic picture is modified by the fact that dimers exchange elements over a
number of steps which depends on their separation. Specifically, if the dimers are
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separated by a distance a, then they will typically exchange elements over ad−2 steps.
This timescale reflects the fact that a random walk from the origin o ∈ Zd, which is
conditioned to return to {o, x} for o 6= x ∈ Zd, reaches x first with a probability of roughly
‖x‖2−d. If the dimers do not exchange elements during a period of a2 steps, then the
separation of the dimers typically doubles over the same period, after which it takes
2d−2 times longer for them to exchange elements. Hence, if d ≥ 5, then dimer separation
grows quickly enough that elements are never exchanged, which suggests transience. In
contrast, if d ∈ {3, 4}, then dimers typically consolidate before their separation doubles,
which suggests recurrence. An analogous heuristic concludes the same of trimers.

This paper develops the preceding heuristic into a proof of transience in d ≥ 5

dimensions. As the proof shows, when d ≥ 5, it suffices to understand how DOTs
grow in separation and exchange elements. However, to prove recurrence in d ∈ {3, 4}
dimensions, it would be necessary to extend such an understanding to clusters of all
sizes, which introduces new challenges that are left to future work.

In summary, the greater the separation between DOTs, the longer it takes for them
to exchange elements. This effect becomes more pronounced as d increases. Until DOTs
exchange elements, the pairwise distances between clusters behave like the norms of
d-dimensional random walks, which inclines them to grow increasingly separated due to
the transience of random walk in d ≥ 3 dimensions. In d ≥ 5 dimensions, we will be able
to show that DOT separation grows rapidly enough in the absence of element exchange
that it is typical for no element to be exchanged, leading to Theorem 1.7.

Organization

Figure 2 shows how the proof of Theorem 1.7 is organized. The main tool that we
use to prove Theorem 1.7 is an approximation of HAT by another Markov chain, called
intracluster HAT (IHAT), which treats clusters as if they inhabited separate copies of Zd.
Under IHAT, we can model the motion of dimers and trimers as random walks. This is the
approach that underlies the proof of Proposition 2.1. In Section 2, we prove Theorem 1.7,
assuming Theorem 1.9 and Proposition 2.1. In Section 3, we briefly discuss the strategy
of the proof of Proposition 2.1. We motivate and define IHAT in Section 4, which requires
an extension of harmonic measure to tuples of sets. Section 5 proves estimates that
we use in Section 6 to compare the transition probabilities of HAT and IHAT. We apply
these results to bound the error of approximating HAT by IHAT in Section 7. The main
approximation result, Proposition 7.1, states that we can bound below HAT probabilities
with IHAT probabilities, for events that entail sufficiently rapid growth of separation
in the natural partitioning of HAT. Section 8 introduces a random walk model of the
separation between a pair of IHAT clusters, and Section 9 uses this random walk to
obtain key estimates of separation growth under IHAT. Beginning in Section 10, the
focus shifts to the proof of Theorem 1.9, which concerns the formation of configurations
with DOT clusterings. Section 11 presents additional geometric inputs and random walk
estimates, which are applied in Section 12 to analyze the three algorithms around which
the proof of Theorem 1.9 is organized. The last section, Section 13, proves Theorem 1.8,
which states that HAT is irreducible on non-isolated configurations.

Conventions and forthcoming notation

When we refer to a “constant” without further qualification, we always mean a
positive number. We always use d and n to denote positive integers that represent the
ambient dimension and a number of elements. We use o to denote the origin in Zd and
ej to denote the element of Zd with jth coordinate equal to 1 and all other coordinates
equal to 0. For a real number r, we use [r] to denote the integer part of r. We use ∂A
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Theorem 1.7

Theorem 1.9 Proposition 2.1

Proposition 7.1

Proposition 9.1

Proposition 9.2Propositions 12.1–12.6

Proposition 7.2 Proposition 9.3

Propositions 9.4–9.8Proposition 7.5Propositions 6.1 & 6.2

Figure 2: A diagram of the inputs to the proof of Theorem 1.7, excluding basic geometric
results and random walk estimates.

to denote the exterior vertex boundary {z ∈ Zd : dist(z,A) = 1} of a set A ⊆ Zd, and
rad(A) = {‖x‖ : x ∈ A} to denote its radius. We use Ex and EV to denote expectation
with respect to Px and PV , and 1E to denote the indicator of an event E. We use f . g

to denote the estimate f ≤ cg for a constant c that may depend on d, and we denote such
a quantity f by O(g). In some instances, we use f .n g to denote the same estimate,
except permitting c to depend on n as well. We use f & g and Ω(g) analogously, for the
reverse estimate. We use f � g when f . g and f & g.

2 Proof of Theorem 1.7

Theorem 1.7 states that there is a random time θ which is PV -a.s. finite for every
configuration V and after which the natural clustering of (Uθ, Uθ+1, . . . ) grows in sepa-
ration according to (1.8). Informally, we will define θ as the time of the first success in
a sequence of trials, each of which attempts to observe the natural clustering with a
sufficiently well separated DOT clustering satisfy (1.8). The fact that θ is a.s. finite will
be a simple consequence of two results. First, Theorem 1.9 implies that, if the present
trial fails, then we can conduct another after waiting an a.s. finite number of steps for
Ut to have a sufficiently well separated DOT clustering. Second, the following result
states that each trial succeeds with a uniformly positive probability, hence we need only
conduct an a.s. finite number of trials before one succeeds.

Proposition 2.1. Fix d ≥ 5 and n ≥ 4. There exists b = b(n) ≥ 1 such that, for any
δ ∈ (0, 1

2 ), there exists α = α(d, n, δ) > 0 such that, if W ∈ Confd,n has a clustering
W ∈ Clust•α,b(W ) ∩ Ref×, then

PW (ξ =∞) ≥ 1

4
, (2.1)

where ξ is the first time that the natural clustering (Ut)t≥0 of (Ut)t≥0 with W is not in
Clust•g(t),b(Ut) where g(s) = s

1
2−δ for s ≥ 0, i.e.,

ξ = inf{t ≥ 0 : Ut /∈ Clust•g(t),b(Ut)}.

EJP 28 (2023), paper 116.
Page 8/51

https://www.imstat.org/ejp

https://doi.org/10.1214/23-EJP1004
https://imstat.org/journals-and-publications/electronic-journal-of-probability/


A phase transition in harmonic activation and transport

The proof of Proposition 2.1 will comprise several sections, and we dedicate the next
section to a discussion of the proof strategy. For now, we assume this proposition and
Theorem 1.9, and use them to prove Theorem 1.7.

Proof of Theorem 1.7. Fix d ≥ 5 and n ≥ 4. Let α > 0 and b ≥ 1 be the constants from
Proposition 2.1. Fix δ ∈ (0, 1

2 ). In these terms, denote g(s) = s
1
2−δ for s ≥ 0. Additionally,

let ψ be a function which, given a configuration U ∈ Confd,n that has a clustering in
Clust•α,b(U), determines one such clustering. (We use ψ to “pick” one of potentially
multiple clusterings; it is otherwise unimportant.)

We define θ in terms of two sequences of random times, (τi)i≥1 and (ξi)i≥0. In words,
τi is the first time t ≥ ξi−1 at which Ut has an (α, b) DOT clustering in Ref×, and ξi is the
first time t > τi at which the natural clustering (Ut)t≥τi of (Ut)t≥τi with ψ(Uτi) is not a
(g(t− τi), b) DOT clustering of Ut. More precisely, we define ξ0 = 0 and, for i ≥ 1,

τi = inf
{
t ≥ ξi−1 : Clust•α,b(Ut) ∩ Ref× 6= ∅

}
, and

ξi = inf
{
t > τi : Ut /∈ Clust•g(t−τi),b(Ut)

}
.

Lastly, we define θ = τI for I = inf{i ≥ 1 : τi <∞, ξi =∞}. By the definition of θ, (1.8) is
satisfied, so it remains to show that θ is PV -a.s. finite for every V ∈ Confd,n.

Let J = inf{j : ξj =∞}. For every V ∈ Confd,n, we have

PV (θ <∞) = PV (I <∞) = PV (J <∞). (2.2)

The first equality follows from the definitions of I and θ. The second equality follows from
the fact that PV (τi <∞ | ξi−1 <∞) = 1, which is a simple consequence of Theorem 1.9.

To bound the tail probabilities of J , we write

PV (J > j + 1 | J > j) =
EV
[
PUτj (ξ1 <∞); J > j

]
PV (J > j)

≤ 3

4
. (2.3)

The equality follows from the strong Markov property applied at time ξj and the fact
that PUξj (τ1 < ∞) = 1. The inequality is due to Proposition 2.1, which implies that

PUτj (ξ1 <∞) is at most 3
4 .

The bound (2.3) implies that PV (J > j) is summable, so the Borel-Cantelli lemma
implies that J is PV -a.s. finite, which by (2.2) implies the same of θ.

3 Strategy for the proof of Proposition 2.1

The proof of Proposition 2.1 has two main steps. First, we prove that, when DOTs are
a separated in d ≥ 5 dimensions, HAT approximates a related process, called intracluster
HAT, in which transport occurs only to the cluster at which activation occurred, over a2

steps, up to an error of O(a−1 log(a)). Second, we show that over a2 steps of IHAT, the
separation between every pair of clusters effectively doubles, except with a probability
of O(a−1). We show this by considering the pairwise differences between representative
elements of each cluster, viewed at consecutive times of return to certain, “reference”
DOTs. Viewed in this way, the pairwise differences are d-dimensional (symmetric, but not
simple) random walks. We then apply the same argument with 2a in the place of a, then
4a in the place of 2a, and so on. Each time the separation doubles, the approximation and
exception errors halve, which implies that if a is sufficiently large, then the separation
grows without bound, with positive probability.

The second step is possible because, under IHAT, each DOT inhabits a separate copy
of Zd, which simplifies our analysis of their separation. We define IHAT by conditioning
the transport component of the HAT dynamics on intracluster transport, i.e., transport
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can only occur to the boundary of the cluster at which activation occurred. Because
intercluster transport over a2 steps is atypical when clusters are a separated, IHAT is
a good approximation of HAT over the period during which clusters typically double in
separation.

The activation component of the IHAT dynamics is defined in terms of an extension of
harmonic measure to clusterings of configurations, which approximates the harmonic
measure of the union of the clusters when they are well separated. This harmonic
measure is proportional to the escape probability of each element, from the cluster to
which the element belongs—not the union of the clusters. In this way, the IHAT dynamics
treats each cluster in isolation. When clusters are a separated, the harmonic measure
of a clustering agrees with the harmonic measure of the union of the clusters, up to a
factor of 1−O(a2−d). In fact, the discrepancy between the transport components of HAT
and IHAT will give rise to the dominant error factor; we discuss this in greater detail in
the next section.

4 Intracluster HAT

This section motivates the definition of intracluster HAT by examining the transition
probabilities of HAT. According to the discussion of heuristics at the end of Section 1, if
a HAT configuration in d ≥ 3 dimensions has an (a, b) DOT clustering, then intercluster
transport is rare to the extent that b log a

a is small. This observation suggests that, if a
configuration consists of well separated clusters, then it is possible to approximate HAT
by an analogous but simpler process in which the clusters inhabit separate copies of
Zd. In other words, this analogous process, which we call intracluster HAT, is a Markov
chain on tuples of configurations. To define IHAT, we adapt the activation and transport
components of HAT, in a way that leads to small approximation error in terms of a and b
when a configuration has an (a, b) DOT clustering. The next two subsections elaborate
the way that we adapt the components of the HAT dynamics to a Markov chain on tuples
of configurations, and explain the circumstances under which these components closely
approximate their analogues. The third subsection defines IHAT.

4.1 Adapting the activation component

The activation component of the HAT dynamics from a configuration U ∈ Confd is
simply the harmonic measure of U (1.2). We therefore seek to define an analogue of
harmonic measure for the states IHAT, i.e., tuples of configurations. To be useful, this
analogue must closely approximate HU whenever a tuple of configurations constitutes a
well separated DOT clustering of U .

We use an expression for harmonic measure that is equivalent to (1.1) in d ≥ 3

dimensions. Define the escape probability of a finite set A ⊂ Zd by

escA(x) = Px(τA =∞) 1(x ∈ A), x ∈ Zd.

Further define the capacity of A by

capA =
∑
x∈A

escA(x).

The harmonic measure of A equals

HA(x) =
escA(x)

capA
, x ∈ Zd.

For a proof of this fact, see [Law13, Theorem 2.1.3]. Note that, for escA(x) and HA(x)

to be positive, it is necessary (but not sufficient) for x to belong to the interior vertex
boundary of A.
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The following example motivates the way that we define the activation component of
IHAT. Consider a configuration U ∈ Confd that can be partitioned into P = (P1,P2) such
that |P1| ∈ {2, 3} and sep(P) ≥ a for some a > 1. We think of P1 as one DOT and P2 as
the union of one or more clusters. If x ∈ P1, then we can bound below HU (x) in terms of
HP1(x), by noting that

escU (x) ≥ escP1(x)− Px(τP2 <∞).

In Section 5, we will prove that, if a is at least a certain constant, then

escP1(x) & 1 and Px(τP2 <∞) . |U |a2−d.

The first bound is plausible because P1 only has two or three elements. The second
bound follows from a union bound over the elements of P2 and the fact that, if y ∈ Zd is
sufficiently far from x, then Px(τy <∞) � ‖x− y‖2−d. According to these bounds, the
escape probability of U satisfies

escU (x) ≥
(
1−O

(
|U |a2−d)) escP1(x).

To convert this into a lower bound of HU (x), we divide by the capacity of U and identify
a factor of HP1(x):

HU (x) ≥
(
1−O

(
|U |a2−d)) capP1

capU
HP1(x).

Lastly, we note that the capacity of a union is at most the sum of the individual sets’
capacities [Law13, Proposition 2.2.1], hence

HU (x) ≥
(
1−O

(
|U |a2−d)) capP1

capP1 + capP2

HP1(x). (4.1)

The virtue of (4.1) is that, aside from an error term that is small when the separation
a is large relative to |U |, the lower bound refers to the parts of the partition in isolation,
which aligns with our goal of treating well-separated clusters as if they inhabit separate
copies of Zd. It suggests that we should define the activation component of IHAT in the
following way:

1. Given a tuple of finite sets, randomly select one of these sets with a probability
that is proportional to its capacity.

2. Then, select an element of this set according to its harmonic measure.

We formalize this as a definition of harmonic measure for tuples of finite sets.
Denote by Find the collection of nonempty, finite subsets of Zd and by Fin×d the

collection of tuples of such sets, i.e.,

Find = {A ⊂ Zd : 1 ≤ |A| <∞} and Fin×d = ∪∞k=1

{
(Ai)ki=1 ∈ Finkd

}
.

For A = (Ai)ki=1 ∈ Fin×d , we refer to Ai as the ith entry of A and we use #A to denote
the number of entries k in A.

We define the capacity of A ∈ Fin×d by

capA =

#A∑
i=1

capAi ,

and the harmonic measure of A by

HA(i, x) =
escAi(x)

capA
, 1 ≤ i ≤ #A, x ∈ Ai. (4.2)
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We refer to HA(i, x) as the harmonic measure of A at (i, x). Note that we must specify
i in HA(i, x) because the entries of A may not be disjoint. To interpret HA(i, x), note
that the harmonic measure of A at (i, x) is equal to the harmonic measure of Ai at x,
weighted by the ratio of the capacities of Ai and A:

HA(i, x) =
capAi

capA
HAi(x). (4.3)

In other words, to obtain (I,X) ∼ HA, randomly select an entry I of A in proportion to
its capacity, then randomly select an element X of this entry according to its harmonic
measure.

We use this definition of harmonic measure in Section 4.3 to define the activation
component of IHAT. In Section 6, we revisit (4.1) in preparation for the proof of our main
approximation result, which compares the transition probabilities of HAT and IHAT. In
the following subsection, we motivate the definition of the transport component of IHAT.

4.2 Adapting the transport component

Recall that the transport component of HAT from a configuration U ∈ Confd, given a
site of activation x ∈ U , is the conditional probability

Px(Sτ−1 = y | τ <∞), y ∈ Zd, (4.4)

where τ abbreviates τU\{x}. We aim to compare this conditional probability to the
conditional probability that results from replacing τ with the return time to the rest of
the cluster of U to which x belongs. The latter is the analogue of (4.4) with exclusively
intracluster transport.

Let a > e and b > 0, and assume d ≥ 3. Suppose that U has an (a, b) clustering
C = (C1, C2), i.e., each cluster has at least two elements, the clusters are separated by
a distance of at least a, and their diameters are at most b log dist(C1, C2). Fix elements
x ∈ C1 and y in the exterior vertex boundary of C1\{x}, and abbreviate A = C1\{x}. In
these terms, we aim to compare the probability in (4.4) to

Px(SτA−1 = y | τA <∞).

For {Sτ−1 = y} to occur, the random walk must visit A before C2 because y ∈ ∂A and
dist(A, C2) > 1 by assumption. Hence,

Px(Sτ−1 = y, τ <∞) = Px(Sτ−1 = y, τA < τC2 , τ <∞).

