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Chung’s law of the iterated logarithm for a class of
stochastic heat equations
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Abstract

We establish a Chung-type law of the iterated logarithm for the solutions of a class of
stochastic heat equations driven by a multiplicative noise whose coefficient depends
on the solution, and this dependence takes us away from Gaussian setting. Based on
the literature on small ball probabilities and the technique of freezing coefficients, the
limiting constant in Chung’s law of the iterated logarithm can be evaluated almost
surely.
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1 Introduction

Let {B;};>0 be a standard one-dimensional Brownian motion. Chung [Chu48] proved
that, with probability one,

loglogt\ ?
lim inf (Ogog) sup |Bs| = I
t—o0 t 0<s<t \/g

Generally speaking, Chung’s law of the iterated logarithm (Chung’s LIL) characterizes
the lower envelope (liminf) for the local oscillations of the sample path.

Chung’s LIL has already been applied to empirical processes [Mog80], some stochas-
tic integrals [Rém94], the functional form of Chung’s LIL for Brownian motion [KLT94],
Brownian sheet [Tal94], the iterated Brownian motion [KL96] and a hypoelliptic Brown-
ian motion in Heisenberg group [CG22]. Furthermore, Luan and Xiao [LX10] established
Chung’s LIL for a class of anisotropic Gaussian random fields with stationary increments,
which is applicable to space-time Gaussian random fields and a solution of stochastic
partial differential equations (SPDEs). Recently, Lee and Xiao [LX23] proved Chung’s
LIL in a wider class of Gaussian random fields that may not necessarily have stationary
increments. However, we must emphasize that we limited ourselves to Gaussian pro-
cesses in most of the results mentioned above, and that there are not many explorations
of non-Gaussian processes.

The purpose of this paper is to study Chung’s LIL for a class of non-Gaussian random
processes at the origin. This is mainly motivated by recent papers [LX23] and [A]JM21]
since it is well-known that a key step in establishing Chung’s LIL is estimating small
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ball probabilities. Small ball problems have been well studied and have a long history,
and one can see [LS01] for an overview of known results on Gaussian processes and
references on other processes. In short, we investigate the behavior of the probability
that a stochastic process X; starting at the origin stays near its initial location for a long
time, i.e.,

P( sup | X¢| <6>

0<t<T

where ¢ > 0 is small. When small ball probabilities are available, it is not too difficult to
derive Chung’s LIL in general Gaussian cases, and one major step is to apply the second
Borel-Cantelli lemma to a sequence of independent events. However, particularly in a
non-Gaussian process, obtaining Chung’s LIL is a completely different matter.

2 Main result

We consider a class of stochastic heat equations given by

Ouult, ) = S0Rult, ) + o u(t, )W (t,2), o)

u(0,2) = up(x) =0,

on the circle with = € [0, 1] and endpoints identified, ¢t € R, and W(t, x) is space-time
white noise. We assume that the function o : R — R is globally Lipschitz continuous.

Hypothesis 2.1. There exists a constant D > 0 such that, for all u,v € R,
lo(u) —o(v)|] < Dlu — v.

In fact, (2.1) is not well-posed since the solution u(t, x) is not differentiable and W (¢, x)
exists as a generalized function. However, under the Hypothesis 2.1 and uy(z) =0, we
can define the mild solution u (¢, x) to (2.1) in the sense of Walsh [Wal86]:

1 t 1
uto) = [ G- ypuowiy+ [ [ G- sa-potuls Wiy, @2)
0 o Jo
where G : Ry x [0,1] — R is the fundamental solution of the heat equation

G(t,z) = %83(}’(75,;10)7
G(0,x) = dp(z).

We are now ready to state the main result of this paper.

Theorem 2.2. Under the Hypothesis 2.1, if u(t, x) is the solution to (2.1) with ug(x) =0
and o(0) # 0, then there exists a non-degenerate constant « € (0, 00) such that we have,
almost surely,

liminf sup
r=0t ooy f(T)
1:6[0,7'2]

=K, (2.3)

where f(r) := r [loglog (%)]_%

Remark 2.3. When D = 0, the equation (2.1) becomes a linear stochastic heat equation

driven by a constant coefficient noise, and the result is contained in [LX23, Theorem 7.4].
Let us summarize major steps in this paper. We truncate the noise coefficient o and

determine the probability that the solution remains unchanged despite the truncation.
This probability can then be bounded above by a tail bound in [AJM21]. With the first
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Borel-Cantelli lemma, we demonstrate that this truncation does not affect the limiting
term almost surely.

