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Abstract

We prove that a supercritical branching random walk on a transient Markov chain
converges almost surely under rescaling to a random measure on the Martin boundary
of the underlying Markov chain. Several open problems and conjectures about this
limiting measure are presented.
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1 Introduction

The asymptotic behavior of Markov chains on graphs is at the core of potential theory,
which blends together tools from probability, algebra and analysis. This asymptotic
behaviour is often understood via an appropriate boundary theory, with the relevant
boundaries coming in both topological and measure-theoretic varietes. On the one
hand, the Poisson boundary is a measure-theoretic object encoding all possible (positive
probability) limiting behaviours of the random walk and which, by a foundational theorem
of Blackwell [11], may be defined equivalently either in terms of the invariant σ-algebra
or the space of bounded harmonic functions on the Markov chain. On the other hand,
the Martin boundary is a topological boundary that both recovers the measure-theoretic
Poisson boundary and also includes information about possible singular (probability
zero) behaviours of the walk at infinity.

While the Poisson and Martin boundaries of a Markov chain are rather abstract
and difficult to study in general, they are known to coincide with concrete geometric
compactifications in several classes of examples including hyperbolic groups [3, 4, 27],
planar graphs [21, 5, 26], lamplighter groups [28, 15, 39], and Diestel-Leader graphs
[47]. In general, however, the structure of the Martin boundary might be richer than
what one would guess geometrically [43]. For random walks on groups, various important
and beautiful works have established characterizations and criteria for the non-triviality
of the Poisson and Martin boundaries in terms of speed, entropy, heat kernel decay and
volume growth [6, 28, 42, 2, 16]. See [46, 40, 48] for overviews of the literature.
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On the boundary at infinity for BRW

In this work we aim to initiate a systematic investigation of the boundary theory of
branching random walks. The main goal of this work is to point out a new direction
for research, connecting branching random walk, a well-studied (and only partially
understood) Markov chain, with the Martin boundary for the underlying random walk,
which is itself a Markov chain.

Let M = (S, P ) be a Markov chain with countable state space S and transition matrix
P , and let µ be an offspring distribution, that is, a probability measure supported on
the non-negative integers. Branching random walk (BRW) on M is a Markov process
governed by P and µ in the following sense. Choose any state x ∈ S and at time 0

place one alive particle at x. Inductively, at each time step all alive particles reproduce
independently of one another according to µ and then die, so that each particle is
replaced by an independent random number of offspring with law µ. Subsequently,
as part of the same time step, all (alive) particles take one step of the Markov chain,
independently of one another, according to the transition kernel P . This defines a
Markov process (Bn)n≥0 with state space equal to {finitely supported functions S → N},
where Bn(x) is the number of (alive) particles at the state x at time n. One can also
equivalently consider the branching random walk as a tree-indexed Markov chain where
the underlying genealogical tree of the particles is itself a random Galton-Watson tree
[8, 9]. In particular, it follows from the classical theory of branching processes that
the process dies almost surely if the mean µ̄ =

∑
nµ(n) satisfies µ̄ < 1 and survives

forever with positive probability when µ̄ > 1. A detailed account of what is known about
branching random walk on Z, a rich subject that is largely disjoint from the kind of
questions we consider here, can be found in [44].

Previous works on the behaviour at infinity of branching random walk have focused
either on the geometric properties of the trace (that is, the graph spanned by the edges
crossed by the process) [7, 12, 13, 25] or the set of points accumulated to by the process
in some geometric compactification. The latter approach has been carried out primarily
in the setting of trees and hyperbolic spaces, where a detailed and sophisticated theory
has now been developed [35, 30, 24, 36, 34, 33, 12, 23, 22, 45].

Our main theorem states that branching random walks always converge under
suitable rescaling to a random measure on the Martin boundary. We are optimistic that
this random measure is both an interesting object of study in its own right and should
lead to new perspectives and clarity on the limit-set theory in the hyperbolic case. We
write Px and Ex for probabilities and expectations taken with respect to the law of
the branching random walk started with a single particle at x and write Px and Ex for
probabilities and expectations taken with respect to the underlying Markov chain started
at x.