In fact, because τ = min{τA, τC2}, this probability equals

Px(SτA−1 = y, τA <∞)− Px(SτA−1 = y, τC2 < τA <∞),

which implies that

Px(Sτ−1 = y | τ <∞) = Px(SτA−1 = y | τA <∞)

× Px(τA <∞)

Px(τ <∞)︸ ︷︷ ︸
(4.5a)

(
1− Px(SτA−1 = y, τC2 < τA <∞)

Px(SτA−1 = y, τA <∞)︸ ︷︷ ︸
(4.5b)

)
. (4.5)

In Section 6, we will show that (4.5a) and (4.5b) satisfy

(4.5a) ≥ 1−O
(
|U |
(
ba−1 log a

)d−2
)

and (4.5b) ≤ O
(
|U |
(
ba−2 log a

)d−2
)
.
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These bounds rely on the fact that random walk from x hits a sufficiently distant set B
with a probability of at least dist(x,B)2−d and at most |B|dist(x,B)2−d, up to constant
factors. The separation properties that define an (a, b) clustering are valuable for
simplifying ratios of these quantities.

For example, the O term in the lower bound of (4.5a) arises as the ratio of the hitting
probabilities of C2 and A from x. Since C2 and A are distances of at least sep(C) and at
most diam(C1) from x, this ratio is roughly

|U |
(

diam(C1)

sep(C)

)d−2

≤ |U |
(
b log sep(C)

sep(C)

)d−2

≤ |U |
(
b log a

a

)d−2

.

The first inequality holds because C is (·, b) separated; the second holds because C is (a, ·)
separated and because log r

r decreases as r > e increases.
The upper bound of (4.5b) follows from similar considerations, with the exception

that the event in the numerator of (4.5b) requires random walk from x to traverse a
distance of sep(C) twice, from C1 to C2 and then back to A. This leads to an additional
factor of a2−d in the bound of (4.5b).

Substituting these bounds into (4.5) gives

Px(Sτ−1 = y | τ <∞) ≥
(

1−O
(
|U |
(
ba−1 log a

)d−2
))
Px(SτA−1 = y | τA <∞). (4.6)

The virtue of the lower bound in (4.6) is that, aside from the error term, it refers only
to the cluster to which x belongs, and not the entire configuration U . It shows that the
approximation of HAT’s transport component by one in which only intracluster transport
is allowed is accurate to the extent that |U |( b log a

a )d−2 is small. In the next subsection,
we use this intracluster transport component to define IHAT.

4.3 The definition of IHAT

The state space of IHAT is the collection Conf×d ⊂ Fin×d of tuples of configurations:

Conf×d = ∪∞k=1

{
(Ai)ki=1 ∈ Confkd

}
.

We denote the state of IHAT at time t ≥ 0 by Vt. Given Vt, we define the transition
probabilities in terms of

qVt(i, x, y) = HVt(i, x)Px(Sτ−1 = y | τ <∞), 1 ≤ i ≤ #Vt, x, y ∈ Zd, (4.7)

where τ abbreviates τVit\{x}. In analogy with pUt(x, y) (1.2), the quantity qVt(i, x, y) is the
probability that activation occurs in Vit at x and transport occurs to y. Note that, for (4.7)
to be positive, it is necessary for y to belong to the exterior vertex boundary of Vit \ {x}.
Definition 4.1 (Intracluster HAT). IHAT is the discrete-time Markov chain (Vt)t≥0 on the
state space Conf×d with the following transition probabilities given by

Q
(
Vt+1 = (Vt \i {x}) ∪i {y}

∣∣ Vt) =

{
qVt(i, x, y) x 6= y,∑#Vt
j=1

∑
z∈Zd qVt(j, z, z) x = y,

(4.8)

for 1 ≤ i ≤ #Vt and x, y ∈ Zd. We denote the law of IHAT from V by QV .

5 Inputs to the comparison of HAT and IHAT

This section proves estimates of hitting probabilities and harmonic measure that
we will use to compare the transition probabilities of HAT and IHAT. Our basic tool is
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Green’s function G(x), which is defined in d ≥ 3 dimensions as the expected number of
visits to x by random walk from the origin:

G(x) = Eo

 ∞∑
j=0

1(Sj = x)

 , x ∈ Zd. (5.1)

There is a constant κ > e such that

G(x) � ‖x‖2−d, (5.2)

for every x ∈ Zd with norm ‖x‖ ≥ κ [LL10, Theorem 4.3.1]. (We specify that κ exceeds e
so that log r

r decreases in r ≥ κ, a fact that we will use later.) This estimate of Green’s
function implies useful bounds on hitting probabilities.

Lemma 5.1. Let x ∈ Zd and let A ⊂ Zd be nonempty and finite. If dist(x,A) ≥ 1, then

Px(τA <∞) & dist(x,A)2−d. (5.3)

If dist(x,A) ≥ κ, then

Px(τA <∞) . |A|dist(x,A)2−d. (5.4)

Proof. Suppose that y1 is the element of A closest to x and that z = y2 maximizes
Px(τz <∞) among z ∈ A. The inclusion {τy1 <∞} ⊆ {τA <∞} and a union bound over
the elements of A imply that

Px(τy1 <∞) ≤ Px(τA <∞) ≤ |A|Px(τy2 <∞).

If dist(x,A) ∈ [1, κ), then (5.3) holds because Px(τy1 < ∞) & 1. If dist(x,A) ≥ κ,
then (5.3) holds because

Px(τy1 <∞) =
G(x− y1)

G(o)

(5.2)� ‖x− y1‖2−d = dist(x,A)2−d,

while (5.4) holds because

Px(τy2 <∞) =
G(x− y2)

G(o)

(5.2)� ‖x− y2‖2−d ≤ dist(x,A)2−d.

The first equality in the two preceding displays is a standard identity; see, e.g., [Pop21,
Equation 3.4].

We also need two monotonicity properties of Green’s function. The first property is
that Green’s function is nonincreasing with respect to a partial order � on Zd, defined
for x, y ∈ Zd by

x � y ⇐⇒ ∀i ∈ JdK, |xi| ≤ |yi|,

where xi and yi denote the ith components of x and y.

Lemma 5.2 (Lemma 8 of [CC16]). If x, y ∈ Zd and x � y, then G(x) ≥ G(y).

The second property is that the value of Green’s function at the origin o ∈ Zd is
nonincreasing with dimension. To emphasize the dependence of this value on d, we
denote it by Gd(o).

Lemma 5.3. If d1 ≤ d2, then Gd1(o) ≥ Gd2(o).
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Proof. Montroll [Mon56, Eq. (2.10)] expresses Gd(o) in terms of I0, the modified Bessel
function of the first kind, as

Gd(o) =

∫ ∞
0

e−tI0

( t
d

)d
dt.

According to the integral representation of I0 [AS64, Eq. 9.6.19], I0( td )d is the L
1
d norm

of et cos θ with respect to the probability measure π−1dθ on [0, π]:

I0

( t
d

)d
=

(
1

π

∫ π

0

e
t cos θ
d dθ

)d
.

If d1 ≤ d2, then the L
1
d2 norm is no larger than the L

1
d1 norm, hence

Gd1(o) ≥
∫ ∞

0

e−tI0

( t

d2

)d2
dt = Gd2(o).

Note that Gd(o) = (1− pd)−1, where pd is the probability that d-dimensional random
walk from the origin returns to the origin [Pop21, Equation 3.15]. Since p4 ≤ 0.2 [Fin03],
Lemma 5.3 implies a bound of Gd(o) ≤ 5

4 when d ≥ 4. We state this fact as a lemma,
because we will use it several times.

Lemma 5.4. If d ≥ 4, then Gd(o) ≤ 5
4 .

We use these monotonicity properties to prove simple lower bounds on escape
probabilities and harmonic measure for sets with at most four elements.

Lemma 5.5. Let d ≥ 4. If U ⊂ Zd has |U | ≤ 4, then

escU (x) ≥ 4− 3G(o)

G(o)
≥ 1

5
and HU (x) ≥ 1

16
, x ∈ U. (5.5)

Proof. Let x ∈ U . We can express escU (x) in terms of N =
∑∞
j=1 1(Sj ∈ U), the number

of returns made to U by random walk, as

escU (x) = Px(N = 0) = 1− Ex[N ]

Ex[N | N > 0]
. (5.6)

To bound above Ex[N ], we note that

Ex[N ] =
∑
y∈U

G(x− y)− 1. (5.7)

Since x ∈ U and |U | ≤ 4, there are u, v, w ∈ Zd such that

{x− y : y ∈ U} ⊆ {o, u, v, w} and ∃k, l,m ∈ {1, . . . , d} : u � ek, v � el, w � em.

Green’s function is nonnegative and nonincreasing in � (Lemma 5.2), hence∑
y∈U

G(x− y) ≤ G(o) +G(u) +G(v) +G(w) ≤ G(o) +G(ek) +G(el) +G(em).

This bound is at most 4G(o)− 3 because G(ei) = G(o)− 1 for every 1 ≤ i ≤ d (see, e.g.,
[Pop21, Exercise 3.2]). By (5.7), Ex[N ] is at most 4G(o)− 4.

To bound below Ex[N | N > 0], we use the fact that Ez[N ] ≥ G(o)− 1 for every z ∈ U ,
since N is at least the number of times that random walk returns to z. Consequently,

Ex[N | N > 0] = 1 + Ex
[
ESτU [N ]

∣∣ τU <∞
]
≥ G(o).
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We substitute the preceding bounds into (5.6) to find that

escU (x) ≥ 1− 4G(o)− 4

G(o)
=

4− 3G(o)

G(o)
.

To bound below the harmonic measure of x in U , we note that capU is at most 4G(o)−1

because |U | ≤ 4 and because escU (y) is at most G(o)−1 for y ∈ U . We combine this fact
with the preceding display to find that

HU (x) =
escU (x)

capU
≥ 4− 3G(o)

4
.

Since the preceding lower bounds decrease with G(o) and since G(o) ≤ 5
4 for d ≥ 4

(Lemma 5.4), we conclude that escU (x) ≥ 1
5 and HU (x) ≥ 1

16 .

We use Lemma 5.1 to extend the escape probability lower bound to configurations in
which four or fewer elements are sufficiently far from the rest.

Lemma 5.6. Let d ≥ 4. There is a constant c = c(d) such that, if U ∈ Confd can be
partitioned into P = (P1,P2) such that |P1| ≤ 4 and sep(P) ≥ κ, then

escU (x) ≥
(
1− c|U | sep(P)2−d) escP1(x), x ∈ P1.

Proof. Let U and P satisfy the hypotheses and let x ∈ P1. We bound below escU (x) as

escU (x) = escP1(x)− Px(τP1 =∞, τP2 <∞)

≥
(

1− Px(τP2 <∞)

escP1(x)

)
escP1(x) ≥

(
1−O

(
|U | sep(P2−d)

))
escP1(x).

The first inequality follows from dropping the sub-event {τP1 =∞}; the second uses the
bound escP1(x) ≥ 1

5 from Lemma 5.5, which applies because |P1| ≤ 4, and equation (5.4)
of Lemma 5.1, which applies because sep(P) ≥ κ.

We also note a simple lower bound of the harmonic measure of partitions with parts
of four or fewer elements, which follows from Lemma 5.5.

Lemma 5.7. Let d ≥ 4. If U ∈ Confd can be partitioned into P = (Pi)ki=1 such that
|Pi| ≤ 4 for every 1 ≤ i ≤ k, then

HP([x]P , x) ≥ 1

16|U |
, x ∈ U.

Proof. Let x ∈ U and denote i = [x]P . By (4.3),

HP(i, x) =
capPi

capP
HPi(x).

The claimed bound follows from the observation that capP ≤ |U | capPi and the harmonic
measure lower bound HPi(x) ≥ 1

16 of Lemma 5.5, which applies because |Pi| ≤ 4.

The next result applies Lemma 5.1 and Lemma 5.5 to obtain two estimates that we
need for the transport comparison.

Lemma 5.8. Let d ≥ 4. There is a constant c = c(d) such that, if U ∈ Confd can be
partitioned into P = (P1,P2) such that |P1| ≤ 3 and sep(P) ≥ κ, then, for every x ∈ P1

and every y in the exterior boundary of A = P1\{x},

Px(SτA−1 = y, τP2 < τA <∞) ≤ c|U | sep(P)4−2d, and (5.8)

Px(SτA−1 = y, τA <∞) ≥ cdiam(A ∪ {y})2−d. (5.9)
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For the event in (5.8) to occur, random walk must go from P1 to P2 and then from
P2 to P1. By Lemma 5.1, it does so with probabilities of roughly O

(
|P1| sep(P)2−d) and

then O
(
|P2| sep(P)2−d). To prove (5.9), we consider the event that random walk from

x first escapes B = A ∪ {y} to a distance of roughly diam(B) away, before returning to
B at y. The virtue of this event is that the conditional hitting distribution of B from a
distance of roughly diam(B) away is comparable to the harmonic measure of B, which is
bounded below by a constant due to Lemma 5.5. The lower bound (5.9) is due to the fact
that random walk from a distance of diam(B) from B returns to B with a probability of
Ω(diam(B)2−d) by Lemma 5.1.

The assumptions on P ensure that Lemma 5.1 and Lemma 5.5 are applicable. In
particular, we assume that |P1| ≤ 3 instead of |P1| ≤ 4 so that B ∪ {x} = P1 ∪ {y} has at
most four elements. This enables our use of Lemma 5.5 to bound below escB∪{x}(x) by
a constant, which further bounds below the probability that random walk escapes to a
distance of roughly diam(B) away from B.

Proof of Lemma 5.8. Let U and P satisfy the hypotheses, and let x ∈ P1 and y ∈ ∂A. We
bound the probability in (5.8) as

Px(SτA−1 = y, τP2 < τA <∞) ≤ Px(τP2 < τA <∞)

≤ Px(τP2 <∞) max
z∈P2

Pz(τA <∞) . |U | sep(P)4−2d.

The first inequality follows from dropping the sub-event {SτA−1 = y}; the second holds
because maxz∈P2 Pz(τA <∞) bounds above the conditional hitting probability of A from
an arbitrarily distributed Z in P2; the third follows from two applications of Lemma 5.1,
which applies because sep(P) ≥ κ, and the fact that |P1||P2| ≤ 3|U |.

We bound below the probability in (5.9) using the fact (see, e.g., [Pop21, Exercise
3.25]) that there is a constant λ > 1 such that, if the distance between u ∈ Zd and a
finite set B ⊂ Zd is at least λ diam(B), then

Pu(SτB = v | τB <∞) ≥ 1

2
HB(v), v ∈ B. (5.10)

To this end, let B = A ∪ {y} and C = {u ∈ Zd : dist(u,B) ≤ λ diam(B)}, and note that

Px(SτA−1 = y, τA <∞) ≥ 1

2d
Px(τ∂C < τB <∞, SτB = y). (5.11)

In words, the probability that the random walk steps from y when it first returns to A
is at least the probability that it does so after hitting ∂C. Note that the factor of 1

2d

addresses the step that the random walk takes from y into A to ensure that τB = τA − 1.
The lower bound (5.11) factors into

1

2d
Px(τ∂C < τB)Px(τB <∞ | τ∂C < τB)Px(SτB = y | τ∂C < τB <∞).

We address these factors in turn.
First, the probability that random walk hits ∂C before returning to B is at least

the probability of escape from B ∪ {x}, which, by Lemma 5.5, is at least 1
5 because

|B ∪ {x}| ≤ |P1|+ 1 ≤ 4:

Px(τ∂C < τB) ≥ Px(τB =∞) ≥ escB∪{x}(x) ≥ 1

5
.

Note that we use escB∪{x}(x) instead of escB(x) because if x 6= y, then x /∈ B, hence
escB(x) = 0 by definition and the bound of Lemma 5.5 does not apply.
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Second, given that the random walk hits ∂C before B, the conditional probability
that it subsequently hits B satisfies

Px(τB <∞ | τ∂C < τB) ≥ min
z∈∂C

Pz(τB <∞) & diam(B)2−d.

The second inequality holds by Lemma 5.1, which implies that the hitting probability
of B from z ∈ ∂C is Ω(dist(z,B)2−d), and by the definition of C, which implies that
dist(z,B) . diam(B) for every such z.

Third, given that the random walk hits ∂C and then B, the conditional hitting
probability of y is at least

Px(SτB = y | τ∂C < τB <∞) ≥ min
z∈∂C

Pz(SτB = y | τB <∞) ≥ 1

2
HB(y) ≥ 1

32
.

The second inequality holds by (5.10); the third by Lemma 5.5, which applies because
|B| ≤ 3.

We multiply the three preceding bounds to conclude that

1

2d
Px(τ∂C < τB <∞, SτB = y) & diam(B)2−d.

The bound (5.9) follows from substituting this into (5.11).

6 Comparison of activation and transport components

First, we compare the activation components of HAT and IHAT. Recall κ, the constant
associated with an estimate of Green’s function (5.2), and our convention that a partition
must have at least two parts.

