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1 Introduction and main results

The Hölder continuity1 of continuous random functions is a classical topic, analysed
extensively for Brownian motion and related processes, see e.g. [12] for fractional
Brownian motion. Typically, such results make use of Kolmogorov’s extension theorem
(see [6, Thm 3.23]). The convex minorant of a Lévy process is a continuous random
function, which may but need not be smooth [2, 1], motivating the question of its Hölder
continuity. However, as the increments of the convex minorant (and their moments)
are not tractable and its local behaviour varies greatly with the characteristics of the
Lévy process [2], Kolmogorov’s extension theorem is not the right tool. In this paper
we establish sufficient and necessary conditions for the Hölder continuity of the convex
minorant of a Lévy process, using a generalisation of the 0–1 law in [2, Thm 3.1],
the characterisation of small time behaviour of the Lévy path in [4, Thm 2.1] and an
elementary lemma by Khinchine (see Lemma 2.3 below). We prove for example that, in
the absence of a Brownian component, the critical Hölder exponent is the reciprocal of
the Blumenthal–Getoor index for most infinite variation Lévy processes (complete results
are given in Table 1 below). A short YouTube [3] video describes the results and the
structure of our proofs.

The convex minorant C of the path of the Lévy process X on [0, T ] is the pointwise
largest convex function dominated by X. By [2, Prop. 1.3], C is Lipschitz (i.e., 1-Hölder)
continuous if and only if X is of finite variation. In what follows we assume that X is of
infinite variation. Then C is not Lipschitz on [0, T ] but, by convexity, is Lipschitz on every
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Hölder continuity of the convex minorant of a Lévy process

interval [ε, T − ε], ε > 0, with Lipschitz constant max{|C ′ε|, C ′T−ε} given in terms of the
right-derivative C ′ of C. Note that the rate at which max{|C ′ε|, C ′T−ε} tends to infinity
as ε ↓ 0, analysed in [1], is insufficient to characterise the r-Hölder continuity of C on
[0, T ] for r ∈ (0, 1), since C ′ε may fluctuate between functions that are not asymptotically
equivalent as ε ↓ 0, see [1, Rem. 2.14(a)] (analogous behaviour is observed for C ′T−ε).

Let σ and ν be the Gaussian coefficient and Lévy measure of X, respectively (see [10]
for background on Lévy processes). Let β denote the Blumenthal–Getoor index of X
given by

β := inf
{
p > 0 : Jp <∞

}
, where Jp :=

∫
(−1,1)

|x|pν(dx). (1.1)

Note that, when σ = 0, β ∈ [1, 2] since X is of infinite variation. (If σ > 0, we may have
β ∈ [0, 1).) Since J2 <∞, we have σ2(u) :=

∫
(−u,u) x

2ν(dx) <∞ for u > 0 and σ2(u)→ 0

as u→ 0 (but the convergence may be arbitrarily slow). Define also

λ2 := inf

{
λ > 0 :

∫ 1

0

e−λ
2/(2σ2(u)) du

u
<∞

}
& I2 :=

∫ 1

0

E[min{(Xt/
√
t)2, 1}]dt

t
. (1.2)

Theorem 1.1, summarised in Table 1 below, characterises, for most Lévy process
of infinite variation, the set of r ∈ (0, 1) for which C is r-Hölder continuous. The
characterisation is given in terms of Jβ , except for β = 2, where λ2 and I2 are required.

Table 1: The critical level r ∈ (0, 1) for r-Hölder continuity of the convex minorant is 1/2

in the presence of a Brownian component and 1/β in its absence, where β ∈ [1, 2] is the
Blumenthal–Getoor index.

Infinite variation Lévy process X r ∈ (0, 1) Is C r-Hölder continuous?

σ2 > 0
r < 1/2 Yes
r ≥ 1/2 No

σ2 = 0

β = 1 r ∈ (0, 1) Yes

β ∈ (1, 2)

Jβ =∞ r < 1/β Yes
r ≥ 1/β No

Jβ <∞
r ≤ 1/β Yes
r > 1/β No

β = 2

λ2 =∞ r < 1/2 Yes
r ≥ 1/2 No

I2 <∞
r ≤ 1/2 Yes
r > 1/2 No

λ2 <∞ and I2 =∞
r < 1/2 Yes
r > 1/2 No
r = 1/2 Inconclusive

1.1 r-Hölder continuity and sets of r-slopes

The convex minorant C is piecewise linear with countably many maximal intervals
of linearity (see, e.g. [5]). Denote the corresponding sequences of horizontal lengths
and vertical heights by (`n)n∈N and (ξn)n∈N, respectively. Thus, over the n-th interval of
linearity (where C has slope ξn/`n), C is clearly r-Hölder with Hölder constant |ξn|/`rn.
Our main objective is to characterise when a Lévy processes has a convex minorant that
is r-Hölder continuous for r ∈ (0, 1). It turns out that, for a large class of Lévy processes,
the a.s. finiteness of kr := supn∈N |ξn|/`rn implies that C is r-Hölder a.s. It is important to
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Hölder continuity of the convex minorant of a Lévy process

note that neither 0 nor T are the endpoints of an interval of linearity of C since X is of
infinite variation [2, Sec. 1.1.2], implying that, even though C is always “locally r-Hölder”
on (0, T ) by convexity (i.e. r-Hölder on every compact subinterval of (0, T )), it may fail to
be r-Hölder on [0, T ].

