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Abstract

The specific relative entropy, introduced in the Wiener space setting by N. Gantert,
allows to quantify the discrepancy between the laws of potentially mutually singular
measures. It appears naturally as the large deviations rate function in a randomized
version of Donsker’s invariance principle, as well as in a novel transport-information
inequality recently derived by H. Föllmer. A conjecture, put forward by the aforemen-
tioned authors, concerns a closed form expression for the specific relative entropy
between continuous martingale laws in terms of their quadratic variations. We provide
a first partial result in this direction, by establishing this conjecture in the case of
well-behaved martingale diffusions on the line.
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1 Introduction

Let (C,F) be the Wiener space C = C([0, 1],R) and F = σ(Xt : t ∈ [0, 1]) where
Xt : C → R with Xt(ω) = ω(t) is the canonical process. Define also

Fn := σ(X k
n

: k = 0, 1, . . . , n).

The central object of study in this article is the concept of specific relative entropy,
introduced in the setting of Wiener space by N. Gantert in her PhD thesis [6] and recently
studied by the works of H. Föllmer [4, 2].

Definition 1.1. Given Q,P probability measures on (C,F), the upper specific relative
entropy of Q with respect to P is defined as

hu (Q |P) := lim sup
n→∞

1

n
H(Q |P)|Fn ,

where H(Q |P)|Fn is the relative entropy of Q with respect to P restricted to Fn, namely

H(Q |P)|Fn :=

{∫
C log dQ

dP |Fn dQ if Q|Fn � P|Fn
+∞ otherwise.
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Similarly the lower specific relative entropy of Q with respect to P is defined as

h` (Q |P) := lim inf
n→∞

1

n
H(Q |P)|Fn .

Finally, if h`(Q |P) = hu(Q |P), we denote this common value by h(Q |P) and call it the
specific relative entropy of Q with respect to P.

Remark 1.2.

1. The specific relative entropy is meaningful even in situations where measures
singular to each other are being compared. This is the case of continuous martin-
gale laws, which typically have infinite relative entropy but may still have a finite
specific relative entropy when compared with each other. In [6, Kapitel II.4] it was
shown that h(·|W), with W being Wiener measure, is the rate function in a large
deviations principle associated to a randomized Donsker-type approximation of
Brownian motion.

2. We took the liberty to introduce the terminology of “upper/lower specific relative
entropies”. In fact in [4] already h` is called specific relative entropy, whereas [6]
restricts itself to the case when h` and hu coincide. The works [4, 2] considers
rather the subsequence of dyadic sigma-algebras F2n in the definitions of specific
relative entropy.

3. Both [4, 2] and [6] mostly study the specific relative entropy for Q,P being general
martingale laws, or even more general stochastic processes than martingales. In
the present work we will specialize the discussion to Q,P being the laws of very
well-behaved martingale diffusions.

4. The concept of specific relative entropy is older than the work [6]. For instance this
concept appears in Donsker and Varadhan’s study of large deviations for stationary
Gaussian processes [1] and in Föllmer’s study of lattice models [3].

Let B = (Bt)t∈[0,1] be a one-dimensional Brownian motion on some filtered probability
space (Ω,S, (St)t∈[0,1],S). Let Mx = (Mx

t )t∈[0,1] be the solution of{
dMx

t = σ(Mx
t ) dBt

Mx
0 = x,

and likewise let Nx = (Nx
t )t∈[0,1] be the solution of{

dNx
t = η(Nx

t ) dBt

Nx
0 = x.

Throughout this article we assume rather strong regularity assumptions on the diffusion
coefficients σ, η. They will guarantee a unique strong solution to the above stochastic
differential equations in particular, but more importantly, they will allow us to gauge the
small-time behaviour of Mx and Nx. The precise assumptions are:

Assumption 1.3. The coefficients σ, η : R → R+ are twice continuously differentiable
and such that

σ(·), η(·) ∈ (δ, 1/δ),

for some 0 < δ ≤ 1. Moreover, for some L ∈ R we have

max{‖σ′‖∞, ‖σ′′‖∞, ‖η′‖∞, ‖η′′‖∞} < L.