Proposition 6.1 (Activation comparison). Let d ≥ 4. There is a constant c = c(d) such
that, if U ∈ Confd can be partitioned into P = (Pi)ki=1 such that |Pi| ≤ 3 for every
1 ≤ i ≤ k and sep(P) ≥ κ, then

HU (x) ≥
(
1− c|U | sep(P)2−d)HP([x]P , x), x ∈ U. (6.1)

The proof applies the escape probability lower bound of Lemma 5.6 to the partition
of U consisting of the part [x]P to which x belongs and the union of the other parts.

Proof of Proposition 6.1. Let U and P satisfy the hypotheses, and let x ∈ U and i = [x]P .
Define the coarser partition C = (C1, C2) by C1 = Pi and C2 = P 6=i, which satisfies |C1| ≤ 3

and sep(C) ≥ κ. By Lemma 5.6 and the fact that sep(C) ≥ sep(P), there is a constant
c = c(d) such that

escU (x) ≥
(
1− c|U | sep(C)2−d) escPi(x) ≥

(
1− c|U | sep(P)2−d) escPi(x).

We divide by capU to bound below HU (x):

HU (x) =
escU (x)

capU
≥
(
1− c|U | sep(P)2−d)escPi(x)

capU
≥
(
1− c|U | sep(P)2−d)HP(i, x).

The second inequality uses the bound capU ≤ capP , which follows from the fact that
escU (y) ≤ escPj (y) for every 1 ≤ j ≤ k and y ∈ Pj , and the definition of HP(i, x).

Next, we compare the transport components of HAT and IHAT. Recall that a partition
P of a configuration U is an (a, b) clustering if sep(P) ≥ a and if the diameter of each
Pi is at most b log dist(Pi,P 6=i) (Definition 1.6). If P also satisfies |Pi| ∈ {2, 3} for each i,
then it is an (a, b) DOT clustering.
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Proposition 6.2 (Transport comparison). Let a ≥ κ, b > 0, and d ≥ 4. There is a constant
c = c(b, d) such that, if U ∈ Confd has an (a, b) DOT clustering P, then, for every x ∈ U
and every y in the exterior boundary of A = P [x]P\{x},

Px(SτU\{x}−1 = y | τU\{x} <∞) ≥

(
1− c|U |

(
log sep(P)

sep(P)

)d−2
)
Px(SτA−1 = y | τA <∞).

Proposition 6.2 only considers instances of intracluster transport—instances in which
y belongs to the exterior boundary of the part [x]P to which x belonged before it was
removed—because the IHAT transport component would be zero otherwise. The proof
revisits the equation (4.5) and applies Lemma 5.1 and Lemma 5.9 to bound below its
third and fourth factors.

Proof of Proposition 6.2. Let U and P satisfy the hypotheses, let x ∈ U and y ∈ ∂A, and
let i = [x]P . Define the coarser partition C = (C1, C2) by C1 = Pi and C2 = P 6=i, which
satisfies A ⊂ C1, |C1| ≤ 3, and sep(C) ≥ κ. For brevity, denote τ = τU\{x}.

Following (4.5), the probability in question can be expressed as

Px(Sτ−1 = y | τ <∞) = Px(SτA−1 = y | τA <∞)

× Px(τA <∞)

Px(τ <∞)︸ ︷︷ ︸
(6.2a)

(
1− Px(SτA−1 = y, τC2 < τA <∞)

Px(SτA−1 = y, τA <∞)︸ ︷︷ ︸
(6.2b)

)
. (6.2)

To bound below (6.2a), note that τ = min{τA, τC2}, so lower and upper bounds of
Px(τA <∞) ≥ p1 and Px(τC2 <∞) ≤ p2 for some p1, p2 ∈ (0, 1] would imply that

Px(τA <∞)

Px(τ <∞)
≥ Px(τA <∞)

Px(τA <∞) + Px(τC2 <∞)
≥ 1− p2

p1
. (6.3)

By Lemma 5.1, the fact that dist(x,A) ≤ diam(C1), and the assumption that P is a (·, b)
clustering,

Px(τA <∞) & dist(x,A)2−d & diam(C1)2−d & (b log sep(C))2−d
.

By (5.4) of Lemma 5.1, which applies because dist(x, C2) ≥ sep(C) ≥ κ, and the fact that
|C2| ≤ |U |,

Px(τC2 <∞) . |U | sep(C)2−d.

We take p1 and p2 to be the preceding lower and upper bounds (including the implicit
constants). Substituting these choices into (6.3) yields

Px(τA <∞)

Px(τ <∞)
≥ 1− c1bd−2|U |

(
log sep(C)

sep(C)

)d−2

,

for a constant c1 = c1(d). To bound above (6.2b), we use Lemma 5.8 with C in the place
of P. The lemma is applicable because |C1| ≤ 3 and sep(C) ≥ κ. It implies that

Px(SτA−1 = y, τC2 < τA <∞)

Px(SτA−1 = y, τA <∞)
. |U |

(
diam(A ∪ {y})

sep(C)2

)d−2

≤ c2bd−2|U |
(

log sep(C)
sep(C)2

)d−2

,

for a constant c2 = c2(d). The second inequality holds because the diameter of A ∪ {y} is
at most diam(C1) + 1, since y ∈ ∂A and A ⊂ C1, and because the diameter of C1 = Pi is
at most b log sep(C), since P is a (·, b) clustering.
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We substitute the bounds on (6.2a) and (6.2b) into (6.2) to conclude that

Px(Sτ−1 = y | τ <∞) ≥

(
1− cbd−2|U |

(
log sep(C)

sep(C)

)d−2
)
Px(SτA−1 = y | τA <∞),

where c = 2 max{c1, c2}bd−2. This implies the claimed bound because log r
r decreases

with r > e and sep(C) is at least sep(P) ≥ κ > e.

7 Approximation of HAT by IHAT

Informally, the estimates of Section 6 show that the “error” of approximating HAT by
IHAT over one step, for a transition that involves intracluster transport, isO(|U |( log ρ

ρ )d−2),
in terms of the separation ρ of a suitable partition of the current configuration U . This
suggests that we can use IHAT to estimate the probabilities of events that entail suffi-
ciently rapid separation growth for the natural partitioning of HAT. The main result of
this section formalizes this idea.

Fix d ≥ 5 and n ≥ 4. Recall that, for a, b > 0, and a configuration U ∈ Confd,n, we
use Clust•a,b(U) to denote the (possibly empty) collection of (a, b) DOT clusterings of U .
We denote the collection of (a, b) DOT clusterings of n-element configurations in Zd by
Clust•a,b = ∪U∈Confd,n Clust•a,b(U). For δ ∈ (0, 1

2 ), we define the following set of infinite
sequences of (a, b) DOT clusterings:

Growa,b,δ =
{

(Ct)t≥0 ∈ (Clust•a,b)
N : sep(Ct) ≥ t

1
2−δ for every t ≥ 0

}
. (7.1)

Recall the definition of the natural partitioning of HAT (Definition 1.5). The main
result of this section states that, if a is sufficiently large, then the probability that the
natural partitioning (Ut)t≥0 of (Ut)t≥0 with an (a, b) DOT clustering is a sequence of
clusterings in Growa,b,δ is at least the analogous probability for IHAT, up to a factor of
(1− oa(1)). Given a clustering C ∈ Clust•a,b, we will use PC to denote the distribution of
HAT from the configuration ∪iCi. Under PC, we will use (Ut)t≥0 to denote the natural
partitioning of (Ut)t≥0 with C. Recall that QC denotes the law of IHAT from C.
Proposition 7.1 (Main approximation result). Fix d ≥ 5 and n ≥ 4. Let b > 0 and let
δ ∈ (0, 1

2 −
1
d−2 ). For every ε ∈ (0, 1), there is a constant α = α(b, d, n, δ, ε) > 1 such that,

if a ≥ α, then, for every C ∈ Clust•a,b,

PC ((Ut)t≥0 ∈ Growa,b,δ) ≥ (1− ε)QC ((Vt)t≥0 ∈ Growa,b,δ) .

Proposition 7.1 is one of three inputs to the proof of Proposition 2.1. The other two
inputs state that (i) the event which Proposition 2.1 concerns—that the natural clustering
grows in separation as Theorem 1.7 predicts—is a subset of {(Vt)t≥0 ∈ Growa,b,δ} for
appropriate choices of a, b, and δ, and that (ii) its probability under IHAT is positive. We
prove these other inputs in the next two sections. In the remainder of this section, we
prove Proposition 7.1.

The key to the proof of Proposition 7.1 is a one-step approximation of HAT by IHAT.

Proposition 7.2 (One-step approximation). Fix d ≥ 5 and n ≥ 4, and let a, b > 0. There
are constants α0 = α0(b, d, n) and c = c(b, d, n) such that, if a ≥ α0, then, for every
C0, C1 ∈ Clust•a,b,

PC0(U1 = C1) ≥
(

1− c
(
a−1 log a

)d−2
)
QC0(V1 = C1). (7.2)

Proposition 7.1 is a consequence of a short calculation with Proposition 7.2.
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Proof of Proposition 7.1. Let α0 and c be the constants from Proposition 7.2 and assume
that a ≥ α0. For t ≥ 0, denote

g(t) = max
{
a, t

1
2−δ
}

and h(t) =

t−1∏
s=0

(
1− c

(
g(s)−1 log g(s)

)d−2
)
.

If (Ds)s≥0 ∈ Growa,b,δ, then g(t) is a lower bound on the separation of Dt, so the Markov
property and the one-step approximation (Proposition 7.2) imply that h(t) satisfies

PC0 (Us = Ds, s ≤ t) ≥ h(t)QC0 (Vs = Ds, s ≤ t) . (7.3)

If δ < 1
2 −

1
d−2 , then h(t) ≥ 1 − oa(1). Indeed, some simple but tedious algebra shows

that, due to the condition on δ, there are constants η = η(d, δ) > 0 and α1 = α1(d, η) such
that, if a ≥ α1, then

c

∞∑
s=0

(
log g(s)

g(s)

)d−2

≤ O
(
a−η

)
.

Here, the implicit constant depends on all parameters: b, d, n, and δ. This bound implies
that h(t) decreases to a limit of h∞ = 1−O(a−η) as t→∞.

We apply (7.3) to conclude that

PC0 ((Us)s≥0 ∈ Growa,b,δ) =
∑

PC0 (Us = Ds, s ≥ 0)

=
∑

lim
t→∞

PC0 (Us = Ds, 0 ≤ s ≤ t)

≥ h∞
∑

lim
t→∞

QC0 (Vs = Ds, 0 ≤ s ≤ t)

= h∞
∑

QC0 (Vs = Ds, s ≥ 0)

= h∞QC0 ((Vs)s≥0 ∈ Growa,b,δ) ,

where the sums range over (Ds)s≥0 ∈ Growa,b,δ.

The proof of Proposition 7.2 is primarily a straightforward application of Proposi-
tions 6.1 and 6.2, which compare the activation and transport components of HAT and
IHAT. However, to apply these results, we must also show that the possible transitions
of IHAT are equivalent to possible transitions for the natural partitioning of HAT, when
the transition is between two, well separated clusterings. This is the focus of the next
subsection.

7.1 An equivalence between the possible transitions of HAT and IHAT

We need a geometric lemma that is due to Kesten (Lemma 2.23 of [Kes86]; alterna-
tively, Theorem 4 of [Tim13]). To state it, denote by Zd∗ the graph with vertex set Zd

and with an edge between distinct x, y ∈ Zd when x and y differ by at most one in each
coordinate. For A ⊆ Zd, we define the ∗-visible boundary ∂visA as

∂visA =
{
x ∈ Zd : x is adjacent in Zd∗ to some y ∈ A

and there is a path from∞ to x disjoint from A
}
. (7.4)

Lemma 7.3 (Lemma 2.23 of [Kes86]). If A is a finite, ∗-connected subset of Zd, then
∂visA is connected in Zd.

For a finite set A ⊂ Zd and x ∈ A, we say that x is exposed in A if escA(x) > 0. The
following proposition states that, if a clustering C is sufficiently separated and if an
element is exposed in Ci, then that element is also exposed in ∪jCj .
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Proposition 7.4. Fix d ≥ 5 and n ≥ 4. Let a, b > 0, and let C ∈ Clust•a,b. If a ≥
max{e2b, 8

√
d}, then

escCi(x) > 0 =⇒ esc∪jCj (x) > 0, x ∈ Zd.

This conclusion is not surprising as, when the separation between clusters is large
relative to their diameters, the clusters cannot surround another cluster so as to discon-
nect it from ∞. The proof uses Lemma 7.3 to identify a path from an element that is
exposed in one cluster to the boundary of a set that contains the union of clusters.

Proof of Proposition 7.4. Let x be exposed in Ci and denote the union of clusters by
U = ∪jCj . To prove that x is exposed in U , it suffices to show that there is a path from x

to the boundary of

F = {z ∈ Zd : dist(z, U) ≤ 2 diam(U)},

which otherwise lies outside of U .
Because x is exposed in Ci, there is a path Γ from x to ∂F , which otherwise lies

outside of Ci. We modify Γ to obtain a path that otherwise lies outside of the rest of U as
well. To this end, let

Fj =
{
z ∈ Zd : dist(z, Cj) ≤ diam(Cj)

}
, 1 ≤ j ≤ #C.

We make use of two facts about the Fj .
Fact 1. Each Fj is finite and ∗-connected, so each ∂visFj is connected by Lemma 7.3.
Fact 2. If sep(C) is at least max{e2b, 8

√
d}, then each ∂visFj is disjoint from ∪kFk. To

see why, note that any element of ∂visFj is within
√
d of an element of Fj , while the

distance between distinct Fj and Fk exceeds
√
d:

dist(Fj , Fk) ≥ dist(Cj , Ck)− diam(Cj)− diam(Ck)− 2
√
d

≥ dist(Cj , Ck)
(

1− 2b log dist(Cj , Ck) + 2
√
d

dist(Cj , Ck)

)
>
√
d.

The first inequality follows from the triangle inequality; the second from the fact that
C is a (·, b) clustering; the third from the fact that the ratio is decreasing in dist(Cj , Ck),
which is at least sep(C), and some simple algebra using the assumption that sep(C) ≥
max{e2b, 8

√
d}.

Assume that sep(C) ≥ max{e2b, 8
√
d}. We will keep the part of Γ from x until it first

encounters ∂visFi, which otherwise avoids ∪kFk by assumption. We denote by J the set
of labels of the Fj subsequently hit by Γ. If J is empty, then we are done. Otherwise,
let ` be the label of the first of the Fj that Γ hits, and let Γu and Γv be the first and last
elements of Γ which intersect ∂visF`. By Fact 1, ∂visF` is connected, so there is a shortest
path Λ in ∂visF` from Γu to Γv. We then edit Γ to form Γ′ as

Γ′ =
(
Γ1, . . . ,Γu−1,Λ1, . . . ,Λ|Λ|,Γv+1, . . . ,Γ|Γ|

)
.

Because Γv+1 was the last element of Γ which intersected ∂visF`, Γ′ avoids F`. By Fact 2,
Λ avoids ∪kFk, so if J ′ is the set of labels of Fj encountered by Γ′, then |J ′| ≤ |J | − 1.

If J ′ is empty, then we are done. Otherwise, we can relabel Γ to Γ′ and J to J ′ in the
preceding argument to continue inductively, obtaining Γ′′ and |J ′′| ≤ |J | − 2, and so on.
Because |J | ≤ |U |, we need to modify the path at most |U | times before the resulting
path to ∂F does not return to ∪kFk after reaching ∂visFi. In summary, we edited Γ to
obtain a path from x to ∂visFi and then from ∂visFi to ∂F , which otherwise avoids U . We
conclude that x is exposed in U .
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The next result is an equivalence between the possible transitions of HAT and IHAT.
It states that, if a is large enough in terms of b and d, then a transition between two (a, b)

DOT clusterings is possible for IHAT if and only if it is possible for the natural partitioning
of HAT. We state the result in terms of pUt(x, y) and qVt(i, x, y), defined in (1.2) and (4.7).

Proposition 7.5 (Equivalence between possible transitions). Fix d ≥ 5 and n ≥ 4. Let
a, b > 0, let C0, C1 ∈ Clust•a,b, and denote U0 = ∪jCj0. If a is at least max{e2b, 8

√
d}, then,

for any x ∈ U0 and y ∈ Zd such that

C1 = (C0 \[x]C0 {x}) ∪[x]C0 {y}, (7.5)

the following equivalence holds

pU0(x, y) > 0 ⇐⇒ qC0([x]C0 , x, y) > 0. (7.6)

Proof of Proposition 7.5. Let a, b and C0, C1 satisfy the hypotheses, let x ∈ U0 and y ∈ Zd
satisfy (7.5), and denote U1 = ∪jCj1 and i = [x]C0 . Observe that

pU0(x, y) > 0 ⇐⇒


escU0(x) > 0, (7.7a)

escU1
(y) > 0, and (7.7b)

y ∈ ∂
(
U0\{x}

)
. (7.7c)

Analogously,

qC0(i, x, y) > 0 ⇐⇒


escCi0(x) > 0, (7.8a)

escCi1(y) > 0, and (7.8b)

y ∈ ∂
(
Ci0\{x}

)
. (7.8c)

We claim that

(7.7a) ⇐⇒ (7.8a), (7.7b) ⇐⇒ (7.8b), and (7.7c) ⇐⇒ (7.8c),

which together imply (7.6). We address the forward implications first.