For any r ∈ (0, 1), define the set of r-slopes by Sr := {ξn/`rn : n ∈ N}, which is either
a.s. bounded (kr <∞) or a.s. unbounded (kr =∞) by [2, Cor. 3.2]. By Lemma 2.1 below,
we have:

kr = sup
s∈Sr
|s| ≤ sup

0≤u<t≤T

|Ct − Cu|
(t− u)r

≤
( ∑
s∈Sr

|s|1/(1−r)
)1−r

=: Kr a.s. (1.3)

Note that the upper bound Kr on the r-Hölder constant in (1.3) is in fact the Lp-norm
of C ′ for p = 1/(1 − r). Furthermore, the first inequality in (1.3) may be strict, see
Example 1.7 below.

The utility of (1.3) lies in the fact that it controls the Hölder continuity of convex
minorant C, since C is r-Hölder if Kr < ∞ and it is not r-Hölder if kr = ∞. Our main
result, Theorem 1.1, shows that, for all Lévy processes and r ∈ (0, 1) \ {1/2} (and even
r = 1/2 if either σ2 > 0 or β ∈ [1, 2)), kr and Kr are simultaneously finite or infinite:
P({Kr =∞} ∩ {kr <∞}) = 0, yielding Table 1. Since, by Proposition 2.2 below, for any
Lévy process X and any r ∈ (0, 1), we have P(kr =∞) ∈ {0, 1} and P(Kr =∞) ∈ {0, 1},
the main function of Theorem 1.1 is thus to rule out the possibility of having kr <∞ = Kr

a.s. Only in the extreme case σ2 = 0, β = 2 and r = 1/2, does there exist a Lévy processes
for which kr <∞ = Kr a.s., making (1.3) inconclusive in determining if C is 1

2 -Hölder,
see Proposition 1.5 and Example 1.6 below.

Theorem 1.1. Let X be a Lévy process of infinite variation and r ∈ (0, 1).

(i) If σ2 > 0, then kr =∞ a.s. for r ∈ [1/2, 1) and Kr <∞ a.s. for r ∈ (0, 1/2).

(ii) If σ2 = 0 and β ∈ [1, 2), then the following equivalences hold:

kr <∞ a.s. ⇐⇒ J1/r <∞ ⇐⇒ Kr <∞ a.s.

(iii) If σ2 = 0 and β = 2, then kr = ∞ a.s. for r ∈ (1/2, 1) and Kr < ∞ a.s. for
r ∈ (0, 1/2). If r = 1/2, the following implications hold:

(a) λ2 =∞ =⇒ k1/2 =∞ a.s., (b) λ2 ∈ (0,∞) =⇒ k1/2 <∞ = K1/2 a.s.,

(c) λ2 = 0 =⇒ k1/2 <∞ a.s., (d) I2 <∞ =⇒ K1/2 <∞ a.s.

We note that the only inconclusive cases in Theorem 1.1 are (iii-b) and (iii-c). In
fact, Example 1.6 below presents a Lévy process as in Theorem 1.1(iii-b). The proof of
Theorem 1.1 rests on Propositions 1.2–1.5, which we introduce next.

Proposition 1.2. Let X be a Lévy process of infinite variation. If σ2 > 0, then kr =∞
a.s. for r ∈ [1/2, 1) and Kr < ∞ a.s. for r ∈ (0, 1/2). If σ2 = 0, then kr = ∞ a.s. for
r ∈ (1/β, 1) and Kr <∞ a.s. for r ∈ (0, 1/β).

By the inequalities in (1.3), Proposition 1.2 characterises Hölder continuity of C when
either β = 1 or σ2 > 0, implying the rows one, two and three in Table 1. Moreover,
Proposition 1.2 reveals that the critical level of the Hölder exponent is r = 1/β with
β ∈ (1, 2], considered next. Define

Iβ :=

∫ 1

0

E
[

min{(|Xt|/t1/β)β/(β−1), 1}
]dt
t
∈ (0,∞], β ∈ (1, 2]. (1.4)

Proposition 1.3. Let X be a Lévy process of infinite variation with σ2 = 0 and β ∈ (1, 2].
Then the following holds: (i) Jβ =∞ ⇐⇒ k1/β =∞ a.s.; (ii) Iβ <∞ ⇐⇒ K1/β <∞ a.s.
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Hölder continuity of the convex minorant of a Lévy process

Implicit in Proposition 1.3 is the fact that Iβ < ∞ implies Jβ < ∞. Checking the
finiteness of the integral Iβ in Proposition 1.3(ii) may appear hard as it is given in (1.4)
in terms of the truncated moments of the marginals of X. We now give sufficient
conditions for Iβ < ∞ in terms of the Lévy measure ν, implying, in particular, that
Jβ <∞ ⇐⇒ Iβ <∞ when β ∈ (1, 2). Define

ν(u) := ν(R \ (−u, u)) for u ∈ (0, 1]. (1.5)

Note that, by Fubini’s theorem, Jp =
∫
(−1,1) |x|

pν(dx) =
∫ 1

0
ν(t1/p)dt− ν(1) for any p > 0.

In particular, the condition Jβ <∞ is equivalent to
∫ 1

0
ν(t1/β)dt <∞.

Proposition 1.4. Let X be an infinite variation Lévy process with σ2 = 0. If β ∈ (1, 2),
then Jβ <∞ ⇐⇒ Iβ <∞. If β = 2, then

∫ 1

0
log(1/t)ν(

√
t)dt <∞ implies I2 <∞.

By Proposition 1.4, for any process with β ∈ (1, 2), Proposition 1.3 characterises the
(1/β)-Hölder continuity of C. Moreover, since

∫ 1

0
ν(
√
t)dt <∞ for any Lévy measure ν,

Proposition 1.4 shows that I2 <∞ for many Lévy measures.
If X has no Brownian component (i.e. σ2 = 0) but satisfies β = 2, it is possible to

have k1/2 <∞ and K1/2 =∞ a.s., rendering (1.3) insufficient to ascertain whether C is
1
2 -Hölder continuous. Indeed, the phenomenon k1/2 <∞ = K1/2 occurs whenever the
constant λ2 in (1.2) lies in (0,∞). In fact, we have the following.