Theorem 1.1. Let M = (S, P ) be a transient, irreducible Markov chain, let (Xn)n denote
a trajectory of M , and let X∞ be its limit point on the Martin boundary. Let µ be an
offspring distribution with mean µ̄ > 1 satisfying the L logL condition

∑∞
n=1 µ(n)n log n <

∞, and let B = (Bn)n≥0 be a branching random walk on M started at some state o.
Then (µ̄)−nBn almost surely converges weakly to a random measure W on the Martin
compactificationM of M that is supported on the active part of the Martin boundary of
M and satisfies

EoW(A) = Po(X∞ ∈ A) (1.1)

for every Borel set A ⊆M.

A selection of open problems regarding this random measure is discussed in Section 4.

The so-called ‘L logL condition’
∑∞
n=1 µ(n)n log n <∞ appearing here is needed for

the limiting measure W to be non-zero. Indeed, if µ is supercritical and (|Bn|)n≥0 is the
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On the boundary at infinity for BRW

underlying branching process of the branching random walk (Bn)n≥0 then the limit

W := lim
n→∞

(µ̄)−n|Bn|

exists almost surely by the martingale convergence theorem. The Kesten-Stigum theorem
[32, 38] states that the following are equivalent:

1. W > 0 with positive probability.

2. W > 0 almost surely on the event that (|Bn|)n≥0 survives forever.

3. EW = 1.

4. (µ̄)−n|Bn| is uniformly integrable.

5. µ satisfies the L logL condition.

Since any measure arising as the weak limit of (µ̄)−nBn must have total mass W ,
it follows that if µ does not satisfy the L logL condition then (µ̄)−nBn almost surely
converges weakly to the zero measure. (In particular, the conclusions of Theorem 1.1
other than the formula (1.1) hold vacuously in this case.)

Remark 1.2. The (space-time) Martin boundary of branching processes (and hence
of the Markov chain governing the number of particles in a branching random walk)
has been investigated in [37] (see also [41]), whose results imply in particular that
the random variable W = limn→∞(µ̄)−n|Bn| generates the entire tail σ-algebra of the
branching process (|Bn|)n≥0. For more recent results we refer the reader to [1] and
references therein. While it is natural to guess from this that the random measure W

encodes all the tail information of the branching random walk (Bn)n≥0, we observe in
Section 4 that this is not the case even in very simple examples.

Remark 1.3. The hypothesis of irreducibility of Theorem 1.1 can be replaced by the
weaker assumption that supn P

n(o, x) > 0 for every x.

Remark 1.4. While we were in the final stages of preparing this paper, Kaimanovich and
Woess [29] posted a preprint to the arXiv establishing similar results on the convergence
of branching random walks to random measures; their results allow one to consider
compactifications other than the Martin compactification and branching Markov chains
with spatially dependent branching mechanism. While the two works were conducted
largely independently, both have their origins in discussions between EC, VK, and WW
that took place during the workshop “Random walks on graphs and potential theory”
at the University of Warwick in 2015 where VK suggested to study the weak limits of
the empirical measures of branching random walks. We are optimistic that the distinct
perspectives offered by the two works will prove complementary to each other in the
future development of the subject.

2 Background on the Martin boundary

We now briefly recall the definition and basic properties of the Martin boundary,
referring the reader to [46] and [14] for further details. Let P be the transition matrix
of an irreducible, transient Markov chain M = (S, P ) on a countable state space S.
Recall that a function h : S → R that is either non-negative or bounded1 is said to be
harmonic if h(x) =

∑
y∈S P (x, y)h(y) for every x ∈ S and is said to be superharmonic

if h(x) ≥
∑
y∈S P (x, y)h(y) for every x ∈ S. The space of all non-negative superharmonic

1Throughout this section, we use the assumption that our functions are either non-negative or bounded to
guarantee that all sums appearing are well-defined in (−∞,∞].
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On the boundary at infinity for BRW

functions on S is denoted by S+. Choose a reference vertex o ∈ S. For each x, y ∈ S, the
Martin kernel K(x, y) is the non-negative superharmonic function defined by

K(x, y) =
G(x, y)

G(o, y)
,

where G(x, y) =
∑
n≥0 P

n(x, y) is the Green function. The Martin compactification
M =M(M) is defined to be the unique smallest compactification of the discrete set S
for which all the Martin kernels K(x, · ) extend continuously. A detailed explanation of
how this property uniquely determinesM can be found in [46, Section 24], where it is
also shown thatM is a Polish space. Thus, a sequence of states (yn)n≥0 converges in the
Martin compactification if and only if the Martin kernelsK(x, yn) converge for each x ∈ S.
Note that this does indeed give a compact space since G(o, y) ≥ supn P

n(o, x)G(x, y) for
every x, y ∈ S and hence 0 ≤ K(x, y) ≤ (supn P

n(o, x))−1 < ∞ for every x, y ∈ S. The
Martin boundary of M is the space ∂M = M\ S. Note that if ξ ∈ ∂M then we can
define the Martin kernel K( · , ξ) := limn→∞K( · , yn) where (yn)n≥0 is any sequence of
states converging to ξ; the choice of sequence does not affect the limit thus obtained.