The main result of this article establishes the existence of the specific relative entropy
between the laws of Mx and Nx, and provides a closed form expression for this quantity:
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Theorem 1.4. Under Assumption 1.3, let Mx and Nx be as above and call Qx and Px

their respective laws in (C,F). Then

(i) the specific relative entropy of Qx with respect to Px exists, and

(ii) it has the closed form

h(Qx |Px) =
1

2
E

[∫ 1

0

{
σ(Mx

s )2

η(Mx
s )2
− 1− log

σ(Mx
s )2

η(Mx
s )2

}
ds

]
. (1.1)

Recalling that X stood for the canonical process, Formula (1.1) becomes

h(Qx |Px) =
1

2
EQx

[∫ 1

0

{
σ(Xs)

2

η(Xs)2
− 1− log

σ(Xs)
2

η(Xs)2

}
ds

]
.

A formula of this very kind had been conjectured in [6, Kapitel I.1] in the case that η ≡ 1.
Specifically, calling W the Wiener measure and Q a martingale law (w.l.o.g. both started
at zero), the conjecture asserted the equality

h(Q |W) =
1

2
EQ

[∫ 1

0

{
σ(Xs)

2 − 1− log σ(Xs)
2
}
ds

]
.

In fact, it was already established in [6, 4, 2] that the r.h.s. here is always the smaller one,
and this fact has already found an application in [4, 2] were a novel transport-information
inequality was derived. Yet to the best of our knowledge the conjecture (i.e. the equality
of left- and right-hand sides) had only been confirmed in the following cases: for Gaussian
martingales, i.e. when σ is deterministic (that is to say, not a function of space), for the
case of geometric Brownian motion, and for the case of Mt =

∫ t
0
BsdBs. Our contribution

is hence to provide a first corroboration of this conjecture beyond the Gaussian case in
a rather systematic way. Furthermore we also allowed for η being non-constant. This
seems relevant to us, as one could be possibly interested in other reference martingales
than Brownian motion. The proof of Formula (1.1) is achieved by careful expansion of
the transition densities of the involved martingales. This goes some way into explaining
why we restrict ourselves to martingale diffusions with fairly regular coefficients.

As a corollary to Theorem 1.4 we are able to obtain a statistical estimator for the
specific relative entropy based on independent samples. As in functional data analysis
[9] (in the so-called asymptotic dense regime), the idea is that we have access to iid
sample paths of a continuous process which we can observe only at mesh points, the
size of the mesh going to zero as the number of sampled paths grows (in particular, no
sampled path can be observed at more than a finite number of time instances). This is
the content of our second main result:

Corollary 1.5. Under Assumption 1.3, let Mx and Nx be as before and call Qx and Px

their respective laws in (C,F). Let {Mx,n}n∈N be iid samples from Qx. Then we have
the almost sure convergence

lim
n→∞

1

n

∑
k≤n

1

k
log

(
dQx

dPx

∣∣∣
Fk

(
Mx,k

0
k

,Mx,k
1
k

, . . . ,Mx,k
k
k

))
= h(Qx |Px). (1.2)

The proof of this corollary is based on Theorem 1.4, a strong law of large numbers for
independent (possibly non-identically distributed) samples, and the short time behaviour
of the transition densities of the involved martingales.

In our last main result we obtain an almost-sure counterpart to Theorem 1.4 along
dyadic partitions. For simplicity we restrict ourselves to the case when the reference
martingale Nx is Brownian motion started at x.
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Proposition 1.6. Suppose that η ≡ 1 and that σ fulfills the conditions in Assumption 1.3.
Then we have the almost-sure limit

lim
k→∞

1

2k
log

(
dQx

dPx

∣∣∣
F2k

(
Mx
`·2−k

)2k
`=0

)
=

1

2

∫ 1

0

{
σ(Mx

s )2 − 1− log σ(Mx
s )2
}
ds (1.3)

This proposition establishes a conjecture in [6, p. 15] in the case when M is a
martingale diffusion satisying our strong regularity assumptions. Incidentally, our proof
reveals that the same result is true if we replace the role of 2k by nk, as long as∑∞
k=0 nk <∞.