Proposition 1.5. Suppose that σ2 = 0 and β = 2. Then (i) λ2 =∞ implies k1/2 =∞ a.s.,
(ii) λ2 ∈ (0,∞) implies k1/2 <∞ = K1/2 a.s., and (iii) λ2 = 0 implies k1/2 <∞ a.s.

Observe that λ2 = 0 whenever Λ(e−e) < ∞ where Λ(x) :=
∫ x
0

(log log(1/t))ν(
√
t)dt

(see [4, Rem. 2(iii)]) since, by Fubini’s theorem, σ2(x) ≤
∫ x
0
ν(
√
t)dt ≤ Λ(x)/ log log(1/x)

for x ∈ (0, e−e) and limx↓0 Λ(x) = 0. Note that the condition
∫ 1

0
log(1/t)ν(

√
t)dt < ∞ in

Proposition 1.4 is stronger than Λ(e−e) <∞, so that, even in the case where Λ(e−e) <∞,
we cannot establish I2 < ∞ via Proposition 1.4. We suspect, however, that I2 < ∞
whenever λ2 = 0.

We conclude this subsection with two examples.

Example 1.6 ([4, Rem 2(iii)]). Let ν(dx) = 1
2x
−3 log(1/x)−1(log log(1/x))−21(0,e−e)(x)dx,

so that σ2(x) = 1
2 (log log(1/x))−11(0,e−e)(x). A direct calculation gives λ2 = 1 ∈ (0,∞).

In this case, we clearly have k1/2 < ∞ = K1/2 a.s. by Proposition 1.5, making (1.3)
insufficient to determine whether C is 1

2 -Hölder.

Example 1.7. In this example we construct a piecewise linear convex function for which
the first inequality in (1.3) is strict. Fix r ∈ (0, 1), T > 0 and consider the piecewise
linear convex function C : t 7→ −T r min{t, T/2}− rT r max{t−T/2, 0} on [0, T ], which has
two faces, both of length T/2 and with heights −T r and −rT r, respectively. Then

sup
0≤u<t≤T

|Ct − Cu|
(t− u)r

=
|CT − C0|

T r
= 1 + r > 2r = kr,

where the inequality follows since g : x 7→ 2x − 1− x is convex and g(0) = g(1) = 0.

1.2 Strategy for the proofs and connections with the literature

For any r ∈ (0, 1), we give sufficient as well as necessary conditions for the convex
minorant C to be r-Hölder continuous in terms of the set of r-slopes Sr := {ξn/`rn : n ∈ N}
(see (1.3) and Lemma 2.1). In Proposition 2.2 we generalise the 0–1 law of [2, Thm 3.1]
and use it to characterise the finiteness of Kr in terms of the truncated moments of the
marginals of X. Through Khintchine’s characterisation of the two-sided upper functions
of X [7], given in Lemma 2.3 below, and the 0–1 law in [2, Cor 3.2], we find that kr <∞
a.s. if and only if the a.s. constant (by Blumenthal’s 0–1 law [11, Prop. 40.4]) λ1/r =
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Hölder continuity of the convex minorant of a Lévy process

lim supt↓0 |Xt|/tr is finite, see Corollary 2.5 below. The final ingredient in the proofs of
Propositions 1.2 and 1.3 are the characterisations of the limit λ1/r given in [10, Sec. 47]
and [4], respectively. In Section 3 we discuss a possible extension of Proposition 1.2
and its connection to the characterisation in [13] of the limits lim supt↓0 |Xt|/h(t) for a
non-decreasing h.

2 Proofs

We begin with an elementary deterministic lemma that yields the inequalities in (1.3).

Lemma 2.1. Let f be an absolutely continuous, piecewise linear function with infinitely
many faces, defined on the interval [a, b]. Given any enumeration of the maximal intervals
of linearity of f , let (ln)n∈N and (hn)n∈N be the corresponding sequences of horizontal
lengths and vertical heights, respectively, of those line segments. Then for any r ∈ (0, 1)

we have

sup
n∈N
|hn|l−rn ≤ sup

a≤u<t≤b

|f(t)− f(u)|
(t− u)r

≤
(∑
n∈N

(|hn|l−rn )1/(1−r)
)1−r

.

Proof. Fix r ∈ (0, 1) and let p = 1/(1−r) > 1. Let (gn, dn), n ∈ N, be the maximal intervals
of linearity of f where the slope of f over (gn, dn) equals hn/ln and

∑
n∈N(dn−gn) = b−a.

The lower bound is obvious since it is attained by restricting the supremum to the values
(u, t) = (gn, dn). To establish the upper bound, first note that f ′ exists on the set⋃
n∈N(gn, dn) of measure b− a and∫ b

a

|f ′(t)|pdt =
∑
n∈N

∫ dn

gn

|f ′(t)|pdt =
∑
n∈N

|hn|p

lpn

∫ dn

gn

dt =
∑
n∈N

|hn|p

lp−1n

.

By Hölder’s inequality with p and q = p/(p− 1) = 1/r > 1, it follows

|f(t)− f(u)| ≤
∫ t

u

|f ′(x)|dx =

∫ b

a

1[u,t](x)|f ′(x)|dx ≤ (t− u)1/q
(∫ b

a

|f ′(x)|pdx
)1/p

.

Thus, we have

sup
a≤u<t≤b

|f(t)− f(u)|
(t− u)r

≤
(∫ b

a

|f ′(x)|pdx
)1/p

=

(∑
n∈N

|hn|p

lp−1n

)1/p

=

(∑
n∈N

(|hn|l−rn )1/(1−r)
)1−r

.