Forward implications Because x ∈ Ci0 ⊆ U0 and y ∈ Ci1 ⊆ U1,

escU0(x) ≤ escCi0(x) and escU1(y) ≤ escCi1(y),

hence (7.7a) =⇒ (7.8a) and (7.7b) =⇒ (7.8b). Next, because sep(C0) ≥ a > 1, we have

∂
(
U0\{x}

)
= ∂

(⋃
i

Ci0\{x}
)

=
⋃
i

∂
(
Ci0\{x}

)
.

Consequently, (7.7c) implies that y ∈ ∂
(
Cj0\{x}

)
for at least one choice of j. In fact, j = i

is the only choice that works as, otherwise, we would have sep(C1) = 1. We conclude that
(7.7c) =⇒ (7.8c).

Reverse implications Because C0 and C1 are (a, b) separated for an a which is at least
max{e2b, 8

√
d}, Proposition 7.4 applies with C0 or C1 in the place of C. Using it, we

conclude that (7.7a) ⇐= (7.8a) and (7.7b) ⇐= (7.8b). The argument we used for the
last forward implication applies in reverse to show that (7.7c) ⇐= (7.8c).
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7.2 Proof of the one-step approximation of HAT by IHAT

The proof is an application of the activation and transport comparisons (Proposi-
tions 6.1 and 6.2). We also need Proposition 7.5, to address a minor technical point.

Proof of Proposition 7.2. Recall the constant κ that appears in the statements of Propo-
sitions 6.1 and 6.2. Let b > 0 and a ≥ max{e2b, 8

√
d, κ}, let C0, C1 ∈ Clust•a,b, and denote

U0 = ∪jCj0.
By the definition of the natural partitioning of HAT with C0 (Definition 1.5),

PC0(U1 = C1) =
∑

pU0(x, y), (7.9)

where the sum ranges over x ∈ U0 and y ∈ Zd that satisfy C1 = (C0 \[x]C0 {x}) ∪[x]C0 {y}.
According to Proposition 7.5, since sep(C0) is at least max{e2b, 8

√
d}, the summand

in (7.9) is positive if and only if qC0([x]C0 , x, y) is. Moreover, since C0 is a partition of U0,
qC0(j, x, y) = 0 for every j 6= [x]C0 . Hence,

QC0(V1 = C1) =
∑

qC0([x]C0 , x, y), (7.10)

where the sum ranges over the same x and y as in (7.9).
Since C0 is a DOT clustering with a separation of at least a ≥ κ, Propositions 6.1

and 6.2 together imply that there is a constant c = c(b, d, n) such that

pU0
(x, y) ≥

(
1− c

(
a−1 log a

)d−2
)
qC0([x]C0 , x, y). (7.11)

We apply this bound to (7.9) and then use (7.10) to conclude that

PC0(U1 = C1) ≥
(

1− c
(
a−1 log a

)d−2
)
QC0(V1 = C1).

8 A random walk related to cluster separation

Proposition 7.1 allows us to bound the probability in (2.1) of Proposition 2.1 with
the corresponding probability under IHAT. The purpose of this section and Section 9
is to show that this probability is strictly positive under IHAT. Our strategy is to view
each pair of DOTs at the consecutive times at which both clusters form line segments
parallel to e1. When viewed at these times, the difference between the clusters’ elements
with the smallest e1 components is a random walk in Zd, albeit not a simple one. In this
section, we define these random walks and prove some preliminary results about them.

8.1 Definitions

Fix d ≥ 5 and n ≥ 4. Recall that Ref denotes the collection of reference dimers and
trimers

Ref =
{
{x, x+ e1} : x ∈ Zd

}
∪
{
{x, x+ e1, x+ 2e1} : x ∈ Zd

}
and Ref× denotes the collection of tuples of such configurations. We inductively define
the references times of IHAT (Vt)t≥0 by ξ0 = 0 and

ξm = inf
{
t > ξm−1 : Vt ∈ Ref×

}
, m ≥ 1.

As a representative element of each cluster Vit , we arbitrarily choose the element
of Vit that is least in the lexicographic order on Zd and denote it by M i

t . For example,
if Vit ∈ Ref, then M i

t is the element with the least e1 component. We use pairs of these
representative elements to define random walks.
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For every distinct pair of clusters i, j ∈ {1, . . . ,#V0} with i < j, we define a random
walk (Si,jk )k≥0 by

Si,j0 = M i
ξ0 −M

j
ξ0

and Si,jk = Si,jk−1 +
(
M i
ξk
−M j

ξk
−
(
M i
ξk−1

+M j
ξk−1

))
, k ≥ 1. (8.1)

We refer to the collection {(Si,jk )k≥0, 1 ≤ i < j ≤ #V0} as the random walks associated
with IHAT.

8.2 Cluster separation and the distance between their representative elements

We will need to convert the distance between distinct clusters Vit and Vjt of IHAT to
the distance between their representative elements M i

t and M j
t , and vice versa. The

triangle inequality implies that∣∣∣dist(Vit ,V
j
t )− ‖M i

t −M
j
t ‖
∣∣∣ ≤ diam(Vit) + diam(Vjt ), t ≥ 0. (8.2)

We can combine (8.2) with two basic facts about IHAT. First, at most one cluster
diameter and representative element M i

t change with each step and, when they do, they
change by at most 1 and diam(Vit), respectively. In other words, for t ≥ 0,

‖M i
t+1 −M i

t‖+ ‖M j
t+1 −M

j
t ‖ ≤ max{diam(Vit),diam(Vjt )}, (8.3)

diam(Vit+1) + diam(Vjt+1) ≤ diam(Vit) + diam(Vjt ) + 1. (8.4)

We use these facts to prove a further result in the spirit of (8.2).

Lemma 8.1. If t ≥ 0 satsfies ξm ≤ t < ξm+1, then

dist(Vit ,V
j
t ) ≥

∥∥Si,jm ∥∥− 6
(
ξm+1 − ξm

)2
. (8.5)

Proof. Assume that ξm ≤ t < ξm+1. By (8.2),

dist(Vit ,V
j
t ) ≥ ‖M i

t −M
j
t ‖ − diam(Vit)− diam(Vjt ). (8.6)

To replace M i
t −M

j
t by Si,jm = M i

ξm
−M j

ξm
in (8.6), we bound the norm of their difference:

M i
t −M

j
t − (M i

ξm −M
j
ξm

) =

t−1∑
s=ξm

(
M i
s+1 −M

j
s+1 − (M i

s −M j
s )
)
. (8.7)

Taking the norm of both sides and applying (8.3) gives

‖M i
t −M

j
t − (M i

ξm −M
j
ξm

)‖ ≤
t−1∑
s=ξm

max{diam(Vis),diam(Vjs )}

≤
t−1∑
s=ξm

(2 + s− ξm) ≤ 1

2
(t− ξm)2 ≤ 1

2
(ξm+1 − ξm)2.

The second inequality holds because cluster diameter grows by at most one with each
step and because, at time ξm, the clusters have diameters of at most 2, since they belong
to Ref. The fourth inequality holds because t < ξm+1.

The preceding bound addresses the first term of (8.6). To address the other terms,
we use (8.4):

diam(Vit) + diam(Vjt ) ≤ (ξm+1 − ξm) + diam(Viξm) + diam(Vjξm) ≤ 5(ξm+1 − ξm).

The second inequality holds because ξm+1− ξm ≥ 1 and because, at time ξm, the clusters
have diameters of at most 2.

Substituting the preceding bounds into (8.6) gives

dist(Vit ,V
j
t ) ≥

∥∥Si,jm ∥∥− 1

2
(ξm+1 − ξm)2 − 5(ξm+1 − ξm).

The claimed bound (8.5) follows from ξm+1 − ξm ≥ 1.
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8.3 The reference times of IHAT have exponential tails

The next result uses Lemma 5.7 to show that the references times (ξm)m≥1 have
exponentially small tails under Q.

Lemma 8.2. Fix d ≥ 5 and n ≥ 4. There is a constant γ1 = γ1(d, n) > 0 such that, if
C0 ∈ Conf×d,n satisfies |Ci0| ∈ {2, 3} for every 1 ≤ i ≤ #C0, then

QC0
(
ξ1 > t

)
≤ 2e−γ1t. (8.8)

This result applies to any tuple of configurations C0 in which each configuration has
two or three elements. In particular, C0 does not need to satisfy a separation lower bound
and it does not need to belong to Ref×.

Proof of Lemma 8.2. Lemma 5.7 states that we can activate any element of any cluster
of Vt with a probability of at least (16n)−1, since each cluster has two or three elements
under QC0 . To arrange a cluster of Vt into a reference cluster, we first ensure that it
is connected, possibly by activating one or two isolated elements, and then we dictate
up to two additional IHAT steps to organize the connected cluster into a line segment
parallel to e1. After addressing the first cluster of Vt, we apply the same procedure to
the rest of the clusters.

Consider an arbitrary cluster Vit . The following procedure shows that Vit+4 ∈ Ref with
a probability of at least p4, where p = (16n)−1(2d)−4.

1. If there is an isolated element of Vit , activate it (w.p. ≥ (16n)−1). Otherwise,
“keep” the current cluster by transporting to wherever activation occurs (w.p.
≥ (16n · 2d)−1). Repeat this step to ensure that the resulting cluster is connected.

2. Once the cluster Vit+2 is connected, if it does not belong to Ref, activate any element
with the least e1 component and transport it to x+ e1, where x is any element of
Vit+2 with the greatest e1 component (w.p. ≥ (16n)−1(2d)−4). Otherwise, keep the
current cluster (w.p. ≥ (16n · 2d)−1). Repeat this step to ensure that Vit+4 belongs
to Ref (i.e., equals {x, x+ e1} or {x, x+ e1, x+ 2e1} for some x ∈ Zd).

The factors of (16n)−1 arise from the use of Lemma 5.7; factors of (2d)−1 arise from
dictating random walk steps during the transport component of the dynamics.

We can apply this procedure to the rest of the clusters to ensure that Vt+4#C0 ∈ Ref×.
Note that #C0 is at most n

2 . This implies that

QC0
(
ξ1 > t+ n

2

∣∣ ξ1 > t
)
≤ q

where q = 1− pn/2. Continuing inductively, we find that

QC0
(
ξ1 > t

)
≤ q[ 2tn ] ≤ q−1e−γ1t

for γ1 = 2
n log 1

q . Since q−1 ≤ 2, this implies (8.8).

8.4 Two standard estimates for random walks associated with IHAT

Our analysis of the random walks (Si,jk )k≥0 associated with IHAT relies on two stan-
dard estimates. We state these estimates and then explain why they apply.

Define the first hitting time of a set A ⊆ Zd by the random walk (Si,jk )k≥0 associated
with IHAT by

T i,jA = inf{k ≥ 0 : Si,jk ∈ A}.

Additionally, denote by B(r) = {z ∈ Zd : ‖z‖ < r} the discrete Euclidean ball of radius
r > 0 centered at the origin.
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By Proposition 2.4.5 of [LL10], there are constants γ2, γ3 > 0 such that for every
C0 ∈ Ref×, every distinct pair i < j of clusters in C0, and every r, λ > 0,

QC0(T i,jB(r)c > λr2) ≤ γ2e
−γ3λ. (8.9)

Furthermore, by Proposition 6.4.2 of [LL10], there are constants γ4, γ5 ≥ 1 such that, if
r ≥ γ4 and if x = Si,j0 /∈ B(r) under QC0 , then

QC0
(
T i,jB(r) <∞

)
≤ γ5

(
r

‖x‖

)d−2

. (8.10)

These estimates apply because (Si,jk )k≥0 is a symmetric, aperiodic, and irreducible
random walk on Zd, with increment norms ‖Si,jk+1−S

i,j
k ‖ that are exponentially tight. First,

it is symmetric because the transition probabilities of IHAT are translation invariant.
Second, it is aperiodic because, if Vt ∈ Ref×, then Vt+1 = Vt with positive probability. This
is true because, if Vt ∈ Ref×, then every element x ∈ V1

t can be activated with positive
probability and has a neighbor, hence it can be transported to its site of activation with
positive probability. Third, it is not hard to see that, for any l ∈ {1, . . . , d}, Si,j1 = Si,j0 + el
with positive probability, which implies that this random walk is irreducible on Zd.
Fourth, the norm of the increment ‖Si,jk+1 − S

i,j
k ‖ is exponentially tight because it is at

most ξi,jk+1 − ξ
i,j
k , which is exponentially tight by Lemma 8.2.

In fact, the results cited from [LL10] assume that the increments of the walk are
bounded, and the constants γ2 through γ5 may in general depend on the increment
distribution. However, the proofs of these results apply as written to the case when the
norms of the increments are exponentially tight, with the exception that the reference to
Proposition 4.3.1 in the proof of Proposition 6.4.2 must be replaced by a reference to
Proposition 4.3.5 (all of these are results in [LL10]). Additionally, because there are only
three possible increment distributions (corresponding to dimer-dimer, dimer-trimer, and
trimer-trimer), we can assume that γ2 through γ5 are the same for all clusters.

9 Growth of cluster separation under HAT and IHAT

The purpose of this section is to prove Proposition 2.1, which states that there
is a positive probability that the natural clustering of HAT satisfies the separation
condition (1.8) of Theorem 1.7, so long as the initial clustering is an (a, b) separated
DOT clustering for sufficiently large numbers a and b. We do so by establishing the
same result for IHAT and then invoking Proposition 7.1. We establish the result for
IHAT by applying standard random walk estimates (8.9) and (8.10) to the random walks
associated with IHAT, and then translating these results into analogous conclusions
about the separation of the clusters, using Lemma 8.1.

9.1 Definitions of key quantities and events

Throughout this section, we fix d ≥ 5 and n ≥ 4. To state the main results, we need
to define several events, which formalize the following picture. Starting from a DOT
clustering C0 ∈ Ref× with a separation of a > 0, we model the distance between two
clusters i < j of C0 using the random walk (Si,jk )k≥0 associated with IHAT (Vt)t≥0. We
aim to observe the distance between these clusters double to 2a over roughly (2a)2 steps
of Si,jk , without dropping below, say, 2εa for some ε ∈ (0, 1). We then aim to observe the
separation double again, over (4a)2 steps of Si,jk , without dropping below 4εa, and so on.
In fact, we will budget slightly more time to observe the doubling, and ε will become
smaller as we observe more doublings.

We will use ` ≥ 1 to count the number of doublings. In terms of the initial separation
a of C0, we will wait t`(a) (roughly (2`a)2) steps for the `th doubling, during which time
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the separation can decrease by at most a factor ε`(a), which is roughly (` log a)−1. We
will require that the number of steps between reference times is at most a quantity κ`(a),
which is roughly log t`(a). We define t0(a) = 0,

t`(a) = [(n` log a)4(2`a)2], ε` = (n` log(a))−1, and κ`(a) = β log(n`t`(a)), ` ≥ 1,

in terms of a constant β > 0 that we will later choose in terms of γ1 from Lemma 8.2.
Here, [r] denotes the integer part of a real number r.

We define four events for each ` ≥ 1. We aim to observe that:

1. The clusters become separated by 2`ε−1
` a by time t`.

2. The separation remains above 2`−1ε`a during {t`−1, . . . , t`}.

3. The separation remains above 2`a during {σi,j` , . . . , t`}, where

σi,j` = inf{s ≥ t`−1 : dist(Vis,Vjs ) ≥ 2`ε−1
` a}.

4. Consecutive reference times between ξN(t`−1) and ξN(t`)+1 never differ by more
than κ`, where N(t) = |{m ≥ 1 : ξm ≤ t}| denotes the number of returns to Ref× by
time t.

Figure 3: An occurrence of ∩3
k=1 G

i,j
k (1).

These descriptions correspond to the following events (Figure 3):

Gi,j1 (`) =
{
σi,j` ≤ t`

}
,

Gi,j2 (`) =
{

dist(Vis,Vjs ) ≥ 2`−1ε`a for t`−1 ≤ s ≤ t`
}
,

Gi,j3 (`) =
{

dist(Vis,Vjs ) ≥ 2`a for σi,j` ≤ s ≤ t`
}
,

G4(`) =
{
ξm − ξm−1 ≤ κ` for N(t`−1) < m ≤ N(t`) + 1

}
.

We denote their intersections as

Gk(`) = ∩i<j Gi,jk (`), 1 ≤ k ≤ 3; Gk = ∩`≥1 Gk(`), 1 ≤ k ≤ 4; and G = ∩4
k=1 Gk .
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9.2 Proof of Proposition 2.1

Recall Growa,b,δ, which consists of sequences of (a, b) DOT clusterings (Ct)t≥0 that
satisfy sep(Ct) ≥ t

1
2−δ for every t ≥ 0 (7.1). Essentially, if we can show that IHAT belongs

to Growa,b,δ with positive probability, for some choice of parameters, then the main
approximation result (Proposition 7.1) will imply the same of the natural partitioning of
HAT. This separation growth condition implies the one in Proposition 2.1.