2 Proof of Theorem 1.4

The proof of Theorem 1.4 relies on the following rather precise estimates on the
transition density function of martingale diffusions as above. Throughout we denote

dσ(a, b) :=

∣∣∣∣∣
∫ b

a

du

σ(u)

∣∣∣∣∣ .
The metric dσ(a, b) is the geodesic distance induced by σ (more precisely, by σ2) on R.

Lemma 2.1. Let σ and Mx be as above and let p(t, x, y) be the transition density function
of Mx from x at time 0 to y at time t. Under Assumption 1.3 there are constants C1 and
C2, depending only on δ and L, such that, for all t ∈ (0, 1] and x, y ∈ R:

e−C2t
1√
2πt

√
σ(x)

σ(y)

1

σ(y)
e(−dσ(x,y)

2/2t) ≤ p(t, x, y) ≤ eC1t
1√
2πt

√
σ(x)

σ(y)

1

σ(y)
e(−dσ(x,y)

2/2t).

The content of Lemma 2.1 is surely known to experts, as the study of asymptotic
expansions for the heat kernel is a classical subject. On the other hand Lemma 2.1 is
non-asymptotic and of global nature, which we find useful. It seems to us that this result
should follow from the precise estimates in [7, Corollary 3.1 and Theorem 4.1], but we
cannot guarantee this assertion as we lack geometric training. Hence we rather provide
our own self-contained proof:

Proof of Lemma 2.1. We use throughout that B is a Brownian motion started at the
origin. Let g : R→ R be the strictly increasing and surjective function defined by

g(y) :=

∫ y

x

1

σ(u)
du,

and g−1 its inverse. By Itô’s lemma we have

g(Mx
t ) = Bt −

1

2

∫ t

0

σ′(Mx
s ) ds.

Hence Yt := g(Mx
t ) satisfies Yt = Bt +

∫ t
0
b(Ys)ds, where b := − 1

2σ
′ ◦ g−1.

For any Φ ≥ 0 measurable and bounded, we have

E [Φ(Mx
t )] = E

[
Φ(g−1(Yt))

]
= E

[
Φ(g−1(Bt)) exp

(∫ t

0

b(Bs) dBs −
1

2

∫ t

0

b(Bs)
2 ds

)]
= E

[
Φ(g−1(Bt)) exp

(∫ Bt

0

b(u) du− 1

2

∫ t

0

b′(Bs) ds−
1

2

∫ t

0

b(Bs)
2 ds

)]
(2.1)
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where the second equality is due to Girsanov’s theorem (applicable as σ′ is bounded),
whereas the last equality follows from∫ Bt

0

b(u) du =

∫ t

0

b(Bs) dBs +
1

2

∫ t

0

b′(Bs) ds,

which is just Itô’s lemma applied to the function f(z) :=
∫ z
0
b(u) du.

To get an upper bound for (2.1) note that,

−b′ − b2 ≤ −b′ =
1

2
(σ · σ′′) ◦ g−1 ≤ L

2δ
(2.2)

which implies,

exp

(
−1

2

∫ t

0

b′(Bs) ds−
1

2

∫ t

0

b(Bs)
2 ds

)
≤ exp (t

L

4δ
).

Inserting in (2.1) with C1 := L
4δ yields,

E [Φ(Mx
t )] ≤ exp (tC1)E

[
Φ(g−1(Bt)) exp

(∫ Bt

0

b(u) du

)]
. (2.3)

Note that

b = −1

2
σ′ ◦ g−1 = −1

2

(σ ◦ g−1)′

σ ◦ g−1
= −1

2
(log ◦σ ◦ g−1)′

and g−1(B0) = g−1(0) = x. Therefore∫ Bt

0

b(u) du = −1

2
log

(
σ(g−1(Bt))

σ(g−1(B0))

)
= log

√
σ(x)

σ(g−1(Bt))

We can now rewrite the expectation on the right-hand side of (2.3) by using this obser-
vation and then expressing it in terms of the density of Bt. The desired representation
then follows from a change of variables with y = g−1(z), namely:

E

[
Φ(g−1(Bt)) exp

(∫ Bt

0

b(u) du

)]

=E

[
Φ(g−1(Bt))

√
σ(x)

σ(g−1(Bt))

]

=

∫
R

Φ(g−1(z))

√
σ(x)

σ(g−1(z))

1√
2πt

exp

(
−z

2

2t

)
dz

=

∫
R

Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
−g(y)2

2t

)
g′(y) dy

=

∫
R

Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
− 1

2t

(∫ y

x

1

σ(u)
du

)2
)

1

σ(y)
dy.