Because the coefficient 0 depends on the solution u, the solution w is no longer
Gaussian, rendering it unfeasible to identify a sequence of independent events due to
this dependency. Nevertheless, we could freeze the truncated noise coefficient and
construct a sequence of events involving a Gaussian process, and thus we could use the
estimation in [LX23] and approximate the error terms using the freezing technique in
[AJM21]. To be precise, given the result of the limiting term for a linear SPDE with a
constant coefficient in [LX23], we may approximate for a non-Gaussian process if we
can properly estimate the limiting term with respect to their differences. This idea
first appeared in [PT07] for the stochastic heat equation, yet it was used to perform
L? estimates instead of almost sure estimates. Lastly, we apply the first Borel-Cantelli
lemma again along with this freezing technique to derive the limiting constant.

The rest of the article is organized as follows. In Section 3, we provide some
preliminaries in the literature to prove Theorem 2.2. In Section 4, we conclude the paper
by showing that Theorem 2.2 can be derived from a Gaussian result.

3 Preliminary

In the paper [AJM21], the authors discovered a crucial lemma and a powerful remark
that give critical tail bounds on the noise term.

Lemma 3.1 ([AJM21, Lemma 3.4]). Assume that there is a positive constant C such that
o(u) < C for all u € R, then there exist positive constants K, Ko such that, for all
e, A >0, we have

P sup |u(t,z)] > Ae | < Kjexp (— (3.1)
0<t<e?

ZL’G[O,EZ}

Ko)\?
cz )’

Remark 3.2. One can obtain (3.1) by letting & = 1 and ugp(z) = 0 in [A]M21, Lemma 3.4].
It was also pointed out in [AJM21, Remark 3.1] that if |o(u(t,z))| < Cie, then one can

bound the right-hand side of (3.1) by K; exp (—Kz C%;)

Recent paper [LX23] established a general framework that is useful for studying the
regularity properties of sample functions of anisotropic Gaussian random fields and can
be directly applied to the solution of linear SPDEs.

The following Theorem provides us with a preliminary result in a Gaussian process,
and we can utilize a freezing technique to connect this result to a non-Gaussian process.

Theorem 3.3 ([LX23, Theorem 7.4]). Suppose that u(t, ) is the solution to (2.1) with
o =1, then there is a constant k € (0,00) such that we have, almost surely,

t
liminf sup [ult, 2)|
r—0+ 0<t<rt f(T‘)

z€[07r2]

= Ko,

1
where f(r) = r[loglog ()] ©. Moreover, ko coincides with a limit in [LX23, Theo-
rem 4.4], which is called the small ball constant of u on the region 0 <t < r*,z € [0,72],
if it exists.

Remark 3.4. Here we estimate the limiting term in a rectangular region, which is
compatible with the metric in [LX23]. Furthermore, [DMX17] have established a harmo-
nizable representation for the solution of linear stochastic heat equations with constant
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coefficients, which implies that Q = 6 in [LX23, Theorem 7.4] when W is space-time
white noise.

4 Proof of Theorem 2.2

Given that ¢(0) # 0, we fix a positive constant m = 2|0(0)| and define a truncated
function,
o(x), if|o(z)] < m;
g(x) =< m, ifo(x) > m; (4.1)
-m, ifo(z) <-m.
Clearly, 6(z) is a bounded function and we now start showing that the limiting term
in (2.3) can be approximated by

liminf sup
r—0t+ 0<t<r* f(?“) ’
xG[O,Tz]

where 4(t, z) solves the stochastic heat equation,

it x) = LoRu(t, @) + 6 (a(t, 2)) W (1, ), )

u(0,z) = 0.

Let 7, = a~™ with @ > 1, and then from the definition of 5(z) in (4.1) and the
uniqueness property of the solution of the stochastic heat equation, we have

P (u(t,z) # a(t,z) for some (t,z) € [0,7] x [0,72]) < P sup lo(a(t, z))] > m
0<t<r
167[07,7,27]
(4.3)
If D = 0 [i.e., o is constant], then the above probability in (4.3) is zero because
lo(a(t,z))| = |0(0)] = 2 < m for all (t,z) € [0,r}] x [0,72]. On the other hand, we
assume that D > 0 and Hypothesis 2.1 implies,

Dli(t, )| > [o(a(t,2)) = o(0)] > lo(a(t.z))]| - 5

We recall that |6(x)| < m in (4.1), so (4.3) and Remark 3.2 together yield

P (u(t,z) # (t,z) for some (t,z) € [0,7n] x [0,72]) < P | sup |a(t,z)| > o

r'n r'n OStSTi 2D
wE[O,rﬂ
I(QWL2
<Kjexp|——F——=
= p( 4D2m2r%>
K,
=Kiexp|—— ).
LExP ( 4D?rg>
The first Borel-Cantelli lemma implies that, with probability one,
u(t,x) —u(t,x
lim  sup ut, 2) —at, o) _
r—0t+ 0<t<r* f(?”)
mE[O,rz]
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Hence, we conclude that, with probability one,

t u(t
liminf sup [u(t, )] = liminf sup [a(t, »)| (4.4)
r=0t gcrent F(7) P20t gcyept f(7)
mE[O,Tz] mE[O,rz]

Now it suffices to prove Theorem 2.2 for u(t,z) that solves the stochastic heat
equation (4.2) driven by a multiplicative noise whose coefficient is bounded.