The proofs of Propositions 1.2 & 1.3 hinge on two key tools. First is the 0–1 law
in Proposition 2.2, generalising [2, Thm 3.1] to unbounded functionals of the faces
of C, and second is Khintchine’s characterisation of the upper functions of |X| at
zero given in Lemma 2.3 below. Recall that since X is of infinite activity, its convex
minorant C is a piecewise linear function whose maximal intervals of linearity have
corresponding sequences of horizontal lengths (`n)n∈N and vertical heights (ξn)n∈N
given by the formulae in [5, Thm 3.1]. (If X is of finite activity, the intervals of linearity
of the stick-breaking representation in [5, Thm 3.1] are not maximal and, in fact, all but
finitely many faces have the same slope).

Proposition 2.2. Let φ : R×(0,∞)→ [0,∞) be measurable. Then the sum
∑
n∈N φ(ξn, `n)

is either a.s. finite or a.s. infinite. Moreover, we have∑
n∈N

φ(ξn, `n) <∞ a.s. ⇐⇒
∫ 1

0

E[min{φ(Xt, t), 1}]
dt

t
<∞. (2.1)
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Proof. Note that
∑
n∈N an < ∞ if and only if

∑
n∈N min{an, 1} < ∞ for any sequence

(an)n∈N in [0,∞). Thus,
∑
n∈N φ(ξn, `n) < ∞ a.s. ⇐⇒

∑
n∈N min{φ(ξn, `n), 1} < ∞ a.s.

and the equivalence in (2.1) follows from [5, Thm 3.1] and the 0–1 law [2, Thm 3.1]
applied to the bounded function (t, x) 7→ min{φ(x, t), 1}.

The following characterisation due to Khintchine [7] is central in relating the upper
fluctuations of |X| and the faces of C. Recall that, for any positive measurable function
h : (0,∞) → (0,∞), lim supt↓0 |Xt|/h(t) is a.s. a constant on [0,∞] by Blumenthal’s 0–1
law [11, Prop. 40.4].

Lemma 2.3 (Khintchine). SupposeX is not compound Poisson with drift. Let h : (0,∞)→
(0,∞) be measurable and increasing at 0 and fix R > 0. The following statements hold.

(i) If
∫ 1

0
P(|Xt|/h(t) > R/4)t−1dt <∞, then lim supt↓0 |Xt|/h(t) ≤ R a.s.

(ii) If
∫ 1

0
P(|Xt|/h(t) > 8R)t−1dt =∞, then lim supt↓0 |Xt|/h(t) ≥ R a.s.

Remark 2.4. For completeness and accessibility, we give a short elementary proof of
Lemma 2.3 in Appendix A below. It is based on Khintchine’s proof of a closely related
result in the Russian text [7, Fundamental lemma]. It is not essential for the results in
this paper, but it is natural to enquire whether Lemma 2.3 holds with the constants R/4
and 8R in the integral conditions substituted by R.

Corollary 2.5. Suppose X is not compound Poisson with drift. Let h : (0,∞) → (0,∞)

be measurable and increasing at 0. Define the set of h-slopes Sh := {ξn/h(`n) : n ∈ N}
and set kh := sups∈Sh |s|. Then P(kh =∞) ∈ {0, 1}. Moreover, kh <∞ a.s. if and only if
lim supt↓0 |Xt|/h(t) <∞ a.s.

Proof. Suppose there exists R ∈ (0,∞) such that
∫ 1

0
P(|Xt|/h(t) > R)t−1dt <∞. Then [2,

Cor. 3.2] (applied to f(t, x) = |x|/h(t)) implies that Sh ∩ (R \ [−R,R]) is a.s. a finite set
and hence kh <∞ a.s. Similarly, since lim supt↓0 |Xt|/h(t) is a.s. constant, Lemma 2.3(i)
implies lim supt↓0 |Xt|/h(t) ≤ 4R.

Next assume that for all R ∈ (0,∞) we have
∫ 1

0
P(|Xt|/h(t) > R)t−1dt =∞. Then [2,

Cor. 3.2] (applied to f(t, x) = |x|/h(t)) implies that Sh ∩ (R \ [−R,R]) is a.s. an infinite
set for any R > 0. Hence kh ≥ R a.s. for any R > 0, implying that kh = ∞ a.s.
Similarly, Lemma 2.3(ii) implies lim supt↓0 |Xt|/h(t) ≥ R/8 a.s. for any R > 0 and hence
lim supt↓0 |Xt|/h(t) =∞.

Since
∫ 1

0
P(|Xt|/h(t) > R)t−1dt is either finite for some R or infinite for all R, it

follows that P(kh =∞) is either 0 or 1, respectively. Moreover, the former (resp. latter)
case implies that lim supt↓0 |Xt|/h(t) is finite (resp. infinite) a.s.

Proof of Proposition 1.2. First note that, for any p > 0 the sum
∑
n∈N `

p
n is finite a.s.

(with mean T p/p) by [2, Thm 3.1]. Pick any r′ > r and note that |ξn|/`rn ≤ kr′`
r′−r
n for

every n ∈ N, implying

K1/(1−r)
r =

∑
s∈Sr

|s|1/(1−r) =
∑
n∈N

(|ξn|/`rn)1/(1−r) ≤ k1/(1−r)r′

∑
n∈N

`(r
′−r)/(1−r)

n . (2.2)

In particular, Kr <∞ whenever kr′ <∞ for some r′ > r.
Assume first that σ2 > 0, then [10, Prop. 47.11] yields lim supt↓0 |Xt|/

√
t log log(1/t) =√

2|σ| > 0. Thus, the limit λ1/r = lim supt↓0 |Xt|/tr equals 0 (resp. ∞) a.s. for r ∈ (0, 1/2)