The most important properties of the Martin boundary are as follows:

1. Convergence of the random walk [46, Theorem 24.10]: If (Xn)n≥0 is a trajectory of
the Markov chain M then X converges almost surely to a limit point X∞ ∈ ∂M.
Moreover, the Martin kernel K(x, · ) is the Radon-Nikodym derivative of the law of
X∞ under Px with respect to the law of X∞ under Po in the sense that

Ex [F (X∞)] = Eo [F (X∞)K(x,X∞)]

for every x ∈ S and every continuous function F : ∂M→ [0,∞).

2. Representation of positive harmonic functions [46, Theorem 24.7]: If h : S → [0,∞)

is a non-negative harmonic function then there exists a finite Borel measure νh on
∂M such that

h(x) =

∫
K(x, ξ)dνh(ξ)

for every x ∈ S. Conversely, if ν is a finite Borel measure on ∂M then
∫
K(x, ξ)dν(ξ)

is a non-negative harmonic function on S. The function h is bounded if and only if
νh may be taken to be absolutely continuous with respect to the law of X∞ with
essentially bounded Radon-Nikodym derivative; in particular, if h : S → R is a
bounded harmonic function then there exists a bounded Borel function φ : ∂M→ R

such that

h(x) = Eo [φ(X∞)K(x,X∞)] = Ex [φ(X∞)]

for every x ∈ S [46, Theorem 24.12]. In both cases, the representation is not
unique in general but can be made unique by restricting the boundary data to be
supported on the minimal Martin boundary [46, Theorem 24.9].

3. Probabilistic Fatou Theorem [14, Theorem 10]: If φ : ∂M→ R satisfies Eo|φ(X∞)|<
∞ and h(x) = Exφ(X∞) denotes the harmonic extension of φ to S then

h(Xn)→ φ(X∞)

almost surely as n→∞.

Remark 2.1. Let us warn the reader that the Martin boundary can be quite ill-behaved
in general, and in particular that the harmonic extension of a continuous function need
not be continuous on the Martin compactification.
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On the boundary at infinity for BRW

3 Proof of the convergence theorem

For the remainder of this section we fix an irreducible, countable-state Markov chain
M = (S, P ) and a reference vertex o ∈ S, fix an offspring measure µ satisfying the
L logL condition, and let Bn be a branching random walk on M with offspring measure
µ, started with a single particle at o. We write Bn = (µ̄)−nBn for each n ≥ 0 and, given a
function f : S → R, write 〈f,Bn〉 :=

∑
x∈S f(x)Bn(x).

Remark 3.1. When (as in Theorem 1.1) we write that a sequence “almost surely con-
verges weakly” we mean that for almost all realizations of the branching Markov chain
the considered sequence converges weakly to the specified limit.

Lemma 3.2. If h : S → R is harmonic and is either bounded or non-negative then
(〈h,Bn〉)n≥0 is a martingale with respect to the filtration generated by (Bn)n≥0. Similarly,
if h : S → R is superharmonic and is either bounded or non-negative then (〈h,Bn〉)n≥0 is
a supermartingale with respect to the filtration generated by (Bn)n≥0.

Proof of Lemma 3.2. Let Fn be the σ-algebra generated by (Bi)
n
i=0. If h : S → R is either

bounded or non-negative then we have by linearity of expectation that

E
[
〈h,Bn+1〉 | Fn

]
=
∑
x∈S

h(x)(µ̄)−n−1E [Bn+1(x) | Fn]

= (µ̄)−n
∑
x,y∈S

Bn(y)P (y, x)h(x) = 〈Ph,Bn〉

where in the second equality we have used that E [Bn+1(x) | Fn] = µ̄
∑
y∈S Bn(y)P (y, x)

by linearity of expectation and the definition of branching random walk. The claim
follows since Ph = h when h is harmonic and Ph ≤ h when h is superharmonic.