We conclude that

E [Φ(Mx
t )] ≤ exp (tC1)

∫
R

Φ(y)

√
σ(x)

σ(y)

1√
2πt

exp

(
− 1

2t
dσ(x, y)2

)
1

σ(y)
dy.

As this holds for all Φ ≥ 0 measurable and bounded, this proves the desired upper bound.
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The lower bound follows analogously by replacing (2.2) with

−b′ − b2 =
1

2
(σσ′′) ◦ g−1 − (

1

2
σ′ ◦ g−1)2 ≥ −

(
Lδ

2
+
L2

4

)
.

This implies

exp

(
−1

2

∫ t

0

b′(Bs) ds−
1

2

∫ t

0

b(Bs)
2 ds

)
≥ exp (−tC2),

where C2 := Lδ
4 + L2

8 .

We are now in a position to prove Theorem 1.4.

Proof of Theorem 1.4. Let q(t, x, y) and p(t, x, y) be the transition density functions of
Mx and Nx respectively. To ease notation we now drop the superscript x from M

and N . Since M and N are Markov and time-homogeneous, we have by the tensorization
property of the relative entropy that

H(Qx |Px)|Fn = H
(
L(M0,M 1

n
, . . . ,M1) | L(N0, N 1

n
, . . . , N1)

)
=

n∑
k=1

∫
R2

log
dL(M k

n
|M k−1

n
= xk−1)(xk)

dL(N k
n
|N k−1

n
= xk−1)(xk)

dL(M k−1
n
,M k

n
)(xk−1, xk)

=

n∑
k=1

∫
R2

log
q( 1
n , xk−1, xk)

p( 1
n , xk−1, xk)

dL(M k−1
n
,M k

n
)(xk−1, xk)

=

n∑
k=1

E

[
log

q( 1
n ,M k−1

n
,M k

n
)

p( 1
n ,M k−1

n
,M k

n
)

]

By Lemma 2.1 for the upper bound of q and the lower bound of p, we derive the existence
of a constant C such that for all x, y ∈ R, t ∈ (0, 1]:

log
q(t, x, y)

p(t, x, y)
≤ Ct+

1

2
log

σ(x)η(y)

σ(y)η(x)
− log

σ(y)

η(y)
− 1

2t
dσ(x, y)2 +

1

2t
dη(x, y)2.

Therefore, for all n ∈ N and any k = 1, . . . , n:

E

[
log

q( 1
n ,M k−1

n
,M k

n
)

p( 1
n ,M k−1

n
,M k

n
)

]

≤ E

[
C

n
+

1

2
log

σ(M k−1
n

)η(M k
n

)

σ(M k
n

)η(M k−1
n

)
− log

σ(M k
n

)

η(M k
n

)
− n

2
dσ(M k−1

n
,M k

n
)2 +

n

2
dη(M k−1

n
,M k

n
)2

]
.

(2.4)

Summing over k = 1, . . . , n the log
σ(M k−1

n
)η(M k

n
)

σ(M k
n
)η(M k−1

n
) terms form a telescopic sum. So for all

n ∈ N:

1

n
H(Qx |Px)|Fn

≤ 1

n

n∑
k=1

E

[
C

n
+

1

2
log

σ(M k−1
n

)η(M k
n

)

σ(M k
n

)η(M k−1
n

)
− log

σ(M k
n

)

η(M k
n

)
− n

2
dσ(M k−1

n
,M k

n
)2

+
n

2
dη(M k−1

n
,M k

n
)2

]
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=
C

n
+ E

[
1

2n
log

σ(M0)η(M1)

σ(M1)η(M0)
− 1

n

n∑
k=1

log
σ(M k

n
)

η(M k
n

)
− 1

2

n∑
k=1

dσ(M k−1
n
,M k

n
)2

+
1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]
(2.5)

We now show that (2.5) converges to the right-hand side of (1.1). Firstly, since σ and
η are bounded away from 0 and bounded from above, it is clear that,

lim
n→∞

E

[
1

2n
log

σ(M0)η(M1)

σ(M1)η(M0)

]
= 0

Furthermore for almost every ω ∈ Ω the map t 7→ log(σ(Mt(ω))
η(Mt(ω))

) is continuous, so that

n∑
k=1

log
σ(M k

n
(ω))

η(M k
n

(ω))
1( k−1

n , kn ](t)
n→∞−−−−→ log

σ(Mt(ω))

η(Mt(ω))
Leb⊗ P− a.e.