(resp. r ∈ [1/2, 1)). Then, by Corollary 2.5, we have kr = ∞ for all r ∈ [1/2, 1) and
k(r+1/2)/2 <∞ for r ∈ (0, 1/2) since (r + 1/2)/2 < 1/2. In the latter case, r < (r + 1/2)/2

and hence Kr <∞ by (2.2).
Next assume σ2 = 0. By [10, Prop. 47.24], λ1/r equals 0 (resp. ∞) a.s. for r ∈ (0, 1/β)

(resp. r ∈ (1/β, 1)) where β is the Blumenthal–Getoor index defined in (1.1). As before,
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Hölder continuity of the convex minorant of a Lévy process

by Corollary 2.5, we have kr =∞ for all r ∈ (1/β, 1) and k(r+1/β)/2 <∞ for r ∈ (0, 1/β)

since (r+1/β)/2 < 1/β. In the latter case, r < (r+1/β)/2 and hence Kr <∞ by (2.2).

Recall that, by Fubini’s theorem, Jp =
∫
(−1,1) |x|

pν(dx) =
∫ 1

0
ν(t1/p)dt− ν(1) for p > 0.

Proof of Proposition 1.3. Let r = 1/β ∈ [1/2, 1). By [4, Thm 2.1],
∫ 1

0
ν(tr)dt is finite

(resp. infinite) if and only if λ1/r = lim supt↓0 |Xt|/tr is finite (resp. infinite) a.s. Thus,

by Corollary 2.5,
∫ 1

0
ν(tr)dt = ∞ if and only if kr = ∞. By Proposition 2.2 (with

φ(x, t) = (|x|/tr)1/(1−r)): Iβ =
∫ 1

0
E[min{|Xt|/tr, 1}1/(1−r)]t−1dt is finite if and only if

K
1/(1−r)
r =

∑
n∈N |ξn|1/(1−r)/`

r/(1−r)
n is finite a.s., completing the proof.

The following elementary result is required to establish Proposition 1.4.

Lemma 2.6. Let f : (0, 1) → [0,∞) be a non-increasing function. Then the condition∫ 1

0
f(x)dx <∞ implies

∫ 1

0
xp−1f(x)pdx <∞ for any p ≥ 1.

Proof. Observe that, for all x ∈ (0, 1), we have

xf(x) ≤ g(x) :=
∑
n∈N

21−nf(2−n)1[2−n,21−n)(x)

= 4
∑
n∈N

(2−n/2)f(21−n/2)1[2−n,21−n)(x) ≤ 4x2 f
(
x
2

)
.

Thus, defining wn := 21−nf(2−n) for n ∈ N, we have

∑
n∈N

wn log 2 =

∫ 1

0

g(x)
dx

x
≤ 4

∫ 1

0

x
2 f
(
x
2

)dx

x
= 4

∫ 1/2

0

f(x)dx <∞.

In particular, W := supn∈N wn <∞ and hence,∫ 1

0

xp−1f(x)pdx ≤
∫ 1

0

g(x)p
dx

x
=
∑
n∈N

wpn log 2 ≤
∑
n∈N

wnW
p−1 log 2 <∞.

Proof of Proposition 1.4. Recall that Iβ < ∞ implies Jβ < ∞ by Proposition 1.3, so it
suffices to prove the converse. Define

$(u) :=

∫
(−1,1)\(−u,u)

xν(dx) ∈ R for u ∈ (0, 1].

We will show that, under our assumptions, the following integrals are finite:

(i)

∫ 1

0

tν
(
t1/β

)2
dt <∞, (ii)

∫ 1

0

t1−2/β$
(
t1/β

)2
dt <∞,

(iii)

∫ 1

0

E
[

min{|Xt|/t1/β , 1}2
]dt
t
<∞, (iv) Iβ =

∫ 1

0

E
[

min{|Xt|/t1/β , 1}β/(β−1)
]dt
t
<∞.

Let r = 1/β and note that
∫ 1

0
ν(tr)dt < ∞ by assumption. Thus, Lemma 2.6 (with

f(x) = ν(xr)) gives (i)
∫ 1

0
tν(tr)2dt <∞. Since 1/(1−r) = β/(β−1) ≥ 2 and min{|x|, 1}p ≤

min{|x|, 1}q for p ≥ q, (iii) implies (iv). It remains to show that (ii) and (iii) hold.
Let us establish (ii)

∫ 1

0
t1−2r$(tr)2dt < ∞. Denote ν1(x) := ν(x) − ν(1) for x ∈ (0, 1].

By Fubini’s theorem, we have

|$(u)| ≤
∫
(−1,1)

1{u≤|x|<1}

∫ |x|
0

dyν(dx) =

∫ 1

0

ν1(max{y, u})dy = uν1(u) +

∫ 1

u

ν1(y)dy.
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Hölder continuity of the convex minorant of a Lévy process

Hence, the elementary inequality (a+ b)2 ≤ 2(a2 + b2) yields

1

2
t1−2r$(tr)2 ≤ tν(tr)2 + t1−2r

(∫ 1

tr
ν(y)dy

)2

, t ∈ (0, 1].

Since (i)
∫ 1

0
tν(tr)2dt <∞, to establish (ii) we need only show that

∫ 1

0
t1−2r(

∫ 1

tr
ν(y)dy)2dt

is finite. Since min{a, b}2 ≤ ab and r = 1/β < 1, Fubini’s theorem gives

2(1− r)
∫ 1

0

t1−2r
(∫ 1

tr
ν(y)dy

)2

dt = 2(1− r)
∫ 1

0

∫ 1

0

(∫ min{x,y}1/r

0

t1−2rdt

)
ν(x)ν(y)dxdy

=

∫ 1

0

∫ 1

0

min{x, y}2/r−2ν(x)ν(y)dxdy

≤
(∫ 1

0

x1/r−1ν(x)dx

)2

=

(
r

∫ 1

0

ν(tr)dt

)2

<∞.