The event G is significant because, when it occurs and when V0 ∈ Ref×, the sequence
of IHAT states (Vt)t≥0 satisfies the separation condition in Growa,b,δ for some choice
of parameters. This is the content of the next result. By the preceding discussion,
this reduces the proof of Proposition 2.1 to establishing that G occurs with positive
probability.

Proposition 9.1 (Separation grows when G occurs). There exists b = b(d, n) > 0 such
that, for any δ ∈ (0, 1

2 ), there exists α = α(b, d, n, δ), such that, if a ≥ α then,

G∩{V0 ∈ Ref×} ⊆ {(Vt)t≥0 ∈ Growã,b,δ} , (9.1)

where ã = a0.99.

The second main result of this section is a bound on QC0(G), which applies to every
C0 ∈ Ref× that satisfies sep(C0) ≥ a for sufficiently large a. Note that such clusterings are
necessarily (a, b) DOT clusterings for every b ≥ 2(log a)−1 (1.7), because their clusters
are reference dimers and trimers, which have diameters of at most 2.

Proposition 9.2 (G is typical for IHAT). There is a constant α = α(b, d, n) such that every
C0 ∈ Ref× with sep(C0) ≥ α satisfies QC0(G) ≥ 1

2 .

Together, the two preceding propositions and Proposition 7.1 imply Proposition 2.1.

Proof of Proposition 2.1. Fix d ≥ 5 and n ≥ 4, and let b > 0 be the constant from
Proposition 9.1. It suffices to show that, for any δ ∈ (0, 1

2 −
1
d−2 ), there is a > 0 such

that, if W ∈ Confd,n has a clusteringW ∈ Clust•a,b(W )∩Ref×, then the natural clustering
(Ut)t≥0 of (Ut)t≥0 withW satisfies

PW ((Ut)t≥0 ∈ Growã,b,δ) ≥
1

4
.

To this end, fix ε = 1
2 in Proposition 7.1, and let α > 1 be the largest of the constants

it names in Propositions 7.1, 9.1, and 9.2. Then, take a = α1.1, so that ã = a0.99 ≥ α. By
Propositions 7.1, 9.1 and 9.2, we have

PW ((Ut)t≥0 ∈ Growã,b,δ) ≥
1

2
QW ((Vt)t≥0 ∈ Growã,b,δ) ≥

1

2
QW(G) ≥ 1

4
.

Respectively, the hypotheses of these three propositions are satisfied because W ∈
Clust•ã,b for ã ≥ α, because b is as in Proposition 9.1 and a ≥ α, and because W ∈
Clust•a,b ∩Ref× for a ≥ α.

We turn our attention to the proofs of Propositions 9.1 and 9.2.

9.3 Proof of Proposition 9.1

The proof shows that the inclusion (9.1) holds when G2 and G4 occur.

Proof of Proposition 9.1. We need to show that there is b > 0 such that, for any δ ∈ (0, 1
2 ),

we can take a sufficiently large to ensure that, when G occurs,

sep(Vs) ≥ ã, diam(Vis) ≤ b log dist(Vis,Vjs ), and sep(Vs) ≥ s
1
2−δ,

for every distinct pair of clusters 1 ≤ i < j ≤ #V0 and for every s ≥ 0. We address these
three conditions in turn.
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1. When G2 occurs, sep(Vs) is at least ε1a for every s ≥ 0. If a is sufficiently large in
terms of n, then sep(V) ≥ ã.

2. Let ` ≥ 1 and s ∈ [t`−1, t`]. Recall that N(t) = |{m ≥ 1 : ξm ≤ t}| denotes the
number of returns to Ref× by time t. Since diameter grows at most linearly in time
and since ViξN(s)

∈ Ref has a diameter of at most 2,

diam(Vis) ≤ ξN(s)+1 − ξN(s) + 2. (9.2)

We can obtain a further upper bound on diam(Vis) by noting that, when G4 occurs,
ξN(s)+1 − ξN(s) is at most κ`, which is essentially log t`. Recall that t` .n (2`a)2 ·
(` log a)4. Hence, when a is sufficiently large,

diam(Vis) .n `+ log a.

On the other hand, when G2 occurs, dist(Vis,Vjs ) ≥ 2`−1ε`a, which implies that

log dist(Vis,Vjs ) &n `+ log a.

By comparing these bounds, we see that diam(Vis) ≤ b log dist(Vis,Vjs ) holds for all
sufficiently large a, so long as b is large enough in terms of n.

3. Let s ∈ [t`−1, t`], in which case s1/2−δ is at most t1/2−δ` . (2`a)1−2δ · (` log a)2−4δ.

When G2 occurs, sep(Vs) &n 2`a
` log a , hence sep(Vs) is larger by a factor of roughly

(2`a)2δ:
sep(Vs)
s1/2−δ ≥

sep(Vs)
t
1/2−δ
`

&n
(2`a)2δ

(` log a)3
.

Consequently, we can take a sufficiently large in terms of δ and n to ensure that
sep(Vs) ≥ s

1
2−δ (Figure 4).

Figure 4: When G2 occurs, the separation of IHAT lies above the blue lines. The red
dashed line is a lower bound of s1/2−δ on cluster separation sep(Vs).

9.4 Proof of Proposition 9.2

This subsection is devoted to a proof of the following result. To state it, we denote by
Ft the σ-field generated by (Vs)0≤s≤t. Additionally, throughout this subsection, we use
EC to denote expectation with respect to QC instead of PC.

Proposition 9.3. There exists α = α(d, n) > 0 such that, if C0 ∈ Ref× satisfies sep(C0) ≥
α, then

QC0
(
G(`)c | Fη`−1

)
1G(`−1) ≤ 8`−2, ` ≥ 1, (9.3)

where η`−1 denotes ξN(t`−1)+1.
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Proposition 9.2 follows easily from Proposition 9.3.

Proof of Proposition 9.2. Let α > 0 be the constant named in Proposition 9.3, let C0 ∈
Ref× satisfy sep(C0) ≥ α, and let ` ≥ 1. By conditioning on Fη`−1

and then applying
Proposition 9.3, we find that

QC0

(
G(`)c ∩`−1

m=1 G(m)
)
≤ EC0

[
QC0

(
G(`)c | Fη`−1

)
1G(`−1)

]
≤ 8`−2.

Consequently,

QC0

((
∩∞`=1 G(`)

)c)
=

∞∑
`=1

QC0

(
G(`)c ∩`−1

m=1 G(m)
)
≤
∞∑
`=1

8`−2 <
1

2
.

We will prove Proposition 9.3 in terms of events that are analogous to the Gi,jk (`), but
which reference the random walks associated with IHAT instead of the distance between
IHAT clusters, so that we can apply the random walk hitting estimates of Section 8.4 to
them. To convert between the two, we recall Lemma 8.1, which states that

dist(Vis,Vjs ) ≥
∥∥Si,jm−1

∥∥− 6
(
ξm − ξm−1

)2
, ξm−1 ≤ s < ξm.

For this bound to be useful, we need the upper bound on ξm − ξm−1 that the occurrence
of G4(`) supplies,

ξm − ξm−1 ≤ log(n`t`), N(t`−1) < m ≤ N(t`) + 1.

By combining these two bounds, we see that

dist(Vis,Vjs ) ≥ ‖Si,jN(s)‖ − 6κ2
` , t`−1 ≤ s ≤ t`.

This motivates the definition of the following events, in terms of an analogue of σi,j` :

ρi,j` = inf
{
m > N(t`−1) : Si,jm /∈ B

(
2`ε−1

` a+ 6κ2
`

)}
, ` ≥ 1.

We also use κ` to define analogues of Gi,jk (`):

Fi,j1 (`) =
{
ρi,j` ≤ N(t`)

}
,

Fi,j2 (`) =
{
Si,jm /∈ B

(
2`−1ε`a+ 6κ2

`

)
, N(t`−1) ≤ m ≤ N(t`) + 1

}
,

Fi,j3 (`) =
{
Si,jm /∈ B

(
2`a+ 6κ2

`

)
, ρi,j` ≤ m ≤ N(t`) + 1

}
,

and F4(`) = G4(`). We denote their intersections as

Fk(`) = ∩i<j Fi,jk (`), 1 ≤ k ≤ 3; Fk = ∩`≥1 Fk(`), 1 ≤ k ≤ 4; and F = ∩4
k=1 Fk .

To prove Proposition 9.3, it suffices to bound above the probability that F(`)c occurs
because F(`) is a sub-event of G(`).

Proposition 9.4. For each ` ≥ 1, F(`) ⊆ G(`).

Proof. Fix ` ≥ 1 and let s ∈ [t`−1, t`]. When F4(`) = G4(`) occurs, ξN(s)+1−ξN(s) is at most

κ`. In this case, Lemma 8.1 implies that dist(Vis,Vjs ) ≥ ‖Si,jN(s)‖ − 6κ2
` for every pair of

distinct clusters i < j. This bound implies the following inclusions. First, Fi,j1 (`) ⊆ Gi,j1 (`)

holds because

Fi,j1 =
{
∃s ∈ (t`−1, t`] : ‖Si,jN(s)‖ ≥ 2`ε−1

` a+ 6κ2
`

}
⊆
{
∃s ∈ (t`−1, t`] : dist(Vis,Vjs ) ≥ 2`ε−1

` a
}

= Gi,j1 .
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Second, the inclusion Fi,j2 (`) ⊆ Gi,j2 is justified by

Fi,j2 (`) ⊆
{
‖Si,jN(s)‖ ≥ 2`−1ε`a+ 6κ2

` , s ∈ [t`−1, t`]
}

⊆
{

dist(Vis,Vjs ) ≥ 2`−1ε`a, s ∈ [t`−1, t`]
}

= Gi,j2 (`).

Third, Fi,j3 (`) ⊆ Gi,j3 (`) holds because the reasoning that led to the first inclusion also
shows that ρi,j` ≤ N(σi,j` ), hence

Fi,j3 (`) =
{
‖Si,jm ‖ ≥ 2`a+ 6κ2

` , m ∈ [ρi,j` , N(t`) + 1]
}

⊆
{
‖Si,jN(s)‖ ≥ 2`a+ 6κ2

` , s ∈ [σi,j` , t`]
}

⊆
{

dist(Vis,Vjs ) ≥ 2`a, s ∈ [σi,j` , t`]
}

= Gi,j3 (`).

Recall that Lemma 8.2 bounds above the tail probabilities of ξm − ξm−1. We combine
it with a union bound to bound above the probability that F4(`)c occurs.

Proposition 9.5. There exists α > 0 such that, if C0 ∈ Ref× satisfies sep(C0) ≥ α, then

QC0(F4(`)c) ≤ (8n`)−2, ` ≥ 1.

Proof. Assume that sep(C0) = a for some a > 0. Since N(t`) is at most t`, F4(`)c is a
union of at most t` events of the form {ξm − ξm−1 > κ`}. Lemma 8.2 states that there is
a constant γ1 > 0 such that

QD0
(ξm − ξm−1 > s) ≤ 2e−γ1s, s ≥ 0,

holds uniformly over D0 ∈ Conf×d,n that satisfy the same hypothesis as C0. We combine
this tail bound with a union bound and the fact that κ` = β log(n`t`):

QC0(F4(`)c) ≤ 2t`e
−γ1κ` =

2t`
(n`t`)γ1β

.

If a is at least a sufficiently large constant α > 0, simply to ensure that t`(a) ≥ 1, then a
suitable choice of β in terms of γ1 implies the claimed bound.

When F4(`) occurs, the time between consecutive reference times is at most κ` until
time t`, which implies that there are roughly t`/κ` random walk steps between t`−1 and
t`. Hence, it is rare for the norm of this random walk to be significantly smaller than√
t`/κ` until time t`, i.e., for Fi,j1 (`)c to occur.

Proposition 9.6. There exists α = α(d, n) such that, if C0 ∈ Ref× satisfies sep(C0) ≥ α,
then

QC0
(
Fi,j1 (`)c ∩ F4(`)

∣∣ Fη`−1

)
≤ (8n`)−2, ` ≥ 1, (9.4)

where η`−1 denotes ξN(t`−1)+1.

Proof. Assume that sep(C0) = a for some a > 0. Denote r = 2`ε−1
` a+ 6κ2

` . By definition,

Fi,j1 (`)c =
{
Si,jm ∈ B(r), N(t`−1) < m ≤ N(t`)

}
.

Assume for the moment that, when F4(`) occurs, the number of steps in Fi,j1 (`)c satisfies

N(t`)−N(t`−1)− 1 ≥ λr2 (9.5)
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with λ = γ−1
3 log

(
γ2(8n`)2

)
. We use (9.5) to prove (9.4) as

QC0

(
Fi,j1 (`)c ∩ F4(`)

∣∣ Fη`−1

)
≤ QC0

(
Si,jN(t`−1)+1+m ∈ B(r), 0 ≤ m ≤ λr2

∣∣ Fη`−1

)
= QVη`−1

(
T i,jB(r)c > λr2

)
≤ γ2e

−γ3λ = (8n`)−2.

The first inequality follows from the definition of Fi,j1 (`)c and the claimed bound on
N(t`)−N(t`−1)− 1; the first equality is due to the strong Markov property at time η`−1;
the second inequality holds by (8.9), which applies because Vη`−1

∈ Ref×; and the second
equality holds by the choice of λ.

The claimed bound (9.5) holds when a is sufficiently large. Indeed, when F4(`) occurs,

N(t`)−N(t`−1)− 1 & κ−1
` (t` − t`−1).

When a is sufficiently large, this lower bound is at least (2κ`)
−1t`. It therefore suffices to

show that
(2κ`)

−1t` ≥ λr2.

Some algebra shows that (2κ`)
−1t` &n (log a)λr2. Consequently, there exists α =

α(γ2, γ3, n) = α(d, n) > 0 such that, if a ≥ α, then the preceding bound is satisfied.

For Fi,j2 (`)c to occur, the norm of the random walk must eventually drop below its
value at time t`−1 by a factor of roughly ε−1

` . The estimate (8.10) implies that this occurs
with a probability of at most roughly εd−2

` .

Proposition 9.7. There exists α = α(d, n) such that, if C0 ∈ Ref× satisfies sep(C0) ≥ α,
then

QC0
(
Fi,j2 (`)c

∣∣ Fη`−1

)
1G(`−1) ≤ (8n`)−2, ` ≥ 1,

where η`−1 denotes ξN(t`−1)+1.

Proof. Assume that sep(C0) = a for some a > 0. Denote r = 2`ε`a+ 6κ2
` . By definition,

Fi,j2 (`) =
{
Si,jm ∈ B(r)c, N(t`−1) ≤ m ≤ N(t`)

}
.

For Fi,j2 (`) to occur, it suffices for the random walk from Si,jN(t`−1) to never hit B(r). In

fact, when G(`− 1) occurs, Si,jN(t`−1) ∈ B(r)c, so we can consider the random walk from

X = Si,jN(t`−1)+1 instead. This is a minor point, so we discuss it at the end of the proof.
For now, we simply use the inclusion

F i,j2 (`) ∩ G(`− 1) ⊇
{
Si,jm ∈ B(r)c, m > N(t`−1)

}
∩ G(`− 1). (9.6)

By (9.6), the strong Markov property at η`−1, and (8.10), when G(`− 1) occurs,

QC0

(
Fi,j2 (`)

∣∣ Fη`−1

)
≥ QC0

(
Si,jm ∈ B(r)c, m > N(t`−1)

∣∣ Fη`−1

)
= QVη`−1

(
T i,jB(r)c =∞

)
≥ 1− γ5

( r

‖X‖

)d−2

. (9.7)

Our use of (8.10) relies on the fact that Vη`−1
∈ Ref× and requies that we take a

sufficiently large to ensure that r ≥ γ4.
To bound below ‖X‖, we note that the separation of Vη`−1

is at least 2`−1a, while the
diameters of the clusters are at most 2, when G(`− 1) occurs. By (8.2),

‖X‖ ≥ dist(Viη`−1
,Vjη`−1

)− diam(Viη`−1
)− diam(Vjη`−1

) ≥ 2`−1a− 4. (9.8)
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Call this lower bound R, in which case (9.7) and (9.8) imply that

QC0

(
Fi,j2 (`)c

∣∣ Fη`−1

)
1G(`−1) ≤ γ5

( r
R

)d−2

.

Some algebra shows that r
R & (n` log a)−1 when a is sufficiently large in terms of n.

Hence, there exists α = α(γ4, γ5, n) = α(d, n) > 0 such that, if a ≥ α, then the preceding
bound is at most (8n`)−2.

To conclude, we explain why Si,jN(t`−1) /∈ B(r), which justifies the inclusion (9.6).

By (8.2) and (9.2), and when G(`− 1) occurs,

‖Si,jN(t`−1)‖ ≥ dist(Vit`−1
,Vjt`−1

)− 2
(
ξN(t`−1)+1 − ξN(t`−1) + 2

)
≥ 2`−1a− 2κ`−1.

This quantity is roughly larger than r by a factor of ` log a, so 2`−1a− 2κ`−1 − r > 0 when
a is sufficiently large in terms of n. We can assume that this is true of every a ≥ α by
increasing α as necessary.