Since the left-hand side above is bounded uniformly in n, we have by dominated conver-
gence

lim
n→∞

E

[
1

n

n∑
k=1

log
σ(M k

n
)

η(M k
n

)

]
= lim
n→∞

E

[∫ 1

0

n∑
k=1

log
σ(M k

n
)

η(M k
n

)
1( k−1

n , kn ](s) ds

]

= E

[∫ 1

0

log
σ(Ms)

η(Ms)
ds

]
.

Next, Itô’s lemma applied to the function F (z) :=
∫ z
0

1
η(u) du yields,

F (Mt) =

∫ Mt

0

1

η(u)
du =

∫ t

0

σ(Mu)

η(Mu)
dBu −

1

2

∫ t

0

η′(Mu)

η(Mu)2
σ(Mu)2 du.

Thus we have

E

[
1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]
= E

1

2

n∑
k=1

∫ M k
n

M k−1
n

1

η(u)
du

2


= E

[
1

2

n∑
k=1

(
F (M k

n
)− F (M k−1

n
)
)2]

.

At this point one can directly deduce

lim
n→∞

E

[
1

2

n∑
k=1

dη(M k−1
n
,M k

n
)2

]
= E

[∫ 1

0

1

2

(
σ(Mu)

η(Mu)

)2

du

]
, (2.6)

from the fact that

E

[
1

2

n∑
k=1

(
F (M k

n
)− F (M k−1

n
)
)2]
→ E[〈F (M)〉1],

as follows directly per properties of the quadratic variation of Itô processes with bounded
coefficients. To be self-contained we provide now a detailed argument:

E

[
1

2

n∑
k=1

(
F (M k

n
)− F (M k−1

n
)
)2]
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=
1

2

n∑
k=1

E

[(∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

)2

−
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

+
1

4

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

)2 ]

= E

[
1

2

∫ 1

0

(
σ(Mu)

η(Mu)

)2

du− 1

2

n∑
k=1

∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

+
1

2

n∑
k=1

1

4

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

)2 ]
.

The expression above converges to E

[
1
2

∫ 1

0

(
σ(Mu)
η(Mu)

)2
du

]
as n → ∞. Indeed, since

‖η′‖∞ < L and σ, η ∈ (δ, 1δ ), we have that

E

[∣∣∣∣∣
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∣∣∣∣∣
]
≤

E
(∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

)2
 1

2

=

(
E

[∫ k
n

k−1
n

σ(Mu)2

η(Mu)2
du

]) 1
2

≤
√

1

n

1

δ2
,

and therefore as n→∞∣∣∣∣∣
n∑
k=1

∫ k
n

k−1
n

σ(Mu)

η(Mu)
dBu

∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

∣∣∣∣∣ ≤ L

δ4
1

n

n∑
k=1

∣∣∣∣∣
∫ k

n

k−1
n

σ(Mu)

η(Mu)
dBu

∣∣∣∣∣ L1

−−→ 0.

Moreover,

n∑
k=1

(∫ k
n

k−1
n

η′(Mu)

η(Mu)2
σ(Mu)2 du

)2

≤
n∑
k=1

L2

δ8
1

n2
=
L2

δ8
1

n

L1

−−→ 0 as n→∞.

All in all, we have established (2.6). Applying the same arguments with η replaced by σ,
shows

lim
n→∞

E

[
1

2

n∑
k=1

dσ(M k−1
n
,M k

n
)2

]
=

1

2
.

Finally we conclude that

hu(Qx|Px) := lim sup
n→∞

1

n
H(Qx |Px)|Fn ≤

1

2
E

[∫ 1

0

σ(Ms)
2

η(Ms)2
− 1− log

σ(Ms)
2

η(Ms)2
ds

]
.