It remains to establish (iii)
∫ 1

0
E[min{|Xt|/tr, 1}2]t−1dt <∞. Let γ be the drift param-

eter of X corresponding to the cutoff function x 7→ 1{|x|<1} (see [10, Def. 8.2]) and recall
σ2(u) =

∫
(−u,u) x

2ν(dx) for u > 0. Apply [1, Lem. A.1] (with ε = K = tr) to obtain∫ 1

0

E
[

min{|Xt|, tr}2
] dt

t1+2r
≤
∫ 1

0

[
t2(γ −$(tr))2 + tσ2(tr) + t2r+1ν(tr)

] dt

t1+2r
.

Since the integrals
∫ 1

0
γ2t1−2rdt = γ2/(2 − 2r),

∫ 1

0
t1−2r$(tr)2dt and

∫ 1

0
ν(tr)dt are all

finite (recall r = 1/β < 1), it remains to show that
∫ 1

0
t−2rσ2(tr)dt <∞.

By Fubini’s theorem, we obtain

σ2(x) =

∫
(−x,x)

(∫ |u|
0

2ydy

)
ν(du) = 2

∫ x

0

y(ν(y)− ν(x))dy ≤ 2

∫ x

0

yν(y)dy, x ∈ (0, 1].

Consider the case r = 1/β ∈ (1/2, 1). Fubini’s theorem gives∫ 1

0

t−2rσ2(tr)dt ≤ 2

∫ 1

0

∫ tr

0

t−2ryν(y)dydt = 2

∫ 1

0

y1/r−2 − 1

2r − 1
yν(y)dy,

which is finite since
∫ 1

0
y1/r−1ν(y)dy = r

∫ 1

0
ν(tr)dt < ∞. Now consider the case r =

1/β = 1/2. Again by Fubini’s theorem, we obtain∫ 1

0

t−1σ2(
√
t)dt ≤ 2

∫ 1

0

∫ √t
0

t−1yν(y)dydt

= 4

∫ 1

0

log(1/y)yν(y)dy =

∫ 1

0

log(1/x)ν(
√
x)dx <∞.

Proof of Proposition 1.5. Recall that λ2 = lim supt↓0 |Xt|/
√
t ∈ [0,∞] by [4, Thm 2.1]. If

λ2 = ∞, then k1/2 = ∞ by Corollary 2.5. If λ2 ∈ [0,∞) then k1/2 < ∞ by Corollary 2.5.

Finally, assume λ2 ∈ (0,∞). Then
∫ 1

0
t−1P(|Xt|/

√
t > R)dt = ∞ for R < λ2/4 by

Lemma 2.3(i). Thus, for any ε ∈ (0, λ2/4), S1/2 has infinitely many points with magnitude
on the interval [ε,∞) by [2, Cor. 3.2], implying K1/2 =∞.

3 Concluding remarks

It is natural to consider the question of whether the convex minorant C is h-Hölder
continuous, i.e., if sup0≤u<t≤T |Ct−Cu|/h(t−u) <∞, for an appropriate general concave
increasing function h : (0,∞)→ (0,∞). In this context, it is also easy to see that

sup
0≤u<t≤T

|Ct − Cu|
h(t− u)

≥ kh = sup
n∈N

|ξn|
h(`n)

= sup
s∈Sh

|s|,
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Hölder continuity of the convex minorant of a Lévy process

where the finiteness of kh can be completely characterised via Corollary 2.5 and part (a)
of the main theorem in [13] in terms of the Lévy measure ν (see Corollary 3.1 in
Subsection 3.1 below for details).

It is not, however, immediately clear how to construct a tractable upper bound, say
Kh, satisfying Kh <∞ whenever kh <∞. Indeed, a crucial step in proving Lemma 2.1
(and hence (1.3)) is the application of Hölder’s inequality to establish that the r-Hölder
constant of C is bounded by the Lp-norm of the derivative C ′ for p = 1/(1−r). This step is
not easily extendable to a general concave function h since there is no sufficiently sharp
extension of Hölder’s inequality (see, e.g. [9, 8]). Thus, it appears that a generalisation
of our results beyond the case where h is a power function would require analysing the
integral

∫ t
u
|C ′v|dv for all 0 ≤ u < t ≤ T by other means. For instance, the results in [1]

obtain upper and lower functions for |C ′| at 0 and T , yielding upper and lower bounds
on
∫ t
u
|C ′v|dv for u < t close to either 0 or T . Note however, that there may exist a large

gap between the upper and lower functions of C ′, see [1, Rem. 2.14(a)], showing that
this question is nontrivial.

3.1 When is kh finite?

The following corollary is a direct consequence of Corollary 2.5 and part (a) of
the main theorem in [13]. Recall the definition of ν and $ in (1.5) and let γ be the
drift parameter of X (for the cutoff function x 7→ 1(−1,1)(x), see [10, Def. 8.2]) and
σ2(u) =

∫
(−u,u) x

2ν(dx) for u > 0.

Corollary 3.1. Suppose X is not compound Poisson with drift. Then, for any function h
increasing at 0 with h(0) = 0, the variable kh <∞ a.s. (resp. kh =∞ a.s.) if and only if
lim supt↓0 |Xt|/h(t) is a.s. finite (resp. infinite). Moreover, the following statements hold.

(i) If σ2 > 0, then kh <∞ a.s. if and only if lim inft↓0 h(t)/
√
t log log(1/t) > 0 a.s.

(ii) If σ2 = 0 and lim supx↓0(x−2σ2(x) + x−1|γ − $(x)|)/ν(x) < ∞, then the random

variable kh <∞ a.s. if and only if
∫ 1

0
ν(h(t))dt <∞.