Corollary 3.3. If h : S → R is superharmonic and is either bounded or non-negative
then the sequence 〈h,Bn〉 converges almost surely as n→∞.

Lemma 3.4. Let V ⊆ ∂M be closed and let h(x) := Px(X∞ ∈ V ) be the harmonic
extension of 1V to S. Then

sup{W(V ) : W is a subsequential weak limit of Bn} ≤ lim
n→∞

〈h,Bn〉

almost surely.

Proof of Lemma 3.4. Since ∂M is metrisable, each closed set can be written as the
intersection of a decreasing sequence of open sets, namely the 1/k neighbourhoods of
the set in some compatible metric. Let V be a closed subset of ∂M and let V =

⋂
k Uk for

some decreasing sequence of open sets (Uk)k≥1 containing V . Since {X∞ ∈ V } =
⋂
k{Xn

ever visits Uk}, we have by continuity of measure that for each ε > 0 there exists an
open neighbourhood U of V inM such that

Po(Xn ever vists U) ≤ Po(X∞ ∈ V ) + ε.

Fix one such choice of ε and U and let f : S → [0, 1] be the function

f(x) := Px(Xn ever visits U).

Note that f is harmonic on S \ U , superharmonic on S ∩ U , and satisfies f ≥ h and
f ≥ 1U everywhere. Since 〈f,Bn〉 is a non-negative supermartingale, it converges a.s.,
and since U is open we have by the Portmanteau Theorem that

sup{W(V ) : W is a subsequential weak limit of Bn}
≤ sup{W(U) : W is a subsequential weak limit of Bn}
≤ lim sup

n→∞
〈1U , Bn〉 ≤ lim sup

n→∞
〈f,Bn〉 = lim

n→∞
〈f,Bn〉.
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On the boundary at infinity for BRW

On the other hand, since f−h is non-negative, superharmonic, and satisfies f(o)−h(o) ≤ ε
we also have that

Eo

[
lim
n→∞

〈f − h,Bn〉
]
≤ f(o)− h(o) ≤ ε

and hence by Markov’s inequality that

P
(

sup{W(V ) : W is a subsequential weak limit of Bn} ≥ lim
n→∞

〈h,Bn〉+ δ
)

≤ P
(

lim
n→∞

〈f,Bn〉 ≥ lim
n→∞

〈h,Bn〉+ δ
)
≤ ε

δ

for every δ > 0. Since ε, δ > 0 were arbitrary it follows that

sup{W(V ) : W is a subsequential weak limit of Bn} ≤ lim
n→∞

〈h,Bn〉 almost surely

as claimed.

We next apply this one-sided estimate for closed sets to deduce an equality holding
for each open set, closed set, and continuous function.

Lemma 3.5.

1. Let A ⊆ ∂M be either open or closed and let h(x) := Px(X∞ ∈ A) be the harmonic
extension of 1A to S. The event “every subsequential limit W of Bn satisfies
W(A) = limn→∞〈h,Bn〉” has probability one.

2. Let φ : ∂M→ R be continuous and let h be the harmonic extension of φ to S. The
event “every subsequential limit W of Bn satisfies

∫
φ(ξ)dW(ξ) = limn→∞〈h,Bn〉”

has probability one.

Proof of Lemma 3.5. We begin with claim 1. We first prove that if A = U ⊆ ∂M is open
then

sup{W(U) : W is a subsequential weak limit of Bn} ≤ lim
n→∞

〈h,Bn〉 (3.1)

almost surely, where h is the harmonic extension of 1U to S. Since ∂M is metrisable,
the open set U may be written as a countable union of closed sets U =

⋃
m≥1 Vm. (For

example, if d is a compatible metric on ∂M then U can be written as the union of the
sequence of closed sets Vm = {ξ ∈ ∂M : d(ξ, U c) ≥ 1/m}.) Fix one such representation
U =