Analogously, by the lower bound for q and the upper bound for p from Lemma 2.1, applied
in (2.4), we get:

h`(Qx|Px) := lim inf
n→∞

1

n
H(Qx |Px)|Fn ≥

1

2
E

[∫ 1

0

σ(Ms)
2

η(Ms)2
− 1− log

σ(Ms)
2

η(Ms)2
ds

]
,

which finishes the proof.
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Remark 2.2. We find the limit in (2.6), equivalently

lim
n→∞

EQx

[
n∑
k=1

dη(X k−1
n
, X k

n
)2

]
= EQx

[∫ 1

0

η(Xu)−2d〈X〉u
]
,

curious and worth highlighting. We suspect that there is a geometric interpretation to
this result, but we do not pursue this line of reasoning here.

3 Proof of Corollary 1.5

In this part it will be convenient to apply a weaker version of Lemma 2.1, namely:

Lemma 3.1. Let σ, Mx and p(t, x, y) as in Lemma 2.1. Under Assumption 1.3 there is a
constant C, depending only on δ and L, such that, for all t ∈ (0, 1] and x, y ∈ R:

e−Ct
δ2√
2πt

e(−(x−y)
2/2tδ2) ≤ p(t, x, y) ≤ eCt 1

δ2
√

2πt
e(−δ

2(x−y)2/2t).

This follows directly from Lemma 2.1 and Assumption 1.3 on σ, so we omit the proof.
We remark that at least the upper bound in Lemma 3.1 can be obtained in far more
generality with PDE methods (see Theorems 4.5 and 5.4 in [5, Chapter 6]).

We put ourselves now in the setting of Corollary 1.5, and introduce some notation
here: If Q is a probability measure on C and if Q|Fn possesses a density with respect to
n-dimensional Lebesgue measure,1 we denote this density by the lower-case symbol qn.
If X ∈ C we denote X(n) := (Xi/n)ni=0. Written in this terms, our aim is to establish the
almost sure convergence

lim
n→∞

1

n

∑
k≤n

1

k
log

(
qxk
pxk

(Mx,k
(k) )

)
= h(Qx |Px). (3.1)

We now omit the x-dependence everywhere, in order to keep notation at bay.

Proof of Corollary 1.5. We will use the following Kolmogorov’s version of the strong law
of large numbers (KSLLN) for independent non-identically distributed sequences: If
(Yk)k are independent, with finite second moments, and such that

∑
k

1
k2 Var(Yk) < ∞,

then 1
n

∑
k≤n(Yk −E[Yk])→ 0 almost surely as n→∞. This can be found in [8, Theorem

2.3.10]. For us

Yk :=
1

k
log

(
qk
pk

(Mk
(k))

)
,

so by definition the (Yk)k are independent and E[Yk] = 1
kH(Q |P)|Fk . Per Theorem 1.4

we know 1
kH(Q |P)|Fk → h(Q |P), hence 1

n

∑
k≤nE[Yk] → h(Q |P). Thus if we can

apply KSLLN then we will have derived (3.1) as desired. Thus it remains to verify that∑
k

1
k2 Var(Yk) <∞, but as

∑
k

1
k2E[Yk]2 <∞ in our case, it is enough to verify∑

k

1

k2
E[Y 2

k ] <∞. (3.2)

To this end remark that Y 2
k ≤ 2

k2

{
log(qk(Mk

(k)))
2 + log(pk(Mk

(k)))
2
}

. We now establish

∑
k

1

k4
E[log(`k(M(k)))

2] <∞, (3.3)

1To be fully precise: the first marginal of Q|Fn is a Dirac measure. But as all martingales we consider are
started at a fixed x we may “drop” the first marginal and consider the density of the remaining arguments
w.r.t. Lebesgue.
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where we let the symbol ` stand for either p or q, implying then (3.2). Applying the
Markov property we have

`k(M(k)) =

k∏
i=1

`(1/k,M(i−1)/k,Mi/k),

so taking logarithms, bounding the squared sum by a sum of squares, and applying
Lemma 3.1, we obtain

log(`k(M(k)))
2 ≤ 4k

∑
i≤k

{
C2

k2
+ log(δ2)2 +

1

4
log(k/2π)2 +

k2

4δ4
(M(i−1)/k −Mi/k)4

}

= 4C2 + 4k2 log(δ2)2 + k2 log(k/2π)2 +
k3

δ4

∑
i≤k

(M(i−1)/k −Mi/k)4.