(iii) Suppose σ2 = 0 and lim supx↓0(x−2σ2(x) + x−1|γ − $(x)|)/ν(x) = ∞. Then there
exists a non-decreasing function h∗ such that lim supt↓0 |Xt|/h∗(t) ∈ (0,∞) a.s. (h∗

constructed in the paragraph below). Moreover, the following implications hold

lim sup
t↓0

h∗(t)/h(t) <∞ =⇒ kh <∞ a.s.

lim inf
t↓0

h∗(t)/h(t) =∞ =⇒ kh =∞ a.s.

Wee and Kim [13] proved that lim supt↓0 |Xt|/h∗(t) ∈ (0,∞) a.s. for a non-decreasing
function h∗ if and only if σ2 = 0 and lim infx↓0 ν(x)/(ν(x) +x−2σ2(x) +x−1|γ−$(x)|) = 0.
In the following two cases, which are exhaustive by [13, Lem. 3.3], we describe a
construction of the function h∗, implicitly given in the proof of [13, Thm 3.4].

(a) Suppose lim infx↓0(ν(x) +x−1|γ−$(x)|)/(x−2σ2(x)) = 0. Choose a sequence un ↓ 0,
such that u−2n+1σ

2(un+1) > 2u−2n σ2(un) for n ∈ N and
∑
n∈N log(n)(ν(un) + u−1n |γ −

$(un)|)/(u−2n σ2(un)) < ∞. Let tn = log(n)/(u−2n σ2(un)) for all n ∈ N, and define
h∗(t) := un log(n) for tn+1 < t ≤ tn and n ∈ N.

(b) Suppose lim infx↓0(ν(x) +x−2σ2(x))/(x−1|γ−$(x)|) = 0. Choose a sequence un ↓ 0,
such that u−1n+1|γ − $(un+1)| ≥ 2u−1n |γ − $(un)| for n ∈ N and

∑
n∈N(ν(un) +

u−2n σ2(un))/(u−1n |γ −$(un)|) <∞. Let tn = 1/(u−1n |γ −$(un)|) and define h∗(t) :=

un for tn+1 < t ≤ tn and n ∈ N.
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Hölder continuity of the convex minorant of a Lévy process

A Proof of Lemma 2.3

We present a short proof of Lemma 2.3, based on the proof of [7, Fundamental
lemma].

Proof of Lemma 2.3. Fix 0 < s < t and 0 < y < x, then {|Xt| ≥ x} ⊂ {|Xs| ≥ y} ∪ {|Xt −
Xs| ≥ x− y}. Since Xt −Xs

d
= Xt−s, this yields

P(|Xt| ≥ x) ≤ P(|Xs| ≥ y) + P(|Xt−s| ≥ x− y). (A.1)

In particular, taking s = t/2 and y = x/2 gives P (t, x) := P(|Xt| ≥ x) ≤ 2P (t/2, x/2).
Without loss of generality, we assume throughout that h is non-decreasing on (0, 1].

Part (i). It suffices to show that, given R > 0, the condition
∫ 1

0
P (t, Rh(t))t−1dt <∞

implies lim supt↓0 |Xt|/h(t) ≤ 4R a.s. The proof is split in three steps.
Step 1. We first show that P (t, 2Rh(t)) → 0 as t ↓ 0 and, in particular, there exists

some ε > 0 such that P (t, 2Rh(t)) < 1/2 for t ∈ (0, ε). Denote p(t) = P (t, Rh(t)) for t > 0.
Since h is non-decreasing, (A.1) implies P (t, 2Rh(t)) ≤ p(s) + p(t − s). Integrating the
previous inequality over [t/2, t] with respect to the measure s−1ds yields

P (t, 2Rh(t)) log 2 ≤
∫ t

t/2

p(s)
ds

s
+

∫ t

t/2

p(t− s)ds

s

≤
∫ t

t/2

p(s)
ds

s
+

∫ t

t/2

p(t− s) ds

t− s
=

∫ t

0

p(s)
ds

s
<∞.

Thus, the limit limt↓0
∫ t
0
p(s)s−1ds = 0 implies limt↓0 P (t, 2Rh(t)) = 0.

Step 2. Define Xt := sups∈[0,t]Xs for t ≥ 0. We will show that P(Xt > 4Rh(t)) ≤
2P(Xt > 2Rh(t)) for t ∈ (0, ε) where ε is as in Step 1. Fix n ∈ N, set tk := tk/n for
k ∈ {1, . . . , n} and define the events

Ak := {Xti ≤ 4Rh(t) for all i ∈ {1, . . . , k − 1}} ∩ {Xtk > 4Rh(t)}, k ∈ {1, . . . , n}.

Since the increments of X are independent and stationary, we have

P(Xt > 2Rh(t)|Ak) ≥ P(Xt −Xtk > −2Rh(t)|Ak) = P(Xt −Xtk > −2Rh(t))

≥ P(|Xt −Xtk | < 2Rh(t)) = P(|Xt−tk | < 2Rh(t))

≥ P(|Xt−tk | < 2Rh(t− tk)).

By step 1, t− tk < ε for t ∈ (0, ε) and hence P(Xt > 2Rh(t)|Ak) > 1/2 for k ∈ {1, . . . , n}.
Define M (n)

t := max1≤k≤nXtk , then {M (n)
t > 4Rh(t)} =

⋃n
k=1Ak. Since the sets Ak

are disjoint, for any t ∈ (0, ε) we have

P
(
M

(n)
t > 4Rh(t)

)
=

n∑
k=1

P(Ak) ≤ 2

n∑
k=1

P(Ak)P(Xt > 2Rh(t)|Ak) ≤ 2P(Xt > 2Rh(t)).