⋃
m≥1 Vm and for each m ≥ 1 let hm(x) := Px(X∞ ∈ Vm) be the harmonic extension

of 1Vm to S. Since hm ≤ h for each m ≥ 1, we have by continuity of measure and
Lemma 3.4 that

sup{W(U) : W a subsequential weak limit of Bn}
= sup

m
sup{W(Vm) : W a subsequential weak limit of Bn}

≤ sup
m

lim
n→∞

〈hm, Bn〉 ≤ lim
n→∞

〈h,Bn〉

almost surely as claimed. Now, if U is open then U c = ∂M\U is closed and the harmonic
extension of 1Uc to S is given by 1− h. Thus, it follows from Lemma 3.4 that

sup{W(U c) : W is a subsequential weak limit of Bn} ≤ lim
n→∞

〈1− h,Bn〉 (3.2)

almost surely, and since
∫

1 dW(ξ) = limn→∞〈1, Bn〉 = W <∞ almost surely for every
subsequential weak limit W of Bn, we can rearrange (3.2) to deduce that

inf{W(U) : W is a subsequential weak limit of Bn} ≥ lim
n→∞

〈h,Bn〉 (3.3)
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almost surely. Together (3.1) and (3.3) imply the open case of the claim, and the closed
case follows by taking complements as in the proof of (3.2).

We now turn to the second claim. We may assume without loss of generality that
φ takes values in [0, 1]. For each t ∈ [0, 1] let Vt = {ξ ∈ ∂M : φ(ξ) ≥ t} and let
ht(x) := Px(X∞ ∈ Vt) be the harmonic extension of 1Vt

to S, so that φ =
∫ 1

0
1Vt

dt and

h =
∫ 1

0
htdt. We have by Lemma 3.4 that

sup

{∫
φ(ξ)dW(ξ) : W is a subsequential weak limit of Bn

}
≤
∫ 1

0

sup
{
W(Vt) : W is a subsequential weak limit of Bn

}
dt

≤
∫ 1

0

lim
n→∞

〈ht, Bn〉dt ≤ lim
n→∞

〈h,Bn〉, (3.4)

almost surely, where we have used Fatou’s lemma in the final inequality. Since φ takes
values in [0, 1] we can define a continuous function (1 − φ) : ∂M → [0, 1], which has
harmonic extension to S given by 1− h, and we have by symmetry that

sup

{∫
(1− φ(ξ))dW(ξ) : W is a subsequential weak limit of Bn

}
≤ lim
n→∞

〈1− h,Bn〉.

(3.5)
Since

∫
1 dW(ξ) = limn→∞〈1, Bn〉 = W for every subsequential weak limit W of Bn, we

can rearrange (3.5) to deduce that

inf

{∫
φ(ξ)dW(ξ) : W is a subsequential weak limit of Bn

}
≥ lim
n→∞

〈h,Bn〉 (3.6)

almost surely. The claim follows from (3.4) and (3.6).

The open-set case of Lemma 3.5 has the following immediate corollary. Recall that
the active part of the Martin boundary ∂Mact is defined to be the support of the law of
X∞ under Po, that is, the smallest closed subset of ∂M for which Po(X∞ ∈ ∂Mact) = 1.

Corollary 3.6. The event “every subsequential limit of Bn is supported on ∂Mact” has
probability one.

Proof. The complement ∂Mc
act is open and has harmonic extension h(x) = Px(X∞ ∈

∂Mc
act) ≡ 0 by definition. The claim therefore follows immediately from Lemma 3.5.

We next use the separability of ∂M to exchange the order of the quantifiers in the
second item of Lemma 3.5.

Lemma 3.7. The event2 “for every continuous function φ : ∂M→ [0, 1] with harmonic
extension h to S, the sequence 〈h,Bn〉 converges and every subsequential limit W of Bn
satisfies

∫
φ(ξ)dW(ξ) = limn→∞〈h,Bn〉” has probability one.

Proof. The Martin compactification S ∪ ∂M is compact and metrisable, and since S

is dense in S ∪ ∂M it is separable also. Since subsets of separable metric spaces are
separable, the boundary ∂M is also separable. As such, the space C(∂M) of continuous
functions on ∂M is separable also. (Indeed, if d is a metric compatible with the topology

2Although we call this an event, it is not clear that it is Borel measurable. Still, the claim makes sense as a
statement about the set being co-null, and we avoid dwelling on the point further. In fact this set is co-analytic
(i.e., the complement of a continuous image of a Borel set on a Polish space), and is therefore universally
measurable (i.e., measurable with respect to the completion of any Borel measure) by Lusin’s theorem [31,
Theorem 21.10]. Similar remarks apply to several other ‘events’ we consider throughout the rest of the proof.
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of ∂M and Q is a countable dense subset of ∂M then the Q-algebra generated by the
continuous functions of the form {d( · , q) : q ∈ Q} is a countable dense subset of C(∂M).)