For Fi,j3 (`)c to occur, the norm of the random walk must eventually drop by a factor of
ε−1
` , relative to its value at step ρi,j` . As in the proof of Proposition 9.7, the estimate (8.10)

implies that this occurs with a probability of at most roughly εd−2
` .

Proposition 9.8. There exists α = α(d, n) such that, if C0 ∈ Ref× satisfies sep(C0) ≥ α,
then

QC0
(
Fi,j1 (`) ∩ Fi,j3 (`)c

∣∣ Fη`−1

)
≤ (8n`)−2.

Proof. Assume that sep(C0) = a for some a > 0. When Fi,j1 (`) occurs, there is a first step
m ∈ (N(t`−1), N(t`)] at which Y = Si,jm belongs to B(R)c, where R = 2`ε−1

` a + 6κ2
` . For

Fi,j3 (`)c to occur, Si,jm must hit B(r), where r = 2`a+ 6κ2
` , starting from Y . Note that R is

larger than r by a factor of roughly n` log a. By the strong Markov property at time ξm
and (8.10),

QC0
(
Fi,j1 (`) ∩ Fi,j3 (`)c

∣∣ Fη`−1

)
= EVη`−1

[
QVξm

(
Fi,j3 (`)c

)
;Fi,j1 (`)

]
≤ EVη`−1

[
γ5

( r

‖Y ‖

)d−2]
≤ γ5

( r
R

)d−2

.

Note that our use of (8.10) makes use of the fact that Vη`−1
∈ Ref× and, to use it, we must

take a sufficiently large to ensure that r ≥ γ4. Some algebra shows that r
R & (n` log a)−1

when a is sufficiently large. Hence, there exists α = α(γ4, γ5, n) = α(d, n) > 0 such that,
if a ≥ α, then the preceding bound is at most (8n`)−2.

We combine the preceding five propositions to prove Proposition 9.3.

Proof of Proposition 9.3. Let α be the largest of the constants it names in Proposi-
tions 9.5 through 9.8, and assume that C0 ∈ Ref× satisfies sep(C0) ≥ α. We aim to
show that

QC0
(
G(`)c | Fη`−1

)
1G(`−1) ≤ (8`)−2, (9.9)

in terms of η`−1 = ξN(t`−1)+1. By Proposition 9.4 and a union bound over distinct pairs of
clusters, we have

QC0
(
G(`)c | Fη`−1

)
≤ QC0

(
F(`)c | Fη`−1

)
≤
∑
i<j

QC0
(
Fi,j(`)c | Fη`−1

)
. (9.10)
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Using the fact that, for events E1 and E2, Ec
2 is contained in the disjoint union

(E1 ∩ Ec
2) ∪ Ec

1, we find that

QC0
(
Fi,j(`)c

∣∣ Fη`−1

)
≤ 3QC0

(
F4(`)c

∣∣ Fη`−1

)
+ 2QC0

(
Fi,j1 (`)c ∩ F4(`)

∣∣ Fη`−1

)
+ QC0

(
Fi,j2 (`)c

∣∣ Fη`−1

)
+ QC0

(
Fi,j1 (`) ∩ Fi,j3 (`)c

∣∣ Fη`−1

)
.

When G(`− 1) occurs, we can apply Propositions 9.5 through 9.8 to bound the terms on
the right-hand side as

QC0
(
Fi,j(`)c | Ft`−1

)
1G(`−1) ≤ 8(n`)−2.

The bound (9.9) then follows from (9.10) and the fact that there are at most n2 distinct
pairs of clusters.

10 Strategy for the proof of Theorem 1.9

Let us briefly summarize what the preceding sections have accomplished. In Section 2,
we proved our main result, Theorem 1.7, assuming Proposition 2.1 and Theorem 1.9.
In Sections 4 through 9, we proved Proposition 2.1, using an approximation of HAT by
IHAT and a random walk model of cluster separation under IHAT. In this section, our
focus shifts to proving Theorem 1.9.

We continue to assume that d ≥ 5 and n ≥ 4. Recall that Theorem 1.9 identifies, for
every a > 0, a number of steps N = N(a, d, n) and a positive probability p = p(a, d, n)

such that the PV probability that UN has an (a, 1) DOT clustering in Ref× is at least p,
for any V ∈ Confd,n.

If p is allowed to depend on V , then it is easy to identify a sequence of N ′ configura-
tions that can be realized as (U1, . . . , UN ′) under PV and is such that UN ′ has an (a, 1)

DOT clustering in Ref×. Indeed, it would take only two “stages”:

(1’) First, we rearrange V into a line segment emanating in the −e1 direction from, say,
the element of V which is least in the lexicographic ordering of Zd.

(2’) Second, we “treadmill” (Figures 5 and 6) a pair of elements from the “tip” of
the segment, in the −e1 direction, until the pair is sufficiently far from the other
elements. We then repeat this process, one pair at a time, until only two or three
elements of the initial segment remain.

Figure 5: An example of treadmilling three elements in the −e1 direction.

While stage (2’) could be realized by HAT with at least a probability depending on
d and n only, stage (1’) could introduce a dependence on V into p. Indeed, it might
require that we specify the transport of an activated element over a distance of roughly
the diameter of V . We will avoid this by adding one preliminary stage; in the resulting,
three-stage procedure, stages (1’) and (2’) are essentially stages (2) and (3).

To specify the stages, we need two definitions.
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Figure 6: By treadmilling pairs of elements in the −e1 direction, a line segment of seven
elements can be rearranged into a configuration with a (5, 2

log 5 ) DOT clustering in Ref×.

Definition 10.1 (Lined-up). We say that C ∈ Conf×d,n can be lined-up with separation

r > 0 if dist(Ci, C 6=i) ≥ 2r and if Ci is a connected subset of Zd, for every 1 ≤ i ≤ #C. We
also say that the union ∪iCi ∈ Confd,n can be lined-up with separation r.

Note that tuples in Conf×d,n may consist of only one entry, in which case it suffices for
this entry to be a connected set for it to be lined-up with separation r > 0.

Definition 10.2 (Lex). We say that an element x of a finite set A ⊂ Zd is lex in A,
denoted lex(A) = x, if it is least among the elements of A in the lexicographic order
of Zd.

Here is the three-stage procedure, which takes as input V ∈ Confd,n and an integer
a ≥ 1, which we will later require to be sufficiently large in terms of d and n. Note that
the output of each algorithm is an element of Conf×d,n, not an element of Confd,n.

1. First, we will use Algorithm A1 to construct a clustering C = A1(V, a) of a config-
uration which can be lined-up with separation dn2a. This algorithm is the most
complicated of the three. In brief, the algorithm repeatedly attempts to create
a non-isolated lex element of a cluster, so that it can be “treadmilled” in the −e1

direction—along with a neighboring element—to form a new dimer cluster.
2. In the second stage, we will apply Algorithm A2 to “line-up” the elements of each

cluster Ci. Specifically, in terms of the line segment

Lk =
{
− je1 : j ∈ {0, 1, . . . , k − 1}

}
, k ≥ 1, (10.1)

we will rearrange the elements of Ci into the set lex(Ci) + L|Ci|. Specifically, the
resulting clustering will be

A2(C) =
(
lex(Ci) + L|Ci|

)#C
i=1

.

3. In the third stage, Algorithm A3 will iteratively treadmill pairs of elements from
each segment in the −e1 direction for multiples of a steps until only a dimer or
a trimer of the original segment remains (Figure 6). The resulting clustering
A(V, a) = A3(A2(C), a) will be an (a, 1) DOT clustering.

In the next section, we prove some results which will aid our analysis of the algorithms.
In particular, we prove a harmonic measure lower bound for lex elements. After preparing
these inputs, in Section 12, we will state and analyze the three algorithms to prove
Theorem 1.9.
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11 Inputs to the proof of Theorem 1.9

11.1 A geometric lemma

To facilitate the application of a harmonic measure estimate in the next subsection,
we need a geometric lemma and a consequence thereof. We state the following lemma
with greater generality than is needed for this immediate need, so that we can reuse it
in a later section. The statement requires the notion of the ∗-visible boundary of a set,
which we first defined in (7.4).

Lemma 11.1. Let d ≥ 1. Let A be a finite subset of Zd that contains the origin, and let x
and y be distinct elements of ∂visA. There is a path Γ from x to y in Ac of length at most√
d diam(A) + 3d+1|A|. Moreover, Γ is contained in {z ∈ Zd : ‖z‖ ≤ diam(A) +

√
d}.

Proof. Fix a finite set A ⊂ Zd containing the origin, and fix two elements, x and y, in
∂visA. Let {Bi}i be the collection of ∗-connected components of A. Because A is finite,
each Bi is finite and, as each Bi is also ∗-connected, each ∂visBi is connected in Zd by
Lemma 7.3.

If Γ is the path of least length from x to y, then this length, denoted |Γ|, satisfies

|Γ| ≤
√
ddiam(A) + 2d.

Indeed, by definition, if u ∈ ∂visA, then there is v ∈ A such that ‖u − v‖ ≤
√
d. By the

triangle inequality, diam(∂visA) is at most diam(A) + 2
√
d, which implies the bound on |Γ|

because |Γ| ≤
√
d‖x− y‖. We will edit Γ to obtain a potentially longer path which does

not intersect A.

If Γ does not intersect A, then we are done. Otherwise, let i1 denote the label of the
first ∗-connected component of A intersected by Γ. Additionally, denote by u and v the
first and last indices of Γ which intersect ∂visBi1 . Because ∂visBi1 is connected in Zd,
there is a path Λ in ∂visBi1 from Γu to Γv. We may therefore edit Γ to form Γ′:

Γ′ =
(
Γ1, . . . ,Γu−1,Λ1, . . . ,Λ|Λ|,Γv+1, . . . ,Γ|Γ|

)
.

If Γ′ does not intersect A, then we are done, as Γ′ is contained in the union of Γ and
∪i∂visBi, and because ∪i∂visBi has at most 3d|A| elements. Accordingly,

|Γ′| ≤
√
ddiam(A) + 2d+ 3d|A| ≤

√
d diam(A) + 3d+1|A|. (11.1)

Otherwise, if Γ′ intersects another ∗-connected component Bi2 of A, we can argue in
an analogous fashion to obtain a path Γ′′ which intersects neither Bi1 nor Bi2 . Like Γ′,
Γ′′ is contained in the union of Γ and ∪i∂visBi and so its length satisfies the same upper
bound. By continuing inductively, we obtain a path from x to y with a length of at most
the right-hand side of (11.1).

The path is contained in the union of Γ and ∪i∂visBi, which is contained in {z ∈ Zd :

‖z‖ ≤ diam(A) +
√
d} because A contains the origin by assumption.

A consequence of this result is a simple comparison of harmonic measure at two
points.

Lemma 11.2. Let d ≥ 5 and n ≥ 2. There is a constant c = c(d, n) such that, if
A ∪ B ∈ Confd,n such that A is connected and dist(A,B) ≥ 4dn, then, for any distinct
x, y ∈ A that are exposed in A ∪B,

HA∪B(x) ≥ cHA∪B(y). (11.2)
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Proof. Let x, y be elements of A which are exposed in A ∪ B. If u is any element of
∂visA ∩ ∂{x} and v is any element of ∂visA ∩ ∂{y}, then, by Lemma 11.1, there is a path Γ

from u to v in Ac of length at most
√
d diam(A) + 3d+1|A| ≤ 1.1 · 3d+1n ≤ 4dn.

The first inequality is due to the assumption that A is connected, which implies that
diam(A) is at most n, and the fact that

√
d ≤ 0.1 · 3d+1 when d ≥ 5. The second inequality

holds because d ≥ 5.
Because B is a distance of at least 4dn from A, Γ must also lie outside of B. This

implies that there is a constant c = c(d, n) such that

escA∪B(x) ≥ c escA∪B(y).

Dividing by the capacity of A ∪B gives (11.2).

11.2 An estimate of harmonic measure for lex elements

We now prove a harmonic measure lower bound for lex elements.

Lemma 11.3. Let d ≥ 5 and n ≥ 2. There are constants r = r(d, n) and c = c(d) such
that, if A ∪B ∈ Confd,n satisfies dist(A,B) ≥ r and if x is lex in A, then

escA∪B(x) ≥ cn−
1
d−2−od(1) (11.3)

and, consequently,

HA∪B(x) ≥ cn−
d−1
d−2−od(1). (11.4)

For concreteness, the od(1) quantities are never larger than 0.8 when d ≥ 5, and the two
lower bounds can be replaced with cn−1.2 and cn−2.2.

Proof. Suppose that x is lex in A and that there are positive integers k and ` for which
dist(A,B) ≥ 2k`

√
d. We will bound below the probability that a random walk from x

escapes A ∪ B by bounding below the probability that it (1) takes ` steps in the −e1

direction, then (2) exits a sequence of doubling cubes through their −e1 directed faces
until it is at least a distance of 2k−1` from A ∪B, and (3) subsequently never returns to
A ∪B.

First, a random walk from x reaches x−`e1 before returning to A∪B with a probability
of at least (2d)−`:

Px(τx−`e1 < τA∪B) ≥ (2d)−`. (11.5)

The random walk can do so, for example, by following (x− e1, x− 2e1, . . . , x− `e1), which
lies outside of A ∪ B because x is lex in A and because B is a distance of at least
2k`
√
d > ` from x.

Second, for u ∈ Zd and ` ∈ Z≥1, define Q(u, `) to be the open cube centered at u and
with side length 2`, and denote the −e1 directed face of its boundary by F (u, `):

Q(u, `)=

{
z ∈ Zd : max

1≤i≤d
|zi − ui| < `

}
and F (u, `)=

{
z ∈ ∂Q(u, `) : z1 = min

v∈∂Q(u,`)
v1

}
.

We inductively define cube centers Xj , cubes Qj , and faces Fj according to X1 = x− `e1,

Qj = Q(Xj , 2
j−1`), Fj = F (Xj , 2

j−1`), and Xj+1 = Sτ∂Qj , j ≥ 1.

When ∩ji=2{Xi ∈ Fi−1} occurs, Xj satisfies

dist(A,Xj) ≥ 2j−1` and dist(B,Xj) ≥ dist(A,B)− 2j−1`
√
d, j ≥ 1.
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Since the distance between A and B is at least 2k`
√
d, this bound implies that

dist(A ∪B,Xk) ≥ 2k−1`.

Hence, if C = {z ∈ Zd : dist(z,A ∪B) < 2k−1`}, then

PX1
(τ∂C < τA∪B) ≥ PX1

(∩kj=2{Xj ∈ Fj−1}) = (2d)−(k−1). (11.6)

The equality follows the strong Markov property applied to τ∂Fj for each j ≥ 1 and the
fact that PXj (Xj+1 ∈ Fj) = (2d)−1, by symmetry.

Third, when {τ∂C < τA∪B} occurs, the probability that the random walk never returns
to A ∪B is at least the minimum of Pz(τA∪B =∞) over z ∈ ∂C. The distance from ∂C to
A ∪B is at least 2k−1`. By Lemma 5.1, there is a constant `0 = `0(d) ∈ Z≥1 such that, if
` ≥ `0, then

Px(τA∪B =∞ | τX1
< τ∂C < τA∪B) ≥ min

z∈∂C
Pz (τA∪B =∞) ≥ 1− n2−k(d−2). (11.7)

Combining (11.5), (11.6), and (11.7), and taking ` = `0, we find that

escA∪B(x) & (2d)−k+1(1− n2−k(d−2)). (11.8)

If n is at most 2d−3, then choosing k = 1 in (11.8) results in a constant lower bound,
depending on d only. Otherwise, if n exceeds 2d−3, then we can take k to be the integer
part of log2((2n)

1
d−2 ), in which case (11.8) gives

escA∪B(x) & n−
1+log2(d)
d−2 .

Because cap(A ∪B) is at most nG(o)−1, the preceding bound implies that

HA∪B(x) & n−
d−1+log2(d)

d−2 .

We conclude the proof by setting r = 2k0`0
√
d, where k0 is the larger of 1 and the integer

part of log2((2n)
1
d−2 ).

We apply the preceding lemma to prove the following conditional hitting estimate.

Lemma 11.4. Let d ≥ 5. There are constants r = r(n, d) and c = c(d) such that if x is
lex in A, if A ∪B ∈ Confd,n such that dist(A,B) ≥ r, and if B can be written as a disjoint
union B1 ∪B2 where |B1| ≤ 3 and dist(B1, B2) ≥ r, then

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞
)
≥ cn−

d
d−2−od(1) diam(A ∪B)2−d. (11.9)

For concreteness, the od(1) quantity is smaller than 1.6 when d ≥ 5.