Since X is càdlàg, M (2n)
t ↑ Xt a.s. as n → ∞. Hence, the monotone convergence

theorem yields P(Xt > 4Rh(t)) = limn→∞P(M
(2n)
t > 4Rh(t)) ≤ 2P(Xt > 2Rh(t)).

Step 3. Define pn := P(supt∈[2−n,21−n](Xt/h(t)) > 4R) for n ∈ N and let nε be the
smallest positive integer larger than 1 + log(1/ε)/ log 2, where ε is as in Step 1. Since h
is non-decreasing, Step 2 and (A.1) imply that for all n ≥ nε and t ∈ [2−n, 21−n] we have

pn ≤ P
(

sup
t∈[2−n,21−n]

Xt > 4Rh(2−n)

)
= P

(
X2−n > 4Rh(2−n)

)
≤ P

(
Xt > 4Rh(2−n)

)
≤ 2P(Xt > 2Rh(2−n)) ≤ 2P(Xt > 2Rh(t/2)) ≤ 4P(Xt/2 > Rh(t/2)).
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Integrating the previous inequality over t ∈ [2−n, 21−n] and summing over n ≥ nε gives

∞∑
n=nε

pn
log 2

4
=

∞∑
n=nε

∫ 21−n

2−n

pn
4

dt

t
≤
∞∑
n=1

∫ 21−n

2−n

P(Xt/2 > Rh(t/2))
dt

t

=

∫ 2

0

P(Xt > Rh(t))
dt

t
<∞.

The Borel–Cantelli lemma implies supt∈[2−m−1,2−m](Xt/h(t)) ≤ 4R for all but finitely many
n, implying lim supt→0Xt/h(t) ≤ 4R a.s. By symmetry, lim supt→0(−Xt)/h(t) ≤ 4R a.s.,
proving part (i).

Part (ii). It suffices to show that, given R > 0, if
∫ 1

0
P (t, 8Rh(t))t−1dt = ∞ (recall

P (t, x) = P(|Xt| > x)) then lim supt↓0 |Xt|/h(t) ≥ R a.s. The proof requires three steps.
Step 1. Define M(t) := sups∈(0,t](|Xs|/h(s)). We will show that

Bn :=

{
sup

t∈[2−n−1,2−n]

|Xt −X2−n−1 | > 2Rh(2−n), M(2−n−1) ≤ R
}
⊂ {M(2−n) > R}.

(A.2)
To see (A.2) note that, on the event Bn there exists some t ∈ [2−n−1, 2−n] satisfying

M(2−n) ≥ |Xt| ≥ |Xt −X2−n−1 | − |X2−n−1 | > 2Rh(2−n)−Rh(2−n−1) ≥ Rh(2−n) ≥ Rh(t).

Step 2. We claim
∑
n∈N qn = ∞, where qn := P(supt∈[0,2−n−1] |Xt| > 2Rh(2−n)). For

t ≤ 2−n−1, apply (A.1) twice to get 4qn ≥ 4P (t, 2Rh(2−n)) ≥ P (4t, 8Rh(2−n)). Hence, for
any t ∈ [2−n−2, 2−n−1], we have 4qn ≥ P (4t, 8Rh(4t)). Integrating the previous inequality
on [2−n−2, 2−n−1] with respect to t−1dt yields

(4 log 2)qn ≥
∫ 2−n−1

2−n−2

P (4t, 8Rh(4t))
dt

t
=

∫ 2−n+1

2−n

P (t, 8Rh(t))
dt

t
, for all n ∈ N.

Thus, the condition
∫ 1

0
P (t, 8Rh(4t))t−1dt =∞ implies

∑
n∈N qn =∞.

Step 3. Define rn := P(M(2−n) > R) for n ∈ N ∪ {0}. By Step 1, the event Bn ⊂
{M(2−n−1) ≤ R} in (A.2) satisfies

qn(1− rn+1) = P(Bn) ≤ P(M(2−n−1) ≤ R, M(2−n) > R) = rn − rn+1.

This further implies that, for any k ≥ 0 and n ∈ N,

0 ≤ 1− rn ≤ (1− rn+1)(1− qn) ≤ (1− rn+k+1)

n+k∏
i=n

(1− qi).

Since
∑
n∈N qn = ∞, it follows that

∏n+k
i=n (1 − qi) → 0 as k → ∞. Indeed, if q∞ :=

lim supk→∞ qk > 0, then the limit is obvious since 1 − qi ≤ 1 − q∞/2 < 1 for infinitely
many i ≥ n and, if q∞ = 0, the result follows from [6, Lem. 5.8]. Hence, we have rn = 1

for all n ∈ N ∪ {0} and thus lim supt↓0 |Xt|/h(t) = limt↓0M(t) ≥ R a.s.
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convex minorant of a Lévy process”. YouTube video. Published on Prob-AM YouTube channel.
2022.

ECP 28 (2023), paper 43.
Page 11/12

https://www.imstat.org/ecp

https://doi.org/10.48550/ARXIV.2206.09928
https://doi.org/10.48550/ARXIV.2205.14416
https://youtu.be/PKvSg2tKqfs
https://www.youtube.com/channel/UCXSoLS_uKebYZ9GzgAF0ZsA
https://doi.org/10.1214/23-ECP549
https://imstat.org/journals-and-publications/electronic-communications-in-probability/


Hölder continuity of the convex minorant of a Lévy process

[4] J. Bertoin, R. A. Doney, and R. A. Maller. “Passage of Lévy processes across power law
boundaries at small times”. Ann. Probab. 36.1 (2008), pp. 160–197. ISSN: 0091-1798. DOI:
10.1214/009117907000000097.

[5] Jorge Ignacio González Cázares and Aleksandar Mijatović. “Convex minorants and the
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