Let A be a countable dense subset of C(∂M). We have by Corollary 3.3 and
Lemma 3.5 that the event Ω = {W = limn→∞〈1, Bn〉 exists and is finite, and for each
function φ ∈ A with harmonic extension h the sequence (〈h,Bn〉)n≥0 converges and
every subsequential weak limit W of Bn satisfies

∫
φ(ξ)dW(ξ) = limn→∞〈h,Bn〉} has

probability one.
Now, if ψ is an arbitrary continuous function on ∂M, then for each ε > 0 there exists

φ ∈ A with |φ− ψ| ≤ ε, so that if h and h′ denote the harmonic extensions of φ and ψ to
S then |h− h′| ≤ ε. Thus, on the event Ω we have that

sup

{∫
ψ(ξ)dW(ξ) : W a subsequential limit of Bn

}
≤ εW + sup

{∫
φ(ξ)dW(ξ) : W a subsequential limit of Bn

}
= εW + lim

n→∞
〈h′, Bn〉 ≤ 2εW + lim inf

n→∞
〈h,Bn〉,

where the final inequality follows since |〈h− h′, Bn〉| ≤ ε〈1, Bn〉 for every n ≥ 0. We also
have symmetrically that

inf

{∫
ψ(ξ)dW(ξ) : W a subsequential limit of Bn

}
≥ −εW + inf

{∫
φ(ξ)dW(ξ) : W a subsequential limit of Bn

}
= −εW + lim

n→∞
〈h′, Bn〉 ≥ −2εW + lim sup

n→∞
〈h,Bn〉,

yielding that the chain of inequalities

−2εW + lim sup
n→∞

〈h,Bn〉 ≤ inf

{∫
ψ(ξ)dW(ξ) : W a subsequential limit of Bn

}
≤ sup

{∫
ψ(ξ)dW(ξ) : W a subsequential limit of Bn

}
≤ 2εW + lim inf

n→∞
〈h,Bn〉,

holds pointwise on the event Ω. The claim follows since ψ and ε > 0 were arbitrary.

We may now conclude the proof of the main theorem. Note that we have not yet used
the L logL condition. This will be needed only to verify the identity (1.1); if the L logL

condition does not hold then Bn converges to the zero measure!

Proof of Theorem 1.1. We have by Corollary 3.6 and Lemma 3.7 that the event “every
subsequential weak limit of Bn is supported on ∂Mact, and if φ : ∂M→ R is continuous
then

∫
φ(ξ)dW1(ξ) =

∫
φ(ξ)dW2(ξ) for any two subsequential weak limits W1, W2 of Bn”

holds almost surely. (Again, it is very important that the quantifier over all continuous
functions and subsequential limits is inside the event being defined!) The Riesz-Markov-
Kakutani representation theorem implies that measures on a compact metric space are
determined by their integrals against continuous functions, so that all subsequential
weak limits of Bn are identical almost surely. Since the space of measures onM is a
compact metrisable space under the weak topology, it follows that Bn converges almost
surely to a (random) limit measure W as claimed.

Now, if the offspring measure µ satisfies the L logL condition then we have by the
Kesten-Stigum theorem that the martingale (〈1, Bn〉)n≥0 is uniformly integrable. As such,
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if the L logL condition holds then (〈h, B̄n〉)n≥0 is a uniformly integrable martingale for
each bounded harmonic function h and we have by Lemma 3.5 that if φ : ∂M → R is
continuous with harmonic extension h then

E

[∫
φ(ξ)dW(ξ)

]
= E

[
lim
n→∞

〈h,Bn〉
]

= 〈h,B0〉 = Eo [φ(X∞)] .

This implies that the expectation of W and the law of X∞ determine the same measure
on ∂M, which is equivalent to the claimed equality (1.1).

Remark 3.8. As pointed out to us by an anonymous referee, the proof of Theorem 1.1
can be rephrased as follows: First, using the Riesz–Markov-Kakutani representation
theorem, one can define for each n ≥ 1 a random measure Wn on ∂M by∫

φ(ξ)dWn(ξ) = 〈hφ, Bn〉

for each continuous function φ : ∂M → R, where hφ denotes the harmonic extension
of φ to S. Since the total measure of Wn converges a.s. to W , the random family
of random measures {Wn} is norm-tight almost surely, and it therefore follows from
general principles that Wn converges weakly to some limiting measure W if and only if
Wn(φ) converges for every φ in some countable dense set of continuous functions on
∂M, a fact that follows immediately from Lemma 3.2.