Proof. Let A, B, B1, and B2 satisfy the hypotheses for the r in the statement of
Lemma 11.3. Additionally, denote by F the set of points within a distance r diam(A ∪B)

of A ∪B. Applying the strong Markov property to τF c , we write

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞
)

≥ Ex
[
PSτF c

(
SτA∪B ∈ B1

∣∣ τA∪B <∞
)
PSτF c

(
τA∪B <∞

)
; τF c < τA∪B

]
. (11.10)

A standard result (e.g., [Law13, Theorem 2.1.3]) implies that for all sufficiently large
r, if y belongs to F c, then

Py
(
SτA∪B ∈ B1

∣∣ τA∪B <∞
)
≥ 1

2
HA∪B(B1). (11.11)
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Because B1 ∪ (A ∪B2) satisfies the hypotheses of Lemma 11.3,

HA∪B(B1) & c1n
− d−1
d−2−od(1). (11.12)

By Lemma 5.1, for any y ∈ F c, we have

Py
(
τA∪B <∞

)
& dist(y,A ∪B)2−d. (11.13)

Lastly, by Lemma 11.3, the probability of hitting F c before returning to A ∪B satifies

Px(τF c < τA∪B) ≥ escA∪B(x) & n−
1
d−2−od(1). (11.14)

Applying (11.11) through (11.14) to (11.10), we conclude that

Px
(
SτA∪B ∈ B1

∣∣ τA∪B <∞
)
& n−

d
d−2−od(1) diam(A ∪B)2−d.

Here, od(1) can be taken to be 1.6 when d ≥ 5.

12 Proof of Theorem 1.9

In this section, we will analyze three algorithms which, when applied sequentially,
dictate a sequence of HAT steps to form a configuration that has an (a, 1) DOT clustering
in Ref×, from an arbitrary configuration and for any sufficiently large a. Each subsection
will contain the statement of an algorithm and two results:

1. Informally, the first result will conclude that the algorithm does what it is intended
to do.

2. The second will provide bounds on the number of steps and probability with which
HAT realizes the steps dictated by the algorithm.

The final subsection will combine the bounds. We fix d ≥ 5 and n ≥ 2 throughout.

12.1 Algorithm 1

Algorithm A1 takes a configuration U ∈ Confd,n and an integer a ≥ 1 as input and
returns a tuple of (one or more) configurations C that can be lined-up with separation
dn2a. This tuple represents a partition of a configuration into parts that are connected,
have at least two elements, and are separated by at least 2dn2a. These parts can be
thought of as “clumps” of elements—in particular, they may not be line segments and
they may have more than three elements—hence, C may not belong to Ref×.

The algorithm attempts to treadmill (in the sense of Figure 5) pairs of elements in
the −e1 direction. To start, if the lex element ` of U is non-isolated, then the algorithm
treadmills ` and one of its exposed neighbors along the ray (`− e1, `− 2e1, . . . ), which is
empty of U because ` is lex in U . Once these elements are sufficiently far from the rest
of U , they become C1, and the algorithm attempts to repeat this process with U ′ = U \ C1

in the place of U . However, the next pair of elements is treadmilled less far, so that it is
distant from both C1 and U ′.

Suppose, for example, that the lex element of U ′ is isolated, in which case the
algorithm activates this element, in an attempt to form a non-isolated lex element.
However, it cannot dictate where the activated element is transported. For example, it
may join C1 or it may return to U ′, where it is no longer isolated. The algorithm then
repeats this process with the resulting U ′, to see if its lex element is non-isolated. Note
that it takes at most n repetitions for the algorithm to identify a non-isolated lex element
of U ′ or for all of the elements to belong to C1. In the former case, the algorithm proceeds
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to treadmill a pair of elements, calls the result C2, and continues with U ′′ = U \ (C1 ∪ C2).
In the latter case, it returns C1.

The key property of the sequence of HAT steps dictated by this algorithm is that they
occur with a probability that is bounded below in a diameter-agnostic way. The next two
algorithms form the “clumps” of elements in C into line segments of between 2 and n

elements, and then treadmill them apart, two or three elements at a time (Figure 6).
Before stating Algorithm A1, we give names to special elements that we reference in

the algorithm. Suppose U ∈ Confd has a partition C and let x ∈ Zd. If x ∈ U , then µ(U, x)

denotes an arbitrary maximizer y of Px(SτU\{x}−1 = y | τU\{x} < ∞) over ∂(U\{x}). If
U ∩ ∂{x} is nonempty, then expo(U, x) denotes an arbitrary element y ∈ ∂{x} that is
exposed in U . If {1 ≤ i ≤ #C : dist(Ci, x) ≤ 1} is nonempty, then clust(C, x) denotes an
arbitrary element thereof. Additionally, for a tuple of sets D, we will use π(D) to denote
their union.

Algorithm A1

Input :U ∈ Confd,n and a ∈ Z≥1

Output :C ∈ Conf×d,n that can be lined-up with separation dn2a

1 C ← ∅, i← 1 // Initialize variables.
2 while U is nonempty do
3 `← lex(U)

4 R← dist
(
`, U\{`}

)
, r ← 3d(n− i+ 1)3a

/* Form a non-isolated lex element if need be. */
5 while R > 1 and n > 1 do
6 x← µ(U ∪ π(C), `) // ` will be replaced by x.

/* x either neighbors U ... */
7 if x ∈ ∂U then
8 U ← (U ∪ {x})\{`}
9 else

/* ...or one of the existing clusters. */
10 U ← U\{`}, j ← clust(C, x)
11 C ← C ∪j {x}
12 end
13 `← lex(U) // The lex element of U may have changed.
14 R← dist(`, U\{`})
15 end

/* If the lex element is non-isolated, treadmill it. */
16 if R = 1 then
17 y ← expo(U ∪ π(C), `) // y is an exposed neighbor of `.
18 U ← U\{`, y} // Remove the pair from U.
19 C ← C ∪i

{
`− re1, `− (r − 1)e1

}
// Treadmill the pair r steps.

20 i← i+ 1 // Prepare to form the next cluster.

21 else
/* Otherwise, U = {`}; add it to an existing cluster. */

22 x← µ(U ∪ π(C), `) // ` will be replaced by x.
23 U ← U\{`}, j ← clust(C, x)
24 C ← C ∪j {x}
25 end

26 end
27 return C

To realize stage (1) of the strategy of Section 10, we must show that A1 produces a
configuration which can be lined-up (Definition 10.1) and then show that HAT forms this
configuration in a number of steps and with at least a probability which do not depend
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on the initial configuration. The following result addresses the former.

Proposition 12.1. If U ∈ Confd,n and a ∈ Z≥1, then A1(U, a) can be lined-up with
separation dn2a.

Proof. Consider the tuple of configurations C in line 27 of algorithm A1. As every
element of U is eventually treadmilled with another element, or is transported next to
another element, every entry of C is connected and has two or more elements. To prove
that C can be lined-up with separation r = dn2a, we must additionally show that C is 2r

separated. Ignoring those elements that were assigned to clusters in lines 10 and 23,
due to line 19, clusters i < j are separated by at least

3d(n− i+ 1)3a− 3d(n− j + 1)3a.

Because there are at most [n/2] clusters, the preceding expression is at least

3d(n/2 + 1)3a− 3d(n/2)3a ≥ 2dn2a+ n.

At most n elements are added to clusters by executing lines 10 and 23. Because the
clusters are connected, the preceding bound implies that the pairwise separation of
clusters must be at least 2r = 2dn2a.

We now verify that HAT realizes π
(
A1(U, a)

)
in a number of steps and with at least a

probability which do not depend on U . We assume that a is an integer for convenience.

Proposition 12.2. Let U ∈ Confd,n. There exists α1 = α1(d, n) ∈ Z≥1 such that, if
a ≥ Z≥α1 , then there are N1 = N1(a, d, n) ∈ N and p1 = p1(a, d, n) ∈ (0, 1] such that

PU

(
UN1 = π

(
A1(U, a)

))
≥ p1. (12.1)

Proof. The proof takes the form of an analysis of Algorithm A1. Denote by uk the
configuration U ∪ π(C) after the kth time U ∪ π(C) is changed (i.e., an element is moved)
by the algorithm. Additionally, denote by M the number of times the configuration
changes before the outer while loop terminates.

To establish (12.1), it suffices to show that there is a sequence of times t0 = 0 ≤ t1 <
t2 < · · · < tM ≤ N1 such that u0 = U , uM = π

(
A1(U, a)

)
, and

Pu0

(
Ut1 = u1, Ut2 = u2, . . . , UtM = uM

)
≥ p1. (12.2)

We will argue that M ≤ n(n + 1), that we can take tM = n(n + 1)r1 for r1 = 3dn3a,
and that

Puk−1

(
Utk = uk

)
≥ q, (12.3)

for each k ∈ {1, . . . ,M}, for a constant q = q(a, d, n) > 0. The Markov property then
implies that (12.2) holds with N1 = n(n+ 1)r1 and p1 = qn(n+1).

Claim 1. We claim that M ≤ n(n+ 1). Observe that the outer and inner while loops
starting on lines 2 and 5 each repeat at most n times. Indeed, U loses an element every
time the outer loop repeats, which can happen no more than n times. Concerning the
inner loop, no non-isolated element is made to be isolated, while, each time line 6 is
executed, the isolated element ` is replaced by an element x which is non-isolated. This
can happen at most n times consecutively. Accordingly, U ∪ π(C) changes at most n+ 1

times every time the outer loop repeats, hence M ≤ n(n+ 1).
Claim 2. We now claim that we can take tM = n(n + 1)r1. It suffices to argue that,

each time U ∪ π(C) changes, at most r1 steps of HAT are required to realize the change.
The configuration U ∪ π(C) changes due to the execution of lines 8, 10 and 11, 18 and
19, or 23 and 24. In all but one case—that of lines 18 and 19—the transition requires
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only one HAT step. For lines 18 and 19, at most r1 steps are needed. Because there are
at most n(n+ 1) changes, tM can be taken to be n(n+ 1)r1.

Claim 3. We now verify (12.3) by considering each way U ∪ π(C) can change and by
bounding below the probability that it is realized by HAT. Assume U ∪ π(C) has changed
k − 1 times so far.

• Lines 8, 10 and 11, or 23 and 24: Activation at ` and transport to x. Assume
that a is sufficiently large in d and n to exceed the constant r in the statement of
Lemma 11.3. Then, since ` is the lex element of U and since dist(U, π(C)) ≥ a, we
can apply Lemma 11.3 with A = U and B = π(C) to find that

HU∪π(C)(`) ≥ h, (12.4)

for a positive number h = h(d, n). By the definition of µ, x is the most likely
destination of an element activated at `. Transport from ` occurs to at most 2dn

sites and so, by the pigeonhole principle, the element from ` is transported to x
with a probability of at least (2dn)−1. Together, these bounds imply that

Puk−1

(
Utk = uk

)
≥ h(2dn)−1. (12.5)

• Lines 18 and 19: Treadmilling of {`, y}. In the first step, we activate at y and
transport to ` − e1. While y is not lex in U , by the definition of expo, it is an
exposed neighbor of `. Because dist(U, π(C)) ≥ a, if a is at least 4dn, we can apply
Lemma 11.2 with A = U and B = π(C) to conclude that HU∪π(C)(y) is at least c1h
from (12.4), for a positive number c1 = c1(d, n). Additionally, Lemma 11.1 implies
that an element activated at y is transported to `− e1 with a probability of at least
c2 = c2(d, n). Consequently, denoting

v1 =
(
uk−1 ∪ {`− e1, `}

)
\{`, y},

we have
Puk−1

(U1 = v1) ≥ c1c2h. (12.6)

Now, consider the configuration vm resulting from starting at uk−1 and treadmilling
{`, y} a total of m ≥ 2 steps in the −e1 direction:

vm =
(
uk−1 ∪ {`−me1, `− (m− 1)e1}

)
\{`, y}.

To obtain vm+1, we activate at `− (m− 1)e1 and transport to `− (m+ 1)e1. By the
same reasoning as before,

Pvm
(
U1 = vm+1

)
≥ c1c2h. (12.7)

By (12.6), (12.7), and the Markov property,

Puk−1

(
Utk = uk

)
≥
(
c1c2h

)r1
. (12.8)

The bounds (12.5) and (12.8) show that, whenever U ∪ π(C) changes, the change can
be realized by HAT (in one or more steps) with a probability of at least

q = min
{
h(2dn)−1, (c1c2h)r1

}
.

This proves (12.3). We complete the proof by combining claims 1–3. Note that, to apply
Lemma 11.2 and Lemma 11.3, we assumed that a was at least α1 ∈ Z≥1, where α1 is an
integer which is at least 4dn and the constant r = r(d, n) from Lemma 11.3.
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12.2 Algorithm 2

Algorithm A2 takes as input a tuple of configurations C ∈ Conf×d,n that can be lined-up
with separation dn2a for an integer a ≥ 1. In other words, the entries of C are connected
sets with at least two elements and a separation of at least 2dn2a. The algorithm dictates
a sequence of HAT steps that form the tuple

L(C) =
(

lex(Ci) + L|Ci|
)#C
i=1
∈ Conf×d,n, (12.9)

where Lk denotes the line segment of length k from the origin to −(k − 1)e1 (10.1).
For each Ci, the algorithm activates an exposed element of Ci and transports it to

lex(Ci) − e1. Then, among the exposed elements that have not yet been activated, the
algorithm selects one (we arbitrarily choose the lex one) and transports it to lex(Ci)−2e1,
and so on, until every element of Ci except lex(Ci) has been activated. This completes
Stage 2 of the strategy of Section 10.

Algorithm A2

Input :C ∈ Conf×d,n that can be lined-up with separation dn2a, for some a ∈ Z≥1.
Output :L(C) (12.9).

1 for i ∈ {1, . . . ,#C} do
2 `i ← lex(Ci) // The segment will grow from `i.
3 for j ∈ {1, . . . , |Ci| − 1} do
4 xj ← lex

({
z ∈ Ci\{`i + Lj} : Hπ(C)(z) > 0

})
// xj is lex among exposed

elements of Ci which have not yet been added to the growing segment.
5 yj ← `i − je1 // yj is the next addition to the segment.
6 C ← (C \i {xj}) ∪i {yj} // Update the ith cluster.

7 end

8 end
9 return C

Proposition 12.3. Let a ∈ Z≥1. If C ∈ Conf×d,n can be lined-up with separation dn2a,
then A2(C) = L(C).

Proof. The only way that the algorithm could fail to produce L(C) is if, for some outer for
loop i and inner for loop j, the assignment in line 5 is impossible. This would mean that
no element of D = Ci\{`i + Lj} was exposed in π(C). While there must be an element of
D which is exposed in Ci, the elements of C 6=i could, in principle, separate D from∞. In
fact, as we argue now, this cannot occur because the clusters remain far enough apart
while the algorithm runs.

Each Ci remains connected while the algorithm runs, so there is a ball Bi of radius
n which contains Ci. The Bi are finite and ∗-connected, so each ∗-visible boundary
∂visBi is connected by Lemma 7.3. Moreover, each ∂visBi is disjoint from ∪jBj because
dist(Bi, Bj) exceeds

√
d. This lower bound holds because the clusters are initially 2dn2a

separated and the separation decreases by at most one with each of the n loops of the
algorithm, hence

dist(Bi, Bj) ≥ dist(Ci, Cj)− diam(Bi)− diam(Bj)− n ≥ 2dn2a− 5n >
√
d.

The rest of the argument, which constructs an infinite path from D which otherwise
avoids C, is identical to the corresponding step in the proof of Proposition 7.4. We
conclude that some element of D is exposed in π(C), which completes the proof.
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Proposition 12.4. There exists α2 = α2(d, n) ∈ Z≥1 such that, if a ∈ Z≥α2
, then there is

p2 = p2(d, n) ∈ (0, 1] such that, if C ∈ Conf×d,n can be lined-up with a separation of dn2a,
then

Pπ(C)

(
Un = π

(
A2(C)

))
≥ p2. (12.10)

Proof. Given a tuple C ∈ Conf×d,n that satisfies the hypotheses, algorithm A2 specifies for
each cluster i a sequence of |Ci| − 1 pairs (xj , yj), where xj is the site of activation and
yj is the site to which transport occurs, to rearrange Ci into lex(Ci) + L|Ci|. We note that
no pair will result in a decrease in cluster separation of more than one, or an increase in
cluster diameter of more than one. Because the clusters are initially 2dn2a separated,
the clusters will remain 2dn2a− n ≥ a separated throughout.

Let α2 be an integer at least as large as 4dn and the constant r from Lemma 11.3.
Accordingly, if a ≥ Z≥α2 , then the combination of Lemma 11.2 and Lemma 11.3 implies
that there is a constant h = h(d, n) such that each xj can be activated with a probability
of at least h. Moreover, Lemma 11.1 implies that there is a positive number c = c(d, n)

such that an element from xj can be transported to yj with a probability of at least c.
Consequently, denoting C′ = (C \i {xj}) ∪i {yj}, the transition in line 7 occurs with a
probability of at least

Pπ(C)
(
U1 = π(C′)

)
≥ ch. (12.11)

By (12.11) and the Markov property, and the fact that there are at most n pairs, we have

Pπ(C)

(
Un = π

(
A2(C)

))
≥ (ch)n.

Taking p2 = (ch)n gives (12.10).

12.3 Algorithm 3

At the beginning of Stage 3, the elements are neatly arranged into well separated
line segments pointing in the −e1 direction. In Stage 3, we iteratively treadmill pairs
of elements in the −e1 direction from each of the line segments, until only a dimer or
trimer remains of the initial segment (Figure 6). We will label each treadmilled pair as a
new cluster. To reflect this in our notation, when A ∈ Confd, we will write C ∪#C+1 A to
mean (C1, . . . , C#C , A).