As we previously mentioned in the introduction, it may not be feasible to directly
show Theorem 2.2 using the Borel-Cantelli lemma because of the solution dependent
coefficients. Instead of seeking a sequence of independent events, we freeze the co-
efficient &(a(t, z)) with &(@o(z)), that is, we may approximate the solution (¢, z) by a
Gaussian random variable, at least in a random time interval.

We let 4,(t, z) satisfy the stochastic heat equation,

Ohity (t, ) = %aiﬂg(t,x) + & ((0, )W (t, z),
Ug(0,2) =0,

and then (¢, z) is the solution of a linear SPDE with a coefficient 6(0) = ¢(0). The
following statement evaluates the sum of the tail probabilities of the differences between
u(t,x) and u4(t, z), and these differences can be well controlled if the time interval is
suitably chosen.

From the definition of the mild solution (2.2), we denote

D(t,z) = a(t, z) — u4(t, z)
= / G(t — s,z —y)lo(u(s,y)) — a(a(0,y))|W(dyds),
[0,1]x[0,¢]

and

D, (t,z) = / Gt—s,z—y)[g(a(sAn7ly))—a(a(0,y))] W(dyds),
[0,1]x[0,¢]

where 77 is a stopping time defined as

78 =1inf {t > 0:|a(t,z) — @(0,z)| > g(ry,) for some z € [0,72]},

and define 7¢ = oo if the set is empty. Clearly, on the event F,, = {7 > r; }, we have

n — n

sup |D(t,z)| = sup l~)n(t, x)‘ ,
o<t<rs o<t<ry
J:E[O,r;ﬂ wE[O,ri]
which leads to, forevery 0 < e < 1,
P| sup |[D(t,z)|>rt| <P| sup Bn(t,x)’ > rite [ 4 P(FY). (4.5)
o<t<r? 0<t<rs
z€[0,r?] z€0,r2]

14e

Choosing ¢(r,) = m,? , we can apply Hypothesis 2.1, Lemma 3.1 and Remark 3.2 to
obtain

. K2T25
P sup Dn(t,x)’ >t | <Kjexp (2115>
o<t<rt D?rn (4.6)
wE[O,T?L] :
K
=Kjexp *712, )

D2y, ¢
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and

14¢

P(F5)<P| sup Ja(t,x)—a(0,x)] > rp?
o<t<rs
16[(),7‘3’]

(4.7)

Korlite
<Kjexp < 3 "2
r2m

K,
= K ex —_——— .
1 p ( 7’711_87’772)
We recall that r, = a7, a > 1 and 0 < € < 1, so summing up probabilities in (4.6)

and (4.7) yield

Dn(t,l‘)’ > rite | < oo,

i P sup
n=1

o<t<re
xE[O,ri]

and -
> P(Ff) < co.
n=1

According to (4.5), the sum of the following sequence of events

) 1 oo
[D(t, z)| [ Ly]° 1
Pl sup ———= >rf |loglog | — = P| sup |D(t,z)>r:te | < oo,
Z 0<t<rt f(rn) T'n nz::l o<t<rt
we[O,ri] wE[O,T,ﬂ

n=1

with the first Borel-Cantelli lemma shows that, almost surely,

u(t — Ug(t
b s 1)~ (1)
r—0+ o<t<rt f(?")
zG[O,rz]

:O7

and the limit for the non-Gaussian process (¢, ) now can be evaluated as in the Gaussian
scenario as

u(t U (t
liminf sup [uft, z) = liminf sup g, z)]| ,x)| (4.8)
r—0+ 0<t<rd f(’l‘) r—0+ 0<t<r f(r)
xE[O,Tz] :DE[O,T2]

We can write 4,(t,z) = o(0)v(¢, z), where v(t, ) solves the stochastic heat equation,

1 .
Opv(t,x) = iaiv(m) + W(t, z),

v(0,2) =0,
and immediately get
Uy (t t
liminf sup Iy (¢ )| =0(0) - liminf sup vlt, 2) (4.9
r—0t (oo f(r) r—0t it f(r)
xE[O,Tﬂ mE[O,’rz]
By Theorem 3.3, (4.4), (4.8) and (4.9), we end up with, almost surely,
o lu(t, )]
liminf sup = 0(0)ko,
r—0t 0<t<r? f(T)
rE[O,rz}
which completes the proof with k = o(0)x( in Theorem 2.2.
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