To check (3.3), first observe
∑
k(4C2 + 4k2 log(δ2)2 + k2 log(k/2π)2)/k4 <∞, as log(x) ≤

xr/r for all x ≥ 1 and r ∈ (0, 1). Second, by the BDG inequality, we have

E[(M(i−1)/k −Mi/k)4] ≤ cE

(∫ i/k

(i−1)/k
σ(Mt)

2 dt

)2
 ≤ c

δ4k2
,

so
∑
i≤k E[(M(i−1)/k−Mi/k)4] ≤ c

δ4k and
∑
k

1
k4

∑
i≤k

k3

δ4E[(M(i−1)/k−Mi/k)4] ≤ c′
∑
k

1
k2 <

∞.

4 Proof of Proposition 1.6

Proof of Proposition 1.6. To ease notation we now drop x as a superscript. Let q(t, x, y)

and p(t, x, y) denote the transition density functions of respectively M and N = B. As in
the proof of Theorem 1.4 we start with the inequality

log
q( 1
n ,M `−1

n
,M `

n
)

p( 1
n ,M `−1

n
,M `

n
)

≤ C

n
+

1

2
log

σ(M `−1
n

)

σ(M `
n

)
− log σ(M `

n
)− n

2
dσ(M `−1

n
,M `

n
)2 +

n

2
|M `−1

n
−M `

n
|2. (4.1)

By the time-homogeneous Markov property we have

log

(
dQ

dP

∣∣∣
F2k

(
M`·2−k

)2k
`=0

)
=

2k∑
`=1

log
q(2−k,M(`−1)·2−k ,M`·2−k)

p(2−k,M(`−1)·2−k ,M`·2−k)
,

so our pre-limit quantity of interest,

1

2k
log

(
dQ

dP

∣∣∣
F2k

(
M`·2−k

)2k
`=0

)
,

is bounded from above by

C2−k + 2−k−1 log
σ(M1)

σ(M0)
− αk − βk + δk,

where

αk := 2−k
2k∑
`=1

log σ(M`·2−k),
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βk :=
1

2

2k∑
`=1

dσ(M(`−1)·2−k ,M`·2−k)2,

δk :=
1

2

2k∑
`=1

|M(`−1)·2−k −M`·2−k |2.

We have the almost-sure limit limk αk =
∫ 1

0
log σ(Mt)dt, by convergence of Riemann sums,

the function t 7→ log σ(Mt) being continuous and bounded. We observe also that

dσ(M(`−1)·2−k ,M`·2−k)2 =

∣∣∣∣∣B(`−1)·2−k −B`·2−k −
1

2

∫ `·2−k

(`−1)·2−k
σ′(Mt)dt

∣∣∣∣∣
2

,

by applying Itô formula to the process
∫Mt

0
dy
σ(y) . Hence

2βk =

2k∑
`=1

|B(`−1)·2−k −B`·2−k |2 +
1

4

∣∣∣∣∣
∫ `·2−k

(`−1)·2−k
σ′(Mt)dt

∣∣∣∣∣
2

− (B(`−1)·2−k

−B`·2−k)

∫ `·2−k

(`−1)·2−k
σ′(Mt)dt

}
.

Now we observe the almost-sure limits
∑
` |B(`−1)·2−k−B`·2−k |2 → 1 and, as σ′ is bounded,

also
∑
` |
∫ `·2−k
(`−1)·2−k σ

′(Mt)dt|2 = 0. This and Cauchy-Schwarz establish that βk → 1/2

almost-surely. Finally we remark that 2δk →
∫ 1

0
σ(Mt)

2dt almost surely.2

All in all, we have proved the almost-sure bound

lim sup
k

1

2k
log

(
dQ

dP

∣∣∣
F2k

(
M`·2−k

)2k
`=0

)
≤ 1

2

∫ 1

0

{
σ(Ms)

2 − 1− log σ(Ms)
2
}
ds.

Since similar arguments deal with the lower bound and the limes inferior, we con-
clude.
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