Algorithm A3

Input :D = L(C) (12.9), for C ∈ Conf×d,n that can be lined-up with separation n2a, for some
a ∈ Z≥1.

Output :An (a, 2(log a)−1) DOT clustering D in Ref×.
1 k ← 1 // k counts the number of new clusters.
2 for i ∈ {1, . . . ,#D} do
3 for j ∈ {1, . . . , [|Di|/2]− 1} do
4 `← lex(Di), r ← 2(n− j)a
5 D ←

(
D \i {`, `+ e1}

)
∪#D+k {`− re1, `− (r − 1)e1} // Treadmill the pair r

steps, labeling it as cluster #D + k.
6 k ← k + 1 // Account for the creation of a new cluster.

7 end

8 end
9 return D

Proposition 12.5. Let a ∈ Z≥1. If C ∈ Conf×d,n can be lined-up with separation n2a, then

A3(L(C), a) is an (a, 2(log a)−1) DOT clustering in Ref×.
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Proof. Denote by Dk the clustering D0 = L(C) once it has been changed by the algorithm
for the kth time (i.e., the kth time line 5 is executed). Denote by M the number of times
algorithm A3 changes D0.

To prove that A3(D0, a) is an (a, 2(log a)−1) DOT clustering in Ref×, we will verify that
DM satisfies the DOT condition (1.7), that sep(DM ) ≥ a, and that each cluster of DM is a
connected line segment parallel to e1. These conditions imply that the (a, b) separation
conditions (1.6) hold with this a and b = 2(log a)−1.

Concerning (1.7) and the claim that each cluster of DiM is a connected line segment
parallel to e1, we note that line 5 creates connected clusters of size two and, because it
is executed [|Di|/2]− 1 times for cluster i, when the inner for loop ends on line 7, only
two or three (connected) elements of the original cluster Di remain. Accordingly, every
cluster of DM has two or three elements and is connected. It is clear from line 5 that,
since the clusters of D0 are line segments parallel to e1, this is also true of DM .

Concerning the separation of DM , we observe that, for each i ∈ {1, . . . ,#D}, the
separation of cluster DiM is at least

dist(DiM ,D
6=i
M ) ≥ dist(Di0,D

6=i
0 )− 2(n− 1)a ≥ (n2 − 2n+ 2)a ≥ a,

because the separation of D0 is at least n2a (C can be lined-up with separation n2a) and
because no element is moved a distance exceeding 2(n− 1)a by the algorithm. The same
is true of dist(DiM ,D

j
M ) for each i and every j, and for clusters i and j resulting from the

treadmilling of different clusters of D0. Concerning the pairwise separation of clusters
i 6= j formed by treadmilling pairs from the same cluster of D0, by line 5, we have

dist(DiM ,D
j
M ) ≥ 2(n− 1)a− 2(n− 2)a− 1 ≥ a.

We conclude that every cluster i satisfies dist(DiM ,D
6=i
M ) ≥ a, so sep(DM ) ≥ a.

The clusters of DM satisfy diam(DiM ) because they are connected line segments of
two or three elements. Since sep(DM ) ≥ a, DM satisfies diam(DiM ) ≤ b log dist(DiM ,D

6=i
M )

with b = 2(log a)−1 (1.6). We conclude that DM is an (a, b) DOT clustering in Ref×.

Proposition 12.6. There exists α3 = α3(d, n) ∈ Z≥1 such that, if a ∈ Z≥α3
, then there

are N3 = N3(a, d, n) ∈ N and p3 = p3(a, d, n) ∈ (0, 1] such that, if C ∈ Conf×d,n can be
lined-up with separation n2a, then

PU

(
UN3 = π

(
A3(L(C), a)

))
≥ p3. (12.12)

Proof. As in the proof of Proposition 12.5, denote by Dk the clustering D0 = L(C) once it
has been changed by the algorithm for the kth time (i.e., the kth time line 5 is executed).
Denote by M the number of times algorithm A3 changes D0. Call uk = π(Dk).

To establish (12.12), it suffices to show that there is a sequence of times t0 = 0 ≤
t1 < t2 < · · · < tM ≤ N3 such that u0 = U , uM = π

(
A3(D0, a)

)
, and

Pu0

(
Ut1 = u1, Ut2 = u2, . . . , UtM = uM

)
≥ p3. (12.13)

Consider outer for loop i, inner for loop j, and suppose that D0 has been changed a
total of k − 1 times thus far. Let r = 2(n− j)a. We will first bound below the probability
that HAT realizes uk as Ur from uk−1 (i.e., the transition reflected in line 5). HAT
can realize this transition by treadmilling the elements at ` = lex(Dik−1) and ` + e1 to
{`− re1, `− (r − 1)e1}.

For example, in the first step, we activate at `+e1 and transport to `−e1. As observed
in the proof of Proposition 12.5, Dk is a separated for every 0 ≤ k ≤ M . Denote by α3

an integer at least as large as 4dn and the constant r from Lemma 11.3. If a ∈ Z≥α3
,
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then the hypotheses of Lemma 11.2 and Lemma 11.3 are satisfied with A = π(Dik) and
B = π(D 6=ik ), and they together imply the existence of a positive lower bound h = h(d, n)

on Huk−1
(`+ e1). It is clear that the element at `+ e1 can be transported to `− e1 with a

probability of at least c = c(d), and so, denoting

vs =
(
uk−1 ∪ {`− se1, `− (s− 1)e1}

)
\{`, `+ e1},

we have

Puk−1
(U1 = v1) ≥ ch.

We can simply repeat this argument with ` and `− e1 in the place of `+ e1 and `, then
`− e1 and `− 2e1, and so on. With the choice uk = vr, the Markov property implies

Puk−1
(Ur = uk) ≥ (ch)r. (12.14)

The same bound (12.14) holds for any k ∈ {1, . . . ,M}, so, by another use of the Markov
property and the fact that M ≤ n, we find

Pu0

(
Ur = u1, U2r = u2, . . . , UMr = uM

)
≥ (ch)rn. (12.15)

This proves (12.13) with N3 = nr and p3 = (ch)rn.

12.4 Conclusion

We now use the results from the preceding subsections to prove the main result of
this section.

Proof of Theorem 1.9. Let U ∈ Confd,n. It suffices to prove the result when a is suffi-
ciently large, because if C ∈ Clust•a,1 and 0 < a′ ≤ a, then C ∈ Clust•a′,1. With this in mind,
denote by α = α(d, n) the largest of the integers α1 through α3 in Propositions 12.2, 12.4,
and 12.6, and assume that a ∈ Z≥α. By Proposition 12.2, there are positive numbers
N1 = N1(a, d, n) and p1 = p1(a, d, n) such that

PU

(
UN1 = π

(
A1(U, a)

))
≥ p1. (12.16)

By Proposition 12.1, C1 = A1(U, a) can be lined-up with separation dn2a. Consequently,
by Proposition 12.4, there is a positive number p2 = p2(d, n) such that

Pπ(C1)

(
Un = π

(
A2(C1)

))
≥ p2. (12.17)

By Proposition 12.3, C2 equals A2(C1) = L(C1). Since C2 is n2a separated, by Proposi-
tion 12.6, there are positive numbers N3 = N3(a, d, n) and p3 = p3(a, d, n) such that

Pπ(C2)

(
UN3

= π
(
A3(C2, a)

))
≥ p3. (12.18)

Denote C3 = A3(C2, a). By the Markov property and (12.16) through (12.18),

PU
(
UN1+n+N3

= π(C3)
)
≥ p1p2p3. (12.19)

By Proposition 12.5, C3 ∈ Clust•a,b ∩Ref× with b = 2(log a)−1. Note that a ≥ 4dn (the
constant in Lemma 11.2), so b < 1. Because C3 is (a, b) separated for b < 1, it is also (a, 1)

separated. Setting N = N1 + n+N3 and p = p1p2p3 concludes the proof.
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13 Proof of Theorem 1.8

Fix d ≥ 5 and n ≥ 2. To prove the irreducibility of HAT on N̂onIsod,n, we show that
HAT can form a line segment from any configuration and HAT can form any configuration
from a line segment. This is the content of the next two propositions. We state them in
terms of Lk, which denotes the line segment of k elements {−(j−1)e1 : 1 ≤ j ≤ k} (10.1),
and rad(A) = sup{‖x‖ : x ∈ A}, the radius of a finite set A ⊂ Zd.
Proposition 13.1 (Set to line). Let V ∈ Confd,n. There are N4 = N4(d, n) ∈ N and
p4 = p4(d, n,diam(V )) ∈ (0, 1] such that

PV
(
ÛN4 = L̂n

)
≥ p4. (13.1)

Proposition 13.2 (Line to set). Let V ∈ NonIsod,n. There are N5 = N5(d, n, rad(V )) and
p5 = p5(d, n, rad(V )) ∈ (0, 1] such that

PLn
(
ÛN5

= V̂
)
≥ p5. (13.2)

Theorem 1.8 is a simple consequence of the preceding propositions.

Proof of Theorem 1.8. Let V̂ and Ŵ belong to N̂onIsod,n. By Propositions 13.1 and 13.2,
there are finite numbers of steps N and N ′, and positive probabilities p and p′ such that

PV
(
ÛN = L̂n

)
≥ p and PLn

(
ÛN ′ = Ŵ

)
≥ p′.

By the Markov property at time N , the preceding bounds imply

PV
(
ÛN+N ′ = Ŵ

)
≥ pp′ > 0,

which implies that HAT is irreducible on N̂onIsod,n.

Next, we prove Proposition 13.1.

Proof of Proposition 13.1. Let a be the smallest integer that is larger than the constants
denoted r = r(d, n) in Lemma 11.3 and Lemma 11.4. By Theorem 1.9, there is a
positive integer M = M(d, n) and a positive number q = q(d, n), such that there exists
C ∈ Clust•a+n,1(UM ).

Let ` be the lex element of UM , which we assume w.l.o.g. belongs to C1. Because C is
a+ n separated, we can activate any lex element of any cluster with a probability of at
least q2 = q2(d, n) > 0 by Lemma 11.3. Then, by Lemma 11.4, we can transport to `− e1

with a probability of at least q3 = q3(d, n,diam(V )). Reassigning the element at `− e1 to
cluster C1, the resulting clusters are at least a+ n− 1 separated.

Because the resulting clusters are still a separated, we can simply repeat this process,
transporting an element to `− 2e1, and so on. Continuing in this fashion for a total of
n steps results in UM+n = ` + Ln. The preceding discussion and the Markov property
imply

PV
(
ÛM+n = L̂n

)
≥ q1(q2q3)n.

Setting N4 = M + n and p4 = q1(q2q3)n gives (13.1).

We will prove Proposition 13.2 with an argument by induction. To facilitate the
induction step, it is convenient to prove the following, more detailed claim.

Proposition 13.3. Let n ≥ 2 and let V ∈ NonIsod,n. In terms of r = [ rad(V ) ], there are
positive integers M = 4dn2r and ` = M/n, and a sequence ((xi, yi))

M
i=1 in Zd ×Zd such

that, setting

W0 = Ln and Wj = (Wj−1\{xj}) ∪ {yj}, 1 ≤ j ≤M,

the following conclusions hold:
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(i) WM = V .

(ii) For each 1 ≤ j ≤M , xj is exposed in Wj−1.

(iii) For each 1 ≤ j ≤ M , there is a path Γj from xj to yj , which lies outside of
Wj−1\{xj} but inside of B(r + dn), and which has a length of at most `.

Before proving the proposition, let us explain how Proposition 13.2 follows from it.

Proof of Proposition 13.2. By conclusion (iii) of Proposition 13.3, for each 1 ≤ j ≤M , we
have Wj−1 ⊆ B(r+dn). By this observation and conclusion (ii), the activation component
HWj−1

(xj) of each transition is at least a positive number q1 = q1(d, n, r). Again, by
(iii), there is a path Γj , with a length of at most `, which can realize the transport
step from xj to yj . Consequently, in terms of τ = τWj−1\{xj}, the transport component
Pxj (Sτ−1 = yj | τ < ∞) of each transition is at least q2 = (2d)−`−1. By the Markov
property and conclusion (i), the probability in (13.2) is at least the product of these
components, over M steps:

PLn
(
ÛM = V̂

)
≥ (q1q2)M .

Lastly, we prove Proposition 13.3.

Proof of Proposition 13.3. The proof is by induction on n. The base case of n = 2 is trivial
because N̂onIsod,2 has the same elements as the equivalence class L̂2. Now suppose the
claim holds up to n− 1 for n ≥ 3.

There are two cases, which we phrase in terms of the “exposed” boundary of V :

∂expV = {x ∈ V : HV (x) > 0}.

1. There is a non-isolated x ∈ ∂expV such that V \{x} ∈ NonIsod,n−1.

2. For every non-isolated x ∈ ∂expV , V \{x} ∈ Isod,n−1.

Case 1. Peform the following steps. In what follows, denote r = [rad(V )] + 1.

Step 1: “Treadmill” a pair of elements in the −e1 direction for m = r + dn − 2 steps.
Specifically, activate the element e1 and transport it to −e1, then activate the
element at the origin and transport it to −2e1, followed by activation at −e1 and
transport to −3e1, and so on.

Step 2: Isolate an element outside of B(r+ dn− 2). At the end of Step 1, an element lies
at −me1 and another at −(m− 1)e1. Activate the latter and transport it to the e1,
then activate the element at (n− 1)e1 and transport it to the origin.

Step 3: Use the induction hypothesis to form (V \{x}) ∪ {−me1}, for a particular x. By
the end of Step 2, the configuration is Ln−1 ∪ {−me1}. We use the induction
hypothesis to form V \{x} from the Ln−1 subset, where x is a non-isolated
element of ∂expV such that V \{x} ∈ NonIsod,n−1.

The use of the induction hypothesis guarantees that there is a sequence of
4d(n− 1)2r HAT steps from Ln−1, which: (i) result in (V \{x})∪{−me1}; (ii) have
positive activation components; and (iii) have transport steps that are realized
by random walk paths with lengths of at most 4d(n− 1)r, which remain inside
B(r + d(n− 1)).

Step 4: Transport the element at −me1 to x. We activate the element at −me1 and
transport it to x, which is possible because x is non-isolated and exposed in V .
Because V \{x} lies in B(r), Lemma 11.1 implies that there is a path from
−me1 to x which avoids V \{x}, has a length of at most ` = 4dnr, and lies in
B(r + dn− 1).
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Note that Steps 1 and 2 require r+dn HAT steps, the activation components of which
are positive and the transport components of which can be realized by paths of length at
most r + dn ≤ `. Steps 3 and 4 require 4d(n − 1)2r + 1 HAT steps, again with positive
activation components and transport components realized by paths of length at most `.
In total, at most M = 4dn2r HAT steps are needed and, since all paths lie in B(r+dn−1),
conclusions (i) through (iii) hold.

Case 2. Because we cannot remove a non-isolated element of V without obtaining an
isolated set—a set to which the induction hypothesis does not apply—we must instead
use the induction hypothesis to form a set related to V . In fact, the first two steps are
the same as in Case 1, so we begin with the configuration Ln−1 ∪ {−me1} and specify
the third and subsequent steps.

Step 3’: Use the induction hypothesis. Let w and y be the least and greatest elements
of V in the lexicographic order, and let x be any non-isolated element of ∂expV .
We use the induction hypothesis to form

V ′ = (V \{x, y}) ∪ {w − e1},

which is possible because V ′ ∈ N̂onIsod,n−1.

The result is a sequence of 4d(n − 1)2r HAT steps from Ln−1 which form V ′ ∪
{−me1} with positive activation components and transport components which
are realized by random walk paths with the same properties as in Step 3.

Step 4’: Activate the element at −me1 and transport it to w − 2e1.

Step 5’: Treadmill the pair {w − e1, w − 2e1}. Since w is the least element of V in the
lexicographic order, w − e1 and w − 2e1 are the only elements which lie in
O1 = {z ∈ Zd : z · e1 ≤ w · e1}. Similarly, due to the choice of y, it is the only
element which lies in O2 = {z ∈ Zd : z · ed ≥ y · ed}.
Consequently, it is possible to treadmill the pair {w − e1, w − 2e1} to:

– B(r + 3)c without leaving O1; then
– O2 without leaving B(r + 6)\B(r + 3); and
– {y, y + ed} without leaving O2.

This requires at most f2 = 10r HAT steps, each of which has a positive activation
component and a transport component realized by a random walk path of length
five.

Step 6’: Activate at {y + ed} and transport to x. The configuration at the end of Step 5’
is (V \{x}) ∪ {y + ed}, so activating the element at {y + ed} and transporting it
to x (which is possible because x is an exposed, non-isolated element of ∂expV ),
forms V .

Recall that Steps 1 and 2 require r + dn HAT steps, which can be realized by paths of
length at most r + dn ≤ `. Steps 3’ and 4’ require 4d(n− 1)2r + 1 HAT steps, realized by
paths of length at most `. Steps 5’ and 6’ require 10r+ 1 HAT steps, with paths satisfying
the same length bound. All activation components are positive. At most M HAT steps
are needed in total and, since all paths lie in B(r + dn− 1), conclusions (i) through (iii)
hold.
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