4 Open problems

As mentioned in Remark 1.2, since W generates the tail σ-algebra of the branching
process (|Bn|)n≥0 [37, 41] and X∞ generates the invariant σ-algebra of the underlying
random walk, it is tempting to wonder whether the random measure W generates the tail
σ-algebra of the branching random walk. Unfortunately this is not the case even in some
very simple examples. Indeed, consider branching random walk on Z3 with deterministic
branching governed by the degenerate offspring measure µ(16) = 1. Since the Martin
boundary of Z3 consists of a single point {1} and W = 16, W is deterministically equal
to a point mass of mass 16 at 1. On the other hand, if we start with a single particle
at the origin, then the number of particles at (n, 0, 0) at time n is itself a branching
process with Binomial(16, 1/6) offspring distribution. Since this offspring distribution is
supercritical but has positive probability to die after a single step, it survives forever
with probability strictly between 0 and 1. As such, {Bn(n, 0, 0) > 0 for infinitely many
n} is a non-trivial tail event that is not in the σ-algebra generated by W. Similarly,
{max{x : Bn(x, 0, 0) > 0} > max{x : Bn(−x, 0, 0) > 0} for all sufficiently large n} is
a non-trivial invariant event for the branching random walk that does not belong to
the σ-algebra generated by W. This examples suggests that the following problem is
non-trivial.

Problem 4.1. Characterise the σ-algebra generated by the limiting measure W.

As discussed in the introduction, much of the existing literature on the boundary
behaviour of branching random walk focuses on the set of accumulation points of the
walk [35, 30, 45], and it would be interesting to reinterpret these analyses through
the lens of Theorem 1.1. To do this, an important first step would be to compare the
set of limit points with the support of W. Again, simple examples show that these are
not always the same: If one performs a supercritical branching random walk on the
lamplighter group Z2 o Z then every vertex is visited infinitely often, so that the set
of limit points is the entire Martin boundary, which has more than one point, see [2].
Meanwhile, the measure W is supported on the active part of the Martin boundary,
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which in this case is the single point {1} since Z2 oZ is Liouville. Still, we expect that in
‘sufficiently nice’ examples, such as hyperbolic groups, the two sets will coincide.

Problem 4.2. Give conditions under which the support of W coincides almost surely
with the set of accumulation points of B.

For hyperbolic groups there are many further questions one could ask about the
limiting measure W, mirroring what is known about the limit set. For example one can
try to compute the Hausdorff dimension of the measure, or study the tail probability that
an unusually large mass is placed on a small ball.

Problem 4.3. Study the fine properties of the limiting measure W for branching random
walk on a hyperbolic group.

Much of the interest in branching random walk on nonamenable groups stems from
the fact that there are two phase transitions: The transition between certain death and
possible survival when µ̄ = 1 and the transition between transience and recurrence when
µ̄ = 1/ρ, where ρ is the spectral radius of the random walk: when µ̄ ≤ 1/ρ each point
is visited at most finitely often almost surely while when µ̄ > 1/ρ every point is visited
infinitely often almost surely on the event that the walk survives forever [9, 10, 20]. It
is likely that the answers to each of the questions above are different in the two cases
µ̄ ≤ 1/ρ and µ̄ > 1/ρ, with the possibility of particularly interesting behaviour at or near
the boundary case µ̄ = 1/ρ.

It is also natural to wonder how this phase transition manifests itself in the behaviour
of the limiting measure W. One plausible scenario is as follows: For random walks
on nonamenable groups, the random measure W is always singular with respect to
harmonic measure (i.e. the law of X∞), but is, in some qualitative sense, ‘more singular’
in the transient regime µ̄ ≤ 1/ρ than in the recurrent regime µ̄ > 1/ρ. While we are not
confident enough to make a formal conjecture, it is also plausible that W is almost surely
supported on a strict subset of ∂Mact whenever µ̄ ≤ 1/ρ. This is true for hyperbolic
groups by the results of [45]. The results of [25] also suggest that the support of W is
always totally disconnected in the transient regime.
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